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Abstract

Quantum Key Distribution (QKD) is a revolutionary security technology that

exploits the laws of quantum mechanics to achieve information-theoretical secure key

exchange. QKD is suitable for use in applications that require high security such as those

found in certain commercial, governmental, and military domains. As QKD is a new

technology, there is a need to develop a robust quantum communication modeling and

simulation framework to support the analysis of QKD systems.

This dissertation presents conceptual modeling QKD system components using

the Discrete Event System Specification (DEVS) formalism to assure the component

models are provably composable and exhibit temporal behavior independent of the

simulation environment. These attributes enable users to assemble and simulate any

collection of compatible components to represent QKD system architectures. The

developed models demonstrate closure under coupling and exhibit behavior suitable for

the intended analytic purpose, thus improving the validity of the simulation.

This research contributes to the validity of the QKD simulation, increasing

developer and user confidence in the correctness of the models and providing a

composable, canonical basis for performance analysis efforts. The research supports the

efficient modeling, simulation, and analysis of QKD systems when evaluating existing

systems or developing next generation QKD cryptographic systems.
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CONCEPTUAL MODELING OF A QUANTUM KEY DISTRIBUTION
SIMULATION FRAMEWORK USING THE DISCRETE EVENT SYSTEM

SPECIFICATION

1. Introduction

1.1 The Need for Secure Communications

CRYPTOGRAPHY, the practice and study of techniques for securing

communications between two authorized parties in the presence of one or more

unauthorized parties, is the centerpiece of a centuries old battle between code maker and

code breaker (Singh, 1999). Historically, only financial, government, and military entities

used cryptography; but today much of modern society depends on cryptography to

provide security services including confidentiality, integrity, authentication, and non-

repudiation (Barker, Barker, & Lee, 2005). While there are many types of cryptography,

only the One-Time-Pad (OTP) symmetric key algorithm is “information-theoretically

secure” (C. E. Shannon, 1948; C. E. Shannon, 1949). All other forms of cryptography are

breakable if the adversary has enough cipher text, computational resources, and time

(Schneier, 1995), either by finding flaws in the encryption algorithm or decoding the

cipher text. Despite its strength, the OTP is not in common use because of the large

amount of secret key material required for its proper use (i.e. random generation, length

equal to the message, and single use)(Bellovin, 2011). These requirements impose

significant limitations on use of the OTP in most applications due the costs involved with

secure key generation and distribution.

Quantum Key Distribution (QKD) is a technology that offers the means for two
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geographically separated parties to generate a shared secret key (Grimaila, Morris, &

Hodson, 2012). QKD is unique in its ability to detect any eavesdropping on the key

exchange, assuring the secrecy of the key. This is possible due to the fundamental laws of

quantum mechanics which ensures eavesdropping on the quantum channel introduces

detectable errors. QKD enables an “unconditionally secure” cryptosystem when paired

with the OTP.

1.2 Quantum Key Distribution (QKD)

In 1984, Charles Bennett and Gilles Brassard proposed the first QKD protocol,

BB84, for secure communication (Bennett and Brassard, 1984). The goal of the system is

to provide perfect secrecy during key distribution. Using a QKD protocol, a sender and

receiver exchange an unconditionally secure secret key by leveraging properties of

quantum mechanics. QKD enables two parties to “grow” a shared secret key without

placing any limits on an adversary’s computational power and can detect the presence of

any third-party eavesdropping on the key exchange. Because of the laws of quantum

mechanics, any third-party eavesdropping on the key exchange will introduce detectable

errors. If the errors are below a defined threshold, the two parties involved in the key

exchange can distill an unconditionally secure key. QKD provides a potential solution to

the key distribution problem by enabling two parties connected by a quantum channel to

continuously produce an unconditionally secure shared secret key, or decide not to use a

key if detecting an eavesdropper.
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1.3 The Need for QKD Simulation

QKD is a developing technology and not thoroughly studied from a systems-level

perspective. QKD systems contain non-ideal components that differ, sometimes

significantly, from the ideal components specified during the original conceptual system

design. Therefore, there is a need to develop an efficient integrated modeling and

simulation capability to understand the impact non-ideal components have on the

performance and security of different QKD system architectures.

Because of the limits of technology, it is impossible to build the ideal QKD

system described in theory (Scarani et al., 2009). Therefore, each QKD implementation is

only an approximation of the ideal apparatus described in theory. Therefore, our research

effort focuses on the development of a QKD modeling and simulation framework that

includes system implementation non-idealities in the system analysis to better understand

their impact on overall system performance and security.

There exist few QKD simulations beyond those that model specific hardware or

situations. An example is the Austrian Institute of Technology’s AIT QKD Software

project (Austrian Institute of Technology, 2014) that attempts to model an entire QKD

network but focuses on one QKD hardware type (entanglement). An extensive literature

search over several years revealed no other multi-technology system-level QKD

modeling & simulation (M&S) efforts.

To address this shortcoming, a research team at the Air Force Institute of

Technology developed a modular simulation framework, named qkdX, which provides

users the capability to model efficiently, simulate, and study QKD system architectures.
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This simulation capability provides hybrid functionality as it abstracts continuous-time

QKD system signals (e.g., electrical signals and optical pulses) into a representation

suitable as events in a Discrete Event Simulation (DES) environment (Morris, Hodson,

Grimaila, Jacques, & Baumgartner, 2014).

1.4 Problem Description

Just as in the early days of computing, each QKD system, whether commercial or

research, is a unique implementation based on the theory and principles of QKD using

currently available components, protocols, and technology. As there are no widely

accepted security and performance standards for evaluating QKD systems, each system

designer architects their system based on their own views and needs. The ability to model

accurately and simulate QKD systems at an appropriate abstraction level is an essential

capability necessary for analysis of current and next generation QKD cryptographic

systems.

Currently, there exists no efficient means of modeling, simulating, and analyzing

different QKD systems. There is a need to develop a flexible, extendable, quantum

communication modeling and simulation analysis framework that take advantage of all

the best practices in modeling, simulation, and analysis and model QKD systems at an

appropriate detail level to estimate system-level attributes in areas such as security,

performance, and cost.

Best practices in modeling and simulation provide the “simulation study” (Banks,

Carson, Nelson, & Nicol, 2010) as an accepted approach in building models and

simulations. Different versions of the simulation study exist, and can contain from 10-12
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steps, but the focus of this research is on the first three steps (identifying the problem,

setting the objectives, and conceptual modeling) using the version proposed by Banks

(Banks & Gibson, 2001). Investigation into the first two steps of the simulation study and

guidance from the QKD research sponsor lead to five research questions that provided

insight necessary for the final two primary research questions.

Two issues in building any simulation are validation and verification. The first is

a question of “did we model the right thing?” and the seconds is “did we build the right

model?” The QKD simulation needs to answer these questions or risk non-acceptance

from the end-users and project sponsors. To that end, this research proposes to use

conceptual model validity theory and the DEVS modeling formalism to increase the

validity of the simulation, and is the focus of the journal article in chapter 7.

1.4.1 Research Focus & Methodology

Creating a conceptual model is the third step of the simulation study and the

primary focus of this research. This conceptual model is the bridge to link the

mathematical models provided by the Subject Matter Experts (SMEs) to the computer

code created by the project coders for the selected simulation framework. Conceptual

modeling increased the validity of the simulation by using several well-accepted

validation and verification (V&V) techniques and expressing the conceptual model using

a well-documented, proven, modeling formalism.

The intent of this research is to explore these primary and secondary research objectives:

Primary objectives:
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1. Develop conceptual models for each optical component identified for the

prototypical QKD architecture

2. Use conceptual model validity theory to increase the validity of the simulation

Secondary research objectives:

1. Enumerate the elements contained in QKD systems.

2. Identify the requirements for a robust QKD modeling, simulation, and analysis

capability.

3. Propose a simulation environment which meets the needs of the research.

4. Develop a prototypical QKD system architecture for analysis in the dissertation

research.

This research focused on the proper modeling of the temporal behavior and

internal “state” of optical components for creating conceptual models for use in the qkdX

simulation. This researcher, in consultation with SMEs in the optical physics and

electrical engineering domains, determined the necessary detail level for each model.

These models enable a system-level simulation where signals propagate through the

system as discrete events, but can be reconstructed into a continuous-time representation

when requiring mathematical operations or transformations of the signals.

To capture the temporal behavior and the state of components, this researcher

used DEVS. In the past, DEVS has been used to model high-level architectures, hybrid-

systems, cell-spaces, distributed supply chains, test & evaluation, forest fires,

environmental systems, building performance models, and other problem spaces (Gunay,

O'Brien, Goldstein, Breslav, & Khan, 2013; Mittal, Risco, & Zeigler, 2007; Ntaimo,

Zeigler, Vasconcelos, & Khargharia, 2004; G. A. Wainer & Giambiasi, 2001; G. Wainer,

2006; B. P. Zeigler, Kim, & Buckley, 1999; B. P. Zeigler, Song, Kim, & Praehofer, 1995;

B. P. Zeigler, Ball, Cho, Lee, & Sarjoughian, 1999). This research represents, to the
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team’s knowledge, the first use of DEVS to model optical components.

1.5 Document Organization

This document uses a journal format to present work related to conceptual

modeling of optical components using DEVS. Chapter 2 presents my research questions

and discusses how the research questions link to four of the included articles.

Additionally, it presents the methodology for testing the DEVS atomic and coupled

models.

Chapter 3 is the article “Quantum Key Distribution: A Revolutionary Security

Technology” published in the ISSA Journal, a trade publication of the Information

Systems Security Association (Grimaila et al., 2012). This article presents a “layman’s”

explanation of QKD technology and the BB84 protocol. It is included only as background

information for better understanding QKD.

Chapter 4 presents the article “Towards Modeling and Simulation of Quantum

Key Distribution Systems.” This article appeared in the International Journal of Emerging

Technology and Advanced Engineering (Morris et al., 2014). It presents the research

findings for several of the secondary research questions.

Chapter 5 is the article titled “A Survey of Quantum Key Distribution (QKD)

Technologies.” The book Emerging Trends in ICT Security (Morris, Grimaila, Hodson,

Jacques, & Baumgartner, 2013) contains this article as its chapter 9. This material

highlights research into QKD technologies to identify optical components for the

prototypical QKD architecture.

Chapter 6 contains the article titled “A Reference Architecture to Enable Security
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and Performance Analysis of Quantum Key Distribution.” This article presents a

discussion of the baseline reference QKD architecture used in the conceptual modeling

research. It reviews some of the design decisions made for d the reference architecture

and is under review at IEEE Transactions on Emerging Topics in Computing.

Chapter 7 is the article titled “Using the Discrete Event System Specification to

Model Quantum Key Distribution System Components.” This article is the capstone of

the research using the DEVS framework. It includes a discussion on how the conceptual

were built, the modeling process and how the research modeling efforts increased the

validity of the qkdX simulation and is under review at the Journal of Defence Modeling

and Simulation.

Chapter 8 documents the results and analysis of the conceptual modeling effort. It

describes the modeling steps and lists the component and coupled submodules built

during the research. It discusses testing the models and provides examples of model code

and output data.

Chapter 9 presents the conclusions, significance of this work, and

recommendations for further research. Chapter 10 contains the references for chapters 1-

2, and 8-10. Each embedded article and the 27 appendices have its own reference list,

focused on the material in that document.

Appendix A contain systems engineering material relating to the QKD

prototypical architecture, a decomposition of the QKD system down to the individual

optical components within the Alice quantum module and offers descriptions of the

software tools used in this research. Appendix B contains information on the component

creation and the testing methodology and has examples of testing output for both
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components and coupled submodules. Appendix C is a short primer on cryptography, the

next seventeen contain the DEVS research documentation for each modeled optical

component and the final seven appendices cover the modeled coupled submodules for the

“Alice” portion of a QKD system. See Table 1 for a concise list.

Table 1. List of Appendices.

Appendix
# Title Contents

A
QKD Prototypical
Architecture System Engineering & decomposition diagrams

B

Component
Creation and
Testing Overview of creating & testing steps

C
Cryptography
Overview Primer on cryptography

D Bandpass Filter
Component description, DEVS documentation & Use
Cases

E Beamsplitter
Component description, DEVS documentation & Use
Cases

F Circulator
Component description, DEVS documentation & Use
Cases

G

Optical
Photodiode
(Classical
Detector)

Component description, DEVS documentation & Use
Cases

H EVOA
Component description, DEVS documentation & Use
Cases

I Fixed Attenuator
Component description, DEVS documentation & Use
Cases

J Half-wave Plate
Component description, DEVS documentation & Use
Cases

K In-line Polarizer
Component description, DEVS documentation & Use
Cases

L Isolator
Component description, DEVS documentation & Use
Cases

M Laser
Component description, DEVS documentation & Use
Cases

N PM Fiber
Component description, DEVS documentation & Use
Cases
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O
Polarization
Controller

Component description, DEVS documentation & Use
Cases

P Pulse Modulator
Component description, DEVS documentation & Use
Cases

Q
Polarizing
Beamsplitter

Component description, DEVS documentation & Use
Cases

R SM Fiber
Component description, DEVS documentation & Use
Cases

S Optical Switch
Component description, DEVS documentation & Use
Cases

T WDM
Component description, DEVS documentation & Use
Cases

U CPG Module
Submodule description, DEVS documentation & Use
Cases

V PM Module
Submodule description, DEVS documentation & Use
Cases

W DSG Module
Submodule description, DEVS documentation & Use
Cases

X CTQ Module
Submodule description, DEVS documentation & Use
Cases

Y OSL Module
Submodule description, DEVS documentation & Use
Cases

Z TPG Module
Submodule description, DEVS documentation & Use
Cases

AA OPM Module
Submodule description, DEVS documentation & Use
Cases
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2. Methodology

The purpose of this chapter is to present the research questions, their place within

the overall research and the methodology used for the research. Each question has a short

discussion and highlights the chapter containing the article focused on that research.

2.1 Research Questions

A search of simulation literature provided an accepted path for creating a

simulation: the simulation study. In simulation literature, the accepted practice to

approach problem solving is to use a methodical simulation study (Banks, 1998; Elliott,

Edmondson, Scrudder, Igarza, & Smith, 2009; Geoffrion, 1989; Gogg & Mott, 1998;

Jain, 1991; Naylor & Finger, 1967).

Simulation studies have many suggested steps, and Banks suggests a version of

the simulation study supported in literature and drawn from research started in the 1960s

(Banks & Gibson, 1997; Banks, 1998; Banks & Gibson, 2001; Banks & Chwif, 2010;

Banks et al., 2010; Law, Kelton, & Kelton, 1991; R. E. Shannon, 1998). Banks writes

extensively on this topic and the DOD MSCO references the process as a best practice

(Morse et al., 2010). Banks’ simulation study includes many steps but the scope of this

research is his first three steps:

 Problem formulation

 Setting of objectives and overall project plan

 Model conceptualization

This research addressed these steps by posing multiple research questions. The

questions explore the topics necessary to address the simulation study steps and meet the
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requests of the project sponsor. The intent was to conduct research to answer the

questions, meet the needs of the project sponsor and support the research objectives of

the AFIT QKD research team.

Five initial questions were posed after conducting a literature review and

discussions with SMEs and project sponsor. Answering these questions laid the

foundation for the research into the conceptual model for the QKD simulation. The five

questions were:

2.1.1 Q1: What Are the Basic Elements of a QKD System?

This research focused on identifying the elements of QKD (components,

architectures, phases and processes) and distilling a list of optical components selected

for inclusion in the prototypical demonstration architecture. These components were the

focus of the DEVS modeling research. The primer article in chapter 3 provides the basic

understanding of QKD and the article in chapter 4 presents an overview of QKD

technologies found during this research.

2.1.2 Q2: What End User Capabilities are required in a QKD Modeling and
Simulation Framework?

Evaluating the needs of users served a dual purpose: 1) provided research into a

topic requested by the project sponsor to ensure the QKD simulation provided

capabilities relevant to the eventual end-users, 2) captured requirements for inclusion in

the conceptual model and demonstration architecture. Chapter 5 contains the article

discussing the research for this question.
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2.1.3 Q3: What Software Developer Capabilities are required in a QKD
Modeling and Simulation Framework?

The project sponsor also requested researching developer capabilities for the

QKD simulation. These results lead to identifying additional requirements for inclusion

in the conceptual models and the demonstration architecture. Chapter 5 contains the

article discussing the research for this question.

2.1.4 Q4: Which Simulation Environment Is Best for QKD Modeling and
Simulation?

This research was exploration and comparison of various simulation software

packages to select the best simulation environment for building the QKD simulation.

Both open-source and professional software packages were considered, leading to

identifying the best solution, based on the capabilities identified in the earlier research

questions and input from the project sponsor. Chapter 5 contains the article discussing the

research for this question.

2.1.5 Q5: What QKD System Architecture is Best Suited to Demonstrate the
Analysis Capabilities of the Proposed Framework?

This question addressed creating a QKD system architecture using the optical

components identified by the first research question. A demonstration QKD simulation

built by the AFIT research team modeled this architecture using the simulation

environment identified in the previous question as a proof-of-concept project. Chapter 6

has the draft article discussing the qkdX simulator and the prototypical architecture. This

article is still in the draft stage, with submission to the IEEE Transactions on Emerging

Topics in Computing expected by mid-August.
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2.1.6 Q6: What is the DEVS formalism for each component within the
prototypical QKD system?

The purpose of this question is to use the DEVS formalism to describe the

conceptual models for the selected prototypical QKD system per the 3rd step of the

simulation study. The DEVS formalism provides a comprehensive description of the

system in an accepted modeling and simulation formalism. The DEVS formalism aids the

model developers, provides increased validation of the QKD simulation, and supports

testing and evaluation. Chapter 7 is the article submitted to The Journal of Defense

Modeling and Simulation for review and provides a discussion on the DEVS formalism

for an example coupled submodule and an example optical component.

2.1.7 Q7: How can we use the DEVS formalism and conceptual model validity
theory to increase the validity of the QKD simulation?

The purpose of this question is to mate the DEVS formalism to conceptual model

theory to increase the perceived validity and confidence in the QKD simulation

conceptual models by using theory, techniques, and principles of V&V. This was

accomplished by applying several V&V techniques and providing the following list of

products:

 English-language rules for each component and module

 Phase Transition Diagrams for each component and module

 Event-Trace Diagrams for each component and module

 SME math-based behavioral models for each component (SME input)

 DEVS pseudo code for each component and module

The research for each component starts with a description of the component

derived from commercial data sheets and academic texts describing the components. This
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provided the necessary information to build a conceptual model for the component. Phase

transition diagrams showed timing and behavior and event-trace diagrams, in the form of

state list tables, described the transitions between states for several test cases. This

information, with the SME-provided mathematical behavior models, became the basis for

constructing the DEVS pseudocode.

DEVS provides a way to formalize the conceptual model of the QKD simulator,

but in itself does not provide conceptual model validity. While verification and validation

are normally used together, validation is the focus of this research. Model validity is a

necessary condition for the credibility of simulation results (Balci, 1995). Model

validation, according to Balci, is “substantiating that the simulation model, within its

domain of applicability, behaves with satisfactory accuracy consistent with the study

objectives” (Balci, 1997). Model validation is the comparison of model behavior to the

behavior of the system under study when both are responding to identical input

conditions (Sargent, 2005). The article in chapter 7 (pages 7-8) discusses conceptual

modeling, DEVS, and how using DEVS increases the validity of a simulation.

2.2 Methodology

The methodology for creating the DEVS models for each component and coupled

submodule is the same and the results for each are included in the appendices. Chapter 7

explains the methodology in detail and explains the research results. The basic procedure

started with the optical physics SME creating a mathematical model for each of the

optical components that captured parameters and behavior believed necessary for the

model. Model creation used a combination of data measured during laboratory
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experiments and component data sheets and existing reference literature. Creating and

verifying the correctness of the developed math models used Mathematica, a well-known

math computation software package (Wolfram, 2014).

The next step was to transform the mathematical model into a DEVS pseudocode

model. These mathematical models become the “source system” shown in Figure 1 and

consequently, the basis for QKD simulator. The modeler reviewed the math models to

understand the necessary transformation functions, reviewed quantum and optical physics

literature and consulted with the SMEs to understand the required component behavior.

Product literature for existing physical components provided additional information for

acceptable component input and output ranges. The DEVS models captured this

information using phases, states and transitions and submitted the component models

back to the optical SME for review.

Once complete, the DEVS pseudocode became the basis for creating the model in

a DEVS-compliant simulator, MS4ME (MS4 Systems, 2014). MS4ME is a product of

RTSync (www.rtsync.com), a spin-off from the Arizona Center of Integrative Modeling

and Simulation (ACIMS) (Arizona State University, 2014). MS4ME provides a

structured user interface for modeling built on top of the DEVSJAVA simulator (B. P.

Zeigler, Sarjoughian, & Au, 1997). For each component, the output from the MS4ME

simulator was compared against the expected behavior of the DEVS model. This

modeling was a check on the DEVS pseudocode and ensured the models met the

requirements of the formalism and captured the appropriate behavior. Once checked, the

DEVS pseudocode became the basis for the simulation modelers to create the qkdX

framework.
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Figure 1. Levels of modeling and simulation.

2.2.1 Component testing

The components were tested within the MS4ME simulator, with the results shared

with the SME for face validity and trace checking (see chapter 6 for explanation of these

validation techniques), as well as using operational graphics (viewing the model as it

moves through time) and fixed values (using constants for model input and internal

variables to check against calculated values). These four techniques are a subset of the

suggested validation techniques by Sargent for validation of simulation models (Sargent,

2005).

Appendix B describes the component creation and testing process, with a section

on component behavior testing, a section with an example of the MS4ME output from a
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test case used for the EVOA, and section listing a “pseudocode” derived from code

comments within the EVOA code.

The steps of the creating and testing process were:

 Component description – describing the component function and physical design

using commercial and academic literature.

 Component conceptual model – text description of the properties and behaviors of

interest in the component.

 English-language rules – list of rules that describe the behavior of the component.

 Phase transition diagram – diagram that shows how the component moves from

phase to phase within each state. This diagram is described in detail in chapter 6.

 Event-trace diagram – diagrams and tables describing how the component moves

from phase to phase for several test cases.

 Use case – list of use cases for the component.

 DEVS code – DEVS pseudocode for the component; used to create the MS4ME

models.

 MS4ME code – programming the pseudocode into the MS4ME simulator as a

check to ensure the pseudocode captured the behavior and timing properly.

 MS4ME output review – a line-by-line check of the MS4ME output to ensure the

MS4ME model and the pseudocode matched and the MS4ME programming was

correct.

 MS4ME model review – the optical SME reviewed the DEVS conceptual model

along with the MS4ME models to ensure the modeled behavior and timing was

correct in comparison to the starting mathematical model.

 Model refactor – after review, each model was corrected per feedback from the

optical SME.

This is just a short overview of the process, see appendix B for a detailed description.

2.2.2 Methodology Issues

A major component of validating the DEVS pseudocode was using the MS4ME

DEVS simulator, but several issues arose during its use. MS4ME is still in development

and the researcher discovered issues that affected the research. The most important of
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these was the lack of advanced math functions in the DEVS-JAVA language that is the

basis of MS4ME.

The design of optical packets uses integration functions to determine several

values during simulation execution. This design required integrating a scientific library

into the qkdX simulation framework, but the researcher found the MS4ME simulator

failed when trying to install a comparative JAVA-language scientific library. This issue

was reported to RTSync, but there was no fix to this issue during the research period.

This problem affected research during the coupled submodules building phase.

Each time an optical packet reflects, there should be an optical power reduction

calculated using the integration functions. The missing integration functions led to optical

packets reflecting infinitely between components. Each component was tested

individually for proper behavior by injecting low-power packets and ensuring the fiber

components properly deleted these low-power packets per the simulation design choice to

have the fiber modules delete packets below a specified power level.

The generally accepted method ensuring validity of a simulation is to compare the

simulation output to a real-world system. The closer the outputs (or the harder it is to

distinguish between the two), the stronger the validity. This method is not applicable

when simulating future or notional systems, and in this research, not having access to real

systems for comparison. Additionally, the prototypical architecture was intentionally

created not to model any existing QKD system but rather to exercise the capabilities of

qkdX.

To overcome these deficiencies, the researcher relied on guidance from an optical

physics SME who provided the mathematical models for the optical components. The
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SME reviewed each DEVS and MS4ME model for accuracy (as noted in the previous

discussion on research methodology) to ensure they captured the proper behavior. Late

into this research period, the AFIT QKD research team did receive a QKD system, but

there was no time to capture data from this system.

2.2.3 Included Articles

The following five chapters contain articles focused on the various aspects of this

research. Chapter 3 contains the first article which provides a layman’s primer on QKD.

Chapter 4 presents an overview of QKD technologies and networks, part of the research

into identifying the components necessary to model QKD systems. Chapter 5 focuses on

identifying requirements and capabilities for modeling QKD and selection of a simulation

environment. Chapter 6 presents the qkdX simulation built by the AFIT research team and

discusses the components and submodules necessary to model the demonstration QKD

architecture. Finally, chapter 7 presents the research into DEVS, writing the DEVS

pseudocode and how using DEVS can increase the validity of QKD simulation.
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Quantum Key Distribution: A Revolutionary Security
Technology

Michael R. Grimaila, Jeffrey Morris, and Douglas Hodson

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433-7765

Introduction
Quantum Key Distribution (QKD) is a revolutionary security technology that exploits the
laws of quantum mechanics to achieve information-theoretic secure key exchange. QKD
enables two parties to “grow” a shared secret key without placing any limits on an
adversary’s computational power. QKD is unique in its ability to detect the presence of
any third-party eavesdropping on the key exchange. Due to the fundamental laws of
quantum mechanics, any third-party eavesdropping on the key exchange will introduce
detectable errors. If the errors are below a defined threshold, an unconditionally secure
key can be distilled. When QKD is used in conjunction with the On-Time Pad symmetric
cryptographic algorithm, the result is an unconditionally secure cryptographic system. In
this article, we provide a brief background of cryptography related to QKD, present the
basic principles the BB84 QKD protocol, and discuss vulnerabilities arising from the
non-idealities present in real world QKD system implementations.

Secure Communications and Cryptography
The need for secure communications has existed since the dawn of humanity.
Cryptography, the practice and study of techniques for securing communications between
two authorized parties in the presence of one or more unauthorized third parties, is an
essential tool used to assure information security (Rivest, 1990). Historically, government
and military applications chiefly used cryptography, but today almost everyone is
dependent on cryptography as it is used to provide security services including
confidentiality, integrity, authentication, authorization, and non-repudiation (NIST 800-
21, 1995).

A cryptosystem is composed of two basic components: an algorithm and one or more
keys. The algorithm is the mathematical transformation used to encrypt and decrypt
messages and the key(s) are parameters used in the encryption and decryption processes.
Figure 1 shows a block diagram of a simple cryptosystem. The original message, m,
called the “plaintext” transforms into the “ciphertext”, EK(m), using the encryption
algorithm, E, and the encryption key, K. The terms plaintext and ciphertext refer to
binary data and can represent anything in digital form (e.g., text, audio, video, pictures,
programs). Other parameters (e.g., initialization vectors, salt, etc.) may be used but are
not shown for simplicity. Ideally, the ciphertext is not decipherable unless you possess
the key required to decrypt it1. The transformation of plaintext into ciphertext “protects”

1 This is not strictly true as the strength of most cryptographic algorithms is rooted in the effort required to
solve difficult mathematical problems. The science of cryptanalysis is focused upon learning the secret key
based upon analysis of the ciphertext, as well as other information related to the encryption and decryption
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the confidentiality of messages transmitted over a public channel where an adversary can
possibly intercept it. Upon receipt, the ciphertext message is transformed back into the
plaintext, m, using the decryption algorithm, D, and the decryption key K′. The 
decryption algorithm, D, is the inverse transformation of the encryption algorithm, M,
which means that DK′ (EK(m))=m. Note that in general K does not have to equal K′, 
although it does for symmetric algorithms.

Figure 1 – A Simple Cryptosystem Block Diagram

There are three basics types of cryptographic algorithms: symmetric, asymmetric and
hashing functions.  Symmetric key algorithms use the same key (e.g., K = K′) for 
encryption and decryption. The benefits of a symmetric key algorithm are that it provides
confidentiality, is fast, is easily implemented in hardware, and consumes little
computational power when compared to asymmetric algorithms. However, symmetric
key algorithms only provide confidentiality and require a separate key for each pair of
entities who wish secure communications, which does not scale well when large numbers
of entities must securely communicate. Examples of symmetric key algorithms include
DES, 3-DES, AES, Blowfish, RC4, and RC5.

Asymmetric key algorithms used mathematically related, but different (e.g., K ≠ K′), key 
pairs for encryption and decryption (e.g., public and private keys) which reduces the key
distribution burden. The benefits of an asymmetric key algorithm are that there no need
for “out of band” key distribution as public keys are freely shared, it scales better since
only a single key pair needed for each individual, and additionally provides
authentication and non-repudiation. However, asymmetric key algorithms are slow
because they require complex mathematical operations and typically consume more
computational power than symmetric algorithms. Examples of asymmetric algorithms
include RSA, PGP, El Gamal, ECC, and Diffie-Hellman.

Hash algorithms are one-way functions that take an arbitrary length message and create a
fixed length message digest. Hash algorithms may or may not require a key depending on
their mode of operation. Hashing provides an efficient way to check the integrity of
stored or transmitted data without having to compare the data bit by bit. However, since
hash algorithms map all possible inputs to a fixed length message digest, more than one

process. As technology progresses, an adversary with unlimited computational resources may be able to
decode the ciphertext in a “reasonable” amount of time. There are concerns that certain cryptographic
algorithms will become useless when quantum computers with a larger number of qbits become viable.
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input can map to the same digest creating a “collision” which may provide an advantage
to an eavesdropper. Examples of hash algorithms include MD-4, MD-5, and SHA-1.

Different cryptographic algorithms can be used independently or can be combined in a
hybrid fashion to provide robust security services. For example, a web browser that
interacts with a secure web server using SSL/TLS uses all three of the primary
cryptographic algorithms.

The One-Time Pad (OTP)
The only cryptographic algorithm mathematically proven to be unconditionally secure is
the One-Time Pad (OTP). The OTP is a symmetric cryptographic algorithm and is
relatively easy to understand. The first known description of the OTP was in 1882 when
Frank Miller described “superencipherment” as a means to insure the privacy and secrecy
of telegraphic communications (Bellovin, 2011). Miller’s method required the use of a
randomly generated key that was never reused. In 1917, Gilbert Vernam invented and
later patented a cipher based on teleprinter technology, but it was vulnerable because it
reused key material (Vernam, 1919; Vernam, 1926). Despite this weakness, a National
Security Agency report identified Vernam’s patent as “perhaps one of the most important
in the history of cryptography” (Kahn, 1996). Subsequently, Joseph Mauborgne
recognized that if the key used in the Vernam cipher was fully random, then cryptanalysis
would be impossible. In the 1940s, Claude Shannon proved the theoretical significance
of the security of the OTP (Shannon, 1949).

The strength of all other modern cryptographic algorithms is based upon “computational
security,” which means that it is considered secure if there is a negligible probability of
determining the key in a “reasonable” amount of time using current technology. In
theory, every cryptographic algorithm, except the OTP, is insecure given enough
ciphertext, computational resources, and time2.

To use the OTP, each of the parties (common called Alice and Bob) who wish secure
communications must first share a key "pad" which is a randomly generated key, equal in
length to the message to be sent3. Alice transforms the plaintext into the ciphertext by
bitwise Exclusive-ORing (XORing) the plaintext with the key pad. The XOR operation
of two bits is calculated as follows: if the bits are the same you will obtain a 0, and if the
bits are different you will obtain a 1. Once Alice has encrypted the plaintext into the
ciphertext, she destroys the key pad and transmits the ciphertext message. Upon receiving
the message, Bob XORs the ciphertext message with the same key pad used by Alice to
recover the plaintext message and then destroys his key pad.

2 Recent developments in quantum computing have placed the security of certain cryptographic algorithms
(e.g., RSA) which are based upon the difficulty of factoring large numbers into their constituent primes at
risk.
3 This simple requirement is the most limiting factor when using the OTP as you must have a virtually
infinite supply of a shared secret key available to Alice and Bob.
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For example, suppose Alice wants to securely send a message (1001) to Bob using the
OTP as shown in Figure 2. First, Alice and Bob must preshare a secret key pad (0101)
that is the same length as the message. Next, Alice XORs the plaintext message (1001)
with the key (0101) to obtain the ciphertext (1100). Alice now sends the ciphertext
through the public insecure network. When Bob receives the ciphertext (1100), he
XORs it with the key pad (0101) to recover the plaintext (1001). One way to think
about the OTP is that the key pad is “noise” that mixes with the plaintext to create the
ciphertext. Since only Alice and Bob have the same noise source (key pad), they are the
only ones who can filter it out.

Figure 2 – The One-Time Pad

For the OTP to be secure, the key pad must be 1) truly random, and 2) never reused. Not
meeting either of these conditions significantly reduces the strength of the security of the
OTP. This lesson was learned by the Soviet Union who during WWII reused one-time
pads after distributing them to Soviet intelligence field agents (Benson, 2006). As a
result, US and UK intelligence agencies working on Project VERONA were able to
easily decode their messages (USGPO, 1997).

To take advantage of the OTP, we must generate and distribute random4 secret keys to
both Alice and Bob equal in length to the sum of the lengths of all messages to be

4 The generated key must be truly random. This is not a trivial requirement but due to space constraints we
will not expand on this point.
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exchanged. In practice, this places a significant burden on key distribution and
management as one must continuously generate and distribute key pads between the
authorized entities in a secure manner. For this reason, historically the OTP is only used
in environments which justify the costs involved with secure key distribution. However,
QKD offers an attractive point-to-point solution to this dilemma.

Quantum Key Distribution (QKD)
The beginning of QKD can be traced back to Stephen Wiesner who developed the idea of
quantum conjugate coding in the late 1960’s (Wiesner, 1983). As a student at Columbia
University, he described two applications for quantum coding: a method for the creation
of fraud-proof banking notes (quantum money) and a method for the transmission of
multiple messages in such a way that reading one of the messages destroys the others
(quantum multiplexing). Wiesners’s quantum multiplexing utilizes photons polarized in
conjugate bases as quantum bits (qbits) in order to pass information. In this manner, if the
receiver measures the photons in the correct polarization basis, they will receive a correct
result with high probability. However, if the receiver measures the photons in the
incorrect (conjugate) basis, they will obtain a random result and destroy all information
about the original basis. In 1984, Charles Bennett and Gilles Brassard exploited this
concept when they proposed the first QKD protocol, BB84, for secure communication
(Bennett and Brassard, 1984).

The BB84 Protocol
In the BB84 protocol, the qubits are single photons polarized into one of four polarization
states selected from one of two conjugate basis sets as shown in Figure 3. The Rectilinear
Basis is shown in yellow and is comprised of 0° and 90° polarizations, and the Diagonal
Basis is shown in blue and is composed of 45° and 135° polarizations.

Figure 3 – The Rectilinear and Diagonal Bases Sets
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Alice randomly generates both a bit (0 or 1) and a basis (Rectilinear or Diagonal),
polarizes a photon accordingly, and sends it to Bob. Bob randomly selects a basis
(Rectilinear or Diagonal) to measure the arriving polarized photon. If Bob’s randomly
selected basis matches Alice’s basis, Bob will measure the bit encoded by Alice with
100% accuracy5. If Bob’s basis does not match Alice’s basis, he will measure the correct
bit with 50% probability because a photon polarized in one basis yields a random value
when measured in its conjugate basis. By encoding classical bits in two conjugate bases,
the BB84 protocol provides a means for passing keys between two parties in such a way
that an eavesdropper would destroy information and be detected.

The BB84 protocol consists of a sender, Alice, and a receiver, Bob, connected by a
classical public channel and a quantum channel as shown in Figure 4. The classical
channel is a conventional authenticated public communications link and is used to
conduct error reconciliation during the key exchange process. It is assumed that only
passive eavesdropping may take place on the classical channel as long as some initial key
material is shared for authentication. The quantum channel is used to exchange the
quantum encoded qubits. BB84 is often called a “Prepare and Measure” QKD protocol
because Alice prepares the photons and Bob measures them. The BB84 protocol can be
broken into four steps: Quantum Exchange, Sifting, Information Reconciliation, and
Privacy Amplification.

Figure 4 – A BB84 QKD System Block Diagram

Quantum Exchange
The first step in the BB84 protocol is for Alice to generate a random bit string which is
the initial candidate key string. She also generates a random bit string which is used to
select the basis (Rectilinear or Diagonal) used to encode the bits as polarized photons.
Alice transmits one polarized photon to Bob for each bit of the key string using the

5 In reality, errors can be induced by the environmental noise, equipment non-idealities, or a malicious
adversary snooping on the quantum channel.
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associated random basis. Bob receives these qubits and randomly chooses a basis in
which to measure them. If Bob chooses correctly, he will receive the same bit value that
Alice transmitted (assuming perfect transmission and no interference). If he chooses
incorrectly, then Bob has a 50% probability of obtaining the correct value.

Sifting
After Bob receives all of the qubits measured in randomly generated bases, he
communicates his choice of basis for each qubit to Alice. Alice responds to Bob
identifying those bit positions for which Bob’s basis agreed with her basis. Alice and Bob
both discard any bits for which their measurement basis differed. At this point, Alice and
Bob should have an identical set of bits which are a subset of the original candidate key
string transmitted by Alice.

Information Reconciliation
Information reconciliation is a very important step in the BB84 protocol as this is where
the error rate is calculated and will reveal the presence of an eavesdropper. Errors can
result from many sources including non-idealities in equipment, environmental noise,
and/or an eavesdropper which causes a mismatch between Alice’s and Bob’s sifted key.
In order to meet the guaranteed security requirement, it is assumed that all errors are due
to eavesdropping.

Alice and Bob first conduct error estimation by systematically sampling a random subset
of bits from the sifted key and compare them over the open channel. If all the bits agree,
then it is likely that they have the same version of the key which can be verified with a
hash. The bits exposed during the public comparison are discarded from the final key
before the hash is applied. If there are errors present in the sifted key, information
reconciliation is used to identify and correct disagreement between Alice’s and Bob’s
sifted key. Error reconciliation requires the exchange of information over the classical
public channel and as a consequence it “leaks” some information about the sifted key.
For this reason, the method used for information reconciliation is a critical design choice.
Common information reconciliation protocols include Cascade, Winnow, and Low
Density Parity Codes (LDPC).

Privacy Amplification
During the information reconciliation process, an eavesdropper can gain partial
information about the sifted key by eavesdropping both on the quantum channel (where
they introduce detectable errors) and on the public channel. Privacy Amplification is used
to reduce, and effectively eliminate, an eavesdropper's knowledge of the sifted key to an
arbitrary small value. This can be achieved by using a universal hash function chosen at
random from a publicly known set of such functions. The inputs to the function are the
sifted key and the error rate calculated during the information reconciliation process. A
final key is produced that is shortened based on how much information an eavesdropper
could have gained about the original sifted key.
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A simplified example of the BB84 protocol is shown in Figure 5. The figure shows the
quantum exchange, sifting, and error estimation steps. The information reconciliation and
privacy amplification processes are not shown for simplicity.

Quantum Exchange
Alice’s random candidate key bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1
Alice’s random basis selection D R D R R R R R D D R D D D R
Polarized photons sent by Alice               

Bob’s random basis selection R D D R R D D R D R D D D D R
Bob’s measured received bits 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1
Bob’s basis agrees with Alice’s
basis?

N N Y Y Y N N Y Y N N Y Y Y Y

Public Discussion
Bob reports bases of received bits R D D R R D D R D R D D D D R
Alice says which bases were correct         
Sifted key 1 0 1 0 1 1 0 0 1
Bob reveals some key bits at
random

1 0

Alice confirms them  
Outcome
Remaining shared secret bits 1 0 0 1 1 0 1

Figure 5. BB84 Protocol Example (R=Rectilinear, D=Diagonal)

If an eavesdropper present, even with infinite computational power, the best they could
do in an ideal system would be to intercept transmissions from Alice, randomly select a
basis for measurement, and retransmit those qubits in the basis that they selected. Since
an eavesdropper does not know the basis Alice transmitted in, they would be correct, on
average, only 50% of the time. When they retransmit the qubits to Bob he will also select
a random basis for measurement, and will be correct, on average, 50% of the time. The
combination of these steps will introduce a 25% error into the sifted key. Therefore, if
Alice and Bob detect an error rate of 25% or higher in their sifted key, they conclude that
there is an eavesdropper present and abandon the key exchange process. This is the basis
for the unconditional security that the BB84 QKD protocol achieves because Alice and
Bob can always detect the presence of an eavesdropper.

Real World QKD Limitations
If it sounds too good to be true, then it probably is. The ideal BB84 protocol assumptions
include: 1) Alice emits perfect single photons; 2) the channel between Alice and Bob is
noisy but lossless; 3) Bob has single photon detectors with perfect efficiency; and 4) the
basis alignment between Alice and Bob is perfect. If these conditions are met, QKD
provides for an “unconditionally secure” key exchange, as shown in several mathematical
proofs (Mayers, 2001; Renner, Gisin, & Kraus, 2005; Shor & Preskill, 2000). However,
many of these assumptions are not valid when building real world systems. For example,
the protocol relies on the transmission of single photons because if there are multiple
photons sent an adversary may be able to intercept and measure a photon while letting the
remaining photons pass unaffected. Reliable on-demand photon generation is not
currently practical, so instead a weak coherent photon pulse is generated and attenuated
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so that on average there are only 0.1 photons in each packet (that means only 1 in 10
packets will contain a photon). This significantly reduces the efficiency of the protocol,
but is required to limit and bound the knowledge gained by an eavesdropper. At the
receiving side, single photons must be reliably detected. Unfortunately, single photon
detectors are rate limited, have low detection efficiencies, and spuriously trigger. Even
when there is no eavesdropper present, the physical characteristics of the quantum
channel can introduce errors which affect the polarization of the photons while in transit.
The result of these technical limitations is that the final key rate is reduced and errors are
introduced into the sifted key even though there is no malicious eavesdropper present.
These errors must be corrected before using a cryptographic algorithm since Alice and
Bob must have identical copies of the key.

QKD Vulnerabilities
After the release of the BB84 protocol and the realization that an “unconditionally
secure” key exchange could exist, several researchers published papers on various ways
to attack the protocol, creating the new field of “quantum hacking” (Lütkenhaus, 2000;
Myers, Wu, & Pearson, 2004; Scarani, Acin, Ribordy, & Gisin, 2004). Even the creators
of the BB84 protocol mused on ways to gain information about the shared key and how
to mitigate the leaked information (Bennett, Brassard, Crépeau, & Maurer, 1995). Others
have proposed new protocols that minimize the problems with the BB84 protocol, but
introduce other problems or require hardware devices with the same limitations as the
BB84 protocol (Barrett, Hardy, & Kent, 2005; Bruß, 1998; Cerf, Bourennane, Karlsson,
& Gisin, 2002; Grosshans & Grangier, 2002).

Conclusions
QKD provides significant advantages when compared to conventional key distribution.
First, the security of QKD security rests on the foundations of quantum mechanics. This
is in stark contrast to traditional key distribution protocols which rely on computational
security where the computational difficulty of certain mathematical functions is the
foundation of security. Second, when using QKD, one can determine if an adversary is
eavesdropping on the link because it will induce errors in the key exchange process. In
contrast, traditional key exchange algorithms cannot provide any indication of
eavesdropping or guarantee of key security.

As with any new technology, there is a gap between the theory and the implementation of
the BB84 protocol in the real world. Over the last 28 years, research in the QKD area has
matured the technology and resulted in commercial QKD implementations. With the
current generation of hardware, QKD systems can only reliably generate share keys over
distances of approximately 100km using terrestrial optical fiber systems. As the distance
increases, the generated key rate drops. At long distances, QKD systems cannot generate
enough key material to support bulk encryption using the OTP. However, commercial
QKD systems such as the id Quantique Cerberis6 system combine a conventional high-
speed layer 2 encryption engine with the unconditional security of QKD technology. In

6 http://www.idquantique.com/network-encryption/cerberis-layer2-encryption-and-qkd.html
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this case, the key generated by the QKD system is used as the symmetric key for an
Advanced Encryption Standard (AES) bulk encryptor. In this mode of operation, the AES
key can be changed based upon the key generation rate of the QKD system. For example,
the AES key could be changed once per minute if the QKD system is able to generate at
least 128 key bits per minute.

Finally, interest in QKD research continues to grow each year. The race is on to improve
the quality of emitters, detectors, and fiber to enable QKD to operate over greater
distances and at higher key rates. It is only a matter of time before you will encounter a
QKD system in your security infrastructure.

Disclaimer
The views expressed in this paper are those of the authors and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the U.S.
Government.
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Amtkojbm\kct, oc` km\^od^` \i_ nop_t ja o`^cidlp`n ajm n`^pmdib ^jhhpid^\odjin ]`or``i orj

\pocjmdu`_ k\mod`n di oc` km`n`i^` ja ji` jm hjm` pi\pocjmdu`_ ocdm_ k\mod`n, dn oc` ^`io`mkd`^` ja \

^`iopmd`n-jg_ ]\oog` ]`or``i ^j_` h\f`m \i_ ^j_` ]m`\f`m Y1Z. Fdnojmd^\ggt, bjq`mih`io \i_ hdgd-

o\mt \kkgd^\odjin ^cd`agt pn`_ ^mtkojbm\kct, ]po oj_\t \ghjno `q`mtji` dn _`k`i_`io ji ^mtkojbm\-

kct oj kmjqd_` n`^pmdot n`mqd^`n di^gp_dib ^jiad_`iod\gdot, dio`bmdot, \poc`iod^\odji, \pocjmdu\odji,

\i_ iji-m`kp_d\odji Y2Z.

Rc` nom`iboc ja ^jhhjigt pn`_ ^mtkojbm\kcd^ \gbjmdochn m`gd`n ji ^jhkpo\odji\g n`^pmdot,

rcd^c h`\in oc` \gbjmdoch dn n`^pm` da oc`m` dn \ i`bgdbd]g` ^c\i^` ja _dn^jq`mdib oc` f`t di \ }m`\-

nji\]g`~ \hjpio ja odh` pndib ^pmm`io ^jhkpo\odji\g o`^cijgjbt Y3Z. ?n ^jhkpo\odji\g o`^cijgjbt

kmjbm`nn`n, \_q`mn\md`n h\t ]` \]g` oj \^lpdm` `ijpbc ^jhkpo\odji\g kjr`m oj _`^j_` `i^mtko`_

h`nn\b`n di \ }m`\nji\]g`~ \hjpio ja odh`. Gi a\^o, m`^`io _`q`gjkh`ion di lp\ioph ^jhkpodib

o`^cijgjbt )di^gp_dib npkkjmodib \gbjmdochn* c\q` kg\^`_ ^`mo\di ^g\nn`n ja ^jhhjigt pn`_ \nth-

h`omd^ ^mtkojbm\kcd^ \gbjmdochn )`.b., ocjn` oc\o m`gt ji oc` _daad^pgot ja a\^ojmdib g\mb` iph]`mn

dioj oc`dm ^jinodop`io kmdh`n, np^c \n oc` Pdq`no, Qc\hdm, \i_ ?_g`h\i )PQ?* \gbjmdoch*, \o mdnf

Y4,1Z. Rc` m`npgodib gjnn ja n`^pmdot di ^jhhjigt pn`_ \nthh`omd^ kp]gd^ f`t ^mtkojbm\kcd^ \gbj-

mdochn rdgg gdf`gt di^m`\n` oc` pn\b` ja nthh`omd^ ^mtkojbm\kcd^ ntno`hn \i_ dio`indat oc` i``_ ajm

n`^pm` \i_ `aad^d`io f`t _dnomd]podji.
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FdP]cd\ ZTh SXbcaXQdcX^]
Uhe genesis of Ruantum Ley Eistribution +RLE, can be traced back to Ttephen Xiesner. who

developed the idea of quantum conjugate coding in the late 3<82s \7^0 Bs a student at Dolumbia

Vniversity. he described two applications for quantum coding= a method for creating fraud/proof

banking notes +quantum money, and a method for broadcasting multiple messages in such a way

that reading one of the messages destroys the others +quantum multiplexing,0 Xiesner„s quantum

multiplexing uses photons polarized in conjugate bases as …qubits† to pass information0 Jn this man/

ner. if the receiver measures the photons in the correct polarization basis. he or she receives a cor/

rect result with high likelihood0 Iowever. if the receiver measures the photons in the wrong

+conjugate, basis. the measured result is random. and due to the measurement. all information about

the original basis is destroyed0
Jn 3<;6. Dharles Cennett and Hilles Crassard proposed the first RLE protocol. CC;6. for

secure key exchange based on Xiesner„s ideas \8^0 Uhe goal of the system is to provide perfect

secrecy during key distribution0 Vsing the CC;6 protocol. a sender and receiver …grow† an

unconditionally secure secret key by leveraging properties of quantum mechanics in the form of

polarized photons that are transmitted from the sender to the receiver0 Cecause of the quantum

properties of photons. any operations performed on photons in transit would irrevocably alter

their state. which would be detectable by the receiver0 Bdditionally. as stated by the no/cloning

theorem. no photon copies can be produced for the purpose of operating on the copies without

affecting the original photons0
Bs in any communications system. errors may be introduced from a wide variety of sources0 Jn

the security analysis of RLE systems. all errors are attributed to a hypothetical adversary +Fve,

who is attempting to eavesdrop on the key distribution communications0 Jf the errors are below a

defined threshold. the two parties involved in the key exchange can distill an unconditionally secure

key even in the presence of an adversary0 Ptherwise. the key exchange is aborted0 Xhen a RLE/

generated unconditionally secure key is combined with the one/time pad +an unconditionally secure

classical symmetric cryptographic algorithm,. the result is an unconditionally secure cryptographic

system0

Tince the CC;6 protocol was first proposed. there have been many RLE/related protocols and

architectural and technological developments that make implementing a RLE system more practi/

cal and commercially viable0 Jn 4223. JE Ruantique TB offered and sold the first commercially

available RLE system \9^0 Uoday. RLE systems are available globally from sellers in Furope +JE

Ruantique. http=11www0idquantique0com1> TeRureOet. http=11www0sequrenet0com1,. Bustralia

+Ruintessence Mabs. http=11qlabsusa0com1,. Oorth Bmerica +NagiR. http=11www0magiqtech0com1

NagiR1Iome0html,. and Bsia +Ruantum Dommunication Uechnology Do0. Mtd0. http=11www0

quantum/info0com ,0

RLE is suitable for use in any key distribution application that has high security require/

ments0 Fxisting documented applications include financial transactions and electoral communica/

tions \;.<^. but there are numerous potential applications in law enforcement. government. and

military applications0 Uhe commercial systems typically use RLE as a means to produce shared

secret keys for use in bulk symmetric encryption algorithms. such as the Bdvanced Fncryption

Ttandard +BFT,. instead of using the unconditionally secure one/time pad0 Jn this case. the RLE/

generated key is used to update the encryption key frequently +e0g0. once a minute, greatly
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reducing the required RLE key generation rate which is inversely related to the distance between

the RLE systems0 Xhile it is not unconditionally secure. users in the commercial domain con/

sider this an improvement when compared with updating the key less frequently +e0g0. daily or

monthly,0

FdP]cd\ ZTh SXbcaXQdcX^] bhbcT\b
Jn this section. we present a historical survey of the development of RLE systems and their archi/

tectures0 Xe also present research that is focused on developing RLE networks that can broaden

the application domains of RLE0

F@8 bhbcT\ PaRWXcTRcdaTb

DQN OR[\] A;4 \b\]NV/ 22-+
Uhe first RLE system was a research platform built in 3<;< by Cennett and Crassard to produce a

physical realization of their RLE theory \32^0 Uhis system. built at JCN„s Uhomas K0 Xatson

research center. was the first system to deal with the issues posed by non/ideal hardware as

opposed to the perfect hardware envisioned in RLE theory0 Uhe system used a weak/coherent light

source to generate light that was focused by a lens. passed through filters. and then polarization

modulated using Qockels cells0 Bt the receiver. the entering light first passed through a Qockels

cell. selecting the polarization measurement basis. then went to a prism to split the light into two

paths leading to photomultiplier tubes that counted the number of photons in each of the two polari/

zation states belonging to the selected measurement basis0 Uhe distance between the transmitters

and receiver was an air/gap of roughly 52 cm0 Uhe platform used the CC;6 protocol for key gener/

ation and showed that RLE could be implemented using standard. non/ideal components \32^0

<X\ JUJVX\/ A;4 UNJ_N\ ]QN UJKX[J]X[b
Jn 3<<8. Sichard Iughes of Mos Blamos Maboratories led a team that built a RLE system using

36 km of underground optical fibers \33^0 Iughes„ system used the C<4 protocol \34^ instead of

CC;6‰the C<4 protocol requires that the system be able to generate two quantum states rather

than four0 Bt the transmitter +Blice,. the system used a 3522 nm laser source and an attenuator to

produce weak. coherent pulses0 Uhese pulses were then directed to a 72=72 fiber coupler that

formed the input to an unbalanced Nach/[ehnder Jnterferometer +N[J, that split the incoming pho/

ton packet into two photon packets0 Jn the N[J. the photons that traveled along the long arm of the

interferometer were phase modulated relative to the photons that traveled along the short arm of

the interferometer0 Uhe pulse/to/pulse randomly selected relative phase encoding provided the bit

and basis value used for key exchange0 Bt the output of the N[J. the two time/separated photon

packets were injected into the 36 km fiber leading to the receiver0

Bt the receiver +Cob,. the two incoming photon packets entered another unbalanced N[J identi/

cal to the one at the transmitter0 Uhe phase modulator in the long arm of Cob„s N[J was used to

select the measurement basis0 Bt the output of the N[J. the photon packet that passed through both

the long arm of Blice„s N[J and the short arm of Cob„s N[J interfered with the photon packet that

passed through the short arm of Blice„s N[J and the long arm of Cob„s N[J0 Uhe results of this
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interference were measured using a time/gated single/photon Bvalanche Qhoto Eiode +BQE,

detector0

@U^P JWM YUJb/ A;4 VJMN NJ\RN[
Jn 3<<8. Nuller et al0 created a hardware/protocol system. based on Garaday mirrors. between the

cities of Oyon and Heneva \35^0 Uhis system is notable for automatically compensating for birefrin/

gence and polarization/dependent losses in the transmission fiber0 Uhis system attached easily to

existing telecommunication fibers with no need for adjustment of the RLE systems. leading to the

name …plug and play0† Uhis system has heralded the beginning of RLE transitioning from the

domain of the physics laboratory to existing infrastructure0

Uhe key to overcoming the effects of birefringence in the …plug and play† architecture is the use

of Garaday mirrors0 Jn this architecture. Cob generates two classical level light pulses that he sends

to Blice0 Blice reflects the two pulses using a Garaday mirror +which rotates the polarization of the

incoming light so that the reflected light is orthogonally polarized to the incoming light,. phase

modulates one of the two pulses relative to the other. and attenuates both pulses to the single/

photon level0 Uhe fact that the single/photon light pulses returning to Cob have a polarization

orthogonal to what they had when they traveled to Blice undoes any birefringence effects the

pulses experienced when traveling to Blice0

Eamien Ttucki and his teams used variations of the …plug and play† architecture to connect

Heneva and Mausanne \36^. a distance of 89 km. over regular telecom fiber using the CC;6

protocol0

6R[\] NW]JWPUNVNW]$KJ\NM \b\]NV/ 5@B JWM 2NUUd\ ]QNX[NV
Jn 4226. a team from the Vniversity of Heneva proposed and built a system utilizing Fkert„s F<3

RLE protocol based on quantum entanglement and Cell„s theorem0 Uhis protocol uses Cohm„s ver/

sion of the Finstein/Qodolsky/Sosen +FQS, experiment and Cell„s theorem to test for eavesdrop/

ping \37^0 Uhis system was one of the first to demonstrate the use of entanglement in RLE0 Uhe

team„s goal was to demonstrate a system using violations of Cell„s inequalities as the foundation

for secure key exchange0

Uhis system uses time/bin entangled qubits created from a laser pulse sent through an unbal/

anced Nichelson interferometer +short and long leg,. then through a type 3 Mithium Uriborate

+MCP, nonlinear crystal. where spontaneous parametric down conversion creates a pair of entangled

photons0 Uhe photons pass through the transmission channel to both Blice and Cob. who perform

projective measurements using the same type of unbalanced interferometer0 Iere. a significant dif/

ference from other RLE systems is that the photon source is not at either Blice„s or Cob„s location.

but at a third location0 Cy placing the emitter between Blice and Cob. the system is able to

exchange keys at twice the distance of a conventional system with the same loss0

Cy placing the photons in separate time/bins with two different phases and using the Dlauser/

Iorne/Thimony/Iolt +DITI, Cell inequality. an upper bound for correlations can be determined0

Cy scanning the phases. one of the DITI parameters can be inferred and the correlation coeffi/

cients of the DITI inequality determined0 Uhese coefficient values prove a violation of the DITI

inequality0 Oicholas Hisin proved in 4224 that when the Cell inequality is violated. the entangled

photons can be used in RLE \38^0
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Uhe first Dontinuous Wariable RLE +DW/RLE, system debuted in the Furopean TFcure

DPmmunication based on Ruantum Dryptography +TFDPRD, network. with the prototype built

expressly for the project0 Uimothy Salph first described the DW/RLE protocol in 3<<<. with several

variations proposed by Derf. Bssche. Mutkenhaus. and Hrosshans0 Uhese protocols use squeezed

Haussian states of light that have classical intensity levels to carry information. rather than discrete

single photon states \39!42^0

Uhis system encodes information in the amplitude and phase of the classical light level beam

and produces high rates of key generation over a short distance +such as a metropolitan network,.

as it is not as sensitive to individual photon loss as the discrete/variable protocols0 Priginally. it

was not suitable over long distances because the higher noise ratios in longer fibers created errors

in the quadratures of pulses. interfering in the homodyne detection. but improvements in post/

processing have increased the transmission range0 Uhe protocol is resistant against general and col/

lective eavesdropping attacks. and has a security proof for coherent attacks as well0 Uhese security

proofs show it is more secure than some other types of RLE systems against attacks that exploit

the non/ideal hardware flaws of RLE systems \43^0

F@8 ]Tcf^aZb

Qhoton loss between the transmitter and receiver due to attenuation in the optical fiber connect/

ing the transmitter with the receiver. coupled with dark counts at the receiver„s detectors. dra/

matically limits the maximum effective range of RLE compared to classical optical

telecommunications0 Iowever. even with these range limitations. researchers have implemented

small/scale RLE networks to demonstrate its potential0 Uhe next section describes some of

these networks0

41B@1 WN]`X[T/ RW][XM^LRWP UJbN[\
Jn 4224. the Eefense Bdvanced Sesearch Qrojects Bgency +EBSQB, built a RLE system to

explore networks that had multiple Blice and Cob system pairs rather than a single system \44^0

Uhe system integrated RLE/based key generation. traditional Fthernet encryption. and key manage/

ment to secure a virtual private network +WQO, that was compatible with existing telecommunica/

tion infrastructure0

Uhis system is notable for demonstrating RLE using existing security technology and introduc/

ing the idea of …trusted relays0† Uhis relay system extends the range of a RLE network but intro/

duces the concerns of adequately securing the relays0

C53?A3 >N]`X[T/ VRaRWP JWM VJ]LQRWP `R]Q WXMN\
Grom 4226 to 422;. the TFDPRD project operated in Furope to design and set up a network of

RLE systems to show the uses of RLE \45^0 Uhe network consisted of a collection of point/

to/point systems including= three plug and play systems by JE Ruantique TB> a one/way weak/pulse

system from Uoshiba Sesearch in the VL> a Doherent Pne/way Tystem +DPX, by HBQ Pptique/JE

Ruantique TB/Bustrian Jnstitute of Uechnology +BJU,> an entangled photon system from the

Vniversity of Wienna and the BJU> a continuous variables +DW/RLE, system by Dentre Oational de

la Secherche Tcientifique +DOST,. UIBMFT Sesearch and Uechnology and Vniversite� Mibre de
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Cruxelles> and a free/space link by the Mudwig Naximillians Vniversity0 Uhe average link length

was between 42 km and 52 km. and the longest link was ;5 km0

Uhe project created a RLE trusted/repeater network. much like a connected graph. where each

vertex is a RLE node and the edges are the RLE communication channels0 Fach link retransmits

key material along the link. so the key hops from link to link0 Leys move forward using an algo/

rithm secured with RLE key material to the next node. and the process is repeated until the key

reaches its destination0 Uhis creates a …trusted repeater† system. where each node is secured to pre/

vent tampering and attack0 Uhe network stripped each RLE system of its key distillation functions

and set each one to access only the quantum channel0 Uhis reduced redundancy between the sys/

tems and moved the key management to upper layers of the network \45^0 Uhis architecture extends

the EBSQB network in both number of nodes and the key transmission maximum distance0

C`R\\A^JW]^V WN]`X[T/ \RVYURObRWP A;4 RW]NP[J]RXW
Uhe TwissRuantum network connected three nodes. two in the center of Heneva and one at the

Furopean Prganization for Ouclear Sesearch +DFSO,. with a maximum length of 3903 km. using

JE Ruantique TB id7322 commercial servers. and ran between Narch. 422< and Kanuary. 42330

Uhe servers used the CC;6 and TBSH26 protocols to generate a shared secret key for standard

Fthernet network encryptors across a 32 Hbps channel0 Uhis network introduced the concept of

layers to RLE networks \46^0

Bdding a mediation layer between the RLE layer and the secure layer allows integration of

RLE devices into an existing telecommunication network0 Uhe focus of the research was on inte/

gration of RLE and the simplification of the plug and play architecture0 Uhis network extended the

ideas of TFDPRD by making it easier to add RLE to an existing network without specially adapt/

ing the RLE systems0

DXTbX WN]`X[T/ J QRPQ$\YNNM WN]`X[T
Nuch like the TFDPRD network. a consortium of schools. industry. and government organizations

created a trusted/node RLE network in Uokyo in 4232 to explore the use of many different types of

RLE working together \47^0 Uhe Uokyo network created a secure environment to demonstrate secure

television conferencing. secure mobile phones. and stable long/term operation at high speeds0

Oine organizations from the FV and Kapan employed multiple links to demonstrate RLE technol/

ogies such as several decoy/state CC;6 systems. a Eifferential Qhase/Thift +EQT, RLE demonstrator.

an entanglement system. and JE Ruantique„s commercial RLE system \47^0 Uhe network consisted

of six links. with a maximum link distance of <2 km0 Uhe network was designed as a three/layer

architecture using trusted nodes= a RLE node. a key management layer. and a communication layer0

Uhe key management layer is notable for passing secret keys between nodes that do not have a quan/

tum channel by using the unconditionally secure one/time pad cryptographic algorithm0

IWT UdcdaT ^U F@8
Uhe short/term future of RLE lies in creating and extending quantum networks0 Vntil the maxi/

mum fiber range of RLE hardware increases significantly. long/range RLE communications

depends on some form of multi/node networks0 Uhese types of networks. while increasing the range
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and usability of RLE. increase the security concerns of the telecommunications provider0 Vsing a

trusted node within a network increases the security overhead and increases the possibility of cor/

ruption or hijacking of the quantum channel0 Uwo promising areas of research may help to over/

come these types of security issues0

FdP]cd\ aT_TPcTab

B workable long/range RLE network needs a method of passing qubits from one network segment

to the next without destroying the quantum particle0 Secall. an observer cannot clone the state of a

quantum particle +i0e0. the no/cloning theorem, with perfect fidelity0 Uhe process of trying to clone

a quantum state introduces unavoidable noise in the output. so the copied states generated by the

cloning process are not identical to the input state0 Ience. the quantum information carriers cannot

be copied +amplified, as is typical in classical communication systems0

Gor a quantum …repeater† to work. the device would need some way of storing the quantum

state of incoming quantum particles for a brief time so they can be forwarded to another RLE sys/

tem0 Ruantum entanglement. quantum teleportation. and quantum memory are potential tools for

building a quantum repeater0 Ruantum entanglement and teleportation would allow a device to

receive a quantum particle from a sender. and then entangle that photon with another photon in the

device. which will be sent to a receiver \48^0 Uhis idea is the basis of the Ruantum Sepeaters for

Mong Eistance Gibre/Cased Ruantum Dommunication program +RuSeQ, +http=11quantumrepeaters0

eu,. a project funded by Twitzerland. Tweden. Grance. and Hermany0 Uhis multiyear project started

in 4232 and is scheduled to finish in 42350

FdP]cd\ \T\^ah

Ruantum memory is a technology needed in order to build a practical quantum repeater0 Ruantum

memory allows a quantum state to be stored for some amount of time before it is read and used0

Durrent research centers on leveraging the properties of rare/earth doped crystals as the basis for

holding and emitting the quantum state0 Uhis memory stores a copy of the input state. destroying

the input state during the process. and can output a perfect copy of the stored input state with high

efficiency +%<2),0 Euring the output process. the quantum state of the memory is changed. losing

the information about the state it emitted0 Bdditional research centers on increasing the emission

efficiencies and increasing the number of simultaneous stored states \49^0

Dontinued research using spin/wave storage in the rare/earth doped crystals and experiments in

matter/matter entanglement has led to Qr=ZTP and Fu=ZTP rare/earth crystals that absorb a quan/

tum state and emit that state with high certainty over a multi/minute time frame \4;.4<^0

Jmprovements in high/speed photon detectors. single photon or pure/state emitters. and the inter/

faces between disparate technologies may allow these memory crystals to realize quantum repeaters

within the next decade0

;aTT&b_PRT F@83 bPcT[[XcTb

Xith technology advancing terrestrial RLE. advances in free/space RLE are being made0 Cennett

and Crassard originally demonstrated free/space RLE in their first device. but only over a gap of
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52 cm0 Warious experiments. including some of the networks discussed earlier in this article. used a

free/space component and pushed the boundaries for RLE0 Jmprovements in lasers. optical tracking

and emitting systems. and computers and software have allowed the free/space RLE distance to far

exceed that of terrestrial RLE \52!56^0

Gree/space RLE. with maximum distances over 362 km. has been demonstrated by an experi/

ment in the Danary Jslands of Ma Qalma and Uenerife in 4229 \55^0 Uhis experiment showed that

RLE could communicate through an atmosphere path length much longer than that between a

ground station and a low earth orbit satellite0 Uhe experiment used a variation of the original CC;6

protocol and used telescopes for tracking and receiving0 Uhis experiment showed that. using free/

space RLE. a link from ground to an orbiting satellite could establish a secret key between any

two ground stations. easing the key distribution problem and potentially secure ground/to/satellite

communications0

Dhinese researchers are working with free/space experiments with the intention of creating an

Farth/to/satellite RLE link0 Jn 4232. one group demonstrated a RLE system using a ground station

and a balloon/based transmitter0 Uhey developed the optics and tracking systems necessary to deal

with high relative angular motion. random motion of the platforms. and atmospheric turbulence that

would be found in a ground/to/satellite system \57^0 Gurthering this research. another group in Dhina

recently reported reflecting a beam of photons off an orbiting Herman satellite that is covered with

retro/reflectors0 Uhese reflected enough of the single photons back to a receiving telescope to meet

the standards of a RLE channel \58^0 Oicolas Hisin wrote in 4232 that he would not be surprised if

Dhinese researchers are the first to demonstrate a RLE link between Farth and a satellite \48^0

8TeXRT X]ST_T]ST]c F@8 #8>&F@8$

RLE provides a way of increasing communications security. but it relies on several assumptions=

+i, Blice and Cob use truly random number generators. +ii, Blice and Cob prepare and measure the

quantum states exactly as required by the RLE protocol. +iii, Blice and Cob can accurately bound

the information that an eavesdropper gains about the key by all methods. and +iv, Blice and Cob

use a privacy amplification algorithm that eliminates all of the eavesdropper information about the

final key0 B major advance in combating this information leakage to the eavesdropper is a rela/

tively new protocol known as Eevice/Jndependent RLE +EJ/RLE,0 Uhis RLE protocol makes no

assumptions about the hardware used by Blice. Cob. and Fve and goes so far as to assume that

Blice and Cob may have no knowledge about how their hardware works0 Uhe only requirements

are that Blice and Cob randomly select their measurement basis and Fve cannot influence this ran/

dom selection or know its results until after she can no longer act on the quantum states. and that

Fve does not know the results of Blice„s and Cob„s measurements \59^0

Uhe EJ/RLE protocol uses a form of Brtur Fkert„s 3<<3 entanglement/based protocol proposed

by Bcin. Nassar. and Qironio and uses DITI inequalities to provide security \5;^0 Jt handles the

problem that real/life implementations differ from the ideal design0 Jt also makes testing of compo/

nents easier and covers the scenario where the quantum devices are not trusted \5<^0 Uhe protocol

has been proven secure against collective attacks as long as there is no leakage of classical informa/

tion from Blice and Cob \59^0 Teveral protocols and experiments have been suggested to take

advantage of EJ/RLE. including using heralded qubit amplification. extending the range and key

rate of normal RLE \62^. and one that is valid against most general attacks and based on any

*-1 7=5EI9G 2 7 JifjYm cZ HiUbhia BYm ;]ghf]Vih]cb %HB;& KYW\bc`c[]Yg



arbitrary Cell inequalities. not just those based on DITI inequalities \63^0 Vnfortunately. EJ/RLE

requires high/efficiency near/perfect detectors and provides relatively low key rates due to the need

for the near/perfect detections0

BTPbdaT\T]c STeXRT X]ST_T]ST]c F@8 #B8>&F@8$

Uhough EJ/RLE provides increased security for non/ideal devices. there is still a major flaw in

today„s implementations= that of the …detector loophole0† Uhe …loophole† is that not all entangled

photons are detected. there is always loss in a quantum channel. each detector has finite detection

efficiency and is potentially susceptible to side/channel attacks0 Bll of these factors disturb the

Cell„s inequality tests and affect protocols based on such tests. ultimately limiting the key rate and

reducing security \62^0

B method has been proposed to eliminate all detector side/channel information. thus avoiding

the problems with the …detector loophole0† Neasurement Eevice Jndependent RLE +NEJ/RLE,

portends to double the transmission distance for normal RLE with comparable key rates0 NEJ/

RLE works by assuming that Blice and Cob have near/perfect state preparation of their photons

and can send them to an untrusted relay called Dharlie. who performs Cell state measurements that

project the incoming photons into a Cell state \64^0 Oote that Dharlie can be untrusted or even

under the control of Fve0

Uhe NEJ/RLE protocol tolerates high losses for communication of up to 422 km. assuming

Dharlie is placed in the middle0 Vnlike the EJ/RLE. this protocol doesn„t require the use of Cell„s

inequalities and can be used for any RLE system. as long as Blice and Cob have near/perfect state

preparation as in phase or polarization/based systems \65^0

5 \X[XcPah F@8 dbPVT bRT]PaX^
Iow could the RLE benefit be used in a military environment@ Jmagine a crisis affecting the

Vnited Ttates in the near future0 Uhe president enters his command center. receiving information

from around the globe carried by satellites and telecommunication circuits0 Bs decisions flow from

the center. the secret instructions are carried by regular telecommunications circuits to the

Qentagon and have been encrypted by RLE devices providing key material to fast network encryp/

tion devices0 Uhese devices change their large/bit keys several times a second. making it virtually

impossible for cyber adversaries to decrypt the traffic0

Pnce at the Qentagon. these decisions are coordinated with contingency plans. then orders are

generated to forces around the globe0 Pnce the orders and plans are ready. the information is sent

to satellites in orbit. again using RLE/secured circuits0 Oot only are the ground/to/space links hard

to intercept. the data is encrypted using the same large/bit network encryptors0 Uhe signals are then

sent from space to ground stations using the same type of encrypted circuits0 Pn the ground. adver/

saries may listen in on the space/to/ground communications. but with the encryption key changing

so fast. it is impossible to decrypt the data0 Bs the distance for RLE links increases. many more

communication circuits could be secured by such systems0 Uhe unconditionally secure nature of

RLE/generated key material makes it attractive for high security requirements often found in the

military domain0
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RLE provides significant security advantages when compared with conventional key distribution0

Girst. due to the laws of quantum mechanics. an eavesdropper cannot copy the quantum bits used in

the key exchange0 Tecond. increases in computing power do not help an adversary. as a RLE/

generated key is unconditionally secure0 Uhird. RLE allows the sender and receiver to know if

there is an eavesdropper listening in on the key exchange0 Gourth. the security of RLE security

rests on the foundations of quantum mechanics0 Bs long as an eavesdropper has not discovered

new laws of physics. the security premise of RLE holds true0 Uhis contrasts with traditional key

distribution protocols. which rely on computational security to secure the key \66^0

Bs RLE technology matures. the architecture of systems will change0 Tince quantum states ran/

domly selected from any two or more non/orthogonal quantum bases can be used to encode informa/

tion for a RLE system. there are many ways to implement such a system0 Durrent research focuses on

new types of RLE. such EJ/RLE and NEJ/RLE. which provide methods to overcome the security

limitations of existing hardware0 Bs interest in RLE continues to grow and commercial RLE systems

become more common. so will the research efforts focused upon improving the quality of emitters.

detectors. and fiber to enable RLE to perform over greater distances and at higher key rates0
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Abstract— Quantum Key Distribution (QKD) is a next-

generation security technology that exploits the properties of 

quantum mechanics to enable two parties to generate an 

unconditionally secure shared secret key. QKD is novel 

because its security is based upon the fundamental laws of 

quantum mechanics and not on computational complexity. 

QKD systems are composed of multiple interconnected 

electrical, optical, and electro-optical subsystems and 

computer-based controllers and can be viewed as a complex 

system (or system of systems). Currently, there is no single 

simulation framework that supports a high level systems 

engineering analysis of QKD system architectures. In this 

paper, we present an evaluation process that considers end 

user and software developer requirements for the 

identification and selection of a software framework suitable 

for modeling, simulation, and analysis of QKD systems.  

Keywords—Requirements analysis, simulation 

environment, discrete-event simulation, quantum key 

distribution, systems engineering. 

I. INTRODUCTION 

Cryptography, the practice and study of techniques for 

securing communications between two authorized parties 

in the presence of one or more unauthorized third parties, is 

the centerpiece of a centuries old battle between code 

makers and code breakers [1]. The strength of commonly 

used modern cryptographic algorithms relies on 

―computational security,‖ which means the algorithms are 

considered secure if there is a negligible probability of 

discovering the key in a ―reasonable‖ amount of time using 

current computational technology [2]. However, recent 

developments in quantum computing technology and 

algorithms threaten to place certain classes of commonly 

used classical cryptographic algorithms, such as the Rivest, 

Shamir and Adleman (RSA) algorithm, at risk of being 

compromised [1,3]. 

In 1984, Bennett and Brassard proposed the first QKD 

protocol, BB84, to provide perfect secrecy during key 

distribution [4]. Using a QKD protocol, a sender and 

receiver create an unconditionally secure secret key by 

leveraging the properties of quantum mechanics.  

 

QKD enables two parties to securely ―grow‖ a shared 

secret key since any third-party eavesdropping on the key 

exchange would introduce detectable errors. An 

unconditionally secure cryptosystem can be built by 

combining a QKD-generated key with the One Time Pad 

(OTP) symmetric key algorithm. 

Just as in the early days of computing, each QKD 

system, whether commercial or research, is a unique 

implementation based on the theory and principles of QKD 

using currently available components, protocols, and 

technology. Since there are no widely accepted security and 

performance standards for evaluating QKD systems, each 

system designer architects their system based on their own 

views and needs. Because of this, there is a need to model 

QKD implementations to estimate system level attributes 

such as security, performance, and other technical 

attributes. 

A fundamental truth about QKD technology is that, 

because of the limitations of technology, it is impossible to 

build the ideal system described in theory. For this reason, 

each QKD implementation is only an approximation of the 

ideal apparatus described in theory.  Therefore, our 

research effort is focused on the development of a QKD 

modeling and simulation framework that will allow system 

implementation non-idealities to be included in the system 

analysis so their impact on overall system performance and 

security can be better understood [5]. 

The need to evaluate different QKD system 

implementations coupled with the cost of the systems, the 

cost of testing, the uniqueness of each system 

implementation, and the relative scarcity of resources 

creates a problem: How does one design, develop, test, and 

analyze QKD systems in a resource-constrained 

environment, where it is impractical and cost prohibitive to 

design, develop, build, and acquire the systems? 

A practical alternative to testing the actual hardware is to 

develop a simulation capability that can accurately model a 

wide variety of existing and proposed QKD 

implementations and generate the analysis needed. This 

includes the ability to model the many different protocols 

currently used in the implementation of QKD systems, and 

also the ability to model proposed protocols. 
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Such a simulation capability needs to address many 

―concerns,‖ including the effects due to the quantum 

properties of light, optical components, single-photon 

detectors, and the behaviour of complex, interacting QKD 

software processes present within a QKD system. Such a 

simulation must facilitate experimentation so that the 

studies conducted can generate reasonable estimates for 

system effectiveness, performance, security, and cost based 

on their architecture, components, and processes.  
In this paper, we present an evaluation methodology for 

selecting a simulation tool suitable for the development of a 

QKD modeling, simulation, and analysis framework. The 

evaluation methodology is based upon best practices and 

incorporates identified end user and software developer 

requirements. 

II. END USER AND DEVELOPER REQUIREMENTS 

A fundamental requirement for any simulation is the 

ability to tailor the fidelity (i.e., level of detail) of the 

modeled system components and processes to satisfy 

specific requirements. In other words, for a given 

simulation study, we often need to increase the fidelity of 

system components critical to the ―system under study‖ 

while simultaneously reducing the fidelity of components 

that minimally affect that system.  This is done to avoid 

complicating the analysis with unnecessary detail and 

reducing the simulation time.  

The simulation also needs to be understandable and 

easily configured by end users, who are typically not 

computer programmers, yet provide enough flexibility to 

model and evaluate the many different components and 

processes of QKD systems.  From a software engineering 

perspective, this implies the development of a common 

reusable simulation capability (i.e., framework) that 

includes abstract models to support the development of 

system components and implementations. 

Because QKD is a relatively new technology, changes in 

hardware, software and processes used to implement a 

system frequently occur, even within currently available 

commercial offerings. A robust simulation capability needs 

to facilitate modeling these changes quickly, efficiently, 

and without requiring the user to have significant 

programming expertise. 

Finally, everything has an associated cost. While 

modeling and simulation is much cheaper than the 

acquisition and testing of real QKD systems, it runs the risk 

of not having enough resources committed to the project, 

which can result in a capability inadequate for its task [6]. 

 

Given the diversity of QKD implementations, and the 

desire for a common set of abstractions to support 

modelling at different levels of fidelity, two clear ‗end‘ 

users can be identified: software developers and system 

engineering analysts. Requirements focused on 

accommodating an analyst tend toward the interface 

‗friendliness‘ and configuration flexibility that selects and 

exposes model functionality without resorting to ―software 

level‖ programming concerns. Requirements that are 

oriented more towards developers include the architectural 

features of the application itself, abstractions flexible 

enough to model components at many levels of detail, and 

inherent capabilities to create ‗friendly‘ interfaces for the 

analyst. 

A consultation with Subject Matter Experts (SMEs) in 

the fields of optical physics and a review of simulation 

software literature identified four major requirements areas 

for the end user: technical, usability, flexibility, and Total 

Cost of Ownership (TCO). Each area has multiple sub-

requirements/criteria, many of which were derived using 

Banks‘ advice for evaluating and selecting simulation 

software [6], the best practices report for the Department of 

Defense (DOD) Modeling and Coordination office [7], and 

the [8] European Space Agency (ESA) guide to user 

requirements [8]. Table I identifies the relevant technical 

end user requirements, Table II identifies relevant usability 

end user requirements, Table III identifies relevant 

flexibility requirements, and Table IV identifies relevant 

TCO end user requirements. 

TABLE I 

END USER CAPABILITY REQUIREMENTS (TECHNICAL) 

Capability Notes 

Levels of fidelity Does it support differing levels of 

model fidelity? 

Execution speed Does it have fast execution (native 

C++ is used as a fast benchmark)? 

General 

programming 

languages interface 

Does it interface with general 

programming languages such as C, 

C++, and Java? 

Input flexibility Does it accept data from external 

files, databases, spreadsheets, and 

interactively from the user? 

User-built custom 

objects 

Can users build and reuse objects, 

templates, and submodels? 

Model status and 

statistics 

Can it display data at any specified 

time during the simulation? 
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TABLE II 

END USER CAPABILITY REQUIREMENTS (USABILITY) 

Capability Notes 

Statistical analysis Does it have built-in statistics 

functions for output? 

Graphical interface Does it have a native graphical 

interface? 

Documentation 

support 

Does the simulation software have 

user‘s guides, etc.? 

Reports function Does it have built-in reports that 

can be changed by the user? 

Output export Can it output to many different 

file types? 

Training available for 

simulation software 

Does the developer or 3rd party 

provide training? 

User community 

available  

Is there a robust and open user 

community for the software? 

TABLE III 

END USER CAPABILITY REQUIREMENTS (FLEXIBILITY) 

Capability Notes 

Modular 

capability/composability 

Can internal code modules be 

linked together to form new 

constructs? 

Reconfigurable Can users change the 

parameters of a test run? 

Time variable Can it run simulations at 

varying sim-time speeds? 

Portability Can it be used on different 

OS/hardware platforms? 

TABLE IV 

END USER CAPABILITY REQUIREMENTS (TOTAL COST OF OWNERSHIP) 

Capability Notes 

Required operating 

system  

Is it free from specific operating 

system requirements? 

Required platform 

software  

Is it free from required pre-

installed software packages? 

Documentation available Is there documentation 

available from the package 

developer? 

Software developer 

support  

Does the developer respond to 

support requests? 

Cost of simulation 

software 

Is it free or have very low 

procurement costs? 

Licensing fees Is it free or have very low non-

commercial licensing fees for 

use of the software? 

Training costs Is available training free or at 

very low cost? 

Required hardware  Does the software have minimal 

specific required hardware? 

The list of relevant developer requirements is contained 

in Table V. 

TABLE V 

DEVELOPER CAPABILITY REQUIREMENTS 

Capability Notes 

Framework vs. specific 

platform 

Is it a general development 

platform rather than a specific 

topic modeling package? 

Interactive internal 

debugger 

Does it have a built-in 

debugger? 

Graphical programmer 

interface 

Does it have a built-in graphical 

programmer interface? 

General programming 

languages interface 

Does it interface with general 

programming languages such as 

C, C++, and Java? 

Extended library of add-

ons 

Is there an extended library of 

add-ons available? 

Third-party support Do 3rd parties support the 

software? 

Specific working 

environment  

Does it need other software for 

development purposes? 

Mature software 

documentation 

Is there mature documentation 

(written by developer, printed, 

searchable) available? 

Third-party 

documentation  

Is there 3rd party 

documentation available 

(books, papers, how-tos, 

videos)? 

Randomness Does it have a built-in pseudo-

random number generator? 

Hybrid Can it handle mixed 

continuous-time and discrete-

time models? 

III. SELECTING A SIMULATION SOLUTION 

In this section, we briefly review different types of 

simulation paradigms, the problem sets best addressed by 

each paradigm, and best practices in modelling and 

simulation. Several seminal papers reaching back to the 

1960s were identified during our literature search [9-13]. A 

review of the modeling and simulation literature provided 

guidance on general criteria to consider when selecting a 

simulation solution [14-23]. These criteria, in conjunction 

with our QKD domain knowledge, were used for the 

evaluation of end user and developer requirements. 

Identifying and selecting the ―type‖ of simulation was 

the first step in the selection of a simulation solution. 

Cassandras, Banks and Fishman all have [24-26] 

decompositions of simulation systems that provide some 

guidance in making this decision. Figure 1 shows 

Cassandras‘ version of the decomposition [24]. 
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Figure 1. Major simulation type classifications [24]. 

A major characteristic of the modelling and simulation 

of QKD systems is that during the simulation of system 

operation, hundreds of millions of optical pulses will be 

generated and propagated through the system. While each 

pulse is most accurately represented as a continuous-time 

waveform, it is computationally infeasible to model a 

complete QKD system using continuous-time simulation. 

This is analogous to the problem of modelling a 

microprocessor which contains millions of logic gates. 

While each type of logic gate may be simulated in great 

detail using continuous-time simulation (e.g., using SPICE 

[27]), the simulation of a complete microprocessor is 

conducted using a more abstract, event-based 

representation (e.g., using Verilog [28]) based upon 

parameters extracted from more detailed simulations. 

Similarly, our approach is to model optical pulses as 

abstract, parameterized objects. In this way, we can 

manipulate the parameters of the optical pulse when 

implementing simple transforms such as attenuation or 

reconstruct the continuous-time optical pulse waveform 

when necessary in order to implement complex transforms 

such as interference.  

Using the definitions provided by Cassandras with our 

understanding of the unique properties of the QKD systems 

we wish to model, we determined the appropriate type of 

simulation system as follows: 

 Static vs. Dynamic – in dynamic systems the current 

output values depend on past values; all QKD systems 

use past output data to determine current output 

values. 

 Time-varying vs. Time-invariant – the behavior of 

time-invariant systems do not change with time. 

While the behavior of a QKD system does change as 

a function of time, at the lowest level we choose to 

treat this temporal behavior using very short discrete 

time steps during which the system will change very 

little. Therefore, we treat the desired simulation 

solution as time-invariant during each discrete time 

step but allow changes in system behaviour between 

time steps.  

 Linear and Non-linear Systems – in linear systems the 

output depends linearly on the input, while in 

nonlinear systems the output is not a linear function of 

the input. QKD is not a linear process since some of 

the quantum processes involved, such as 

measurement, are not linear. 

 Continuous-state vs. Discrete-state systems – discrete-

state system variables are elements of a discrete set. 

In contrast, continuous-state variables may take on 

any state value. When simulating continuous-state 

QKD functions using a classical computer, these 

functions are ultimately described by a finite set of 

numbers. For example, consider the range of possible 

values of a signed decimal number using a 64-bit 

binary representation. While the set of possible values 

is quite large, it is from a countable finite discrete set. 

 Time-drive vs. Event-driven – event-driven systems 

only change when asynchronously generated discrete 

events occur. The propagation of optical pulses 

through QKD systems can be described efficiently 

using a series of scheduled discrete-time events. 

 Deterministic vs. Stochastic systems – stochastic 

systems result when any of the variables are random. 

QKD is an inherently random process. 

 Discrete-time vs. Continuous-time – discrete-time 

systems have one or more variables that are defined 

only at discrete points in time, usually the result of 

some type of sampling process. QKD systems could 

be described by either system, but a discrete-time 

system has far less overhead and any continuous-time 

system can be considered a discrete-time system if the 

time period is small enough. 

Based upon how we intend to model system 

components, we select a dynamic, time-invariant, non-

linear, discrete-state, event-driven, stochastic, discrete-time 

simulation as the appropriate simulation type. According to 

Cassandras, this type of simulation system is classified as a 

Discrete-Event System (DES) as shown in Figure 1. 
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Selecting a simulation solution that supports the DES 

modeling paradigm is the first discriminator to narrow 

simulation solutions under consideration. Another primary 

discriminator in selecting a simulation solution is the cost 

of the solution, which is a key end user requirement. While 

commercial tools may offer advanced modelling 

capabilities and toolkits, they also come with associated 

expenses. As a consequence, we focused on candidate DES 

solutions that were either considered free or open-source. 

For comparison, we did include commercial tools that are 

commonly used in mathematically intensive system 

modeling endeavours in the study.  

The initial selection of candidate simulation solutions 

was driven by a review of available packages identified 

through Internet-based searches. After reviewing multiple 

sources that listed or evaluated DES software, a short list of 

such software became the open-source pool of candidates. 

We used the following criteria to justify further evaluation 

of the open-source candidates: 

• Still in use (actively developed) 

• Source code availability 

• Free or low cost 

The first criteria ensured that we avoided abandoned 

software projects without any obvious support or continued 

development. The second and third criteria came from 

discussion with SMEs and the literature review. Source 

code availability enables more developmental freedom in 

creating a simulation capability suited to evaluate QKD 

systems.  The ‗free or low-cost‘ requirement lowers the 

cost to end users, a major consideration when commercial 

software packages can cost in the tens of thousands of 

dollars and may have substantial yearly maintenance fees. 

The other half of the pool included several Commercial-

Off-The-Shelf (COTS) software products. Considering 

these products enabled us to evaluate how well the open-

source offerings measured up against the commercial 

products using the selected criteria. The purpose was to see 

if there were any critical functional capabilities included in 

COTS products that were not available in free, open source 

solutions. It also helped to clarify and understand the value 

offered by commercial vendors and solutions.  One could 

assume that since commercial products have more 

dedicated paid resources to enhance products than a typical 

open-source project, the quality and capabilities of products 

might trump free open source solutions. A possible counter 

argument to that assumption is that, due to the lack of 

source code availability, fewer developers can take part in 

the development process to enhance the product and correct 

problems (i.e., bugs). The development of Linux strongly 

supports the counter argument for operating systems.  

The COTS products selected for this evaluation included 

popular packages in the engineering and physical sciences 

(e.g., MATLAB/Simulink, Mathematica) along with other 

dedicated simulation packages (e.g., OpNet, Simul8, 

Arena). 

What follows is the list of chosen packages, starting with 

the low-cost/free packages: 

A. Ptolemy II [29] 

Ptolemy II is an open-source framework using an actor-

oriented philosophy available from the University of 

California, Berkeley. Each actor is a base unit and 

communicates through messages. Actors joined together 

hierarchically build a larger structure known as a model. In 

each model, there is a component called as director which 

sets the semantics of the model and executes the algorithm. 

B. SimPy [30] 

Simulation in Python (SimPy) is a DES framework for 

the Python programming language. It provides components 

for processes, customers, messages, and resources. It 

includes internal variables to monitor and gather statistics 

and provides random variates. It has data collection, a built-

in Graphical User Interface (GUI) and plotting functions 

and is capable of interfacing with other Python packages to 

extend its capabilities. A community of developers created 

and maintain SimPy. 

C. C++Sim [31] 

C++Sim is a C++ library for the C++ programming 

language available from Norwich University. It provides a 

DES framework providing simulation routines, random 

number generators, queuing algorithms and thread package 

interfaces. It provides statistics gathering routines, 

debugging classes, test routines and is compatible with both 

C++ and Java. The project appears to be migrating from 

C++Sim to JavaSim. 

D. Adevs [32] 

Adevs (A Discrete-EVent System simulator) is a C++ 

library maintained by the Oak Ridge National Laboratory. 

It is based on the Parallel DEVS and Dynamic DEVS 

(dynDEVS) formalisms from Zeigler [33]. Adevs links to 

an external complier (OpenModelica from the Modelica 

modeling language) and supports Java. 

E. OMNeT++ [34] 

OMNeT++ is component-based C++ simulation library 

and framework for building network simulations. 

OMNeT++ includes an Eclipse-based Integrated 

Development Environment (IDE) tailored to support 

OMNeT++-based model development.  
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It includes extensions for real-time networks, network 

emulation, other programming languages (C++ and Java) 

and database integration. It appears that a relatively large 

community supports OMNeT++ development. 

F. Arena [35] 

Arena is a COTS DES from Rockwell Automation. It is 

designed for stochastic processes using statistical 

distributions through curve fitting. Random sampling 

allows for event creation and processing over time. Only 

registered users of the software may access the program 

documentation, leading to largest degree of uncertainty in 

the analysis. 

G. MATLAB/Simulink [36] 

Simulink is an add-on package for MathWork‘s 

MATLAB computation language program, necessitating 

buying both programs. Simulink uses a block diagram style 

to assemble hierarchal models. It includes a graphical 

editor, user-customizable block libraries and math-based 

solvers for dynamic systems. It can use existing MATLAB 

algorithms and computations and Simulink results can be 

imported into MATLAB for analysis. 

H. Mathematica [37] 

Mathematica is a computational language program from 

Wolfram Research. Much like MATLAB, its primary 

purpose is to compute mathematical results. While not 

precisely a DES-based environment, it can be adapted to 

provide most DES capabilities. 

I. Simul8 [38] 

Simul8 is from Simul8 Corporation, a company that 

produces only simulation software. Simul8 provides 

processing of discrete entities as a tool for planning, design, 

optimization and engineering. It uses dynamic DES and 

includes a GUI, statistical tools, and reports functions. It is 

designed only for the Windows operating environment, but 

can be used on other platforms using software emulators. 

J. OpNet [39] 

OpNet is a communication network simulator from 

Riverbed Technologies. It provides advanced toolsets to 

model networks but can be adapted to other network-type 

models. It has a mature set of libraries and add-on tools 

using object-oriented modeling. It can use DES and hybrid 

model simulations in parallel and grid-computing 

environments and can interface with live systems. It has a 

GUI and an internal debugger. 

 

 

It is important to note that while there are many more 

software packages available, the ones listed above were 

chosen as representative of the field, with a focus on those 

typically used in an academic setting. 

IV. EVALUATING SIMULATION SOLUTIONS 

Each criterion is written to supply a binary solution (―Y‖ 

or ―N‖) rather than a variable answer (such as a Likert 

scale). While most criteria are listed in just one section, 

there are several that appear in multiple sections, indicating 

their importance to different capabilities (such as 

documentation and cost criteria). The evaluation process 

consisted of the following steps: 

 Find the software website on the Internet. 

 Find available documentation from the 

developer/company. 

 Review 3rd party websites for software information. 

 Search for 3rd party literature. 

 Read through available information for each package. 

 Evaluate each of the criteria based upon the 

information collected. 

The preferred source of information is the software 

documentation, but in several cases the documentation was 

not readily available. In this case, 3rd party information and 

other information from the developer were used to evaluate 

the software. 

After evaluating the criteria, the ―Y‖ and ―N‖ answers 

were entered into the criteria matrix with the free/low-cost 

products listed first, then the COTS products. A ―Y‖ 

answer was a positive result and colored with green. A ―N‖ 

answer is considered a negative result and colored in red. 

An unknown result is a ―?‖ and the cell colored yellow if 

no determination was possible from the available 

information. 

The matrix then totaled the number of ―Y‖, ―N‖, and ―?‖ 

answers. To account for the ―?‖ values, each software was 

given a range of ―Y‖ values, from the maximum ―Y‖ to the 

minimum. The maximum ―Y‖ value is the number of ―Y‖ 

values for that software plus the number of ―?‖ values. This 

allows for each unknown to actually be a positive value. 

The minimum ―Y‖ is the ―Y‖ value minus the ―?‖ value. 

This is the worst case as each ―?‖ is considered a negative. 

This produces a range of ―Y‖ values and is shown in the 

following span plots. The resulting capability evaluation 

matrices are shown in Tables VI-XI. 
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TABLE VI 

PROJECT CAPABILITY EVALUATION MATRIX 
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Cost Y Y Y Y Y N N N N N 

Source code 

availability 
Y Y Y Y Y N N N N N 

Modular Y Y Y Y Y Y Y Y Y Y 

Discrete event Y Y Y Y Y Y Y Y Y Y 

TABLE VII 

END USER CAPABILITY EVALUATION MATRIX (TECHNICAL) 
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Levels of fidelity ? Y Y Y Y N Y Y N Y 

Execution speed N N Y Y Y ? Y Y ? ? 

Programming 

languages interface 
Y Y Y Y Y ? Y Y N Y 

Input flexibility ? Y Y Y Y Y Y Y Y Y 

User-built custom 
objects 

Y Y Y Y Y Y Y Y Y Y 

Model status and 

statistics 
Y Y ? ? Y Y Y Y Y Y 

TABLE VIII 

END USER CAPABILITY EVALUATION MATRIX (USABILITY) 
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Graphical interface Y Y Y Y Y Y Y Y Y Y 

Documentation 

support 
Y Y N Y Y Y Y Y Y Y 

Reports function Y N N N Y Y Y Y Y Y 

Output export N Y Y Y Y Y Y Y Y Y 

Training available for 

simulation software 
N N N N N Y Y Y Y Y 

User community 
available 

N Y N N Y Y Y Y N Y 

 

 

 

 

 

TABLE IX 

END USER CAPABILITY EVALUATION MATRIX (FLEXIBILITY) 
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Reconfigurable Y Y Y Y Y Y Y Y Y Y 

Time variable Y Y ? ? Y ? Y N Y Y 

Portability Y Y Y Y Y N Y Y N Y 

TABLE X 

END USER CAPABILITY EVALUATION MATRIX (TCO) 
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Required platform 

software 
N N Y N Y Y N Y ? Y 

Documentation 

available 
Y N Y Y Y Y Y Y Y Y 

Software 

developer support 
Y Y N N Y Y Y Y Y Y 

Cost of simulation 

software 
Y Y Y Y Y N N N N N 

Licensing fees Y Y Y Y Y N N N N N 

Training costs Y Y Y Y Y N N N N Y 

Required 

hardware 
Y Y Y Y Y N Y N N N 

TABLE XI 

DEVELOPER CAPABILITY EVALUATION MATRIX 
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Interactive internal 
debugger 

N N N N Y ? Y Y Y Y 

Graphical programmer 

interface 
Y ? ? ? Y Y Y Y Y Y 

General programming 

languages interface 
Y Y Y Y Y ? Y Y N Y 

Extended library of 

add-ons 
Y Y Y Y Y Y Y Y Y Y 

Third party support N N N N ? Y Y Y Y Y 

Specific working 
environment 

Y Y N Y N Y Y N Y N 

Mature software 

documentation 
Y N N Y Y Y Y Y Y Y 

Third party 
documentation 

N N N N N Y Y Y Y Y 

Randomness Y Y Y Y Y Y Y Y Y Y 

Hybrid Y ? Y Y ? ? Y ? Y ? 
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TABLE XII 

OVERALL ADJUSTED SCORE MATRIX 
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# of "N" 9 10 11 9 3 9 6 8 12 6 

# of "Y" 29 28 26 28 35 25 34 31 26 32 

# of "?" 2 2 3 3 2 6 0 1 2 2 

Total 40 40 40 40 40 40 40 40 40 40 

           

Adjusted 
N: (N+?) 

11 12 14 12 5 15 6 9 14 8 

Adjusted 

Y: (Y+?) 
31 30 29 31 37 31 34 32 28 34 

           

max Y 

("adjusted 
Y"-N) 

22 20 18 22 34 22 28 24 16 28 

min Y (Y-

"adjusted 
N") 

18 16 12 16 30 10 28 22 12 24 

A span matrix used the criteria scores from Table XII to 

indicate how various packages compared. The number of 

―Y‖ answers from Table XII is on the X-axis, with the 

software packages on the Y-axis. Each row shows the 

spread of possible ―Y‖ answers as solid span of color. The 

larger the number of unknown answers from Table XII, the 

larger the span for that software. 

TABLE XIII 

CAPABILITIES ADJUSTED-Y EVALUATION SPAN MATRIX 

 
 

V. ANALYSIS OF RESULTS 

The results of this evaluation process indicate that the 

OMNeT++ simulation framework ranked highest/first - it 

even fared better than commercial offerings. For this initial 

evaluation or screening process, the result is not surprising.  

In fact, it can be argued that any screening process such as 

this is inherently biased (in a good way) towards the 

solution that best meets the requirements.  In other words, 

the process of establishing the very selection criteria itself 

helped illuminate some of the driving requirements of 

special important or of particular concern.  For example, 

the cost of providing an end user the simulation was of 

particular concern.  Because of that, several criteria 

represent this concern by breaking costs out into different 

categories such as initial software and licensing fees. 

Nevertheless, we consider OMNeT++ a good choice 

regardless of cost due to other technical concerns related to 

modeling QKD systems that didn‘t necessarily show up in 

the initial screening process – some of these are as follows. 

OMNeT‘s DES provides support to freely intermix the 

modeling of system features built upon different 

worldviews and paradigms: For example, we model QKD 

components and systems using several worldviews 

including ―event-driven‖ to capture the dynamics of pulse 

propagation through optical components and fiber cable; 

―process-based‖ to capture and represent complex software 

processes (or process flows) that execute or perform a 

series of related operations over time (e.g., QKD 

protocols); and the ―object-oriented‖ that enables us to 

define standalone software components that can be 

individually tested, assembled and interconnected to form 

complete unique system architectures. 

OMNeT also provides a substantial amount of well-

written documentation and has a vibrant active user 

community, which were important considerations in our 

initial selection criteria. For other modeling concerns, the 

need for sophisticated mathematical capabilities, such as 

those available in packages such as MATLAB and 

Mathematica, are simply not required – the standard math 

functions and capabilities available in almost any 

programming language was found sufficient to define the 

effects of interest (e.g., how an optical component affects 

an optical pulse).  Other concerns related to supporting 

simulations, such as systematically changing input factors, 

executing replications, collecting data and the subsequent 

data analysis were found to be sufficiently provided for in 

OMNeT.  
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VI. CONCLUSIONS 

The intent of the evaluation process highlighted in this 

paper was to select a simulation solution that supports DES 

modeling concepts with respect to the simulation of QKD 

systems. A portion of this effort was to identity the 

necessary requirements for such a simulation and to 

conduct a search to select the best possible simulation 

software that meets the requirements. 

The research considered different software packages and 

selected the OMNeT++ open-source software as the best 

choice for use in the development of a QKD simulation 

framework. Using a different set of requirements and 

considerations may result in a different selection. 

Further research is in progress and involves creating and 

documenting a conceptual model for the simulation using 

modeling formalism. This conceptual model will be the 

bridge to link the mathematical models provided by the 

SMEs to the computer code created by the project coders in 

OMNeT++. The conceptual model is critical in creating 

well-defined behaviors for the simulation and increasing 

the validity of the simulation model. 
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Abstract—Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum physics, enabling

two parties to generate shared secret cryptographic key. QKD systems offer the unique advantage of being able to detect the

presence of an eavesdropper during the key generation process and are suitable for employment in applications requiring high

security such as those found in financial, government, and military environments. However, QKD is a relatively nascent

technology and real-world systems differ significantly from theory as they are constructed from non-ideal components. The

impact of these non-idealities is not well understood due to the complexities of physical and system-level interactions. In this

paper, we present a reference architecture to enable the study of polarization modulation-based QKD systems. The reference

architecture was developed based on available product specifications, reference literature, and published QKD architectures

and is described to provide insight into how QKD systems function. The reference architecture is modeled in a discrete event

simulation framework and is used to conduct security and performance analysis to inform design decisions and trade-offs.

Index Terms—Quantum Key Distribution; Architecture; Model & Simulation; System Design; System Analysis
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1 INTRODUCTION

mYflme F]q ?akljaZmlagf &LF?' ak l`] egkl eYlmj]
Yhhda[Ylagf g^ imYflme [jqhlg_jYh`q Yf\ `]jYd\]\

Yk Y j]ngdmlagfYjq l][`fgdg_q g^^]jaf_ l`] e]Yfk ^gj log
hYjla]k lg _]f]jYl] k][mj] [jqhlg_jYh`a[ c]qaf_ eYl]jaYd+
@ehdgqaf_ l`] dYok g^ imYflme h`qka[k) LF? [Yf \]l][l
]Yn]k\jghhaf_ \mjaf_ l`] c]q _]f]jYlagf hjg[]kk) o`]j]
mfYml`gjar]\ gZk]jnYlagf g^ imYflme [geemfa[Ylagf
af\m[]k \ak[]jfaZd] ]jjgjk+ Cgo]n]j) LF? ak Y fYk[]fl
l][`fgdg_q o`]j] j]Yd*ogjd\ kqkl]ek Yj] [gfkljm[l]\
^jge fgf*a\]Yd [gehgf]flk o`a[` Y\n]jk]dq aehY[l l`]
k][mjalq Yf\ h]j^gjeYf[] g^ LF? kqkl]ek+

Df l`ak Yjla[d]) o] \]k[jaZ] Y LF? j]^]j]f[] Yj[`al][*
lmj] eg\]d]\ af Y \ak[j]l] ]n]fl kaemdYlagf ^jYe]ogjc
mk]\ lg klm\q l`] aehY[l g^ l`]k] fgf*a\]Ydala]k Yf\ hjY[*
la[Yd ]f_af]]jaf_ daealYlagfk+ Hgj]gn]j) l`] j]^]j]f[] Yj*
[`al][lmj] hjgna\]k Y Z]f[`eYjc kqkl]e lg _Yaf Y\\alagf*
Yd mf\]jklYf\af_ Yf\ klm\q [jala[Yd \]ka_f ljY\]g^^k Ykkg*

[aYl]\ oal` afl]jY[lagfk Z]lo]]f h`qka[Yd [gehgf]flk
Yf\ kqkl]e*d]n]d [gfka\]jYlagfk &]+_+) `Yj\oYj]) kg^loYj])
Yf\ hjglg[gdk'+ R] Yj] ^g[mk]\ gf Zja\_af_ l`] _Yh Z]*
lo]]f LF? l`]gjq Yf\ hjY[la[]8 l`]gj]la[Yd Yf\ ]ph]ja*
e]flYd h`qka[aklk Yj] ogjcaf_ lgoYj\k Y\nYf[af_ LF?
l][`fgdg_q) Zml ^]o Yj] kljgf_dq ^g[mk]\ gf aehjgnaf_
l`] aehd]e]flYlagf g^ j]Ydar]\ kqkl]ek+ R] Yj] mkaf_ l`]
kmZb][l Yj[`al][lmj]) Yf\ \]janYlagfk l`]j]g^) lg egj] ^mddq
mf\]jklYf\ LF? kqkl]ek+

Df N][lagf DD) o] hjgna\] Y [gf[ak] ZY[c_jgmf\ ^g[mk]\
l`] \]n]dghe]fl g^ l`] ^ajkl LF? hjglg[gd) ==51+ Df N][*
lagf DDD) o] afljg\m[] l`] \ak[j]l] ]n]fl kaemdYlagf [YhY*
Zadalq mk]\ af l`ak ogjc+ Df N][lagf DQ) o] \]k[jaZ] Y hg*
dYjarYlagf*ZYk]\) hj]hYj]*Yf\*e]Ykmj] ==51 LF? j]^]j*
]f[] Yj[`al][lmj] Yf\ \]k[jaZ] alk [gfklalm]fl ]d]e]flk+ Df
N][lagf Q) o] hj]k]fl [gf[dmkagfk Yf\ ^mlmj] ogjc Yf\
Yf <hh]f\ap ak hj]k]fl]\ [gflYafaf_ Y \]lYad]\ dakl g^ l`]
eg\]d]\ LF? ghla[Yd Yf\ ]d][ljg*ghla[Yd [gehgf]flk
Yf\ l`]aj hjaeYjq Z]`Ynagjk+

2 BACKGROUND

O`] _]f]kak g^ LF? [Yf Z] ljY[]\ ZY[c lg Ra]kf]j) o`g
\]n]dgh]\ l`] a\]Y g^ imYflme [gfbm_Yl] [g\af_ af l`]
dYl] .63-k V.W+ C] \]k[jaZ]\ log Yhhda[Ylagfk ^gj imYflme
[g\af_7 .' LmYflme Hgf]q7 Y e]l`g\ ^gj l`] [j]Ylagf g^
^jYm\*hjgg^ ZYfcaf_ fgl]k) Yf\ /' LmYflme Hmdlahd]p*
af_7 Y e]l`g\ ^gj ljYfkeallaf_ emdlahd] e]kkY_]k af km[`
Y oYq l`Yl j]Y\af_ gf] g^ l`] e]kkY_]k \]kljgqk l`] gl`*
]j+ >`Yjd]k =]ff]ll Yf\ Badd]k =jYkkYj\ kmZk]im]fldq ]p*
hdgal]\ l`ak [gf[]hl af .651 o`]f l`]q hjghgk]\ l`] ^ajkl
LF? hjglg[gd &==51' Yf\ kmZk]im]fldq Zmadl l`]aj ^ajkl
LF? kqkl]e af .656 V/W)V0W+

L

————————————————

CM\Q^ _aNYU``QP 3aSa_` '*# (&'*% GTU_ c[^W cM_ _a\\[^`QP Ne `TQ ?MN[^M$
`[^e R[^ GQXQO[YYaZUOM`U[Z FOUQZOQ_ KS^MZ` ZaYNQ^ +-*)*&&$)&*$,**.L%
" =%6% @[^^U_ U_ cU`T `TQ 3U^ 8[^OQ <Z_`U`a`Q [R GQOTZ[X[Se# I^UST`$

CM``Q^_[Z 384# B; *+*))$--,+ HF3 !QYMUX0 VQRR^Qe%Y[^^U_2MRU`%QPa"%
" ?%B% @MUXX[ad U_ cU`T `TQ 3U^ 8[^OQ <Z_`U`a`Q [R GQOTZ[X[Se# I^UST`$

CM``Q^_[Z 384# B; *+*))$--,+ HF3 !QYMUX0 X[SMZ%YMUXX[ad2MRU`%QPa"%
" @%E% 9^UYMUXM U_ cU`T `TQ 3U^ 8[^OQ <Z_`U`a`Q [R GQOTZ[X[Se# I^UST`$

CM``Q^_[Z 384# B; *+*))$--,+ HF3 !QYMUX0 YU$
OTMQX%S^UYMUXM2MRU`%QPa"%

" 6%6% ;[P_[Z U_ cU`T `TQ 3U^ 8[^OQ <Z_`U`a`Q [R GQOTZ[X[Se# I^UST`$
CM``Q^_[Z 384# B; *+*))$--,+ HF3 !QYMUX0 P[aSXM_%T[P_[Z2MRU`%QPa"%

" 6%E% =MO]aQ_ U_ cU`T `TQ 3U^ 8[^OQ <Z_`U`a`Q [R GQOTZ[X[Se# I^UST`$
CM``Q^_[Z 384# B; *+*))$--,+ HF3 !QYMUX0 PMbUP%VMO]aQ_2MRU`%QPa"%

" =%E% 5[X[YNU U_ cU`T `TQ 3U^ 8[^OQ <Z_`U`a`Q [R GQOTZ[X[Se# I^UST`$
CM``Q^_[Z 384# B; *+*))$--,+ HF3 !QYMUX0 V[TZ%O[X[YNU2MRU`%QPa"%

" 5[XUZ @O?MaSTXUZ U_ M EQ_QM^OT CTe_UOU_` M` `TQ AMbMX EQ_QM^OT ?MN[^M$
`[^e# IM_TUZS`[Z# 6%5% (&)-+ HF3 !QYMUX0 O[XUZ%YOXMaSTXUZ2Z^X%S[b"%
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2.1 QKD System Context

Df gj\]j lg hjgna\] mf\]jklYf\af_ g^ `go LF? kqkl]ek
Yj] mk]\) o] hj]k]fl Y LF? kqkl]e [gfl]pl \aY_jYe Yk
k`gof af Aa_mj] .) addmkljYlaf_ Y LF? kqkl]e [gfkaklaf_
g^ Y k]f\]j v<da[]w) Y j][]an]j v=gZw) Y [dYkka[Yd [geem*
fa[Ylagfk [`Yff]d &a+]+) Dfl]jf]l') Yf\ Y imYflme [geem*
fa[Ylagfk [`Yff]d &a+]+) Y \Yjc ghla[Yd ^aZ]j'+ O`] LF? kqk*
l]e _]f]jYl]k Y k`Yj]\ k][j]l [jqhlg_jYh`a[ c]q >) o`a[`
ak [gfkme]\ Zq <da[] Yf\ =gZuk Zmdc ]f[jqhlgjk Yf\ mk]\
lg k][mj] Y [geemfa[Ylagf dafc+ Df l`] k[]fYjag \]ha[l]\)
Y hdYafl]pl e]kkY_] Y ak ljYfk^gje]\ aflg l`] [ah`]jl]pl
7>!Y" Zq l`] Zmdc ]f[jqhlgjk mkaf_ l`] c]q >) ljYfkeall]\
gn]j l`] `a_`*kh]]\ \YlY dafc) Yf\ \][jqhl]\ mkaf_ l`]
c]q > Yl l`] \aklYfl ]f\ o`]j] Y16>!7>!Y""+ O`] Zmdc
]f[jqhlgjk [Yf mk] Yfq [gfn]flagfYd ]f[jqhlagf Yd_g*
jal`ek af[dm\af_ ?@N) 0?@N) gj <@N+

Pk]jk \]kajaf_ af[j]Yk]\ d]n]dk g^ af^gjeYlagf hjgl][*
lagf eYq mk] l`] LF?*_]f]jYl]\ k`Yj]\ k][j]l c]q Yk c]q
eYl]jaYd ^gj Y Jf]*Oae] KY\ &JOK' ]f[jqhlagf Yd_gjal`e
lg Y[`a]n] mf[gf\alagfYddq k][mj] [geemfa[Ylagfk V1W)V2W+
Cgo]n]j) JOK ak fgl g^l]f mk]\ \m] lg Yegmfl g^ c]q
j]imaj]\ &a+]+) ]imYd d]f_l` lg l`] e]kkY_]' Yf\ k][mjalq
j]imaj]e]flk &a+]+) l`] c]q ak jYf\ge Yf\ f]n]j j]*mk]\
V2W'+ LF? kqkl]ek) o`]f hjgh]jdq aehd]e]fl]\) [gfkla*
lml] gf] g^ l`] egkl ka_fa^a[Yfl [jqhlg_jYh`a[ \]n]dgh*
e]flk af j][]fl `aklgjq+

132960 #! LF? Nqkl]e <j[`al][lmj] >gfl]pl ?aY_jYe+ Igl]7 Y\\a*

lagfYd Y\eafakljYlan] Yf\ [gfljgd ka_fYdk Yj] geall]\ ^gj [dYjalq+

LF? kqkl]ek hjaeYjadq mk] log ZYka[ e]l`g\k ^gj ]f*
[g\af_ af^gjeYlagf gn]j l`] imYflme [`Yff]d V3W+ Df
vhj]hYj]*Yf\*e]Ykmj]w hjglg[gdk) l`] k]f\]j Yf\ j][]an*
]j mk] eYl[`af_ eg\mdYlagf k[`]e]k lg ]f[g\],\][g\]
imYflme klYl]k mkaf_ hgdYjarYlagf*ZYk]\ gj h`Yk]*ZYk]\
eg\mdYlagf l][`faim]k+ Df v]flYf_d]e]flw hjglg[gdk) log
gj egj] h`glgfk Yj] af]plja[YZdq dafc]\ Yf\ Yj] \]k[jaZ]\
Yk Y kaf_d] imYflme kqkl]e) o`]j] Y e]Ykmj]e]fl gf
]al`]j h`glgf Y^^][lk l`] gl`]j+ Df l`ak hYh]j) o] ^g[mk
kgd]dq mhgf l`] ==51) hj]hYj]*Yf\*e]Ykmj]) hgdYjarYlagf*
ZYk]\ Yj[`al][lmj] Z][Ymk] al oYk l`] ^ajkl LF? hjglg[gd)
ak j]dYlan]dq ]Ykq lg mf\]jklYf\) Yf\ j]eYafk Y hghmdYj
aehd]e]flYlagf [`ga[] ^gj LF? kqkl]ek mkaf_ daf]*g^*
ka_`l v^j]] khY[]w \aj][l ghla[Yd dafck f][]kkYjq ^gj ^mlmj]
kYl]ddal] LF? aehd]e]flYlagfk V4W+

2.2 BB84 QKD Protocol

Df l`] ==51 hjglg[gd) <da[] hj]hYj]k imYflme Zalk &imZalk'
Zq ]f[g\af_ af^gjeYlagf gflg kaf_d] h`glgfk mkaf_ gf] g^
log jYf\gedq k]d][l]\ [gfbm_Yl] ZYk]k &]+_+) j][ladaf]Yj
Yf\ \aY_gfYd' Yf\ Y jYf\gedq k]d][l]\ [dYkka[Yd Zal nYdm]

&]+_+) - gj .' Yk addmkljYl]\ af Aa_mj] /+ Nh][a^a[Yddq) <da[]
]f[g\]k ]Y[` h`glgf mkaf_ gf] g^ l`] ^gmj l`] hgdYjarY*
lagf klYl]k `gjargflYd &gk[addYlaf_ Z]lo]]f -{ Yf\ .5-{')
n]jla[Yd &gk[addYlaf_ Z]lo]]f 6-{ Yf\ /4-{') \aY_gfYd &gk*
[addYlaf_ Z]lo]]f 12{ Yf\ *.02{') gj Yfla*\aY_gfYd &gk[addYl*
af_ Z]lo]]f *12{ Yf\ .02{'+ N`] l`]f ljYfkealk l`] imZal
naY l`] imYflme [`Yff]d lg =gZ) o`]j] `] e]Ykmj]k l`]
h`glgf mkaf_ Y jYf\gedq k]d][l]\ ZYkak &]+_+) j][ladaf]Yj
gj \aY_gfYd'+ <kkmeaf_ Yf a\]Yd dgkkd]kk [`Yff]d) a^ =gZ
e]Ykmj]k l`] imZalk af kYe] ZYkak Yk <da[] mk]\) `] gZ*
lYafk l`] ]f[g\]\ Zal nYdm] oal` Y `a_` \]_j]] g^ Y[[mjY*
[q+ Cgo]n]j) a^ =gZ e]Ykmj]k l`] imZal af l`] af[gjj][l
ZYkak) Y jYf\ge j]kmdl oadd Z] gZlYaf]\ Yf\ Ydd hj]nagmkdq
]f[g\]\ af^gjeYlagf ak dgkl+ O`ak ak \m] lg l`] imYflme*
d]n]d afl]jY[lagfk f][]kkYjq ^gj e]Ykmj]e]fl lg g[[mj)
o`]j] l`] e]j] Y[l g^ e]Ykmjaf_ Yf ]f[g\]\ imYflme
klYl] [gddYhk]k l`] klYl] V5W)V6W)V.-W+

132960 $! @pYehd] ==51 >gfbm_Yl] KgdYjarYlagf =Yk]k7 M][ladaf]Yj

Yf\ ?aY_gfYd+

Gac]oak]) a^ Yf ]Yn]k\jghh]j v@n]w Yll]ehlk lg j]Y\
imZalk gf l`] imYflme [`Yff]d) k`] f][]kkYjadq afljg\m[*
]k \]l][lYZd] ]jjgjk Z][Ymk] k`] \g]k fgl cfgo l`] ]f[g\*
af_ ZYkak mk]\ Zq <da[] Y hjagja+ =q [dgk]dq egfalgjaf_ l`]
]jjgj jYl] g^ l`] imYflme [`Yff]d) l`] LmYflme =al @jjgj
MYl] &L=@M') Yddgok <da[] Yf\ =gZ lg \]l]jeaf] a^ Yf
]Yn]k\jghh]j ak hj]k]fl \mjaf_ l`] c]q _]f]jYlagf hjg*
[]kk+ =q ]f[g\af_ imZalk af log [gfbm_Yl] ZYk]k) l`] ==51
hjglg[gd hjgna\]k Y e]Yfk ^gj k][mj]dq \akljaZmlaf_ [jqh*
lg_jYh`a[ c]q ZYk]\ gf l`] dYok g^ h`qka[k) fYe]dq imYf*
lme*d]n]d mf[]jlYafla]k V5W)V6W)V.-W+

2.3 BB84 Idealities

O`] ==51 hjglg[gd Ykkme]k k]n]jYd a\]Ydala]k) o`a[` Yj]
fgl j]Ydakla[ gj hjY[la[Yd af j]Yd LF? kqkl]ek) af[dm\af_
V.-W)V..W)V./W)V.0W7

.' Jf*\]eYf\ kaf_d] h`glgf kgmj[]k af <da[]
/' K]j^][l kaf_d] h`glgf \]l][lagf af =gZ
0' < dgkkd]kk imYflme [`Yff]d Z]lo]]f <da[] Yf\ =gZ
1' K]j^][l ZYkak Yda_fe]fl Z]lo]]f <da[] Yf\ =gZ

D^ l`]k] [gf\alagfk Yj] e]l) LF? hjgna\]k hjgnYZdq k]*
[mj] c]q ]p[`Yf_] V..W)V./W)V.0W+ Cgo]n]j) l`]k] Ykkmeh*
lagfk Yj] kaehdq fgl nYda\ o`]f Zmad\af_ j]Yd*ogjd\ kqk*
l]ek+ Agj ]pYehd]) j]daYZd] gf*\]eYf\ kaf_d] h`glgf
_]f]jYlagf ak fgl [mjj]fldq hjY[la[Yd) [gee]j[aYd kaf_d]
h`glgf \]l][lgjk `Yn] dgo \]l][lagf ]^^a[a]f[a]k) ghla[Yd
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^aZ]jk `Yn] o]dd mf\]jklgg\ dgkk]k) Yf\ ZYkak Yda_fe]fl ak
daeal]\ Zq l`] Y[[mjY[q g^ [geh]fkYlagf e][`Yfakek+

Og klm\q l`]k] fgf*a\]Ydala]k Yf\ kaeadYj hjY[la[Yd ]f*
_af]]jaf_ daealYlagfk) o] \]n]dgh]\ Y kh][aYdar]\ kaemdY*
lagf ^jYe]ogjc lg ]fYZd] ]^^a[a]fl eg\]daf_) kaemdYlagf)
Yf\ YfYdqkak g^ LF? kqkl]e Yj[`al][lmj]k+

3 THE QKD SIMULATION FRAMEWORK (QKDX)

R] `Yn] \]n]dgh]\ Y LF? kaemdYlagf ^jYe]ogjc &ic\S'
lg ]fYZd] ]^^a[a]fl eg\]daf_ g^ LF? kqkl]ek) o`]j] v^al*
^gj*hmjhgk]w LF? kqkl]e j]hj]k]flYlagfk [Yf Z] Zmadl ^gj
]pl]fkan] YfYdqkak+ KjY[la[Yddq kh]Ycaf_) l`ak [YhYZadalq
Yddgok mk]jk &]+_+) ]f_af]]jk gj YfYdqklk' lg egj] ima[cdq
eg\]d LF? kqkl]ek) ]fYZdaf_ k][mjalq Yf\ h]j^gjeYf[]
YfYdqkak) af[dm\af_7

.+ Hg\]d Yf\ YfYdqr] [geh]laf_ LF? aehd]e]flY*
lagfk &]+_+) nYjaYlagfk af `Yj\oYj] [gehgf]flk gj
kg^loYj] hjg[]kk]k'

/+ Df[j]Yk] mf\]jklYf\af_ g^ l`] k][mjalq*
h]j^gjeYf[] \]ka_f Yf\ aehd]e]flYlagf ljY\]
khY[] ^gj j]Ydar]\ LF? kqkl]ek

0+ ?]l]jeaf] l`] aehY[l g^ fgf*a\]Ydala]k Yf\ hjY[la*
[Yd ]f_af]]jaf_ daealYlagfk af LF? Yj[`al][lmj]k

1+ D\]fla^q afl]jY[lagfk Z]lo]]f h`qka[Yd &imYflme
h`]fge]fgf) l]eh]jYlmj]) Yf\ \aklmjZYf[]k' Yf\
kqkl]e*d]n]d afl]jY[lagfk &`Yj\oYj] \]ka_fk)
kg^loYj] aehd]e]flYlagfk) Yf\ hjglg[gdk'

2+ Kjghgk] Yf\ Ykk]kk f]o LF? aehd]e]flYlagfk gj
hjglg[gdk

3+ Nlm\q l`] k][mjalq aehda[Ylagfk g^ \a^^]j]fl hjg*
lg[gd eg\a^a[Ylagfk Yf\ kqkl]e Yj[`al][lmj]k

4+ Hg\]d Yf\ klm\q ^j]]*khY[] Yf\ khY[]*ZYk]\
LF? kqkl]ek

5+ HYpaear] j]k]Yj[` afn]kle]flk Yf\ \]n]dghe]f*
lYd ]^^gjlk lg aehjgn] aehd]e]flYlagfk &]+_+)
k`gmd\ gf] afn]kl j]k]Yj[` [YhalYd af gf*\]eYf\
kaf_d]*h`glgf kgmj[]k gj aehjgn]\ kaf_d] h`glgf
\]l][lgjk;'

3.1 Modeled Components

< dakl g^ eg\]d]\ ghla[Yd [gehgf]fl ak k`gof af OYZd] .
Yf\ \]k[jaZ]\ ^mjl`]j af l`] <hh]f\ap+ @eh`Ykaraf_ l`]
hjY[la[Yd fYlmj] g^ gmj j]k]Yj[`) o] `Yn] Ydkg [`gk]f lg
mladar] [gee]j[aYddq YnYadYZd] ghla[Yd ^aZ]j \]na[]k Yf\
l][`fgdg_a]k km[` Yk l]d][ge oYn]d]f_l` dYk]jk) eg\mdY*
lagf ]f[g\]jk) Yf\ klYf\Yj\ar]\ ghla[Yd [gehgf]flk lg
eg\]d LF? kqkl]ek+ @Y[` [gehgf]fl ak [gf^a_mj]\ oal`
./*/4 Y\bmklYZd] h]j^gjeYf[] hYjYe]l]jk Yf\ eg\]d]\ af
Yf ]n]fl*\jan]f hYjY\a_e) o`ad] \]na[] [gfljgdd]jk Yj]
eg\]d]\ af Y hjg[]kk*ZYk]\ hYjY\a_e+ Df lglYd) \gr]fk g^
\]ka_f \][akagfk Yf\ Ykkmehlagfk o]j] eY\] lg eg\]d
l`]k] \]na[]k Yf\ kmhhgjlaf_ hjg[]kk]k ZYk]\ gf hjg\m[l
kh][a^a[Ylagfk hjgna\]\ af l`] <hh]f\ap M]^]j]f[] k][*
lagf) YnYadYZd] j]^]j]f[] dal]jYlmj]) h]jlaf]fl hmZda[Ylagfk)
Yf\ \ak[mkkagfk oal` NmZb][l HYll]j @ph]jlk &NH@' af l`]
^a]d\k g^ imYflme h`qka[k) ]d][lja[Yd ]f_af]]jaf_) ghla[Yd
h`qka[k) Yf\ kg^loYj] ]f_af]]jaf_+

8,-40 #! Hg\]d]\ Jhla[Yd >gehgf]flk+

<ll]fmYlgj)
Aap]\ Jhla[Yd

>dYkka[Yd
?]l][lgj

GYk]j KgdYjarYlagf
Hg\mdYlgj

<ll]fmYlgj)
@d][lja[Yd*
QYjaYZd] Jhla[Yd

>aj[mdYlgj Jhla[Yd
Noal[`) .p/

Naf_d] K`glgf
?]l][lgj

=Yf\hYkk Aadl]j CYd^*oYn]
KdYl]

KgdYjarYlagf
>gfljgdd]j

Naf_d]*Hg\]
&NH' AaZ]j

=]Yekhdall]j Df*daf]
KgdYjar]j

KgdYjarYlagf*
HYaflYafaf_
&KH' AaZ]j

RYn] ?anakagf
Hmdlahd]p]j

=]Yekhdall]j)
KgdYjaraf_

DkgdYlgj KgdYjarYlagf
Hg\mdYlgj

AYjY\Yq Hajjgj

3.2 qkdX Design Features

?]ka_f ^]Ylmj]k g^ ic\S af[dm\]7 Y `qZja\ \ak[j]l]*
[gflafmgmk eg\]daf_ YhhjgY[` lg egj] Y[[mjYl]dq [Yh*
lmj] imYflme ]^^][lk8 Y eg\mdYj \]ka_f lg Yddgo ima[c
Yf\ ]^^a[a]fl [`Yf_]k lg l`] kqkl]e mf\]j klm\q8 hYjYe]*
l]jar]\ [gehgf]flk Yddgoaf_ ^gj emdlahd] nYjqaf_ af*
klYf[]k8 Yf\ [gehgkYZadalq Yddgoaf_ ^gj `a]jYj[`Yd [gf*
kljm[lagf g^ [gehd]p kqkl]ek ^jge kaehd] [gehgf]flk+

O`] ^jYe]ogjc ak \]ka_f]\ oal` [gfka\]jYlagfk lg
kmhhgjl emdlahd] imZal ]f[g\af_ k[`]e]k &a+]+) hgdYjarY*
lagf*ZYk]\) h`Yk]*ZYk]\) Yf\ ]flYf_d]e]fl') emdlahd]
hjglg[gdk &]+_+) ==51) N<MB-1) @6/') Yf\ nYjagmk LF?
Yhhda[Ylagfk &]+_+) Zmja]\ ghla[Yd ^aZ]j) l]jj]kljaYd \aj][*
lagfYd ^j]]*khY[] ghla[Yd dafc) Yf\ emdlahd]p]\ ljYfkeak*
kagfk'+

3.3 qkdX Simulation Considerations

M]Yd*ogjd\ LF? kqkl]ek g^l]f mk] ]paklaf_ af^jYkljm[*
lmj]+ R`ad] l`] Z]kl hgkkaZd] imYflme [`Yff]d ogmd\ Z] Y
\Yjc ^aZ]j [`Yff]d) LF? aehd]e]flYlagfk eYq lae] emd*
lahd]p]\ o]Yc ka_fYd hmdk]k oal` kljgf_ l]d][geemfa[Y*
lagf ka_fYd gn]j l`] imYflme [`Yff]d+ <k Y [gfk]im]f[])
o] `Y\ lg eg\]d afl]j^]j]f[] Yf\ k[Yll]jaf_ ]^^][lk oal`af
l`] ghla[Yd ^aZ]j eg\]d+ NaeadYjdq) Yk Yf ghla[Yd hmdk]
hjghY_Yl]k l`jgm_` Yf ghla[Yd ^aZ]j) al Z][ge]k Yll]fmYl*
]\+ Df Y kaemdYlagf) al ak aehgjlYfl lg \]^af] Y l`j]k`gd\
Z]dgo o`a[` hgafl l`] ^aZ]j eg\]d oadd \]d]l] l`] ghla[Yd
hmdk]) gl`]joak] hmdk]k oadd [gflafm] lg hjghY_Yl] l`Yl
Yj] Z]dgo mk]^md daealk+

<fgl`]j akkm] j]imajaf_ kh][aYd Yll]flagf ak j]^d][lagfk+
@Y[` lae] Y hmdk] ]fl]jk Y [gehgf]fl) Y keYdd hgjlagf ak
j]^d][l]\ af l`] ghhgkal] \aj][lagf g^ ljYn]d+ O`]k] dgo*
hgo]j ghla[Yd hY[c]lk l`]ek]dn]k [Ymk] Y\\alagfYd j]^d][*
lagfk+ O`ak `Yk l`] ]^^][l g^ [j]Ylaf_ Y tj]^d][lagf klgjeu g^
af^afal] hY[c]lk Zgmf[af_ Z]lo]]f [gehgf]flk af Y kaem*
dYlagf+ Og `Yf\d] l`ak kalmYlagf) Y kaemdYlagf ghlagf oYk
[j]Yl]\ lg ]fYZd] gj \akYZd] j]^d][lagfk gf Y h]j [gehg*
f]fl ZYkak+

4 THE QKD REFERENCE ARCHITECTURE

O`] LF? j]^]j]f[] Yj[`al][lmj] k]jn]k Yk Y ZYk]daf] j]^]j*
]f[] ^gj [gf\m[laf_ kaemdYlagf klm\a]k+ O`] Yj[`al][lmj]
oYk \]n]dgh]\ ZYk]\ gf YnYadYZd] hjg\m[l kh][a^a[Ylagfk)
j]^]j]f[] dal]jYlmj]) Yf\ hmZdak`]\ LF? kqkl]e \]ka_fk
af[dm\af_ V.1W)V.2W)V.3W)V.4W)V.5W+ < kmjn]q g^ LF? l][`*
fgdg_a]k ak hjgna\]\ af V.6W+
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4.1 Alice and Bob Decomposition

Jmj hjglglqha[Yd LF? kqkl]e mk]k Y hgdYjarYlagf*ZYk]\)
==51) hj]hYj] Yf\ e]Ykmj] Yj[`al][lmj] Yk k`gof af Aa_*
mj] 0+ O`] LF? kqkl]e [gehjak]k <da[]) =gZ) Yf Yml`]f*
la[Yl]\ hmZda[ [geemfa[Ylagfk [`Yff]d &[dYkka[Yd [`Yf*
f]d') Yf\ Y imYflme [geemfa[Ylagf [`Yff]d &imYflme
[`Yff]d'+ <da[] Yf\ =gZ af[dm\] Y kqkl]e [gfljgdd]j) Y
hmZda[ [`Yff]d [gfljgdd]j) Yf\ Y imYflme eg\md]) j]kh][*
lan]dq+ O`] ^g[mk g^ l`] j]^]j]f[] Yj[`al][lmj] ak l`] imYf*
lme [geemfa[Ylagfk hYl` ^jge <da[] lg =gZ) l`] gl`]j
[gehgf]flk Yj] eg\]d]\ af Y egj] YZkljY[l oYq+ O`]
]f\*lg*]f\ imYflme hYl` ak \ak[mkk]\ af af[j]Ykaf_ d]n]dk
g^ \]lYad l`jgm_`gml l`] j]eYaf\]j g^ N][lagf DQ+

132960 %+ LF? Nqkl]e .kl*d]n]d ?][gehgkalagf+

<da[] hj]hYj]k h`glgfk oal` [Yf\a\Yl] k][j]l c]q Zalk
Yf\ k]f\k l`]e lg =gZ naY l`] imYflme [`Yff]d+ =gZ j]*
[]an]k l`] hj]hYj]\ h`glgfk Yf\ e]Ykmj]k l`]e lg j][gn*
]j l`] [Yf\a\Yl] c]q Zalk+ <da[] Yf\ =gZ [ggj\afYl] l`]aj
kqkl]e gh]jYlagfk Zq [geemfa[Ylaf_ gn]j l`] Yml`]fla*
[Yl]\ [dYkka[Yd [`Yff]d+

4.2 Alice Subsystem and Quantum Model
Decomposition

O`] <da[] kmZkqkl]e [gflYafk k]n]jYd eg\md]k af[dm\af_
Y kqkl]e [gfljgdd]j eg\md]) Y hmZda[ [`Yff]d eg\md]) Yf\
Y imYflme eg\md] k`gof af Aa_mj] 0+ O`] <da[] kqkl]e
[gfljgdd]j eg\md] ak j]khgfkaZd] ^gj [gfljgddaf_ l`] <da[]
kmZkqkl]e Yf\ k]jn]k Yk l`] eYkl]j [gfljgdd]j lg [ggj\a*
fYl] gh]jYlagfk Z]lo]]f <da[] Yf\ =gZ+ O`] hmZda[ [`Yf*
f]d eg\md] afl]j^Y[]k oal` l`] kqkl]e [gfljgdd]j eg\md]
Yf\ hjgna\]k [gff][lanalq lg l`] j]egl] kqkl]e naY l`]
[dYkka[Yd [`Yff]d+ O`] imYflme eg\md] ak j]khgfkaZd] ^gj
_]f]jYlaf_ l`] imYflme klYl] af ghla[Yd hmdk]k Z]^gj]
k]f\af_ l`]e lg =gZ naY l`] imYflme [`Yff]d+ <da[]uk
imYflme eg\md] \][gehgk]k aflg faf] \a^^]j]fl kmZkqk*
l]ek) k`gof af 132960 &Aa_mj] 1+

132960 &! <da[] LmYflme Hg\md] ?][gehgkalagf+

O`] j]dYlan] dg[Ylagfk g^ l`] ?NB eg\md] Yf\ >OL
eg\md] Yj] ka_fa^a[Yfl ^gj l`] [j]Ylagf g^ \][gq klYl]k
oal`af l`] kqkl]e+ O`ak ak Y f][]kkYjq k][mjalq e]Ykmj] Yk
l`] ?NB [j]Yl]k Y tnY[mmeu Yf\ Y t\][gqu klYl] V/-W oal`af
]Y[` ^jYe] Yk Y hjgl][lan] e]Ykmj] Y_Yafkl l`] K`glgf
ImeZ]j Nhdallaf_ YllY[c V/.W) Y ka_fa^a[Yfl k][mjalq akkm]
^gj LF? kqkl]ek+ O`] \][gq klYl] `Yk \a^^]jaf_ d]n]dk g^
h`glgfk af j]dYlagf lg l`] fgjeYd tka_fYdu klYl] Zml l`]

?NB @d][lja[Yddq*[gfljgdd]\ QYjaYZd] Jhla[Yd <ll]fmYlgj
&@QJ<' Yhhda]k Y dYj_] Yegmfl g^ Yll]fmYlagf lg [j]Yl]
l`] nY[mme klYl]) j]egnaf_ Ydegkl Ydd g^ l`] h`glgfk+
>j]Ylaf_ l`]k] klYl]k ogmd\ Z] f]Yjdq aehgkkaZd] a^ l`]
hmdk]k ljYn]d l`jgm_` l`] >OL eg\md] Yf\ Yll]fmYl] lg
imYflme d]n]dk &_]f]jYddq d]kk l`Yf l]f h`glgfk' Z]^gj]
Yhhdqaf_ l`] nYjqaf_ nYdm]k g^ Yll]fmYlagf lg [j]Yl] l`]
nY[mme Yf\ \][gq klYl]k+

8,-40 $! ?]k[jahlagf g^ <da[] LmYflme Hg\md] NmZkqkl]ek

7G<EHEF>@ 1GA=F?BA

>dYkka[Yd Kmdk] B]f]jYlgj
&>KB'

B]f]jYl]k Y emdla*h`glgf hmdk]

KgdYjarYlagf Hg\mdYlgj
&KH'

KgdYjar]k l`] h`glgf hmdk] aflg l`]
\]kaj]\ hgdYjarYlagf

?][gq NlYl] B]f]jYlgj
&?NB'

>j]Yl]k \][gq klYl]k lg eala_Yl] h`g*
lgf khdallaf_ YllY[ck

>dYkka[Yd lg LmYflme
&>OL'

>gfn]jlk [dYkka[Yd dYk]j hmdk]k lg
imYflme d]n]dk Zq Yll]fmYlaf_ lg
o]Yc*[g`]j]fl d]n]dk

Jhla[Yd N][mjalq GYq]j
&JNG'

?]l][lk ghla[Yd hjgZaf_ YllY[ck

Oaeaf_ Kmdk] B]f]jYlgj
&OKB'

B]f]jYl]k Y laeaf_ hmdk] mk]\ ^gj
kqf[`jgfarYlagf Yf\ emdlahd]p]k
ka_fYd Yf\ laeaf_ hmdk]k

Jmlhml Kgo]j Hgfalgj
&JKH'

Hgfalgjk l`] gmlhml ghla[Yd hgo]j

O`] nYjaYZd] Yll]fmYlgjk af l`] ?NB Yf\ >OL) Zgl`
dakl]\ af l`] Zdg[c \aY_jYek Yk Yf @QJ<) \a^^]j ka_fa^a*
[Yfldq af l`]aj mkY_]+ O`] ?NB @QJ< [`Yf_]k ima[cdq
Yf\ jYf\gedq ^gj ]Y[` hmdk] lg [j]Yl] l`] \][gq klYl]k+
O`] >OL @QJ< Yll]fmYl]k l`] dYk]j hmdk]k \gof lg
imYflme d]n]d Yf\ oadd gfdq [`Yf_] af j]khgfk] lg gmlhml
d]n]dk e]Ykmj]\ Zq l`] JKH eg\md]+ O`]aj aehd]e]flY*
lagf Yf\ hmjhgk] ak n]jq \akkaeadYj) j]imajaf_ \a^^]j]fl
h]j^gjeYf[] [`YjY[l]jakla[k Yf\ j]imajaf_ l`] kaemdYlagf
^jYe]ogjc lg `Yn] mfaim] afklYf[]k g^ hYjla[mdYj [gehg*
f]fl+

4.2.1 Alice Classical Pulse Generator Subsystem
Decomposition

O`] a\]Yd [gf[]hlmYd eg\]d g^ Y LF? kqkl]e kh][a^a]k
hgdYjarYlagf*]f[g\]\ kaf_d] h`glgfk oal` l`] \]kaj]\ Zal
Yf\ ZYkak+ Df j]Ydalq) j]daYZd] gf*\]eYf\ kaf_d] h`glgf
hmdk] _]f]jYlgjk Yj] Yf mfj]Ydar]\ l][`fgdg_q+ M]Yd*
ogjd\ LF? kqkl]e aehd]e]flYlagfk afkl]Y\ _]f]jYl] Y
dYk]j hmdk] [gflYafaf_ eaddagfk g^ h`glgfk Yf\ kljgf_dq
Yll]fmYl] l`] hmdk] \gof lg klYlakla[Yd kmZ*h`glgf &imYf*
lme' d]n]dk+ Ral`af l`] <da[] imYflme eg\md]) l`] >KB
kmZkqkl]e _]f]jYl]k l`] dYk]j hmdk]k Yf\ k`a^lk l`]e aflg
Y cfgof hgdYjarYlagf+ O`] >KB kmZkqkl]e [gflYafk l`]
[gehgf]flk k`gof af Aa_mj] 2+

132960 '! >dYkka[Yd Kmdk] B]f]jYlgj NmZkqkl]e ?][gehgk]\+

O`] >KB kmZkqkl]e [gehgf]flk af[dm\] Y [gfljgdd]j
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l`Yl `Yk l`] \a_alYd Yf\ YfYdg_ [aj[malk j]khgfkaZd] ^gj
[gfljgddaf_ l`] dYk]j Yf\ egfalgjaf_ l`] [dYkka[Yd \]l][lgj+
O`] dYk]j [j]Yl]k ghla[Yd hmdk]k o`]f al j][]an]k Y v^aj]w
[geeYf\ ^jge l`] [gfljgdd]j Yf\ k]f\k l`]e lg l`] akgdY*
lgj naY kh][aYd hgdYjarYlagf*eYaflYafaf_ ^aZ]j mk]\ af
[gehgf]flk l`Yl [Yffgl `Yn] \ja^l af l`] hgdYjarYlagf
klYl]+ O`] akgdYlgj hYkk]k da_`l af l`] ^gjoYj\ \aj][lagf
o`ad] ka_fa^a[Yfldq Yll]fmYlaf_ da_`l egnaf_ af l`] ghhg*
kal] \aj][lagf) Ykkmjaf_ l`Yl najlmYddq fg da_`l &]+_+) j]^d][*
lagfk gj da_`l ^jge ]pl]jfYd kgmj[]k' ]fl]jk l`] dYk]j+ O`]
akgdYlgj hj]n]flk da_`l ^jge ]fl]jaf_ l`] dYk]j ^jge \gof*
klj]Ye [gehgf]fl j]^d][lagfk &a+]+ l`] hgdYjar]j' Yf\ ^jge
da_`l ]fl]jaf_ <da[] ^jge l`] imYflme [`Yff]d+ @pljYf]*
gmk da_`l ]fl]jaf_ l`] dYkaf_ [Ynalq [Yf [j]Yl] h]jlmjZY*
lagfk) [Ymkaf_ aehjgh]j gmlhml oYn]^gjek Yf\ \akjmhl*
af_ l`] hjgh]j ^gjeYlagf g^ ghla[Yd hY[c]lk

O`] hgdYjar]j Yddgok da_`l g^ gf] hgdYjarYlagf lg hYkk
o`ad] `a_`dq Yll]fmYlaf_ gjl`g_gfYd da_`l) l`ak t[d]Yfku l`]
dYk]j gmlhml Z]^gj] k]f\af_ l`] da_`l lg l`] ZYf\hYkk ^ad*
l]j+ O`ak ^adl]j hYkk]k ghla[Yd ]f]j_q af Y fYjjgo ZYf\
+6493,"8/-"1+7-6"70.3+1"<+;-1-3.8/#"=N) ]fkmjaf_ gfdq l`]
YhhjghjaYl] ka_fYd oYn]d]f_l` d]Yn]k l`] kmZkqkl]e
o`ad] hj]n]flaf_ gl`]j kgmj[]k g^ da_`l ^jge ]fl]jaf_ l`]
dYk]j+ O`] da_`l ]fl]jk l`] Z]Yekhdall]j Yf\ ak khdal aflg
log [gehgf]flk+ O`] Z]Yekhdall]j hYkk]k 66# g^ l`]
hmdk] lg l`] f]pl imYflme eg\md] kmZkqkl]e Yf\ ljYfk*
ealk .# g^ l`] hmdk] lg l`] [dYkka[Yd \]l][lgj+ O`ak \]l][lgj
_]f]jYl]k Yf ]d][lja[Yd ka_fYd hjghgjlagfYd lg l`] hgo]j
[gflYaf]\ af l`] ghla[Yd Yf\ Yddgok l`] [gfljgdd]j lg \]*
l]jeaf] a^ hmdk]k d]Ynaf_ l`] >KB `Yn] l`] hjgh]j ghla[Yd
hgo]j+

4.2.2 Alice Polarization Modulator Subsystem
Decomposition

O`] hgdYjarYlagf eg\mdYlgj [j]Yl]k l`] hgdYjarYlagf
]f[g\af_ f][]kkYjq ^gj l`] ==51 hjglg[gd Zq hgdYjaraf_
l`] ghla[Yd hmdk]k _]f]jYl]\ Zq l`] >KB dYk]j+ Nge] LF?
kqkl]ek mk] Y dYk]j ^gj ]Y[` hgdYjarYlagf nYdm] &]+_+ ^gmj
dYk]jk') Zml l`ak Yj[`al][lmj] mk]k gf] dYk]j Yf\ Y hgdYjar*
af_ [gehgf]fl lg [`Yf_] ]Y[` hY[c]l hgdYjarYlagf+ O`ak
\]ka_f \][akagf ^gj[]\ l`] [j]Ylagf g^ oYq lg Ydl]j l`]
hgdYjarYlagf g^ ghla[Yd hY[c]lk) [j]Ylaf_ Y [YhYZadalq l`Yl
ogmd\ fgl Z] hj]k]fl gl`]joak]+ Jf] g^ l`] \]ka_f _gYdk
g^ l`] kaemdYlagf ^jYe]ogjc ak lg Zmad\ [YhYZadala]k aflg
l`] ^jYe]ogjc Yk ]Yjdq Yk hgkkaZd] lg hjgna\] tZmad\af_
Zdg[cku ^gj dYl]j Yj[`al][lmj]k+ O`] KH kmZkqkl]e [gflYafk
l`] [gehgf]flk k`gof af Aa_mj] 3+

132960 (! KgdYjarYlagf Hg\mdYlgj NmZkqkl]e ?][gehgk]\+

O`] KH kmZkqkl]e af[dm\]k Y [gfljgdd]j lg afl]j^Y[]
oal` l`] hgdYjarYlagf eg\mdYlgj+ Pfdac] l`] gl`]j [ge*
hgf]flk af l`] Yj[`al][lmj]) l`] hgdYjarYlagf eg\mdYlgj ak
Yf YZkljY[l [gehgf]fl l`Yl j]hj]k]flk Yfq fmeZ]j g^

\]na[]k mk]\ lg ]d][ljgfa[Yddq [`Yf_] l`] hgdYjarYlagf g^
l`] da_`l klj]Ye ^jge Y cfgof hgdYjarYlagf lg gf] g^ k]n*
]jYd gmlhml hgdYjarYlagfk+ O`] ghla[Yd gmlhml fg dgf_]j
f]]\k l`] hgdYjarYlagf*eYaflYafaf_ ^aZ]j) kg l`] gmlhml
hYl` [`Yf_]k lg kaf_d]*eg\] ghla[Yd ^aZ]j+ O`ak ^aZ]j `Yk Y
[gj] l`Yl _ma\]k l`] da_`l Yf\ Yf gml]j [dY\\af_ l`Yl j]*
^d][lk l`] afl]jfYd da_`l ZY[c aflg l`] [gj]) Yddgoaf_ ^gj
dgo dgkk gn]j dgf_ \aklYf[]k+ Dlk dgo dgkk Yf\ ka_fa^a[Yfldq
[`]Yh]j [gkl l`Yf hgdYjarYlagf*eYaflYafaf_ ^aZ]j eYc] al
kmalYZd] ^gj l]d][geemfa[Ylagf f]logjck Yf\ _]f]jYd
^aZ]j ghla[ mk]+

4.2.3 Alice Decoy State Generator Subsystem
Decomposition

O`] a\]Yd n]jkagf g^ Y LF? kqkl]e ogmd\ ]eal kaf_d]
h`glgfk) Zml ]paklaf_ `Yj\oYj] ak fgl [YhYZd] g^ hjg\m[*
af_ gf*\]eYf\ kaf_d] h`glgfk+ O`ak Yddgok ]Yn]k\jgh*
h]jk l`] ghhgjlmfalq lg [gf\m[l l`] K`glgf ImeZ]j
Nhdallaf_ &KIN' YllY[c) Zml <da[] Yf\ =gZ `Yn] [gmfl]j*
e]Ykmj]k af l`] \][gq klYl]k+ O`] @QJ< afk]jl]\ aflg l`]
ghla[Yd [`Yff]d Yddgok l`] imYflme [gfljgdd]j lg jYf\ge*
dq nYjq l`] hgo]j g^ l`] ghla[Yd hmdk]k) Yddgoaf_ [j]Ylaf_
g^ l`] nYjagmk klYl]k &nY[mme) \][gq Yf\ ka_fYd'+ O`ak
nYjaYf[]) Ydgf_ oal` klYlakla[k [gdd][l]\ gf l`] j][]an]\
klYl]k) Yddgok <da[] Yf\ =gZ lg \]l][l KIN Y[lanalq af l`]
imYflme [`Yff]d+ Pflad l][`fgdg_q \]n]dghk Y j]daYZd]
gf*\]eYf\ h`glgf ]eall]j) dac] l`] hjgeakaf_ j]k]Yj[`
aflg l`] imYflme \gl) kge] ^gje g^ \]^]fk] Y_Yafkl l`]
KIN YllY[c ak Y emkl ^gj LF? kqkl]ek+ O`] @QJ< [gf*
lYafk l`] [gehgf]flk k`gof af Aa_mj] 4+

132960 )! ?][gq NlYl] B]f]jYlgj ?][gehgk]\+

O`] ?NB kmZkqkl]e [gflYafk Y [gfljgdd]j ^gj l`]
@QJ<) Yf ghlg*]d][lja[Yd \]na[] [gflYafaf_ Y nYjaYZd]
Yll]fmYlgj+ O`] Yll]fmYlgj ak mkmYddq kge] ^gje g^ Zdg[c*
af_ eYl]jaYd) km[` Yk Yf ghYim] kdYZ gj Y oaf\go ladl]\ af
l`] hYl` g^ l`] da_`l) [gff][l]\ lg Yf ]d][lja[ eglgj+ <k
\ak[mkk]\ ]Yjda]j) l`] k]d][lagf [jal]jaY ^gj l`ak ^g[mk]k gf
hgo]j Yll]fmYlagf &Zd]]\ Yjgmf\ l`] Zdg[caf_ eYl]jaYd'
Yf\ eglgj kh]]\) Yk l`] @QJ< f]]\k lg ima[cdq [`Yf_]
Z]lo]]f k]llaf_k \mjaf_ l`] imYflme ]p[`Yf_]+ >gkl nk+
h]j^gjeYf[] oadd Z] Y eYbgj \][akagf ^gj l`ak \]na[]+ O`]
?NB mk]k kaf_d]*eg\] ghla[Yd ^aZ]j ^gj Zgl` afhml Yf\
gmlhml aflg l`] @QJ<+

4.2.4 Alice Classical To Quantum Subsystem
Decomposition

Jhla[Yd hmdk]k _]f]jYl]\ Zq l`] dYk]j af l`] >KB [gf*
lYaf eaddagfk g^ h`glgfk) ^Yj egj] l`Yf j]imaj]\ Zq LF?
hjglg[gdk+ Naf[] kaf_d] h`glgf _]f]jYlgjk Yj] fgl YnYadY*
Zd]) ]paklaf_ LF? kqkl]ek lYc] l`]k] [dYkka[Yd*d]n]d hmdk]k
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&e]Yfaf_ l`]q [gflYaf eYfq h`glgfk' Yf\ Yll]fmYl] l`]e
lg imYflme*d]n]d hmdk]k &e]Yfaf_ d]kk l`Yf l]f gj kg h`g*
lgfk' oal` Yf Yn]jY_] h`glgf [gmfl g^ -+.+ O`ak dgo fme*
Z]j ak f][]kkYjq lg Y[`a]n] l`] kaf_d] h`glgf j]imaj]*
e]flk g^ LF?+ Pflad kaf_d] h`glgf _]f]jYlgjk Z][ge]
YnYadYZd]) eYfq LF? hjglg[gdk f]]\ Zgl` l`] ?NB Yf\
l`] >OL kmZeg\md]k+ O`] >OL kmZkqkl]e [gflYafk l`]
[gehgf]flk k`gof af Aa_mj] 5+

132960 *! >dYkka[Yd Og LmYflme ?][gehgk]\+

O`] >OL kmZkqkl]e [gflYafk Y [gfljgdd]j Yf\ Yf
@QJ< em[` dac] l`] ?NB) Zml l`ak @QJ< \g]k fgl f]]\
l`] `a_`*kh]]\ eglgjk Yf\ la_`l Yll]fmYlagf lgd]jYf[]k+
O`] >OL @QJ< [`Yf_]k hgkalagf af j]khgfk] lg l`] ghla*
[Yd gmlhml e]Ykmj]\ af l`] ^afYd eg\md]) kg al [`Yf_]k
Yll]fmYlagf em[` d]kk jYha\dq+ O`] @QJ< hjgna\]k Y ^af]*
lmfaf_ g^ l`] Yll]fmYlagf Yhhda]\ Zq al Yf\ l`] ^ap]\ Yl*
l]fmYlgj lg Zjaf_ l`] e]Yf h`glgf fmeZ]j g^ l`] ghla[Yd
hmdk]k \gof lg kaf_d] h`glgf d]n]dk+ O`] Yll]fmYlgj ak
mkmYddq ]al`]j \gh]\ ^aZ]jk gj eakYda_f]\ khda[]k \]*
ka_f]\ lg Yhhdq Y ^ap]\ Yll]fmYlagf lg l`] ghla[Yd hmdk]k+
<dd g^ l`] afl]j[gff][lagfk mk] l`] klYf\Yj\ kaf_d]*eg\]
^aZ]j) Yk Yfq hgdYjarYlagf [`Yf_]k Yj] [gjj][l]\ Yl =gZ+

4.2.5 Alice Optical Security Layer Subsystem
Decomposition

O`] JNG ogjck lg \]l][l Yf\ daeal l`] Yegmfl g^ gml*
ka\] da_`l ]fl]jaf_ l`] LF? kqkl]e+ O`] ZYf\hYkk ^adl]j
fYjjgok l`] af[geaf_ da_`l ^j]im]f[a]k Yf\ l`] [aj[mdYlgj
jgml]k l`] af[geaf_ da_`l lg l`] [dYkka[Yd \]l][lgj+ O`]
\]l][lgj Y[lk Yk l`] tYdYjeu Zq [j]Ylaf_ Yf ]d][lja[Yd ka_fYd
lg l`] imYflme [gfljgdd]j+ O`] [aj[mdYlgj Yddgok n]jq dalld]
da_`l lg hYkk ^jge hgjl gf] lg l`j]] Yf\ Yfq l`Yl \g]k ak
`]Ynadq Yll]fmYl]\ Zq l`] akgdYlgj+ O`] JNG hjgna\]k hjg*
l][lagf Y_Yafkl Yf Y\n]jkYjq k`afaf_ da_`l aflg l`] <da[]
Zgp Yf\ \ak[]jfaf_ af^gjeYlagf YZgml l`] afl]jfYd [gf*
kljm[lagf Zq ]nYdmYlagf l`] j]^d][lagfk) hjgl][lk Y_Yafkl
`a_`*hgo]j hmdk] YllY[ck e]Yfl lg Zmjf gml afl]jagj [ge*
hgf]flk) Yf\ hj]n]flk egkl jYf\ge ^j]im]f[q da_`l ^jge
hYkkaf_ ZY[c lgoYj\k l`] dYk]j+ O`] JNG kmZkqkl]e [gf*
lYafk l`] [gehgf]flk k`gof af Aa_mj] 6+

132960 +! Jhla[Yd N][mjalq GYq]j ?][gehgk]\+

Ga_`l ]fl]jaf_ l`] JNG ^jge gmlka\] hYkk]k l`jgm_`
l`] ZYf\hYkk ^adl]j) o`a[` ^adl]jk Ydd da_`l Yjgmf\ l`] ka_*

fYd oYn]d]f_l`+ <fq da_`l eYfY_af_ lg hYkk l`jgm_` ^ad*
l]j ]fl]jk l`] [aj[mdYlgj) o`a[` jgml]k da_`l ]fl]jaf_ al af Y
[dg[coak] \aj][lagf) Yf\ aehY[lk l`] [dYkka[Yd \]l][lgj+
O`] \]l][lgj) mkmYddq kge] ^gje g^ h`glg*\ag\]) _]f]j*
Yl]k Y ka_fYd af hjghgjlagf lg l`] da_`l al j][]an]k lg l`]
[gfljgdd]j) o`a[` fgla^a]k l`] imYflme [gfljgdd]j+ Df l`ak
oYq) l`] [dYkka[Yd \]l][lgj ^mf[lagfk Yk Yf Yd]jl \]na[]+

<fq da_`l l`Yl Zd]]\k l`jgm_` l`] [aj[mdYlgj &Y n]jq
keYdd Yegmfl) Yk l`] Yll]fmYlagf ak _j]Yl]j l`Yf 2-\='
klghk Yl l`] akgdYlgj) o`a[` ak gja]fl]\ lg hYkk da_`l gml g^
<da[]+ O`ak akgdYlgj Yhhda]k dYj_] Yegmflk g^ Yll]fmYlagf
lg da_`l ljYn]ddaf_ lgoYj\k l`] dYk]j) ]^^][lan]dq klghhaf_
da_`l af l`ak \aj][lagf+ <fq da_`l ljYn]ddaf_ ^jge l`] dYk]j
gml g^ <da[] hYkk]k l`jgm_` l`] [aj[mdYlgj Yf\ aflg l`]
ZYf\hYkk ^adl]j) l`]f gml g^ l`] JNG) naY kaf_d]*eg\] ^aZ]j
afl]j[gff][lagfk+

4.2.6 Alice Timing Pulse Generator Subsystem
Decomposition

O`] ghla[Yd ^jYe]k mk]\ Zq l`] LF? kqkl]e f]]\ Y
oYq lg kqf[`jgfar] Z]lo]]f <da[] Yf\ =gZ+ @n]f l`] Z]kl
laeaf_ \]na[]k `Yn] ]jjgj Yf\ gl`]j ]pl]jfYd laeaf_ &a+]+
BKN' \g fgl `Yn] l`] Y[[mjY[q f][]kkYjq ^gj ^jYe] lae*
af_+ =gZ f]]\k lg cfgo oal` Y `a_` \]_j]] g^ Y[[mjY[q
o`]f lg gh]f l`] _Yl]k oaf\gok ^gj `ak kaf_d] h`glgf
\]l][lgjk+ <da[] hjgna\]k l`ak laeaf_ Zq afb][laf_ Y Zja_`l
hmdk] &a+]+ [dYkka[Yd*d]n]d' g^ da_`l aflg l`] imYflme [`Yf*
f]d lg klYjl ]Y[` ^jYe]) ^gddgo]\ Zq Y k]ja]k g^ imYflme*
d]n]d hmdk]k+ =gZ mk]k l`] Zja_`l hmdk] Yk Y laeaf_ t`Y[cu
Yf\ gh]fk Yf\ [dgk]k l`] t_Yl]ku g^ `ak \]l][lgjk lg Z]kl
\]l][l l`] imYflme hmd]k+ =gZ mk]k l`ak laeaf_ af^gj*
eYlagf o`]f [geemfa[Ylaf_ oal` <da[] lg \mjaf_ ka^laf_
Yf\ ]jjgj [gjj][lagf g^ l`] jYo c]q eYl]jaYd \]jan]\ ^jge
`ak \]l][lagfk+ O`] OKB [gflYafk l`] [gehgf]flk k`gof
af Aa_mj] .-+

132960 #"! Oaeaf_ Kmdk] B]f]jYlgj ?][gehgk]\+

O`] OKB kmZkqkl]e `Yk Y [gfljgdd]j Yf\ dYk]j l`Yl
ogjc l`] kYe] Yk af l`] >KB) Zml l`ak dYk]j hjg\m[]k
hmdk]k gf Y laeaf_ oYn]d]f_l` kda_`ldq \a^^]j]fl l`Yf ka_*
fYd oYn]d]f_l`+ O`] log oYn]d]f_l`k `Yn] lg Z] [dgk]
]fgm_` lg hYkk l`jgm_` Yfq ZYf\hYkk ^adl]jk) Zml ^Yj
]fgm_` YhYjl kg l`] log oYn]d]f_l`k [Yf Z] k]hYjYl]\ af
=gZ+ O`] hgdYjar]j ^adl]jk gml Yfq ]pljYf]gmk da_`l Yf\ l`]
^ap]\ Yll]fmYlgj j]\m[]k l`] hmdk] hgo]j o`ad] eYaflYaf*
af_ [dYkka[Yd d]n]dk+ AafYddq) l`] ka_fYd Yf\ laeaf_ hmdk]k
Yj] eap]\ lg_]l`]j Zq l`] oYn] \anakagf emdlahd]pgj) Ydkg
cfgof Yk Y \a[`jga[ eajjgj) Yf\ k]f\ naY kaf_d]*eg\]
^aZ]j lg l`] f]pl kmZeg\md]+ Df l`ak afklYf[]) l`] RYn]
?anakagf Hmdlahd]p]j &R?H' eap]k l`] log ka_fYdk) Zml
[Yf Z] mk]\ lg k]hYjYl] ka_fYdk) Yk o] k]] af =gZ+
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4.2.7 Alice Output Power Monitor Subsystem
Decomposition

<da[] f]]\k Y oYq lg n]ja^q `]j gmlhml aflg l`] imYf*
lme [`Yff]d ak Yl gf] gj d]kk h`glgfk+ Kmdk]k oal` egj]
l`Yf gf] h`glgf Yj] kmZb][l lg l`] KIN YllY[c+ >gehg*
f]flk [`Yf_] Yk l`]q Y_] Yf\ kge] hjglg[gdk eYq [Ydd ^gj
hmdk]k g^ \a^^]jaf_ ghla[Yd hgo]j+ O`] JKH Yddgok <da[]
lg kYehd] l`] gml_gaf_ ghla[Yd hY[c]lk Zq mkaf_ Y h`glgf
\]l][lgj [YhYZd] g^ [gmflaf_ h`glgfk+ =q kYehdaf_ l`]
h`glgf fmeZ]jk) <da[] [Yf Y\bmkl l`] >OL @QJ< lg gml*
hml l`] hjgh]j ghla[Yd hgo]j+ O`] JKH [gflYafk l`]
[gehgf]flk k`gof af Aa_mj] ..+

132960 ##! Jmlhml Kgo]j Hgfalgj ?][gehgk]\+

O`] JKH kmZkqkl]e [gflYafk Y [gfljgdd]j [gff][l]\ lg
Y koal[` Yf\ l`] h`glgf fmeZ]j j]kgdnaf_ kaf_d] h`glgf
\]l][lgj &KIM*NK?'+ O`] ghla[Yd koal[` ak mk]\ lg jgml]
da_`l Z]lo]]f gf] afhml hgjl Yf\ ]al`]j gml l`] imYflme
[`Yff]d gj lg l`] KIM*NK?+ O`] KIM*NK? ak Yf ghlg*
]d][lja[Yd \]na[] [gflYafaf_ \]l][lagf ]imahe]fl Yf\
kmhhgjl ]d][ljgfa[k [YhYZd] g^ [gmflaf_ af\ana\mYd h`g*
lgfk+

O`] KIM*NK? af l`ak eg\md] ak Yf ]pYehd] g^ l`]
f]]\ lg l]kl l`] ^jYe]ogjc gn]jja\af_ l`] cfgod]\_] g^
j]Yd kqkl]ek+ <da[] ogmd\ dac] lg cfgo ]pY[ldq `go eYfq
h`glgfk Yj] ]fl]jaf_ l`] imYflme [`Yff]d) Yf\ l`] KIM*
NK? _an]k l`Yl [gmfl) Zml l`]k] \]na[]k Yj] Zmdcq Yf\
n]jq ]ph]fkan]+ Agj hmjhgk]k g^ l`] Yj[`al][lmj]) af[dm\*
af_ l`ak \]na[] ]p]j[ak]k l`] ^jYe]ogjc jYl`]j l`Yf j]hj]*
k]fl j]Yd kqkl]ek+ Df j]Yd kqkl]ek) l`]k] \]na[]k Yj] fgl
hj]k]fl &\m] lg [gkl Yf\ kar]' Yf\ gl`]j e]l`g\k Yj] mk]\
lg Q_`UYM`Q l`] gmlhml ghla[Yd hgo]j) af[j]Ykaf_ l`] [`Yf[]
l`Yl <da[] ak hjg\m[af_ emdla*h`glgf hY[c]lk) ]fYZdaf_
l`] KIN YllY[c+ O`ak [gkl nk+ k][mjalq ljY\]*g^^ eYc]k l`]
af[dmkagf g^ l`] ?NB &gj ]imanYd]fl' ]n]f egj] ae*
hgjlYfl+

4.3 Bob Subsystem Decomposition

O`] =gZ kqkl]e [gfljgdd]j gh]jYl]k l`] =gZ kmZkqkl]e
Yf\ j][]an]k [geeYf\k ^jge l`] <da[] [gfljgdd]j+ =gZuk
hmZda[ [`Yff]d [gfljgdd]j ogjck bmkl Yk <da[]uk) hjgna\af_
Y hYl`oYq ^gj Yml`]fla[Yl]\ [geemfa[Ylagfk gn]j l`]
hmZda[ [`Yff]dk+ =gZuk imYflme eg\md] j][]an]k Yf\ \]*
l][lk ghla[Yd hmdk]k gn]j l`] imYflme [`Yff]d Yf\ `Yk fg
hmdk]*_]f]jYlaf_ [gehgf]flk+ Dl [gflYafk laeaf_ [gehg*
f]flk l`Yl gh]jYl] alk _Yl]\ \]l][lgjk mkaf_ tZja_`lu hmdk]k
af l`] imYflme ^jYe]k+ =gZuk imYflme eg\md] \][ge*
hgk]k aflg ^an] kmZkqkl]ek) k`gof af Aa_mj] ./+

132960 #$! =gZ%k LmYflme Hg\md] ?][gehgk]\+

8,-40 %! ?]k[jahlagf g^ =gZ LmYflme Hg\md] NmZkqkl]ek

7G<EHEF>@ 1GA=F?BA

Dfhml NlY_] &DN' M][]an]k l`] h`glgf hmdk]

KgdYjarYlagf <\bmkle]fl &K<' <\bmklk ^gj ljYfkeakkagf hgdYja*

rYlagf \ja^l

RYn] ?anakagf Hmdlahd]p]j

&R?H'

?]*emdlahd]p]k ka_fYd Yf\ laeaf_

hmdk]k

KgdYjarYlagf ?]l][lgj &K?' ?aj][lk h`glgfk lg l`] \]l][lgjk

Oaeaf_ <fYdqr]j &O<' ?]l][lk h`glgfk \mjaf_ lae]\

_Yl]k

=gZuk Yj[`al][lmj] k`gok eYfq \a^^]j]f[]k ^jge <da[]+
<k =gZuk hmjhgk] ak lg j][]an] l`] ^]o h`glgfk l`Yl eYc]
l`] bgmjf]q ^jge <da[]) `ak [gehgf]flk Yj] k]d][l]\ lg
daeal l`] Yll]fmYlagf g^ l`] ghla[Yd ka_fYd+ Naf[] `] ak j]*
[]anaf_ kaf_d] h`glgfk) ]n]jq Zal g^ Yll]fmYlagf ak ka_fa^a*
[Yfl+ Df <da[]) l`] JNG eg\md] ak l`] hjaeYjq k][mjalq
\]na[] Y_Yafkl da_`l [geaf_ aflg `]j kqkl]e+ =gZuk Dfhml
NlY_] Y[lk lg hj]n]fl ]pljYf]gmk da_`l ^jge ]fl]jaf_ Zq
gfdq Y\eallaf_ Y fYjjgo ZYf\ g^ ^j]im]f[a]k Yf\ Zdg[c*
af_ da_`l ]fl]jaf_ =gZ ^jge j]^d][laf_ ZY[c gmlka\]+ O`]k]
[gehgf]flk ]p`aZal n]jq keYdd Yll]fmYlagf nYdm]k) eYc*
af_ l`]e Y _gg\ [`ga[] ^gj k][mjalq o`ad] daealaf_ l`]aj
]^^][lk gf kaf_d] h`glgfk+

4.3.1 Bob Input Stage Subsystem Decomposition

O`] Dfhml NlY_] Y[lk Yk Y ^adl]j ^gj af[geaf_ da_`l aflg
=gZ) Yk l`] ZYf\hYkk ^adl]j Yddgok gfdq oYn]d]f_l`k g^
da_`l Yjgmf\ l`] laeaf_ Yf\ ka_fYd ^j]im]f[a]k lg ]fl]j+
O`] akgdYlgj Yddgok da_`l aflg =gZ) Zml hj]n]flk egkl da_`l
&eYafdq j]^d][lagfk' ^jge d]Ynaf_ =gZ+ O`ak hjgna\]k k][m*
jalq lg =gZ Zq hj]n]flaf_ Yf Y\n]jkYjq ^jge mkaf_ da_`l
hjgZ]k lg _Yaf af^gjeYlagf YZgml afl]jfYd kljm[lmj]+ O`]
Dfhml NlY_] [gflYafk l`] [gehgf]flk k`gof af Aa_mj] .0+

132960 #%! Dfhml NlY_] ?][gehgk]\+

4.3.2 Bob Polarization Adjustment System
Decomposition

Jhla[Yd hY[c]lk mf\]j_g [`Yf_]k af hgdYjarYlagf Yk
l`]q ljYfkal l`] imYflme [`Yff]d+ O`ak hgdYjarYlagf \ja^l
[ge]k ^jge eYfq ^Y[lgjk &a+]+) l`] ]fnajgfe]fl) [gehg*
f]flk) Yf\ j]^d][lagfk' kg ]Y[` hY[c]l f]]\k [gjj][lagf
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Z]^gj] ]fl]jaf_ l`] \]l][lgjk+ O`] hgdYjarYlagf [gfljgdd]j
Y\bmklk af[geaf_ hY[c]lk ZYk]\ gf l`] laeaf_ ka_fYd
&Zja_`l hmdk]' j][]an]\ ^jge <da[]+ O`] K< kmZkqkl]e
[gflYafk l`] [gehgf]flk k`gof af Aa_mj] .1+

ADBPM@ .1+ KgdYjarYlagf <\bmkle]fl ?][gehgk]\+

O`] K< kmZkqkl]e [gflYafk Y [gfljgdd]j [gff][l]\ lg Y
hgdYjarYlagf [gfljgdd]j) Y \]na[] l`Yl [`Yf_]k l`] hgdYjarY*
lagf klYl] g^ da_`l l`Yl hYkk]k l`jgm_` al) [gfn]jlaf_ da_`l
^jge Yfq jYf\ge hgdYjarYlagf klYl] aflg Y kh][a^a[ gmlhml
hgdYjarYlagf klYl]+ Dl [gfkaklk g^ hgdYjae]l]j Yf\ Y klYl] g^
hgdYjarYlagf &NJK' [gfljgdd]j [geZaf]\ oal` Y [gehml]j
Yf\ kg^loYj]+ O`] ^jYe] g^ j]^]j]f[] hgdYjarYlagf Z]*
lo]]f <da[] Yf\ =gZ ak k]l o`]f l`] kqkl]e ak afklYdd]\)
kg =gZ YdoYqk cfgok o`Yl hgdYjarYlagf nYdm]k lg ]ph][l
^jge <da[]+

R`ad] l`ak \]na[] [Yf [`Yf_] l`] hgdYjarYlagf lg Yfq
kh][a^a[ hgafl gf l`] Kgaf[Yj] kh`]j]) al `Yk Y j]khgfk]
lae] lg egn] ^jge gf] hgafl lg Yfgl`]j hgafl+ D^ l`]
[`Yf_] af hgdYjarYlagf Z]lo]]f km[[]kkan] ^jYe]k ak lgg
_j]Yl) al oadd fgl Z] YZd] lg c]]h mh Yf\ l`] gmlhml hgdYja*
rYlagf oadd fgl Z] [gjj][l+ Nm[` dYj_] \aklmjZYf[]k Yj]
hgkkaZd] a^ l`] imYflme [`Yff]d ^aZ]j ak _j]Yldq \aklmjZ]\)
km[` Yk Y]jaYd ^aZ]j Z]af_ egn]\ Zq `a_` oaf\k+ O`ak j]*
khgfk] lae] ak Yfgl`]j [gkl nk+ h]j^gjeYf[] ljY\]*g^^) Yk
^Ykl]j \]na[]k [gkl egj] l`Yf kdgo]j \]na[]k+ O`] Zmad\]j
ogmd\ `Yn] lg lYc] aflg l`] Y[[gmfl l`] ]ph][l]\ ogjcaf_
]fnajgfe]fl ^gj l`] LF? kqkl]e+ O`] kladd mk]k kaf_d]*
eg\] ^aZ]j Yl l`ak hgafl) Yk l`] af[geaf_ hY[c]lk k`gmd\
Z] [gjj][l]\ lg l`] hjgh]j hgdYjarYlagf+

4.3.3 Bob Wave Division Multiplexer Subsystem
Decomposition

)/07"*%'"7-5+6+8-7"8/-")(&"80203."70.3+1"=l) Yf\ l`]
$(&"70.3+1"5917-"=N aflg log klj]Yek) j]n]jkaf_ l`] eap*
af_ \gf] Zq l`] R?H af <da[]+ Jf[] k]hYjYl]\) l`] lae*
af_ hmdk]k _g lg l`] kaf_d] h`glgf \]l][lgjk laeaf_ [gf*
ljgdd]j Yf\ l`] ka_fYd hmdk]k gmlhml lg l`] hgdYjarYlagf
\]l][lgj+ O`] R?H [gflYafk l`] [gehgf]flk k`gof af
Aa_mj] .2+

132960 #'+ RYn] ?anakagf Hmdlahd]p]j ?][gehgk]\+

O`ak kmZeg\md] ak n]jq kaehd] Yf\ ]paklk gfdq lg k]hY*
jYl] l`] log ka_fYdk+ O`] [`ga[] g^ l`] R?H \]h]f\k gf
l`] laeaf_ Yf\ ka_fYd ^j]im]f[a]k) o`a[` f]]\ lg Z] [dgk]
lg gf] Yfgl`]j lg hYkk l`jgm_` l`] ZYf\hYkk ^adl]jk) Zml
^Yj ]fgm_` YhYjl lg Z] k]hYjYl]\ Zq l`] R?H ghla[k+

4.3.4 Bob Polarization Detector Subsystem
Decomposition

)/-"*%'"7-5+6+8-7"8/-")(&"80203."70.3+1"=l) Yf\ l`]
$(&"70.3+1"5917-"=N+ Jf[] k]hYjYl]\) l`] laeaf_ hmdk]k _g
lg l`] laeaf_ [gfljgdd]j ^gj l`] kaf_d] h`glgf \]l][lgjk
Yf\ l`] ka_fYd hmdk]k gmlhml lg l`] KgdYjarYlagf ?]l][lgj
kmZeg\md]+ O`] R?H [gflYafk l`] [gehgf]flk k`gof
af Aa_mj] .3+

132960 #(! KgdYjarYlagf ?]l][lgj ?][gehgk]\+

O`] K? kmZkqkl]e [gflYafk Y ZYf\hYkk ^adl]j o`a[` ^ad*
l]jk l`] af[geaf_ ^j]im]f[a]k lg [d]Yf l`] ka_fYd Yf\ Y
Z]Yekhdall]j l`Yl Y[lk lg jYf\gedq k]f\ kaf_d] h`glgfk lg
l`] gmlhml hgjlk+ Jf] hgjl d]Y\k lg Y hgdYjaraf_
Z]Yekhdall]j l`Yl \aj][lk l`] h`glgf ZYk]\ gf alk hgdYjarY*
lagf lg gf] g^ log gmlhmlk d]Y\af_ lg l`] Oaeaf_ <fYdqr]j
`gjargflYd Yf\ n]jla[Yd \]l][lgjk+ O`] gl`]j hgjl d]Y\k lg Y
`Yd^*oYn] hdYl] l`Yl jglYl]k l`] ka_fYd Zq 12 \]_j]]k) Yf\
l`]f lg Y k][gf\ hgdYjaraf_ Z]Yekhdall]j l`Yl gmlhmlk lg
log k]hYjYl] [`Yff]dk l`Yl d]Y\ lg l`] Yfla\aY_gfYd Yf\
\aY_gfYd \]l][lgjk af l`] Oaeaf_ <fYdqr]j+ KgdYjarYlagf*
eYaflYafaf_ ^aZ]j [gff][lk l`] j]eYafaf_ [gehgf]flk
Y^l]j l`] Z]Yekhdall]jk+

4.3.5 Bob Timing Analyzer Subsystem Decomposition

O`] O< [gflYafk kaf_d] h`glgf \]l][lgjk k]l lg \]l][l
gf] g^ ^gmj hgdYjarYlagfk &Yfla\aY_gfYd) \aY_gfYd) `gjargf*
lYd Yf\ n]jla[Yd' Yf\ kmhhgjl ]d][ljgfa[k+ O`] kaf_d] h`g*
lgf \]l][lgjk f]]\ lg Z] t_Yl]\u gh]f kg l`]q Yj] k]fkalan]
lg kaf_d] h`glgfk Zml l`]f [dgk] lg j]\m[] l`] fmeZ]j g^
^Ydk] \]l][lagfk &[Ydd]\ \Yjc [gmflk'+ O`] [dYkka[Yd \]l][lgj
j][]an]k l`] laeaf_ ka_fYd ^jge l`] R?H Yf\ [j]Yl]k Yf
]d][lja[Yd ka_fYd lg l`] laeaf_ [gfljgdd]j+ O`] laeaf_ [gf*
ljgdd]j mk]k l`] ]d][lja[Yd ka_fYd ^jge l`] [dYkka[Yd \]l][lgj
lg [Yd[mdYl] o`]f lg gh]f Yf\ [dgk] l`] _Yl]k g^ l`] \]l][*
lgjk+ O`] O< [gflYafk l`] [gehgf]flk k`gof af Aa_mj]
.4+
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132960 #)! Oaeaf_ <fYdqr]j ?][gehgk]\+

O`] laeaf_ [gfljgdd]j ak Y k]l g^ ]d][ljgfa[k l`Yl mk] l`]
]d][lja[Yd ka_fYd hjg\m[]\ Zq l`] [dYkka[Yd \]l][lgj lg k]f\
[geeYf\k lg l`] NK?k lg gh]f Yf\ [dgk] l`] t_Yl]k+u O`]
[jala[Yd [gehgf]flk Yj] l`] Naf_d] K`glgf ?]l][lgjk
&NK?') o`a[` Yj] ghlg*]d][lja[Yd \]na[]k gh]jYlaf_ af k]n*
]jYd eg\]k Yf\ mk] ka_fYdk ^jge l`] laeaf_ [gfljgdd]j lg
[`Yf_] eg\]k+ O`]k] t_Yl]ku af[j]Yk] l`] k]fkalanalq g^ l`]
NK? Zml af[j]Yk] l`] [`Yf[] g^ Y ^Ydk] \]l][lagf+ O`] ^gmj
\]l][lgjk [gjj]khgf\ lg l`] ^gmj hgdYjarYlagf [`ga[]k ^jge
<da[]uk hgdYjarYlagf [gfljgdd]j7 ?aY_gfYd) <fla\aY_gfYd)
CgjargflYd) Yf\ Q]jla[Yd+

< \]ka_f \][akagf ^gj l`] ic\S ^jYe]ogjc oYk lg
eg\]d Ydd ghla[Yd afl]j^]j]f[] [Yd[mdYlagfk af l`] NK?) jY*
l`]j l`Yf af ]n]jq [gehgf]fl+ O`ak [`ga[] eY\] l`] NK?
^Yj egj] [gehd]p lg eg\]d l`Yf gl`]j [gehgf]flk Zml
[gf[]fljYl]\ l`] [gehd]palq af gf] khgl+ O`] NK? ak Y
[jala[Yd ha][] g^ j]Yd LF? kqkl]ek) Yk l`] \]l][lgjuk YZadalq
lg j][gn]j ^jge \]l][lagfk \]l]jeaf]k l`] \]l][lagf jYl]
gn]j Yfq lae] h]jag\) Yf\ [gfk]im]fldq) l`] fmeZ]j g^
h`glgfk l`] NK? [Yf \]l][l+ <\\af_ af gl`]j [gfka\]jY*
lagfk ^gj l`] [gehgf]fl e]Yfk al `Yk eYfq egj] h]j^gj*
eYf[] hYjYe]l]jk l`Yf egkl [gehgf]flk) ]Y[` gf] Y\\*
af_ lg alk eg\]daf_ [gehd]palq+

O`]j] Yj] k]n]jYd lqh]k g^ NK?k Yf\ l`] k]d][lagf g^
o`Yl hYjla[mdYj NK? lg af[dm\] af l`] Yj[`al][lmj] \]*
h]f\k gf l`] afl]fl g^ l`Yl hYjla[mdYj kaemdYlagf+ Nge] g^
l`] lqh]k YnYadYZd] af[dm\] <nYdYf[`] K`glg ?ag\]
&<K?') Nmh]j[gf\m[laf_ IYfgoaj] NK? &NINK?') Yf\
OjYfkalagf @\_] N]fkgj &O@N' oal` ]Y[` lqh] `Yk hgkalan]
Yf\ f]_Ylan] YlljaZml]k+ O`] j]^]j]f[] Yj[`al][lmj] af*
[dm\]k Y _]f]jYd \]l][lgj) Zml l`] kaemdYlagf _gYdk \]l]j*
eaf] l`] [gjj][l lqh]+

5 CONCLUSIONS AND FUTURE WORK

Df l`ak hYh]j) o] `Yn] hj]k]fl]\ Y hgdYjarYlagf*ZYk]\)
hj]hYj]*Yf\*e]Ykmj] ==51 LF? j]^]j]f[] Yj[`al][lmj]
mk]\ ^gj lg l]kl Y kaemdYlagf [YhYZadalq ^gj l`] ]^^a[a]fl
eg\]daf_ Yf\ YfYdqkak g^ LF? kqkl]ek+ R] hjgna\]\
\]lYad]\ addmkljYlagfk g^ l`] eg\]d]\ Yj[`al][lmj] Yf\ Y[*
[gehYfqaf_ \]ka_f \][akagfk oal` \]lYad]\ \ak[mkkagfk g^
]Y[` ghla[Yd [gehgf]fl ^mf[lagf Yf\ Z]`Ynagj+ O`ak hY*

h]j hjgna\]k l`j]] \aklaf[l Ykh][lk7
.' Kjgna\]k Yf ]\m[YlagfYd lggd ^gj mf\]jklYf\af_

LF? Yj[`al][lmj]k
/' Kjgna\]k \]lYad]\ \ak[mkkagfk g^ LF? Yj[`al][lmjYd

\]ka_f \][akagfk Yf\ ljY\]*g^^k
0' N]jn]k Yk Y j]^]j]f[] vZYk]daf]w Yj[`al][lmj] ^gj

[gf\m[laf_ k][mjalq Yf\ h]j^gjeYf[] YfYdqkak g^
LF? kqkl]ek

Amlmj] ogjc af[dm\]k Y\\af_ l`] [gehgf]flk) [gfljgdd]jk)
Yf\ hjglg[gd dg_a[ f][]kkYjq lg eg\]d gl`]j LF? l][`*
fgdg_a]k af[dm\af_ h`Yk]*ZYk]\ Yf\ ]flYf_d]e]fl*ZYk]\
hjglg[gdk Yf\ [gehgf]flk) _jgmf\*lg*Yaj) _jgmf\*lg*
khY[]) khY[]*lg*khY[] ZYk]\ kqkl]ek Yf\ l`] e]Ykmj]*
e]fl Yf\ \]na[] af\]h]f\]fl hjglg[gdk+ =]qgf\ Y\\af_
f]o l][`fgdg_a]k lg l`] kaemdYlagf ^jYe]k ak ogjc lg ]p*
]j[ak] l`] ]paklaf_ eg\]dk) ^gj ]pYehd]) [gf\m[laf_ h]j*
^gjeYf[] klm\a]k gf \][gq klYl]k Yf\ Yfgl`]j gf lqh]k g^
NK?k+ < ^gjl`[geaf_ hYh]j oadd \ak[mkk l`] j]kmdlk g^
l`]k] klm\a]k+

6 DISCLAIMER

O`] na]ok ]phj]kk]\ af l`ak hYh]j Yj] l`gk] g^ l`] Ym*
l`gjk Yf\ \g fgl j]^d][l l`] g^^a[aYd hgda[q gj hgkalagf g^
l`] Pfal]\ NlYl]k <aj Agj[]) l`] ?]hYjle]fl g^ ?]^]fk])
gj l`] P+N+ Bgn]jfe]fl+
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V3W I+ Bakaf) B+ MaZgj\q) R+ Oall]d Yf\ C+ UZaf\]f+ vLmYflme

[jqhlg_jYh`q)w EQbUQc_ [R @[PQ^Z CTe_UO_ 41&.') hh+ .12*.62+

/--/+ <nYadYZd]7 `llh7,,Yjpan+gj_,h\^,imYflh`,-.-.-65+

V4W E+*T+ RYf_) =+ TYf_) N+*F+ U+ G+ GaYg) L+ N`]f) S+*A+ Cm) E+*>+

Rm) N+*E+ TYf_) C+ EaYf_) T+*G+ OYf_) =+ U`gf_) C+ GaYf_) R+*T+

Gam) T+*C+ Cm) T+*H+ CmYf_) =+ La) E+*B+ M]f) B+*N+ KYf) E+ Taf

Yf\ ]l+ Yd) !?aj][l Yf\ ^mdd*k[Yd] ]ph]jae]flYd n]ja^a[Ylagfk lg*

oYj\k _jgmf\*kYl]ddal] imYflme c]q \akljaZmlagf)! AM`a^Q CT[$

`[ZUO_# ngd+ 4) fg+ 2) hh+ 054*060) /-.0+

V5W N+ Gg]hh Yf\ R+ F+ Rggl]jk) Kjgl][laf_ Df^gjeYlagf) I]o

Tgjc7 >YeZja\_] Pfan]jkalq Kj]kk) /--3+
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V6W H+<+ Ia]dk]f Yf\ D+G+ >`mYf_) DaMZ`aY 5[Y\a`M`U[Z MZP DaMZ$

`aY <ZR[^YM`U[Z+ >YeZja\_]) PF7 >YeZja\_] mfan]jkalq hj]kk)

/-.-+

V.-W Q+ N[YjYfa) C+ =][`eYff*KYkimafm[[a) I+E+ >]j^) H+ ?m$]c) I+

G~lc]f`Ymk Yf\ H+ K]]n+ vO`] k][mjalq g^ hjY[la[Yd imYflme

c]q \akljaZmlagf)w EQbUQc_ [R @[PQ^Z CTe_UO_ 5.&0') hh+ .0-.+

/--6+ <nYadYZd]7 `llh7,,Yjpan+gj_,h\^,-5-/+1.22+

V..W M+ M]ff]j+ vN][mjalq g^ imYflme c]q \akljaZmlagf+w /--2+ <nYad*

YZd]7 `llh7,,Yjpan+gj_,h\^,imYflh`,-2.//25+

V./W Q+ N[YjYfa Yf\ >+ Fmjlka]^]j+ vO`] ZdY[c hYh]j g^ imYflme

[jqhlg_jYh`q7 M]Yd aehd]e]flYlagf hjgZd]ek+w <jSan Kj]hjafl

YjSan7-6-3+1214 /--6+ <nYadYZd]7 `llh7,,Yjpan+gj_,h\^,

-6-3+1214+h\^+

V.0W M+ M]ff]j) I+ Bakaf Yf\ =+ FjYmk+ vDf^gjeYlagf*l`]gj]la[ k][mja*

lq hjgg^ ^gj imYflme*c]q*\akljaZmlagf hjglg[gdk)w CTe_UOMX EQ$

bUQc 3 4/&.') hh+ -./00/+ /--2+ <nYadYZd]7 `llh7,,Yjpan+gj_,

h\^,imYfl*h`,-2-/-31+

V.1W M+ E+ Cm_`]k) B+ B+ Gml`]j) B+ G+ K+ >+ B+ Hgj_Yf Yf\ >+ Nae*

egfk) !LmYflme [jqhlg_jYh`q gn]j mf\]j_jgmf\ ghla[Yd ^a*

Z]jk)! af 3PbMZOQ_ UZ 5^e\`[X[Seg5EJCGBf/,) Nhjaf_]j =]jdaf

C]a\]dZ]j) .663+

V.2W <+ Hmdd]j) O+ C]jrg_) =+ Cmllf]j) R+ Oall]d) C+ UZaf\]f Yf\ I+

Bakaf) !vKdm_ Yf\ hdYqw kqkl]ek ^gj imYflme [jqhlg_jYh`q)!

3\\XUQP CTe_UO_ ?Q``Q^_# ngd+ 4-) fg+ 4) hh+ 460*462) .664+

V.3W ?+ Nlm[ca) H+ G]_j]) A+ =mflk[`m) =+ >dYmk]f) I+ A]dZ]j) I+

Bakaf) G+ C]fr]f Yf\ ]+ Yd+) !Ggf_*l]je h]j^gjeYf[] g^ l`]

NoakkLmYflme imYflme c]q \akljaZmlagf f]logjc af Y ^a]d\

]fnajgfe]fl)! AQc =[a^ZMX [R CTe_UO_# ngd+ .0) fg+ ./) h+ ./0--.)

/-..+

V.4W >+ @ddagll) !O`] ?<MK< imYflme f]logjc)! DaMZ`aY 5[YYaZU$

OM`U[Z_ MZP O^e\`[S^M\Te# hh+ 50*.-/) /--3+

V.5W H+ K]]n) >+ KY[`]j) M+ <dd}Yme]) >+ =Yjj]ajg) E+ =gm\Y) R+ =gp*

d]alf]j) O+ ?]Zmakk[`]jl Yf\ ]+ Yd+) !O`] N@>JL> imYflme c]q

\akljaZmlagf f]logjc af Qa]ffY)! AQc =[a^ZMX [R CTe_UO_# ngd+ ..)

fg+ 4) h+ -42--.) /--6+

V.6W E+?+ Hgjjak) H+M+ BjaeYadY) ?+?+ Cg\kgf) ?+EY[im]k Yf\ B+

=Yme_Yjlf]j) !< kmjn]q g^ imYflme c]q \akljaZmlagf &ic\'

l][`fgdg_a]k)! af 7YQ^SUZS G^QZP_ UZ <5G FQOa^U`e) .kl ]\+) =+

<c`_Yj Yf\ C+ M+ <jYZfaY) @\k+ RYdl`Ye) H<7 @dk]na]j) /-.0)

hh+ .1.*.2/+

V/-W C+Gg) S+HY Yf\ F+>`]f+ v?][gq klYl] imYflme c]q \akljaZm*

lagf)w CTe_% EQb% ?Q``% 61&/0') hh+ /0-2-1+ /--2+ <nYadYZd]7

`llh7,,Yjpan+gj_,h\^,imYfl*h`,-1..--1+

V/.W S+ RYf_+ v=]Ylaf_ l`] h`glgf*fmeZ]j*khdallaf_ YllY[c af hjY[*

la[Yd imYflme [jqhlg_jYh`q)w CTe_% EQb% ?Q``+ 61&/0') hh+ /0-2-0+

/--2+ <nYadYZd]7 `llh7,,Yjpan+gj_,h\^,imYfl*h`,-1.--42+
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OPTICAL COMPONENT APPENDIX

.B@CBA>AF

5;@> .B@CBA>AF />E=D?CF?BA

<ll]fmYlgj)

Aap]\ Jhla[Yd

&AJ<'

O`] Aap]\ Jhla[Yd <ll]fmYlgj ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg j]\m[] l`] klj]f_l` g^ ghla[Yd

hmdk]k Yk l`]q Yj] ljYfkeall]\+ O`] Yehdalm\] g^ l`] gmlhml hmdk] ak [Yd[mdYl]\ mkaf_ l`] afhml hmdk] Yehdalm\])

afk]jlagf dgkk) Yf\ ^ap]\ Yll]fmYlagf g^ l`] ghla[Yd hmdk]) Yk k`gof af l`] ]imYlagf Z]dgo+ Igl] l`Yl l`] ^ap]\ Yl*

l]fmYlagf [Yf Z] [`Yf_]\ lg nYdm]k af l`] jYf_] g^ -+- Yf\ 5-+- \=+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V.) /) 0)

1W+

#8<75?@12Vkjgkj * #8<75?@12Segkj , �&%
L!Rbm_^Mjje"

IH

<ll]fmYlgj)

@d][lja[Yd QYj*

aYZd]

Jhla[Yd

&@QJ<'

O`] @d][lja[Yd QYjaYZd] Jhla[Yd <ll]fmYlgj ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg Yll]fmYl] ghla[Yd

hmdk]k Yk l`]q Yj] ljYfkeall]\+ O`] Yehdalm\] g^ l`] gmlhml hmdk] ak [Yd[mdYl]\ mkaf_ l`] afhml hmdk] Yehdalm\])

afk]jlagf dgkk) Yf\ nYjaYZd] Yll]fmYlagf g^ l`] ghla[Yd hmdk]) Yk k`gof af l`] ]imYlagf Z]dgo+ Igl] l`Yl l`] nYjaYZd]

Yll]fmYlagf [Yf Z] k]l lg nYdm]k af l`] jYf_] g^ -+- Yf\ 5-+- \=+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V2) 3) 0) 4W+

#8<75?@12Vkjgkj * #8<75?@12Segkj , �&%
L!Y[hb[\c_Mjje"

IH

=Yf\hYkk

Aadl]j

O`] =Yf\hYkk Aadl]j ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg ljYfkeal gfdq l`] \]kaj]\ oYn]d]f_l` g^

da_`l) o`ad] gl`]j fgak] ak Zdg[c]\+ O`] ^adl]jaf_ jYf_]k af[dm\] >]fljYd RYn]d]f_l` &>RG') mhh]j,dgo]j ea\\d]*

ZYf\ >]fljYd Aj]im]f[q &>A') Yf\ mhh]j,dgo]j gml]j >A+ R`]f Yf ghla[Yd hmdk]k ak ljYfkeall]\) . g^ 1 kalmYlagfk

oadd g[[mj oal` j]_Yj\k lg l`] ghla[Yd hmdk]uk >RG8 >RG ak l`] kYe] Yk l`] ZYf\hYkk ^adl]j) >RG ak gmlka\] l`]

ZYf\hYkk ^adl]j%k >RG Yf\ oal`af l`] daealk g^ ea\\d]ZYf\ >A) >RG ak gmlka\] l`] daealk g^ l`] ea\\d]ZYf\ >A

Yf\ oal`af l`] ZYf\hYkk ^adl]j >A) gj >RG ak gmlka\] l`] daealk g^ l`] ZYf\hYkk ^adl]j+ O`] ^mf[lagfYdalq ak k`gof

af l`] ]imYlagfk Z]dgo) j]kh][lan]dq+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V5) 6) .-) ..) ./W+

&fkjgkj * &begkj , �&%
LSei_hjbfeTfii

IH ,
�

&%

L�
\[e^g[iipsrLQtuwyxpsr

Ub^N[e^Zb^ja
J

�",
Ub^N[e^Tfii

IH

&fkjgkj * &begkj , �&%
LSei_hjbfeTfii

IH , �&%
LUb^N[e^Tfii

IH ,
�

&%
L}

Ub^N[e^TflpqLQtuwyxpsr

Ub^N[e^TflLVkjN[e^Tfl
�",

!VkjN[e^TfiiLUb^N[e^Tfii"

IH

&fkjgkj * &begkj , �&%
LSei_hjbfeTfii

IH , �&%
LVkjN[e^Tfii

IH

=]Yekhdall]j

O`] =]Yekhdall]j ak Y l`j]] hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg khdal ghla[Yd hmdk]k aflg log gj egj]

Z]Yek+ O`] Ca_` Jmlhml K]j[]flY_] &CJK') Ggo Jmlhml K]j[]flY_] &GJK') Yf\ gl`]j dgkk]k Yj] [gfka\]j]\ o`]f

[Yd[mdYlaf_ l`] Yehdalm\] g^ l`] gmlhml hmdk]) Yk k`gof af l`] ]imYlagf Z]dgo+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\

gf V.0) .1) .2) .3W+

&(Mdgcbjk^_ * ��&(mvyxwyx
�

J

# �&(nvyxwyx
�

J

&(m,fkjgkj * &&m,begkj , +)*+ , �&%
LQm]_iiTfii

IH , �&%
LWfc[hP_g_e^Tfiiz

IH , �&%
LSei_hjbfeTfii

IH

&(n,fkjgkj * &&n,begkj , +)*+ , �&%
LQm]_iiTfii

IH , �&%
LWfc[hP_g_e^Tfii{

IH , �&%
LSei_hjbfeTfii

IH

=]Yekhdall]j)

KgdYjaraf_

&K=N'

O`] KgdYjaraf_ =]Yekhdall]j ak Y ^gmj hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg khdal ghla[Yd hmdk]k af gj\]j lg

k]hYjYl] gjl`g_gfYd hgdYjarYlagfk+ O`ak [j]Yl]k gjl`g_gfYddq hgdYjar]\ ghla[Yd hmdk]k+ O`] Yehdalm\] g^ l`] gml*

hml hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^ l`] afhml hmdk]) ]plaf[lagf hgo]j) Yf\ gl`]j dgkk]k) Yk k`gof af l`]

]imYlagf Z]dgo+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V.4) 6) .1) .5) .6W+

&)fkgkjMdgcbjk^_ * �|&)m,fkjgkj�
J
#|&)n,_mjbe]jbfeWfl_h�

J

&)m,fkjgkj * &&m,begkj , �&%
LQm]_iiTfii

IH , �&%
LWfc[hbojbfeP_g_e^_ejTfii_iz

IH , �&%
LSei_hjbfeTfii

IH
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>aj[mdYlgj

O`] >aj[mdYlgj ak Y l`j]] hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg jgml] ghla[Yd hmdk]k lg l`] Y\bY[]fl hgjl+

Jhla[Yd hmdk]k [Yffgl hYkk aflg l`] >aj[mdYlgj af l`] j]n]jk] \aj][lagf) `go]n]j Yf akgdYl] hmdk] ak [j]Yl]\ a^ Y

hmdk] Yll]ehlk lg hYkk af j]n]jk] \aj][lagf+ O`] Yehdalm\] g^ l`] akgdYl] hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^

l`] afhml hmdk]) afk]jlagf dgkk) Yf\ akgdYlagf dgkk) Yk k`gof af l`] ^ajkl ]imYlagf Z]dgo+ O`] Yehdalm\] g^ l`] ^gj*

oYj\ gmlhml hmdk] ak [Yd[mdYl]\ mkaf_ bmkl l`] Yehdalm\] g^ l`] afhml hmdk] Yf\ afk]jlagf dgkk) Yk k`gof af l`]

k][gf\ ]imYlagf Z]dgo+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V/0) /1) /2W+

#8<75?@12Sifc[j_^ * "#8<75?@12Segkj , �&%
L!Sei_hjbfeTfiiKSifc[jbfeTfii"

IH

#8<75?@12Vkjgkj * #8<75?@12Segkj , �&%
LSei_hjbfeTfii

IH

?]l][lgj) >dYk*

ka[Yd

O`] >dYkka[Yd ?]l][lgj ak Y gf] hgjl) mfa\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg \]l][l ghla[Yd hmdk]k hYkkaf_ aflg l`]

ghla[Yd j][]an]j hgjl l`Yl Yj] kljgf_+ Jf[] \]l][l]\) ]d][lja[Yd ka_fYdk Yj] _]f]jYl]\ Yf\ ljYfkeall]\ l`jgm_` l`]

]d][lja[Yd gmlhml hgjl+ O`] Yehdalm\] g^ l`] gmlhml ]d][lja[Yd ka_fYd ak [Yd[mdYl]\ mkaf_ l`] [gfn]jkagf ^Y[lgj Yf\

h]Yc hgo]j g^ l`] afhml ghla[Yd hmdk]) Yk k`gof af l`] ]imYlagf Z]dgo+ Igl] l`Yl ghla[Yd hmdk]k [Yf gfdq hYkk aflg

l`] >dYkka[Yd ?]l][lgj af l`] ^gjoYj\ \aj][lagf) fgl l`] j]n]jk] \aj][lagf+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf

V/-W+

#8<75?@12VkjgkjQc_]jhb][cXb`e[c * $;9A2=>5;9'.0?;= , +2.6+;B2=SegkjWkci_

?]l][lgj) Naf*

_d] K`glgf

&NK?'

O`] Naf_d] K`glgf ?]l][lgj ak Y gf] hgjl) mfa\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg \]l][l ghla[Yd hmdk]k l`Yl Yj]

o]Yc+ Jhla[Yd hmdk]k hYkk aflg l`] ghla[Yd j][]an]j hgjl) Zml Yj] \]l][l]\ gfdq \mjaf_ !_Yl]\! h]jag\k+ Jf[] \]*

l][l]\) ]d][lja[Yd ka_fYdk Yj] _]f]jYl]\ Yf\ ljYfkeall]\ l`jgm_` l`] ]d][lja[Yd gmlhml hgjl+ Igl] l`Yl ghla[Yd hmdk]k

[Yf gfdq hYkk aflg l`] Naf_d] K`glgf ?]l][lgj af l`] ^gjoYj\ \aj][lagf) fgl l`] j]n]jk] \aj][lagf+ Agj Y kmjn]q g^

NK? l][`fgdg_a]k) hd]Yk] k]] V/.) //W+

% * FP_j_]jfh , F]a[ee_c"-"*')&",.$%%'#'$(#+

CYd^*RYn]

KdYl]

O`] CYd^*RYn] KdYl] ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg [j]Yl] Y h`Yk] k`a^l l`Yl jglYl]k l`]

hgdYjarYlagf g^ l`] daf]Yjdq hgdYjar]\ da_`l+ O`] gja]flYlagf g^ l`] gmlhml hmdk] ak k`gof af l`] ]imYlagf Z]dgo)

o`]j] gja]flYlagf ak D) ]dahla[alq ak G) Yf\ l`] \]na[] g^^k]l Yf_d] ak E+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V/3) /4)

/5) /6) 0-W+

*=529?.?5;9 * ".=00;>"+!E$ D$ G"

+!E$ D$ G" *
&

'
�' # ' -02!'D" -02!)E" # '0;>!G" , >59!'D" , >59!)E"

Df*daf] KgdYj*

ar]j

O`] Df*daf] KgdYjar]j ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg hgdYjar] ghla[Yd hmdk]k+ Ga_`l l`Yl `Yk

hgdYjarYlagf gjl`g_gfYd lg l`] afhml hmdk] hgdYjarYlagf g^ da_`l ak Zdg[c]\ Yf\ gfdq l`gk] g^ l`] kYe] hgdYjarYlagf

Yj] ljYfkeall]\+ O`] Yehdalm\] g^ l`] gmlhml hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^ l`] afhml hmdk]) afk]jlagf

dgkk) Yf\ nYjagmk Yf_d] e]Ykmj]e]flk) Yk k`gof af l`] ^ajkl ]imYlagf Z]dgo+ O`] hgdYjarYlagf g^ l`] gmlhml hmdk]

ak Ydkg _an]f af l`] k][gf\ ]imYlagf Z]dgo+ Igl] l`Yl gja]flYlagf ak D) ]ddahla[alq ak G) Yf\ l`] \]na[] g^^k]l Yf_d] ak

E + O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V0.) 0/) 00W+

#8<75?@12Vkjgkj * " #8<75?@12Segkj , �&%
L!Sei_hjbfeTfii"

IH

, �!-02!D" , "%&!E""J # !2./!D" , &#$!E""J # !* , "%&!D" , 0;>!E" , &#$!D" , >59!E" , "%&!G""J

+;7.=5C.?5;9Vkjgkj * ~
|0;>!E"�

J
-02!E" , >59!E"

-02!E" , >59!E" |>59!E"�
J �
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DkgdYlgj

O`] DkgdYlgj ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg ljYfkeal ghla[Yd hmdk]k af l`] ^gjoYj\ \aj][lagf

Yf\ `a_`dq Yll]fmYl] ghla[Yd hmdk]k hYkkaf_ af l`] j]n]jk] \aj][lagf) cfgof Yk akgdYl] hmdk]k+ O`] Yehdalm\] g^ l`]

akgdYl] hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^ l`] afhml hmdk]) afk]jlagf dgkk) Yf\ akgdYlagf dgkk) Yk k`gof af l`]

^ajkl ]imYlagf Z]dgo+ O`] Yehdalm\] g^ l`] gmlhml hmdk]k ak [Yd[mdYl]\ bmkl mkaf_ l`] Yehdalm\] g^ l`] afhml hmdk]

Yf\ afk]jlagf dgkk) Yk k`gof af l`] k][gf\ ]imYlagf Z]dgo+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V01) 02W+

#8<75?@12Sifc[j_^ * " #8<75?@12Segkj , �&%
L!Sei_hjbfeTfiiKSifc[jbfeTfii"

IH

#8<75?@12Vkjgkj * #8<75?@12Segkj , �&%
LSei_hjbfeTfii

IH

GYk]j

O`] GYk]j ak Y gf] hgjl) mfa\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg _]f]jYl] [g`]j]fl ghla[Yd hmdk]k) o`a[` Yj] [`Yj*

Y[l]jar]\ Yk ]al`]j Y laeaf_ hmdk] gj Y jYf\ge hmdk]+ Oaeaf_ hmdk]k Yj] kljgf_ [g`]j]fl hmdk]k) o`ad] jYf\ge

hmdk]k Yj] o]Yc [g`]j]fl hmdk]k+ =gl` lqh]k g^ hmdk]k Yj] ljYfkeall]\ lg l`] ]d][lja[Yd [gfljgd hgjl+ Igl] l`Yl

ghla[Yd hmdk]k [Yffgl hYkk aflg l`] GYk]j+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V03) 04W+

Jhla[Yd Noal[`

.p/

O`] Jhla[Yd Noal[` .p/ ak Y l`j]] hgjl) mfa\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg jgml] ghla[Yd hmdk]k lg l`] \]kaj]\

gmlhml hgjl+ O`ak jgmlaf_ koal[`]k l`] gmlhml hmdk]k af gj\]j lg egfalgj l`] gmlhml hgo]j d]n]dk+ R`]f Y hmdk] ak

ljYfkeall]\ lg l`] \]kaj]\ gmlhml hgjl) Y j]^d][lagf g^ l`] hmdk] ak _]f]jYl]\+ O`] Yehdalm\] g^ l`] \]kaj]\ gmlhml

hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^ l`] afhml hmdk] Yf\ afk]jlagf dgkk) Yk k`gof af l`] ^ajkl ]imYlagf Z]dgo+

O`] Yehdalm\] g^ l`] akgdYl]\ hmdk] ak [Yd[mdYl]\ mkaf_ l`] kYe] nYjaYZd]k Yk l`] Yehdalm\] g^ l`] \]kaj]\ gmlhml

hmdk] Yf\ Ydkg l`] akgdYlagf dgkk) Yk k`gof af l`] k][gf\ ]imYlagf Z]dgo+ Igl] l`Yl ghla[Yd hmdk]k [Yf gfdq hYkk

aflg l`] Jhla[Yd Noal[` .p/ af l`] ^gjoYj\ \aj][lagf) fgl l`] j]n]jk] \aj][lagf+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\

gf V05) 06) 1-) 1.) 1/W+

%2>5=21#8<75?@12Vkjgkj * "#8<75?@12Segkj , �&%
L!Sei_hjbfeTfii"

IH

(>;7.?21#8<75?@12Vkjgkj * #8<75?@12Segkj , �&%
L!Sifc[jbfeTfii"

IH

KgdYjarYlagf

>gfljgdd]j

O`] KgdYjarYlagf >gfljgdd]j ak Y log hgjl) mfa\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg [geh]fkYl] ^gj l`] hgdYjarY*

lagf \ja^l af gja]flYlagf Yf\ ]ddahla[alq l`Yl g[[mjk ^jge l`] k]f\]j lg l`] j][]an]j Zq Y\bmklaf_ l`] hgdYjarYlagf+

O`] ka_fYd gja]flYlagf g^ l`] gmlhml hmdk] ak [Yd[mdYl]\ ZYk]\ gf o`]l`]j l`] [geh]fkYlagf dY_ ]^^][l ^dY_ ak gf gj

g^^ Yf\ o`]l`]j l`] eYpaeme Y\bmkle]fl Yf_d] ak d]kk l`Yf gj _j]Yl]j l`Yf,]imYd lg l`] \]kaj]\ gja]flYlagf ea*

fmk l`] ka_fYd gja]flYlagf g^ l`] afhml hmdk]+ Igl] l`Yl ghla[Yd hmdk]k [Yf gfdq hYkk aflg l`] KgdYjarYlagf >gfljgdd]j

af l`] ^gjoYj\ \aj][lagf) fgl l`] j]n]jk] \aj][lagf+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V12) 13) 14) 15) 16) 2-W+

$;==20?21 +;7.=5C.?5;9 - ,232=2902 +;7.=5C.?5;9 !59<@?>549.7"

KgdYjarYlagf

HYaflYafaf_

AaZ]j >`Yff]d

O`] KgdYjarYlagf HYaflYafaf_ AaZ]j >`Yff]d ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg hjghY_Yl] ghla*

[Yd hmdk]k hYkkaf_ aflg l`] hjaeYjq hgjl l`jgm_` l`] ^aZ]j+ < keYdd Yegmfl g^ Yll]fmYlagf ak g[[mjj]\) Zml l`]

hgdYjarYlagf klYl] ak eYaflYaf]\+ O`] Yehdalm\] g^ l`] gmlhml hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^ l`] afhml

hmdk]) afk]jlagf dgkk) Yf\ ^aZ]j dgkk) Yk k`gof af l`] ]imYlagf Z]dgo+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V2.) 2/)

20) 21W+

#8<75?@12Vkjgkj * "#8<75?@12Segkj , �&%
L!Sei_hjbfeTfiiKRb\_hTfii"

IH

'5/2=);>> * ");>> , )294?.')(((

)294?. * )294?. # !)294?. , -&$ , !-28<Okhh_ej / -28<Sebjb[c""

KgdYjarYlagf

Hg\mdYlgj

O`] KgdYjarYlagf Hg\mdYlgj ak Y log hgjl) Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg eg\a^q l`] hgdYjarYlagf g^ ghla*

[Yd hmdk]k+ LmZalk Yj] ]f[g\]\ Zq eg\a^qaf_ l`] gja]flYlagf lg l`] \]kaj]\ Yf_d]+ O`] Yehdalm\] g^ l`] gmlhml

hmdk] ak [Yd[mdYl]\ mkaf_ l`] Yehdalm\] g^ l`] afhml hmdk] Yf\ afk]jlagf dgkk) Yk k`gof af l`] ]imYlagf Z]dgo+ O`]

eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V10) 11W+

#8<75?@12Vkjgkj * #8<75?@12Segkj , �&%
L!Sei_hjbfeTfii"

IH

RYn] ?anakagf

Hmdlahd]p]j

O`] RYn] ?anakagf Hmdlahd]p]j &R?H' ak Y hYkkan]) l`j]] hgjl Za\aj][lagfYd ghla[Yd [gehgf]fl mk]\ lg [geZaf]

&gj khdal' \a^^]j]fl oYn]d]f_l`k g^ da_`l+ R`]f gh]jYlaf_ Yk Y khdall]j) l`] R?H `Yk gf] afhml hgjl Yf\ log gmlhml

hgjlk o`]j] log [g*hjghY_Ylaf_ oYn]d]f_l`k Yj] k]hYjYl]\ gflg af\ana\mYdk ^aZ]jk+ R`]f gh]jYlaf_ Yk Y [geZaf*
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]j) l`] R?H `Yk log afhml hgjlk Yf\ gf] gmlhml hgjl o`]j] log afhml oYn]d]f_l`k Yj] bgaf]\ gf Y kaf_d] ^aZ]j+

R?Ik `Yn] eYfq [gf^a_mjYlagfk) af[dm\af_ ^j]]*khY[] \a[`jga[ eajjgjk &mkaf_ [gddaeYlaf_ ]d]e]flk lg dYmf[`

^jge Yf\ ^g[mk gflg l`] ^aZ]j ]f\k' Yf\ af*daf] ^aZ]j \]na[]k+ Df [gee]j[aYd Yhhda[Ylagfk) R?Hk Yj] ^j]im]fldq

mk]\ ^gj Y\\,\jgh ^adl]jk Yf\ ka_fYd Yehda^a[Ylagf &a+]+) ]jZame \gh]\ ^aZ]j Yehda^a]j &@?A<' hmehaf_'+ <dl`gm_`

Y\nYf[]\ R?H \]na[]k ]pakl o`a[` [Yf [geZaf] eYfq oYn]d]f_l`k) o] Yj] egkl afl]j]kl]\ af l`] emdlahd]paf_

g^ log oYn]d]f_l`k) fYe]dq l`] hjaeYjq l]d][geemfa[Ylagf oYn]d]f_l`k .0.- Yf\ .22- fe+ O`] R?H j]imaj]k

kaf_d]*eg\] afhml Yf\ gmlhml ^aZ]jk+ O`] eg\]d]\ Z]`Ynagjk Yj] ZYk]\ gf V23) 24) 22W+

APPENDIX REFERENCES

V.W O`gj GYZk) !Aap]\ AaZ]j Jhla[ <ll]fmYlgjk) Naf_d] Hg\])!

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\9.052+ V<[[]kk]\ .0 -3 /-.1W+

V/W I]ohgjl) !Aap]\ AaZ]j Jhla[ <ll]fmYlgj)! VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+f]ohgjl+[ge,Aap]\*AaZ]j*Jhla[*

<ll]fmYlgj,502345,.-00,af^g+Ykhp"lYZXgj\]jaf^g+ V<[[]kk]\

.0 -3 /-.1W+

V0W JU Jhla[k) !Aap]\ Yll]fmYlgjk Yf\ Yll]fmYlaf_ ^aZ]j hYl[`[gj\)!

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+grghla[k+[ge,<GGI@RXK?A,?ON--0-+h\^+ V<[*

[]kk]\ .0 -3 /-.1W+

V1W KY[a^a[ Dfl]j[gff][lagfk) !AaZ]j =mad\ Jml <ll]fmYlgjk)!

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+hY[a^a[afl]j[g+[ge,Yll]fmYlgjk,^aZ]j*ghla[*

Yll]fmYlgj+`le+ V<[[]kk]\ .0 -3 /-.1W+

V2W JKGDIF) !@d][ljgfa[Yddq QYjaYZd] Jhla[Yd <ll]fmYlgjk)! /-.1+

VJfdaf]W+ <nYadYZd]7 `llh7,,ooo+ghdafc+[ge,h\^,@QJ<*

N--./+h\^ +

V3W Ga_`loYn]k /-/-) !Gaima\ [jqklYd ZYk]\ nYjaYZd] ghla[Yd Yll]fmY*

lagf ^gj gh]f*dggh Yj[`al][lmj])! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+Yekl][`fgdg_a]k+[ge,^ad]Y\eaf,Yeke]\aY,\go

fdgY\k,.-40XQJ<*GgoO?G+h\^ +

V4W JU Jhla[k) !@d][ljgfa[Yddq [gfljgdd]\ nYjaYZd] ^aZ]j ghla[ Yll]f*

mYlgj)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+grghla[k+[ge,<GGI@RXK?A,?ON--.-+h\^+

V5W I]ohgjl) !OmfYZd] ZYf\hYkk ^aZ]j ghla[ ^adl]j)! /-.1+ VJfdaf]W+

<nYadYZd]7 `llh7,,ooo+f]ohgjl+[ge,OmfYZd]*=Yf\hYkk*

AaZ]j*Jhla[*Aadl]j,5022-/,.-00,af^g+Ykhp"lYZXgj\]jaf^g+

V6W O`gj GYZk) !IDM ZYf\hYkk $ dYk]j daf] Aadl]jk 4-- * .32- fe

[]fl]j oYn]d]f_l`)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+f]ohgjl+[ge,OmfYZd]*=Yf\hYkk*AaZ]j*Jhla[*

Aadl]j,5022-/,.-00,af^g+Ykhp"lYZXgj\]jaf^g+

V.-W <AR O][`fgdg_a]k) !AaZ]j Jhla[ =Yf\ KYkk Aadl]j)! /-.1+

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+Y^ol][`fgdg_a]k+[ge+Ym,ZYf\XhYkkX^adl]j+`led+

V..W Bgmd\ AaZ]j Jhla[k) !Ca_` akgdYlagf ^aZ]j ghla[ oYn]d]f_l`

\anakagf emdlahd]p]jk)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+_gmd\^g+[ge,`a_`akgdYlagfo\e+Ykhp"kh][k+

V./W =j]n]lla) !O]fkagf*lmf]\ Y[gmklg*ghla[ ZYf\hYkk ^adl]j!+ KYl]fl

PN 3314.26 =.) /--/+

V.0W @\emf\ Jhla[k) !R`Yl Yj] =]Yekhdall]jk;)! /-.1+ VJfdaf]W+

<nYadYZd]7 `llh7,,ooo+]\emf\ghla[k+[ge,l][`fa[Yd*

j]kgmj[]k*[]fl]j,ghla[k,o`Yl*Yj]*Z]Yekhdall]jk,+

V.1W JU Jhla[k) !=]Ye khdall]jk,[geZaf]jk)! /-.1+ VJfdaf]W+ <nYadY*

Zd]7 `llh7,,ooo+grghla[k+[ge,<GGI@RXK?A,?ON--62+h\^+

V.2W @\emf\ Jhla[k) !>mZ] =]Yekhdall]jk)! /-.1+ VJfdaf]W+ <nYadY*

Zd]7

`llh7,,ooo+]\emf\ghla[k+[ge,ghla[k,Z]Yekhdall]jk,[mZ]*

Z]Yekhdall]jk,+

V.3W O`gj GYZk) !Jhla[Yd =]Yekhdall]jk)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,fYna_Ylagf+[^e;_ma\]Xa\9.5 +

V.4W O`gj GYZk) !AaZ]j*=Yk]\ KgdYjarYlagf =]Ye >geZaf]jk , Nhdal*

l]jk) . NH Yf\ / KH Kgjlk)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\93340+

V.5W O`gj GYZk) !QYjaYZd] KgdYjarYlagf =]Yekhdall]j Fal)! /-.1+

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\90.3+

V.6W ?KH K`glgfa[k) !Nh][a^a[Ylagfk)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+\heh`glgfa[k+[ge,hjg\m[lX\]lYad+h`h;a\9.4- +

V/-W O`gj GYZk) v>YdaZjYl]\ K`glg\ag\]k)w /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\9/5//+

V/.W M+ C+ CY\^a]d\) !Naf_d]*h`glgf \]l][lgjk ^gj ghla[Yd imYflme

af^gjeYlagf Yhhda[Ylagfk)! IYlmj] h`glgfa[k ) ngd+ 0) fg+ ./) hh+

363*4-2) /--6+

V//W H+ ?+ @akYeYf) E+ AYf) <+ Ha_\Ydd Yf\ N+ Q+ KgdqYcgn) vDfnal]\

j]na]o Yjla[d]7 Naf_d]*h`glgf kgmj[]k Yf\ \]l][lgjk)w M]na]o g^

N[a]fla^a[ Dfkljme]flk ) ngd+ 5/) fg+ 4) h+ -4..-.) /-.. +

V/0W Bgmd\ AaZ]j Jhla[k) vAaZ]j Jhla[ >aj[mdYlgjk)w /-.1+ VJfdaf]W+

<nYadYZd]7 `llh7,,ooo+_gmd\^g+[ge,[aj[mdYlgj+Ykhp+

V/1W O`gj GYZk) vNaf_d] Hg\] AaZ]j Jhla[ >aj[mdYlgjk)w /-.1+

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\9040 +

V/2W O`gj GYZk) vDfBY<k <nYdYf[`] K`glg\]l][lgjk)w /-.1+ VJfdaf]W+

<nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\91-14+

V/3W I]ohgjl) !U]jg*gj\]j hj][akagf oYn] hdYl]k)! /-.1+ VJfdaf]W+

<nYadYZd]7

`llh7,,ooo+fplZggc+[ge,fplZggck,f]ohgjl[gjh,j]kgmj[]/-

..,",5--+

V/4W Rgd^jYe) !KgdYjarYlagf g^ Ga_`l l`jgm_` Y RYn] KdYl])! /-.1+

VJfdaf]W+ <nYadYZd]7

`llh7,,\]egfkljYlagfk+ogd^jYe+[ge,KgdYjarYlagfJ^Ga_`lO`jg

m_`<RYn]KdYl],+

V/5W JU Jhla[k) vKgdYjarYlagf jglYlgjk,[gfljgdd]jk,YfYdqr]j)w /-.1+

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+a[oa[+[ge,a[oa[,\YlY,h\^,[\,[\-36,KgdYjar]jk)

#/-AJ,Y,...666+h\^+

V/6W JU Jhla[k) vKgdYjarYlagf jglYlgjk,[gfljgdd]jk,YfYdqr]jk)w /-.1+

VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+grghla[k+[ge,<GGI@RXK?A,?ON--4/+h\^+

V0-W I]ohgjl) !KgdYjarYlagf)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+f]ohgjl+[ge,KgdYjarYlagf,.116/.,.-00,[gfl]fl+
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Ykhp+

V0.W O`gj GYZk) !Df*Gaf] AaZ]j Jhla[ KgdYjar]jk)! /-.1+ VJfdaf]W+

<nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\926//+

V0/W I]ohgjl) !AaZ]j Jhla[ Df*Gaf] KgdYjar]jk)! /-.1+ VJfdaf]W+

<nYadYZd]7 `llhk7,,ooo+f]ohgjl+[ge,AaZ]j*Jhla[*Df*Gaf]*

KgdYjar]jk,5163-4,.-00,af^g+Ykhp"lYZXNh][a^a[Ylagfk+

V00W JU Jhla[k) !KgdYjar]jk * AaZ]j Jhla[)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+grghla[k+[ge,<GGI@RXK?A,?ON--.5+h\^+

V01W O`gj GYZk) !DM AaZ]j Jhla[ DkgdYlgjk oal` NH AaZ]j &./6- * /-.-

fe')! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,f]o_jgmhhY_]6+[^e;gZb][l_jgmhXa

\93.45+

V02W F+ R+ >`Yf_ Yf\ R+ Q+ Ngjaf) !Ca_`*h]j^gjeYf[] kaf_d]*eg\]

^aZ]j hgdYjarYlagf*af\]h]f\]fl akgdYlgjk)! Jhla[k d]ll]jk ) ngd+ .2)

fg+ 5) hh+ 116*12.) .66-+

V03W O`gj GYZk) !>g`]j]fl Ngmj[]k)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,fYna_Ylagf+[^e;_ma\]Xa\90.+

V04W G+ J+ HYaddgmp) H+ M+ BjaeYadY) ?+ ?+ Cg\kgf Yf\ >+ H[GYm_`*

daf) !Hg\]daf_ >gflafmgmk Oae] Jhla[Yd Kmdk]k af Y LmYflme

F]q ?akljaZmlagf ?ak[j]l] @n]fl NaemdYlagf)! af Dfl]jfYlagfYd

>gf^]j]f[] gf N][mjalq Yf\ HYfY_]e]fl N<H%.1) /-.1+

V05W g]HYjc]l) !.p.,.p/ ^aZ]j ghla[Yd koal[`)! /-.1+ VJfdaf]W+ <nYad*

YZd]7

`llh7,,ooo+g]eYjc]l+[ge,[YlYdg_,hjg\m[lXaf^g+h`h,.p..p/

*^aZ]j*ghla[Yd*koal[`*h*

5.;gk>ka\913.5Y//YYY1]Y]423^40Y\/^\/Y/60Z.+

V06W ?a>gf ^aZ]jghla[k) af[+) !Jhla[Yd koal[`]k)! /-.1+ VJfdaf]W+

<nYadYZd]7

`llh7,,ooo+\a[gf^aZ]jghla[k+[ge,hjg\m[lk,hj\Xkoal[`]k+h`

h+

V1-W ?a>gf ^aZ]jghla[k) af[+) !H@HN .pI kaf_d]eg\] ghla[Yd koal[`*

]k)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+\a[gf^aZ]jghla[k+[ge,hjg\m[lk,;hjg\9--11$e]

fm9kol$kmZ9-+

V1.W O`gj GYZk) !JNR./*.0.-*NH * Qak,IDM H@HN .p/ Noal[`)

.0.- fe) NHA)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+l`gjdYZk+[ge,l`gjKjg\m[l+[^e;hYjlImeZ]j9JN

R./*.0.-*NH+

V1/W Gmeafgk) !Naf_d] .p/ ^aZ]j ghla[ koal[`)! /-.1+ VJfdaf]W+ <nYadY*

Zd]7

`llh7,,dmeafgk+[ge,hjg\m[lk,koal[`]k,k./,;_[da\9>DR@*

1^/6GH>ATUH1<g\1A1<RL+

V10W O`gj GYZk) !KgdYjarYlagf Jhla[k)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llhk7,,ooo+l`gjdYZk+[ge,fYna_Ylagf+[^e;_ma\]Xa\95+

V11W JU Jhla[k) !KgdYjar]jk * ^aZ]j ghla[)! /-.1+ VJfdaf]W+ <nYadYZd]7

`llh7,,ooo+_gg_d]+[ge,mjd;kY9l$j[l9b$i9$]kj[9k$^je9.$

kgmj[]9o]Z$[\9.$[Y\9jbY$mY[l95$kia9/$n]\9->=-LAb<<

$mjd9`llh#0<#/A#/Aooo+grghla[k+[ge#/A<GGI@RXK?A
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Abstract—In this paper, we present modeling Quantum Key
Distribution (QKD) system components using the Discrete Event
System Specification (DEVS) formalism. The DEVS formalism
assures the developed component models are composable and
exhibit temporal behavior independent of the simulation
environment. These attributes enable users to assemble and
simulate any collection of compatible components to represent
complete QKD system architectures. To illustrate the approach, we
introduce a prototypical “prepare and measure” QKD system,
decompose one of its subsystems, and present the detailed modeling
of the subsystem using the DEVS formalism. The developed models
are provably composable and exhibit behavior suitable for the
intended analytic purpose, thus improving the validity of the
simulation. Finally, we discuss issues identified during the
verification of the conceptual DEVS model and discuss the impact
of these findings on implementing a hybrid QKD simulation
framework.

Index Terms—Conceptual Modeling; Discrete Event
Simulation; Discrete Event System Specification; Modeling and
Simulation, Quantum Key Distribution

I. INTRODUCTION

RYPTOGRPAHY, the practice and study of techniques
for securing communications between two authorized

parties in the presence of one or more unauthorized parties, is
the centerpiece of a centuries old battle between code maker
and code breaker [1]. Historically, only financial, government,
and military applications used cryptography; but today much
of modern society depends on cryptography to provide
security services including confidentiality, integrity,
authentication, and non-repudiation [2]. While there are many
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types of cryptography, only the One-Time-Pad (OTP)
symmetric key algorithm is “information-theoretically secure”
[3], [4]. All other forms of cryptography are breakable if the
adversary has enough cipher text, computational resources,
and time [5]. Despite its strength, the OTP is not in common
use because of the large amount of secret key material
required for its proper use. These keys require random
generation, length equal to the message, and single use. These
requirements impose significant limitations on use of the OTP
in most applications due the costs involved with secure key
generation and distribution.

Quantum Key Distribution (QKD) is a technology that
offers the means for two geographically separated parties to
create a shared secret key [6]. QKD is unique in its ability to
detect any third-party eavesdropping on the key exchange,
assuring the secrecy of the key. This is possible due to the
fundamental laws of quantum mechanics which ensures any
third-party eavesdropping on the quantum channel introduces
detectable errors. Combining a QKD-generated key with the
classical OTP realizes an “unconditionally secure”
cryptosystem.

A. The Need for QKD Simulation

However, QKD is a developing technology and has not
been thoroughly studied from a systems-level perspective.
QKD systems contain non-ideal components that differ,
sometimes significantly, from the ideal components specified
during the original conceptual system design. Therefore, there
is a need to develop an efficient integrated modeling and
simulation capability to understand the impact non-ideal
components have on the performance and security of different
QKD system architectures.

There exist few QKD simulations beyond those that model
specific hardware or situations. An example is the Austrian
Institute of Technology’s AIT QKD Software project [7] that
attempts to model an entire QKD network but is based mainly
on their entanglement QKD hardware. An extensive literature
search over several years revealed no other system-level QKD
modeling & simulation (M&S) efforts.

To address this shortcoming, we have developed a modular
simulation framework, named qkdX, which provides users the
capability to model rapidly, simulate, and study QKD system
architectures. This simulation capability provides hybrid
functionality as it abstracts continuous-time QKD system
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signals (e.g., electrical signals and optical pulses) into a
representation suitable as events in a Discrete Event
Simulation (DES) environment [8]. A continuous-time
simulation of a complete QKD system is infeasible due to the
enormous number of optical pulses generated during system
operation and necessitates the use of DES.

The researchers, in consultation with Subject Matter
Experts (SMEs) in the optical physics and electrical
engineering domains, determined the abstraction necessary for
each signal model. The abstraction enables a system-level
simulation where signals propagate through the system as
discrete events, but can be reconstructed into a continuous-
time representation when mathematical operations or
transformations of the signals are required. The details of the
optical pulse model and related mathematical transforms are
outside the scope of this paper. Instead, we focus on the proper
modeling of the temporal behavior and internal “state” of
QKD system components.

To capture this temporal behavior and the state of
components, we use the Discrete Event System Specification
(DEVS). In the past, DEVS has been used to model high-level
architectures, hybrid-systems, cell-spaces, distributed supply
chains, test & evaluation, forest fires, environmental systems,
building performance models, and other problem spaces [9-
16]. This paper presents, to our knowledge, the first use of
DEVS to model optical components.

B. The Need for Validity in Simulation

Model validity is a necessary condition for the credibility of
simulation results [17]. Model validation, according to Balci,
is “substantiating that the simulation model, within its domain
of applicability, behaves with satisfactory accuracy consistent
with the study objectives” [18]. Model validation is the
comparison of model behavior to the behavior of the system
under study when both are responding to identical input
conditions [19]. Model testing identifies failures, corrects
them, and then retests to the required accuracy and behavior
[17], [18].

Complete testing of a model throughout its solution space is
not possible. Such testing is cost and time prohibitive; instead
testing continues until attaining sufficient confidence in the
model for its intended purpose [19]. Fig. 1 shows the
relationship between value, cost and model confidence. As
user confidence in the model increases there is a
corresponding logarithmic increase in the value of the model,
but the cost increases exponentially. Eventually the gain in
value is negligible but costs continue to increase steeply.

Fig 1. Model Confidence [19].

Validity and model confidence relate closely. The better the
belief the model accurately represents the system under study,
the higher the validity of the model. Higher validity suggests a
higher confidence in the model being useful for its purpose.
Exhaustive testing brings higher confidence, but at much
greater cost. Our research is focused upon exploring a means
to increase model validity without the need to exhaustively
test the entire solution space.

Specifically, this research focuses on how using the
Discrete Event System Specification (DEVS) formalism and
concept model validity theory 0increases the validity of a
QKD system-level simulation. To achieve this goal, we
present modeling QKD system components using the DEVS
formalism [20]. Representing component behavior using the
DEVS formalism ensures the developed conceptual models
exhibit composibility and deterministic temporal behavior
independent of the simulation environment. Additionally, we
identified unforeseen benefits that arise when using a strict
modeling formalism.

The remainder of this paper is organized as follows. Section
II reviews the DEVS formalism and conceptual modeling.
Section III explains the use of DEVS in our modeling effort.
We introduce a prototypical QKD system architecture and
decompose its “classical pulse generator” (CPG) subsystem in
Section IV. Section V presents modeling the CPG subsystem
using DEVS atomic and coupled models. Section VI presents
our findings, reviews issues identified during simulation and
verification of the conceptual model, and discusses the impact
of these findings on implementing the hybrid simulation
framework. Finally, we provide concluding remarks in Section
VII.

II. DISCRETE EVENT SYSTEM SPECIFICATION AND

CONCEPTUAL MODEL VALIDITY

A. What is DEVS?

Zeigler first proposed the DEVS in 1976 as a hierarchal
formalism for decomposing complex discrete-event systems
into simple components, leading to well-defined behavior of
the overall model [21]. Zeigler states “…the set of all dynamic
systems is taken as a well-defined class in which each system
has a set of input time segments, states, state transitions and
output time segments.” DEVS interprets the dynamic systems
as sets and functions and sets conditions needed for a well-
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defined specification [22]. DEVS defines system behavior,
syntax, and structure, enabling modularity within a DES by
building complex systems from simple (atomic) components.

It uses dynamical systems theory as a means to canonically
represent system behavior and provide provable closure under
coupling (also known as composability) [23], [24]. DEVS
provides an efficient way to represent complex systems in a
hierarchal manner to create coupled (compound) modules, or
subsystems, to create complete system models. The theory
states “…the dynamic system specified by a coupled model
can be represented as (more technically, is behaviorally
equivalent to) an atomic DEVS system” [22].

DEVS separates the model from the source system and the
simulator. This allows for a conceptual model not tied to any
particular simulator and creates a bounded source with finite
inputs and outputs. Hoffman describes DEVS as a “theoretical
confirmation” of transformations between different techniques
& tools for modeling systems [25].

Fig. 2 shows a representation of basic entities in modeling
and simulation. The source system (i.e., the system under
study) couples with a database of behaviors derived from a set
of inputs. This experimental frame defines the system of
interest the modeler is trying to capture [26] and allows the
modeler to create a conceptual model for the system under
study. Zeigler links the experimental frame and the model
with a modeling relation and the model and the simulation
with a corresponding simulation relation. The first relation
describes how well observed system behavior matches model-
generated behavior (validity) and the second with how well
the simulation executes model instructions (verification). Note
the model is the bridge between the system and the simulator.

Fig 2. Basic entities in modeling and simulation, adapted from [26].

DEVS provides a concise way of describing the inputs, states,
outputs, and timing of a system under study. It is a formal
language used to define the conceptual model of the system
[27].

A DEVS atomic model has sets of inputs, states, and
outputs along with transition and output functions to construct
a representation of any dynamic system [22]. Fig. 3 provides
a graphic representation of DEVS modeling state transitions in
response to incoming events. We start in an initial state s and
remain in that state for some time advance period ta. Once ta
is reached, the system may output some value y per the output

function λ(s). Immediately after the output, the system goes
through the internal transition, δint (s), based on the current
state. The system changes to state, s′, which becomes the new
state s and the cycle starts over. If the state receives an
external disturbance during the time ta, at some elapsed time
since the last transition, e, the system undergoes an external
transition δext (s,e,x). The external transition uses the existing
state, s, the time elapsed e and the input values x to determine
the new state, s, and the cycle starts anew.

Fig 3. DEVS sequence diagram, derived from [28].

While there are different types of DEVS, Parallel-DEVS
has several characteristics necessary to model QKD
components. The Parallel-DEVS formalism specifies the
following about each atomic model [29]:

 Ports between models are represented explicitly – there
can be any number of input and output ports.

 Atomic DEVS models can handle bags of inputs and
outputs.

 A bag can contain many elements with possibly multiple
occurrences of its elements.

 The external transition function handles inputs of bags.

 The output function can generate a bag of outputs.

 The confluent transition function, δcon(s, ta(s), x) decides
the processing order of simultaneous external and internal
events.

In this paper, we make use of Parallel-DEVS as it provides
the unique abilities of queues, necessary to handle multiple
arriving optical packets, and the confluence transition
function, necessary for handling simultaneous events [30].

B. Why Use DEVS?

The DEVS formalism ensures well-defined component
temporal behavior and provable closure under coupling (i.e.,
composability), allowing for easier verification of correctness
of component compositions, and improving the validity of
system representations. Thus, for our purpose, we are ensured
the temporal behavior of high-level QKD system
representations reflects the dynamics of its constituent
parts. In other words, the burden of verifying high-level
system dynamics focuses on correct modeling of constituent
parts (components); once accomplished, we can assemble
high-level representations for study with confidence the
assembly process itself has not introduced unforeseen effects
or anomalies.
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1) Conceptual Modeling & Validity
This research focuses on the use of DEVS conceptual

modeling to capture the behavior of components found in the
optical path of a QKD system. The question remains as why
do this? Conceptual modeling is the process of determining
what to model to be useful [31]. This process has been
described as conceptualization of real-world referents that
varies from modeler to modeler [25] whereas Robinson
describes the conceptual model as “non-software specific
description of the simulation model that is to be developed”
[32]. Deciding the appropriate “wrongness” (abstraction),
agreement on the model, and model validation are some of the
objectives of conceptual modeling [31]. Though conceptual
modeling has been described by some as more art than science
[33], Robinson provides a framework for conceptual modeling
and lists five activities in a process for conceptual modeling
[32]:

 Understanding the problem situation.

 Determining the modeling and general project objectives.

 Identifying the model outputs (responses).

 Identify the model inputs (experimental factors).

 Determining the model content (scope and level of detail),
identifying any assumptions and simplifications.

This is where the usefulness of the DEVS formalism
becomes apparent. It provides a mathematically-proven
process to work through the objectives. Using DEVS to model
the components for the QKD demonstration architecture gives
a way to meet the objectives of conceptual modeling while
accomplishing the steps in the modeling process. DEVS forces
the modeler to have a deep understanding of behavior and
timing which in turn requires understanding the problem, the
modeling objectives, and capturing inputs and outputs.

How hard it is to distinguish between the model and the
source system is the question of validity [34]. The harder it is
to distinguish between the model and the source system in the
experimental frame, the greater the validity. Note that a
model’s validity only applies to the experimental frame of
interest. Change the frame and you change the validity of the
corresponding model.

As mentioned, it is cost-prohibitive to check every possible
model combination and trying to validate the entire model
space by model checking or theorem-proving approaches is
nearly impossible once a model has many connections or
interactions [35]. DEVS allows for increased model validity
without having to check the entire model space.
2) How Does DEVS Increase Validity?

Since validity is a measure of “closeness,” how does DEVS
increase validity? Using DEVS forces the modeler to have a
deep understanding of the modeled behavior because the
formalism requires it. This lessens or eliminates undesired,
unexpected or emergent behavior. By knowing exactly how
the model behaves, it can be matched and changed to the
observed behavior of the source system.

DEVS provides three levels of validity for conceptual
models: replicative, predictive and structural [34]. Each level

of validity meets the requirements of the previous level(s).
The model and system achieve replicative validity if their
behaviors agree to acceptable levels for all experiments
captured in the behavioral database for the experimental
frame. The second, predictive, requires the model generate the
same output as the system for any experiment not captured in
the experimental frame database. This requires the model to be
able to be set into the same state as the system for the
experiment, for any acceptable starting state. Finally,
structural validity requires the model and system have a
corresponding step-by-step, component-by-component
transition through all possible states. Any model properly
using DEVS achieves all three of these states, making it harder
to distinguish between the model and system under study, and
increasing its validity, per the earlier definition.

Another consideration is the temporal behavior of the
source system. In many discrete-event simulators, the
underlying implementation of the simulator influences the
behavior of the model when multiple simultaneous events
occur. DEVS addresses this problem by providing a
confluence function to express the behavior of the model for
these situations. This means a DEVS model exhibits the same
behavior on any DEVS-compliant simulator and if the
simulation relation is sound, the behavior can be replicated on
any DES.

Lastly, DEVS promotes sound model development when
used as an intermediate step towards developing a large DES
model using a non-DEVS-compliant simulator. For example,
some discrete-event simulators schedule events in the future
for convenience [36]. This situation can cause problems;
DEVS avoids this as there are no future events in the
formalism. There are only two types of time in DEVS: the
time advance (ta) and the elapsed time (e). This forces the
modeler to carefully consider time and input interaction on all
states.

III. USING DEVS TO MODEL QKD SYSTEM COMPONENTS

A. Methodology

1) The Modeling Process
The QKD modeling process began with discussions

between the research team and the SMEs in the areas of
optical physics, quantum physics, electrical and software
engineering. These discussions led to an agreement on
simulation objectives, what needs modeling, the fidelity
necessary, assumptions, and simplifications needed or wanted
within the model. The results were a small-scale proof-of-
concept simulation using the OMNeT++ DES [36] to show the
basic premises were sound and selecting DEVS to build the
conceptual model [8].

The optical physics SME created a mathematical model for
each of the optical components that captured parameters and
behavior believed necessary for the model. Model creation
used a combination of data measured during laboratory
experiments in conjunction with component data sheets and
existing reference literature. Creating and verifying the
correctness of the developed math models used Mathematica,
a well-known math computation software package [37].
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The next step was to transform the mathematical model into
a DEVS pseudocode model. The modeler reviewed the math
models to understand the necessary transformation functions,
reviewed quantum and optical physics literature and consulted
with the SMEs to understand the required component
behavior. Product literature for existing physical components
provided additional information for acceptable component
input and output ranges. The DEVS models captured this
information using phases, states and transitions and submitted
the component models back to the optical SME for review.

Once complete, the DEVS pseudocode became the basis for
creating the model in a DEVS-compliant simulator, MS4ME
[38]. MS4ME is a product of RTSync (www.rtsync.com), a
spin-off from the Arizona Center of Integrative Modeling and
Simulation (ACIMS) [39]. MS4ME provides a structured user
interface for modeling in the ACIMS DEVS-JAVA language.
For each component, the output from the MS4ME simulator
was compared against the expected behavior of the DEVS
model. This modeling was a check on the DEVS pseudocode
and ensured the models met the requirements of the formalism
and captured the appropriate behavior. Once checked, the
DEVS pseudocode became the basis for the simulation
modelers to create the qkdX framework. As shown in Fig. 4,
DEVS is the intermediate step between the SME mathematical
model and the QKD simulation.

Fig 4. Levels of modeling and simulation.

2) SME to Conceptual Model to Simulation Cycle
During the conceptual modeling process, the modeler

worked with the software and electrical engineers to capture
the hardware and software behavior of QKD devices. A
constant review process looked for differences between the
proof-of-concept demonstrator and the detailed DEVS models.
Once complete, the DEVS models went to the simulation
modelers (the software and electrical engineers) for use in
adapting the existing proof-of-concept simulation code to
agree with the conceptual model. This process is an example
of the simulation relation.

The research team held weekly teleconferences and had
several site visits in a continuing effort to better understand
and model the QKD system. Development of the DEVS
modules and translation into the both the MS4ME DEVS

simulator and the qkdX simulation framework resulted in the
identification of multiple inconsistencies between the
representations. These inconsistencies were reconciled to yield
canonical behavior between all simulation models.

Throughout this process, the modeler continued to consult
with optical SMEs. Each completed model underwent review
by optical SMEs to ensure the DEVS model captured the
proper behavior and essential parameters. This is an example
of the idea of the model relation.

Fig. 5 shows an overview of our research modeling process.
The SME generated the mathematical models used to create
the conceptual models. Constant two-way communication
involved the SME and the simulation modelers in the
conceptual modeling process. Once acceptable to the SME,
the conceptual models were given to the simulation modelers
for translation into the simulation framework. Once again,
there was constant communication between the conceptual
modeler, the SME and the framework modelers. This circular
modeling process ensured acceptance between all parties.

Fig 5. Research modeling process.

IV. A PROTOTYPICAL POLARIZATION-BASED BB84 PREPARE

AND MEASURE QKD SYSTEM

Consider the model of a prototypical QKD system that uses
a polarization-based, Bennett and Brassard “BB84” prepare
and measure protocol shown in Fig. 6 [40]. The QKD system
comprises an “Alice” subsystem, a “Bob” subsystem, an
authenticated public communications channel, and a quantum
communication channel. Due to the complexity of a QKD
system, we focus our discussion on decomposition of the
Alice subsystem, the Alice quantum module CPG subsystem
to illustrate modeling QKD system components using DEVS.

The Alice subsystem responsibilities include producing and
encoding photons with candidate secret key bits and sending
the photons to the Bob subsystem via the quantum channel.
The Bob subsystem receives the encoded photons and decodes
them to recover the candidate key bits. Alice and Bob
coordinate their system operations by communicating over the
authenticated public channel.
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Fig 6. QKD context diagram showing the QKD system and the bulk
encryptors using the generated key.

A. Alice Subsystem Decomposition

The Alice subsystem contains several subsystems including
a system controller module, a public channel module, a
dedicated QKD module, a quantum module, a clock, and a
True Random Number Generator (TRNG) as shown in Fig. 7.

Fig 7. Alice subsystem decomposition.

The Alice system controller module is responsible for
controlling the Alice subsystem and serves as the master
controller to coordinate operations between Alice and Bob.
The public channel module interfaces with the system
controller module and provides connectivity to the remote

system via the public channel. The dedicated QKD module
controls QKD-specific processing such as error detection and
correction, sifting, and privacy amplification. The quantum
module is responsible for generating the quantum state in
optical pulses before sending them to Bob via the quantum
channel. The clock source provides reference timing for all
synchronous devices. Since the security of a QKD system is a
strong function of the randomness of the numbers it generates,
a TRNG such as the idQuantique Quantis optical random
number generator is typically used to provide the required
source of entropy [41].

B. Alice Quantum Module Subsystem Decomposition

The quantum module decomposes into nine different
subsystems, Table I shows a brief description of each
subsystem function and Fig. 8 illustrates the decomposition.

TABLE I

DESCRIPTION OF ALICE QUANTUM MODULE SUBSYSTEMS

Subsystem Function

Classical Pulse Generator (CPG) Generates a multi-photon pulse
Polarization Modulator Polarizes the photon pulse into the

desired polarization
Electronically Variable Optical
Attenuator (EVOA)

Creates decoy states to mitigate
photon splitting attacks

Fixed Attenuator Converts classical laser pulses to
quantum levels by attenuating to
weak-coherent levels

Optical Security Layer Detects optical probing attacks
Wave Division Multiplexer
(WDM)

Multiplexes signal and timing
pulses

Timing Pulse Generator Generates a timing pulse used for
synchronization

Switch Allows generated pulses to be
directed to the Output Power
Monitor for loop-back testing

Output Power Monitor Monitors the output optical power

Fig 8. Alice quantum module subsystem decomposition showing internal subsystems and components.

C. Alice Classical Pulse Generator Subsystem
Decomposition

The ideal conceptual model of a QKD system specifies
polarization-encoded single photons with the desired bit
and basis. In reality, reliable on-demand single photon pulse
generators are an unrealized technology. Real-world QKD
system implementations instead generate a laser pulse

containing millions of photons and strongly attenuate the
pulse down to statistical sub-photon (quantum) levels.
Within the Alice quantum module, the CPG subsystem
generates the laser pulses and shifts them into a known
polarization. The CPG subsystem contains the components
shown in Fig. 9.
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Fig 9. Classical pulse generator subsystem showing internal components.

The CPG subsystem contains a controller, a laser, an
isolator, an optical polarizer, an optical bandpass filter, a
beamsplitter, a classical detector, electrical interfaces, and
interconnecting polarization-maintaining (PM) optical fiber.
We first discuss the behavior of the subsystem as a whole
and then briefly discuss the behavior of each of the
components contained within the CPG.

D. Individual CPG Component Behavior

1) CPG Controller
The controller is an electrical device containing digital

and analog circuits responsible for controlling the laser and
monitoring the classical detector. It has a bidirectional
electrical interface to the quantum module controller, an
electrical output to the laser, and an electrical input from
the classical detector. It receives commands from the
quantum model controller, sends fire commands to the
laser, and monitors the health of the laser.
2) Laser

The laser is an electro-optical device which contains an
optical oscillator and emits coherent light. It has an
electrical input to receive control messages and an optical
output to emit generated pulses. Within the simulation, the
laser creates optical pulses when it receives a “fire”
command from the controller. The laser generates short-
duration laser pulses (e.g., 1mW peak intensity with a
500ps duration) containing millions of photons. The output
of the laser couples to the input of the isolator via PM fiber.
3) Isolator

The isolator is an optical device with two bidirectional
optical ports that passes light in the forward direction while
significantly attenuating light moving in the opposite
direction. Optical signals arriving at one port propagate to
the other port after a defined propagation delay with the
attenuation based on the propagation direction. The isolator
assures that virtually no light (e.g., reflections or light from
external sources) enters the laser. The output of the isolator
is coupled to the input of the polarizer via PM fiber
4) Polarizer

The polarizer is an optical device with two bidirectional
optical ports allowing light of one polarization to pass while
highly attenuating light orthogonal to the passed light.
Optical signals arriving at one port propagate to the other
port after a defined propagation delay and polarized
depending on the polarizer orientation with respect to the

connected fiber. The output of the polarizer is coupled to
the input of the optical bandpass filter via PM fiber.
5) Bandpass Filter

The bandpass filter is an optical device with two
bidirectional optical ports that passes the optical energy in a
narrow band around the signal wavelength, λS, but strongly
attenuates other wavelengths. This ensures that only the
appropriate signal wavelength leaves the subsystem while
preventing other sources of light from entering the laser.
Optical signals arriving at one port propagate to the other
port after a defined propagation delay and are attenuated
based on the wavelength of the signal. The bandpass filter
output couples to port 1 of the beamsplitter.
6) Beamsplitter

The beamsplitter is an optical device used to split a single
beam of light into two components. It can also be used to
combine two beams of light into one stream. Unlike most of
the optical devices, it has four bidirectional optical ports. In
the splitting configuration, optical signals arriving at one
port are split into two beams, propagating to the appropriate
output ports after a defined propagation delay. Common
splitting ratios are 50:50, 90:10, and 99:1, but devices exist
in almost any ratio. Beams can also be split according to
optical wavelength or polarization.

The beamsplitter passes 99% of the pulse through to port
4, leaving the CPG and connecting to the next quantum
module subsystem as shown in Fig. 9. Meanwhile, port 3
passes 1% of the pulse on to the classical detector via PM
fiber.
7) Classical Detector

The classical detector is an opto-electrical device
containing an optical photodiode and support electronics to
generate an electrical signal proportional to the power
contained in the optical pulse. This signal connects to the
controller which stores this information and checks to see if
it falls below a predefined threshold. If so, the controller
notifies the quantum module controller of an error
condition.
8) Polarization-Maintaining Optical Fiber

PM fiber is an optical component used to interconnect
optical devices. It has two bidirectional optical ports.
Optical signals arriving at one port propagate to the other
port after a defined propagation delay. Attenuation is a
function of the type and the length of the fiber. PM fiber
maintains the polarization of optical signals injected along
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its fast and slow axes.

V. MODELING THE ALICE CLASSICAL PULSE GENERATOR

SUBSYSTEM USING THE DEVS FORMALISM

In this section, we discuss features common to all
components in the quantum optical path, DEVS modeling
of the isolator and the CPG. We selected the CPG as it is
unique in containing many types of components found in
QKD system simulation: electrical, optical, electro-optical,
and opto-electrical.

A. Common Behaviors of Optical Components

All the components that interact with optical signals
share some common traits. These include component state,
losses to optical intensity, deleting weak packets,
environmental ports, and handling multiple pulses. The
following section explains these commonalities.

Each modeled optical component is in one of three states:
normal, degraded, or damaged as shown in Fig. 10. In the
normal state, the component uses a mathematical transform
to generate the resulting normal output pulse(s) of the
component under normal conditions. When in the degraded
state, the component temporarily uses a different transform
to generate the resulting degraded output pulse(s), but
returns to normal after a predefined time period or
condition (e.g. when temperature returns to a normal level).
When in the damaged state, the component permanently
uses a transform to generate the resulting damaged output
pulse(s), if any.

Fig 10. Optical component state transition diagram showing initialization
and three states.

Components change states based on the entering optical
packet power and from the ambient temperature of the
component. If the power in an optical pulse exceeds the
defined degraded optical power threshold, it will
temporarily enter the degraded state. Similarly, if the power

in the optical pulse exceeds the defined damage optical
power threshold, it will permanently enter the damaged
state. The ambient temperature can also result in a
component entering a degraded or damaged state.

When an optical signal arrives at an optical component, a
small portion of the light reflects opposite to the light
propagation direction. The return loss parameter of the
component determines the reflected amount, depending on
different experimental frames. Certain simulation studies
may require the capability to accurately represent
reflections, while not desired in other studies. Therefore, we
added the capability to turn reflections on and off for each
component, reducing the number of events when not
needing this fidelity. The pulse not only loses intensity to
reflections, a small amount is lost when entering the
component. This insertion loss parameter may also be
turned off and on.

As the optical pulses suffer losses propagating through
the system, they are deleted when the optical power drops
below a defined minimum threshold. This reduces the
number of events and prevents an infinite number of
reflections bouncing between two reflecting components.
Since fiber couples the optical components together, we
chose to implement this function in the fiber.

When dealing with a series of single pulses, as is the case
in the normal operation of a QKD system, an optical
component typically will have a single pulse propagating
through it. However, a robust simulation framework must
allow components to be able to handle multiple optical
pulses simultaneously arriving and/or propagating through
it. Therefore, optical components need a queue to store the
multiple pulses. The queue contains port-value pairs and
any metadata required to process the pulse. At a minimum,
the metadata consists of the arrival port and the time
remaining before the transformed optical pulse propagates
out of the component. As time transpires in the model, a
timer ensures the next transformed pulse processes at the
appropriate time and, based on the current component state,
the appropriate transform generates the output pulse.

Finally, each component has a separate environmental
port so the simulation controller can send environmental
messages to mimic temperature variations or physical
perturbations (e.g., vibration) in the system. The
temperature state has no effect on reflections: a component
will reflect optical packets regardless of its current state.

B. Basic Design of a DEVS Model for the Isolator

In this section, we discuss how to model the isolator
component using the DEVS formalism. The isolator is
representative of most simple optical components and
shares their basic behaviors. The isolator allows light to
pass in the forward direction while significantly attenuating
light moving in the opposite direction. External, internal,
confluence, output and time advance functions represent the
device, as with all DEVS models [42]. These functions
contain logic governing how the component responds to
inputs and what and when it will output. DEVS uses a



9

phase within a state as a “marker” to keep track of internal
functions within the state. Fig. 11 shows the DEVS phase
transition diagram for the isolator and shows the phases
(rectangles), the transition arcs (arrows) and any notes for
the component.

Fig 11. Isolator DEVS phase transition diagram.

The isolator phase transition diagram shows the full state
description at the top, which includes the current phase
(“Passive”, “Reflect”, “Respond”), the current time advance
(σ), variables with names store, temperature, overtemp,
overpower, interruptRespond and the port-value pairs in the
queue. Taken together, these variables allow construction of
the full state of the isolator.

The phase transition diagram shows a Passive phase,
where the component awaits input. This phase has a time
advance (ta) of infinity, meaning it will never reach the
point of having an output or internal transition. Once an
external event occurs, either an optical packet or an
environmental message arriving, the device responds
through an external transition. A self-loop labeled with
“dext ENV/check overtemp” (external environmental)
represents received environmental messages. The device
stores the new temperature and checks against the damaged
or degraded temperature thresholds, setting the overtemp
state variable to true if reaching either threshold. The time
advance for the follow-on phase (e.g., returning back to
Passive) is on the other side of the arc; in this case showing
“ta=∞” as the time advance for the Passive phase is
infinity.

If an optical packet arrives, different external transition
logic executes, this time checking to see if the arriving
optical power exceeds the degraded or damaged thresholds.
Since DEVS collects all messages arriving at the same time
into a single message bag as an unordered collection, the
external transition from the Passive phase iterates through
the bag, checking for the overpower conditions and placing
the events in the queue, finally selecting one at random for

reflection. Each optical packet enters the queue as event xi
with some time ta, the time advance the packet will remain
in the component. The only choices for Passive phase
external events are an environmental or optical message;
the isolator ignores any other event that arrives.

The transition arc between the Passive and Reflect
phases with “dext OPT/check overpower; insert (xi,ta)”
represents the Reflect phase external optical event and
shows the ta for the Reflect phase is equal to zero. This
phase has two external optical events, once coming from
the Passive phase and one from the Respond phase.

In DEVS, the output function λ executes only before an 
internal transition. The Passive phase does not have an
output function, as the ta for the phase is infinity, meaning
there will never be an internal transition. The “λ =0” in the 
Passive phase rectangle shows this. The Reflect phase
output is the optical packet reflection and the Respond
phase output is the propagated optical packet.

The Reflect phase has two possible choices for the
internal transition, dint, with the note at the bottom
specifying the self-loop “dint/insert(xi,ta)” executes only
when multiple optical packets arrive at the same time. If
more packets need reflecting, the self-loop internal
transition is called. The Reflect phase checks the queue for
any packet not yet reflected, selects it and emits it. As noted
before, the time advance of this phase is zero, so this takes
place in instant simulation time until complete. This follows
the optical SME guidance that reflections must take place
before any other operation.

Once done with all reflections, the Reflect phase enters
the other internal transition, which removes the queued
packet with the shortest time left in its time delay and sends
it to the Respond phase. The transition between Reflect and
Respond phases labeled “dint/get queue(min); set ta” gets
the minimum value in the queue and sets the time advance.
The time advance shown on the other side of the transition
arc is “time delay” indicating a variable time for the
selected packet, this becomes the time advance for the
Respond phase.

The Respond phase holds the packet for the time delay,
usually equal to propagation delay of the device (the time it
takes for the optical packet to enter one side and emit out
the other). In this phase, we see both internal and external
transitions. Since the time advance of the phase is not equal
to zero, it is susceptible to external event interruption. As
the isolator responds to both environmental and optical
external events, it needs transitions for both. For the
environmental external event, it is the same for the Passive
phase: a check and return to the point of interruption shown
by “dext ENV/update queue ta; check overtemp.” The
difference here is the time spent in the phase, equal to e,
subtracts from every packet in the queue and the optical
packet transitioning the phase. This is shown by the “update
queue ta” on the dext ENV transition arc.

If an optical packet arrives, the “dext OPT/update queue
ta; insert(xi,ta)” transition arc leaves the Respond phase to
the Reflect phase, as it follows the rule all reflections
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happen before anything else. Here we note the “update
queue ta” happens again and the queue stores the new
packets with the “insert(xi,ta)”. The component performs
the Reflect phase for the new packets, then returns to the
Respond phase.

But what happened to the packet that was in the Respond
phase? This is where we use the interruptRespond state
variable. This sets to true for an interrupted phase so the
logic in the Reflect phase knows to return to the Respond
phase without removing a new packet from the queue, with
a new time advance equal to the time remaining for that
interrupted packet. Back in the Respond phase, the packet
remains for the remainder of the time delay, then the output
function propagates the packet, as indicated by the “λ=
propagation” notation under the name of the phase. The
internal dint function has two choices: if the queue does not
equal zero, it draws the minimum-time packet out of the
queue for propagation; if the queue is empty, it advances to
the Passive phase to await the next event.

Interrupted packets present a design difficulty, as each
component changes a propagating packet during the output
function, rather than during input. This decision ensures
state changes from an environmental or control event
affects the propagating packet, but also allows light
entering the component behind the packet to affect it. The
change to one packet is a minor effect when compared to
the large amount of packets that travel through components
and the simulation, on the order of 1x108 packets per
second. This design decision came from a discussion
between the modeler, an optical physics SME, and the end
user. Here we see the simulation design process in action
where all parties involved agree to the model choices.
Getting agreement on the necessary accuracy of the model
is a way to increase the validity of the simulation.

The timescale chosen for the model allows for several
design choices. Using the picosecond as the base time
allows for discrete events to model continuous-time events,
as mentioned earlier. This small period means that
components only affect a few optical packets during each
time unit (typical propagation time for a component is five
picoseconds). For example, we chose to change the
temperature of a device instantly. This is not true to the real
system but the team decided this fast temperature change
would affect relatively few packets and simplifies the
design of the component. Once again, the users, modelers

and optical SME accepted and agreed on this design
abstraction. The timescale allows for the assumption that
only one control and environmental message arrives to
these ports at any given time, again simplifying the design.

The Appendix contains the complete DEVS pseudocode
for the isolator.

C. DEVS Model of the Classical Pulse Generator

Since discussing the isolator design in-depth, we can
look at the rest of the CPG components in comparison. The
isolator design follows the base design for all optical
components with a Passive phase, a Reflect phase and some
form of a Respond phase. The isolator, polarizer, bandpass
filter and the beamsplitter all share this common design.
The beamsplitter differs by having four optical ports rather
than two and splits an incoming optical into two
propagating packets.

The laser and classical detector differ by having electric
circuits in the device. They have an electric control port for
control messages and a fourth phase to update the control
logic within the device. The laser is unique as the only
device to create optical pulses and the classical detector
receives optical pulses and outputs a control message to the
coupled controller. Response to optical pulses and
environmental messages is the same in these two devices.

The PM fiber is a simple device with Passive and
Respond phases because of the design decision that fiber
does not create reflections when receiving optical pulses. It
responds in the same manner as the isolator to
environmental messages and its Respond phase works the
same. The largest difference is the fiber deletes optical
pulses if their power is below a specified limit.

The DEVS CPG model is a coupled model meaning is it
comprised of atomic models. Fig. 12 shows the boundary of
the CPG and the components. The CPG has environmental
and control input and output ports on the left and optical
input and output ports on the right. The CPG model has no
functions or phases like other DEVS models, but because of
DEVS composability and closure properties, it behaves as
an atomic model. The inputs from external CPG ports
connect to input ports on internal components and the
output from one or more internal components connects to
the CPG output ports. Internal components connect through
component input and output ports.

Fig 12. Conceptual DEVS architecture of the CPG.
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The optical path starts with the laser and ends with the
PM fiber linked to the CPG optical output. The primary
travel direction for optical packets is indicated by the larger
arrowhead in Fig. 12. Each of the optical components has a
bidirectional optical connection shown by the arrows
between each component. This is because the DEVS
formalism decomposes a bidirectional connection into two
separate unidirectional connections. The PM fiber
connected to the beamsplitter output sends the optical
packet to the CPG external port which sends the packet to
the next subsystem. Each component has a one-way
environmental port shown by the dotted-dashed lines. These
ports connect to higher functions that send temperature
updates to each component. Finally, there are connections
from the CPG external and internal control ports to the
controller and control port connections between the
controller and laser and classical detector and controller.

The CPG controller is a simple abstraction of the electric
circuits connecting devices in the CPG to the quantum
controller. Its basic functions include receiving control
messages from higher functions, passing messages to the
laser and responding to status requests from higher
functions. It receives the output control messages from the
classical detector and stores detection data. It has DEVS
pseudocode and functions as an atomic model.

Table II lists the messages from the quantum module
controller to the CPG controller, Table III lists the messages
from the classical detector to the controller, Table IV lists
the messages sent by the CPG controller to the quantum
module controller, and Table V lists the messages from the
controller to the laser.

TABLE II

MESSAGES RECEIVED BY THE CPG CONTROLLER FROM THE QUANTUM

MODULE CONTROLLER

Input Messages Response
CPG_ENV Set the internal CPG controller temperature
CPG_RESET Resets the CPG controller and clears

variables
CPG_STATUS_
REQUEST

Sends the CPG controller status and stored
magnitude value

CPG_FIRE_ LASER Sends a “Fire” command to the laser

TABLE III

MESSAGES RECEIVED BY THE CPG CONTROLLER FROM THE CLASSICAL

DETECTOR

Input Messages Response
CD_DETECTION Store the magnitude of the detected laser

pulse

TABLE IV

MESSAGES SENT FROM THE CPG CONTROLLER TO THE QUANTUM

CONTROLLER

Output Messages Content
CPG_ACK Response to a Reset message

CPG_STATUS Response to a Status Request message

TABLE V

MESSAGES SENT FROM THE CPG CONTROLLER TO THE LASER

Output Messages Content
CPG_LASER_ FIRE Command to fire the laser one time

The DEVS model of the CPG does not have the external,
internal, output, confluence and time advance functions like
an atomic model. Instead, the formalism specifies a set of
all inputs, a set of all outputs, a list of internal model
names, a list of the atomic models that comprise the
coupled model, a list of external input and output
connections and a list of internal component input and
output connections. The Appendix contains the DEVS
pseudocode for the CPG and its controller.

VI. DISCUSSION

A. Discoveries Made During the Modeling Process

Discoveries made during the conceptual modeling
process fall into two categories: the modeling relation and
the simulation relation. Recall the modeling relation is a
measure of how close the model is to the source system and
the simulation relation is a measure of how well the
simulation executes the conceptual model instructions.

1) The Modeling Relation –
The original DEVS model failed to consider the change

in attenuation in the EVOA happens over a time period
determined by the device rate-of-change and the difference
between the new and old attenuation values. Discussion
with the optical SME uncovered this difference and lead to
changing the DEVS model to an accuracy acceptable to the
research team.

The problem with the EVOA identified the same
condition with the polarization controller. In this case, it
highlighted not only a necessary change in the components,
but a change in the mathematical models for these
components, as the necessary parameters were not in the
original models.

Both of these rate-of-change problems necessitated a
change to the MS4ME model that was not in line with pure
DEVS theory, due to the current design of MS4ME. After
consultation with the MS4 Systems modeling team,
including Dr. Zeigler, we found an acceptable fix within
MS4ME for the rate-of-change issue.

The DEVS modeler noticed the current QKD
demonstration architecture uses only the polarization-
independent version of the isolator, but other architectures
use the polarization-dependent version. The optical SME
realized the need to provide the mathematical model for the
polarization-dependent version of the device for the DEVS
model. The updated math model permitted the DEVS
modeler to update the conceptual model to apply to both
forms of the isolator.
2) The Simulation Relation –

Identifying the change to the EVOA DEVS model made
the software modelers aware that these components in the
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proof-of-concept simulation had the same “instantaneous
change” flaw. Using the updated conceptual model and
input from the SME allowed for updates to the simulation
code to capture the proper component rate-of-change.

Early in the DEVS modeling of pulsed light, we
recognized the proof-of-concept simulation needed
significant changes to handle continuous-wave light. The
simulator models short-duration pulses using picosecond
scales, but continuous-wave light cannot use the same
abstraction method, requiring changes to the QKD
simulator.

In the DEVS model, changes to the component during
each optical packet propagation time affect the packet as it
propagates through the component. Conversely, the QKD
simulation receives a packet and schedules it for a future
propagation. Since the component could change during the
time before propagation, the scheduled optical pulse may
not display proper behavior. This may require a change to
how the QKD simulator handles optical packets. This
speaks to the composability of DEVS and having well-
defined behavior in the models.

B. Did I Increase the Validity of qkdX?

The concept of validity is not one of percentages or finite
measurements. As defined earlier in this paper, validity is
an expression of how difficult it is to differentiate between
the model and source system outputs for the given
experimental frame. Sargent suggests that “acceptance” of
the model’s accuracy for its intended purpose is the
measure of conceptual model validity. Further he states that
each submodel and the overall models need evaluation to
determine if they are correct for the purpose of the model
[19]. Two of the primary techniques for this are face
validation and traces.

Face evaluation is where experts in the problem area
evaluate the conceptual model to determine if it is correct
and reasonable, usually by examining flowcharts or
graphical models or a set of model equations [19]. In this
research, we have research partners who are experts in
quantum mechanics, QKD, physics and optics that
constantly review the optical models and provide feedback
and corrections as necessary.

Traces involve tracking entities through each atomic and
coupled model determining if the logic and behavior
associated with each is proper while maintaining necessary
accuracy throughout [19]. The MS4ME simulator provided
visual representations of the components as they transited
through the models and produced detailed output to check
the accuracy of the models during these tests.

As the models developed, the SMEs and research team
provided feedback for correction, drawing each model
closer to the expected system behavior, until each was
deemed “acceptable,” as discussed in Section III.a.2. Using
the definitions of validity discussed earlier, this effort
provided models that captured the required behavior and
met the required accuracy, and so are considered “valid”
with the understanding this validity only applies to the
models built for the specific experimental frame. Any

change to the experimental frame lessens or negates the
validity of the models.

C. Benefits of Using DEVS

1) Mathematically-proven Formalism for Creating a
Conceptual Model

With the understanding that a DES is a finite state
machine with a set of triples of inputs, states, and outputs to
describe each state; DEVS captures these in a logical
manner and provides a formal language to describe the
conceptual model. DEVS uses set theory to prove its
applicability to DES models [43].
2) Tool-independent Form of the Model

One of the central ideas of DEVS is the model is the
bridge between the source system and the simulation. There
is no direct connection between the source system and
simulation, meaning the conceptual model created using
DEVS is applicable to any simulation, if the simulation is
capable of implementing the DEVS-specified behavior. A
DEVS conceptual model is independent of a specific
simulation.
3) Closure Under Coupling Within the Formalism

DEVS allows the modeler to build hierarchal systems
from smaller subsystems and components. This property,
also called composability, ensures DEVS models connect in
any manner, produce expected behavior and the coupled
models are behaviorally equivalent to atomic models.
Together with tool-independence, these properties allow for
using repositories of models in a “mix and match”
environment.
4) Canonical Understanding of the Model Behavior

DEVS forces the modeler to carefully consider all facets
of desired behavior within the model, including all inputs,
outputs, and timing segments. This greatly reduces or
eliminates emergent or unexpected behavior. By delving
into the source system and creating a set of atomic models
not further decomposable, the modeler creates a deep
understanding of the system usable in any modeling
simulation.
5) Well-defined Behavior in the Conceptual Model

Having a canonical understanding enables the modeler
create a set of rules for each atomic and coupled model,
creating well-defined behaviors. This behavior ensures the
model never enters a situation where it moves into a passive
state without a way to become active (unless this is a
behavior the modeler desires). DEVS defines the conditions
necessary to ensure this well-defined behavior.

D. Limitations of Using DEVS

1) Applying DEVS to Complex Components
Much of the written material available for DEVS in

textbooks and papers provides only simplistic examples.
Even the more complex examples available through
RTSync provided little guidance to model the optical
components. This complexity led this researcher to contact
Dr. Sarjoughian, co-director of ACIMS, for advice on using
DEVS for our unique, innovative models. He provided
suggestions on how to use DEVS to model the timing issues
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at the picosecond scale and capturing wave and particle
behavior.

It can be difficult to verify the DEVS pseudocode to the
source system behavior, especially true when modeling
predicted or notional systems. Since our demonstration
QKD system is built from real optical components but in a
notional architecture, we had the difficulty of verifying the
component behavior. Our solution to this problem greatly
increased the DEVS work by necessitating programing the
pseudocode twice, once into MS4ME, and then into the
selected qkdX simulator.
2) DEVS and Processes and Information Flows

DES models are increasing in complexity and being used
in new information-centered fields. DEVS was not created
for these types of problems and has difficulty expressing
processes and information flows within the formalism.
Heretofore, the solution has been to create subsets of DEVS
to handle the specific problem. This is leading to a
fragmentation of the formalism and makes it hard to
determine which form of DEVS is appropriate for the
modeling problem.
3) Not Visual Without Using a DEVS Simulator

DEVS is a set of language rules to formally describe a
problem. There is no visual component to DEVS unless the
modeler uses a DEVS-compliant simulation program.
While very useful for being tool-independent, this requires
the modeler to use that particular simulator’s functions,
which may not necessarily conform completely to DEVS,
as seen with the EVOA timing issue and MS4ME.

VII. CONCLUSIONS

The intent of this research is to show how the DEVS
formalism could increase the validity of the qkdX
simulation for its designed purpose. The question of what is
sufficiently accurate is the question of validity, as noted by
Zeigler and Robinson. When used properly, DEVS
increases the validity of simulation, for its intended
purpose. No simulation is valid for all purposes, so it is
important understand Zeigler’s idea of the experimental
frame so to carefully limit discussing validity to an intended
purpose.

To test our hypothesis, we created DEVS models for
atomic components in the Alice CPG and programmed
them into a DEVS-compliant simulator to check their
correctness. The SMEs and the research team reviewed the
results (face validity) and checked the output values against
the required accuracies as events moved through the models
(tracing). After correction, the atomic models were used in
a coupled model, the CPG, demonstrating the hierarchal
properties of DEVS.

Using DEVS allowed the team to refine the qkdX
simulation, correcting several errors and aiding the research
team in recognizing missing behaviors within the
simulation. DEVS increased the validity of qkdX optical
pathway by aiding the team in making qkdX simulation
behavior closer to the source system behavior, showing
DEVS can be used to increase validity by creating optical

component models fit for the purposes of the simulation
and acceptable to the community of developers and users.

While having a large learning curve, DEVS proved to be
a valuable tool for our research.

VIII. DISCLAIMER

The views expressed in this paper are those of the authors
and do not reflect the official policy or position of the
United States Air Force, the Department of Defense, or the
U.S. Government.
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APPENDIX

A. Isolator DEVS Pseudocode

DEVSIsolator = (XM, YM, S, δext, δint, δcon, λ, ta)

External Transition Function:

δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =
(“reflect”, 0, store, temperature, overtemp, overpower,interruptRespond, queue.x1..xn)

if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}
for messagebag != null

current = messagebag_first()
if current.value.power > damaged.power
overpower = “Y”

insert_event_q(current)
remove_event_m(current)

queue.current = queue_first(queue)
reflect = (queue.current.p), calcReflected(queue.current.v))
mark_reflected(queue.current)
interruptRespond = “N”

(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}

update_delay(queue)
for messagebag != null

current = messagebag_first()
if current.value.power > damaged.power
overpower = “Y”

insert_event_q(current)
remove_event_m(current)

queue.current = queue_need_reflected()
reflect = (queue.current.p), calcReflected(queue.current.v))
mark_reflected(queue.current)

interruptRespond= “Y”
timeLeftRespond = timeLeftRespond - e

(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
if phase = “passive” and p = “EnvIn”
temperature = messagebag.temperature
if temperature > damage.temp

overtemp = “Y”

(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
if phase = “respond” and p = “EnvIn”
update_delay(queue)
timeLeftRespond = time.delay- e
temperature = messagebag.temperature
if temperature > damage.temp
overtemp = “Y”

time.delay = timeLeftRespond

(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
otherwise;

Internal Transition Function:

δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. (pn,vn))) =

(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))
if phase = “reflect” and need.reflect != null
need.reflect = queue_need_reflected()
current = need.reflect
reflect = (current.p), calcReflected(current.v))
mark_reflected(current)

(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
if phase = “reflect” and need.reflect = null
need.reflect = queue_need_reflected()
if interruptRespond = “N”

current = queue_min()
time.delay = current.time.delay
if InPort = “OptIn1”
outputPulse = calcForward(current.v, temperature, overtemp, peakpwr, overpwr)
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outputPort = “OptOut2”
if InPort = “OptIn2”
outputPulse = calcReverse(current.v, temperature, overtemp, peakpwr, overpwr)
outputPort = “OptOut1”

timeLeftRespond = propagation delay
else
time.delay = timeLeftRespond

(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
if phase = “respond” and size > 0
update_delay(queue)
size= queue_size()
current = queue_min()
time.delay = current.time.delay
if InPort = “OptIn1”
outputPulse = calcForward(current.v, temperature, overtemp, peakpwr, overpwr)
outputPort = “OptOut2”

if InPort = “OptIn2”
outputPulse = calcReverse(current.v, temperature, overtemp, peakpwr, overpwr)
outputPort = “OptOut1”

interruptRespond= “N”

  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)
if phase = “respond” and size = 0

size= queue_size()

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x);

Output Function:

λ(phase, σ, store, temperature, overtemp, overpower) =
(reflect.p, reflect.v)

if phase = “reflect”

(outputPort, outputPulse)
if phase = “propagate”

 ∅ (null output)
otherwise;

Time advance Function:

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;

B. Classical Pulse Generator Controller DEVS Pseudocode

DEVSCPGcontroller = (XM, YM, S, δext, δint, δcon, λ, ta)
`
External Transition Function:

δext(phase, σ, store, temperature, overtemp, overpower, lastCDPower, e, ((pi,vi),…. (pn,vn))) =
(“respond”, 0, store, temperature, overtemp, overpower, lastCDPower)

if phase = “passive” and p = “CtrlIn1”
ctrlOutput = ctrlMsg(store)
if ctrlMsg.status = “init” or “get status”

outputPort = “CtrlOut1”
if ctrlMsg.status = “fire laser”

outputPort = “CtrlOut2”

(“passive”, 0, store, temperature, overtemp, overpower, lastCDPower)
if phase = “passive” and p = “CtrlIn2”
lastCDPower = messagebag.magnitude

(“passive”, ∞, store, temperature, overtemp, overpower, lastCDPower)
if phase = “passive” and p = “EnvIn”
temperature = messagebag.temperature
if temperature > damage.temp

overtemp = “Y”

(phase, σ – e, store, temperature, overtemp, overpower, lastCDPower)
otherwise;
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Internal Transition Function:

δint(phase, σ, store, temperature, overtemp, overpower, lastCDPower) =
  (“passive”, ∞, store, temperature, overtemp, overpower, lastCDPower)

if phase = “respond”

Confluence Function:

δcon(s, ta(s), x) = δext(δint(s), 0, x);

Output Function:

λ(phase, σ, store, temperature, overtemp, overpower, lastCDPower) =
(output.port, output.pulse)
if phase = “respond”

(outputPort, ctrlOutput)
if phase = “respond”

∅ (null output)
otherwise;

Time advance Function:

ta(phase, σ, store, temperature, overtemp, overpower, lastCDPower) = σ;

C. Classical Pulse Generator Coupled Model Pseudocode

DEVSCPG = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC)

InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn3”, “OptIn4”, “EnvIn”}
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn3”, v), (“OptIn4”, v), (“EnvIn”, v) |v ∈ V}

OutPorts = {“CtrlOut1”, “CtrlOut2”, “OptOut1”, “OptOut3”, “OptOut4”}
Y = {(“CtrlOut1”, v), (“CtrlOut2”, v), (“OptOut1”, v), (“OptOut3”, v), (“OptOut4”, v) |v ∈ V}

D = {controller, laser, isolator, polarizer, bandpass, beamsplitter, classicaldetector, PMfiber}
Md = Mcontroller, Mlaser, Misolator, Mpolarizer, Mbandpass, Mbeamsplitter, Mclassicaldetector, MPMfiber

EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, “EnvIn”),(laser, “EnvIn”)), ((N, “EnvIn”),(isolator, “EnvIn”)), ((N,
“EnvIn”),(polarizer, “EnvIn”)), ((N, “EnvIn”),(bandpass, “EnvIn”)), ((N, “EnvIn”),(beamsplitter, “EnvIn”)), ((N, “EnvIn”),(classicaldetector, “EnvIn”)), ((N,
“EnvIn”),(PMfiber, “EnvIn”)), {((N, “OptIn1”),(PMfiber, “OptIn2”))}

EOC = {((PMfiber, “OptOut2”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”))}
IC = {((controller, “CtrlOut2”), (laser, “CtrlIn”)), ((laser, “OptOut1”),(PMfiber, “OptIn1”)), ((PMfiber, “OptOut2”), (isolator, “OptIn1”)), ((isolator “OptOut2”),
(PMfiber, “OptIn1”)), ((PMfiber, “OptOut2”), (polarizer, “OptIn1”)), ((polarizer “OptOut2”), (PMfiber, “OptIn1”)), ((PMfiber, “OptOut2”), (bandpass, “OptIn1”)),
((bandpass “OptOut2”), (PMfiber, “OptIn1”)), ((PMfiber, “OptOut2”), (beamsplitter, “OptIn1”)), ((beamsplitter, “OptOut4”),(PMfiber, “OptIn1”)), ((beamsplitter,
“OptOut3”),(PMfiber, “OptIn2”)), ((PMfiber, “OptOut1”),(classicaldetector, “OptIn1”)), ((classicaldetector, “CtrlOut”),(controller, “CtrlIn2”)), ((classicaldetector,
“OptOut1”), (PMfiber, “OptIn1”)), ((PMfiber, “OptOut2”), (beamsplitter, “OptIn3”)), ((PMfiber, “OptOut1”), (beamsplitter, “OptIn4”)), ((beamsplitter,
“OptOut1”),(PMfiber, “OptIn2”)), ((PMfiber, “OptOut1”), (bandpass, “OptIn2”)), ((bandpass, “OptOut1”),(PMfiber, “OptIn2”)), ((PMfiber, “OptOut1”), (polarizer,
“OptIn2”)), ((polarizer, “OptOut1”),(PMfiber, “OptIn2”)), ((PMfiber, “OptOut1”), (isolator, “OptIn2”)), ((isolator, “OptOut1”),(PMfiber, “OptIn2”)), ((PMfiber,
“OptOut1”), (laser, “OptIn2”))}
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8. Simulation Results and Analysis

The purpose of this chapter is to present the results of the research by discussing

the qkdX QKD simulation framework, the model creation process, providing samples of

simulation output and analyzing the output. Several data tables provide summaries for the

components and coupled submodules.

8.1 The QKD Simulation Framework (qkdX)

The AFIT QKD research team developed a QKD simulation framework (qkdX) to

enable efficient modeling of QKD systems for performance analysis and characterization.

Design features of qkdX include: a hybrid discrete-continuous modeling approach to

more accurately capture quantum effects; a modular design to allow quick and efficient

changes to the system under study; parameterized components allowing for multiple

varying instances; a composable system allowing for hierarchal construction of complex

systems from simple components.

This capability allows users (e.g., engineers or analysts) to more quickly model

QKD systems, enabling security and performance analysis, including:

 Model and analyze competing QKD implementations (e.g., variations in hardware

components or software processes)

 Increase understanding of the security-performance design and implementation

trade space for realized QKD systems

 Determine the impact of non-idealities and practical engineering limitations in

QKD architectures

 Identify interactions between physical (quantum phenomenon, temperature, and

disturbances) and system-level interactions (hardware designs, software

implementations, and protocols)

 Propose and assess new QKD implementations or protocols
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 Study the security implications of different protocol modifications and system

architectures

 Model performance characteristics of free-space and space-based QKD systems

 Maximize research development efforts to improve implementations (e.g., should

one invest research capital in on-demand single-photon sources or improved

single photon detectors?)

The framework is designed with considerations to support multiple qubit encoding

schemes (i.e., polarization-based, phase-based, and entanglement), multiple protocols

(e.g., BB84, SARG04, E92), and various QKD applications (e.g., buried optical fiber,

terrestrial directional free-space optical link, and multiplexed transmissions). Initially, the

framework was used to model a notional polarization-based, prepare-and-measure BB84

terrestrial fiber QKD system. This research constructed and tested the conceptual models

for the optical path components necessary for BB84 system.

8.2 Component Modeling

The process for creating each coupled and atomic model for the reference

architecture consisted of multiple steps. Appendix B has a detailed description of model

creation and testing but from an overview perspective, the process creating and testing

the optical models consisted of:

1. Optical SME created a mathematical model of the component

2. Use the mathematical model to create a component conceptual model

3. Create DEVS pseudocode to capture the behavior and timing aspects

4. Create MS4ME models using the DEVS pseudocode

5. Test the MS4ME models to ensure proper behavior and timing

6. Share results with optical SME throughout the steps to check models

Each component model started with a mathematical model from the optical SME. A

description of the component based on the mathematical model, commercial data sheets
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and academic literature provided the basic understanding needed for the conceptual

model. The conceptual model and terse uses cases for the component lead to a series of

English-language rules describing the high-level behavior of the component and these

were captured graphically in a phase transition diagram. Event-trace diagrams, in the

form of state tables, provided a written version of the phase changes shown in the phase

transition diagram.

DEVS pseudocode captured the identified component behavior and timing using

the preceding diagrams, rules and use cases. The pseudocode was programmed into the

DEVS-compliant MS4ME simulator with the output captured for later evaluation. After

manually checking the component output against the mathematical model and expected

behavior in the DEVS pseudocode, the MS4ME models were completed after multiple

iterations of testing and correction, and then used to construct the coupled submodules in

MS4ME.Table 2 lists the appendix containing the related documents for each component

and coupled submodule.

Table 2. List of Modeled Components and Submodules.
Appendix # Component Appendix # Component

D Bandpass Filter P Pulse Modulator
E Beamsplitter Q Polarizing

Beamsplitter
F Circulator R SM Fiber
G Optical Photodiode

(Classical Detector)
S Optical Switch

H EVOA T WDM
I Fixed Attenuator U CPG Module
J Half-wave Plate V PM Module
K In-line Polarizer W DSG Module
L Isolator X CTQ Module
M Laser Y OSL Module
N PM Fiber Z TPG Module
O Polarization Controller AA OPM Module
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Each optical component was tested by sending inputs into the component,

capturing the output, and evaluating the output line-by-line to check behavior and timing.

Each component had each of its input ports (optical, environmental (env), and/or control

(ctrl)) tested singly, then in different combinations of ports and input messages. To test an

optical port, an optical message is injected into that port when the component is in

Passive or Respond phase. This tests the component behavior when it is not active and

awaiting input and tests the behavior when the component is interrupted during message

processing. Control messages work in the same way, but force the component to begin

behavior to react to the contents of the messages. Environmental packets force an

immediate response to the change in temperature, possibly changing the properties of the

component if it is damaged or degraded by the new temperature. All identified errors

were corrected and the component retested until it functioned properly for each test case.

Once the component completed testing, the component documentation and results went to

the optical SME for review.

Table 3 summarizes these tests by listing the component on the left and the

number and type of tests across the top. Each component is in either the Passive or

Respond phase when reacting to inputs as noted at the top of each table. Each box shows

the number of tests exercising the particular type of port. The first column lists the total

number of tests performed on a component; successive columns list the number of those

tests that exercise a particular port (optical, ctrl, or env) and the number of single or

multi-port tests, with the final column listing the number of math-specific tests. These

math tests were created by the optical SME to exercise the early demonstration QKD

simulation and added in the MS4ME code for possible future work in comparing the
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conceptual models to the qkdX framework (see chapter 7 for a discussion on this

framework).

Table 3. Summary of Component Behavior Testing.
Passive Phase Respond Phase

total tests optical
ports

ctrl
port

env
port

single
port

multiple
port

math
tests

total
tests

optical
ports

ctrl
port

env
port

single
port

multiple
port

math
tests

Bandpass Filter 21 20 0 13 5 16 4 21 21 0 13 4 17 0

Beamsplitter 33 28 0 21 9 24 6 33 33 0 21 8 25 0

Circulator 27 26 0 17 6 21 6 27 27 0 17 6 21 0

Classical
Detector

21 14 14 13 5 16 7 21 21 14 13 1 20 0

EVOA 30 24 13 18 6 24 7 22 22 9 11 2 19 0

Fixed
Attenuator

21 20 0 13 5 16 7 21 21 0 13 4 17 0

Half-wave
Plate

21 20 0 13 5 16 8 21 21 0 13 4 17 0

In-line
Polarizer

49 20 0 13 5 16 7 21 21 0 13 4 17 0

Isolator 49 20 0 13 5 16 7 21 21 0 13 4 17 0

Laser 21 14 14 13 5 16 7 21 21 15 13 2 19 0

Optical Switch 35 29 14 19 7 28 8 27 27 10 12 2 25 0

PM Fiber 21 20 0 13 3 18 7 21 21 0 13 4 17 0

Polarization
Controller

30 24 13 18 6 24 8 22 22 9 11 2 20 0

Polarization
Modulator

30 24 13 18 6 24 8 22 22 9 11 2 20 0

Polarizing
Beamsplitter

33 28 0 21 9 24 7 33 33 0 21 8 25 0

SM Fiber 21 20 0 13 3 18 7 21 21 0 13 4 17 0

Wave Division
Multiplexer

27 26 0 17 4 23 7 27 27 0 17 6 21 0

8.3 Coupled Submodule Modeling

The process for creating each coupled submodule used the same process in

creating the components with one major difference. Each coupled model uses the

prototypical demonstration architecture as a starting basis (see chapter 7), rather than a

mathematical model. Under DEVS, a coupled model does not have its own logic or

behavior, but rather serves as a repository of atomic models (see the DEVS code for the

coupled models in each of the appendices U-AA). Some coupled submodules have a
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simple controller component that represents the logic necessary to control any opto-

electrical devices within the submodule. Each of these controllers has typical DEVS

atomic behavior.

Each coupled submodule was tested by sending messages to the submodule and

using the operational graphics of the MS4ME simulator to track the progress of the

message through the submodule. The primary purpose of the test cases was testing the

ability of the coupled submodule to receive messages, pass them internally to the

submodule controller and pass internal output to external ports. The controller processed

these input messages and passed an appropriate message to the controlled opto-electrical

component. The control message passed to each coupled submodule depended on the

internal components.

1. CPG submodule – control message fires signal laser
2. PM submodule – control message changes polarization of polarization controller
3. DSG submodule – control message changes attenuation of EVOA
4. CTQ submodule – control message changes attenuation of EVOA
5. OSL submodule – no control message to change internal settings
6. TPG submodule – control message fires timing laser
7. OPM submodule – control message changes optical switch position

The exceptions for the test cases were the CPG and the OSL. The CPG did not

have a test case to inject an optical packet as the CPG is the module that creates the

optical pulse. The OSL had one less control message as its “controlled” device is the

classical detector, which only sends data to the controller, and does not accept input

control message

These test cases led to iterations of testing and correction (see appendix B for detailed

descriptions). All the errors identified in the coupled submodules were problems with
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coding the controllers, as the atomic components functioned properly during coupling.

See Table 4 for a summary of these tests.

Table 4. Summary of Coupled Submodule Behavior Testing.

Test Type
total
tests

optical
port

ctrl
port

env
port

Classical Pulse Generator 4 0 3 1
Polarization Modulator 5 1 3 1
Decoy State Generator 5 1 3 1
Classical To Quantum 5 1 3 1
Optical Security Layer 4 1 2 1
Timing Pulse Generator 5 1 3 1
Optical Power Monitor 5 1 3 1

8.3.1 CPG Testing

In the following figures, Figure 2 is the CPG architecture diagram, Figure 3 is the

high-level test frame and Figure 4 shows the exploded view of the CPG submodule

within the high-level test frame. Notice there is a “cpgcontroller” that receives messages

from outside the CPG. This is a simple representation of the logic circuits necessary to

operate this module. In these conceptual models, the controller reacts to the appropriate

message types for the opto-electrical components connected to the controller. For

example, the CPG controller accepts messages for the laser and the classical detector.

Similarly, each coupled model has a controller specific for its needs.
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Figure 2. CPG architecture.

Figure 3. CPG test frame.

Figure 4. CPG coupled submodule components.

The testing construct for each coupled module is the same. There is test

component called “Upstream” that injects messages into the submodule under test and a

testing component called “Downstream” that captures all output from the submodule.
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Figure 3 shows the expframe module with the two test components and the CPG

submodule, each labeled with its current phase and ports. As noted earlier, Upstream only

has output ports (labeled with “out”) connected to the CPG input ports (labeled with

“in”), and all of the CPG output ports are connected to Downstream’s input ports. Since

the CPG does not output environmental (labeled “env”) messages, there are is no

environmental input port in Downstream. Each optical component and submodule listed

in Table 2 has a similar testing construct built in MS4ME.

The code necessary for building coupled models much simpler than the code for

the components. The coupled model code specifies external components (Upstream,

Downstream) and external inputs and outputs for the CPG module. Additionally, the code

lists all internal components and the internal connections between them. Finally, the

connections from the CPG to internal components are defined. For a coupled model,

there are no phases or transitions defined, as the ‘state’ of the coupled model is the sum

of all current states of all internal components. Appendix U describes the CPG in detail

and each coupled module appendix (U-AA) has the DEVS code for the controller and the

coupled module.

Once constructed, each coupled model was tested by injecting the proper message

packet into the submodule. Every coupled model, except the CPG, has input optical,

environmental and control ports. The CPG has no input optical port, as the laser within

the CPG generates optical pulses for the Alice subsystem and its primary input is a

control message to fire the laser. Table 5 summarizes the test cases for the CPG

submodule.
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Table 5. Example test case timing chart - CPG.

Inject Ports Running Totals
Case Opt1 Ctrl Env Timing opt # env # ctrl #

1 0 1 0 single 0 0 1
2 0 1 0 single 0 0 2
3 0 0 1 single 0 1 2
4 0 1 0 single 0 1 3

totals 0 3 1

8.3.2 CPG MS4ME Output

This section contains the output from MS4ME while running the CPG submodule.

This is the output from Test Case 1 (highlighted in Table 5) and starts at simulation time

10. Major events described in this paragraph are highlighted in yellow in the following

MS4ME output. Case 1 starts with Upstream having an output event at time 10, sending

the message to the CPG which seamlessly passes the message inside the submodule to the

CPG controller. The controller receives a LaserMsg with id:1 on port CtrlIn1 and starts

the Passive external event. The controller sees it has received a laser fire message and

moves to the Respond phase. The controller notes that the status number of the message

is 6, the stored power value of the last classical detection is zero (this is sent from the

classical detector when it has a detection) and prepares a response message and sends it

out port CtlrOut2, ending the Response phase.

The response message goes to the laser, which receives the message on port CtrlIn

and starts the Passive CtrlIn event. The laser decodes the message, moves to the “ON”

setting and prepares a fire control message for port CtrlOut. The laser moves to the

Update Laser phase where it notes the laserpower variable is “true,” indicating the laser is

on. The laser begins preparing an optical pulse for output on OptOut1 (the only optical

output port in the laser) and notes it is moving to the Create Pulse phase. Once in the
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Create Pulse phase, the laser outputs the generated optical pulse on port OptOut1 and

ends the Create Pulse phase. Finally, the next component in line from the laser, the

pmfiber1, receives the optical pulse at simulation time 16. This output shows how the

CPG, the CPG controller, and the CPG internal laser reacts to a “fire laser” message to

generate optical pulses at the beginning of the optical path within Alice.

[10.0, 2:13:36.632] SimViewer_expframe: Simulation step started
[10.0, 2:13:36.632] Upstream - output event for Case1 - time Elapsed: NA getTimeAdvance: 10.0 clock: 10.0
[10.0, 2:13:36.632] SimViewer_expframe.expframe.expframe.Upstream: Internal transition
[10.0, 2:13:36.632] SimViewer_expframe.expframe.expframe.Upstream: Internal transition from Case1
[10.0, 2:13:36.632] SimViewer_expframe.expframe.expframe.Upstream: Holding in phase Case1_1 for time 1.0
[10.0, 2:13:36.632] Upstream - internal event for Case1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 10.0
[10.0, 2:13:36.632] Upstream - internal event for Case1 - time Elapsed: NA getTimeAdvance: 10.0 clock: 10.0
[10.0, 2:13:36.632] SimViewer_expframe: Simulation step finished
[11.0, 2:13:36.773] SimViewer_expframe: Simulation step started
[11.0, 2:13:36.788] Upstream - output event for Case1_1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 11.0
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.Upstream: Internal transition
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.Upstream: Internal transition from Case1_1
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.Upstream: Holding in phase Wait1 for time 49.0
[11.0, 2:13:36.788] Upstream - internal event for Case1_1 - time Elapsed: NA getTimeAdvance: 49.0 clock: 11.0
[11.0, 2:13:36.788] Upstream - internal event for Case1_1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 11.0
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Received messages [inCtrlIn1: LaserMsg

id: 1
name: Case 1 Control Message 1
status: 6
magnitude: 0.0]

[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: External transition
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Respond for time 0.0
[11.0, 2:13:36.788] @@************* CPG CONTROLLER - START PASSIVE CTRLIN1 EXTERNAL
EVENT********************************************************************
[11.0, 2:13:36.788] CPG Controller - external event for Passive CtrlIn with CtrlIn - time Elapsed: 11.0 getTimeAdvance: 0.0 clock:
11.0
[11.0, 2:13:36.788] CPG Controller received a laser fire message
[11.0, 2:13:36.788] CPG Controller - Preparing laser fire control message for: Case 1 Control Message 1 to port CtrlOut2
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Respond for time 0.0
[11.0, 2:13:36.788] @@************* CPG CONTROLLER - END PASSIVE CTRLIN1 EXTERNAL
EVENT********************************************************************
[11.0, 2:13:36.944] SimViewer_expframe: Simulation step finished
[11.0, 2:13:37.54] SimViewer_expframe: Simulation step started
[11.0, 2:13:37.54] @@************* CPG CONTROLLER - START RESPOND OUTPUT
EVENT********************************************************************
[11.0, 2:13:37.54] CPG Controller - output event for Respond - time Elapsed: NA getTimeAdvance: 0.0 clock: 11.0
[11.0, 2:13:37.54] sendCtrl getStatus =: 6
[11.0, 2:13:37.54] Last Classical Detection Optical Power =: 0.0
[11.0, 2:13:37.54] ### CPG Controller - Sending laser fire message: CPG Controller FIRE Response Message for Case 1 Control
Message 1 to port CtrlOut2
[11.0, 2:13:37.54] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 1 Environmental Received: 0 Control Received: 1 Control
Received: 1
[11.0, 2:13:37.54] @@************* CPG CONTROLLER - END RESPOND OUTPUT
EVENT********************************************************************
[11.0, 2:13:37.54] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Internal transition
[11.0, 2:13:37.54] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Internal transition from Respond
[11.0, 2:13:37.54] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Passive for time Infinity
[11.0, 2:13:37.54] @@************* CPG CONTROLLER - START RESPOND INTERNAL
EVENT********************************************************************
[11.0, 2:13:37.69] CPG Controller - internal event for Respond - time Elapsed: NA getTimeAdvance: Infinity clock: 11.0
[11.0, 2:13:37.69] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 1 Environmental Received: 0 Control Received: 1 Control
Received: 1
[11.0, 2:13:37.69] CPG Controller - Ending Respond internal transition
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[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Passive for time Infinity
[11.0, 2:13:37.69] @@************* CPG CONTROLLER - END RESPOND INTERNAL
EVENT********************************************************************
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Received messages [inCtrlIn: LaserMsg

id: 1
name: CPG Controller FIRE Response Message for Case 1 Control Message 1
status: 6
magnitude: 0.0]

[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: External transition
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase UpdateLaser for time 0.0
[11.0, 2:13:37.69] @@************* LASER - START PASSIVE CTRLIN EXTERNAL
EVENT********************************************************************
[11.0, 2:13:37.69] Laser - external event for Passive CtrlIn with CtrlIn - time Elapsed: 11.0 getTimeAdvance: 0.0 clock: 11.0
[11.0, 2:13:37.69] Laser is set to ON
[11.0, 2:13:37.69] Laser - Preparing laser fire control message for: CPG Controller FIRE Response Message for Case 1 Control
Message 1 to port CtrlOut
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase UpdateLaser for time 0.0
[11.0, 2:13:37.69] @@************* LASER - END PASSIVE CTRLIN EXTERNAL
EVENT********************************************************************
[11.0, 2:13:37.69] SimViewer_expframe: Simulation step finished
[11.0, 2:13:37.288] SimViewer_expframe: Simulation step started
[11.0, 2:13:37.288] @@************* LASER - START UPDATELASER OUTPUT
EVENT********************************************************************
[11.0, 2:13:37.288] Laser - output event for UpdateLaser - time Elapsed: NA getTimeAdvance: 0.0 clock: 11.0
[11.0, 2:13:37.288] ******************* DISPLAY PULSES IN QUEUE *******************
[11.0, 2:13:37.288] Total Number of Optical Pulses in Queue : 0 before reflection.
[11.0, 2:13:37.288] ***************************************************************
[11.0, 2:13:37.288] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 0 Environmental Received: 0 Control Received: 1
[11.0, 2:13:37.288] @@************* LASER - END UPDATELASER OUTPUT
EVENT********************************************************************
[11.0, 2:13:37.303] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition
[11.0, 2:13:37.319] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition from UpdateLaser
[11.0, 2:13:37.319] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase Passive for time Infinity
[11.0, 2:13:37.319] @@************* LASER - START UPDATELASER INTERNAL
EVENT********************************************************************
[11.0, 2:13:37.319] Laser - internal event for UpdateLaser - time Elapsed: NA getTimeAdvance: Infinity clock: 11.0
[11.0, 2:13:37.319] ******************* DISPLAY PULSES IN QUEUE *******************
[11.0, 2:13:37.319] Total Number of Optical Pulses in Queue : 0 after reflection.
[11.0, 2:13:37.319] ***************************************************************
[11.0, 2:13:37.319] InterruptRespond = false
[11.0, 2:13:37.319] needRespond = false
[11.0, 2:13:37.319] laserpower = true
[11.0, 2:13:37.319] currentStatus = 6
[11.0, 2:13:37.319] sendCtrl status is: 6
[11.0, 2:13:37.319] Laser - Preparing optical pulse for: Laser Output Pulse 1 to port OptOut1
[11.0, 2:13:37.319] Going to Create Pulse Phase Next!!!
[11.0, 2:13:37.319] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase CreatePulse for time 5.0
[11.0, 2:13:37.319] @@************* LASER - END UPDATELASER INTERNAL
EVENT********************************************************************
[11.0, 2:13:37.319] SimViewer_expframe: Simulation step finished
[16.0, 2:13:37.459] SimViewer_expframe: Simulation step started
[16.0, 2:13:37.459] @@************* LASER - START CREATEPULSE OUTPUT
EVENT********************************************************************
[16.0, 2:13:37.459] Laser - output event for CreatePulse - time Elapsed: NA getTimeAdvance: 5.0 clock: 16.0
[16.0, 2:13:37.459] ******************* DISPLAY PULSES IN QUEUE *******************
[16.0, 2:13:37.459] Total Number of Optical Pulses in Queue : 0 BEFORE propagation.
[16.0, 2:13:37.459] ***************************************************************
[16.0, 2:13:37.459] ** OUTPUT EVENT FOR CREATEPULSE
[16.0, 2:13:37.459] ### Laser - Sending generated optical pulse: Laser Output Pulse 1 to port OptOut1
[16.0, 2:13:37.459] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 1 Environmental Received: 0 Control Received: 1
[16.0, 2:13:37.459] @@************* LASER - END CREATEPULSE OUTPUT
EVENT********************************************************************
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition from CreatePulse
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase Passive for time Infinity
[16.0, 2:13:37.459] @@************* LASER - START CREATEPULSE INTERNAL
EVENT********************************************************************
[16.0, 2:13:37.459] Laser - internal event for CreatePulse - time Elapsed: NA getTimeAdvance: Infinity clock: 16.0
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[16.0, 2:13:37.459] ******************* DISPLAY PULSES IN QUEUE *******************
[16.0, 2:13:37.459] Total Number of Optical Pulses in Queue : 0 BEFORE propagation.
[16.0, 2:13:37.459] ***************************************************************
[16.0, 2:13:37.459] *************** Adjust queue ***************
[16.0, 2:13:37.459] Total Number of Optical Pulses in Queue : 0
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase Passive for time Infinity
[16.0, 2:13:37.459] @@************* LASER - END CREATEPULSE INTERNAL
EVENT********************************************************************
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.pmfiber1: Received messages [inOptIn1: OpticalPulse

id: 1
name: Laser Output Pulse 1
duration: 4.0E-10
opticalPower: 8.709666395E-5
brightPulseFlg: false
amplitude: 1.94095418E-6
centralFrequency: 1.0E15
globalPhase: 0.0
ellipticity: 0.0
orientation: 0.0
numberOfGaussians: 3
gA0: 45.5
gA1: 38.064
gA2: 4.75752
gM0: 9.54844E-11
gM1: 1.81125E-10
gM2: 3.52322E-10
gSD0: 1.98151E-11
gSD1: 5.81389E-11
gSD2: 4.90169E-11]

[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.pmfiber1: External transition

The following is the CPG Controller External Transition code for receiving a

message when in Passive phase on port “CtrlIn1” (from appendix U). If the controller

receives a message while Passive on this port, it store the value of the message in variable

ctrlOutput and checks the status type of the message by checking ctrlMsg.status. If this

type is “init” or “get status” the output port is set to CtrlOut1 or if the type is “fire laser”

the port is set to CtrlOut2.

δext(phase, σ, store, temperature, overtemp, overpower, lastCDPower, e, ((pi,vi),….
(pn,vn))) =

(“respond”, 0, store, temperature, overtemp, overpower, lastCDPower)
if phase = “passive” and p = “CtrlIn1”
ctrlOutput = ctrlMsg(store)
if ctrlMsg.status = “init” or “get status”

outputPort = “CtrlOut1”
if ctrlMsg.status = “fire laser”

outputPort = “CtrlOut2”
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Reviewing the CPG Controller Internal Transition code shows the controller will always

output the contents of the ctrlOutput variable out the port contained in the outputPort

variable. Note the (outputPort, ctrlOutput) pair is a (port,value) binary.

λ(phase, σ, store, temperature, overtemp, overpower, lastCDPower) =
(outputPort, ctrlOutput)

if phase = “respond”

If the CPG Controller is Passive and receives a message on CtrlIn1with status of

“fire laser,” it should forward the message on port CtrlOut2, as the message contents are

stored in ctrlOutput in the external transition and output in the output phase. The laser

receives this message and constructs and emits a laser pulse per its DEVS code in

appendix M. Note that the test time of propagation for components is five time units, so it

should take the laser five time units to produce an optical pulse. The next component in

line, PMFiber1, should receive the optical packet from the laser (See Figure 4).

Reviewing the MS4ME output, the controller received a LaserMsg with id:1 at time

[11.0, 2:13:36.788] on port CtrlIn1. The expectation is if the message is the “fire laser”

type, the controller sends the fire message out port CtrlOut2, which happens at time [11.0,

2:13:37.54]. The laser receives the fire message at time [11.0, 2:13:37.69] and turns the

laser on to create a laser pulse. The laser takes five time units to create the optical pulse

and sends it out at time [16.0, 2:13:37.459]. The next component in line, pmfiber1

receives the optical pulse.

This is the previous block of MS4ME output winnowed to show the expected behavior.

[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Received messages [inCtrlIn1: LaserMsg
id: 1
name: Case 1 Control Message 1

[11.0, 2:13:36.788] CPG Controller received a laser fire message
[11.0, 2:13:37.54] ### CPG Controller - Sending laser fire message: CPG Controller FIRE Response Message for Case 1 Control
Message 1 to port CtrlOut2
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[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Received messages [inCtrlIn: LaserMsg
id: 1
name: CPG Controller FIRE Response Message for Case 1 Control Message 1

[11.0, 2:13:37.69] Laser is set to ON
[11.0, 2:13:37.319] Laser - Preparing optical pulse for: Laser Output Pulse 1 to port OptOut1
[11.0, 2:13:37.319] Going to Create Pulse Phase Next!!!
[16.0, 2:13:37.459] ### Laser - Sending generated optical pulse: Laser Output Pulse 1 to port OptOut1
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.pmfiber1: Received messages [inOptIn1: OpticalPulse

id: 1
name: Laser Output Pulse 1

Each test case is reviewed in the same manner to ensure the captured output matches the

expected behavior for each submodule controller, test case, and component behavior.

Component behavior is referenced from previously captured output during the component

testing.

8.3.3 Closure Under Coupling

One of the significant prosperities of DEVS is closure under coupling. Simply

stated, if any result from coupling components specified by the formalism can itself be

specified by the formalism, then it has the closure under coupling property (Barros, 1997;

B. P. Zeigler, 1984). Chow showed this property existed in the Parallel-DEVS formalism

he specified in 1996 (Chow, 1996).

The coupled submodules discussed earlier in this chapter exhibited this property

during testing in the MS4ME simulator. DEVS requires explicit definition of each

message type or input, so each coupled model only accepts a finite set of inputs and the

outputs are definable under Parallel-DEVS, thereby demonstrating closure under

coupling.

8.4 Summary

This chapter presented the results and analysis from creation and testing

methodology the atomic and coupled DEVS modules for the qkdX architecture. This
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research effort created, modeled and tested seventeen optical components and seven

coupled submodules by the end of the research period. The research produced a

combined model output exceeding 7,300 pages and almost 200,000 lines of MS4ME

code, with almost five times as much code devoted to testing than for the models

themselves.

As there was no automated testing available, each line of output had to be

checked with the operational simulator graphics, compared to the lines of model code and

the DEVS pseudocode, based on the mathematical model supplied by the optical SME.

Finally, after successful testing, the results were passed to the optical SME for final

checking to ensure the proper behavior and timing was captured in the DEVS pseudocode

and the MS4ME models. This was a cooperative process throughout, with the optical

SME and experts from the AFIT QKD team constantly reviewing the progress to provide

feedback on the modeling effort.

As the models developed, they evolved closer to the expected system behavior,

until each was deemed acceptable by the SMEs and research team. Using the definitions

of validity discussed earlier, this effort provided models that captured the required

behavior and met the required accuracy, and so are considered “valid” with the

understanding this validity only applies to the models built for the specific experimental

frame. These “acceptable” and “valid” models increase the academic rigor of the

simulation framework by providing a coherent conceptual modeling methodology using a

proven modeling formalism that demonstrates the required and expected behavior.

Using DEVS allowed the team to refine the simulation framework, correcting

several errors and aiding the research team in recognizing missing behaviors within the
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simulation (see chapter 7). DEVS increased the validity of QKD simulation framework

optical pathway by showing DEVS can be used to increase validity by creating optical

component models fit for the purposes of the simulation and acceptable to the community

of developers and users.
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9. Conclusions

9.1 Chapter Overview

The primary objective of this research was to explore the use of the DEVS to

create conceptual models of optical components for use in the qkdX framework. The goal

was to use the simulation study process, conceptual model and validity theory, and DEVS

to contribute to the QKD sponsored research project. This chapter presents the

conclusions drawn from the research and recommendations for future work.

9.2 Conclusions of Research

The research into DEVS and conceptual modeling highlighted these main points:

9.2.1 DEVS Forces ‘real-time’ DES

The accepted paradigm in DES simulations is to schedule events in the future. As

the DES moves from one state to the next, this list is checked for the next occurring

event and the time in the simulator jumps to the event execution time. This makes DES

efficient, as the simulation ‘skips’ over time units where there are no events. The

problem occurs when events cause a change that affects future events. The simulator

must be able to correct or undo any future event, even if it means clearing the entire

future event list and recalculating every event. In this situation, the user is relying on the

simulator to properly correct the future event list, expecting no mistakes or unforeseen

simulation behavior from these changes.

DEVS differs from this future event list by not having ‘future time.’ DEVS has

two types of time: 1) time the state will stay static; 2) time elapsed since the last state
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transition. The modeler cannot schedule events in the future and must specify the state

transitions from one state to the next. This precludes the simulation from entering an

unexpected state and prevents emergent behavior. The system can never enter a state

that is unrecoverable (unless that was the intent) and so prevents the Once Passive,

Never Active (OPNA) condition that is seen in complex DES simulations.

9.2.2 Discovery of Non-composability in qkdX

One of the sponsor requirements for the QKD simulation framework is that of

composability. The simulation must be able to change components and modules without

extensive code change. The design concept was for a “plug and play” simulation where

users can easily change system designs. This requirement is reflected in the user and

developer requirements discussed earlier in this dissertation. Ensuring composability is a

major undertaking for the research project.

During the creation of the conceptual models for each of the optical components

and coupled submodules led to discovery of problems within the original version of the

qkdX simulation framework. This version was built straight from the SME mathematical

models as a proof-of-concept demonstration without using formalized conceptual models,

leaping from the SME modeling level to the simulation coding level of Figure 1 and

using a “mental model” as a bridge between the math model and the final simulation.

Time and resource considerations, along with the intent to only produce a demonstration

simulation, where among the reasons for choosing this development course. See Figure 5.
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Figure 5. Abbreviated Levels of Modeling for qkdX.

Several of these problems would have prevented the optical models from

executing the same, regardless of how they were connected, while others were incorrect

expressions of component behavior. Using DEVS forces the modeler to carefully

consider how each model behaves under all conditions, and guarantees the models exhibit

closure under coupling (see chapter 7). The careful consideration of behavior required by

DEVS decreases the likelihood of errors or missing behaviors during the conceptual

modeling phase.

This is not to mean that having complete DEVS models ensures the simulation

exhibits composability. While the modeling relation and validity measures the closeness

of the conceptual model to the source system, the simulation relation and verification is a

measure of how well the simulation executes the behavior of the conceptual models (See

Figure 6, modified from (B. P. Zeigler, Praehofer, & Kim, 2000)).
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Figure 6. Modified from “Basic entities in M&S and their relationships”.

The skills, talents, and experience of the modelers responsible for turning the conceptual

modeling into an executable simulation, along with verification testing, determine if the

final simulation exhibits composability. In this case, composable DEVS models do not

guarantee qkdX is itself composable. The closer the simulation executes the required

behavior, the greater the chance of composability and by using DEVS, the better chance

of capturing all required behavior.

9.2.3 Well-defined Behavior

A concern for complex DES simulation is ill-defined or emergent behavior that

leads to the simulation entering a state or condition it cannot leave (known as OPNA).

Simple simulations can be checked by evaluating every possible state, but with a large

simulation, the state-space becomes unmanageable and infeasible to check. Project time

and funds limit testing for simulations, even with automated support.

In contrast, using DEVS for modeling prevents these types of problem behaviors.

DEVS requires the modeler to identify the lowest level of objects in the simulation, one

that cannot be further decomposed (atomic). These atomic models can be modeled

regardless of their immediate context (i.e. the component is isolated from any outside
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influences) and their total behavior specified. A correctly specified model operates

properly regardless of its use and the environment. By fully specifying the atomic

behavior, the modeler is assured the components work properly when connected, in any

possible combination (closure under coupling). This allows for hierarchal construction of

models and ensures modularity of the simulation.

9.2.4 Tool-Independent Form

A major consideration in simulation creation is selecting the software

environment. This choice can have long-term effects on the simulation, as a poor or hasty

choice can lead to a failed project. This selection process was a secondary research

question discussed in chapter 2 and discussed in chapter 5. Some simulation

environments have their own programming language while others use standard

programming languages (i.e. OMNeT++ uses the C++ language). Each language may

have idiosyncrasies that prevent easy translation from one simulation environment to

another (Miller, 2013a). For an example, the Java language (used in MS4ME) has

routines to free memory storage (garbage collection) but C++ does not; the Java runtime

system has ways of knowing the size of an array, but the C++ runtime does not (Miller,

2013a; Miller, 2013b; Miller, 2013c). Understanding these examples requires some

experience in programming, but do highlight there are language-specific idiosyncrasies

that prevent simple conversations.

DEVS forces the modeler to consider carefully all facets of desired behavior

within the model, including all inputs, outputs, and timing segments. The resulting

models are based solely on the language rules inherent in DEVS, and not on the selected
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simulation environment. This allows for creation of models usable for any simulation

environment. The modeler needs only to express the DEVS behavior in the simulator of

choice.

9.2.5 Canonical Behavior

DEVS forces the modeler to consider carefully all aspects of the conceptual model,

starting with the inputs, outputs and behaviors of interest necessary for study. This

experimental frame greatly reduces or eliminates emergent or unexpected behavior. By

considering ‘real-time’ transitions, well-defined behavior and tool-independence, the

modeler creates a deep understating of the system usable in any modeling simulation. By

understanding the canonical behavior of the model, the modeler can implement changes

to decrease the differences between the model and the referent system, thereby increasing

the validity of the model for the chosen experimental frame.

9.2.6 Difficulties of Modeling Using DEVS

Much of the written material available for DEVS in textbooks and papers

provides only simplistic examples. Even the more complex examples available through

RTSync provided little guidance to model the optical components. This complexity led

this researcher to contact the co-director of Arizona Center for Integrative Modeling and

Simulation (Arizona State University, 2014), the research center where DEVS was

created, for advice on using DEVS for our unique, innovative models. The co-director

provided suggestions on how to use DEVS to model the timing issues at the picosecond

scale and capturing wave and particle behavior.
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It can be difficult to verify the DEVS pseudocode to the source system behavior,

especially true when modeling predicted or notional systems. Since the demonstration

QKD system is built from real optical components but in a notional architecture, there

was the difficulty of verifying the component behavior to real components. The solution

used in this research to this problem greatly increased the DEVS work by necessitating

programming the pseudocode twice, once into MS4ME, and then into the selected qkdX

simulator.

DES models are increasing in complexity and being used in new information-

centered fields. DEVS was not created for these types of problems and has difficulty

expressing processes and information flows within the formalism. Heretofore, the

solution has been to create subsets of DEVS to handle specific problems. This is leading

to a fragmentation of the formalism and makes it hard to determine which form of DEVS

is appropriate for the modeling problem. This research used the Parallel-DEVS formalism

for modeling the optical path, but this DEVS may not be applicable to modeling the

processes found in QKD systems.

DEVS is a set of language rules to describe formally a problem. There is no visual

component to DEVS unless the modeler uses a DEVS-compliant simulation program.

While useful for being tool-independent, this requires the modeler to use that particular

simulator’s functions, which may not necessarily conform completely to DEVS, as seen

with issues in EVOA timing and the MS4ME simulator (see chapter 7).
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9.3 Recommendations for Future Research

This research investigated using the DEVS to create conceptual models for a

prototypical QKD architecture. The scope was intentionally narrowed to the optical path

of this particular architecture, rather than to try to model every identified optical

component. During the research period, the researcher identified additional areas for

research using the DEVS formalism.

The AFIT QKD team continues to build on the qkdX framework, adding new

capabilities to model other types of QKD systems. This research used weak-coherent

polarization-based system architecture, the same kind as the first QKD system. While

useful as a reference baseline, this type is rarely found outside of academic research

systems as most commercial QKD systems use a phase-based architecture. The AFIT

team is adding the components and functions necessary to model these systems, as each

piece of new hardware needs a corresponding conceptual model, so there is a continuing

need to create conceptual models.

An intriguing area is using DEVS to express the functions and processes inherent

in each type of QKD system. This research focused on the optical path hardware in the

quantum modules, but QKD systems have many processes in each protocol. DEVS works

well with state machine simulations, but it is unknown if it could be used to create

conceptual models for complex processes. During the literature review for this research,

no examples were found using DEVS to model processes, but as there is continuing

research into DEVS, there may a process-compatible version in the future.

This research used the MS4ME DEVS simulator as a test platform for the DEVS

pseudocode. Using traces of the output allowed for checking of component behavior.
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Unfortunately, there was no automated tool for checking the output, so the researcher

manually reviewed over 7000 pages of output. This took considerable time and effort that

slowed the research process by taking time away from other research activities. An

automated tool for checking this output would have considerable impact on the time

necessary to perform traces on component output.

One of the areas included for research during the prospectus was to compare

output from the MS4ME simulator to output from the qkdX simulation. This would be

exploration of the modeling relation (see Figure 2 in chapter 7) between the conceptual

model and the simulator. Work in this area ceased when the researcher and the software

SMEs realized: 1) exploring this relation was outside the scope of research into model

validation; 2) considerable time and effort was necessary to enable this functionality, as it

required extensive changes to both simulators. An automated comparison tool would save

considerable effort on the part of researchers and allow for a standardized process to test

the modeling relation between the conceptual model and the QKD simulation.

As mentioned in chapter 2, the AFIT QKD team received a QKD system late into

this research period. A future research project could be to model the real system using

DEVS and MS4ME and compare the output between the real system and the MS4ME

models. This comparison between the conceptual models and a real system would be an

additional V&V technique to increase the validity of the DEVS models.

The work presented in this document is a first step in expressing optical

components using the DEVS formalism and increasing the validity of the qkdX

simulation framework. The results demonstrated that DEVS can create conceptual

models of continuous-time optical components in a DES environment. This work showed
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that DEVS can be used to increase the validity of the qkdX simulation thus improving the

quality of the simulation and possibly increasing its d value to the project sponsor and

future end-users.
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Appendix A - QKD Prototypical Architecture  

This appendix contains the systems engineering material created during the selection of 

the prototypical QKD system architecture.  Much of the material derives from the Department of 

Defense Architectural Framework (DODAF), currently in version 2.02 (Department of Defense, 

2010). The DODAF is a comprehensive framework and conceptual model that enables 

architectural development and allows for key decisions through organized information sharing. 

The framework is a group of interrelated models and views of the project that allow for 

accountability and traceability throughout the design process. The following table lists the 

DODAF views presented in this research. 

 
Table 1. List of DODAF Views. 

DODAF Views Equivalent Work 

AV-1 Overview and Summary Information Completed, not included 

AV-2 Integrated Dictionary Continuing updates, not included 

OV-1 High-Level Operational Concept Graphic QKD Context Diagram 

OV-2 Operational Resource Flow Description High level Resource Flows Diagram 

OV-5a Operational Activity Decomposition Tree Activity Decomposition Diagram 

OV-5b Operational Activity Model Activity Models 

SV-1 Systems Interface Description System Interface Graphic 

SV-2 Systems Resource Flow Description System Resource Flows Diagrams 
SV-5a Operational Activity to Systems Function 
Traceability Matrix Activity to Systems Function Matrix 
SV-5b Operational Activity to Systems Traceability 
Matrix Subsystem to Activity Matrix 

SV-10a Systems Rules Model 
Use cases for components and modules in each 
appendix 

SV-10b Systems State Transition Description Phase transition diagrams in each appendix 

SV-10c Systems Event-Trace Description 
Event-trace tables and diagrams in each 
appendix 

 

A.1 Systems Engineering Support  

The information presented here is support for the design decisions during the building of 

the prototypical architecture, but was not included for discussion in the articles presented in 
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Chapters 6 and 7, as neither of the articles focused on the systems engineering aspects of the 

architecture. The end of this chapter presents the tools used during the research. 

A.1.1 QKD Context  
 

This graphic shows the high-level concepts for the QKD system. Here Alice uses 

quantum exchange to pass information to Bob. Through the phases of sifting, error correction 

and privacy amplification, a final key is generated and distributed to their respective encryptors 

 

 
Figure 1. QKD Context Diagram. 

A.1.2 Activity Decomposition  
 

 This graphic shows the decomposition of the BB84 QKD system into levels of 

operational activities. Each level is color-coded for clarity. The QKD activity is decomposed into 

two activities, one that handles the initialization of the system and one that handles key 

generation and distribution. 
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Figure 2. QKD Activity Decomposition 

 

A.1.3 Activity Model – Generate Key 
 

This graphic represents the resource flows within the Generate Key activity seen in the 

activity decomposition diagram. 

 
Figure 3. Generate Key Activity Model. 
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A.1.4 Activity Model Decomposition– Conduct Quantum Exchange  
 

This graphic represents the decomposition of the Conduct Quantum Exchange activity 

seen in the activity decomposition diagram. 

 
  

 

 
 

 

 

 
 

 

 

 
 

Figure 4. Decomposition of Conduct Quantum Exchange Activities part 1.  

 

 
Figure 5. Decomposition of Conduct Quantum Exchange Activites part 2. 

  

A.1.5 High Level Resource Flows  
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 This graphic shows the resources flowing between Alice and Bob within a QKD system 

and flowing outside to their respective encryptors. Note that the encryptors are outside the 

considered system. 

 
Figure 6. QKD Resource Flows. 

A.1.6 Systems Interface Graphic  
 

This graphic show the subsystems located within Alice and Bob and the communication 

channels between each subsystem. This research concentrates on the Alice Quantum Module. 

 
Figure 7. Alice Systems Interfaces. 

A.1.7 Systems Resource Flows – Alice Quantum Module 
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This graphic shows the sub modules within the Alice Quantum Module and the data 

resource flow between each. Note the Environmental message channels (ENV) shown here 

enable the passing of environmental data to each module from the simulation engine and enable 

the modules to react to environment changes. These channels are present at every level and are 

not shown on the following diagrams for clarity.  

 
 Figure 8. Alice Quantum Module Resource Flows. 
 

The following graphics show the decomposition of the Alice Quantum Module 

subsystems and identify the individual optical components within subsystem. The graphics show 

the types of data flowing between each component. Chapters 6 & 7 have detailed discussions on 

the creation and modeling of each sub module and component. Note each component has an 

ENV channel as noted earlier. 
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Figure 9. Classical Pulse Generator Module. 

 
 

 
Figure 10. Pulse Modulator and Decoy State Generator Modules. 

 



131 
 

 
Figure 11. Classical to Quantum Module. 

 
 

 
Figure 12. Optical Security Layer Module. 
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Figure 13. Timing Pulse Generator Module. 

 

 
Figure 14. Output Power Monitor Module. 

A.1.8 Activity to Systems Function Traceability Matrices 
 

The first table lists the systems functions identified for the BB84 QKD system on the left 

and shows which Activities (See Fig. 2) each function supports. The areas highlighted in yellow 

are the focus of this research.  

Table 2. Activity to Systems Function Matrix. 
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Distribute 
final key                        

X 

Distribute 
authentication 
seed 

                     
X 

 
This table shows Alice and Bob’s subsystems on the left and the Activities at top, showing which 

subsystem supports each of the Operational Activities from Fig. 2. 

Table 3. Subsystem to Activity Matrix. 
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A.2 Selected Research Tools 

A.2.1 Software Ideas Modeler 
 

Software Ideas Modeler  (http://www.softwareideas.net/)  (SIM) is a lightweight 

Computer-Aided Software Engineering (CASE) tool that provides UML, BPMN, SysML, ERD, 

Flowcharts, Data Flow Diagrams, Entity Relationship Diagram (Crow Foot/Chen), CRC Cards, 

User Interface, Hierarchical Task Analysis, Entity Life History, Robustness Diagram, 

Concurrency Diagram, Venn Diagrams,  and Mind Map tools. All of the diagrams for this 

research were created in SIM.  

 SIM was chosen as the CASE tool over the more extensive system engineering tools such 

as Sparx System’s Enterprise Architect (http://www.sparxsystems.com/products/ea/) or Vitech’s 

Core (http://www.vitechcorp.com/products/core.shtml) due to either products lack of support for 

the DEVS. Such tools are ultimately designed to provide support for rules-based modeling and 

even support simulation. Since neither could provide support for DEVS rules, which necessitated 

the use of MS4ME to simulate DEVS models, a smaller program with less unnecessary functions 

was deemed acceptable. SIM provided all of the tools necessary to create the various products 

and provided linking and traceability between various system engineering products. See Figure 

15 for a screen of SIM showing the project overview screen. 
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Figure 15. Screenshot of Software Ideas Modeler. 

A.2.2 MS4ME 
 

MS4ME (MS4 Systems, 2014). MS4ME is a  requirements engineering, data engineering 

and modeling and simulation tool (http://www.ms4systems.com/pages/ms4me.php), product of 

RTSync (www.rtsync.com), a spin-off from the Arizona Center of Integrative Modeling and 

Simulation (ACIMS) (Arizona State University, 2014). MS4ME provides a structured user 

interface for modeling built on top of the DEVSJAVA simulator (Zeigler, Sarjoughian, & Au, 

1997).  

This software is the professional successor to the DEVS-Suite simulator built by students 

and faculty of ACIMS. It uses the DEVSJAVA simulator as a base to model with the DEVS 

formalism and uses the Eclipse (www.eclipse.org) Integrated Development Environment (IDE) 

as the user interface. MS4ME provides a simulation environment using the DEVS formalisms, 

specifically the Finite-Deterministic DEVS (FD-DEVS) and Parallel-DEVS of DEVS. This 
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research used Parallel DEVS to model the optical components, as discussed in Chapter 6. See 

Fig. 16 for screen capture of MS4ME simulator function running the CPG module. 

 
Figure 16. MS4ME Screenshot. 
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Appendix B- Model Creation and Testing Methodology  

B.1 Atomic and Coupled Model Creation 

As explained in Chapters 2 and 6, the process for creating each coupled and atomic 

model consisted of many steps. The general process for the optical components started with the 

optical Subject Matter Expert (SME) creating a mathematical model of the component, using that 

model to create Discrete Event System Specification (DEVS) pseudocode to capture the behavior 

and timing aspects, and finally creating MS4ME models using the DEVS pseudocode. These 

models underwent testing within the MS4ME simulator, with the results shared with the SME for 

face validity and trace checking (see chapter 6 for explanation of these validation techniques).  

Section B.2 describes the component behavior testing shows an example of the MS4ME 

output from a test case used for the Electronically Controlled Variable Optical Attenuator 

(EVOA), and lists pseudocode derived from code comments win the EVOA MS4ME code. Each 

component was designed using the process described below. Creation and testing process steps 

were:  

 
 Component description – describing the component function and physical design using 

commercial and academic literature. 

 Component conceptual model – text description of the properties and behaviors of 

interest in the component. 

 English-language rules – list of rules that describe the behavior of the component. 

 Phase transition diagram – diagram that shows how the component moves from phase to 

phase within each state. Chapter 6 describes this diagram in detail. 

 Event trace diagram – diagrams and tables describing how the component moves from 

phase to phase for several test cases. 

 Use case – creating use cases for the component. 

 DEVS code – DEVS pseudocode for the component; used to create the MS4ME models. 

 MS4ME code – programming the pseudocode into the MS4ME simulator as a check to 

ensure the pseudocode captured the behavior and timing properly. 
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 MS4ME output review – a line-by-line check of the MS4ME output to ensure the 

MS4ME model and the pseudocode matched and the MS4ME programming was correct. 

 MS4ME model review – the optical SME reviewed the DEVS conceptual model and the 

MS4ME models to ensure the modeled behavior and timing was correct in comparison to 

the starting mathematical model. 

 Model refactor – after review, feedback from the optical SME helped correct each model. 

 
Appendices D-T contains the first seven steps for each optical component. The optical 

components created for the QKD prototypical architecture were: 

Table 4. Modeled optical components. 
Appendix 

# Title Contents 

D Bandpass Filter 
Component description, DEVS documentation & Use 
Cases 

E Beamsplitter 
Component description, DEVS documentation & Use 
Cases 

F Circulator 
Component description, DEVS documentation & Use 
Cases 

G Photo-diode 
Component description, DEVS documentation & Use 
Cases 

H EVOA 
Component description, DEVS documentation & Use 
Cases 

I Fixed Attenuator 
Component description, DEVS documentation & Use 
Cases 

J Half-wave Plate 
Component description, DEVS documentation & Use 
Cases 

K In-line Polarizer 
Component description, DEVS documentation & Use 
Cases 

L Isolator 
Component description, DEVS documentation & Use 
Cases 

M Laser 
Component description, DEVS documentation & Use 
Cases 

N PM Fiber 
Component description, DEVS documentation & Use 
Cases 

O 
Polarization 
Controller 

Component description, DEVS documentation & Use 
Cases 

P Pulse Modulator 
Component description, DEVS documentation & Use 
Cases 

Q 
Polarizing 
Beamsplitter 

Component description, DEVS documentation & Use 
Cases 

R SM Fiber 
Component description, DEVS documentation & Use 
Cases 
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S Optical Switch 
Component description, DEVS documentation & Use 
Cases 

T WDM 
Component description, DEVS documentation & Use 
Cases 

 
The process for coupled models (joining atomic models together) followed the same 

design, except there was no starting mathematical model for the coupled submodules; therefore 

there was no need for a final comparison to a starting mathematical model by the optical SME. 

Appendices W-AA contains the documentation for each of the coupled submodules. 

 Table 5 lists the coupled submodules created for the QKD prototypical architecture. 
 
 Table 5. Modeled Alice submodules components. 

Appendix 
# Title Contents 

U CPG Module 
Submodule description, DEVS documentation & Use 
Cases 

V PM Module 
Submodule description, DEVS documentation & Use 
Cases 

W DSG Module 
Submodule description, DEVS documentation & Use 
Cases 

X CTQ Module 
Submodule description, DEVS documentation & Use 
Cases 

Y OSL Module 
Submodule description, DEVS documentation & Use 
Cases 

Z TPG Module 
Submodule description, DEVS documentation & Use 
Cases 

AA OPM Module 
Submodule description, DEVS documentation & Use 
Cases 

 

B.2 Component Behavior Testing 

After building each component in MS4ME, it was tested by sending inputs into the 

component, capturing the output, and evaluating the output line-by-line to check behavior and 

timing. This is the validation technique of traces (behavior is followed through the model) 

(Sargent, 2005) . Each component had each of its input ports (optical, environmental (env), 

and/or control (ctrl)) tested singly and in different combinations of ports and input messages. 

After identifying and correcting any errors, the component was retested until it performed 
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correctly for each test case. The component documentation and results went to the optical SME 

for review to ensure the proper behavior had been captured (the validation technique of face 

validity (Sargent, 2005)). 

Table 6. Summary of component behavior testing. captures these tests by listing the 

component on the left and the number and test types across the top. Each component will be in 

either the Passive or Respond phase when reacting to inputs (see each appendix for the phase 

transition diagram showing the phases), as noted at the top of the table. The number of tests 

exercising the particular port type is in the boxes. The first column lists the total number of tests, 

the following columns lists the number of tests exercising a particular port (optical, ctrl, or env) 

and how many tests are single or multi-port, and finally the number of math-specific tests. These 

optical SME created these math tests to exercise the demonstration QKD simulation built earlier 

and but were included in the MS4ME code for potential future work in comparing the conceptual 

models to the qkdX framework (see chapter 7 for a discussion on this framework). 

Table 6. Summary of component behavior testing. 
 Passive Phase  Respond Phase 

  total tests optical 
ports 

ctrl 
port 

env 
port 

single 
port 

multiple 
port 

math 
tests 

 total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

single 
port 

multiple 
port 

math 
tests 

Bandpass Filter 21 20 0 13 5 16 4  21 21 0 13 4 17 0 

Beamsplitter 33 28 0 21 9 24 6  33 33 0 21 8 25 0 

Circulator 27 26 0 17 6 21 6  27 27 0 17 6 21 0 

Classical 
Detector 

21 14 14 13 5 16 7  21 21 14 13 1 20 0 

EVOA 30 24 13 18 6 24 7  22 22 9 11 2 19 0 

Fixed 
Attenuator 

21 20 0 13 5 16 7  21 21 0 13 4 17 0 

Halfwave plate 21 20 0 13 5 16 8  21 21 0 13 4 17 0 

Inline Polarizer 29 20 0 13 5 16 7  21 21 0 13 4 17 0 

Isolator 29 20 0 13 5 16 7  21 21 0 13 4 17 0 

Laser 21 14 14 13 5 16 7  21 21 15 13 2 19 0 

Optical Switch 35 29 14 19 7 28 8  27 27 10 12 2 25 0 

PM Fiber 21 20 0 13 3 18 7  21 21 0 13 4 17 0 

Polarization 
Controller 

30 24 13 18 6 24 8  22 22 9 11 2 20 0 
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Polarization 
Modulator 

30 24 13 18 6 24 8  22 22 9 11 2 20 0 

Polarizing 
Beamsplitter 

33 28 0 21 9 24 7  33 33 0 21 8 25 0 

SM Fiber 21 20 0 13 3 18 7  21 21 0 13 4 17 0 

Wave Division 
Multiplexer 

27 26 0 17 4 23 7  27 27 0 17 6 21 0 

 
Table 7. Example test case timing chart - EVOA.shows the case timing chart for the 

EVOA component. The first ten columns of this chart list the test cases, and the last five show 

the sequence of test cases and subcases during the testing. The chart has a numbered list of test 

cases on the left by type (Passive, Respond, or Math) and information about each test case across 

the top. Each case shows which port it is exercising, the numbers in the cells show many 

messages sent to each port during the test case, and finally a note about timing of the messages. 

The messages can be a single message to a port, messages that arrive at the same time, or 

messages that arrive at different times. The last three columns for the test cases show the running 

total of each message type sent to the component during the test. The bottom of the columns 

show total message numbers and a notes section for the test cases, any of which are highlighted 

in orange.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

For example, Test Case 26 starts the component in the Passive phase and injects two 

messages to port optical 1 (Opt1), one message to optical port 2 (Opt2), one message each to the 
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control and environmental ports, all done at the same time. The intent of the case is to see if the 

component responds correctly to external inputs while it is processing optical packets. The first 

optical packets when the component is in Passive, forcing a change of phase. While processing 

the packet, the other three packets arrive simultaneiously. This causes the component to interrupt 

the current process and respond by evaluating the incoming packet. After the response, the 

component needs to restart processing the first packet while updating the time remaining its  

processing. This component phase transition chart shows this behavior.  

At the end of the case, 32 optical, 11 environmental and ten control messages have been 

sent to the component.  As with all test cases, the component showed the proper behavior at the 

conclusion of the case verified by tracing. Any errors found during testing were fixed and the 

component retested until passing all test cases. 

Table 7. Example test case timing chart - EVOA. 

  Inject Ports  Running Totals 
Phase Case Opt1 Opt2 Ctrl Env Timing opt # env # ctrl # 

Passive 1 1 0 0 0 single 1 0 0 
  2 0 1 0 0 single 2 0 0 
  3 0 0 1 0 single 2 0 1 
  4 0 0 0 1 single 2 1 1 
  5 1 1 0 0 same time 4 1 1 
  6 1 0 1 0 same time 5 1 2 
  7 1 1 0 0 differ time 7 1 2 
  8 1 0 1 0 differ time 8 1 3 
  9 1 1 1 1 same time 10 2 4 
  10 1 1 1 1 differ time 12 3 5 
  11 0 1 0 1 same time 13 4 5 
  12 0 1 0 1 differ time 14 5 5 
  13 0 0 1 1 same time 14 6 6 
  14 0 0 1 1 differ time 14 7 7 
  15 1 0 0 1 same time 15 8 7 
  16 1 0 0 1 differ time 16 9 7 

  20 2 0 0 0 same time 18 9 7 
  21 0 2 0 0 same time 20 9 7 

  22 2 1 0 0 same time 23 9 7 
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  23 2 0 1 0 same time 25 9 8 
  24 2 0 0 1 same time 27 10 8 
  25 2 0 1 0 differ time 29 10 9 
  26 2 1 1 1 same time 32 11 10 
  27 2 1 1 1 differ time 35 12 11 
  28 0 2 0 1 same time 37 13 11 
  29 0 2 0 1 differ time 39 14 11 
  30 0 0 1 1 same time 39 15 12 
  31 0 0 1 1 differ time 39 16 13 
  32 2 0 0 1 same time 41 17 13 
  33 2 0 0 1 differ time 43 18 13 

totals 27 16 13 18     

Respond 41 2 0 0 0 single 45 18 13 
  42 1 1 0 0 single 47 18 13 
  43 1 0 1 0 single 48 18 14 
  44 1 0 0 1 single 49 19 14 
  45 2 1 0 0 same time 52 19 14 
  46 2 0 1 0 same time 54 19 15 
  47 2 0 0 1 differ time 56 20 15 
  48 2 0 1 0 differ time 58 20 16 
  49 2 1 1 1 same time 61 21 17 
  50 2 1 1 1 differ time 64 22 18 
  51 1 1 0 1 same time 66 23 18 
  52 1 1 0 1 differ time 68 24 18 

  60 3 0 0 0 same time 71 24 18 
  61 1 2 0 0 same time 74 24 18 
  62 3 1 0 0 same time 78 24 18 
  63 3 0 1 0 same time 81 24 19 
  64 3 0 0 1 same time 84 25 19 

  65 3 0 1 0 differ time 87 25 20 
  66 3 1 1 1 same time 91 26 21 
  67 3 1 1 1 differ time 95 27 22 
  68 1 2 0 1 same time 98 28 22 
  69 1 2 0 1 differ time 101 29 22 

totals   43 15 9 11         

Math TC1 1 0 1 2 same time 102 31 23 
  TC2 1 0 1 2 same time 103 33 24 
  TC3 1 0 1 2 same time 104 35 25 
  TC4 1 0 1 2 same time 105 37 26 

  TC5 1 0 1 2 same time 106 39 27 
  TC6 1 0 1 2 same time 107 41 28 
  TC7 1 0 0 2 same time 108 43 28 
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totals   7 0 6 14         

totals 77 31 28 43 
Notes:   
8 - Set attenuation message, set newattenuation = 2 
10 - Get attenuation message 
13 - Increase attenuation message 
14 - Decrease attenuation message 
23 - INIT control message sent; OPT1 & Ctrl - same time - Passive: downstream received packets = 214 
30 - INIT control message sent - Ctrl & ENV - same time - Passive: downstream received packets = 214 
63 - INIT control message sent - OPT1 & Ctrl - same time - Respond: downstream received packets = 211 
65 - Set attenuation message, set newattenuation = 5 
67 - INIT control message sent - OPT1, OPT2, Ctrl & ENV - differ time - Respond: downstream received packets = 
207 

B.2.1 MS4ME Testing Structure  
 

The testing construct for each component and coupled module is the same. There is test 

component called “Upstream” that injects messages into the component under test and there is a 

testing component called “Downstream” that captures all output from the component under test. 

These two constructs contain all of the logic for the testing cases, as the component only has 

logic to react to inputs. Figure 17 shows the testevoa module with the three components, each 

component labeled with its current phase and ports. As noted earlier, Upstream only has (out)put 

ports connected to the EVOA (in)put ports, and all of the EVOA (out)put ports are connected to 

Downstream’s (in)put ports. Since the EVOA does not output env(ironmental) messages, there 

are is no env input port in Downstream. Each optical component listed in Table 4 has a similar 

testing construct built in MS4ME. 
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.

 
Figure 17. EVOA testing structure in MS4ME 

B.2.2 MS4ME Sample EVOA Output 
 

Following this paragraph is output from MS4ME while running the EVOA component. 

This is the output from Test Case 2 (highlighted in Table 6) and starts at simulation time 20. 

Major events described in this paragraph are highlighted in yellow in the MS4ME output. An 

optical pulse with id number 2 enters the EVOA at simulation time 21.0. The attenuator reacts to 

the input with an external event during the Passive phase on optical port 2 (OptIn2). The packet 

is added to the queue and the attenuator transitions from Passive to Reflect phase. The 

component reflects a portion of the packet out to the Downstream module and enters the Reflect 

internal transition. During the Reflect phase internal transition, the queued packet is removed 

from the queue, attenuated, and set to output during the Respond output phase. Once in the 

Respond phase, the packet is output and the queue checked during the Respond internal 

transition. Since the queue contains zero packets, the EVOA returns to the Passive phase and 

finally, Downstream receives the attenuated optical packet at simulation time 26. This time 

checks properly as the propagation time for the EVOA is set to five for this test case (26-21=5).  
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[20.0, 1:54:00.675] SimViewer_testevoa: Simulation step started  
[20.0, 1:54:00.675] Upstream - output event for Wait1 - time Elapsed: NA getTimeAdvance: 9.0 clock: 20.0 
[20.0, 1:54:00.676] SimViewer_testevoa.testevoa.testevoa.Upstream: Internal transition  
[20.0, 1:54:00.676] SimViewer_testevoa.testevoa.testevoa.Upstream: Internal transition from Wait1  
[20.0, 1:54:00.677] SimViewer_testevoa.testevoa.testevoa.Upstream: Holding in phase Case2 for time 0.0  
[20.0, 1:54:00.678] SimViewer_testevoa: Simulation step finished  
[20.0, 1:54:00.685] SimViewer_testevoa: Simulation step started  
[20.0, 1:54:00.685] Upstream - output event for Case2 - time Elapsed: NA getTimeAdvance: 0.0 clock: 20.0 
[20.0, 1:54:00.686] SimViewer_testevoa.testevoa.testevoa.Upstream: Internal transition  
[20.0, 1:54:00.686] SimViewer_testevoa.testevoa.testevoa.Upstream: Internal transition from Case2  
[20.0, 1:54:00.686] SimViewer_testevoa.testevoa.testevoa.Upstream: Holding in phase Case2_1 for time 1.0  
[20.0, 1:54:00.686] Upstream - internal event for Case2 - time Elapsed: NA getTimeAdvance: 1.0 clock: 20.0 
[20.0, 1:54:00.686] Upstream - internal event for Case2 - time Elapsed: NA getTimeAdvance: 0.0 clock: 20.0 
[20.0, 1:54:00.687] SimViewer_testevoa: Simulation step finished  
[21.0, 1:54:00.703] SimViewer_testevoa: Simulation step started  
[21.0, 1:54:00.704] Upstream - output event for Case2_1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 21.0 
[21.0, 1:54:00.704] SimViewer_testevoa.testevoa.testevoa.Upstream: Internal transition  
[21.0, 1:54:00.704] SimViewer_testevoa.testevoa.testevoa.Upstream: Internal transition from Case2_1  
[21.0, 1:54:00.705] SimViewer_testevoa.testevoa.testevoa.Upstream: Holding in phase Wait2 for time 9.0  
[21.0, 1:54:00.705] Upstream - internal event for Case2_1 - time Elapsed: NA getTimeAdvance: 9.0 clock: 21.0 
[21.0, 1:54:00.705] Upstream - internal event for Case2_1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 21.0 
[21.0, 1:54:00.705] SimViewer_testevoa.testevoa.testevoa.evoa: Received messages [inOptIn2: OpticalPulse 
 id: 2 
 name: Case 2 Optical Pulse 2 
 duration: 4.0E-10 
 opticalPower: 8.709666395E-5 
 brightPulseFlg: false 
 amplitude: 1.94095418E-6 
 centralFrequency: 1.0E15 
 globalPhase: 0.0 
 ellipticity: 0.0 
 orientation: 0.0 
 numberOfGaussians: 3 
 gA0: 45.5 
 gA1: 38.064 
 gA2: 4.75752 
 gM0: 9.54844E-11 
 gM1: 1.81125E-10 
 gM2: 3.52322E-10 
 gSD0: 1.98151E-11 
 gSD1: 5.81389E-11 
 gSD2: 4.90169E-11]  
[21.0, 1:54:00.706] SimViewer_testevoa.testevoa.testevoa.evoa: External transition  
[21.0, 1:54:00.706] SimViewer_testevoa.testevoa.testevoa.evoa: Holding in phase Reflect for time 0.0  
[21.0, 1:54:00.706] @@************* EVOA - START PASSIVE OPTIN2 EXTERNAL 
EVENT******************************************************************** 
[21.0, 1:54:00.706] EVOA - external event for Passive with OptIn2 - time Elapsed: 5.0 getTimeAdvance: 0.0 clock: 21.0 
[21.0, 1:54:00.706] Pulses Received: 2 Reflected: 1 Queued: 1 Sent: 1 Environmental Received: 0 Control Received: 0 
[21.0, 1:54:00.706] EVOA - received optical pulse named : Case 2 Optical Pulse 2 at time : 21.0 
[21.0, 1:54:00.706] Passive External - Adding pulse to queue 
[21.0, 1:54:00.706] ******************* DISPLAY PULSES IN QUEUE ******************* 
[21.0, 1:54:00.706] Total Number of Optical Pulses in Queue  : 1 
[21.0, 1:54:00.706] ID: 2 Name: Case 2 Optical Pulse 2 PortNum: 2 Reflected: false Time Remaining: 5.0 
[21.0, 1:54:00.706] *************************************************************** 
[21.0, 1:54:00.706] Pulses Received: 2 Reflected: 1 Queued: 2 Sent: 1 Environmental Received: 0 Control Received: 0 
[21.0, 1:54:00.706] EVOA - Preparing reflected pulse: Reflected Case 2 Optical Pulse 2 for sending on port OptOut2 
[21.0, 1:54:00.706] Reflected pulse ID: 2 Name: Reflected Case 2 Optical Pulse 2 PortNum: 2 Reflected: true Time Remaining: 5.0 
[21.0, 1:54:00.706] @@************* EVOA - END PASSIVE OPTIN2 EXTERNAL 
EVENT******************************************************************** 
[21.0, 1:54:00.707] SimViewer_testevoa: Simulation step finished  
[21.0, 1:54:00.713] SimViewer_testevoa: Simulation step started  
[21.0, 1:54:00.713] @@************* EVOA - START REFLECT OUTPUT 
EVENT******************************************************************** 
[21.0, 1:54:00.713] EVOA - output event for Reflect - time Elapsed: NA getTimeAdvance: 0.0 clock: 21.0 
[21.0, 1:54:00.713] ******************* DISPLAY PULSES IN QUEUE ******************* 
[21.0, 1:54:00.713] Total Number of Optical Pulses in Queue  : 1 before reflection. 
[21.0, 1:54:00.713] ID: 2 Name: Case 2 Optical Pulse 2 PortNum: 2 Reflected: true Time Remaining: 5.0 
[21.0, 1:54:00.713] *************************************************************** 
[21.0, 1:54:00.713] ### EVOA - Reflecting pulse: Reflected Case 2 Optical Pulse 2 to port OptOut2 
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[21.0, 1:54:00.714] Current Attenuation =: 0.1 
[21.0, 1:54:00.714] New Attenuation =: 0.1 
[21.0, 1:54:00.714] Pulses Received: 2 Reflected: 2 Queued: 2 Sent: 1 Environmental Received: 0 Control Received: 0 
[21.0, 1:54:00.714] @@************* EVOA - END REFLECT OUTPUT 
EVENT******************************************************************** 
[21.0, 1:54:00.714] SimViewer_testevoa.testevoa.testevoa.evoa: Internal transition  
[21.0, 1:54:00.715] SimViewer_testevoa.testevoa.testevoa.evoa: Internal transition from Reflect  
[21.0, 1:54:00.715] SimViewer_testevoa.testevoa.testevoa.evoa: Holding in phase Respond for time 5.0  
[21.0, 1:54:00.715] @@************* EVOA - START REFLECT INTERNAL 
EVENT******************************************************************** 
[21.0, 1:54:00.715] EVOA - output event for Reflect: Total Number of Optical Pulses in Queue  : 1 
[21.0, 1:54:00.715] ******************* DISPLAY PULSES IN QUEUE ******************* 
[21.0, 1:54:00.715] Total Number of Optical Pulses in Queue  : 1 after reflection. 
[21.0, 1:54:00.715] ID: 2 Name: Case 2 Optical Pulse 2 PortNum: 2 Reflected: true Time Remaining: 5.0 
[21.0, 1:54:00.715] *************************************************************** 
[21.0, 1:54:00.715] Setting up the pulse - polling the queue and REMOVING FROM QUEUE 
[21.0, 1:54:00.715] ** INTERNAL EVENT FOR RESPOND - Before Calc - Amplitude: 1.94095418E-6 
[21.0, 1:54:00.715] ** INTERNAL EVENT FOR RESPOND - After Calc - Amplitude: 1.918736261226321E-6 
[21.0, 1:54:00.715] EVOA - Preparing send pulse: Attenuated Case 2 Optical Pulse 2 to port OptOut1 
[21.0, 1:54:00.716] SimViewer_testevoa.testevoa.testevoa.evoa: Holding in phase Respond for time 5.0  
[21.0, 1:54:00.716] Current Attenuation =: 0.1 
[21.0, 1:54:00.716] New Attenuation =: 0.1 
[21.0, 1:54:00.716] @@************* EVOA - END REFLECT INTERNAL TRANSITION 
******************************************************************* 
[21.0, 1:54:00.716] SimViewer_testevoa.testevoa.testevoa.Downstream: Received messages [inOptIn2: OpticalPulse 
 id: 2 
 name: Reflected Case 2 Optical Pulse 2 
 duration: 4.0E-10 
 opticalPower: 8.709666395E-5 
 brightPulseFlg: false 
 amplitude: 1.94095418E-9 
 centralFrequency: 1.0E15 
 globalPhase: 0.0 
 ellipticity: 0.0 
 orientation: 0.0 
 numberOfGaussians: 3 
 gA0: 45.5 
 gA1: 38.064 
 gA2: 4.75752 
 gM0: 9.54844E-11 
 gM1: 1.81125E-10 
 gM2: 3.52322E-10 
 gSD0: 1.98151E-11 
 gSD1: 5.81389E-11 
 gSD2: 4.90169E-11]  
[21.0, 1:54:00.717] SimViewer_testevoa.testevoa.testevoa.Downstream: External transition  
[21.0, 1:54:00.717] SimViewer_testevoa.testevoa.testevoa.Downstream: Holding in phase Passive for time Infinity  
[21.0, 1:54:00.717] Downstream - external event for Passive with OptIn2 - time Elapsed: 5.0 getTimeAdvance: Infinity clock: 21.0 
[21.0, 1:54:00.717] Downstream - Received : 3 
[21.0, 1:54:00.717] Downstream - Received Optical Pulse : 3 named : Reflected Case 2 Optical Pulse 2 at time : 21.0 
[21.0, 1:54:00.717] SimViewer_testevoa: Simulation step finished  
[26.0, 1:54:00.726] SimViewer_testevoa: Simulation step started  
[26.0, 1:54:00.727] @@************* EVOA - START RESPOND OUTPUT 
EVENT******************************************************************** 
[26.0, 1:54:00.727] EVOA - output event for Respond - time Elapsed: NA getTimeAdvance: 5.0 clock: 26.0 
[26.0, 1:54:00.727] ******************* DISPLAY PULSES IN QUEUE ******************* 
[26.0, 1:54:00.727] Total Number of Optical Pulses in Queue  : 0 BEFORE propagation. 
[26.0, 1:54:00.727] *************************************************************** 
[26.0, 1:54:00.727] ** OUTPUT EVENT FOR RESPOND Amplitude: 1.918736261226321E-6 
[26.0, 1:54:00.727] ### EVOA - Sending pulse: Attenuated Case 2 Optical Pulse 2 to port OptOut1 
[26.0, 1:54:00.727] Current Attenuation =: 0.1 
[26.0, 1:54:00.727] New Attenuation =: 0.1 
[26.0, 1:54:00.727] Pulses Received: 2 Reflected: 2 Queued: 2 Sent: 2 Environmental Received: 0 Control Received: 0 
[26.0, 1:54:00.727] @@************* EVOA - END RESPOND OUTPUT 
EVENT******************************************************************** 
[26.0, 1:54:00.727] SimViewer_testevoa.testevoa.testevoa.evoa: Internal transition  
[26.0, 1:54:00.728] SimViewer_testevoa.testevoa.testevoa.evoa: Internal transition from Respond  
[26.0, 1:54:00.728] SimViewer_testevoa.testevoa.testevoa.evoa: Holding in phase Passive for time Infinity  
[26.0, 1:54:00.728] @@************* EVOA - START RESPOND INTERNAL 
EVENT******************************************************************** 
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[26.0, 1:54:00.728] EVOA - internal event for Respond - time Elapsed: NA getTimeAdvance: Infinity clock: 26.0 
[26.0, 1:54:00.728] ******************* DISPLAY PULSES IN QUEUE ******************* 
[26.0, 1:54:00.728] Total Number of Optical Pulses in Queue  : 0 BEFORE propagation. 
[26.0, 1:54:00.728] *************************************************************** 
[26.0, 1:54:00.728] *************** Adjust queue *************** 
[26.0, 1:54:00.728] Total Number of Optical Pulses in Queue  : 0 
[26.0, 1:54:00.728] Pulses Received: 2 Reflected: 2 Queued: 2 Sent: 2 Environmental Received: 0 Control Received: 0 
[26.0, 1:54:00.728] EVOA - Ending Respond internal transition 
[26.0, 1:54:00.728] Going to Passive Phase Next!!! 
[26.0, 1:54:00.729] SimViewer_testevoa.testevoa.testevoa.evoa: Holding in phase Passive for time Infinity  
[26.0, 1:54:00.729] Current Attenuation =: 0.1 
[26.0, 1:54:00.729] New Attenuation =: 0.1 
[26.0, 1:54:00.729] @@************* EVOA - END RESPOND INTERNAL 
EVENT******************************************************************** 
[26.0, 1:54:00.729] SimViewer_testevoa.testevoa.testevoa.Downstream: Received messages [inOptIn1: OpticalPulse 
 id: 2 
 name: Attenuated Case 2 Optical Pulse 2 
 duration: 4.0E-10 
 opticalPower: 8.709666395E-5 
 brightPulseFlg: false 
 amplitude: 1.918736261226321E-6 
 centralFrequency: 1.0E15 
 globalPhase: 0.0 
 ellipticity: 0.0 
 orientation: 0.0 
 numberOfGaussians: 3 
 gA0: 45.5 
 gA1: 38.064 
 gA2: 4.75752 
 gM0: 9.54844E-11 
 gM1: 1.81125E-10 
 gM2: 3.52322E-10 
 gSD0: 1.98151E-11 
 gSD1: 5.81389E-11 
 gSD2: 4.90169E-11]  
[26.0, 1:54:00.730] SimViewer_testevoa.testevoa.testevoa.Downstream: External transition  
[26.0, 1:54:00.730] SimViewer_testevoa.testevoa.testevoa.Downstream: Holding in phase Passive for time Infinity  
[26.0, 1:54:00.730] Downstream - external event for Passive with OptIn1 - time Elapsed: 5.0 getTimeAdvance: Infinity clock: 26.0 
[26.0, 1:54:00.730] Downstream - Received : 4 
[26.0, 1:54:00.730] Downstream - Received Optical Pulse : 4 named : Attenuated Case 2 Optical Pulse 2 at time : 26.0 
[26.0, 1:54:00.731] SimViewer_testevoa: Simulation step finished  

 

B.2.3 DEVS MS4ME derived pseudocode 
 

This derived pseudocode is an example of the logic and events within a component, and 

came from the comments placed within the MS4ME EVOA module code, condensing its 2600 

lines of code. The comments were placed to identify actions and phase transitions to increase 

readability of the code and to provide markers as the code executes during runtime. This 

pseudocode show a major process for the EVOA is to change its current attenuation setting in 

response to control input, so the EVOA includes an additional phase of “Update Attenuation” for 

this operation. See appendix H for the detailed description of the EVOA. 
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EVOA - START PASSIVE  
 
EVOA - START PASSIVE EXTERNAL EVENT 
  adjust clock based upon time elapsed since last event 
  check for existing optical message     
    remove each pulse in bag and store it into a queued optical pulse buffer 
  check for existing env message    
    check if the received temperature exceeds damaged or degraded threshold 
  check for existing ctrl message      
    generate the response message for an incoming control message   
  set up for first reflected pulse if optical pulse arrived 
  go to the Reflect phase else go to the Update Attenuation phase 
    
EVOA - START REFLECT OUTPUT EVENT 
  adjust clock based upon time advance 
  output pulse 
  
EVOA - START REFLECT INTERNAL EVENT 
  identify any pulses that have not yet been reflected and reflect them 
  set up pulse to send in Respond phase 
  go to the Respond phase        
 
EVOA - START UPDATE ATTENUATION EXTERNAL EVENT  
  adjust clock based upon time elapsed since last event 
  check for existing optical message     
    remove each pulse in bag and store it into a queued optical pulse buffer 
  check for existing env message    
    check if the received temperature exceeds damaged or degraded threshold 
  check for existing ctrl message      
    generate the response message for an incoming control message   
  set up for first reflected pulse if optical pulse arrived 
  else hold in the Update Attenuation phase for a change in Attenuation 
 
EVOA - START UPDATE ATTENUATION OUTPUT EVENT 
  adjust clock based upon time advance 
  output the response message  
  change the current attenuation 
  
EVOA - START UPDATE ATTENUATION INTERNAL EVENT 
  set up pulse to send in Respond phase if optical pulse arrived 
 go to Respond if optical pulse arrived      
else go to Update Attenuation if a control message arrived 
else go to Passive 
   
 EVOA - START RESPOND EXTERNAL EVENT 
  adjust clock based upon time elapsed since last event 
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  adjust queue 
    set a flag that the Respond phase was interrupted by an external event 
  check for existing optical message     
    remove each pulse in bag and store it into a queued optical pulse buffer 
  check for existing env message    
    check if the received temperature exceeds damaged or degraded threshold 
  check for existing ctrl message      
    generate the response message for an incoming control message   
  set up for first reflected pulse if optical pulse arrived 
  go to the Reflect phase  
    else go to the Update Attenuation phase 
 
EVOA - START RESPOND OUTPUT EVENT 
  adjust clock based upon time advance 
  adjust pulse amplitude if damaged or degraded 
  output pulse to the correct port 
     
EVOA - START RESPOND INTERNAL EVENT 
  adjust queue 
  check if there any pulses remaining in queue 
    set up the next queued pulse 
    pulses remaining, so go to Respond  
  else check to see if the attenuation is changing 
    attenuation changing, go to Update Attenuation 
  else go to Passive phase 
 
EVOA – END PASSIVE 
 

B.3 Coupled Submodules 

The component testing design facilitated building the coupled submodules by replacing 

the Upstream and Downstream test components with other optical components. For the example 

of the Classical Pulse Generator (CPG) (see appendix U and chapter 6 for discussion of the 

CPG), the ‘internal’ of the submodule is built of optical components and the ‘external’ construct 

is once again an Upstream, a Downstream and the CPG acting as an atomic component, in this 

case the testing construct is labeled “expframe.” This is the benefit of DEVS’ closure under 

coupling (Chow, 1996; Zeigler, 1976; Zeigler, 1984)and the MS4ME simulator models this 

behavior.  
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Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was to test the ability of the coupled 

submodule to receive messages and pass them internally to the submodule controller. The 

controller processed the message and passed the appropriate message to the controlled 

component. For example, the CPG submodule received a control message to fire the laser. The 

CPG received the message, passed it internally to the CPG controller, which passed the message 

to the laser component, which fired the laser to emit an optical packet. There are four or five test 

cases for each submodule: 

 Case 1 – Send a control message to the coupled submodule to exercise the 

controller and controlled component. For each of the modules: 

o CPG – control message fires laser. 
o PM – control message changes polarization. 
o DSG – control message change attenuation of EVOA. 
o CTQ – control message change attenuation of EVOA. 
o OSL – control message requests status. 
o TPG – control message fires laser. 
o OPM – control message change switch position. 

 Case 2 – Send a control message to request the status of the coupled submodule, 

which is held in the submodule controller. 

 Case 3 – Send an environmental message to the coupled submodule for 

replication to each component within the module. 

 Case 4- Send a control message to the coupled submodule that contains a reset 

command. 

 Case 5 – Send an optical message to submodule for injection into optical path 

within the submodule (for all but the CPG). 

 

The exceptions for the test cases were the CPG and the OSL. The CPG did not have a test 

case to inject an optical packet as the CPG is the module that creates the optical pulse, though it 

did receive reflections from the Downstream module into the CPG OptIn2 port. The OSL had 

one less control message as its “controlled” device is the classical detector, which only sends 
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data to the controller, and does not accept input control messages. See Table 8 for summary of 

these tests. 

Table 8. Summary of coupled submodule behavior testing. 

  Test Type 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse 
Generator 4 0 3 1 

Polarization  Modulator 5 1 3 1 

Decoy State Generator 5 1 3 1 

Classical To Quantum 5 1 3 1 

Optical Security Layer 4 1 2 1 

Timing Pulse Generator 5 1 3 1 

Optical Power Monitor 5 1 3 1 
 

In the following figures, Figure 18 is the CPG architecture diagram, Figure 19 is the 

high-level test frame and Figure 20 shows the exploded view of the CPG submodule within the 

high-level test frame. Notice there is a “cpgcontroller” that receives messages from outside the 

CPG. This is a simple representation of the logic circuits necessary to operate this module. In 

these conceptual models, the controller reacts to the appropriate message types for the opto-

electrical components connected to the controller. For example, the CPG controller accepts 

messages for the laser and the classical detector. Similarly, each coupled model has controller 

specific for its needs. 

 
Figure 18. CPG architecture. 
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Figure 19. CPG test frame. 
 

 
Figure 20. CPG coupled submodule components. 
 

Connections for the coupled models are more complex than for the individual 

components, as both Upstream and Downstream need send and receive messages to test the 

external CPG submodule ports, and environmental messages have to pass through into the 

coupled model for each component.  

The code necessary for building coupled models much simpler than the code for the 

components. The coupled model code specifies external components (Upstream, Downstream) 

and external inputs and outputs for the CPG module. Additionally, the code lists all internal 

components and the internal connections between them. Finally, the connections from the CPG 

to internal components are defined. For a coupled model, there are no phases or transitions 

defined, as the ‘state’ of the coupled model is the sum of all current states of all internal 
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components. Appendix U describes the CPG in detail and each coupled module appendix (U-

AA) has the DEVS code for the controller and the coupled module. 

Once constructed, each coupled model was tested by injecting the proper message packet 

into the submodule. Every coupled model, except the CPG, has input optical, environmental and 

control ports. The CPG has no input optical port, as the laser within the CPG generates optical 

pulses for the Alice subsystem and its primary input is a control message to fire the laser. Table 9 

summarizes the test cases for the CPG submodule. 

Table 9. Example test case timing chart - CPG. 

 Inject Ports  Running Totals 

Case Opt1 Ctrl Env Timing opt # env # ctrl # 

1 0 1 0 single 0 0 1 

2 0 1 0 single 0 0 2 
3 0 0 1 single 0 1 2 
4 0 1 0 single 0 1 3 

totals 0 3 1      

B.3.1 MS4ME Sample CPG Output 

This section contains the output from MS4ME while running the CPG submodule. This is 

the output from Test Case 1 (highlighted in Table 9) and starts at simulation time 10. Major 

events described in this paragraph are highlighted in yellow in the following MS4ME output. 

Case 1 starts with Upstream having an output event at time 10, sending the message to the CPG 

which seamlessly passes the message inside the submodule to the CPG controller. The controller 

receives a LaserMsg with id:1 on port CtrlIn1 and starts the Passive external event. The 

controller sees it has received a laser fire message and moves to the Respond phase. The 

controller notes that the status number of the message is 6, the stored power value of the last 

classical detection is zero (this is sent from the classical detector when it has a detection) and 

prepares a response message and sends it out port CtlrOut2, ending the Response phase.  
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The response message goes to the laser, which receives the message on port CtrlIn and 

starts the Passive CtrlIn event. The laser decodes the message, moves to the “ON” setting and 

prepares a fire control message for port CtrlOut. The laser moves to the Update Laser phase 

where it notes the laserpower variable is “true,” indicating the laser is on. The laser begins 

preparing an optical pulse for output on OptOut1 (the only optical output port in the laser) and 

notes it is moving to the Create Pulse phase. Once in the Create Pulse phase, the laser outputs the 

generated optical pulse on port OptOut1 and ends the Create Pulse phase. Finally, the next 

component in line from the laser, the pmfiber1, receives the optical pulse at simulation time 16. 

This output shows how the CPG, the CPG controller, and the CPG internal laser reacts to a “fire 

laser” message to generate optical pulses at the beginning of the optical path within Alice. 

[10.0, 2:13:36.632] SimViewer_expframe: Simulation step started  
[10.0, 2:13:36.632] Upstream - output event for Case1 - time Elapsed: NA getTimeAdvance: 10.0 clock: 10.0 
[10.0, 2:13:36.632] SimViewer_expframe.expframe.expframe.Upstream: Internal transition  
[10.0, 2:13:36.632] SimViewer_expframe.expframe.expframe.Upstream: Internal transition from Case1  
[10.0, 2:13:36.632] SimViewer_expframe.expframe.expframe.Upstream: Holding in phase Case1_1 for time 1.0  
[10.0, 2:13:36.632] Upstream - internal event for Case1  - time Elapsed: NA getTimeAdvance: 1.0 clock: 10.0 
[10.0, 2:13:36.632] Upstream - internal event for Case1 - time Elapsed: NA getTimeAdvance: 10.0 clock: 10.0 
[10.0, 2:13:36.632] SimViewer_expframe: Simulation step finished  
[11.0, 2:13:36.773] SimViewer_expframe: Simulation step started  
[11.0, 2:13:36.788] Upstream - output event for Case1_1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 11.0 
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.Upstream: Internal transition  
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.Upstream: Internal transition from Case1_1  
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.Upstream: Holding in phase Wait1 for time 49.0  
[11.0, 2:13:36.788] Upstream - internal event for Case1_1 - time Elapsed: NA getTimeAdvance: 49.0 clock: 11.0 
[11.0, 2:13:36.788] Upstream - internal event for Case1_1 - time Elapsed: NA getTimeAdvance: 1.0 clock: 11.0 
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Received messages [inCtrlIn1: LaserMsg 
 id: 1 
 name: Case 1 Control Message 1 
 status: 6 
 magnitude: 0.0]  
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: External transition  
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Respond for time 0.0  
[11.0, 2:13:36.788] @@************* CPG CONTROLLER - START PASSIVE CTRLIN1 EXTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:36.788] CPG Controller - external event for Passive CtrlIn with CtrlIn - time Elapsed: 11.0 getTimeAdvance: 0.0 clock: 11.0 
[11.0, 2:13:36.788] CPG Controller received a laser fire message 
[11.0, 2:13:36.788] CPG Controller - Preparing laser fire control message for: Case 1 Control Message 1 to port CtrlOut2 
[11.0, 2:13:36.788] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Respond for time 0.0  
[11.0, 2:13:36.788] @@************* CPG CONTROLLER - END PASSIVE CTRLIN1 EXTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:36.944] SimViewer_expframe: Simulation step finished  
[11.0, 2:13:37.54] SimViewer_expframe: Simulation step started  
[11.0, 2:13:37.54] @@************* CPG CONTROLLER - START RESPOND OUTPUT 
EVENT******************************************************************** 
[11.0, 2:13:37.54] CPG Controller - output event for Respond - time Elapsed: NA getTimeAdvance: 0.0 clock: 11.0 
[11.0, 2:13:37.54] sendCtrl getStatus =: 6 
[11.0, 2:13:37.54] Last Classical Detection Optical Power =: 0.0 
[11.0, 2:13:37.54] ### CPG Controller - Sending laser fire message: CPG Controller FIRE Response Message for Case 1 Control Message 1 to 
port CtrlOut2 
[11.0, 2:13:37.54] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 1 Environmental Received: 0 Control Received: 1 Control Received: 1 
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[11.0, 2:13:37.54] @@************* CPG CONTROLLER - END RESPOND OUTPUT 
EVENT******************************************************************** 
[11.0, 2:13:37.54] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Internal transition  
[11.0, 2:13:37.54] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Internal transition from Respond  
[11.0, 2:13:37.54] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Passive for time Infinity  
[11.0, 2:13:37.54] @@************* CPG CONTROLLER - START RESPOND INTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:37.69] CPG Controller - internal event for Respond - time Elapsed: NA getTimeAdvance: Infinity clock: 11.0 
[11.0, 2:13:37.69] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 1 Environmental Received: 0 Control Received: 1 Control Received: 1 
[11.0, 2:13:37.69] CPG Controller - Ending Respond internal transition 
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.cpgcontroller: Holding in phase Passive for time Infinity  
[11.0, 2:13:37.69] @@************* CPG CONTROLLER - END RESPOND INTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Received messages [inCtrlIn: LaserMsg 
 id: 1 
 name: CPG Controller FIRE Response Message for Case 1 Control Message 1 
 status: 6 
 magnitude: 0.0]  
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: External transition  
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase UpdateLaser for time 0.0  
[11.0, 2:13:37.69] @@************* LASER - START PASSIVE CTRLIN EXTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:37.69] Laser - external event for Passive CtrlIn with CtrlIn - time Elapsed: 11.0 getTimeAdvance: 0.0 clock: 11.0 
[11.0, 2:13:37.69] Laser is set to ON 
[11.0, 2:13:37.69] Laser - Preparing laser fire control message for: CPG Controller FIRE Response Message for Case 1 Control Message 1 to port 
CtrlOut 
[11.0, 2:13:37.69] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase UpdateLaser for time 0.0  
[11.0, 2:13:37.69] @@************* LASER - END PASSIVE CTRLIN EXTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:37.69] SimViewer_expframe: Simulation step finished  
[11.0, 2:13:37.288] SimViewer_expframe: Simulation step started  
[11.0, 2:13:37.288] @@************* LASER - START UPDATELASER OUTPUT 
EVENT******************************************************************** 
[11.0, 2:13:37.288] Laser - output event for UpdateLaser - time Elapsed: NA getTimeAdvance: 0.0 clock: 11.0 
[11.0, 2:13:37.288] ******************* DISPLAY PULSES IN QUEUE ******************* 
[11.0, 2:13:37.288] Total Number of Optical Pulses in Queue  : 0 before reflection. 
[11.0, 2:13:37.288] *************************************************************** 
[11.0, 2:13:37.288] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 0 Environmental Received: 0 Control Received: 1 
[11.0, 2:13:37.288] @@************* LASER - END UPDATELASER OUTPUT 
EVENT******************************************************************** 
[11.0, 2:13:37.303] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition  
[11.0, 2:13:37.319] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition from UpdateLaser  
[11.0, 2:13:37.319] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase Passive for time Infinity  
[11.0, 2:13:37.319] @@************* LASER - START UPDATELASER INTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:37.319] Laser - internal event for UpdateLaser - time Elapsed: NA getTimeAdvance: Infinity clock: 11.0 
[11.0, 2:13:37.319] ******************* DISPLAY PULSES IN QUEUE ******************* 
[11.0, 2:13:37.319] Total Number of Optical Pulses in Queue  : 0 after reflection. 
[11.0, 2:13:37.319] *************************************************************** 
[11.0, 2:13:37.319] InterruptRespond = false 
[11.0, 2:13:37.319] needRespond = false 
[11.0, 2:13:37.319] laserpower = true 
[11.0, 2:13:37.319] currentStatus = 6 
[11.0, 2:13:37.319] sendCtrl status is: 6 
[11.0, 2:13:37.319] Laser - Preparing optical pulse for: Laser Output Pulse 1 to port OptOut1 
[11.0, 2:13:37.319] Going to Create Pulse Phase Next!!! 
[11.0, 2:13:37.319] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase CreatePulse for time 5.0  
[11.0, 2:13:37.319] @@************* LASER - END UPDATELASER INTERNAL 
EVENT******************************************************************** 
[11.0, 2:13:37.319] SimViewer_expframe: Simulation step finished  
[16.0, 2:13:37.459] SimViewer_expframe: Simulation step started  
[16.0, 2:13:37.459] @@************* LASER - START CREATEPULSE OUTPUT 
EVENT******************************************************************** 
[16.0, 2:13:37.459] Laser - output event for CreatePulse - time Elapsed: NA getTimeAdvance: 5.0 clock: 16.0 
[16.0, 2:13:37.459] ******************* DISPLAY PULSES IN QUEUE ******************* 
[16.0, 2:13:37.459] Total Number of Optical Pulses in Queue  : 0 BEFORE propagation. 
[16.0, 2:13:37.459] *************************************************************** 
[16.0, 2:13:37.459] ** OUTPUT EVENT FOR CREATEPULSE 
[16.0, 2:13:37.459] ### Laser - Sending generated optical pulse: Laser Output Pulse 1 to port OptOut1 
[16.0, 2:13:37.459] Pulses Received: 0 Reflected: 0 Queued: 0 Sent: 1 Environmental Received: 0 Control Received: 1 
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[16.0, 2:13:37.459] @@************* LASER - END CREATEPULSE OUTPUT 
EVENT******************************************************************** 
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition  
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Internal transition from CreatePulse  
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase Passive for time Infinity  
[16.0, 2:13:37.459] @@************* LASER - START CREATEPULSE INTERNAL 
EVENT******************************************************************** 
[16.0, 2:13:37.459] Laser - internal event for CreatePulse - time Elapsed: NA getTimeAdvance: Infinity clock: 16.0 
[16.0, 2:13:37.459] ******************* DISPLAY PULSES IN QUEUE ******************* 
[16.0, 2:13:37.459] Total Number of Optical Pulses in Queue  : 0 BEFORE propagation. 
[16.0, 2:13:37.459] *************************************************************** 
[16.0, 2:13:37.459] *************** Adjust queue *************** 
[16.0, 2:13:37.459] Total Number of Optical Pulses in Queue  : 0 
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.laser: Holding in phase Passive for time Infinity  
[16.0, 2:13:37.459] @@************* LASER - END CREATEPULSE INTERNAL 
EVENT******************************************************************** 
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.pmfiber1: Received messages [inOptIn1: OpticalPulse 
 id: 1 
 name: Laser Output Pulse 1 
 duration: 4.0E-10 
 opticalPower: 8.709666395E-5 
 brightPulseFlg: false 
 amplitude: 1.94095418E-6 
 centralFrequency: 1.0E15 
 globalPhase: 0.0 
 ellipticity: 0.0 
 orientation: 0.0 
 numberOfGaussians: 3 
 gA0: 45.5 
 gA1: 38.064 
 gA2: 4.75752 
 gM0: 9.54844E-11 
 gM1: 1.81125E-10 
 gM2: 3.52322E-10 
 gSD0: 1.98151E-11 
 gSD1: 5.81389E-11 
 gSD2: 4.90169E-11]  
[16.0, 2:13:37.459] SimViewer_expframe.expframe.expframe.cpg.pmfiber1: External transition  
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Appendix C – Cryptography Overview 

 

The need for secure communications has existed since the dawn of humanity. 

Cryptography, the practice and study of techniques for securing communications between two 

authorized parties in the presence of one or more unauthorized third parties, is an essential tool 

used to assure information security (Piper & Murphy, 2002). Historically, government and 

military applications are the chief users of cryptography, but today cryptography provides 

security services to almost everyone, including confidentiality, integrity, authentication, 

authorization, and non-repudiation (Barker et al., 2005). 

C.1 Cryptosystems 

A cryptosystem is composed of two basic components: an algorithm and one or more 

keys. The algorithm is the mathematical transformation used to encrypt and decrypt messages 

and the key(s) are parameters used in the encryption and decryption processes. Figure 1 shows a 

block diagram of a simple cryptosystem. The original message, m, called the “plaintext” 

transforms into the “ciphertext”, EK(m), using the encryption algorithm, E, and the encryption 

key, K. The terms plaintext and ciphertext refer to binary data and can represent anything in 

digital form (e.g., text, audio, video, pictures, and programs). Other parameters (e.g., 

initialization vectors, salt, etc.) may be used but are not shown for simplicity. Ideally, the 

ciphertext is not decipherable unless you possess the matching decryption key. The 

transformation of plaintext into ciphertext “protects” the confidentiality of messages transmitted 

over a public channel where an adversary could possibly intercept it. Upon receipt, the ciphertext 

message is transformed back into the plaintext, m, using the decryption algorithm, D, and the 

decryption key K′. The decryption algorithm, D, is the inverse transformation of the encryption 
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algorithm, M, which means that DK′ (EK(m))=m. Note that in general K does not have to equal 

K′, although it does for symmetric algorithms. 

 

Figure 21. A Simple Cryptosystem Block Diagram 

There are three basics types of cryptographic algorithms: symmetric, asymmetric and 

hashing functions.  Symmetric key algorithms use the same key (e.g., K = K′) for encryption and 

decryption. The benefits of a symmetric key algorithm are that it provides confidentiality, is fast, 

is easily implemented in hardware, and consumes little computational power when compared to 

asymmetric algorithms. However, symmetric key algorithms only provide confidentiality and 

require a separate key for each pair of entities who wish secure communications, which does not 

scale well when large numbers of entities must securely communicate. Examples of symmetric 

key algorithms include the Data Encryption Standard (DES), 3-DES, AES, Blowfish, Rivest 

Cipher 4 (RC4), and Rivest Cipher 5 (RC5) (Loepp & Wootters, 2006; Piper & Murphy, 2002; 

Schneier, 1995).  

Asymmetric key algorithms used mathematically related, but different (e.g., K ≠ K′), key 

pairs for encryption and decryption (e.g., public and private keys) which reduces the key 

distribution burden. The benefits of an asymmetric key algorithm are: 1) no need for “out of 

band” (sending the key through a different channel than the encryption channel) key distribution 

as public keys are freely shared, 2) it scales better since each individual only a needs a single 
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key-pair, 3) provides authentication and non-repudiation. However, asymmetric key algorithms 

are slow because they require complex mathematical operations and typically consume more 

computational power than symmetric algorithms. Examples of asymmetric algorithms include 

the Rivest Shamir Adleman (RSA), Pretty Good Privacy (PGP), El Gamal, Elliptic Curve 

Cryptography (ECC), and Diffie-Hellman (Loepp & Wootters, 2006; Piper & Murphy, 2002; 

Schneier, 1995).  

Hash algorithms are one-way functions that take an arbitrary-length message and create a 

fixed-length message digest. Hash algorithms may or may not require a key depending on their 

mode of operation. Hashing provides an efficient way to check the integrity of stored or 

transmitted data without having to compare the data bit by bit. However, since hash algorithms 

map all possible inputs to a fixed length message digest, more than one input can map to the 

same digest creating a “collision” which may provide an advantage to an eavesdropper. 

Examples of hash algorithms include Message Digest-4 (MD-4), Message Digest-5 (MD-5), and 

Secure Hash Algorithm-1 (SHA-1) (Loepp & Wootters, 2006; Piper & Murphy, 2002; Schneier, 

1995).  

C.2 The One-Time Pad (OTP) 

The only cryptographic algorithm mathematically proven as unconditionally secure is the 

OTP. The OTP is a symmetric cryptographic algorithm and is relatively easy to understand. The 

first known description of the OTP was in 1882 when Frank Miller described 

“superencipherment” as a means to insure the privacy and secrecy of telegraphic 

communications (Bellovin, 2011). Miller’s method required the use of a randomly created key 

that was never reused. In 1917, Gilbert Vernam invented, and later patented, a cipher based on 

teleprinter technology, but it was vulnerable as it reused key material (Vernam, 1919; Vernam, 
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1926). Despite this weakness, a National Security Agency (NSA) report identified Vernam’s 

patent as “perhaps one of the most important in the history of cryptography” (Kahn, 1996). In the 

1940s, Claude E. Shannon proved the theoretical significance of the security of the OTP (C. E. 

Shannon, 1949). 

The strength most modern cryptographic algorithms relies on “computational security,” 

meaning the algorithm is considered secure if there is a negligible probability of determining the 

key in a “reasonable” amount of time using current technology (Schneier, 1995). In theory, every 

cryptographic algorithm, except the OTP, is breakable if an adversary has enough captured 

ciphertext, computational resources, and time. However, the OTP is not commonly used due to 

the large amount of non-reusable key material required to properly use the algorithm. To take 

advantage of the OTP, the sender (historically known as Alice) creates and distributes random 

secret keys to the receiver (historically known as Bob) equal in length to all messages 

exchanged. In practice, this places a significant burden on key distribution and management as 

one must continually generate and securely distribute key pads between the senders and receivers 

(Schneier, 1995). Historically, the OTP is only used in environments which justify the costs 

involved with secure key distribution (Singh, 1999).  

C.3 Computational Security 

Along with problems in key distribution, there are concerns that certain cryptographic algorithms 

will become useless when quantum computers with large number of quantum bits (qubits) 

become available. Each qubit allows a quantum computer to perform in a single step what takes 

multiple steps in existing computers (Nielsen & Chuang, 2010). This allows a quantum computer 

to complete difficult tasks much sooner than a regular computer, such as the factoring of large 

numbers (Shor, 1997). Unfortunately, most current encryption algorithms rely on the factoring of 
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large numbers being a hard or insurmountable problem for computers, so quantum computing 

would risk the security of these schemes (Institute for Quantum Computing, 2013) 

 
 

C.4 References 

Barker, E. B., Barker, W. C., & Lee, A. (2005). NIST special publication 800-21 guideline for 
implementing cryptography in the federal government NIST. Retrieved from 
http://csrc.nist.gov/publications/nistpubs/800-21-1/sp800-21-1_Dec2005.pdf  

Bellovin, S. M. (2011). Frank miller: Inventor of the one-time pad. Cryptologia, 35(3), 203-222. 
Retrieved from 
http://academiccommons.columbia.edu/download/fedora_content/download/ac:135404/CO
NTENT/cucs-009-11.pdf  

Institute for Quantum Computing. (2013). Quantum computing 101. Retrieved, 2013, Retrieved 
from http://iqc.uwaterloo.ca/welcome/quantum-computing-101  

Kahn, D. (1996). The codebreakers: The comprehensive history of secret communication from 
ancient times to the internet (2nd ed.). New York: Scribner.  

Loepp, S., & Wootters, W. K. (2006). Protecting information: From classical error correction to 
quantum cryptography (1st ed.). New York: Cambridge University Press.  

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information (10th 
ed.). Cambridge, UK: Cambridge university press.  

Piper, F., & Murphy, S. (2002). Cryptography A very short introduction (5th ed.). New York: 
Oxford University Press.  

Schneier, B. (1995). In Sutherland P. (Ed.), Applied cryptography: Protocols, algorithms, and 
source code in C (2nd ed.). New York: John Wiley & Sons, Inc.  

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell System Technical 
Journal, 28(4), 656-715. Retrieved from http://dm.ing.unibs.it/giuzzi/corsi/Support/papers-
cryptography/Communication_Theory_of_Secrecy_Systems.pdf  

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms 
on a quantum computer. SIAM Journal on Computing, 26(5), 1484-1509.  

Singh, S. (1999). The code book: The secret history of codes and code-breaking (17th ed.). 
London: Fourth Estate.  



164 
 

Vernam, G. S. (1919). Secret signaling system. New York: Retrieved from 
http://www.google.com/patents?hl=en&lr=&vid=USPAT1310719&id=1BpPAAAAEBAJ&
oi=fnd&dq=vernam+1919&printsec=abstract  

Vernam, G. S. (1926). Cipher printing telegraph systems for secret wire and radio telegraphic 
communications. Transactions of the American Institute of Electrical Engineers, 45, 295-
301. Retrieved from http://math.boisestate.edu/~liljanab/MATH509Spring2012/vernam.pdf  



 

165 
 

Appendix D - Bandpass Filter  

 

D.1 Device Description: 

 
The Bandpass filter is a device that allows light around a central frequency to pass through 

in either direction, along with a small band of frequencies on either side of the central frequency. 

The filter creates a Fabry-Perot etalon (Saleh & Teich, 1991) (cavity) to create destructive 

interference to block light outside of the “pass through” area. The passband region is “tent” 

shaped with small bands on either side. See Figure 1 for an example of this “tent” structure. 

 
Figure 22. FB800-10 and FB800-40 filter passbands (ThorLabs, 2013). 

The Bandpass filter is a series of substrates with material designed to block light of certain 

wavelengths.  Between the substrates is dielectric material with specific thickness based on the 

wavelength of the passthrough along with spacer layers. The Fabry-Perot cavity is formed by the 
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layering of the spacers and the dielectric material. The sandwiched material is then mounted in a 

protective chassis. See Figure2. 

 
Figure 23. Schematic of a typical bandpass filter (ThorLabs, 2013). 
 
 
The Bandpass filter is a bidirectional optical component with two optical ports. Optical 

signals arriving at the input port are propagated to the other port after a defined propagation 

delay and the filter is sensitive to the power of the optical signals that are propagated through the 

component. If the optical power of a pulse exceeds a defined threshold, the Bandpass filter may 

become permanently damaged which changes its propagation characteristics.  Similarly, the 

Bandpass filter is sensitive to the temperature in the environment in which it operates. If the 

temperature exceeds defined thresholds, the Bandpass filter may become temporarily degraded 

or permanently damaged which changes its propagation characteristics.  If temporarily degraded, 

the device may recover to normal operating behavior after the temperature returns to a “normal” 

operating temperature. 

The first step involved with the modeling the Bandpass filter is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the Bandpass filter. The SME developed a series of use cases that 

exercised the functionality of the device over a wide variety of conditions and verified the model 
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and validated the input and output behavior of the device within a single Mathematica model 

(worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the Bandpass filter to the researcher. Additional information came 

from product data sheets from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the Bandpass 

filter using the DEVS formalism. The bulk of the document following this section is dedicated to 

the detailed development of the DEVS model of the Bandpass filter.  Once developed, the model 

will be simulated using the MS4ME simulator using the same uses cases defined in the 

Mathematica worksheet. The SME will then review the MS4ME simulation output to verify that 

the DEVS formal model matches the behavior of the Mathematica model and hence the real 

component. 

Once completed, the DEVS model is passed to the Software Development team that created 

a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 24. Symbol for the Bandpass filter in the QKD system architecture. 
 
 

D.2 Bandpass filter Conceptual Model 
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Figure 25. Bandpass filter conceptual model. 

 
The conceptual model for a Bandpass filter consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, and one environmental input port {EvnIn}. The 

environmental port allows external sources to communicate changes in the operational 

environment to the Bandpass filter. In comparison to the Bandpass filter symbol used in the 

QKD simulation architecture shown in Figure 3, a single bidirectional optical connection is 

decomposed into an optical input and an optical output in the conceptual model. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the Bandpass filter, a small portion of the signal 

will be instantaneously reflected back towards the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 4 will 

instantaneously generate a reflected emitting out of OptOut1. 

The Bandpass filter calculates the power of the incoming packet through either optical port after 

a time equaling the propagation delay of the module at full power minus some small amount to 

account for attenuation through the device. Even though the bandpass filter is meant to block 
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light that does not match the central frequency, a small amount of the light on either side of the 

central frequency will make it through the device and out the input port. 

The Bandpass filter must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the Bandpass filter 

can determine if it is degraded (a temporary condition) or damaged (a permanent condition). In 

either case, a function determines how the propagation changes as a function of the device state 

and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

D.3 Mathematical Model 

For a detailed mathematical description of the Bandpass filter, refer to Section 2.8 which 

contains the Mathematica worksheet provided by the optical physics SME. 

 

D.4 English-Language Rules 

 
In this section, English language rules are developed to express the desired behavior of the 

Bandpass filter. 

 
When an optical signal arrives: 
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 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Remove the packet from the queue, calculate the attenuated output optical signal based 

upon the input optical signal, the OverPower flag, the OverTemp flag, and the current 

environment. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

D.5 Phase Transition Diagram   

 
The phase transition diagram in Fig. 5 shows the phases of the Bandpass filter in the boxes 

and the transitions represented by arrows between the phases. Each transition is labeled with the 

type of transition (dext – external or dint – internal) and the significant actions that take place 

during the transition. Each arc has an entry either beneath or beside the arc indicating the value 

of the time advance function for the next phase. Each box is labeled with the name of the phase 

and an entry showing either no lambda output function for that phase or what the phase outputs. 

Note there is a self-loop transition from reflect to reflect if multiple optical packets arrive at the 

Bandpass filter at the same time. 
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 Figure 26. Bandpass filter phase transition diagram. 

D.6 Event-Trace Diagram   

 
This section shows various examples of packets entering the Bandpass filter. The tables 

list the states the bandpass filter proceeds through as the packets are processed. Each table has 

the state number, with each state consisting of: phase, time until next transition (sigma), store 

state variable, current temperature of the Bandpass filter, the over temperature flag variable and 

the over power flag variable. The next column shows the contents of the queue at that state, the 

contents of the store state variable and any notes.  

 
Explanations for each column: 

 
 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 
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 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

D.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 10. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   

 
 

 
Figure 27. Case I sequence diagram. 

 

D.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 11. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 
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1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
 
 
 

 
Figure 28. Case II sequence diagram. 

 

D.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 12. Case III state list. 



 

174 
 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
 



 

175 
 

 
Figure 29. Case III sequence diagram. 

D.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 13. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 
 
 

 
Figure 30. Case IV sequence diagram. 

D.7 Bandpass filter Parallel DEVS Code 

 
Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 
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 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”,  

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
 
For the Bandpass filter we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSBandpass filter = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
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phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 
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calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcPolar() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 
 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 
 
phase is a control state used to keep track of where the full state is. 
 
S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower,interruptRespond,  queue.x1..xn)  
 if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
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           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
 interruptRespond= “Y” 
 timeLeftRespond = timeLeftRespond - e 

 
 (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
  
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time_delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

    
 (“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut2” 
        if InPort = “OptIn2” 
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          outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut1” 
      timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and  size  = 0 
      size= queue_size()       
 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (output.port, output.pulse) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
     otherwise; 
 

Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;  
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D.8 Mathematical model 
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D.9 Component Use Cases 

D.9.1 Respond to an Optical Packet in the Bandpass filter 
 
Optical packet arrives at the bandpass filter. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the bandpass filter. Records overpower condition, if applicable. Remove the 

optical packet from the queue and calculate the attenuated optical output signal based on the 

input signal frequency, the bandpass central frequency and the current component state. 

Propagate the attenuated optical output signal out of the component optical port that is not the 

same as the input port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 31. Component states. 

 

 
Figure 32. Bandpass phase transition diagram. 

D.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  

 Optical packet entered and removed from queue in proper sequence.  

 Overpower condition properly recognized and recorded.  
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 Optical packet attenuated properly to the limit of accuracy.  

 Optical packet propagated out the correct port at the correct time. 

 

D.9.3 Respond to an Environmental Packet in the Bandpass filter 
 
Environmental packet arrives at the bandpass filter. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

 

D.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded  

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

D.10 Component Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 
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the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Bandpass Test Cases. 

    Inject Port   Running Totals 

Phase Case Opt1 Opt2 Env Note opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 
  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 

  5 1 1 0 differ time 6 1 

  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 

  8 0 1 1 same time 11 4 

  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 
  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 

  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 

  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
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  26 0 2 1 same time 36 10 
  27 0 2 1 differ time 38 11 
  28 2 0 1 same time 40 12 

  29 2 0 1 differ time 42 13 

totals 21 21 13 42 

Respond 41 2 0 0 single 44 13 

  42 0 2 0 single 46 13 

  43 1 0 1 single 47 14 
  44 2 1 0 same time 50 14 

  45 2 1 0 differ time 53 14 

  46 2 1 1 same time 56 15 
  47 2 1 1 differ time 59 16 

  48 0 2 1 same time 61 17 

  49 0 2 1 differ time 63 18 
  50 2 0 1 same time 65 19 
  51 2 0 1 differ time 67 20 

  60 3 0 0 same time 70 20 

  61 0 3 0 same time 73 20 

  62 3 2 0 same time 78 20 
  63 3 2 0 differ time 83 20 

  64 3 2 1 same time 88 21 

  65 3 2 1 differ time 93 22 
  66 0 3 1 same time 96 23 
  67 0 3 1 differ time 99 24 

  68 3 0 1 same time 102 25 
  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 
  TC2 1 0 2 single 107 30 
  TC3 1 0 2 single 108 32 

  TC4 1 0 2 single 109 34 

totals   4 0 8 12     
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Appendix E - Beamsplitter 

 

E.1 Device Description: 

 The beamsplitter is an optical device used to split a beam of light in to a reflected beam 

and a transmitted beam and can be used to combine two beams of light into one stream (Saleh & 

Teich, 1991). In practical terms, light from one input fiber is sent through a collimating lens, then 

divided by the beamsplitter optic and focused on the output ports. Different fibers can be used on 

each port and different types of beamsplitting material can be used inside the housing.  

A beamsplitter can be made from housing with collimating lenses and some form of a 

beamsplitting material, such as a partially reflective mirror or a think glass plate, which splits the 

light (Saleh & Teich, 1991). Physical designs include cubes mounted into brackets for free-space 

optics and housings that have permanently mounted pigtails or connectors for fiber lines and 

pure fiber devices commonly known as couplers. The amount of light directed to each port is 

variable and determined by the material inside the beamsplitter. Many combinations of splitting 

ratios exist, some of the most common are 50:50, 90:10, 70:30, but the devices can be made with 

almost any ratio. See Figure 1 for an example of a four-port free-space beamsplitter. 

 
Figure 33. View of a free-space beamsplitter with fiber inputs (OZOptics, 2013). 
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Although beamsplitters may have from three to eight or more ports, this research will use 

the four port beamsplitting devices with fiber pigtails, per the discussion with the SME. In this 

research, the beamsplitter is a bidirectional optical component with four optical ports. Light 

entering the primary port splits into two beams and exits through the two output ports with the 

splitting ratio dependent on the device. In the opposite direction, the component works the same 

way, splitting the light by passing through a portion of the beam and reflecting the rest to the port 

opposite the reflected port used by the primary path. 

The light suffers a slight attenuation from the material as it passes through the device and 

the splitting medium has a phase effect for the reflected portion of the beam. The reflected beam 

undergoes a global phase shift of π/2 and is applied to light passing through the device in both 

directions.   

The internal material is sensitive to the power of the optical signals that are propagated 

through the component. If the optical power of a pulse exceeds a defined threshold, the 

beamsplitter may become permanently damaged which changes its propagation characteristics. 

Similarly, the beamsplitter is sensitive to the temperature in the environment in which it operates. 

If the temperature exceeds defined thresholds, the beamsplitter may become temporarily 

degraded or permanently damaged which changes its propagation characteristics.  If temporarily 

degraded, the device may recover to normal operating behavior after the temperature returns to a 

“normal” operating temperature. 

The first step involved with the modeling the beamsplitter is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 
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program that modeled the beamsplitter. The SME developed a series of use cases that exercised 

the functionality of the device over a wide variety of conditions and verified the model and 

validated the input and output behavior of the device within a single Mathematica model 

(worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the beamsplitter to the researcher. Additional information came 

from product data sheets from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the 

beamsplitter using the DEVS formalism. The bulk of the document following this section is 

dedicated to the detailed development of the DEVS model of the beamsplitter.  Once developed, 

the model will be simulated using the MS4ME simulator using the same uses cases defined in the 

Mathematica worksheet. The SME will then review the MS4ME simulation output to verify that 

the DEVS formal model matches the behavior of the Mathematica model and hence the real 

component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 34. Symbol for the 4-port beamsplitter in the QKD system architecture.  
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E.2 Beamsplitter Conceptual Model 

 

 
Figure 35.  Beamsplitter conceptual model. 

 
 The conceptual model for a beamsplitter consists of four optical input ports {OptIn1, 

OptIn2, OptIn3, OptIn4}, four optical output ports {OptOut1, OptOut2, OptOut3, OptOut4}, and 

one environmental input port {EvnIn}. The environmental port allows external sources to 

communicate changes in the operational environment to the beamsplitter. In comparison to the 

beamsplitter symbol used in the QKD simulation architecture shown in Figure 2, a single 

bidirectional optical connection is decomposed into an optical input and an optical output in the 

conceptual model. This is necessary to properly represent the behavior of the device using the 

DEVS formalism. 

 When an optical signal is sent to the input of the beamsplitter, a small portion of the 

signal will be instantaneously reflected back to the signal source. Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  
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 The beamsplitter calculates changes to the power (attenuation) of any packet coming 

through an optical port after a time equaling the propagation delay of the module. The packet is 

calculated at full power minus some small amount to account for attenuation through the device. 

The model splits each incoming optical packet into a ‘passed’ packet and a ‘reflected’ packet, 

with the strength of each packet determined by the beamsplitting ratio, and injecting these 

packets into the queue. Each of these entries are a (port, value) pair, just as any other entry into 

the queue, with the [port] entry equal to the output port and the [value] equal to the adjusted 

values of the incoming packet. Additionally, packets output on the reflected port rotate π/2 (i.e. α 

= α + π/2) due to the effects of the beamsplitting material inside the device and is applied by the 

‘passed’ and ‘reflected’ functions. 

The beamsplitter calculates the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the beamsplitter 

can determine if it is degraded (a temporary condition) or damaged (a permanent condition). In 

either case, a function determines how the propagation changes as a function of the device state 

and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 
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E.3 Mathematical Model 

For a detailed mathematical description of the beamsplitter, refer to Section 3.8 which 

contains the Mathematica worksheet provided by the optical physics SME. 

E.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

beamsplitter. 

 
 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Determine the input port number. 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Remove the packet from the queue and split it into two packets 

 Update the values for one packet as a ‘passed’ optical signal based on the characteristics 

of the beamsplitter, the original values of the input optical signal and the current 

environment and set the correct output port.  

 Update the values for the other packet as a ‘reflected’ optical signal based on the 

characteristics of the beamsplitter, the original values of the input optical signal and the 

current environment and set the correct output port. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 
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 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

E.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the beamsplitter in the boxes and 

the transitions represented by arrows between the phases. Each transition is labeled with the type 

of transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the beamsplitter at 

the same time. 

 

Figure 36. beamsplitter phase transition diagram. 

E.6 Event-Trace Diagram   

 



 

196 
 

This section shows various examples of packets entering the beamsplitter. The tables list 

the states the beamsplitter proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the beamsplitter, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

E.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 14. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   
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Figure 37. Case I sequence diagram. 

E.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 15. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
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Figure 38. Case II sequence diagram. 

E.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 16. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
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(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 39. Case III sequence diagram. 

E.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 17. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 
 
 

 
Figure 40. Case IV sequence diagram. 

E.7 Beamsplitter Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 
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 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptResond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

“interruptRespond” = flag variable set when device is interrupted by an external event 

Peak power = full width, half maximum power calculation of the pulse  

 
 
For the beamsplitter we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSbeamsplitter = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
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overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcHigh() =  method that calculates the passed optical packet  power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcLow() =  method that calculates the reflected optical packet low power output as 

f(current.v, temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the forward direction optical packet output as:  f(store, 

temperature, overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the backward direction optical packet output as:  

f(store, temperature, overtemp, peakpwr, overpwr) 
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calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “OptIn3”, “OptIn4”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“OptIn3”, Vopt), (“OptIn4”, Vopt), (“EnvIn”, Venv)} is 

the set of input ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “OptOut3”, “OptOut4”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“OptOut3”, YOptOut3), (“OptOut4”, YOptOut4)} 

is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower, queue.x1..xn) 
 if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

   
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond , queue.x1..xn) 
if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
    update_delay(queue) 
 for messagebag != null 
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   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 

    timeLeftRespond = timeLeftRespond - e 
 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time_delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

 
 (“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
      need.reflect = queue_need_reflected()          
      if interruptRespond = “N” 
        current = queue_min() 



 

206 
 

        time.delay = current.time.delay 
 if current.p  = “OptIn1”  /* input port 1 – strong 4 weak 3 */ 

new1 = (“OptOut3”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
new2 = (“OptOut4”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 

 else 
 if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 4 */ 
 new1 = (“OptOut4”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut3”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else 
 if current.p  = “OptIn3”  /* input port 3 – strong 2 weak 1 */ 
 new1 = (“OptOut1”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut2”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else    /* input port 4 – strong 1 weak 2*/ 

new1 = (“OptOut2”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut1”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 
  timeLeftRespond = propagation delay 

     else 
       time.delay = timeLeftRespond 

 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
 if current.p  = “OptIn1”  /* input port 1 – strong 4 weak 3 */ 

new1 = (“OptOut3”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
new2 = (“OptOut4”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 

 else 
 if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 4 */ 
 new1 = (“OptOut4”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut3”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else 
 if current.p  = “OptIn3”  /* input port 3 – strong 2 weak 1 */ 
 new1 = (“OptOut1”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut2”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else    /* input port 4 – strong 1 strong 2*/ 

new1 = (“OptOut2”,calcHigh(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut1”,calcLow(current.v, temperature, overtemp, peakpwr, overpwr)) 

        interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
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Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (new1.p, new1.v) 
      if phase = “respond” 
 
 (new2.p, new2.v) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
 otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower) = σ;  
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E.8 Mathematical model 
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E.9 Component Use Cases 

E.9.1 Respond to an Optical Packet in the Beamsplitter 
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Optical packet arrives at beamsplitter. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the beamsplitter. Records overpower condition, if applicable. Remove the 

optical packet from the queue and split the packet into transmitted and reflected packets. 

Calculate the attenuated optical output signals based on the input signal, the input optical port 

and the current component state. Propagate the attenuated optical output signal out of the 

component optical port based on the input port.  

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 

 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 
 

 
Figure 41. Component states. 
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Figure 42. Beamsplitter phase transition diagram. 

E.9.2 End Goals 
 

 Optical packet reflected properly.  

 Optical packet entered and removed from queue in proper sequence.  

 Overpower condition properly recognized and recorded.  

 Optical packet attenuated properly to the limit of accuracy.  

 Optical packet propagated out the correct port at the correct time. 

 

E.9.3 Respond to an Environmental Packet in the Beamsplitter 
 
Environmental packet arrives at the beamsplitter. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

 

E.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly  
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 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

E.10 Beamsplitter Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 
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SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5.  Beamsplitter Test Cases. 

    Inject Port   
Running 
Totals 

Phase Case Opt1 Opt2 Opt3 Opt4 Env Notes opt # env # 

Passive 1 1 0 0 0 0 single 1 0 

  2 0 1 0 0 0 single 2 0 
  3 0 0 1 0 0 single 3 0 
  4 0 0 0 1 0 single 4 0 

  5 0 0 0 0 1 single 4 1 
  6 1 1 1 1 0 same time 8 1 
  7 1 1 1 1 0 differ time 12 1 

  8 1 1 1 1 1 same time 16 2 

  9 1 1 1 1 1 differ time 20 3 
  10 0 1 0 0 1 same time 21 4 

  11 0 1 0 0 1 differ time 22 5 

  12 1 0 0 0 1 same time 23 6 
  13 1 0 0 0 1 differ time 24 7 
  14 0 0 1 0 1 same time 25 8 

  15 0 0 1 0 1 differ time 26 9 
  16 0 0 0 1 1 same time 27 10 
  17 0 0 0 1 1 differ time 28 11 

  20 2 0 0 0 0 same time 30 11 
  21 0 2 0 0 0 same time 32 11 

  22 0 0 2 0 0 same time 34 11 
  23 0 0 0 2 0 same time 36 11 
  24 2 2 2 2 0 same time 44 11 

  25 2 2 2 2 0 differ time 52 11 
  26 2 2 2 2 1 same time 60 12 
  27 2 2 2 2 1 differ time 68 13 

  28 0 2 0 0 1 same time 70 14 

  29 0 2 0 0 1 differ time 72 15 
  30 2 0 0 0 1 same time 74 16 

  31 2 0 0 0 1 differ time 76 17 

  32 0 0 2 0 1 same time 78 18 
  33 0 0 2 0 1 differ time 80 19 
  34 0 0 0 2 1 same time 82 20 

  35 0 0 0 2 1 differ time 84 21 

totals   21 21 21 21 21 84     

Respond 41 2 0 0 0 0 single 86 21 
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  42 0 2 0 0 0 single 88 21 
  43 0 0 2 0 0 single 90 21 
  44 0 0 0 2 0 single 92 21 

  45 1 0 0 0 1 single 93 22 
  46 2 1 1 1 0 same time 98 22 
  47 2 1 1 1 0 differ time 103 22 

  48 2 1 1 1 1 same time 108 23 

  49 2 1 1 1 1 differ time 113 24 
  50 0 2 0 0 1 same time 115 25 

  51 0 2 0 0 1 differ time 117 26 

  52 2 0 0 0 1 same time 119 27 
  53 2 0 0 0 1 differ time 121 28 
  54 0 0 2 0 1 same time 123 29 

  55 0 0 2 0 1 differ time 125 30 
  56 0 0 0 2 1 same time 127 31 
  57 0 0 0 2 1 differ time 129 32 

  60 3 0 0 0 0 same time 132 32 

  61 0 3 0 0 0 same time 135 32 
  62 0 0 3 0 0 same time 138 32 

  63 0 0 0 3 0 same time 141 32 

  64 3 2 2 2 0 same time 150 32 
  65 3 2 2 2 0 differ time 159 32 
  66 3 2 2 2 1 same time 168 33 

  67 3 2 2 2 1 differ time 177 34 
  68 0 3 0 0 1 same time 180 35 
  69 0 3 0 0 1 differ time 183 36 

  70 3 0 0 0 1 same time 186 37 
  71 3 0 0 0 1 differ time 189 38 
  72 0 0 3 0 1 same time 192 39 

  73 0 0 3 0 1 differ time 195 40 

  74 0 0 0 3 1 same time 198 41 
  75 0 0 0 3 1 differ time 201 42 

totals   36 27 27 27 21 117     

  TC1 1 0 0 0 2 single 202 44 
  TC2 1 0 0 0 2 single 203 46 
  TC3 1 0 0 0 2 single 204 48 

  TC4 1 0 0 0 2 single 205 50 
  TC5 1 0 0 0 2 single 206 52 
  TC6 1 0 0 0 2 single 207 54 

totals   6 0 0 0 12 6     
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Appendix F  - Circulator   

 

F.1 Device Description: 

 The circulator is an optical device allows light to pass through in one direction. Light 

entering port one exits port two with minimal attenuation but is highly attenuated leaving port 

three. Light entering port two exits port three with minimal attenuation and is highly attenuated 

leaving port one. A “full” circulator allows light to enter port three and pass on to port one with 

minimal attenuation but heavily attenuating port two. A “quasi” circulator highly attenuates any 

light entering port three at ports one and two. Circulators are used in multiplexers, bi-directional 

pumps and chromatic dispersion compensation devices (ThorLabs, 2013). See Figure 1 for an 

example of a quasi-circulator. 

 
Figure 43. View of a three port circulator  (ThorLabs, 2013). 

 
A quasi-circulator can be made from a polarizing beam splitter, a Faraday rotator and a 

half-wave plate in line. Any light travelling in the forward direction through the circulator has its 

polarization changed by 90° as it passes through the Faraday rotator and half-wave plate. This 

allows for light to pass from port one to port two and from port two to port three. Light from port 

three to port one is directed into the circulator housing by the polarizing beam splitter. Any light 

travelling backwards through the ports is rotated then directed to the housing by the polarizing 
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beam splitter, but some light does leak out the incorrect ports. For a four-port device, the Faraday 

rotator and half-wave plate are sandwiched between two polarizing beam splitters.  

Circulators are non-reciprocal optical devices because the changes to the properties of 

light are not reversed by travelling backwards through the device (Saleh & Teich, 1991). 

Although there are polarization-independent and polarization-dependent types of circulators, this 

research will consider the polarization-independent version only, as the polarization dependent 

version is used in highly limited applications (per conversation with SME). The model developed 

here will be for the full-circulator, although quasi-circulators are more commonly used, as the 

full-circulator is the more general model. 

The Circulator is a bidirectional optical component with three optical ports. Optical 

signals arriving at the input port are propagated to next port in sequence after a defined 

propagation delay and the polarizing material is sensitive to the power of the optical signals that 

are propagated through the component. If the optical power of a pulse exceeds a defined 

threshold, the Circulator may become permanently damaged which changes its propagation 

characteristics. Similarly, the Circulator is sensitive to the temperature in the environment in 

which it operates. If the temperature exceeds defined thresholds, the Circulator may become 

temporarily degraded or permanently damaged which changes its propagation characteristics.  If 

temporarily degraded, the device may recover to normal operating behavior after the temperature 

returns to a “normal” operating temperature. 

The first step involved with the modeling the Circulator is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 
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program that modeled the Circulator. The SME developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions and verified the model and validated 

the input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the Circulator to the researcher. Additional information came from product data 

sheets from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the Circulator 

using the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the Circulator.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 

worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 44. Symbol for the 3-port typical circulator in the QKD system architecture.  
 
 

F.2 Circulator Conceptual Model 
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Figure 45.  Circulator conceptual model. 

 
The conceptual model for a Circulator consists of three optical input ports {OptIn1, 

OptIn2, OptIn3}, three optical output ports {OptOut1, OptOut2, OptOut2}, and one environmental 

input port {EvnIn}. The environmental port allows external sources to communicate changes in 

the operational environment to the Circulator. In comparison to the Circulator symbol used in the 

QKD simulation architecture shown in Figure 2, a single bidirectional optical connection is 

decomposed into an optical input and an optical output in the conceptual model. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the Circulator, a small portion of the signal 

will be instantaneously reflected back to the signal source. Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The Circulator calculates changes to the power (attenuation) and polarization of any 

packet coming through an optical port after a time equaling the propagation delay of the module. 
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The packet is calculated at full power minus some small amount to account for attenuation 

through the device if passing through to the correct port or heavily attenuated if passing to an 

incorrect port (for example, passing from port three to port one in a quasi-circulator). The model 

handles this undesired throughput by splitting each incoming optical packet into a ‘strong’ 

packet (one that is output through the correct port) and a ‘weak’ packet (one that is output 

through the incorrect port) and injecting these packets into the queue. Each of these entries are a 

(port, value) pair, just as any other entry into the queue. Additionally, every packet is rotated by 

90° due to the effects of the Faraday rotator and half-wave plate as it passes through the device 

and this effect is applied by the ‘strong’ and ‘weak’ functions. 

The Circulator must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the Circulator can 

determine if it is degraded (a temporary condition) or damaged (a permanent condition). In either 

case, a function determines how the propagation changes as a function of the device state and 

current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 
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F.3 Mathematical Model 

 
For a detailed mathematical description of the Circulator, refer to Section 4.8 which contains 

the Mathematica worksheet provided by the optical physics SME. 

 

F.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

Circulator. 

 
 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Split the incoming optical packet into two entries in the queue. 

 Update the values for one queue entry as a ‘strong’ optical signal based on the 

characteristics of the circulator, the original values of the input optical signal and the 

current environment and set the correct output port. 

 Update the values for the other queue entry as a ‘weak’ optical signal based on the 

characteristics of the circulator, the original values of the input optical signal and the 

current environment and set the correct output port. 

 After the propagation time has elapsed, send the output signal out of the optical output 

port. 
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When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

F.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the Circulator in the boxes 

and the transitions represented by arrows between the phases. Each transition is labeled with the 

type of transition (dext – external or dint – internal) and the significant actions that take place 

during the transition. Each arc has an entry either beneath or beside the arc indicating the value 

of the time advance function for the next phase. Each box is labeled with the name of the phase 

and an entry showing either no lambda output function for that phase or what the phase outputs. 

Note there is a self-loop transition from reflect to reflect if multiple optical packets arrive at the 

Circulator at the same time. 

 
Figure 46. Circulator phase transition diagram. 
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F.6 Event-Trace Diagram   

 
This section shows various examples of packets entering the Circulator. The tables list 

the states the circulator proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the Circulator, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

 
Explanations for each column: 

 
 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

 

F.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 18. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   



 

225 
 

5 s3 entry passive inf x1 c n n n null   

 
 

 
Figure 47. Case I sequence diagram. 

 

F.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 19. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
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Figure 48. Case II sequence diagram. 

 

F.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 20. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   
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3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 49. Case III sequence diagram. 

F.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 21. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 
 
 

 
Figure 50. Case IV sequence diagram. 

F.7 Circulator Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 
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 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

“interruptRespond” = flag variable set when device is interrupted by an external event 

Peak power = full width, half maximum power calculation of the pulse  

 
 
For the Circulator we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSCirculator = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
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overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
new1= variable to hold 1st output values 
new2 = variable to hold 2nd output values 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
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calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcPolar() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “OptIn3”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“OptIn3”, Vopt), (“EnvIn”, Venv)} is the set of input 

ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “OptOut3”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“OptOut3”, YOptOut3)} is the set of output 

ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  
if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 
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(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond ,queue.x1..xn) 
if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
    update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 

    timeLeftRespond = timeLeftRespond - e 
 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time_delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 
 

(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
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   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
    if current.p  = “OptIn1”  /* input port 1 – strong 2 weak 3 */ 
     new1 = (“OptOut2”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

  new2 = (“OptOut3”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
    else 
      if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 1 */ 
        new1 = (“OptOut3”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 
        new2 = (“OptOut1”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
      else    /* input port 3 – strong 1 weak 2*/ 
        new1 = (“OptOut1”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

     new2 = (“OptOut2”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
 timeLeftRespond = propagation delay 

   else 
      time.delay = timeLeftRespond 

 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if current.p  = “OptIn1”  /* input port 1 – strong 2 weak 3 */ 
       new1 = (“OptOut2”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

    new2 = (“OptOut3”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
      else 
        if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 1 */ 
          new1 = (“OptOut3”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 
          new2 = (“OptOut1”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        else    /* input port 3 – strong 1 weak 2*/ 
          new1 = (“OptOut1”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

       new2 = (“OptOut2”,calcWeak (current.v, temperature, overtemp, peakpwr, overpwr)) 
       interruptRespond= “N” 

 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 



 

235 
 

Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
 
 (new1.p, new1.v) 
      if phase = “respond” 
 
 (new2.p, new2.v) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
 otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower) = σ;  
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F.8 Mathematical model 
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F.9 Component Use Cases 

F.9.1 Respond to an Optical Packet in the Circulator 
 

Optical packet arrives at the circulator. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the circulator. Records overpower condition, if applicable. Remove the 

optical packet from the queue and split the optical packet into strong and weak pulse packets. 

Calculate the attenuated optical output signal based on the input signal, the strength of the packet 

and the current component state. Propagate the attenuated optical output signal out of the 

component optical port based on the input port and component design. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 51. Component states. 

 
Figure 52. Circulator phase transition diagram. 

F.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  

 Optical packet entered and removed from queue in proper sequence. 

 Overpower condition properly recognized and recorded.  

 Optical packet attenuated properly to the limit of accuracy.  
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 Optical packets propagated out the correct ports at the correct time. 

F.9.3 Respond to an Environmental Packet in the Circulator 
 
Environmental packet arrives at the circulator. Check to see if environmental packet temperature 

sets the component to degraded or damaged state. Check to see if temperature level returns 

component from degraded state to normal state. Records change in condition, if applicable. 

Change component function if in degraded or damaged state. 

 Assumptions 

o None 

F.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly.  

 Overtemperature condition properly recognized and recorded.  

 Change of state completed and recorded properly, if necessary. 

 Change component function properly, if necessary. 

 

F.10 Circulator Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 
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in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Circulator Test Cases. 

    Inject Port   Running Totals 

Phase Case Opt1 Opt2 Opt3 Env Notes opt # env # 

Passive 1 1 0 0 0 single 1 0 

  2 0 1 0 0 single 2 0 
  3 0 0 1 0 single 3 0 
  4 0 0 0 1 single 3 1 

  5 1 1 1 0 same time 6 1 

  6 1 1 1 0 differ time 9 1 
  7 1 1 1 1 same time 12 2 

  8 1 1 1 1 differ time 15 3 

  9 0 1 0 1 same time 16 4 
  10 0 1 0 1 differ time 17 5 
  11 1 0 0 1 same time 18 6 

  12 1 0 0 1 differ time 19 7 
  13 0 0 1 1 same time 20 8 
  14 0 0 1 1 differ time 21 9 

  20 2 0 0 0 same time 23 9 

  21 0 2 0 0 same time 25 9 

  22 0 0 2 0 same time 27 9 
  23 2 2 2 0 same time 33 9 
  24 2 2 2 0 differ time 39 9 



 

242 
 

  25 2 2 2 1 same time 45 10 
  26 2 2 2 1 differ time 51 11 
  27 0 2 0 1 same time 53 12 

  28 0 2 0 1 differ time 55 13 
  29 2 0 0 1 same time 57 14 
  30 2 0 0 1 differ time 59 15 

  31 0 0 2 1 same time 61 16 

  32 0 0 2 1 differ time 63 17 

totals   21 21 21 17 63     

Respond 41 2 0 0 0 single 65 17 

  42 0 2 0 0 single 67 17 
  43 0 0 2 0 single 69 17 

  44 1 0 0 1 single 70 18 

  45 2 1 1 0 same time 74 18 
  46 2 1 1 0 differ time 78 18 
  47 2 1 1 1 same time 82 19 

  48 2 1 1 1 differ time 86 20 
  49 0 2 0 1 same time 88 21 
  50 0 2 0 1 differ time 90 22 

  51 2 0 0 1 same time 92 23 

  52 2 0 0 1 differ time 94 24 
  53 0 0 2 1 same time 96 25 

  54 0 0 2 1 differ time 98 26 

  60 3 0 0 0 same time 101 26 

  61 0 3 0 0 same time 104 26 
  62 0 0 3 0 same time 107 26 
  63 3 2 2 0 same time 114 26 

  64 3 2 2 0 differ time 121 26 
  65 3 2 2 1 same time 128 27 
  66 3 2 2 1 differ time 135 28 

  67 0 3 0 1 same time 138 29 

  68 0 3 0 1 differ time 141 30 
  69 3 0 0 1 same time 144 31 

  70 3 0 0 1 differ time 147 32 

  71 1 0 2 1 same time 150 33 
  72 1 0 2 1 differ time 153 34 

totals   38 27 25 17 90     

  TC1 1 0 0 2 single 154 36 
  TC2 1 0 0 2 single 155 38 
  TC3 1 0 0 2 single 156 40 

  TC4 1 0 0 2 single 157 42 
  TC5 1 0 0 2 single 158 44 
  TC6 1 0 0 2 single 159 46 
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totals   6 0 0 12 6     
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Appendix G - Optical Photodiode (Classical Detector) 

 

G.1 Device Description 

 The classical detector used in Quantum Key Distribution (QKD) systems is an optical 

photodiode used as a photodetector. These devices rely on photogenerated charge carriers to 

create a response when encountering photons. A photodiode is a p-n junction whose current 

increases when it absorbs photons. The photons become absorbed in the depletion layer between 

the p and n layers, causing a current to flow between the two (Saleh & Teich, 1991). This current 

is linearly proportional to the amount of received photons and can be measured by standard 

electrical detectors.  

 Photodiodes used as detectors are usually of the p-i-n construction, where a layer of 

lightly doped semiconductor material is inserted between the p and n layers. The inserted layers 

increase the depletion layer, increasing the surface area for capturing photons and reducing 

response time See Figure 1 for examples of photodiodes (Saleh & Teich, 1991).  

 
Figure 53. Example of photodiodes (ThorLabs, 2013). 

Photodectectors are made from many materials that depend on the qualities desired in the 

device. Materials for high-speed detectors include silicon, gallium phosphide, and indium 

gallium arsenide. Many of these devices have a low dark current count (current caused by 

environment rather than the measured photons) but have a high cost for telecommunication 

optical fiber frequencies. See Table 1 for photodiode general characteristics. 
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Table 22.  

Table of photodiode characteristics (ThorLabs, 2013). 

Material Dark Current Speed 
Sensitivit

ya  Cost 

Silicon (Si) Low High Speed 400 - 1000 nm Low 

Germanium (Ge) High Low Speed 900 - 1600 nm Low 

Gallium Phosphide (GaP) Low High Speed 150 - 550 nm Moderate 

Indium Gallium Arsenide (InGaAs) Low High Speed 800 - 1800 nm Moderate 

Indium Arsenide Antimonide (InAsSb) High Low Speed 1000 - 5800 nm High 

Extended Range Indium Gallium Arsenide (InGaAs) High High Speed 1200 - 2600 nm High 

Mercury Cadmium Telluride (MCT, HgCdTe) High Low Speed 2000 - 5400 nm High 

 

The photodiode is a unidirectional optical component with one optical port and one 

electrical control port. The optical port is the input port for the optical packets with the only 

output being reflected signals. Optical signals arriving at the optical port are reflected back down 

the optical path after suffering an amount of attenuation. All received optical packets generate an 

electrical signal, but the signal must exceed a threshold detection level before the device signals 

the high-level controllers. Once an optical packet exceeds the threshold, the photodiode 

generates a message to its controller with a power level linearly proportionate to the incoming 

power level. The InGAs-type of p-i-n photodiode used in telecommunication wavelengths has a 

response time of approximately 66000ps (ThorLabs, 2013). 

The photodiode is sensitive to the power of the optical signals that are received by the 

component. If the optical power of a pulse exceeds a defined threshold, the photodiode may 

become permanently damaged which changes its attenuation and output characteristics.  

Similarly, the photodiode is sensitive to the temperature in the environment in which it operates. 

If the temperature exceeds defined thresholds, the photodiode may become temporarily degraded 

or permanently damaged which changes its attenuation and output characteristics. If temporarily 
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degraded, the device may recover to normal operating behavior after the temperature returns to a 

“normal” operating temperature. 

The first step involved with the modeling the photodiode is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a series of use cases that exercised the functionality of the device over a 

wide variety of conditions and verified the model and validated the input and output behavior of 

the device. Additional information came from product data sheets from commercial vendors and 

standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the 

photodiode using the DEVS formalism. The bulk of the document following this section is 

dedicated to the detailed development of the DEVS model of the photodiode.  Once developed, 

the model will be simulated using the MS4ME simulator using the same uses cases defined by 

the SME. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the expected behavior and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 54. Symbol for the photodiode in the QKD system architecture.  
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G.2 Photo-diode Conceptual Model 

 
Figure 55. Photodiode conceptual model. 

 
The conceptual model for a photodiode consists of one optical input port {OptIn1 }, one 

optical output port {OptOut1}, one environmental input port {EvnIn} and one electrical 

controller input port and one electrical controller output port {CtrlIn, CtrlOut}. The 

environmental port allows external sources to communicate changes in the operational 

environment to the photodiode. The electrical controller ports allow for control inputs to the 

controller and responses from the photodiode to the higher system functions. 

In comparison to the photodiode symbol used in the QKD simulation architecture shown 

in Figure 2, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. The electrical control port is not shown for clarity in 

Figure 2, and is also decomposed in the model into an input port and an output port. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the photodiode, a small portion of the signal 

will be instantaneously reflected back to the signal source. Since the conceptual model 
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decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The photodiode must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation and output. External environmental 

messages sent to the device convey the temperature of the operational environmental so the 

photodiode can determine if it is degraded (a temporary condition) or damaged (a permanent 

condition). In either case, a function determines how the attenuation and output changes as a 

function of the device state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

G.3 Mathematical Model 

There is no detailed mathematical description of the classical detector in Section 5.8.   

G.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

classical detector (photodiode). 

 
 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 
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 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Calculate the reflected power of the signal and send its output with the same port number. 

 Output a control message if the optical power of the signal exceeds the threshold power 

level 

 
When an environmental message arrives: 
 

 Update the CurrrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 
When a control message arrives: 
 

 Respond to the controller with an acknowledgement message. 

 

G.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the photodiode in the boxes and 

the transitions represented by arrows between the phases. Each transition is labeled with the type 

of transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 
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a self-loop transition from reflect to reflect if multiple optical packets arrive at the photodiode at 

the same time. 

 
Figure 56. Photodiode phase transition diagram. 

G.6 Event-Trace Diagram   

This section shows various examples of packets entering the photodiode. The tables list 

the states the photodiode proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the photodiode, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

 
Explanations for each column: 

 
 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 
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 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Interrupt Respond: shows the value of the interrupt respond variable 

 Need Respond: shows the value of the need respond variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

 

G.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 23. Case I state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 
6.6x10^4 

 1-
packet 

no 
env 

no ext 0 ctrl         

0 s0 entry passive inf null c n n n n  null   

0 s0 exit passive 0 null c n n n n  (x1,6.6x10^4)   

0 s1 entry reflect 0 null c n n n n  (x1,6.6x10^4)   

0 s1 exit reflect 6.6x10^4 x1 c n n n n  null   

0 s2 entry respond 6.6x10^4 x1 c n n n n  null   

6.6x10^4 s2 exit respond inf x1 c n n n n  null   

6.6x10^4 s3 entry passive inf x1 c n n n n  null   

 
 

 
Figure 57. Case I sequence diagram. 
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G.6.2 Initial Passive with Single Optical Packet Arriving at Time 0 and 1 Optical Packet 
Arriving Time 2x10^4 

 
time state entry/ 

exit 
phase sigma store 

 (xi) 
temp over 

temp 
over  
power 

interr
upt 
respon
d 

need 
respon
d 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 
6.6x10^
4 

 1-
packet 

0 env 1 opt 0 ctrl         

0 s0 entry passive inf null c n n n n  null   

0 s0 exit passive 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1 entry reflect 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1 exit reflect 6.6x10
^4 

x1 c n n n n  null   

0 s2 entry respond 6.6x10
^4 

x1 c n n n n  null   

2x10^4 s2 exit respond 0 x1 c n n y n  (x2,6.6x1
0^4) 

dext at 
e= 
2x10^4, 
1 optical 
packet 
(x2)  

2x10^4 s3 entry reflect 0 x1 c n n y n  (x2,6.6x1
0^4) 

  

2x10^4 s3 exit reflect 4.6x10
^4 

x1 c n n y n  (x2,6.6x1
0^4) 

  

2x10^4 s4 entry respond 4.6x10
^4 

x1 c n n y n  (x2,6.6x1
0^4) 

  

6.6x10^4 s4 exit respond 2x10^
4 

x2 c n n n n  null   

6.6x10^4 s5 entry respond 2x10^
4 

x2 c n n n n  null   

8.6x10^4 s5 exit respond inf x2 c n n n n  null   

8.6x10^4 s6 entry passive inf x2 c n n n n  null   

 

 
Figure 58. Case II sequence diagram. 
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G.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 
2x10^4 and Multiple Optical Packets Arriving at Time 3x10^4 

 
Table 24. Case III state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interr
upt 
respon
d 

need 
respon
d 

queue 
 (xi, tp) 

Notes: 
assume 
tp=6.6x
10^4 

 1-
packet 

0 env 2 opt 0 ctrl         

0 s0 entry passive inf null c n n n   null   

0 s0 exit passive 0 null c n n n   (x1,6.6x1
0^4) 

  

0 s1 entry reflect 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1 exit reflect 6.6x10
^4 

x1 c n n n n  null   

0 s2 entry respond 6.6x10
^4 

x1 c n n n n  null   

2x10^4  s2 exit respond 0 x1 c n n y n   
(x2,6.6x1
0^4) 

dext at 
e= 
2x10^4, 
1 optical 
packet 
(x2)  

2x10^4  s3 entry reflect 0 x1 c n n y n   
(x2,6.6x1
0^4) 

  

2x10^4  s3 exit reflect 4.4x10
^4 

x1 c n n y n   
(x2,6.6x1
0^4) 

  

2x10^4  s4 entry respond 4.4x10
^4 

x1 c n n y n  (x2,6.6x1
0^4) 

  

3x10^4  s4 exit respond 0 x1 c n n y n   
(x2,5.6x1
0^4) 
(x3,6.6x1
0^4) 

dext at 
e= 
1x10^4, 
2 optical 
packets 
(x3,x4)  

3x10^4  s5 entry reflect 0 x1 c n n y n  (x2,5.6x1
0^4) 
(x3,6.6x1
0^4) 

  

3x10^4  s5 exit reflect 0 x1 c n n y n  (x2,5.6x1
0^4) 
(x3,6.6x1
0^4) 
(x4,6.6x1
0^4) 

  

3x10^4  s6 entry reflect 0 x1 c n n y n  (x2,5.6x1
0^4) 
(x3,6.6x1
0^4) 
(x4,6.6x1
0^4) 

  

3x10^4  s6 exit reflect 3.3x10
^4 

x1 c n n y n  (x2,5.6x1
0^4) 
(x3,6.6x1
0^4) 
(x4,6.6x1
0^4) 
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3x10^4  s7 entry respond 3.3x10
^4 

x1 c n n y n  (x2,5.6x1
0^4) 
(x3,6.6x1
0^4) 
(x4,6.6x1
0^4) 

  

6.6x10^4 s7 exit respond 2.6x10
^4 

x2 c n n n n  (x3,3.6x1
0^4) 
(x4,3.6x1
0^4)  

  

6.6x10^4 s8 entry respond 2.6x10
^4 

x2 c n n n n  (x3,3.6x1
0^4) 
(x4,3.6x1
0^4)  

  

9.2x10^4 s8 exit respond 1x10^
4 

x3 c n n n n   
(x4,1x10^
4) 

  

9.2x10^4 s9 entry respond 1x10^
4 

x3 c n n n n   
(x4,1x10^
4) 

  

10.2x10^
4 

s9 exit respond 0 x4 c n n n n  null   

10.2x10^
4 

s10 entry respond 0 x4 c n n n n  null   

10.2x10^
4 

s10 exit respond inf x4 c n n n n  null   

10.2x10^
4 

s11 entry passive inf x4 c n n n n  null   

 
 

 
Figure 59. Case III sequence diagram. 
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G.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3x10^4 

 
Table 25. Case IV state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interr
upt 
respon
d 

need 
respon
d 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 
6.6x10^
4 

 1-
packet 

1 env 0 ext 0 ctrl         

0 s0 entry passive inf null c n n n n  null   

0 s0 exit passive 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1  entry reflect 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1  exit reflect 6.6x10
^4 

x1 c n n n n  (x1,6.6x1
0^4) 

  

0 s2 entry respond 6.6x10
^4 

x1 c n n n n  null ENV 
arrives 
e=3, 
overtem
p the 
compone
nt 

3x10^4 s2 exit respond 3.6x10
^4 

x1 c n n y n  null update 
temp 

3x10^4 s3 entry respond 3.6x10
^4 

x1 c y n y n  null   

6.6x10^4 s3 exit respond inf x1 c2 y n n n  null   

6.6x10^4 s4 entry passive inf x1 c2 y n n n  null   

 

 

G.6.5 CASE V: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Control Packet Arriving at Time 3 

 
Table 26. Case V state list. 
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time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interr
upt 
respon
d 

need 
respon
d 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 
6.6x10^
4 

 1 opt 1 env 0 opt 1 ctrl         

0 s0 entry passive inf null c n n n n  null   

0 s0 exit passive 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1  entry reflect 0 null c n n n n  (x1,6.6x1
0^4) 

  

0 s1  exit reflect 6.6x10
^4 

x1 c n n n n  (x1,6.6x1
0^4) 

  

0 s2 entry respond 6.6x10
^4 

x1 c n n n n  (x1,6.6x1
0^4) 

CTRL 
arrives 
e=3x10^
4  

3x10^4 s2 exit respond 0 x1 c n n y n  (x1,3.6x1
0^4) 

  

3x10^4 s3 entry update 
detector 

0 x1 c n n y n  (x1,3.6x1
0^4) 

  

3x10^4 s3 exit update 
detector 

3.6x10
^4 

x1 c n n y n  (x1,3.6x1
0^4) 

  

3x10^4 s4 entry respond 3.6x10
^4 

x1 c n n y n  (x1,3.6x1
0^4) 

  

6.6x10^4 s4 exit respond 0 x1 c n n n n  null   

6.6x10^4 s6 entry passive inf x1 c n n n n  null   

 

 
Figure 60. Case V sequence diagram. 

G.7 Photodiode Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component. 
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 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, “needRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse 

 
For the photodiode we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x 
b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x 
b
MX → S is the confluent transition function; 

λ = S → Yb is the output function; 

ta = S → 0R
∪ ∞ or S → +0

R


is the time advance function; 

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSphotodiode = (XM, YM, S, δext, δint, δcon, λ, ta) 
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where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”, “update detector”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
needRespond= flag variable set when both Reflect and UpdateDetector respond to inputs 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated 

need.reflect= variable that stores queue event that needs reflecting 
reflect = variable that stores the current reflected optical packet 

reflect.port = variable that holds the current reflection output port 
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port 
size= variable that holds the number of events in the queue 
ctrlOutput = variable that stores the output control message response 
responseOutput = variable that stores the output detection message 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue 
queue_min() = method that removes the queue entry with the smallest time delay 
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e 
ctrlMsg() =  method that generates a response message to received control messages 
outputMsg() = method that generates the response message to received optical packets 
insert_event_q() = method that inserts the current (xi, time delayi) into the queue 
remove_event_q() = method that removes the current (xi, 0) from the queue 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
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calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcStrong() =  method that calculates the optical packet high power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 

calcWeak() =  method that calculates the optical packet low power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 

calcForward() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “EnvIn”, “CtrlIn”} with 

XM = {(“OptIn1”, Vopt), (“EnvIn”, Venv), (“CtrlIn”, Vctrl)} is the set of input ports and values. 

 
OutPorts = {“OptOut1”, “CtrlOut”} with 

YM = {(“OptOut1”, YOptOut1), (“CtrlOut”, YCtrlOut)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, queue} 

= {{“passive”, “reflect”, “respond”, “update detector”} x 0R
x V x R x {“Y”, “N”} x 

{“Y”,”N”} x {“Y”,”N”} x {“Y”,”N”} x V} 
 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond , queue, 

e, ((pi,vi),…. (pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
if phase = “passive” and p = “OptIn1” 
for messagebag != null 
current = messagebag_first() 
if current.value.power > damaged.power 
overpower =  “Y” 
insert_event_q(current) 
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remove_event_m(current) 
queue.current = queue_first(queue) 

reflect = (queue.current.p), calcReflected(queue.current.v)) 
mark_reflected(queue.current) 
interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
if phase = “respond” and p = “OptIn1” 
update_delay(queue) 
for messagebag != null 
current = messagebag_first() 
if current.value.power > damaged.power 
overpower =  “Y” 
insert_event_q(current) 
remove_event_m(current) 
queue.current = queue_need_reflected() 
reflect = (queue.current.p), calcReflected(queue.current.v)) 

mark_reflected(queue.current) 
interruptRespond= “Y” 
timeLeftRespond = timeLeftRespond - e 

 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
if phase = “passive” and p = “EnvIn” 
temperature = messagebag.temperature 
if temperature > damage.temp 
overtemp = “Y” 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond,  queue.x1..xn) 
if phase = “respond” and p = “EnvIn” 
update_delay(queue) 
timeLeftRespond = time.delay- e 
temperature = messagebag.temperature 
if temperature > damage.temp 
overtemp = “Y” 
time.delay = timeLeftRespond 
 
(“update detector”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
if phase = “passive” and p = “CtrlIn” 
ctrlOutput = ctrlMsg(store) 
 
(“update detector”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
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if phase = “respond” and p = “CtrlIn” 
update_delay(queue) 
ctrlOutput = ctrlMsg(store) 

interruptRespond= “Y” 
timeLeftRespond = timeLeftRespond - e 

 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
otherwise; 
 
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, queue)= 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, needRespond, queue.x1..xn)) 

if phase = “reflect” and need.reflect != null 
need.reflect = queue_need_reflected() 
current = need.reflect 

reflect = (current.p), calcReflected(current.v)) 
mark_reflected(current) 

 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, queue.x1..xn) 
if phase = “reflect” and need.reflect = null 
need.reflect = queue_need_reflected() 
if interruptRespond = “N” 
current = queue_min() 
time.delay = current.time.delay 
responseOutput= outputMsg(store.v, temperature, overtemp, peakpwr, overpwr) 
timeLeftRespond = propagation delay 
else 
time.delay = timeLeftRespond 
 
(“update detector”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
if phase = “reflect” and needRespond = “Y” 
ctrlOutput = ctrlMsg(store) 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, queue.x1..xn) 
if phase = “respond” and size > 0 
update_delay(queue) 
size= queue_size() 
current = queue_min() 
time.delay = current.time.delay 
responseOutput= outputMsg(store.v, temperature, overtemp, peakpwr, overpwr) 
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interruptRespond= “N” 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, queue.x1..xn) 
if phase = “update detector” and interruptRespond = ”Y” 
time.delay = timeLeftRespond 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, currentAttenuation, queue.x1..xn) 
if phase = “update detector” and interruptRespond = “N” and needRespond = “Y” 
current = queue_min() 
time.delay = current.time.delay 
responseOutput= outputMsg(store.v, temperature, overtemp, peakpwr, overpwr) 
timeLeftRespond = propagation delay 
 
(“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, queue.x1..xn) 
 
if phase = “update detector” and interruptRespond = ”N” 
 
 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

queue.x1..xn) 
if phase = “respond” and size  = 0 
size= queue_size() 
 
 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, queue) = 
(reflect.p, reflect.v) 
if phase = “reflect” 
 
(Output1, responseOutput) 
if phase = “respond” 
	
(“CtrlOut”, ctrlOutput) 
if phase = “update detector” 
	
∅ (null output) 
otherwise; 
 
Time advance Function: 
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ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, queue) = 
σ; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G.8 Mathematical model 

// intrinsic parameters 
threshold = par("threshold");                         // e field threshold (V/m) 
conversionFactor = par("conversionFactor");           // conversion factor 
generateReflections = par("generateReflections"); 
insertionLoss = par("insertionLoss");                 // insertion loss (dB) 
returnLoss = par("returnLoss");                       // return loss (dB) 
degradedAttenuation = par("degradedAttenuation");     // degraded attenuation (0.0-1.0) 
damagedAttenuation = par("damagedAttenuation");       // damaged attenuation (0.0-1.0) 
tempDegradeThreshold = par("tempDegradeThreshold");   // temperature degrade threshold (C) 
tempDamageThreshold = par("tempDamageThreshold");     // temperature damage threshold (C) 
powerDegradeThreshold = par("powerDegradeThreshold"); // power degrade threshold (Watts) 
powerDamageThreshold = par("powerDamageThreshold");   // power damage threshold (Watts) 
propagationDelay = par("propagationDelay");           // propagation delay (sec) 
displayInputPulse = par("displayInputPulse");          // display input pulse parameters 
computeInputPulsePower = par("computeInputPulsePower"); // compute input pulse power 
 
 
// extrinsic parameters 
temperatureMean = par("temperatureMean");             // temperature mean (C) 
temperatureStdDev = par("temperatureStdDev");         // temperature standard deviation (C) 
 
 
Generate a reflection: 
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outAmplitude = amplitude * std::sqrt((std::pow(10.0, (-1.0*returnLoss/10.0)))); 
outGlobalPhase = globalPhaseRange(globalPhase+PI); 
outOrientation = orientationRange(orientation); 
outEllipticity = ellipticityRange(ellipticity); 
outCentralFreq = centralFreq; 
 
 

G.9 Component Use Case 

G.9.1 Respond to an Optical Packet in the Classical Detector (CD) 
 

Optical packet arrives at the CD. A portion of optical packet reflects back down incoming 

optical line. Place the optical packet into the optical queue. Check to see if optical packet 

overpowers the CD. Records overpower condition, if applicable. Remove the optical packet from 

the queue and create a control output signal based on the input signal and the current component 

state. Send the control output signal out of the component control port. 

 
 Identified Alternative Uses Cases 

o Respond to a control message 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 61. Component states. 

 
Figure 62. Photodiode phase transition diagram. 

G.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly. 
 Optical packet entered and removed from queue in proper sequence. 
 Overpower condition properly recognized and recorded. 
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 Control message created and sent out the correct port at the correct time. 
 

G.9.3 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  

 Optical packet entered and removed from queue in proper sequence.  

 Overpower condition properly recognized and recorded.  

 Optical packet attenuated properly to the limit of accuracy.  

 Optical packet propagated out the correct port at the correct time. 

 

G.9.4 Respond to an Environmental Packet in the Classical Detector (CD) 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

 

G.9.5 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

G.9.6 Respond to a Control Message in the Classical Detector (CD) 
 
Control Message arrives at the component. Component decodes message properly. Records 

change in condition or state, if applicable. Change component function if in degraded or 

damaged state or by change in component condition, if necessary. 

 Assumptions 

o Component has completed initialization sequence at least once 
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G.9.7 Respond to Control Message End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

G.10 Optical Photo-diode Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 
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SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 6. Optical Photo-diode Test Cases 
 

    Inject Port   Running Totals 

Phase Case Opt1 Ctrl Env Notes 
opt 
# 

env 
# 

ctrl 
# 

Passive 1 1 0 0 single 1 0 0 

  2 0 1 0 single 1 0 1 

  3 0 0 1 single 1 1 1 
  4 1 1 0 same time 2 1 2 

  5 1 1 0 
differ 
time 3 1 3 

  6 1 1 1 same time 4 2 4 

  7 1 1 1 
differ 
time 5 3 5 

  8 0 1 1 same time 5 4 6 

  9 0 1 1 
differ 
time 5 5 7 

  10 1 0 1 same time 6 6 7 

  11 1 0 1 
differ 
time 7 7 7 

  20 2 0 0 same time 9 7 7 
  21 0 1 0 same time 9 7 8 
  22 2 1 0 same time 11 7 9 

  23 2 1 0 
differ 
time 13 7 10 

  24 2 1 1 same time 15 8 11 

  25 2 1 1 
differ 
time 17 9 12 

  26 0 1 1 same time 17 10 13 

  27 0 1 1 
differ 
time 17 11 14 

  28 2 0 1 same time 19 12 14 

  29 2 0 1 
differ 
time 21 13 14 

totals   21 14 13         

Respond 41 2 0 0 single 23 13 14 
  42 1 1 0 single 24 13 15 
  43 1 0 1 single 25 14 15 

  44 2 1 0 same time 27 14 16 

  45 2 1 0 
differ 
time 29 14 17 
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  46 2 1 1 same time 31 15 18 

  47 2 1 1 
differ 
time 33 16 19 

  48 1 1 1 same time 34 17 20 

  49 1 1 1 
differ 
time 35 18 21 

  50 2 0 1 same time 37 19 21 

  51 2 0 1 
differ 
time 39 20 21 

  60 3 0 0 same time 42 20 21 
  61 1 1 0 same time 43 20 22 
  62 3 1 0 same time 46 20 23 

  63 3 1 0 
differ 
time 49 20 24 

  64 3 1 1 same time 52 21 25 

  65 3 1 1 
differ 
time 55 22 26 

  66 1 1 1 same time 56 23 27 

  67 1 1 1 
differ 
time 57 24 28 

  68 3 0 1 same time 60 25 28 

  69 3 0 1 
differ 
time 63 26 28 

totals   42 14 13         

  TC1 1 1 2 single 64 28 29 
  TC2 1 1 2 single 65 30 30 
  TC3 1 1 2 single 66 32 31 

  TC4 1 1 2 single 67 34 32 
  TC5 1 1 2 single 68 36 33 
  TC6 1 1 2 single 69 38 34 

  TC7 1 0 2 single 70 40 34 

totals   7 6 14         

Notes:  
23 - INIT control message sent; OPT1 & Ctrl - differ time - 
Passive 
24 - INIT control message sent - OPT1 & Ctrl - same time - 
Passive 
63 - INIT control message sent - OPT1 & Ctrl - same time - 
Respond 
66 - INIT control message sent - Ctrl & ENV - same time - 
Respond 

  



 

270 
 

G.11 References 

Saleh, B. E. A., & Teich, M. C. (1991). Fundamentals of photonics (2nd ed.). New York: John 
Wiley & Sons, Inc.  

ThorLabs. (2013). Photodiode tutorial. Retrieved October 15, 2013, from 
http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2822  

 



 

271 
 

Appendix H - Electronically Controlled Variable Optical Attenuator 

(EVOA)  

H.1 Device Description 

  The EVOA is used to attenuate the power of optical signals by a variable amount, 

usually expressed in decibels (dBs). These devices usually have some form of blocking material 

such as an opaque slab or a window that is tilted in the path of the light. This blocking material is 

connected to an electric motor that is controlled by the higher system functions, allowing for a 

variable amount of light to exit the device. Broadband versions of the device may use a tilting 

window that the light passes through rather than an opaque block. See Figure 1 for an example of 

the internals of a VOA and Figure 2 for an example of an EVOA. 

 
Figure 63. Example of the internals of a VOA (ThorLabs, 2013). 

 

 
Figure 64. View of an EVOA (OZOptics, 2013) 

 
The EVOA is a bidirectional optical component with two optical ports. Optical signals 

arriving at one of the ports is attenuated and propagated to the other port after a defined 
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propagation delay. The EVOA is sensitive to the power of the optical signals that are propagated 

through the component. If the optical power of a pulse exceeds a defined threshold, the EVOA 

may become permanently damaged which changes its attenuation characteristics.  Similarly, the 

EVOA is sensitive to the temperature in the environment in which it operates. If the temperature 

exceeds defined thresholds, the EVOA may become temporarily degraded or permanently 

damaged which changes its attenuation characteristics.  If temporarily degraded, the device may 

recover to normal operating behavior after the temperature returns to a “normal” operating 

temperature. 

The first step involved with the modeling the EVOA is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the EVOA. The SME developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions and verified the model and validated 

the input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the EVOA to the researcher. Additional information came from product data sheets 

from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the EVOA 

using the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the EVOA.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 
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worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 65. Symbol for the EVOA in the QKD system architecture.  
 
 

H.2 EVOA Conceptual Model 

 

 
Figure 66.  EVOA conceptual model. 

 
 The conceptual model for an EVOA consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, one environmental input port {EvnIn} and one 
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electrical controller input port and one electrical controller output port {CtrlIn, CtrlOut}. The 

environmental port allows external sources to communicate changes in the operational 

environment to the EVOA. The electrical controller ports allow for control inputs to the 

controller and responses from the EVOA to the higher system functions. 

 In comparison to the EVOA symbol used in the QKD simulation architecture shown in 

Figure 3, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. The electrical control port is not shown for clarity in 

Figure 2, and is also decomposed in the model into an input port and an output port. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the EVOA, a small portion of the signal will 

be instantaneously reflected back to the signal source. Since the conceptual model decomposes 

each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 4 will 

instantaneously generate a reflected emitting out of OptOut1.  

The EVOA must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the EVOA can 

determine if it is degraded (a temporary condition) or damaged (a permanent condition). In either 

case, a function determines how the propagation changes as a function of the device state and 

current temperature. 
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When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

H.3 Mathematical Model 

For a detailed mathematical description of the EVOA, refer to Section 6.8 which contains 

the Mathematica worksheet provided by the optical physics SME. 

H.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

EVOA. 

 
 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 
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 Remove the packet from the queue; calculate the attenuated output optical signal based 

upon the input optical signal, the OverPower flag, the OverTemp flag, and the current 

environment. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 
When a control message arrives: 
 

 Increase or decrease the attenuation per the control message as a function of time and the 

attenuation rate of change. 

 Respond to controller if the maximum or minimum attenuation of the EVOA is reached 

and ensure that these values are not exceeded. 

 

H.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the EVOA in the boxes and 

the transitions represented by arrows between the phases. Each transition is labeled with the type 

of transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the EVOA at the 

same time. 
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Figure 67. EVOA phase transition diagram. 

H.6 Event-Trace Diagram   

This section shows various examples of packets entering the EVOA. The tables list the 

states the EVOA proceeds through as the packets are processed. Each table has the state number, 

with each state consisting of: phase, time until next transition (sigma), store state variable, 

current temperature of the EVOA, the over temperature flag variable and the over power flag 

variable. The next column shows the contents of the queue at that state, the contents of the store 

state variable and any notes.  

 
Explanations for each column: 

 
 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 



 

278 
 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

H.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 27. Case I state list. 

time state en
try
/ 
exi
t 

phase sigm
a 

stor
e 
 (xi) 

tem
p 

over 
tem
p 

over  
powe
r 

interru
pt 
respon
d 

interru
pt 
update 

need 
respon
d 

curre
nt 
atten  

new 
atte
n 

queue 
 (xi, 
tp) 

Notes: 
assum
e tp= 
5 

0 s0 en
try 

passiv
e 

inf null c n n n n n  dB dB null   

0 s0 exi
t 

passiv
e 

0 null c n n n n n  dB dB (x1,5)   

0 s1 en
try 

reflect 0 null c n n n n n  dB dB (x1,5)   

0 s1 exi
t 

reflect 5 x1 c n n n n n  dB dB null   

0 s2 en
try 

respon
d 

5 x1 c n n n n n  dB dB null   

5 s2 exi
t 

respon
d 

inf x1 c n n n n n  dB dB null   

5 s3 en
try 

passiv
e 

inf x1 c n n n n n  dB dB null   

 

 
Figure 68. Case I sequence diagram. 

H.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 28. Case II state list. 

time state entr
y/ 
exit 

phase sigm
a 

store 
 (xi) 

tem
p 

over 
tem
p 

over  
pow
er 

interru
pt 
respon
d 

interru
pt 
update 

need 
respon
d 

curre
nt 
atten  

curre
nt 
atten  

queue 
 (xi, 
tp) 

Notes
: 
assum
e tp= 
5 

0 s0 entr
y 

passiv
e 

inf null c n n n n n  dB dB null   



 

279 
 

0 s0 exit passiv
e 

0 null c n n n n n  dB dB (x1,5)   

0 s1 entr
y 

reflect 0 null c n n n n n  dB dB (x1,5)   

0 s1 exit reflect 5 x1 c n n n n n  dB dB null   

0 s2 entr
y 

respon
d 

5 x1 c n n n n n  dB dB null   

2 s2 exit respon
d 

0 x1 c n n y n n  dB dB (x2,5) dext 
at 
e=2, 1 
optica
l 
packe
t (x2)  

2 s3 entr
y 

reflect 0 x1 c n n y n n  dB dB (x2,5)   

2 s3 exit reflect 3 x1 c n n y n n  dB dB (x2,5)   

2 s4 entr
y 

respon
d 

3 x1 c n n y n n  dB dB (x2,5)   

5 s4 exit respon
d 

2 x2 c n n n n n  dB dB null   

5 s5 entr
y 

respon
d 

2 x2 c n n n n n  dB dB null   

7 s5 exit respon
d 

inf x2 c n n n n n  dB dB null   

7 s6 entr
y 

passiv
e 

inf x2 c n n n n n  dB dB null   

 
 

 
Figure 69. Case II sequence diagram. 

H.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 29. Case III state list. 

time state entr
y/ 
exit 

phase sigm
a 

store 
 (xi) 

tem
p 

over 
tem
p 

over  
pow
er 

interru
pt 
respon
d 

interru
pt 
update 

need 
respon
d 

curre
nt 
atten  

curre
nt 
atten  

queue 
 (xi, 
tp) 

Notes
: 
assum
e tp= 
5 
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0 s0 entr
y 

passiv
e 

inf null c n n n n n  dB dB null   

0 s0 exit passiv
e 

0 null c n n n n n  dB dB (x1,5)   

0 s1 entr
y 

reflect 0 null c n n n n n  dB dB (x1,5)   

0 s1 exit reflect 5 x1 c n n n n n  dB dB null   

0 s2 entr
y 

respon
d 

5 x1 c n n n n n  dB dB null   

2 s2 exit respon
d 

0 x1 c n n y n n  dB dB  (x2,5) dext 
at e= 
2, 1 
optica
l 
packe
t (x2)  

2 s3 entr
y 

reflect 0 x1 c n n y n n  dB dB  (x2,5)   

2 s3 exit reflect 3 x1 c n n y n n  dB dB  (x2,5)   

2 s4 entr
y 

respon
d 

3 x1 c n n y n n  dB dB (x2,5)   

3 s4 exit respon
d 

0 x1 c n n y n n  dB dB  (x2,4) 
(x3,5) 

dext 
at e= 
1, 2 
optica
l 
packe
ts 
(x3,x
4)  

3 s5 entr
y 

reflect 0 x1 c n n y n n  dB dB (x2,4) 
(x3,5) 

  

3 s5 exit reflect 0 x1 c n n y n n  dB dB (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 entr
y 

reflect 0 x1 c n n y n n  dB dB (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 exit reflect 2 x1 c n n y n n  dB dB (x2,4) 
(x3,5) 
(x4,5) 

  

3 s7 entr
y 

respon
d 

2 x1 c n n y n n  dB dB (x2,4) 
(x3,5) 
(x4,5) 

  

5 s7 exit respon
d 

2 x2 c n n n n n  dB dB (x3,2) 
(x4,2)  

  

5 s8 entr
y 

respon
d 

2 x2 c n n n n n  dB dB (x3,2) 
(x4,2)  

  

7 s8 exit respon
d 

1 x3 c n n n n n  dB dB  (x4,0)   

7 s9 entr
y 

respon
d 

1 x3 c n n n n n  dB dB  (x4,0)   

8 s9 exit respon
d 

0 x4 c n n n n n  dB dB null   

8 s10 entr
y 

respon
d 

0 x4 c n n n n n  dB dB null   

8 s10 exit respon
d 

inf x4 c n n n n n  dB dB null   

8 s11 entr
y 

passiv
e 

inf x4 c n n n n n  dB dB null   
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Figure 70. Case III sequence diagram. 

H.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 30. Case IV state list. 

time state entr
y/ 
exit 

phase sigm
a 

stor
e 
 (xi) 

tem
p 

over 
tem
p 

over  
pow
er 

interru
pt 
respon
d 

interru
pt 
update 

need 
respo
nd 

curre
nt 
atten  

curre
nt 
atten  

queue 
 (xi, 
tp) 

Notes: 
assume 
tp= 5 

0 s0 entr
y 

passiv
e 

inf null c n n n n n  dB dB null   

0 s0 exit passiv
e 

0 null c n n n n n  dB dB (x1,5)   

0 s1  entr
y 

reflect 0 null c n n n n n  dB dB (x1,5)   

0 s1  exit reflect 5 x1 c n n n n n  dB dB (x1,5)   

0 s2 entr
y 

respo
nd 

5 x1 c n n n n n  dB dB null ENV 
arrives 
e=3, 
overtem
p the 
compone
nt 

3 s2 exit respo
nd 

2 x1 c n n y n n  dB dB null update 
temp 

3 s3 entr
y 

respo
nd 

2 x1 c y n y n n  dB dB null   

5 s3 exit respo
nd 

inf x1 c2 y n n n n  dB dB null   
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5 s4 entr
y 

passiv
e 

inf x1 c2 y n n n n  dB dB null   

 
 
 

 
Figure 71. Case IV sequence diagram. 

H.6.5 CASE V: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Control Packet Arriving at Time 3 

 
Table 31. Case V state list. 

time state entr
y/ 
exit 

phase sigm
a 

store 
 (xi) 

tem
p 

over 
tem
p 

over  
pow
er 

interru
pt 
respon
d 

interru
pt 
update 

need 
respon
d 

curre
nt 
atten  

curre
nt 
atten  

queue 
 (xi, 
tp) 

Notes
: 
assum
e tp= 
5 

0 s0 entr
y 

passiv
e 

inf null c n n n n n  dB dB null   

0 s0 exit passiv
e 

0 null c n n n n n  dB dB (x1,5)   

0 s1  entr
y 

reflect 0 null c n n n n n  dB dB (x1,5)   

0 s1  exit reflect 5 x1 c n n n n n  dB dB (x1,5)   

0 s2 entr
y 

respon
d 

5 x1 c n n n n n  dB dB (x1,5) CTR
L 
arrive
s e=3  

3 s2 exit respon
d 

0 x1 c n n y n n  dB dB (x1,2)   

3 s3 entr
y 

update 
atten 

0 x1 c n n y n n  dB dB (x1,2)   

3 s3 exit update 
atten 

2 x1 c n n y n n  dB dB (x1,2)   

3 s4 entr
y 

respon
d 

2 x1 c n n y n n  dB dB (x1,2)   

5 s4 exit respon
d 

0 x1 c n n n n n  dB dB null   

5 s6 entr
y 

passiv
e 

inf x1 c n n n n n  dB dB null   

 



 

283 
 

 

 
Figure 72. Case V sequence diagram. 

H.7 EVOA Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 Assume that only one control packet will arrive at any given time, due to the small time 

scales involved and the length of time necessary for attenuation changes. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, 

“overpower”,”interruptRespond”, “interruptUpdate”, “needRespond”, “currentAttenuation”, 

“newAttenuation”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 
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“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
For the EVOA we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSEVOA = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”, “update attenuation”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
interruptUpdate = flag variable set when UpdateAttenuation phase is interrupted by an external 

event 
needRespond= flag variable set when both Reflect and UpdateAttenuation respond to inputs 
currentAttenuation = current attenuation of the EVOA 
newAttenuation = attenuation the EVOA is changing to after receiving a change message 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
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current = variable that stores the queue event being manipulated  
   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
ctrlOutput = variable that stores the output control message response 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
attenuationMin = minimum selectable attenuation 
attenuationMax = maximum selectable attenuation 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
ctrlMsg() =  method that generates a response message to received control messages 
outputMsg() = method that generates the response message to received optical packets 
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr, currentAttenuation, newAttenuation) 
changeAttenuation() = method that changes current attenuation of the EVOA 
calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”, “CtrlIn”} with 
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XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv), (“CtrlIn”, Vctrl)} is the set of input 

ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “CtrlOut”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“CtrlOut”, YCtrlOut)} is the set of output 

ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation, queue} = {{“passive”, “reflect”, “respond”, 

“update attenuation”} x 0R
x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x {“Y”,”N”} x 

{“Y”,”N”} x V  x V  x V} 
 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond , currentAttenuation, newAttenuation, queue, e, ((pi,vi),…. (pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn)  
   if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
      for messagebag != null 
    current = messagebag_first() 
    if current.value.power > damaged.power 
           overpower =  “Y” 
         insert_event_q(current) 
         remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn)  
   if phase = “update attenuation” and p ∈ {“OptIn1”, “OptIn2”}   
      for messagebag != null 
    current = messagebag_first() 
    if current.value.power > damaged.power 
           overpower =  “Y” 
         insert_event_q(current) 
         remove_event_m(current) 
      queue.current = queue.first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
  if currentAttenuation != newAttenuation 
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       currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 

timeLeftUpdate = timeLeftUpdate- e 
 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
        remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 

     if currentAttenuation != newAttenuation 
    currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr,   
  timeLeftRespond = timeLeftRespond - e 

 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “respond” and p = “EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      if current.Attenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr,        
      time.delay = timeLeftRespond               
 
(“update attenuation”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “update attenuation” and p = “EnvIn” 
      update_delay(queue) 
      temperature = messagebag.temperature 
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      if temperature > damage.temp 
        overtemp = “Y” 
      if currentAttenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
      timeLeftUpdate = time.delay- e 
      time.delay = timeLeftUpdate              
 
(“update attenuation”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
 
    if phase = “passive” and p = “CtrlIn” 
      ctrlOutput = ctrlMsg(store) 
      currentAttenuation = changeAttenuation(store) 
      if currentAttenuation < attenuationMin 
         currentAttenuation = attenuationMin 
      if currentAttenuation < attenuationMax 
         currentAttenuation = attenuationMax 
 
(“update attenuation”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “respond” and p = “CtrlIn” 
      update_delay(queue) 
      ctrlOutput = ctrlMsg(store) 
      if currentAttenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr,        
      currentAttenuation = changeAttenuation(store) 
      if currentAttenuation < attenuationMin 
         currentAttenuation = attenuationMin 
      else  
         if currentAttenuation < attenuationMax 
 currentAttenuation = attenuationMax 

   interruptRespond= “Y” 
   timeLeftRespond = timeLeftRespond - e 

 
(“update attenuation”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “update attenuation” and p = “CtrlIn” 
      update_delay(queue) 
      ctrlOutput = ctrlMsg(store) 
      if currentAttenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
      currentAttenuation = changeAttenuation(store) 
      if currentAttenuation < attenuationMin 
         currentAttenuation = attenuationMin 
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      else  
         if currentAttenuation < attenuationMax 
 currentAttenuation = attenuationMax 

   interruptUpdate= “Y” 
   timeLeftUpdate= timeLeftUpdate - e 

 
 
(phase, σ – e, ∞, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
             otherwise; 

  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue)= 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn))  
if phase = “reflect” and need.reflect != null 

     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

  
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue.min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
          outputPort = “OptOut2” 
        if InPort = “OptIn2” 
          outputPulse = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
          outputPort = “OptOut1” 
       timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“update attenuation”, 0, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “reflect” and needRespond = “Y” 
      ctrlOutput = ctrlMsg(store) 
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  (“update attenuation”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “respond”  and (currentAttenation != newAttenuation) 
      if currentAttenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
     time.delay = timeLeftUpdate 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if currentAttenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
      if InPort = “OptIn1” 
        outputPulse = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
     interruptRespond= “N” 
     if currentAttenuation != newAttenuation 
      currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “update attenuation” and interruptRespond = “N” 
      interruptUpdate = “N” 
      needRespond = “N” 
      interruptRespond = “N” 
    
  (“respond”, time.delay, store, temperature, overtemp, overpower, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “update attenuation” and interruptRespond = “Y” 
      if currentAttenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
      time.delay = timeLeftRespond 
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  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 

    if phase = “update attenuation” and interruptRespond = “N” and needRespond = “Y” 
      current = queue.min() 
      time.delay = current.time.delay 
      if currentAttenuation != newAttenuation 
       currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
      if InPort = “OptIn1” 
        outputPulse = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr, 
currentAttenuation, newAttenuation) 
        outputPort = “OptOut1” 
  timeLeftRespond = propagation delay 
 
  (“update attenuation”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

interruptUpdate, needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “update attenuation” and interruptUpdate = “Y” and needRespond = “N” 
      if current.Attenuation != newAttenuation 
        currentAttenuation = calcAtten(store.v, temperature, overtemp, peakpwr, overpwr,      
     time.delay = timeLeftUpdate 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue.x1..xn) 
    if phase = “respond” and size  = 0 and (currentAttenation != newAttenuation)   
      size= queue_size()       
      interruptUpdate = “N” 
      needRespond = “N” 
      interruptRespond = “N” 
 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 

needRespond, currentAttenuation, newAttenuation queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (outputPort, outputPulse) 
      if phase = “respond” 
	
			(“CtrlOut”,	ctrlOutput)	
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						if	phase	=	“update	attenuation”	
	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, interruptUpdate, 
needRespond, currentAttenuation, newAttenuation queue) = σ;  
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H.8 Mathematical Model 
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H.9 DEVS MS4ME Derived Pseudocode 

EVOA - START PASSIVE  
 
EVOA - START PASSIVE EXTERNAL EVENT 
  adjust clock based upon time elapsed since last event 
  check for existing optical  message     
    remove each pulse in bag and store it into a queued optical pulse buffer 
  check for existing env message    
    check if the received temperature exceeds damaged or degraded threshold 
  check for existing ctrl message      
    generate the response message for an incoming control message   
  set up for first reflected pulse if optical pulse arrived 
  go to the Reflect phase else go to the Update Attenuation phase 
    
EVOA - START REFLECT OUTPUT EVENT 
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  adjust clock based upon time advance 
  output pulse 
  
EVOA - START REFLECT INTERNAL EVENT 
  identify any pulses that have not yet been reflected and reflect them 
  set up pulse to send in Respond phase 
  go to the Respond phase        
 
EVOA - START UPDATE ATTENUATION EXTERNAL EVENT  
  adjust clock based upon time elapsed since last event 
  check for existing optical  message     
    remove each pulse in bag and store it into a queued optical pulse buffer 
  check for existing env message    
    check if the received temperature exceeds damaged or degraded threshold 
  check for existing ctrl message      
    generate the response message for an incoming control message   
  set up for first reflected pulse if optical pulse arrived 
  else hold in the Update Attenuation phase for a change in Attenuation 
 
EVOA - START UPDATE ATTENUATION OUTPUT EVENT 
  adjust clock based upon time advance 
  output the response message  
  change the current attenuation 
  
EVOA - START UPDATE ATTENUATION INTERNAL EVENT 
  set up pulse to send in Respond phase if optical pulse arrived 
 go to Respond if optical pulse arrived      
else go to Update Attenuation if a control message arrived 
else go to Passive 
   
 EVOA - START RESPOND EXTERNAL EVENT 
  adjust clock based upon time elapsed since last event 
  adjust queue 
    set a flag that the Respond phase was interrupted by an external event 
  check for existing optical  message     
    remove each pulse in bag and store it into a queued optical pulse buffer 
  check for existing env message    
    check if the received temperature exceeds damaged or degraded threshold 
  check for existing ctrl message      
    generate the response message for an incoming control message   
  set up for first reflected pulse if optical pulse arrived 
  go to the Reflect phase  
    else go to the Update Attenuation phase 
 
EVOA - START RESPOND OUTPUT EVENT 
  adjust clock based upon time advance 
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  adjust pulse amplitude if damaged or degraded 
  output pulse to the correct port 
     
EVOA - START RESPOND INTERNAL EVENT 
  adjust queue 
  check if there any pulses remaining in queue 
    set up the next queued pulse 
    pulses remaining, so go to Respond  
  else check to see if the attenuation is changing 
    attenuation changing, go to Update Attenuation 
  else go to Passive phase 
 
EVOA – END PASSIVE 
 

H.10  Component Use Case 

H.10.1 Respond to an Optical Packet in the Electronically Controlled Optical Attenuator 
(EVOA) 

 
Optical packet arrives at EVOA. A portion of optical packet reflects back down incoming 

optical line. Place the optical packet into the optical queue. Check to see if optical packet 

overpowers the EVOA. Records overpower condition, if applicable. Remove the optical packet 

from the queue and calculate the attenuated optical output signal based on the input signal and 

the current component state. Propagate the attenuated optical output signal out of the component 

optical port that is not the same as the input port. 

 
 Identified Alternative Uses Cases 

o Respond to a control message 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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   Figure 73. Component states. 

 

 
Figure 74. EVOA phase transition diagram. 
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H.10.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  
 Optical entered and removed from queue in proper sequence.  
 Overpower condition properly recognized and recorded.  
 Optical packet attenuated properly to the limit of accuracy.  
 Optical packet propagated out the correct port at the correct time. 

 

H.10.3 Respond to an Environmental Packet in the EVOA 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

 

H.10.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

H.10.5 Respond to a Control Message in the EVOA 
 
Control Message arrives at the component. Component decodes message properly. Records 

change in condition or state, if applicable. Change component function if in degraded or 

damaged state or by change in component condition, if necessary. 

 Assumptions 

o Component has completed initialization sequence at least once 

 

H.10.6 Respond to Control Message End Goals 
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 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

H.11 EVOA Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 
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SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 6. EVOA Test Cases. 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Ctrl Env Notes opt # env # ctrl # 

Passive 1 1 0 0 0 single 1 0 0 

  2 0 1 0 0 single 2 0 0 
  3 0 0 1 0 single 2 0 1 
  4 0 0 0 1 single 2 1 1 

  5 1 1 0 0 same time 4 1 1 

  6 1 0 1 0 same time 5 1 2 
  7 1 1 0 0 differ time 7 1 2 

  8 1 0 1 0 differ time 8 1 3 

  9 1 1 1 1 same time 10 2 4 
  10 1 1 1 1 differ time 12 3 5 
  11 0 1 0 1 same time 13 4 5 

  12 0 1 0 1 differ time 14 5 5 
  13 0 0 1 1 same time 14 6 6 
  14 0 0 1 1 differ time 14 7 7 

  15 1 0 0 1 same time 15 8 7 
  16 1 0 0 1 differ time 16 9 7 

  20 2 0 0 0 same time 18 9 7 
  21 0 2 0 0 same time 20 9 7 

  22 2 1 0 0 same time 23 9 7 

  23 2 0 1 0 same time 25 9 8 
  24 2 0 0 1 same time 27 10 8 
  25 2 0 1 0 differ time 29 10 9 

  26 2 1 1 1 same time 32 11 10 
  27 2 1 1 1 differ time 35 12 11 
  28 0 2 0 1 same time 37 13 11 

  29 0 2 0 1 differ time 39 14 11 
  30 0 0 1 1 same time 39 15 12 
  31 0 0 1 1 differ time 39 16 13 

  32 2 0 0 1 same time 41 17 13 

  33 2 0 0 1 differ time 43 18 13 

totals   27 16 13 18         

Respond 41 2 0 0 0 single 45 18 13 

  42 1 1 0 0 single 47 18 13 
  43 1 0 1 0 single 48 18 14 
  44 1 0 0 1 single 49 19 14 

  45 2 1 0 0 same time 52 19 14 
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  46 2 0 1 0 same time 54 19 15 
  47 2 0 0 1 differ time 56 20 15 
  48 2 0 1 0 differ time 58 20 16 

  49 2 1 1 1 same time 61 21 17 
  50 2 1 1 1 differ time 64 22 18 
  51 1 1 0 1 same time 66 23 18 

  52 1 1 0 1 differ time 68 24 18 

  60 3 0 0 0 same time 71 24 18 

  61 1 2 0 0 same time 74 24 18 
  62 3 1 0 0 same time 78 24 18 
  63 3 0 1 0 same time 81 24 19 

  64 3 0 0 1 same time 84 25 19 

  65 3 0 1 0 differ time 87 25 20 
  66 3 1 1 1 same time 91 26 21 

  67 3 1 1 1 differ time 95 27 22 

  68 1 2 0 1 same time 98 28 22 
  69 1 2 0 1 differ time 101 29 22 

totals   43 15 9 11         

Math TC1 1 0 1 2 same time 102 31 23 
  TC2 1 0 1 2 same time 103 33 24 

  TC3 1 0 1 2 same time 104 35 25 

  TC4 1 0 1 2 same time 105 37 26 
  TC5 1 0 1 2 same time 106 39 27 
  TC6 1 0 1 2 same time 107 41 28 

  TC7 1 0 0 2 same time 108 43 28 

totals   7 0 6 14         

Notes:  8 - Set attenuation message, set newattenuation = 2 

10 - Get attenuation message 
13 - Increase attenuation message 
14 - Decrease attenuation message 
23 - INIT control message sent; OPT1 & Ctrl - same time - Passive: downstream received 
packets = 214 
30 - INIT control message sent - Ctrl & ENV - same time - Passive: downstream received 
packets = 214 
63 - INIT control message sent - OPT1 & Ctrl - same time - Respond: downstream received 
packets = 211 
65 - Set attenuation message, set newattenuation = 5 
67 - INIT control message sent - OPT1, OPT2, Ctrl & ENV - differ time - Respond: downstream 
received packets = 207 
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Appendix I - Fixed Optical Attenuator (FOA) 

 

I.1 Device Description: 

A Fixed Optical Attenuator (FOA) is one of the most basic devices used in fiber optic 

systems. The FOA is used to attenuate the power of optical signals by a fixed amount, usually 

expressed in decibels (dBs). FOAs may be fabricated using a number of different principles in 

order to achieve the desired attenuation. FOAs are typically fabricated using either doped fibers 

or misaligned splices since both of these are reliable and inexpensive. Inline-style FOAs are 

incorporated into patch cables at the time of manufacture and provide a convenient means of 

providing a desired fixed attenuation in a fiber link. The alternative build out-style attenuator is a 

small male-female adapter that can be used to adjust the level of attenuation by coupling one or 

more FOAs between fiber cables. In some cases where variable amounts of optical attenuation 

are needed, a Variable Optical Attenuator (VOA) may be used which can be manually or 

electrically adjusted to achieve the desired attenuation level. However, for purposes of this 

discussion we only consider FOAs. See Figure 1 for an example of a FOA. 

 
Figure 75. Fixed Optical Attenuator (ThorLabs, 2013). 

The FOA is perhaps one of the simplest optical devices to understand and behaviorally 

model. For this reason, we now present the explicit modeling of a fixed optical attenuator as a 

means to demonstrate and exercise the Discrete Event Simulation Specification (DEVS) 

formalism used to represent the behavior of system components.  Structurally, the FOA is a 
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bidirectional optical component with two optical ports. Optical signals arriving at one of the 

ports are attenuated by a fixed amount and then propagated to the other port after a defined 

propagation delay. The FOA is sensitive to the power of the optical signals that are propagated 

through the component. If the optical power of a pulse exceeds a defined threshold, the FOA 

may become permanently damaged which changes its attenuation characteristics.  Similarly, the 

FOA is sensitive to the temperature in the environment in which it operates. If the temperature 

exceeds defined thresholds, the FOA may become temporarily degraded or permanently 

damaged which changes its attenuation characteristics.  If temporarily degraded, the device may 

recover to normal operating behavior after the temperature returns to a “normal” operating 

temperature. 

The first step involved with modeling the FOA is to collect and understand the physical, 

behavioral, and performance characteristics of the component. In this case, this information was 

obtained from Subject Matter Expert (SME) with expertise in optical physics. The SME 

developed a detailed mathematical model in the Wolfram Mathematica software program that 

modeled the FOA. The SME developed a series of use cases that exercised the functionality of 

the device over a wide variety of conditions and verified the model and validated the input and 

output behavior of the device within a single Mathematica model (worksheet). The Mathematica 

worksheet served as the primary means by which the SME communicated the behavior of the 

FOA to the researcher. 

The next step of the modeling effort was to develop a conceptual model of the FOA using 

the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the FOA.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 
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worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
 
 
 
 
 
 
 
Figure 76. Symbol for Fixed Optical Attenuator (FOA) in the QKD system architecture.  
 

I.2 Fixed Optical Attenuator (FOA) Conceptual Model 

 
 

 
 Figure 77. Fixed Optical Attenuator (FOA) conceptual model. 

 
The conceptual model for a FOA consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, and one environmental input port {EvnIn}. The 

environmental port allows external sources to communicate changes in the operational 

 
1 2 
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environment to the FOA. In comparison to the FOA symbol used in the QKD simulation 

architecture shown in Fig. 1, a single bidirectional optical connection is decomposed into an 

optical input and an optical output in the conceptual model. This is necessary to properly 

represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the FOA, a small portion of the signal will 

be instantaneously reflected back to the signal source.  Since the conceptual model decomposes 

each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The FOA must calculate the power of each incoming optical signal in order to determine 

if the device will become damaged due to excessive power levels. This calculation is made when 

the packet first enters the module. In the case of optical overpowering, once overpowered the 

device will permanently change attenuation. External environmental messages sent to the device 

convey the temperature of the operational environmental so the FOA can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). In either case, a function 

determines how the attenuation changes as a function of the device state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 
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I.3 Mathematical Model 

For a detailed mathematical description of the FOA, refer to Section 7.8 which contains the 

Mathematica worksheet provided by the optical physics SME. 

I.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the FOA. 
 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Remove the packet from the queue, calculate the attenuated output optical signal based 

upon the input optical signal, the OverPower flag, the OverTemp flag, and the current 

environment. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 
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I.5 Phase Transition Diagram   

The phase transition diagram in Fig. 3 shows the phases of the attenuator in the boxes and 

the transitions represented by arrows between the phases. Each transition is labeled with the type 

of transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the attenuator at 

the same time. 

 
Figure 78. FOA phase transition diagram. 

 

I.6 Event-Trace Diagram   

This section shows various examples of packets entering the FOA. The tables list the 

states the attenuator proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 
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variable, current temperature of the attenuator, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

 
Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

 

I.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 32. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   
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Figure 79. Case I sequence diagram. 

 

I.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 33. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
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Figure 80. Case II sequence diagram. 

 

I.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 34. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   
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3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 81. Case III sequence diagram. 

I.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 35. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 
 
 

 
Figure 82. Case IV sequence diagram. 

I.7 Fixed Optical Attenuator (FOA) Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 
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 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“interruptRespond”, queue} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

Peak power = full width, half maximum power calculation of the pulse  
 
 
For the fixed attenuator we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  
 
Xb = a set of bags over elements of X; 
M = an atomic instance of P-DEVS. 

 
DEVSattenuator = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
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overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 

overtemp, peakpwr, overpwr) 
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calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 
 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 
 
phase is a control state used to keep track of where the full state is. 
 
S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower,interruptRespond,  queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
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     reflect = (queue.current.p), calcReflected(queue.current.v)) 
  mark_reflected(queue.current) 
 interruptRespond= “Y” 
 timeLeftRespond = timeLeftRespond - e 

 
 (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

    
 (“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut2” 
        if InPort = “OptIn2” 
          outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
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          outputPort = “OptOut1” 
      timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (output.port, output.pulse) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;  
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I.8 Mathematical model 
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I.9 Component Use Case 

I.9.1 Respond to an Optical Packet in the Fixed Optical Attenuator (FOA) 
 

Optical packet arrives at the FOA. A portion of optical packet reflects back down incoming 

optical line. Place the optical packet into the optical queue. Check to see if optical packet 

overpowers the FOA. Records overpower condition, if applicable. Remove the optical packet 

from the queue and calculate the attenuated optical output signal based on the input signal and 

the current component state. Propagate the attenuated optical output signal out of the component 

optical port that is not the same as the input port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 
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 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 

 
Figure 83. Component states. 

 
Figure 84. FOA phase transition diagram. 
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I.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  
 Optical packet entered and removed from queue in proper sequence.  
 Overpower condition properly recognized and recorded.  
 Optical packet attenuated properly to the limit of accuracy. 
 Optical packet propagated out the correct port at the correct time. 

 

I.9.3 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  

 Optical packet entered and removed from queue in proper sequence.  

 Overpower condition properly recognized and recorded.  

 Optical packet attenuated properly to the limit of accuracy.  

 Optical packet propagated out the correct port at the correct time. 

 

I.9.4 Respond to an Environmental Packet in the Fixed Optical Attenuator (FOA) 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

I.9.5 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

I.10 Fixed Attenuator Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 
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each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5.  Fixed Attenuator Test Cases. 

    Inject Ports   
Running 
Totals 

Phase Case Opt1 Opt2 Env Notes opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 

  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 
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  5 1 1 0 differ time 6 1 
  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 

  8 0 1 1 same time 11 4 
  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 

  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 
  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 

  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
  26 0 2 1 same time 36 10 

  27 0 2 1 differ time 38 11 

  28 2 0 1 same time 40 12 
  29 2 0 1 differ time 42 13 

totals   21 21 13 42     

Respond 41 2 0 0 single 44 13 
  42 0 2 0 single 46 13 

  43 1 0 1 single 47 14 

  44 2 1 0 same time 50 14 
  45 2 1 0 differ time 53 14 
  46 2 1 1 same time 56 15 

  47 2 1 1 differ time 59 16 
  48 0 2 1 same time 61 17 
  49 0 2 1 differ time 63 18 

  50 2 0 1 same time 65 19 
  51 2 0 1 differ time 67 20 

  60 3 0 0 same time 70 20 
  61 0 3 0 same time 73 20 
  62 3 2 0 same time 78 20 

  63 3 2 0 differ time 83 20 
  64 3 2 1 same time 88 21 
  65 3 2 1 differ time 93 22 

  66 0 3 1 same time 96 23 

  67 0 3 1 differ time 99 24 
  68 3 0 1 same time 102 25 

  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 

  TC2 1 0 2 single 107 30 

  TC3 1 0 2 single 108 32 
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  TC4 1 0 2 single 109 34 
  TC5 1 0 2 single 110 36 
  TC6 1 0 2 single 111 38 

  TC7 1 0 2 single 112 40 

totals   7 0 14 21     
 
 

I.11 References 

ThorLabs. (2013). Fixed fiber optical attenuators. Retrieved October 28, 2013, from 
http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1385  
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Appendix J - Half-Wave Plate 

J.1 Device Description: 

 The half-wave plate is an optical device that transforms the input wave by retarding one 

of the components of the wave. The “slow” axis is retarded by some amount while the “fast” axis 

has a very small reduction in its transmission velocity through the device. A half wave plate can 

be used to rotate the polarization of linearly polarized light with very little loss (Saleh & Teich, 

1991). The change of angle is twice the difference of input angle and the plate angle of the slow 

axis but note that if the incoming linearly polarized light falls upon either principal axis, there is 

no change. See Figure 1 for an example of a half-wave plate. 

 
Figure 85. View of a zero-order half-wave plate (Newport, 2013). 

 
A typical half-wave plate is made from two quarter-wave plates glued together with a 

free-space gap between them and mounted into some type of stabilizing housing. Although each 

quarter-wave plate changes linearly polarized light into left or right-circular light, by aligning the 

fast axis of one quarter-wave plate with the slow-axis of the second pate, the resultant is light 

that is still linearly polarized, but with a new polarization angle. The air gap between the quarter-

wave plates allows for higher levels of optical power through the plates. 
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The Half-wave plate is a bidirectional optical component with two optical ports. Optical 

signals arriving at the input port are propagated to the other port after a defined propagation 

delay and the polarizing material is sensitive to the power of the optical signals that are 

propagated through the component. If the optical power of a pulse exceeds a defined threshold, 

the Half-wave plate may become permanently damaged which changes its propagation 

characteristics. Similarly, the Half-wave plate is sensitive to the temperature in the environment 

in which it operates. If the temperature exceeds defined thresholds, the Half-wave plate may 

become temporarily degraded or permanently damaged which changes its propagation 

characteristics.  If temporarily degraded, the device may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the Half-wave plate is to collect and understand 

the physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the Half-wave plate. The SME developed a series of use cases that 

exercised the functionality of the device over a wide variety of conditions and verified the model 

and validated the input and output behavior of the device within a single Mathematica model 

(worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the Half-wave plate to the researcher. Additional information 

came from product data sheets from commercial vendors and standard texts from the optical 

field. 

The next step of the modeling effort was to develop a conceptual model of the Half-wave 

plate using the DEVS formalism. The bulk of the document following this section is dedicated to 
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the detailed development of the DEVS model of the Half-wave plate.  Once developed, the 

model will be simulated using the MS4ME simulator using the same uses cases defined in the 

Mathematica worksheet. The SME will then review the MS4ME simulation output to verify that 

the DEVS formal model matches the behavior of the Mathematica model and hence the real 

component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 86. Symbol for the half-wave plate in the QKD system architecture.  
 

J.2 Half-wave plate Conceptual Model 

 

 
Figure 87.  Half-wave plate conceptual model. 
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The conceptual model for a Half-wave plate consists of two optical input ports {OptIn1, 

OptIn2}, two optical output ports {OptOut1, OptOut2}, and one environmental input port 

{EvnIn}. The environmental port allows external sources to communicate changes in the 

operational environment to the Half-wave plate. In comparison to the Half-wave plate symbol 

used in the QKD simulation architecture shown in Figure 2, a single bidirectional optical 

connection is decomposed into an optical input and an optical output in the conceptual model. 

This is necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the Half-wave plate, a small portion of the 

signal will be instantaneously reflected back to the signal source. Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The Half-wave plate calculates changes to the power, the amplitude, ellipticity, 

polarization and phase of any packet coming through either optical port after a time equaling the 

propagation delay of the module. The packet is calculated at full power minus some small 

amount to account for attenuation through the device and retards the packet along the “slow” 

axis of the plate to some accuracy, dependent on the design of the plate. 

The Half-wave plate must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the Half-wave 

plate can determine if it is degraded (a temporary condition) or damaged (a permanent 
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condition). In either case, a function determines how the propagation changes as a function of the 

device state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

J.3 Mathematical Model 

For a detailed mathematical description of the Half-wave plate, refer to Section 8.8 which 

contains the Mathematica worksheet provided by the optical physics SME. 

J.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the Half-

wave plate. 

 
 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 
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 Retrieve the input optical signal from the queue, and determine the input port, ellipticity, 

polarization, and overall phase of the signal.  

 Update the values of the input optical signal based on the characteristics of the half-wave 

plate, the original values of the input optical signal and the current environment. 

 Send the attenuated output signal out of the optical output port number that is not the 
same as the input port number. 
 

When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

J.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the Half-wave plate in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs. Note there is a self-loop transition from reflect to reflect if multiple optical packets 

arrive at the Half-wave plate at the same time. 
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Figure 88. Half-wave plate phase transition diagram. 

J.6 Event-Trace Diagram   

This section shows various examples of packets entering the FOA. The tables list the 

states the attenuator proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the attenuator, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

 
Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 
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 Queue: contents of the queue for that state 

 Notes: any notes for that state 

J.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 36. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   

 
 

 
Figure 89. Case I sequence diagram. 

J.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 37. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   
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0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
 
 
 

 
Figure 90. Case II sequence diagram. 

J.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 38. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 
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0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 91. Case III sequence diagram. 

J.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 39. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n n null   

5 s4 entry passive inf x1 c2 y n n null   

 
 
 

 
Figure 92. Case IV sequence diagram. 

J.7 Half-wave plate Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 
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 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

“interruptRespond” = flag variable set when device is interrupted by an external event 

Peak power = full width, half maximum power calculation of the pulse  

 
For the Half-wave plate we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSHalf-wave plate = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
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overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 

overtemp, peakpwr, overpwr) 
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calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 
 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 
 
phase is a control state used to keep track of where the full state is. 
 
S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower,interruptRespond,  queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
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     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
 interruptRespond= “Y” 
 timeLeftRespond = timeLeftRespond - e 

 
 (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p =∈	“EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

   
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut2” 
        if InPort = “OptIn2” 
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          outputPulse = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut1” 
      timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcPolar (current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (output.port, output.pulse) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;  
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J.8 Mathematical Model 
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J.9 Component Use Case 

J.9.1 Respond to an Optical Packet in the Half-wave Plate 
 

Optical packet arrives at half-wave plate. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the half-wave plate. Records overpower condition, if applicable. Remove the 

optical packet from the queue and calculate the attenuated, changed optical output signal based 

on the input signal, component characteristics and the current component state. Propagate the 

attenuated optical output signal out of the component optical port that is not the same as the input 

port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 93. Component states. 

 
Figure 94. Half-wave plate phase transition diagram. 

J.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 

 Optical packet entered and removed from queue in proper sequence  

 Overpower condition properly recognized and recorded 

 Optical packet attenuated properly to the limit of accuracy 

 Optical packet propagated out the correct port at the correct time 

 

J.9.3 Respond to an Environmental Packet in the Half-wave Plate 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 
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J.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

J.10 Half-wave Plate Test Cases. 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 
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column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Half-wave Plate Test Cases. 

    Inject Ports   
Running 
Totals 

Phase Case Opt1 Opt2 Env Notes opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 

  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 

  5 1 1 0 differ time 6 1 

  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 
  8 0 1 1 same time 11 4 

  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 
  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 

  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 
  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
  26 0 2 1 same time 36 10 
  27 0 2 1 differ time 38 11 

  28 2 0 1 same time 40 12 

  29 2 0 1 differ time 42 13 

totals   21 21 13 42     

Respond 41 2 0 0 single 44 13 
  42 0 2 0 single 46 13 
  43 1 0 1 single 47 14 

  44 2 1 0 same time 50 14 

  45 2 1 0 differ time 53 14 
  46 2 1 1 same time 56 15 

  47 2 1 1 differ time 59 16 

  48 0 2 1 same time 61 17 
  49 0 2 1 differ time 63 18 
  50 2 0 1 same time 65 19 

  51 2 0 1 differ time 67 20 
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  60 3 0 0 same time 70 20 
  61 0 3 0 same time 73 20 
  62 3 2 0 same time 78 20 

  63 3 2 0 differ time 83 20 
  64 3 2 1 same time 88 21 
  65 3 2 1 differ time 93 22 

  66 0 3 1 same time 96 23 

  67 0 3 1 differ time 99 24 
  68 3 0 1 same time 102 25 

  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 

  TC2 1 0 2 single 107 30 

  TC3 1 0 2 single 108 32 
  TC4 1 0 2 single 109 34 
  TC5 1 0 2 single 110 36 

  TC6 1 0 2 single 111 38 
  TC7 1 0 2 single 112 40 
  TC8 1 0 2 single 113 42 

totals   8 0 16 24     
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Appendix K - In-Line Polarizer  

K.1 Device Description: 

The in-line polarizer is a filter that allows light of a one polarization to pass while 

blocking light that is orthogonal to the passed light. It can convert unpolarized light into 

polarized light or filter out extraneous polarization angles from already polarized light. The type 

of polarizer used in QKD devices is the in-line fiber polarizer, which consists of housing 

containing input and output lenses with some form of polarizing medium in between. See Figure 

1 for an example of an in-line polarizer. 

 
Figure 95. View of a fiber in-line polarizer (ThorLabs, 2013). 

 
The In-line polarizer is a bidirectional optical component with two optical ports. Optical 

signals arriving at the input port are propagated to the other port after a defined propagation 

delay and the polarizing material is sensitive to the power of the optical signals that are 

propagated through the component. If the optical power of a pulse exceeds a defined threshold, 

the In-line polarizer may become permanently damaged which changes its propagation 

characteristics. Similarly, the In-line polarizer is sensitive to the temperature in the environment 

in which it operates. If the temperature exceeds defined thresholds, the In-line polarizer may 

become temporarily degraded or permanently damaged which changes its propagation 
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characteristics.  If temporarily degraded, the device may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the In-line polarizer is to collect and understand 

the physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the In-line polarizer. The SME developed a series of use cases that 

exercised the functionality of the device over a wide variety of conditions and verified the model 

and validated the input and output behavior of the device within a single Mathematica model 

(worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the In-line polarizer to the researcher. Additional information 

came from product data sheets from commercial vendors and standard texts from the optical 

field. 

The next step of the modeling effort was to develop a conceptual model of the In-line 

polarizer using the DEVS formalism. The bulk of the document following this section is 

dedicated to the detailed development of the DEVS model of the In-line polarizer.  Once 

developed, the model will be simulated using the MS4ME simulator using the same uses cases 

defined in the Mathematica worksheet. The SME will then review the MS4ME simulation output 

to verify that the DEVS formal model matches the behavior of the Mathematica model and hence 

the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 
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timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 96. Symbol for the In-line polarizer in the QKD system architecture.  
 
 

K.2 In-line polarizer Conceptual Model 

 

 
Figure 97.  In-line polarizer conceptual model. 

 
The conceptual model for an In-line polarizer consists of two optical input ports {OptIn1, 

OptIn2}, two optical output ports {OptOut1, OptOut2}, and one environmental input port 

{EvnIn}. The environmental port allows external sources to communicate changes in the 

operational environment to the In-line polarizer. In comparison to the In-line polarizer symbol 

used in the QKD simulation architecture shown in Figure 2, a single bidirectional optical 

connection is decomposed into an optical input and an optical output in the conceptual model. 

This is necessary to properly represent the behavior of the device using the DEVS formalism. 
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When an optical signal is sent to the input of the In-line polarizer, a small portion of the 

signal will be instantaneously reflected back to the signal source. Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The In-line polarizer calculates changes to the power, the amplitude, ellipticity and 

polarization of any packet coming through either optical port after a time equaling the 

propagation delay of the module. The packet is calculated at full power minus some small 

amount to account for attenuation through the device but heavily attenuates any packet that does 

not match the polarization of the polarizer. Even though the in-line polarizer is meant to block 

light that does not match its polarization, a small amount of light that nearly matches the 

polarization of the polarizer will make it through the device and out the input port. 

The In-line polarizer must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the In-line 

polarizer can determine if it is degraded (a temporary condition) or damaged (a permanent 

condition). In either case, a function determines how the propagation changes as a function of the 

device state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 
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greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

K.3 Mathematical Model 

For a detailed mathematical description of the In-line polarizer, refer to Section 9.8 which 

contains the Mathematica worksheet provided by the optical physics SME. 

K.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the In-

line polarizer. 

 
 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Place the optical packet into the queue 

 After the propagation time has elapsed, retrieve the input optical signal from the queue, 

and determine the input port and polarization of the signal.  

 Update the values of the input optical signal based on the characteristics of the polarizer, 

the original values of the input optical signal and the current environment. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
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 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

K.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the In-line polarizer in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs. Note there is a self-loop transition from reflect to reflect if multiple optical packets 

arrive at the In-line polarizer at the same time. 

 
Figure 98. In-line polarizer phase transition diagram. 
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K.6 Event-Trace Diagram   

 
This section shows various examples of packets entering the FOA. The tables list the 

states the attenuator proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the attenuator, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

 
Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

 

K.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 40. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   
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5 s3 entry passive inf x1 c n n n null   

 
 

 
Figure 99. Case I sequence diagram. 

 

K.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 41. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
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Figure 100. Case II sequence diagram. 

 

K.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 42. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   
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3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 101. Case III sequence diagram. 

K.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 43. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 
 
 

 
Figure 102. Case IV sequence diagram. 

K.7 In-line polarizer Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 
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 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
 
For the In-line polarizer we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSIn-line polarizer = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 



 

366 
 

interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 

overtemp, peakpwr, overpwr) 
calcReflected() = method that calculates reflection  power of an optical packet 
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MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 
 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 
 
phase is a control state used to keep track of where the full state is. 
 
S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower,interruptRespond,  queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 
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  mark_reflected(queue.current) 
 interruptRespond= “Y” 
 timeLeftRespond = timeLeftRespond - e 

 
 (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time_delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

    
 (“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut2” 
        if InPort = “OptIn2” 
          outputPulse = calcAtten(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut1” 
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      timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (output.port, output.pulse) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ; 
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K.8 Appendix A – Mathematical model 
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K.9 Component Use Case 

K.9.1 Respond to an Optical Packet in the Inline Polarizer 
 

Optical packet arrives at the inline polarizer. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the inline polarizer. Records overpower condition, if applicable. Remove the 

optical packet from the queue and calculate the attenuated and polarized optical output signal 

based on the input signal, component characteristics and the current component state. Propagate 

the attenuated optical output signal out of the component optical port that is not the same as the 

input port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 103. Component states. 

 
Figure 104. In-line polarizer phase transition diagram. 

K.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 

 Optical packet entered and removed from queue in proper sequence 

 Overpower condition properly recognized and recorded 

 Optical packet attenuated properly to the limit of accuracy 
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 Optical packet propagated out the correct port at the correct time 

K.9.3 Respond to an Environmental Packet in the In-line Polarizer 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

K.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

K.10 Inline Polarizer Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 
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in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Inline Polarizer Test Cases. 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Env Notes opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 
  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 

  5 1 1 0 differ time 6 1 

  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 

  8 0 1 1 same time 11 4 

  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 
  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 

  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 

  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
  26 0 2 1 same time 36 10 
  27 0 2 1 differ time 38 11 
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  28 2 0 1 same time 40 12 
  29 2 0 1 differ time 42 13 

totals   21 21 13 42     

Respond 41 2 0 0 single 44 13 
  42 0 2 0 single 46 13 
  43 1 0 1 single 47 14 

  44 2 1 0 same time 50 14 

  45 2 1 0 differ time 53 14 
  46 2 1 1 same time 56 15 

  47 2 1 1 differ time 59 16 

  48 0 2 1 same time 61 17 
  49 0 2 1 differ time 63 18 

  50 2 0 1 same time 65 19 

  51 2 0 1 differ time 67 20 

  60 3 0 0 same time 70 20 
  61 0 3 0 same time 73 20 
  62 3 2 0 same time 78 20 

  63 3 2 0 differ time 83 20 

  64 3 2 1 same time 88 21 
  65 3 2 1 differ time 93 22 

  66 0 3 1 same time 96 23 

  67 0 3 1 differ time 99 24 
  68 3 0 1 same time 102 25 
  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 
  TC2 1 0 2 single 107 30 

  TC3 1 0 2 single 108 32 
  TC4 1 0 2 single 109 34 
  TC5 1 0 2 single 110 36 

  TC6 1 0 2 single 111 38 

  TC7 1 0 2 single 112 40 

totals   7 0 14 21     
 

K.11 References 

ThorLabs. (2013). In-line fiber optic polarizers .Retrieved September 18, 2013, from 
http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5922  
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Appendix L - Isolator 

L.1 Device Description 

An isolator is a basic device used in fiber optic systems. The isolator is a device which is 

used to pass light in the forward direction while highly attenuating light moving in the opposite 

direction. This has the effect of operating as a “one-way street” and prevents reflected light from 

returning to a light source, such as a laser.  This backward propagation of reflected light can have 

negative effects on the source. The attenuation is a fixed amount, usually expressed in decibels 

(dBs). 

There are two types of isolators, the polarization-dependent and the polarization-

independent. The dependent version of the isolator is usually constructed with an input polarizer, 

a Faraday rotator with a fixed magnet and an output polarizer. The input polarizer filters the 

incoming light, allowing only the parallel electric field components of an incoming beam to pass. 

The Faraday rotator rotates the light by 45° then outputs it to the second linear polarizer. The 

output light is aligned 45° to the incoming light. In the reverse direction the incoming light is 

polarized to 45°, and then passes through the Faraday rotator for another 45° rotation, meaning 

the light is now polarized perpendicular to the input polarizer and the light is either reflected or 

absorbed (Saleh & Teich, 1991). See Figure 1. 
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Figure 105. A polarization-dependent isolator (ThorLabs, 2013).  
 

The independent version is somewhat more complicated as the light is split into to two 

streams by a birefringent crystal, then passes through a Faraday rotator which rotates the light by 

45°, a half-wave plate then rotates the light by 45° again and finally through another birefringent 

crystal that recombines the beams into the output port. Reflected light passing into the output 

port passes through the birefringent crystal and split, then through the half-wave plate and 

Faraday rotator. When the light encounters the second birefringent crystal, the light is channeled 

away from the input port into the isolator housing (Saleh & Teich, 1991). See Figure 2. Both 

types of isolator may be used in a QKD device. 

 
Figure 106. Polarization-independent isolator (ThorLabs, 2013).    

The Isolator is a bidirectional optical component with one optical port. Optical signals 

arriving at the input port are propagated to the other port after a defined propagation delay. 
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Signals arriving at the output port are blocked from propagating through the input port. The 

Isolator is sensitive to the power of the optical signals that are propagated through the 

component. If the optical power of a pulse exceeds a defined threshold, the Isolator may become 

permanently damaged which changes its propagation characteristics.  Similarly, the Isolator is 

sensitive to the temperature in the environment in which it operates. If the temperature exceeds 

defined thresholds, the Isolator may become temporarily degraded or permanently damaged 

which changes its propagation characteristics.  If temporarily degraded, the device may recover 

to normal operating behavior after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the Isolator is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the Isolator. The SME developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions and verified the model and validated 

the input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the Isolator to the researcher. Additional information came from product data sheets 

from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the Isolator 

using the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the Isolator.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 
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worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 

 
Figure 107. Symbol for the Isolator in the QKD system architecture.  
 
 

L.2 Isolator Conceptual Model 

 
Figure 108. Isolator conceptual model. 

 
The conceptual model for an Isolator consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, and one environmental input port {EvnIn}. The 

environmental port allows external sources to communicate changes in the operational 
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environment to the Isolator. In comparison to the Isolator symbol used in the QKD simulation 

architecture shown in Figure 3, a single bidirectional optical connection is decomposed into an 

optical input and an optical output in the conceptual model. This is necessary to properly 

represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the Isolator, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 4 will 

instantaneously generate a reflected emitting out of OptOut1.  

The Isolator calculates the power of the incoming packet and if the packet comes in the 

normal input port, it is sent out the output port after a time equaling the propagation delay of the 

module at full power minus some small amount to account for attenuation through the device. If 

an incoming packet enters through the device output port, the packet is output through the input 

port after the propagation delay, but the packet power is heavily attenuated. Even though the 

isolator is meant to block light travelling in the wrong direction, a highly attenuated portion of 

backward propagating light will still pass through the device. 

The Isolator must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the Isolator can 

determine if it is degraded (a temporary condition) or damaged (a permanent condition). In either 



 

384 
 

case, a function determines how the propagation changes as a function of the device state and 

current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

L.3 Mathematical Model 

For a detailed mathematical description of the Isolator, refer to Section 10.8 which contains 

the Mathematica worksheet provided by the optical physics SME. 

L.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

Isolator. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the signal into a queue until the propagation time through the component has 

elapsed. 
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 After the propagation time has elapsed, retrieve the input optical signal from the queue, 

and determine the input port of the signal. 

 If the input port of the signal matches the input port of the isolator, slightly attenuate the 

output signal with power based upon the input optical signal, the OverPower flag, the 

OverTemp flag, and the current environment. 

 If the input port of the signal does not match the input port of the isolator, heavily 

attenuate the output optical signal based upon the input optical signal, the OverPower 

flag, the OverTemp flag, and the current environment. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

L.5 Phase Transition Diagram   

The phase transition diagram in Fig. 5 shows the phases of the Isolator in the boxes and the 

transitions represented by arrows between the phases. Each transition is labeled with the type of 

transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the Isolator at the 

same time. 
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 Figure 109. Isolator phase transition diagram. 

 

L.6 Event-Trace Diagram   

This section shows various examples of packets entering the Isolator. The tables list the 

states the Isolator proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the Isolator, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 
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 Queue: contents of the queue for that state 

 Notes: any notes for that state 

 

L.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 44. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   

 
 

 
Figure 110. Case I sequence diagram. 

 
 

L.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 45. Case II state list. 
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time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
 
 
 

 
Figure 111. Case II sequence diagram. 
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L.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 46. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   
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8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
 

 
Figure 112. Case III sequence diagram. 

L.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 47. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   
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0 s1  exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n n  null   

5 s4 entry passive inf x1 c2 y n n  null   

 
 
 

 
Figure 113. Case IV sequence diagram. 

L.7 Isolator Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 
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 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
For the Isolator we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSIsolator = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
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phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
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calcPolar() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, store, temperature, overtemp, overpower,interruptRespond,  queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
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     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
 interruptRespond= “Y” 
timeLeftRespond = timeLeftRespond - e 

 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

  
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcForward(current.v, temperature, overtemp, peakpwr, overpwr) 
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          outputPort = “OptOut2” 
        if InPort = “OptIn2” 
          outputPulse = calcReverse(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut1” 
      timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcForward(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcReverse(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (outputPort, outputPulse) 
      if phase = “propagate” 
	 	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ; 
 



 

397 
 

L.8 Mathematical Model 
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L.9 Appendix C – Component Use Case 

L.9.1 Respond to an Optical Packet in the Isolator 
 

Optical packet arrives at the isolator. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the isolator. Records overpower condition, if applicable. Remove the optical 

packet from the queue and calculate the attenuated optical output signal based on the input 

signal, direction of input and the current component state. Propagate the attenuated optical output 

signal out of the component optical port that is not the same as the input port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 
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 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 

 
Figure 114. Component states. 

 
 Figure 115. Isolator phase transition diagram. 
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L.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly.  
 Optical packet entered and removed from queue in proper sequence.  
 Overpower condition properly recognized and recorded.  
 Optical packet attenuated properly to the limit of accuracy.  
 Optical packet propagated out the correct port at the correct time. 

 

L.9.3 Respond to an Environmental Packet in the Isolator 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

 

L.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

L.10 Isolator Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 
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awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Isolator Test Cases 

    Inject Ports   
Running 
Totals 

Phase Case Opt1 Opt2 Env Notes opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 

  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 

  5 1 1 0 differ time 6 1 

  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 
  8 0 1 1 same time 11 4 

  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 
  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 



 

402 
 

  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 
  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
  26 0 2 1 same time 36 10 
  27 0 2 1 differ time 38 11 

  28 2 0 1 same time 40 12 

  29 2 0 1 differ time 42 13 

totals   21 21 13 42     

Respond 41 2 0 0 single 44 13 

  42 0 2 0 single 46 13 
  43 1 0 1 single 47 14 

  44 2 1 0 same time 50 14 

  45 2 1 0 differ time 53 14 
  46 2 1 1 same time 56 15 
  47 2 1 1 differ time 59 16 

  48 0 2 1 same time 61 17 
  49 0 2 1 differ time 63 18 
  50 2 0 1 same time 65 19 

  51 2 0 1 differ time 67 20 

  60 3 0 0 same time 70 20 

  61 0 3 0 same time 73 20 
  62 3 2 0 same time 78 20 
  63 3 2 0 differ time 83 20 

  64 3 2 1 same time 88 21 
  65 3 2 1 differ time 93 22 
  66 0 3 1 same time 96 23 

  67 0 3 1 differ time 99 24 
  68 3 0 1 same time 102 25 
  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 
  TC2 1 0 2 single 107 30 

  TC3 1 0 2 single 108 32 

  TC4 1 0 2 single 109 34 
  TC5 1 0 2 single 110 36 
  TC6 1 0 2 single 111 38 

  TC7 1 0 2 single 112 40 

totals   7 0 14 21     
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Appendix M - Laser 

M.1 Device Description: 

The laser is an optical oscillator that contains an amplification medium and emits 

coherent light via an output coupler.  Spontaneous emission, or injected seed light, is amplified 

with each pass through the amplification portion of the oscillator.  The geometry of oscillator 

dictates which optical wavelengths and modes are supported. Lasers come in many forms and are 

generated by a multitude of materials used as the active medium. Different forms include solid-

state lasers, gas lasers, dye lasers, x-ray and free-electron lasers. They can also produce pulsed or 

continuous beams of light and can produce specific polarization of light by using embedded 

polarizers or Brewster windows.  

Active materials include (solid-state): ruby, alexandrite, sapphire, yttrium aluminum 

garnet, gadolinium gallium garnet, yttrium lithium fluoride, transition-metal and lanthanide-

metal ions; (gas): helium-neon, argon, krypton, carbon dioxide, xenon-chloride, hydrogen 

fluoride; (dyes): polymethine dyes, xanthenes dyes; and exotic materials used in the high energy 

x-ray and free-electron lasers (Saleh & Teich, 1991). See Figure 1 for examples of lasers. 

 
Figure 116. Example of lasers (ThorLabs, 2013). 
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The laser is a unidirectional optical component with one optical port and one electrical 

control port (unidirectional in the sense that it is not designed to pass optical signals through the 

device). The optical port is the output port for the coherent optical pulses or beam created inside 

the device. Optical signals arriving at the optical port are reflected back down the optical path 

after suffering an amount of attenuation. The laser is sensitive to the power of the optical signals 

that are received by the component. If the optical power of a pulse exceeds a defined threshold, 

the laser may become permanently damaged which changes its attenuation and output 

characteristics.  Similarly, the laser is sensitive to the temperature in the environment in which it 

operates, as temperature changes alter the physical dimensions of the device. If the temperature 

exceeds defined thresholds, the laser may become temporarily degraded or permanently damaged 

which changes the output wavelength. If temporarily degraded, the device may recover to normal 

operating behavior after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the laser is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a series of use cases that exercised the functionality of the device over a 

wide variety of conditions and verified the model and validated the input and output behavior of 

the device. Additional information came from product data sheets from commercial vendors and 

standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the laser using 

the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the laser.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined by the SME. The SME 
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will then review the MS4ME simulation output to verify that the DEVS formal model matches 

the expected behavior and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 117. Symbol for the laser in the QKD system architecture.  
 

M.2 Laser Conceptual Model 

 
Figure 118. Laser conceptual model. 

 
The conceptual model for a laser consists of one optical input port {OptIn1 }, one optical 

output port {OptOut1}, one environmental input port {EvnIn} and one electrical controller input 
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port and one electrical controller output port {CtrlIn, CtrlOut}. The environmental port allows 

external sources to communicate changes in the operational environment to the laser. The 

electrical controller ports allow for control inputs to the controller and responses from the laser 

to the higher system functions. 

 In comparison to the laser symbol used in the QKD simulation architecture shown in 

Figure 2, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. The electrical control port is not shown for clarity in 

Figure 2, and is also decomposed in the model into an input port and an output port. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the laser, a small portion of the signal will 

be instantaneously reflected back to the signal source. Since the conceptual model decomposes 

each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The laser must calculate the power of each incoming optical signal in order to determine 

if the device will become damaged due to excessive power levels. This calculation is made when 

the packet first enters the module. In the case of optical overpowering, once overpowered the 

device will permanently change attenuation and output. External environmental messages sent to 

the device convey the temperature of the operational environmental so the laser can determine if 

it is degraded (a temporary condition) or damaged (a permanent condition). In either case, a 

function determines how the attenuation and output changes as a function of the device state and 

current temperature. 
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When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

The laser is unique among the optical components in that it creates optical messages. The 

laser receives a command from the controller to ‘fire’ a pulse. This is an abstraction how a laser 

actually monitors an electrical voltage and emits a pulse when the voltage exceeds a trigger 

voltage. It does not emit a pulse until the voltage drops below the trigger voltage and then 

exceeds the trigger voltage.  

Upon receipt of a ‘fire’ or ‘laser on’ message, the laser creates an optical pulse message 

with predefined characteristics and sends it out the optical port. The time between receipt of the 

message and emission of the pulse has a random factor supplied by a random Gaussian draw. In 

the case of the demonstration architecture, the optical pulse is modeled on the output of the ID 

Quantique ID300 laser (ID Quantique SA, 2011).   

M.3 Mathematical Model 

There is no detailed mathematical description of the laser in Section 11.8.   

M.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the laser. 
 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 
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When an optical signal arrives: 
 

 Determine the input port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Calculate the reflected power of the signal and send its output with the same port number. 

 
When an environmental message arrives: 
 

 Update the CurrrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 
When a control message arrives: 
 

 Determine if it is an “on” or “off” message. 

 Output optical packets if the message is an “on” or stop packet output if it is an “off” 

message 

 Respond to the controller with an acknowledgement message. 

 

M.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the laser in the boxes and the 

transitions represented by arrows between the phases. Each transition is labeled with the type of 

transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the laser at the 

same time. 
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Figure 119. Laser phase transition diagram. 

M.6 Event-Trace Diagram   

This section shows various examples of packets entering the laser. The tables list the 

states the laser proceeds through as the packets are processed. Each table has the state number, 

with each state consisting of: phase, time until next transition (sigma), store state variable, 

current temperature of the laser, the over temperature flag variable and the over power flag 

variable. The next column shows the contents of the queue at that state, the contents of the store 

state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Interrupt Respond: shows the value of the interrupt respond variable 

 Need Respond: shows the value of the need respond variable 

 Laser Power: shows the value of the laser power variable 

 Queue: contents of the queue for that state 
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 Notes: any notes for that state 

M.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 48. Case I state list. 

  
time state entry/ 

exit 
phase sigma store 

 (xi) 
temp over 

temp 
over  
power 

interrupt 
respond 

need 
respond 

laser 
power 

queue 
 (xi, 
tp) 

Notes: 
  

 1 ctrl 0 env 0 opt 0 ctrl          

0 s0 entry passive inf null c n n n n off null   

0 s0 exit passive 0 ctrl c n n n n off null   

0 s1 entry update 
laser 

0 ctrl c n n n n off null   

0 s1 exit update 
laser 

2x10^8 ctrl c n n n n on null   

0 s2 entry create 
pulse 

2x10^8 ctrl c n n n n on null   

2x10^
8 

s2 exit create 
pulse 

0 ctrl c n n n n off null   

2x10^
8 

s3 entry passive inf ctrl c n n n n off null   

 

 
Figure 120. Case I sequence diagram. 

M.6.2 CASE II: Initial Passive with Single Control Packet Arriving at Time 0 and 1 Optical 
Packet Arriving Time 1x10^8 

 
Table 49. Case II state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

laser 
power 

queue 
 (xi, tp) 

Notes: 
  

 1 ctrl 0 env 0 opt  1 ctrl          

0 s0 entry passive inf null c n n n n off null   
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0 s0 exit passive 0 ctrl   c n n n n off null   

0 s1 entry update 
laser 

0 ctrl c n n n n off null   

0 s1 exit update 
laser 

2x10^8 ctrl c n n n n on null   

0 s2 entry create 
pulse 

2x10^8 ctrl c n n n n on null   

1x10^
8 

s2 exit create 
pulse 

0 ctrl c n n y n on null dext at 
e= 
1x10^8, 
1 ctrl 
packet  
"status" 

1x10^
8 

s3 entry update 
laser 

0 ctrl c n n y n on null   

1x10^
8 

s3 exit update 
laser 

1x10^8 ctrl c n n y n on null   

1x10^
8 

s4 entry create 
pulse 

1x10^8 ctrl c n n y n on null   

2x10^
8 

s4 exit create 
pulse 

inf ctrl c n n n n off null   

2x10^
8 

s5 entry passive inf ctrl c n n n n off null   

 

 
Figure 121. Case II sequence diagram. 

M.6.3 CASE III: Initial Passive with Single Control Packet Arriving at Time 0 and 1 
Environmental Packet Arriving at Time 1x10^8 

 
Table 50. Case III state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

laser 
power 

queue 
 (xi, 
tp) 

Notes: 
  

 1 1 env 0 opt  0 ctrl          
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ctrl 

0 s0 entry passiv
e 

inf null c n n n n off null   

0 s0 exit passiv
e 

0 ctrl   c n n n n off null   

0 s1 entry update 
laser 

0 ctrl c n n n n off null   

0 s1 exit update 
laser 

2x10^
8 

ctrl c n n n n on null   

0 s2 entry create 
pulse 

2x10^
8 

ctrl c n n n n on null   

1x10^8 s2 exit create 
pulse 

1x10^
8 

env c n n y n on null dext at 
e= 
1x10^8, 
1 env 
packet  
overtem
p 

1x10^8 s3 entry create 
pulse 

1x10^
8 

env c n n y n on null   

2x10^8 s3 exit create 
pulse 

inf env c n n n n off null   

2x10^8 s4 entry passiv
e 

inf env c n n n n off null   

  

 
Figure 122. Case III sequence diagram. 

M.6.4 CASE IV: Initial Passive with Single Control Packet Arriving at Time 0 and 1 Control 
Packet Arriving at Time 1x10^8 

 
Table 51. Case IV state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

laser 
power 

queue 
 (xi, tp) 

Notes: 
  

 1 ctrl 0 env 1 opt 0 ctrl          

0 s0 entry passive inf null c n n n n off null   
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0 s0 exit passive 0 ctrl   c n n n n off null   

0 s1 entry update 
laser 

0 ctrl c n n n n off null   

0 s1 exit update 
laser 

2x10^8 ctrl c n n n n on null   

0 s2 entry create 
pulse 

2x10^8 ctrl c n n n n on null   

1x10^
8 

s2 exit create 
pulse 

0 x1 c n n y n on null dext at 
e= 
1x10^8, 
1 opt 
packet   

1x10^
8 

s3 entry reflect 0 x1 c n n y n on null   

1x10^
8 

s3 exit reflect 1x10^8 x1 c n n y n on null   

1x10^
8 

s4 entry create 
pulse 

1x10^8 x1 c n n y n on null   

2x10^
8 

s4 exit create 
pulse 

inf x1 c n n n n off null   

2x10^
8 

s5 entry passive inf x1 c n n n n off null   

  

 
Figure 123. Case IV sequence diagram. 

M.7 Laser Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 
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 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, “needRespond”,“laserpower”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

“laserpower” = flag variable set when device is turned on 

Peak power = full width, half maximum power calculation of the pulse  

 
For the laser we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSlaser = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
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phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”, “update detector”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
needRespond= flag variable set when both Reflect and UpdateDetector respond to inputs 
laserpower = flag variable set when device is turned on 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
ctrlOutput = variable that stores the output control message response 
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 

store = variable that holds values of the current optical packet 

timeLeftRespond = time left in Respond phase for the current optical packet 

autoPulseInterval= automatic pulse interval in seconds 

e = elapsed time since last transition occurred 

σ = state variable that holds the time to next transition 

queue = input container object to store the scheduled inputs 

queue_size() = method that returns number of entries in the queue  

queue_min() = method that removes the queue entry with the smallest time delay  

queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
queue_clear() = method that clears the queue of all entries 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
ctrlMsg() =  method that generates a response message to received control messages 
outputMsg() = method that generates the response message to received optical packets 
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
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calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcStrong() =  method that calculates the optical packet high power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 

calcWeak() =  method that calculates the optical packet low power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 

calcForward() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “EnvIn”, “CtrlIn”} with 

XM = {(“OptIn1”, Vopt), (“EnvIn”, Venv), (“CtrlIn”, Vctrl)} is the set of input ports and values. 

 
OutPorts = {“OptOut1”, “CtrlOut”} with 

YM = {(“OptOut1”, YOptOut1), (“CtrlOut”, YCtrlOut)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, needRespond, 

laserpower,  queue} = {{“passive”, “reflect”, “create pulse”, “update laser”} x 0R x V x R x 

{“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x{“Y”,”N”} x {“on”, “off”} x V} 
 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, laserpower 

,needRespond, queue, e, ((pi,vi),…. (pn,vn))) = 
 (“update laser”, 0, store, temperature, overtemp, overpower, interruptRespond,  needRespond, 

laserpower,queue.x1..xn) 
if phase = “passive” and p = “CtrlIn” 
  if  messagebag.status= “statuscheck “ 
    laserpower = “off” 
  if messagebag.status = “laserfire” 
    laserpower = “on” 
  ctrlOutput = ctrlMsg(store) 
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(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue.x1..xn)  
  if phase = “passive” and p = “OptIn1”   
      for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue.x1..xn)  
  if phase = “create pulse” and p = “OptIn1”   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
        remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 
  timeLeftRespond = timeLeftRespond - e 

 
  (“update laser”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue.x1..xn)  
   if phase = “create pulse” and p = “CtrlIn”   

  if  messagebag.status= “statuscheck “ 
       ctrlOutput = ctrlMsg(store) 

    interruptRespond= “Y” 
       timeLeftRespond = timeLeftRespond – e 

  if messagebag.status = “laserfire” 
    interruptRespond= “Y” 

       timeLeftRespond = timeLeftRespond – e 
 
  (“create pulse”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, laserpower, queue.x1..xn) 
    if phase = “create pulse” and p = “EnvIn” 
      timeLeftRespond = time_delay- e 
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      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
 (phase, σ – e, store, temperature, overtemp, overpower, laserpower) 

 otherwise; 
 
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interrupRespond, needRespond, 

laserpower) = 
 
  (“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond,   

laserpower, queue.x1..xn)  
    if phase = “reflect” and need.reflect != null 
      need.reflect = queue_need_reflected()  
      current = need.reflect 

   reflect = (current.p), calcReflected(current.v)) 
   mark_reflected(current) 

 
  (“create pulse”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, laserpower, queue.x1..xn) 
    if phase = “reflect” and interruptRespond = “Y” and needreflect = 0 
       need.reflect = queue_need_reflected()          
       if interruptRespond = “Y” 
       time_delay = timeLeftRespond 
      queue_clear() 
 
  (“update laser”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue.x1..xn) 
    if phase = “reflect” and needRespond = “Y” 

  if  messagebag.status= “statuscheck “ 
    laserpower = “off” 
    ctrlOutput = ctrlMsg(store) 
  if messagebag.status = “laserfire” 
    laserpower = “on” 
  queue_clear() 
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  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
laserpower, queue.x1..xn) 

    if phase = “reflect” and interruptRespond = “N” 
      queue_clear() 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue.x1..xn) 
    if phase = “create pulse”  
      needRespond = “N” 
      interruptRespond= “N” 
      laserpower = “OFF” 
 
 
  (“create pulse”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, laserpower, queue.x1..xn) 
    if phase = “update laser” and (laserpower = “on” or interruptRespond= “Y”) 
      if interruptRespond = “Y” 
      time.delay = timeLeftRespond 
     else 
       time.delay = autoPulseInterval 
 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, laserpower, queue.x1..xn) 
 
    if phase = “update laser” and laserpower = “off” 

 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

laserpower, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (Output1, outputPulse) 
      if phase = “create pulse” 
	
			(“CtrlOut”,	ctrlOutput)	
						if	phase	=	“update	laser”	
	
	 ∅ (null output) 
     otherwise; 
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Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
laserpower, queue) = σ;  

 

M.8 Mathematical Model 

 
(ID Quantique SA, 2011) 
 

M.9 Component Use Case 

M.9.1 Respond to an Optical Packet in the Laser 
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Optical packet arrives at laser. A portion of optical packet reflects back down incoming optical 

line. Check to see if optical packet overpowers the EVOA. Records overpower condition, if 

applicable. 

  
 Identified Alternative Uses Cases 

o Respond to a control message   

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

  

 

 
Figure 124. Component states. 
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Figure 125. Laser phase transition diagram. 

M.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 
 Overpower condition properly recognized and recorded 

 

M.9.3 Respond to an Environmental Packet in the Laser 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

M.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

M.9.5 Respond to a Control Message in the Laser 
 



 

424 
 

Control Message arrives at the component. Component decodes message properly. Records 

change in condition or state, if applicable. Change component function if in degraded or 

damaged state or by change in component condition, if necessary. 

 Assumptions 

o Component has completed initialization sequence at least once 

M.9.6 Respond to Control Message End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

M.10 Laser Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 
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phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Laser Test Cases 

  Inject Ports   Running Totals 

Phase Case Opt1 Ctrl Env Notes opt # env # ctrl # 

Passive 1 1 0 0 single 1 0 0 

  2 0 1 0 single 1 0 1 
  3 0 0 1 single 1 1 1 
  4 1 1 0 same time 2 1 2 

  5 1 1 0 differ time 3 1 3 

  6 1 1 1 same time 4 2 4 
  7 1 1 1 differ time 5 3 5 

  8 0 1 1 same time 5 4 6 

  9 0 1 1 differ time 5 5 7 
  10 1 0 1 same time 6 6 7 
  11 1 0 1 differ time 7 7 7 

  20 2 0 0 same time 9 7 7 

  21 0 1 0 same time 9 7 8 

  22 2 1 0 same time 11 7 9 
  23 2 1 0 differ time 13 7 10 

  24 2 1 1 same time 15 8 11 

  25 2 1 1 differ time 17 9 12 
  26 0 1 1 same time 17 10 13 
  27 0 1 1 differ time 17 11 14 

  28 2 0 1 same time 19 12 14 
  29 2 0 1 differ time 21 13 14 

totals   21 14 13 35       

Respond 41 2 0 0 single 23 13 14 
  42 1 1 0 single 24 13 15 
  43 1 0 1 single 25 14 15 

  44 2 1 0 same time 27 14 16 
  45 2 1 0 differ time 29 14 17 
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  46 2 1 1 same time 31 15 18 
  47 2 1 1 differ time 33 16 19 
  48 1 1 1 same time 34 17 20 

  49 1 2 1 differ time 35 18 22 
  50 2 0 1 same time 37 19 22 
  51 2 0 1 differ time 39 20 22 

  60 3 0 0 same time 42 20 22 
  61 1 1 0 same time 43 20 23 

  62 3 1 0 same time 46 20 24 
  63 3 1 0 differ time 49 20 25 
  64 3 1 1 same time 52 21 26 

  65 3 1 1 differ time 55 22 27 

  66 1 1 1 same time 56 23 28 
  67 1 1 1 differ time 57 24 29 

  68 3 0 1 same time 60 25 29 

  69 3 0 1 differ time 63 26 29 

totals   42 15 13 57       

  TC1 1 1 2 single 64 28 30 

  TC2 1 1 2 single 65 30 31 
  TC3 1 1 2 single 66 32 32 

  TC4 1 1 2 single 67 34 33 

  TC5 1 1 2 single 68 36 34 
  TC6 1 1 2 single 69 38 35 
  TC7 1 0 2 single 70 40 35 

totals   7 6 14 13       

Notes:  23 - INIT control message sent; OPT1 & Ctrl - differ time - Passive 
24 - INIT control message sent - OPT1 & Ctrl - same time - Passive 
63 - INIT control message sent - OPT1 & Ctrl - same time - 
Respond 

66 - INIT control message sent - Ctrl & ENV - same time - Respond 
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Appendix N - Panda Polarization Maintaining Optical Fiber (PM 

Fiber) 

N.1 Device Description: 

PM fiber is used in optical components where it is required that optical polarization is 

maintained. Like single-mode fiber, it is a cylindrical optical waveguide made from a low-loss 

material, such as silica glass. Light that is properly introduced into the fiber maintains its linear 

polarization during propagation. In the case of Corning fiber, using two stressors within in the 

fiber creates high birefringence resulting in the fiber maintaining the polarization (Corning, 

2013). See Figure 1 for a typical cross-sectional view of a PANDA fiber. 

 
Figure 126. Cross-section of a PANDA PM fiber (Corning, 2013). 

 

  

PM fiber is a specialty fiber that intentionally uses the strong birefringence in two modes. 

Light travels down one of the modes faster than down the other (fast and slow axes). If the input 

light is polarized and oriented along either mode, it maintains its polarization state even if the 

fiber is stressed (OZOptics, 2014).  Typically, PM fiber is used in components that cannot have 

drift in the polarization state (such as fiber interferometers and some fiber lasers) (RPPhotonics, 

2013) .  
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The PM fiber is a bidirectional optical component with two optical ports. Light entering 

the primary port is propagated through the fiber, suffering both a slight attenuation from the 

material of the device and a small propagation delay dependent on the temperature of the fiber. 

The material is sensitive to the power of the optical signals that are propagated through the 

component. If the optical power of a pulse exceeds a defined threshold, the PM fiber may 

become permanently damaged which changes its propagation characteristics. Similarly, it is 

sensitive to the temperature in the environment in which it operates. If the temperature exceeds 

defined thresholds, the PM fiber may become temporarily degraded or permanently damaged 

which changes its propagation characteristics. If temporarily degraded, the device may recover to 

normal operating behavior after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the PM fiber is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the PM fiber. The SME developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions and verified the model and validated 

the input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the PM fiber to the researcher. 

The next step of the modeling effort was to develop a conceptual model of the PM fiber 

using the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the PM fiber.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 
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worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
 
Figure 127. Symbol for Polarization Maintaining Fiber in the QKD system architecture.  
 

N.2 Polarization Maintaining Fiber Conceptual Model 

 

 
 Figure 128. PM fiber conceptual model. 

 
The conceptual model for a PM fiber consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, and one environmental input port {EvnIn}. The 

environmental port allows external sources to communicate changes in the operational 

environment to the PM fiber. In comparison to the PM fiber symbol used in the QKD simulation 
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architecture shown in Fig. 1, a single bidirectional optical connection is decomposed into an 

optical input and an optical output in the conceptual model. This is necessary to properly 

represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the PM fiber, a small portion of the signal 

will be instantaneously reflected back to the signal source. Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The PM fiber must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the PM fiber can 

determine if it is degraded (a temporary condition) or damaged (a permanent condition). In either 

case, a function determines how the attenuation changes as a function of the device state and 

current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities.  

It is important to note that the PM fiber only preserves polarization of light that is 

injected along the two axes and misalignment between connectors causes unusual effects on the 
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light. The current conceptual model does not take these effects into account and presumes that all 

light injected into the fiber is aligned properly with the slow and fast axis.  

N.3 Mathematical Model 

For a detailed mathematical description of the PM fiber, refer to Section 12.8 which contains 

the Mathematica worksheet provided by the optical physics SME. 

N.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the PM 

fiber. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 

When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power is less than the minimum 

power, drop the pulse. If the optical power exceeds a defined damage threshold, set the 

OverPower flag. 

 Place the optical packet into the queue. 

 Remove the packet from the queue; calculate the attenuated output optical signal based 

upon the input optical signal, the OverPower flag, the OverTemp flag, and the current 

environment and calculate the delay through the fiber based on its length. 

 Send the attenuated and delayed output signal out of the optical output port number that 

is not the same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 
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 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

N.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the PM fiber in the boxes and 

the transitions represented by arrows between the phases. Each transition is labeled with the type 

of transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the PM fiber at 

the same time. 

 
Figure 129. PM fiber phase transition diagram. 
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N.6 Event-Trace Diagram   

This section shows various examples of packets entering the PM fiber. The tables list the 

states the PM fiber proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the PM fiber, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

 
Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

N.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 52. Case I state list. 

time state 

entry/ 

exit phase sigma 

store 

 (xi) temp 

over 

temp 

over  

power 

interrupt 

respond 

queue 

 (xi, tp) 

Notes: 

assume 

tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s1 entry respond 5 x1 c n n n null   

5 s1 exit respond inf x1 c n n n null   

5 S2 entry passive inf x1 c n n n null   
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Figure 130. Case I sequence diagram. 

N.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 53. Case II state list. 

state 

entry/ 

exit phase sigma 

store 

 (xi) temp 

over 

temp 

over  

power 

interrupt 

respond 

queue 

 (xi, tp) 

Notes: 

assume 

tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s1 entry respond 5 x1 c n n n null   

2 s1 exit respond 3 x1 c n n y (x2,5) 

dext at e= 

2, 1 

optical 

packet 

(x2)  

2 s2 entry respond 3 x1 c n n y (x2,5)   

5 s2 exit respond 2 x2 c n n n null   

5 s3 entry respond 2 x2 c n n n null   

7 s3 exit respond inf x2 c n n n null   

7 s4 entry passive inf x2 c n n n null   
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Figure 131. Case II sequence diagram. 

N.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 54. Case III state list. 

time state 

entry/ 

exit phase sigma 

store 

 (xi) temp 

over 

temp 

over  

power 

interrupt 

respond 

queue 

 (xi, tp) 

Notes: 

assume 

tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s1 entry respond 5 x1 c n n n null   

2 s1 exit respond 3 x1 c n n y (x2,5) 

dext at 

e= 2, 1 

optical 

packet 

(x2)  

2 s2 entry respond 3 x1 c n n y (x2,5)   

3 s2 exit respond 2 x1 c n n y 

(x2,4)(

x3,5)(x

4,5) 

dext at 

e= 1, 2 

optical 

packets 

(x3,x4)  
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3 s3 entry respond 2 x1 c n n y 

(x2,4)(

x3,5)(x

4,5)   

5 s3 exit respond 2 x2 c n n n 

(x3,3)(

x4,3)   

5 s4 entry respond 2 x2 c n n n 

(x3,3)(

x4,3)   

7 s4 exit respond 1 x3 c n n n (x4,1)   

7 s5 entry respond 1 x3 c n n n (x4,1)   

8 s5 exit respond 0 x4 c n n n null   

8 s6 entry respond 0 x4 c n n n null   

8 s6 exit respond inf x4 c n n n null   

8 s7 entry passive inf x4 c n n n null   

 

 
Figure 132. Case III sequence diagram. 
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N.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 55. Case IV state list. 

 

time state 

entry/ 

exit phase sigma 

store 

 (xi) temp 

over 

temp 

over  

power 

interrupt 

respond 

queue 

 (xi, tp) 

Notes: 

assume 

tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null 

ENV arrives 

e=3, 

overtemp 

the 

component 

3 s2 exit respond 2 x1 c y n n null 

update 

temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 

 
Figure 133. Case IV sequence diagram. 
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N.7 Single Mod Fiber Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“interruptRespond”, queue} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 
Peak power = full width, half maximum power calculation of the pulse  
 
For the fixed PM fiber we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  
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Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSPM fiber = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”,  “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet    
   reflect.port = variable that holds the current reflection output port  

reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
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calcPeak() = function that calculates full width, half maximum power calculation of the optical 
pulse 

calcAttenDelay() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcStrong() =  method that calculates the optical packet high power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 

calcWeak() =  method that calculates the optical packet low power output as f(current.v, 
temperature, overtemp, peakpwr, overpwr)) 

calcForward() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcPolar() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 

v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower} = {{“passive”, “reflect”, “respond”, 

“update temperature”, propagate”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”}}; 

 
External Transition Function: 
 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 
(pn,vn))) = 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
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             overpower =  “Y” 
         if calcAtten(current.v) > MIN_POWER  
          insert_event_q(current) 
          remove_event_m(current) 
      current = queue_min() 
      time.delay = current.time.delay 
       if InPort = “OptIn1” 
        outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
       if InPort = “OptIn2” 
        outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 

  interruptRespond = “N” 
    
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
      if calcAtten(current.v) > MIN_POWER  

         insert_event_q(current) 
         remove_event_m(current) 

  interruptRespond= “Y” 
  timeLeftRespond = timeLeftRespond - e 

 
 (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
 (“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
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           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (output.port, output.pulse) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;  
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N.8 Mathematical Model 

 

Pulse propagation considerations for the Polarization-Maintaining Fiber 
Module within the QKD OMNeT++ simulation environment 
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N.9 Component Use Case 

N.9.1 Respond to an Optical Packet in the PM Fiber 
 

Optical packet arrives at the PM fiber. Place the optical packet into the optical queue. 

Check to see if optical packet overpowers the PM fiber. Records overpower condition, if 
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applicable. Remove the optical packet from the queue and calculate the attenuated optical output 

signal based on the input signal, length and type of fiber, and the current component state. 

Maintain the optical packet polarization. Propagate the attenuated optical output signal out of the 

component optical port that is not the same as the input port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 

 

 
Figure 134. Component states. 
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Figure 135. PM fiber phase transition diagram. 

N.9.2 Respond to Optical Packet End Goals 
 

 Optical packet entered and removed from queue in proper sequence 

 Overpower condition properly recognized and recorded 

 Optical packet attenuated properly to the limit of accuracy 

 Optical packet propagated out the correct port at the correct time 

N.9.3 Respond to an Environmental Packet in the PM Fiber 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

N.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 
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N.10 PM Fiber Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  
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Table 5. PM Fiber Test Cases 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Env Notes opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 
  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 

  5 1 1 0 differ time 6 1 

  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 

  8 0 1 1 same time 11 4 

  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 
  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 
  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 

  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
  26 0 2 1 same time 36 10 

  27 0 2 1 differ time 38 11 

  28 2 0 1 same time 40 12 
  29 2 0 1 differ time 42 13 

totals   21 21 13 42     

Respond 41 2 0 0 single 44 13 
  42 0 2 0 single 46 13 
  43 1 0 1 single 47 14 

  44 2 1 0 same time 50 14 
  45 2 1 0 differ time 53 14 
  46 2 1 1 same time 56 15 

  47 2 1 1 differ time 59 16 

  48 0 2 1 same time 61 17 
  49 0 2 1 differ time 63 18 

  50 2 0 1 same time 65 19 

  51 2 0 1 differ time 67 20 

  60 3 0 0 same time 70 20 
  61 0 3 0 same time 73 20 
  62 3 2 0 same time 78 20 

  63 3 2 0 differ time 83 20 

  64 3 2 1 same time 88 21 
  65 3 2 1 differ time 93 22 
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  66 0 3 1 same time 96 23 
  67 0 3 1 differ time 99 24 
  68 3 0 1 same time 102 25 

  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 

  TC2 1 0 2 single 107 30 

  TC3 1 0 2 single 108 32 
  TC4 1 0 2 single 109 34 

  TC5 1 0 2 single 110 36 

  TC6 1 0 2 single 111 38 
  TC7 1 0 2 single 112 40 

totals   7 0 14 7     

Notes:  5 - under minimum power packet sent on OPT1; OPT1 & OPT2 - differ time - Passive 
7 - under minimum power packet sent on OPT2; OPT1, OPT2, ENV - differ time - 
Passive 
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Appendix O - Polarization Controller (Deterministic)  

O.1 Device Description: 

The polarization controller (PC) is a device that changes the polarization state of light 

that passes through it, converting light from any random polarization state into a specific output 

polarization state.  A deterministic controller is computer-controlled to output the light 

automatically without needing operator inputs during operation. The device consists of 

polarimeter and a state of polarization (SOP) controller combined with a computer and software. 

See Figure 1 for an example of a deterministic polarization controller. 

 
Figure 136. View of a deterministic polarization controller (ThorLabs, 2013). 

 
The Polarization controller is a bidirectional optical component with two optical ports 

and computer port. Optical signals arriving at the input port are propagated to the other port after 

a defined propagation delay and the polarization is changed to a specific point on the Poincare 

sphere and then output through the other port. The polarizing system is sensitive to the power of 

the optical signals that are propagated through the component. If the optical power of a pulse 

exceeds a defined threshold, the polarization controller may become permanently damaged 



 

454 
 

which changes its propagation characteristics. Similarly, the Polarization controller is sensitive to 

the temperature in the environment in which it operates. If the temperature exceeds defined 

thresholds, the Polarization controller may become temporarily degraded or permanently 

damaged which changes its propagation characteristics.  If temporarily degraded, the device may 

recover to normal operating behavior after the temperature returns to a “normal” operating 

temperature. 

The first step involved with the modeling the polarization controller is to collect and 

understand the physical, behavioral, and performance characteristics of the component. In this 

case, this information was obtained from Subject Matter Expert (SME) with expertise in optical 

physics. The SME developed a detailed mathematical model in the Wolfram Mathematica 

software program that modeled the Polarization controller. The SME developed a series of use 

cases that exercised the functionality of the device over a wide variety of conditions and verified 

the model and validated the input and output behavior of the device within a single Mathematica 

model (worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the Polarization controller to the researcher. Additional 

information came from product data sheets from commercial vendors and standard texts from the 

optical field. 

The next step of the modeling effort was to develop a conceptual model of the 

polarization controller using the DEVS formalism. The bulk of the document following this 

section is dedicated to the detailed development of the DEVS model of the polarization 

controller.  Once developed, the model will be simulated using the MS4ME simulator using the 

same uses cases defined in the Mathematica worksheet. The SME will then review the MS4ME 
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simulation output to verify that the DEVS formal model matches the behavior of the 

Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 137. Symbol for the polarization controller in the QKD system architecture.  
 
 

O.2 Polarization Controller Conceptual Model 

 

 
Figure 138.  Polarization controller conceptual model. 

 
The conceptual model for a polarization controller consists of two optical input ports 

{OptIn1, OptIn2}, two optical output ports {OptOut1, OptOut2}, one environmental input port 
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{EvnIn} and one electrical controller input port and one electrical controller output port {CtrlIn, 

CtrlOut}. The environmental port allows external sources to communicate changes in the 

operational environment to the polarization controller. The electrical controller ports allow for 

control inputs to the controller and responses from the polarization controller to the higher 

system functions. 

 In comparison to the polarization controller symbol used in the QKD simulation 

architecture shown in Figure 2, a single bidirectional optical connection is decomposed into an 

optical input and an optical output in the conceptual model. The electrical control port is not 

shown for clarity in Figure 2, and is also decomposed in the model into an input port and an 

output port. This is necessary to properly represent the behavior of the device using the DEVS 

formalism. 

When an optical signal is sent to the input of the polarization controller, a small portion 

of the signal will be instantaneously reflected back to the signal source. Since the conceptual 

model decomposes each bidirectional connection to a discrete unidirectional output input and a 

discrete unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 

will instantaneously generate a reflected emitting out of OptOut1.  

The polarization controller calculates changes to the amplitude, and polarization 

ellipticity and orientation of any packet coming through either optical port after a time equaling 

the propagation delay of the module. The polarization controller determines the input optical 

packet polarization and changes the polarization to match the output polarization set by the 

control messages for packets entering port 1 moving in the forward direction. Packets entering 

port 2 and moving in the reverse direction experience a change to the current polarization 

opposite to that from those entering port 1. Sufficient time-averaged optical power is required for 
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the polarization controller to operate as the controller has a minimum optical power level 

threshold necessary to make changes. 

In the model, every quantum-level pulse is changed by the current polarization controller 

settings, but only bright pulses cause an update to the current polarization settings. The bright 

pulses in our model provide the sufficient time-average power to enable the controller to make 

polarization changes.  Every output packet is calculated at full power minus some small amount 

to account for attenuation (insertion loss and Polarization Dependent Loss) through the device 

and the ellipticity and orientation are changed to match the required output ellipticity and 

orientation.  

The polarization controller must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters the module. In the case of optical overpowering, 

once overpowered the device will permanently change attenuation. External environmental 

messages sent to the device convey the temperature of the operational environmental so the 

Polarization controller can determine if it is degraded (a temporary condition) or damaged (a 

permanent condition). In either case, a function determines how the propagation changes as a 

function of the device state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 
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O.3 Mathematical Model 

For a detailed mathematical description of the Polarization controller, refer to Section 13.8 

which contains the Mathematica worksheet provided by the optical physics SME. 

O.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

Polarization controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Calculate the reflected power of the signal and send its output with the same port number. 

 Retrieve the input optical signal from the queue, and calculate the attenuated output 

optical signal based upon the input optical signal, the OverPower flag, the OverTemp 

flag, and the current environment 

 Update the values of the input optical signal based on the characteristics of the controller, 

the original values of the input optical signal and the current environment. 

 Send the changed output signal out of the optical output port number that is not the same 
as the input port number. 
 

When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 
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When a control message arrives: 
 

 Update the αset and ϕset with the values in the control message 

 

O.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the Polarization controller in 

the boxes and the transitions represented by arrows between the phases. Each transition is 

labeled with the type of transition (dext – external or dint – internal) and the significant actions that 

take place during the transition. Each arc has an entry either beneath or beside the arc indicating 

the value of the time advance function for the next phase. Each box is labeled with the name of 

the phase and an entry showing either no lambda output function for that phase or what the phase 

outputs. Note there is a self-loop transition from reflect to reflect if multiple optical packets 

arrive at the Polarization controller at the same time. 

 
Figure 139. Polarization controller phase transition diagram. 
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O.6 Event-Trace Diagram   

This section shows various examples of packets entering the Polarization controller. The 

tables list the states the polarization controller proceeds through as the packets are processed. 

Each table has the state number, with each state consisting of: phase, time until next transition 

(sigma), store state variable, current temperature of the Polarization controller, the over 

temperature flag variable and the over power flag variable. The next column shows the contents 

of the queue at that state, the contents of the store state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

O.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 56. Case I state list. 

 
time state entry/ 

exit 
phase sigma store 

 (xi) 
temp over 

temp 
over  
power 

interrupt 
respond 

need 
respond 

curr 
polar 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

no 
env 

no ext 0 ctrl          

0 s0 entry passive inf null c n n n n  ϕ, α 
 

null   

0 s0 exit passive 0 null c n n n n  ϕ, α (x1,5)   

0 s1 entry reflect 0 null c n n n n  ϕ, α (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  ϕ, α null   

0 s2 entry respond 5 x1 c n n n n  ϕ, α null   

5 s2 exit respond inf x1 c n n n n  ϕ, α null   

5 s3 entry passive inf x1 c n n n n  ϕ, α 
 

null   



 

461 
 

 
 

 
Figure 140. Case I sequence diagram. 

O.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 57. Case II state list. 

Time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar  

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

0 env 1 opt 0 ctrl          

0 s0 entry passive inf null c n n n n  ϕ, α null   

0 s0 exit passive 0 null c n n n n  ϕ, α (x1,5)   

0 s1 entry reflect 0 null c n n n n  ϕ, α (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  ϕ, α null   

0 s2 entry respond 5 x1 c n n n n  ϕ, α null   

2 s2 exit respond 0 x1 c n n y n  ϕ, α (x2,5) dext at 
e=2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y n  ϕ, α (x2,5)   

2 s3 exit reflect 3 x1 c n n y n  ϕ, α (x2,5)   

2 s4 entry respond 3 x1 c n n y n  ϕ, α (x2,5)   

5 s4 exit respond 2 x2 c n n n n  ϕ, α null   

5 s5 entry respond 2 x2 c n n n n  ϕ, α null   

7 s5 exit respond inf x2 c n n n n  ϕ, α null   

7 s6 entry passive inf x2 c n n n n  ϕ, α null   
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Figure 141. Case II sequence diagram. 

O.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 58. Case III state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

0 env 2 opt 0 ctrl          

0 s0 entry passive inf null c n n n n  ϕ, α null   

0 s0 exit passive 0 null c n n n n  ϕ, α (x1,5)   

0 s1 entry reflect 0 null c n n n n  ϕ, α (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  ϕ, α null   

0 s2 entry respond 5 x1 c n n n n  ϕ, α null   

2 s2 exit respond 0 x1 c n n y n  ϕ, α  (x2,5) dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y n  ϕ, α  (x2,5)   

2 s3 exit reflect 3 x1 c n n y n  ϕ, α  (x2,5)   

2 s4 entry respond 3 x1 c n n y n  ϕ, α (x2,5)   

3 s4 exit respond 0 x1 c n n y n  θ  (x2,4) 
(x3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y n  ϕ, α (x2,4) 
(x3,5) 

  

3 s5 exit reflect 0 x1 c n n y n  ϕ, α (x2,4) 
(x3,5) 
(x4,5) 
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3 s6 entry reflect 0 x1 c n n y n  ϕ, α (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 exit reflect 2 x1 c n n y n  ϕ, α (x2,4) 
(x3,5) 
(x4,5) 

  

3 s7 entry respond 2 x1 c n n y n  ϕ, α (x2,4) 
(x3,5) 
(x4,5) 

  

5 s7 exit respond 2 x2 c n n n n  ϕ, α (x3,2) 
(x4,2)  

  

5 s8 entry respond 2 x2 c n n n n  ϕ, α (x3,2) 
(x4,2)  

  

7 s8 exit respond 1 x3 c n n n n  ϕ, α  (x4,0)   

7 s9 entry respond 1 x3 c n n n n  ϕ, α  (x4,0)   

8 s9 exit respond 0 x4 c n n n n  ϕ, α null   

8 s10 entry respond 0 x4 c n n n n  ϕ, α null   

8 s10 exit respond inf x4 c n n n n  ϕ, α null   

8 s11 entry passive inf x4 c n n n n  ϕ, α null   

 

 
Figure 142. Case III sequence diagram. 

O.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 59. Case IV state list. 
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time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

1 env 0 ext 0 ctrl          

0 s0 entry passive inf null c n n n n  ϕ, α null   

0 s0 exit passive 0 null c n n n n  ϕ, α (x1,5)   

0 s1  entry reflect 0 null c n n n n  ϕ, α (x1,5)   

0 s1  exit reflect 5 x1 c n n n n  ϕ, α (x1,5)   

0 s2 entry respond 5 x1 c n n n n  ϕ, α null ENV 
arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n y n  ϕ, α null update 
temp 

3 s3 entry respond 2 x1 c y n y n  ϕ, α null   

5 s3 exit respond inf x1 c2 y n n n  ϕ, α null   

5 s4 entry passive inf x1 c2 y n n n  ϕ, α null   

 
 

 
Figure 143. Case IV sequence diagram. 

O.6.5 CASE V: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Control Packet Arriving at Time 3 

 
Table 60. Case V state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar  

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1 opt 1 env 0 opt 1 ctrl          
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0 s0 entry passive inf null c n n n n  ϕ, α null   

0 s0 exit passive 0 null c n n n n  ϕ, α (x1,5)   

0 s1  entry reflect 0 null c n n n n  ϕ, α (x1,5)   

0 s1  exit reflect 5 x1 c n n n n  ϕ, α (x1,5)   

0 s2 entry respond 5 x1 c n n n n  ϕ, α (x1,5) CTRL 
arrives 
e=3  

3 s2 exit respond 0 x1 c n n y n  ϕ, α (x1,2)   

3 s3 entry update 
detector 

0 x1 c n n y n  ϕ, α (x1,2)   

3 s3 exit update 
detector 

2 x1 c n n y n  ϕ, α (x1,2)   

3 s4 entry respond 2 x1 c n n y n  ϕ +, α (x1,2)   

5 s4 exit respond 0 x1 c n n n n  ϕ +, α null   

5 s6 entry passive inf x1 c n n n n  ϕ +, α null   

 

 
Figure 144. Case V sequence diagram. 

O.7 Polarization controller Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 Assume that only one control packet will arrive at any given time, due to the small time 

scales involved and the length of time necessary for polarization changes. 
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 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

”interruptRespond”, “needRespond”, “currentPolar”, “newPolar”, “currentRotation”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
For the polarization controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSPolarization controller = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
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tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”, “update detector”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
needRespond= flag variable set when both Reflect and UpdateDetector respond to inputs 
currentPolar = current polarization and ellipticity values of the controller 
newPolar = polarization the controller is changing to after receiving a change message 
currentRotation = polarization and ellipticity rotation values for the current packet  
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
ctrlOutput = variable that stores the output control message response 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
minSet = minimum optical pulse power necessary for a change to output polarization 
maxSet = maximum optical pulse power allowed for a change to output polarization 
αset = fixed output orientation of the polarizer, set by user 
ϕset = fixed output ellipticity of the polarizer, set by user 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
ctrlMsg() =  method that generates a response message to received control messages 
outputMsg() = method that generates the response message to received optical packets 
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
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remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() =  method that calculates the optical output as f(current.v, temperature, overtemp, 

peakpwr, overpwr, currentPolar, newPolar, currentRotation) 
  calcPolarSet() = method that calculates the current polarization setting as f(αset,current.v) 

calcReflected() = method that calculates reflection  power of an optical packet 
changePolarization() = method that changes current polarization of the controller 
calcAttenPolar() =  method that calculates the optical output as f(current.v, temperature, 

overtemp, peakpwr, overpwr, currentPolarization) 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”, “CtrlIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv), (“CtrlIn”, Vctrl)} is the set of input 

ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “CtrlOut”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“CtrlOut”, YCtrlOut)} is the set of output 

ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue} = {{“passive”, “reflect”, “respond”, “update 

polarization”} x 0R
x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x {“Y”,”N”} x V  x V x V  

x V} 
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External Transition Function: 
 

δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond , 
currentPolar, newPolar, currentRotation, queue, e, ((pi,vi),…. (pn,vn))) = 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
      for messagebag != null 
   current = messagebag_first() 
   if current.value.power > damaged.power 
           overpower =  “Y” 
         insert_event_q(current) 
         remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 
if currentPolar != newPolar 
       currentPolar = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr, 

currentPolar, newPolar, currentRotation) 
 
 (“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
        remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 
  if currentPolar != newPolar 
    currentPolar = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr, 

currentPolar, newPolar, currentRotation) 
timeLeftRespond = timeLeftRespond - e 

 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
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        overtemp = “Y” 
  if currentPolar != newPolar 
    currentPolar = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr, 

currentPolar, newPolar, currentRotation) 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond,  currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “respond” and p = “EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 

  if currentPolar != newPolar 
    currentPolar = calcPolar(current.v, temperature, overtemp, peakpwr, overpwr, 

currentPolar, newPolar, currentRotation) 
      time.delay = timeLeftRespond               
 
(“update polarization”, 0, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “passive” and p =“CtrlIn” 
      ctrlOutput = ctrlMsg(store) 
      newPolar = store.value.polarization  
 
(“update polarization”, 0, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “respond” and p =	“CtrlIn” 
      update_delay(queue) 
      ctrlOutput = ctrlMsg(store) 

   interruptRespond= “Y” 
      newPolar = store.value.polarization  
 
(phase, σ – e, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue.x1..xn) 
            otherwise; 

 
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue)= 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue.x1..xn))  
if phase = “reflect” and need.reflect != null 

     need.reflect = queue_need_reflected()  
     current = need.reflect 
     if current.value.power > MinSet and < MaxSet 
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       newPolar = calcPolarSet(current) 
  reflect = (current.p), calcReflected(current.v)) 
  mark_reflected(current) 

  
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if current.value.power > MinSet and < MaxSet 
         newPolar = calcPolarSet(current) 
       if InPort = “OptIn1” 

      outputPulse = calcPolar(store.v, temperature, overtemp, peakpwr, overpwr, currentPolar, 
newPolar, currentRotation) 
         outputPort = “OptOut2” 
       if InPort = “OptIn2” 

         outputPulse = calcPolar(store.v, temperature, overtemp, peakpwr, overpwr, currentPolar, 
newPolar, currentRotation) 
         outputPort = “OptOut1” 
       timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 

  (“update polarization”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
currentPolar, newPolar, currentRotation, queue.x1..xn) 

    if phase = “reflect” and needRespond = “Y” 
      ctrlOutput = ctrlMsg(store) 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
        if current.value.power > MinSet and < MaxSet 
         newPolar = calcPolarSet(current) 
       if InPort = “OptIn1” 

         outputPulse = calcPolar(store.v, temperature, overtemp, peakpwr, overpwr, currentPolar, 
newPolar, currentRotation) 
         outputPort = “OptOut2” 
      if InPort = “OptIn2” 

         outputPulse = calcPolar(store.v, temperature, overtemp, peakpwr, overpwr, currentPolar, 
newPolar, currentRotation) 
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         outputPort = “OptOut1” 
     interruptRespond= “N” 
  
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
  
 
  (“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “update polarization” and interruptRespond = “N” 
 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “update polarization” and interruptRespond = “Y” 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolar, newPolar, currentRotation, queue.x1..xn) 
    if phase = “update polarization” and interruptRespond = “N” and needRespond = “Y” 
      current = queue_min() 
      time.delay = current.time.delay 
        if current.value.power > MinSet and < MaxSet 
         newPolar = calcPolarSet(current) 
       if InPort = “OptIn1” 

         outputPulse = calcPolar(store.v, temperature, overtemp, peakpwr, overpwr, currentPolar, 
newPolar, currentRotation) 
         outputPort = “OptOut2” 
       if InPort = “OptIn2” 

         outputPulse = calcPolar(store.v, temperature, overtemp, peakpwr, overpwr, currentPolar, 
newPolar, currentRotation) 
         outputPort = “OptOut1” 
 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolar, newPolar, currentRotation, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (outputPort, outputPulse) 
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      if phase = “respond” 
	
			(“CtrlOut”,	ctrlOutput)	
						if	phase	=	“update	polarization”	
	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
currentPolar, newPolar, currentRotation, queue) = σ;  
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O.8 Mathematical Model 
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O.9 Component Use Case 

O.9.1 Respond to an Optical Packet in the Polarization Controller 
 

Optical packet arrives at the polarization controller. A portion of optical packet reflects 

back down incoming optical line. Place the optical packet into the optical queue. Check to see if 

optical packet overpowers the polarization controller. Records overpower condition, if 

applicable. Remove the optical packet from the queue and checks if it is a bright pulse. If a bright 

pulse, update packet rotation values. Calculate the attenuated optical output signal and rotate 

pulse based on the input signal and the current component state. Propagate the attenuated and 

rotated optical output signal out of the component optical port that is not the same as the input 

port. 

 
 Identified Alternative Uses Cases 

o Respond to a control message 

o React to an environmental message 

 
 Assumptions 
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o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 

 

 
Figure 145. Component states. 
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Figure 146. Polarization controller phase transition diagram. 

O.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 
 Optical packet entered and removed from queue in proper sequence 
 Overpower condition properly recognized and recorded 
 Polarization rotation values changed upon receipt of a bright pulse 
 Optical packet properly attenuated and rotated to the limit of accuracy  
 Optical packet propagated out the correct port at the correct time 

O.9.3 Respond to an Environmental Packet in the Polarization Controller 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

O.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 
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 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

O.9.5 Respond to a Control Message in the Polarization Controller 
 
Control Message arrives at the component. Component decodes message properly. Records 

change in condition or state, if applicable. Change component function if in degraded or 

damaged state or by change in component condition, if necessary. 

 Assumptions 

o Component has completed initialization sequence at least once 

O.9.6 Respond to Control Message End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

O.10 Polarization Controller Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 
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in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. Polarization Controller Test Cases. 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Ctrl Env Notes 
opt 
# 

env 
# 

ctrl 
# 

Passive 1 1 0 0 0 single 1 0 0 

  2 0 1 0 0 single 2 0 0 

  3 0 0 1 0 single 2 0 1 
  4 0 0 0 1 single 2 1 1 

  5 1 1 0 0 
same 
time 4 1 1 

  6 1 0 1 0 
same 
time 5 1 2 

  7 1 1 0 0 
differ 
time 7 1 2 

  8 1 0 1 0 
differ 
time 8 1 3 

  9 1 1 1 1 
same 
time 10 2 4 

  10 1 1 1 1 
differ 
time 12 3 5 

  11 0 1 0 1 
same 
time 13 4 5 

  12 0 1 0 1 
differ 
time 14 5 5 
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  13 0 0 1 1 
same 
time 14 6 6 

  14 0 0 1 1 
differ 
time 14 7 7 

  15 1 0 0 1 
same 
time 15 8 7 

  16 1 0 0 1 
differ 
time 16 9 7 

  20 2 0 0 0 
same 
time 18 9 7 

  21 0 2 0 0 
same 
time 20 9 7 

  22 2 1 0 0 
same 
time 23 9 7 

  23 2 0 1 0 
same 
time 25 9 8 

  24 2 0 0 1 
same 
time 27 10 8 

  25 2 0 1 0 
differ 
time 29 10 9 

  26 2 1 1 1 
same 
time 32 11 10 

  27 2 1 1 1 
differ 
time 35 12 11 

  28 0 2 0 1 
same 
time 37 13 11 

  29 0 2 0 1 
differ 
time 39 14 11 

  30 0 0 1 1 
same 
time 39 15 12 

  31 0 0 1 1 
differ 
time 39 16 13 

  32 2 0 0 1 
same 
time 41 17 13 

  33 2 0 0 1 
differ 
time 43 18 13 

totals   27 16 13 18         
Respon
d 41 2 0 0 0 single 45 18 13 
  42 1 1 0 0 single 47 18 13 

  43 1 0 1 0 single 48 18 14 
  44 1 0 0 1 single 49 19 14 

  45 2 1 0 0 
same 
time 52 19 14 

  46 2 0 1 0 
same 
time 54 19 15 

  47 2 0 0 1 differ 56 20 15 
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time 

  48 2 0 1 0 
differ 
time 58 20 16 

  49 2 1 1 1 
same 
time 61 21 17 

  50 2 1 1 1 
differ 
time 64 22 18 

  51 1 1 0 1 
same 
time 66 23 18 

  52 1 1 0 1 
differ 
time 68 24 18 

  60 3 0 0 0 
same 
time 71 24 18 

  61 1 2 0 0 
same 
time 74 24 18 

  62 3 1 0 0 
same 
time 78 24 18 

  63 3 0 1 0 
same 
time 81 24 19 

  64 3 0 0 1 
same 
time 84 25 19 

  65 3 0 1 0 
differ 
time 87 25 20 

  66 3 1 1 1 
same 
time 91 26 21 

  67 3 1 1 1 
differ 
time 95 27 22 

  68 1 2 0 1 
same 
time 98 28 22 

  69 1 2 0 1 
differ 
time 101 29 22 

totals   43 15 9 11         

  TC1 1 0 1 2 single 102 31 23 
  TC2 1 0 1 2 single 103 33 24 

  TC3 1 0 1 2 single 104 35 25 

  TC4 1 0 1 2 single 105 37 26 
  TC5 1 0 1 2 single 106 39 27 
  TC6 1 0 1 2 single 107 41 28 

  TC7 1 0 0 2 single 108 43 28 
  TC8 1 0 0 2 single 109 45 28 

totals   8 0 6 16 s       

Notes:  
23 - INIT control message sent; OPT1 & Ctrl - same time - 
Passive:       
25 - Set polarization message & bright pulse - OPT1 & Ctrl - differ time - Passive: sent value 
of 2.1(pol), PI(orient) and 0.7(ellip) for bright pulse 
26 - Get Polarization control message sent  - OPT1, OPT2, Ctrl & ENV - same time - Passive:  
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should respond with 1.5707963, weak bright pulse  

30 - INIT control message sent - Ctrl & ENV - same time - Passive:  
46 - Set polarization control message sent - OPT1 & Ctrl - same time - Passive:  sent value of -
2 
48 - Get Polarization control message sent - OPT1 & Ctrl - differ time - Passive: should 
respond with -2 

63 - INIT control message sent - OPT1 & Ctrl - same time - Respond:   
67 - INIT control message sent - OPT1, OPT2, Ctrl & ENV - differ time - Respond:   

 
 

O.11 References 

ThorLabs. (2013). Deterministic polarization controller - DPC5500. Retrieved October 01, 2013, 
from http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=930  
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Appendix P - Polarization Modulator (PM) 

P.1 Device Description: 

 The polarization modulator (PM) is an abstract component that represents any number of 

devices used to electronically change the polarization of the light stream. In practice there are 

many ways to accomplish this change in polarization, or generate the polarizations, as is done by 

using four different lasers, each with a different polarization. This research conceptualizes these 

devices as having some form of polarization material that can be moved. The effect is to change 

a known polarization to into one of several output polarizations. Unlike a deterministic 

polarization controller which can automatically determine the input polarization and make 

changes to produce a single desired output, the PM responds to external commands to set the 

output polarization to a fixed level and cannot determine the input polarization. 

Conceptually, the PM is an in-line bidirectional optical component with two optical ports. 

Optical signals arriving at one of the ports is attenuated and polarized, then propagated to the 

other port after a defined propagation delay. The PM is sensitive to the power of the optical 

signals that are propagated through the component. If the optical power of a pulse exceeds a 

defined threshold, the PM may become permanently damaged which changes its attenuation 

characteristics.  Similarly, the PM is sensitive to the temperature in the environment in which it 

operates. If the temperature exceeds defined thresholds, the PM may become temporarily 

degraded or permanently damaged which changes its attenuation characteristics.  If temporarily 

degraded, the device may recover to normal operating behavior after the temperature returns to a 

“normal” operating temperature. 

The first step involved with the modeling the PM is to collect and understand the 

physical, behavioral, and performance characteristics of components that might be used to 
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construct such a device, such as the in-line polarizer and the electronically variable optical 

attenuator. In this case, this information was obtained from Subject Matter Expert (SME) with 

expertise in optical physics. The SME developed a detailed mathematical model in the Wolfram 

Mathematica software program that modeled the PM. The SME developed a series of use cases 

that exercised the functionality of the device over a wide variety of conditions and verified the 

model and validated the input and output behavior of the device within a single Mathematica 

model (worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the PM to the researcher. Additional information came from 

product data sheets from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the PM using 

the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the PM.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 

worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 147. Symbol for the PM in the QKD system architecture.  
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P.2 PM Conceptual Model 

 

 
Figure 148.  PM conceptual model. 

 
The conceptual model for an PM consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, one environmental input port {EvnIn} and one 

electrical controller input port and one electrical controller output port {CtrlIn, CtrlOut}. The 

environmental port allows external sources to communicate changes in the operational 

environment to the PM. The electrical controller ports allow for control inputs to the controller 

and responses from the PM to the higher system functions. 

In comparison to the PM symbol used in the QKD simulation architecture shown in 

Figure 1, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. The electrical control port is not shown for clarity in 

Figure 2, and is also decomposed in the model into an input port and an output port. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the PM, a small portion of the signal will be 

instantaneously reflected back to the signal source. Since the conceptual model decomposes each 
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bidirectional connection to a discrete unidirectional output input and a discrete unidirectional 

optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will instantaneously 

generate a reflected emitting out of OptOut1.  

The PM must calculate the power of each incoming optical signal in order to determine if 

the device will become damaged due to excessive power levels. This calculation is made when 

the packet first enters the module. In the case of optical overpowering, once overpowered the 

device will permanently change attenuation. External environmental messages sent to the device 

convey the temperature of the operational environmental so the PM can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). In either case, a function 

determines how the polarization, attenuation and propagation changes as a function of the device 

state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

P.3 Mathematical Model 

For a detailed mathematical description of the PM, refer to Section 14.8 which contains the 

Mathematica worksheet provided by the optical physics SME. 

P.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the PM. 
 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 
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 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Calculate the reflected power of the signal and send its output with the same port number. 

 Retrieve the input optical signal from the queue, and calculate the attenuated output 

optical signal based upon the input optical signal, the OverPower flag, the OverTemp 

flag, and the current environment 

 Update the values of the input optical signal based on the characteristics of the PM, the 

original values of the input optical signal and the current environment. 

 Send the changed output signal out of the optical output port number that is not the same 

as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 
When a control message arrives: 
 

 Change the output polarization per the control message. 

 

P.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the PM in the boxes and the 

transitions represented by arrows between the phases. Each transition is labeled with the type of 

transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 
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showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the PM at the 

same time. 

 
Figure 149. PM phase transition diagram. 

P.6 Event-Trace Diagram   

This section shows various examples of packets entering the PM. The tables list the states 

the PM proceeds through as the packets are processed. Each table has the state number, with 

each state consisting of: phase, time until next transition (sigma), store state variable, current 

temperature of the PM, the over temperature flag variable and the over power flag variable. The 

next column shows the contents of the queue at that state, the contents of the store state variable 

and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 
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 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

P.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 61. Case I state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar  

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

no 
env 

no ext 0 ctrl          

0 s0 entry passive inf null c n n n n  θ 
 

null   

0 s0 exit passive 0 null c n n n n  
θ 

(x1,5)   

0 s1 entry reflect 0 null c n n n n  
θ 

(x1,5)   

0 s1 exit reflect 5 x1 c n n n n  
θ 

null   

0 s2 entry respond 5 x1 c n n n n  
θ 

null   

5 s2 exit respond inf x1 c n n n n  
θ 

null   

5 s3 entry passive inf x1 c n n n n  
θ 

null   

 

 
Figure 150. Case I sequence diagram. 

P.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 62. Case II state list. 
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time state entry/ 

exit 
phase sigma store 

 (xi) 
temp over 

temp 
over  
power 

interrupt 
respond 

need 
respond 

current 
polar  

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

0 env 1 opt 0 ctrl          

0 s0 entry passive inf null c n n n n  θ null   

0 s0 exit passive 0 null c n n n n  θ (x1,5)   

0 s1 entry reflect 0 null c n n n n  θ (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  θ null   

0 s2 entry respond 5 x1 c n n n n  θ null   

2 s2 exit respond 0 x1 c n n y n  θ (x2,5) dext at 
e=2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y n  θ (x2,5)   

2 s3 exit reflect 3 x1 c n n y n  θ (x2,5)   

2 s4 entry respond 3 x1 c n n y n  θ (x2,5)   

5 s4 exit respond 2 x2 c n n n n  θ null   

5 s5 entry respond 2 x2 c n n n n  θ null   

7 s5 exit respond inf x2 c n n n n  θ null   

7 s6 entry passive inf x2 c n n n n  θ null   

 
 

 
Figure 151. Case II sequence diagram. 

P.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 63. Case III state list. 
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time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

0 env 2 opt 0 ctrl          

0 s0 entry passive inf null c n n n n  θ null   

0 s0 exit passive 0 null c n n n n  θ (x1,5)   

0 s1 entry reflect 0 null c n n n n  θ (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  θ null   

0 s2 entry respond 5 x1 c n n n n  θ null   

2 s2 exit respond 0 x1 c n n y n  θ  (x2,5) dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y n  θ  (x2,5)   

2 s3 exit reflect 3 x1 c n n y n  θ  (x2,5)   

2 s4 entry respond 3 x1 c n n y n  θ (x2,5)   

3 s4 exit respond 0 x1 c n n y n  θ  (x2,4) 
(x3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y n  θ (x2,4) 
(x3,5) 

  

3 s5 exit reflect 0 x1 c n n y n  θ (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 entry reflect 0 x1 c n n y n  θ (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 exit reflect 2 x1 c n n y n  θ (x2,4) 
(x3,5) 
(x4,5) 

  

3 s7 entry respond 2 x1 c n n y n  θ (x2,4) 
(x3,5) 
(x4,5) 

  

5 s7 exit respond 2 x2 c n n n n  θ (x3,2) 
(x4,2)  

  

5 s8 entry respond 2 x2 c n n n n  θ (x3,2) 
(x4,2)  

  

7 s8 exit respond 1 x3 c n n n n  θ  (x4,0)   

7 s9 entry respond 1 x3 c n n n n  θ  (x4,0)   

8 s9 exit respond 0 x4 c n n n n  θ null   

8 s10 entry respond 0 x4 c n n n n  θ null   

8 s10 exit respond inf x4 c n n n n  θ null   

8 s11 entry passive inf x4 c n n n n  θ null   
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Figure 152. Case III sequence diagram. 

P.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 64. Case IV state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar 

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

1 env 0 ext 0 ctrl          

0 s0 entry passive inf null c n n n n  θ null   

0 s0 exit passive 0 null c n n n n  θ (x1,5)   

0 s1  entry reflect 0 null c n n n n  θ (x1,5)   

0 s1  exit reflect 5 x1 c n n n n  θ (x1,5)   

0 s2 entry respond 5 x1 c n n n n  θ null ENV 
arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n y n  θ null update 
temp 

3 s3 entry respond 2 x1 c y n y n  θ null   

5 s3 exit respond inf x1 c2 y n n n  θ null   
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5 s4 entry passive inf x1 c2 y n n n  θ null   

 
 
 

 
Figure 153. Case IV sequence diagram. 

P.6.5 CASE V: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Control Packet Arriving at Time 3 

 
Table 65. Case V state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

current 
polar  

queue 
 (xi, tp) 

Notes: 
assume 
tp= 5 

 1 opt 1 env 0 opt 1 ctrl          

0 s0 entry passive inf null c n n n n  θ null   

0 s0 exit passive 0 null c n n n n  θ (x1,5)   

0 s1  entry reflect 0 null c n n n n  θ (x1,5)   

0 s1  exit reflect 5 x1 c n n n n  θ (x1,5)   

0 s2 entry respond 5 x1 c n n n n  θ (x1,5) CTRL 
arrives 
e=3  

3 s2 exit respond 0 x1 c n n y n  θ (x1,2)   

3 s3 entry update 
detector 

0 x1 c n n y n  θ (x1,2)   

3 s3 exit update 
detector 

2 x1 c n n y n  θ (x1,2)   

3 s4 entry respond 2 x1 c n n y n  θ (x1,2)   

5 s4 exit respond 0 x1 c n n n n  θ null   

5 s6 entry passive inf x1 c n n n n  θ null   
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Figure 154. Case V sequence diagram. 

P.7 PM Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 Assume that only one control packet will arrive at any given time, due to the small time 

scales involved and the length of time necessary for attenuation changes. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, 

“overpower”,”interruptRespond”, “needRespond”, “currentPolarization”,queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 
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“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
For the PM we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSPM = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”, “update detector”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
needRespond= flag variable set when both Reflect and UpdateDetector respond to inputs 
currentPolarization = current polarization of the PM 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
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reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
ctrlOutput = variable that stores the output control message response 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
attenuationMin = minimum selectable attenuation 
attenuationMax = maximum selectable attenuation 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
ctrlMsg() =  method that generates a response message to received control messages 
outputMsg() = method that generates the response message to received optical packets 
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 

overtemp, peakpwr, overpwr) 
calcReflected() = method that calculates reflection  power of an optical packet 
changePolarization() = method that changes current polarization of the PM 
calcAttenPolar() =  method that calculates the optical output as f(current.v, temperature, 

overtemp, peakpwr, overpwr, currentPolarization) 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
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q.vmin = minimum value in the queue 
v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”, “CtrlIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv), (“CtrlIn”, Vctrl)} is the set of input 

ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “CtrlOut”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“CtrlOut”, YCtrlOut)} is the set of output 

ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue} = {{“passive”, “reflect”, “respond”, “update polarization”} x 0R
x 

V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x {“Y”,”N”} x V  x V} 
 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond , 

currentPolarization, queue, e, ((pi,vi),…. (pn,vn))) = 
 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
      for messagebag != null 
    current = messagebag_first() 
    if current.value.power > damaged.power 
           overpower =  “Y” 
         insert_event_q(current) 
         remove_event_m(current) 
      queue.current = queue.first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
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     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
        remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 
 timeLeftRespond = timeLeftRespond - e 

 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond,  currentPolarization, queue.x1..xn) 
    if phase = “respond” and p = “EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(“update polarization”, 0, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
    if phase = “passive” and p =“CtrlIn” 
      ctrlOutput = ctrlMsg(store) 
      currentPolarization = store.value.polarization  
 
(“update polarization”, 0, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
 
    if phase = “respond” and p =	“CtrlIn” 
      update_delay(queue) 
      ctrlOutput = ctrlMsg(store) 

   interruptRespond= “Y” 
      currentPolarization = store.value.polarization  
 
(phase, σ – e, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue.x1..xn) 
            otherwise; 
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Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue)= 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue.x1..xn))  
if phase = “reflect” and need.reflect != null 

     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

  
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcAttenPolar(store.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut2” 
       if InPort = “OptIn2” 
         outputPulse = calcAttenPolar(store.v, temperature, overtemp, peakpwr, overpwr) 
         outputPort = “OptOut1” 
       timeLeftRespond = propagation delay 
    else 
      time.delay = timeLeftRespond 
 
  (“update polarization”, 0, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
    if phase = “reflect” and needRespond = “Y” 
      ctrlOutput = ctrlMsg(store) 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcAttenPolar(store.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAttenPolar(store.v, temperature, overtemp, peakpwr, overpwr) 
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        outputPort = “OptOut1” 
     interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
  
  (“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
    if phase = “update polarization” and interruptRespond = “N” 
    
  (“respond”, time.delay, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
    if phase = “update polarization” and interruptRespond = “Y” 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, currentPolarization, queue.x1..xn) 
    if phase = “update polarization” and interruptRespond = “N” and needRespond = “Y” 
      current = queue_min() 
      time.delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcAttenPolar(store.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAttenPolar(store.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

currentPolarization, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (outputPort, outputPulse) 
      if phase = “respond” 
	
			(“CtrlOut”,	ctrlOutput)	
						if	phase	=	“update	polarization”	
	
	 ∅ (null output) 
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     otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
currentPolarization, queue) = σ;  

 

P.8 Mathematical Model 

 
Below is the math model for the in-line polarizer. The polarization modulator works in much the 

same way with the addition of a control port to allow the output polarization angle (α) to be 

changed during operation. 
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P.9 Component Use Case 

P.9.1 Respond to an Optical Packet in the Polarization Modulator (PM) 
 

Optical packet arrives at the polarization modulator. A portion of optical packet reflects back 

down incoming optical line. Place the optical packet into the optical queue. Check to see if 

optical packet overpowers the polarization modulator. Records overpower condition, if 

applicable. Remove the optical packet from the queue and change its polarization based on 

current component state. Calculate the attenuated optical output signal based on the input signal 

and the current component state. Propagate the attenuated optical output signal out of the 

component optical port that is not the same as the input port. 

 
 Identified Alternative Uses Cases 

o Respond to a control message 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 



 

509 
 

 
Figure 155. Component states. 

 
Figure 156. PM phase transition diagram. 

P.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 
 Optical packet entered and removed from queue in proper sequence  
 Overpower condition properly recognized and recorded  
 Optical packet properly attenuated and rotated to the limit of accuracy 
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 Optical packet propagated out the correct port at the correct time 
 

P.9.3 Respond to an Environmental Packet in the Polarization Modulator (PM) 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

P.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

P.10 Polarization Modulator Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 
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in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 6. Polarization Modulator Test Cases. 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Ctrl Env Notes opt # env # ctrl # 

Passive 1 1 0 0 0 single 1 0 0 

  2 0 1 0 0 single 2 0 0 
  3 0 0 1 0 single 2 0 1 
  4 0 0 0 1 single 2 1 1 

  5 1 1 0 0 same time 4 1 1 

  6 1 0 1 0 same time 5 1 2 
  7 1 1 0 0 differ time 7 1 2 

  8 1 0 1 0 differ time 8 1 3 

  9 1 1 1 1 same time 10 2 4 
  10 1 1 1 1 differ time 12 3 5 
  11 0 1 0 1 same time 13 4 5 

  12 0 1 0 1 differ time 14 5 5 
  13 0 0 1 1 same time 14 6 6 
  14 0 0 1 1 differ time 14 7 7 

  15 1 0 0 1 same time 15 8 7 
  16 1 0 0 1 differ time 16 9 7 

  20 2 0 0 0 same time 18 9 7 
  21 0 2 0 0 same time 20 9 7 
  22 2 1 0 0 same time 23 9 7 
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  23 2 0 1 0 same time 25 9 8 
  24 2 0 0 1 same time 27 10 8 
  25 2 0 1 0 differ time 29 10 9 

  26 2 1 1 1 same time 32 11 10 
  27 2 1 1 1 differ time 35 12 11 
  28 0 2 0 1 same time 37 13 11 

  29 0 2 0 1 differ time 39 14 11 

  30 0 0 1 1 same time 39 15 12 
  31 0 0 1 1 differ time 39 16 13 

  32 2 0 0 1 same time 41 17 13 

  33 2 0 0 1 differ time 43 18 13 

totals   27 16 13 18         
Respon
d 41 2 0 0 0 single 45 18 13 

  42 1 1 0 0 single 47 18 13 
  43 1 0 1 0 single 48 18 14 
  44 1 0 0 1 single 49 19 14 

  45 2 1 0 0 same time 52 19 14 

  46 2 0 1 0 same time 54 19 15 
  47 2 0 0 1 differ time 56 20 15 

  48 2 0 1 0 differ time 58 20 16 

  49 2 1 1 1 same time 61 21 17 
  50 2 1 1 1 differ time 64 22 18 
  51 1 1 0 1 same time 66 23 18 

  52 1 1 0 1 differ time 68 24 18 

  60 3 0 0 0 same time 71 24 18 

  61 1 2 0 0 same time 74 24 18 
  62 3 1 0 0 same time 78 24 18 
  63 3 0 1 0 same time 81 24 19 

  64 3 0 0 1 same time 84 25 19 
  65 3 0 1 0 differ time 87 25 20 
  66 3 1 1 1 same time 91 26 21 

  67 3 1 1 1 differ time 95 27 22 
  68 1 2 0 1 same time 98 28 22 
  69 1 2 0 1 differ time 101 29 22 

totals   43 15 9 11         

  TC1 1 0 1 2 single 102 31 23 
  TC2 1 0 1 2 single 103 33 24 

  TC3 1 0 1 2 single 104 35 25 
  TC4 1 0 1 2 single 105 37 26 
  TC5 1 0 1 2 single 106 39 27 

  TC6 1 0 1 2 single 107 41 28 

  TC7 1 0 1 2 single 108 43 29 
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  TC8 1 0 1 2 single 109 45 30 

totals   8 0 8 16         

Notes:  
23 - INIT control message sent; OPT1 & Ctrl - same time - Passive: downstream received 
packets = 214 
25 - Set H control message sent - OPT1 & Ctrl - differ time - Passive: downstream received 
packets = 207, sent value of 2.1 
26 - Set V control message sent  - OPT1, OPT2, Ctrl & ENV - same time - Passive: downstream 
received packets = 207, sent value of 4, exceeds PI 
27 - Set A control message sent - OPT1 & Ctrl - differ time - Passive: downstream received 
packets = 207, sent value of 1 
30 - INIT control message sent - Ctrl & ENV - same time - Passive: downstream received 
packets = 214 
46 - Set D control message sent - OPT1 & Ctrl - same time - Passive: downstream received 
packets = 207, sent value of -2 
48 - Set angle control message sent - OPT1 & Ctrl - differ time - Passive: downstream 
received packets = 207, sent value of 4.5 
50 - Get angle control message sent - OPT1 & Ctrl - differ time - Passive: downstream 
received packets = 207, should return PI 
63 - INIT control message sent - OPT1 & Ctrl - same time - Respond: downstream received 
packets = 211 
67 - INIT control message sent - OPT1, OPT2, Ctrl & ENV - differ time - Respond: downstream 
received packets = 207 

 

 

P.11 References 

None 
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Appendix Q - Polarizing Beamsplitter 

Q.1 Device Description: 

The polarizing beamsplitter (PBS) is an optical device used to split a beam of light into 

two orthogonally polarized outputs, or to combine two input streams into one output stream. In a 

“free-space” beamsplitter, light from one input fiber is sent through a collimating lens, then split 

into two orthogonal states and focused on the output port lenses. Fiber-only beamsplitters exist, 

but are wavelength-dependent and used in situations where the optical fiber carries a single 

wavelength. Polarization maintaining fibers are used on the main output ports and are aligned to 

maintain the polarization supplied by the splitter. See Figure 1 for orientation diagram.  

 

Figure 157. Standard orientation of polarization maintaining fibers on a PBS (OZOptics, 2013). 

A PBS can be made from housing with collimating lenses and some form of a beam 

splitting material, usually a partially reflective mirror, which splits the light (Saleh & Teich, 

1991) or can be fashioned from two triangular birefringent materials glued together. Physical 

designs include cubes mounted into brackets for free-space optics and housings that have 

permanently mounted pigtails or connectors for fiber lines. The amount of light directed to each 

port depends on the polarization of the incoming light. For example, in Figure 1 horizontal light 

input to Port T will pass through the device, with a very small amount passed to Port 2. Vertical 
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light entering Port T will pass to Port 2 with a very small amount passing to Port 1. In the 

specific case of diagonal or antidiagonal light 50% of the power with be passed to each port.  See 

Figure 1 for an example of a four port fiber-based PBS.  

 
Figure 158. View of a two by two polarizing beamsplitter (OZOptics, 2013). 
 

Although PBS may have from three to eight or more ports, this research will use the four 

port PBS devices with fiber pigtails, per the discussion with the SME.  

The PBS is a bidirectional optical component with four optical ports. Light entering the 

primary port is split to exit two output ports with the splitting ratio dependent on the polarization 

of the incoming light. In the opposite direction, the component works the same way, splitting the 

light by passing through a portion of the beam and reflecting the rest to the port opposite the 

reflected port used by the primary path. The light suffers both a slight attenuation from the 

material of the device and the splitting medium has a phase effect for the reflected portion of the 

beam. The reflected beam undergoes a global phase shift of π/2 and is applied to light passing 

through the device in both directions.   

The internal material is sensitive to the power of the optical signals that are propagated 

through the component. If the optical power of a pulse exceeds a defined threshold, the PBS may 

become permanently damaged which changes its propagation characteristics. Similarly, the PBS 

is sensitive to the temperature in the environment in which it operates. If the temperature exceeds 

defined thresholds, the PBS may become temporarily degraded or permanently damaged which 
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changes its propagation characteristics.  If temporarily degraded, the device may recover to 

normal operating behavior after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the PBS is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the PBS. The SME developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions and verified the model and validated 

the input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the PBS to the researcher. Additional information came from product data sheets 

from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the PBS using 

the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the PBS.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 

worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 
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Figure 159. Symbol for the 4-port PBS in the QKD system architecture.  
 

Q.2 Polarizing Beamsplitter Conceptual Model 

 

 
Figure 160.  PBS conceptual model. 

 
The conceptual model for a PBS consists of four optical input ports {OptIn1, OptIn2, 

OptIn3, OptIn4}, four optical output ports {OptOut1, OptOut2, OptOut3, OptOut4}, and one 

environmental input port {EvnIn}. The environmental port allows external sources to 

communicate changes in the operational environment to the PBS. In comparison to the PBS 

symbol used in the QKD simulation architecture shown in Figure 3, a single bidirectional optical 

connection is decomposed into an optical input and an optical output in the conceptual model. 

This is necessary to properly represent the behavior of the device using the DEVS formalism. 
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When an optical signal is sent to the input of the PBS, a small portion of the signal will 

be instantaneously reflected back to the signal source. Since the conceptual model decomposes 

each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 4 will 

instantaneously generate a reflected emitting out of OptOut1.  

The PBS calculates changes to the power (attenuation) of any packet coming through an 

optical port after a time equaling the propagation delay of the module. The packet is calculated at 

full power minus some small amount to account for attenuation through the device. The model 

splits each incoming optical packet into a ‘passed’ packet and a ‘reflected’ (the DEVS code in 

Section 1.7 uses ‘strong’ and ‘weak’), with the strength of each packet determined by the packet 

polarization, and injects these packets into the queue. Each of these entries are a (port, value) 

pair, just as any other entry into the queue, with the [port] entry equal to the output port and the 

[value] equal to the adjusted values of the incoming packet. Additionally, packets output on the 

reflected port have π/2 added to their global phase (i.e. θ = θ + π/2) due to reflection off of the 

beamsplitting material inside the device. The outputs will be in a state determined by their 

polarization, in the case of Figure 1, packets input on Port T and exiting Port 1 will be in the state 

(α=0, ϕ=0), packets exiting Port 2 will be in the state (α= π /2, � = 0). 

The PBS must calculate the power of each incoming optical signal in order to determine 

if the device will become damaged due to excessive power levels. This calculation is made when 

the packet first enters the module. In the case of optical overpowering, once overpowered the 

device will permanently change attenuation. External environmental messages sent to the device 

convey the temperature of the operational environmental so the PBS can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). In either case, a function 
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determines how the propagation changes as a function of the device state and current 

temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

Q.3 Mathematical Model 

For a detailed mathematical description of the PBS, refer to Section 15.8 which contains the 

Mathematica worksheet provided by the optical physics SME. 

Q.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the PBS. 
 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Determine the input port number. 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Remove the packet from the queue and split it into two packets 

 Update the values for one packet as a ‘strong’ optical signal based on the characteristics 

of the PBS, the original values of the input optical signal and the current environment and 

set the correct output port.  
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 Update the values for the other packet as a ‘weak’ optical signal based on the 

characteristics of the PBS, the original values of the input optical signal and the current 

environment and set the correct output port. 

 Send the attenuated output signal out of the optical output port number that is not the 

same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

Q.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the PBS in the boxes and the 

transitions represented by arrows between the phases. Each transition is labeled with the type of 

transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the PBS at the 

same time. 
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Figure 161. PBS phase transition diagram. 

Q.6 Event-Trace Diagram   

This section shows various examples of packets entering the PBS. The tables list the 

states the PBS proceeds through as the packets are processed. Each table has the state number, 

with each state consisting of: phase, time until next transition (sigma), store state variable, 

current temperature of the PBS, the over temperature flag variable and the over power flag 

variable. The next column shows the contents of the queue at that state, the contents of the store 

state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 
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 Notes: any notes for that state 

Q.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 66. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   

 
 

 
Figure 162. Case I sequence diagram. 

Q.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 67. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   
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0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
 

 
Figure 163. Case II sequence diagram. 

Q.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 68. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   
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0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 164. Case III sequence diagram. 

Q.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 69. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 

 
Figure 165. Case IV sequence diagram. 

Q.7 Polarizing Beamsplitter Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 
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Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
For the PBS we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSPBS = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
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messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPassed() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcReflected() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() = method that calculates the optical packet output as:  f(current.v, temperature, 

overtemp, peakpwr, overpwr) 
calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
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v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “OptIn3”, “OptIn4”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“OptIn3”, Vopt), (“OptIn4”, Vopt), (“EnvIn”, Venv)} is 

the set of input ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “OptOut3”, “OptOut4”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“OptOut3”, YOptOut3), (“OptOut4”, YOptOut4)} 

is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
 if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

   
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
    update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
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     reflect = (queue.current.p), calcReflected(queue.current.v)) 
  mark_reflected(queue.current) 
  interruptRespond= “Y” 

    timeLeftRespond = timeLeftRespond - e 
 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

 
 (“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
      need.reflect = queue_need_reflected()          
      if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
 if current.p  = “OptIn1”  /* input port 1 – strong 4 weak 3 */ 

new1 = (“OptOut3”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
new2 = (“OptOut4”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 

 else 
 if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 4 */ 
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 new1 = (“OptOut4”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut3”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else 
 if current.p  = “OptIn3”  /* input port 3 – strong 2 weak 1 */ 
 new1 = (“OptOut1”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut2”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else    /* input port 4 – strong 1 weak 2*/ 

new1 = (“OptOut2”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut1”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 
  timeLeftRespond = propagation delay 

     else 
       time_delay = timeLeftRespond 

 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
 if current.p  = “OptIn1”  /* input port 1 – strong 4 weak 3 */ 

new1 = (“OptOut3”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
new2 = (“OptOut4”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 

 else 
 if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 4 */ 
 new1 = (“OptOut4”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut3”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else 
 if current.p  = “OptIn3”  /* input port 3 – strong 2 weak 1 */ 
 new1 = (“OptOut1”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut2”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 
 else    /* input port 4 – strong 1 strong 2*/ 

new1 = (“OptOut2”,calcPassed(current.v, temperature, overtemp, peakpwr, overpwr)) 
 new2 = (“OptOut1”,calcReflected(current.v, temperature, overtemp, peakpwr, overpwr)) 

        interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       

 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
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 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (new1.p, new1.v) 
      if phase = “respond” 
 
 (new2.p, new2.v) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
 otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;  
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Q.8 Mathematical Model 
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Q.9 Component Use Case 

Q.9.1 Respond to an Optical Packet in the Polarizing Beam Splitter (PBS) 
 

Optical packet arrives at the PBS. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 
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packet overpowers the PBS. Records overpower condition, if applicable. Remove the optical 

packet from the queue and create a reflected and transmitted packet. Calculate the attenuated 

optical output signal based on the input signal, the output port and the current component state. 

Propagate the attenuated optical output signals out of the component optical ports based on the 

input port and whether transmitted or reflected. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

 

 

 
Figure 166. Component states. 
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Figure 167. PBS phase transition diagram. 

Q.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 

 Optical packet entered and removed from queue in proper sequence 

 Overpower condition properly recognized and recorded 

 Optical packet attenuated properly to the limit of accuracy 

 Optical packet propagated out the correct port at the correct time 

Q.9.3 Respond to an Environmental Packet in the Polarizing Beam Splitter (PBS) 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

Q.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 
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 Change component function properly, if necessary 

 

Q.10 PBS Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  
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Table 5. PBS Test Cases 

    Inject Ports   
Running 
Totals 

Phase Case Opt1 Opt2 Opt3 Opt4 Env Notes opt # env # 

Passive 1 1 0 0 0 0 single 1 0 

  2 0 1 0 0 0 single 2 0 

  3 0 0 1 0 0 single 3 0 
  4 0 0 0 1 0 single 4 0 

  5 0 0 0 0 1 single 4 1 

  6 1 1 1 1 0 same time 8 1 
  7 1 1 1 1 0 differ time 12 1 
  8 1 1 1 1 1 same time 16 2 

  9 1 1 1 1 1 differ time 20 3 
  10 0 1 0 0 1 same time 21 4 
  11 0 1 0 0 1 differ time 22 5 

  12 1 0 0 0 1 same time 23 6 
  13 1 0 0 0 1 differ time 24 7 
  14 0 0 1 0 1 same time 25 8 

  15 0 0 1 0 1 differ time 26 9 

  16 0 0 0 1 1 same time 27 10 
  17 0 0 0 1 1 differ time 28 11 

  20 2 0 0 0 0 same time 30 11 
  21 0 2 0 0 0 same time 32 11 

  22 0 0 2 0 0 same time 34 11 

  23 0 0 0 2 0 same time 36 11 
  24 2 2 2 2 0 same time 44 11 

  25 2 2 2 2 0 differ time 52 11 

  26 2 2 2 2 1 same time 60 12 
  27 2 2 2 2 1 differ time 68 13 
  28 0 2 0 0 1 same time 70 14 

  29 0 2 0 0 1 differ time 72 15 
  30 2 0 0 0 1 same time 74 16 
  31 2 0 0 0 1 differ time 76 17 

  32 0 0 2 0 1 same time 78 18 
  33 0 0 2 0 1 differ time 80 19 
  34 0 0 0 2 1 same time 82 20 

  35 0 0 0 2 1 differ time 84 21 

totals 21 21 21 21 21 84   

Respond 41 2 0 0 0 0 single 86 21 

  42 0 2 0 0 0 single 88 21 
  43 0 0 2 0 0 single 90 21 
  44 0 0 0 2 0 single 92 21 

  45 1 0 0 0 1 single 93 22 
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  46 2 1 1 1 0 same time 98 22 
  47 2 1 1 1 0 differ time 103 22 
  48 2 1 1 1 1 same time 108 23 

  49 2 1 1 1 1 differ time 113 24 
  50 0 2 0 0 1 same time 115 25 
  51 0 2 0 0 1 differ time 117 26 

  52 2 0 0 0 1 same time 119 27 

  53 2 0 0 0 1 differ time 121 28 
  54 0 0 2 0 1 same time 123 29 

  55 0 0 2 0 1 differ time 125 30 

  56 0 0 0 2 1 same time 127 31 
  57 0 0 0 2 1 differ time 129 32 
  60 3 0 0 0 0 same time 132 32 

  61 0 3 0 0 0 same time 135 32 
  62 0 0 3 0 0 same time 138 32 
  63 0 0 0 3 0 same time 141 32 

  64 3 2 2 2 0 same time 150 32 

  65 3 2 2 2 0 differ time 159 32 
  66 3 2 2 2 1 same time 168 33 

  67 3 2 2 2 1 differ time 177 34 

  68 0 3 0 0 1 same time 180 35 
  69 0 3 0 0 1 differ time 183 36 
  70 3 0 0 0 1 same time 186 37 

  71 3 0 0 0 1 differ time 189 38 
  72 0 0 3 0 1 same time 192 39 
  73 0 0 3 0 1 differ time 195 40 

  74 0 0 0 3 1 same time 198 41 
  75 0 0 0 3 1 differ time 201 42 

totals 36 27 27 27 21 117   

Math TC1 1 0 0 0 2 single 202 44 

  TC2 1 0 0 0 2 single 203 46 
  TC3 1 0 0 0 2 single 204 48 

  TC4 1 0 0 0 2 single 205 50 

  TC5 1 0 0 0 2 single 206 52 
  TC6 1 0 0 0 2 single 207 54 
  TC7 1 0 0 0 2 single 208 56 

totals   7 0 0 0 14 7     
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Appendix R - Single Mode Optical Fiber (SM Fiber) 

R.1 Device Description: 

Single mode fiber is used throughout optical components. It is a cylindrical optical 

waveguide made from a low-loss material, such as silica glass. It has a core which guides the 

light and an outer cladding that reflects the internal light back into the core, bouncing the light 

down the fiber. This cladding helps to reflect outside light to keep in from entering the core. This 

structure allows for low loss over long distances (Saleh & Teich, 1991). The single-mode of the 

fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical aperture 

with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & Teich, 

1991; ThorLabs, 2013).  See Figure 1 for an example of a single fiber cable. 

 
Figure 168. View of a single fiber cable (Newport, 2013). 
 

The SM fiber is a bidirectional optical component with two optical ports. Light entering 

the primary port is propagated through the fiber, suffering both a slight attenuation from the 

material of the device and a small propagation delay dependent on the temperature of the fiber. 



 

543 
 

This type of fiber does not maintain polarization of the incoming light, so there will be a random 

polarization effect on the light. 

The internal material is sensitive to the power of the optical signals that are propagated 

through the component. If the optical power of a pulse exceeds a defined threshold, the SM fiber 

may become permanently damaged which changes its propagation characteristics. Similarly, the 

SM fiber is sensitive to the temperature in the environment in which it operates. If the 

temperature exceeds defined thresholds, the SM fiber may become temporarily degraded or 

permanently damaged which changes its propagation characteristics.  If temporarily degraded, 

the device may recover to normal operating behavior after the temperature returns to a “normal” 

operating temperature. 

The first step involved with the modeling the SM fiber is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

Optical propagation is complex process, starting with the characteristics of the optical fiber:  

 Loss 

 Index of refraction 

 Zero-dispersion wavelengths 

 Zero-dispersion slopes 

 Coefficient of thermal expansion 

 Chromatic dispersion 

 Polarization mode dispersion 

 Rayleigh backscatter 

 

Other considerations include: 

 

 Temperature  

 Vibration and disturbance  

 Out-band wavelengths 

 Degraded or damaged fiber 
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 Raman scattering 

 

These characteristics and considerations form a complex web of dependencies that the model 

must include if light is to be properly modeled. See Figure 2 for the dependency web from the 

optical SME. 

 

Figure 169. SMF-28 Physical component dependency web (Optical SME). 
 

Modeling light as discrete event requires the modeler to make approximations for many 

of its characteristics, starting with the waveform. The optical model must completely describe 

any type of optical field (pulsed, continuous wave, arbitrary polarization states, etc.) and be 

adaptable for future changes. The optical SME created an optical light model that uses 

parameters derived from the Jones vector notation of light and uses a combination of three 

Gaussians envelopes. See Figure 1 for the Gaussian approximation of a laser source. 
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Figure 170. Approximation of an ID Quantique ID300 Pulsed laser source (Optical SME). 
 

The environment surrounding a fiber is not static. As the environment and external 

stresses (temperature change, wind effects on aerial fibers, vibrations passed through the ground 

to buried cables etc.) change, the birefringent state of the fiber randomly changes over time. A 

random variation of the polarization mode coupling along the length of the fiber is induced as 

well. See Figure 4 for an example of the “polarization walk.” See Appendix 2 for the 

mathematical model for this variation. 
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Figure 171. "Polarization walk" induced over time (optical SME). 

 

The importance of modeling light correctly cannot be understated, as this “optical 

packet” is the base of the entire optical model. The optical SME described the requirements for 

the optical model as “all elements in the optical physical layer must be capable of properly 

handling any optical input state, react properly to environmental “inputs”,  accept command and 

control messaging (if required), and must be as physically realistic as possible.” 

 The SME developed a detailed mathematical model in the Wolfram Mathematica 

software program that modeled the SM fiber, developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions, verified the model and validated the 

input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the SM fiber to the researcher. See Appendix 2 for the worksheet. 
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The next step of the modeling effort was to develop a conceptual model of the SM fiber 

using the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the SM fiber.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 

worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
 
Figure 172. Symbol for Singe Mode Fiber in the QKD system architecture.  
  

R.2 Single Mode Fiber Conceptual Model 

 

 
 Figure 173. Single Mode fiber (SM fiber) conceptual model. 
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The conceptual model for a SM fiber consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, and one environmental input port {EvnIn}. The 

environmental port allows external sources to communicate changes in the operational 

environment to the SM fiber. In comparison to the SM fiber symbol used in the QKD simulation 

architecture shown in Fig. 1, a single bidirectional optical connection is decomposed into an 

optical input and an optical output in the conceptual model. This is necessary to properly 

represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the SM fiber, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The SM fiber must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the SM fiber can 

determine if it is degraded (a temporary condition) or damaged (a permanent condition). In either 

case, a function determines how the attenuation changes as a function of the device state and 

current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 
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This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

R.3 Mathematical Model 

For a detailed mathematical description of the SM fiber, refer to Section 16.8 which contains 

the Mathematica worksheet provided by the optical physics SME. 

R.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the SM 

fiber. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Calculate the optical power of the signal. If the optical power is less than the minimum 

power, drop the pulse. If the optical power exceeds a defined damage threshold, set the 

OverPower flag. 

 Place the optical packet into the queue. 

 Remove the packet from the queue; calculate the attenuated output optical signal based 

upon the input optical signal, the OverPower flag, the OverTemp flag, and the current 

environment and calculate the delay through the fiber based on its length. 

 Send the attenuated and delayed output signal out of the optical output port number that 

is not the same as the input port number. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 
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 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

R.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the SM fiber in the boxes and 

the transitions represented by arrows between the phases. Each transition is labeled with the type 

of transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the SM fiber at 

the same time. 

 
Figure 174. SM fiber phase transition diagram. 
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R.6 Event-Trace Diagram   

This section shows various examples of packets entering the SM fiber. The tables list the 

states the SM fiber proceeds through as the packets are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the SM fiber, the over temperature flag variable and the over 

power flag variable. The next column shows the contents of the queue at that state, the contents 

of the store state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state. Note 

for optical fiber, the time for the respond phase is variable depending on the length of the 

fiber. In the following cases, the time of propagation through the fiber is set to 5. 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

R.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 70. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s1 entry respond 5 x1 c n n n null   

5 s1 exit respond inf x1 c n n n null   

5 S2 entry passive inf x1 c n n n null   
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Figure 175. Case I sequence diagram. 

R.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 71. Case II state list. 

state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s1 entry respond 5 x1 c n n n null   

2 s1 exit respond 3 x1 c n n y (x2,5) 

dext at e= 
2, 1 
optical 
packet 
(x2)  

2 s2 entry respond 3 x1 c n n y (x2,5)   

5 s2 exit respond 2 x2 c n n n null   

5 s3 entry respond 2 x2 c n n n null   

7 s3 exit respond inf x2 c n n n null   

7 s4 entry passive inf x2 c n n n null   
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Figure 176. Case II sequence diagram. 

R.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 72. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s1 entry respond 5 x1 c n n n null   

2 s1 exit respond 3 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s2 entry respond 3 x1 c n n y (x2,5)   

3 s2 exit respond 2 x1 c n n y 

(x2,4)(
x3,5)(x
4,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s3 entry respond 2 x1 c n n y 
(x2,4)(
x3,5)(x   
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4,5) 

5 s3 exit respond 2 x2 c n n n 
(x3,3)(
x4,3)   

5 s4 entry respond 2 x2 c n n n 
(x3,3)(
x4,3)   

7 s4 exit respond 1 x3 c n n n (x4,1)   

7 s5 entry respond 1 x3 c n n n (x4,1)   

8 s5 exit respond 0 x4 c n n n null   

8 s6 entry respond 0 x4 c n n n null   

8 s6 exit respond inf x4 c n n n null   

8 s7 entry passive inf x4 c n n n null   
 

 
Figure 177. Case III sequence diagram. 

R.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 73. Case IV state list. 
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time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c y n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 

 
Figure 178. Case IV sequence diagram. 

R.7 Single Mode Fiber Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 
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 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“interruptRespond”, queue} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 
Peak power = full width, half maximum power calculation of the pulse  
 
For the fixed SM fiber we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x 
b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x 
b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R
∪ ∞ or S → +0

R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSSM fiber = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
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phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet    
   reflect.port = variable that holds the current reflection output port  

reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAttenDelay() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
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calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcPolar() = method that calculates the optical packet output as:  f(store, temperature, 
overtemp, peakpwr, overpwr) 

calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 

v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R
x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 
 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 
(pn,vn))) = 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn)  
   if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
         if calcAtten(current.v) > MIN_POWER  
          insert_event_q(current) 
          remove_event_m(current) 
      size= queue_size()       
      if size > 0 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” 
          outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
          outputPort = “OptOut2” 
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        if InPort = “OptIn2” 
         outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
         outputPort = “OptOut1” 

    interruptRespond = “N” 
  
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn)  
  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
         if calcAtten(current.v) > MIN_POWER  
          insert_event_q(current) 
          remove_event_m(current) 
      size= queue_size()       
     if size < 0 
  
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn)  
  if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
      if calcAtten(current.v) > MIN_POWER  

         insert_event_q(current) 
         remove_event_m(current) 

  interruptRespond= “Y” 
  timeLeftRespond = timeLeftRespond - e 

 
 (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
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(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time_delay = current.time.delay 
      if InPort = “OptIn1” 
        outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut2” 
      if InPort = “OptIn2” 
        outputPulse = calcAttenDelay(current.v, temperature, overtemp, peakpwr, overpwr) 
        outputPort = “OptOut1” 
      interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
    
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) =  
 (output.port, output.pulse) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = σ;  
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R.8 Mathematical Model 
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R.9 Component Use Case 

R.9.1 Respond to an Optical Packet in the Single Mode Fiber (SM Fiber) 
 

Optical packet arrives at the SM fiber. Place the optical packet into the optical queue. 

Check to see if optical packet overpowers the SM fiber. Records overpower condition, if 
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applicable. Remove the optical packet from the queue and calculate the attenuated optical output 

signal based on the input signal, length and type of fiber, and the current component state. 

Propagate the attenuated optical output signal out of the component optical port that is not the 

same as the input port. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 

  

 

 
Figure 179. Component states. 



 

566 
 

 
Figure 180. SM fiber phase transition diagram. 

R.9.2 Respond to Optical Packet End Goals 
 

 Optical packet entered and removed from queue in proper sequence  
 Overpower condition properly recognized and recorded  
 Optical packet attenuated properly to the limit of accuracy 
 Optical packet propagated out the correct port at the correct time 

R.9.3 Respond to an Environmental Packet in the Single Mode Fiber (SM Fiber) 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

R.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 
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R.10 SM Fiber Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  
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Table 5. SM Fiber Test Cases 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Env Notes opt # env # 

Passive 1 1 0 0 single 1 0 

  2 0 1 0 single 2 0 
  3 0 0 1 single 2 1 
  4 1 1 0 same time 4 1 

  5 1 1 0 differ time 6 1 

  6 1 1 1 same time 8 2 
  7 1 1 1 differ time 10 3 

  8 0 1 1 same time 11 4 

  9 0 1 1 differ time 12 5 
  10 1 0 1 same time 13 6 
  11 1 0 1 differ time 14 7 

  20 2 0 0 same time 16 7 

  21 0 2 0 same time 18 7 
  22 2 2 0 same time 22 7 
  23 2 2 0 differ time 26 7 

  24 2 2 1 same time 30 8 

  25 2 2 1 differ time 34 9 
  26 0 2 1 same time 36 10 

  27 0 2 1 differ time 38 11 

  28 2 0 1 same time 40 12 
  29 2 0 1 differ time 42 13 

totals   21 21 13 42     

Respond 41 2 0 0 single 44 13 
  42 0 2 0 single 46 13 
  43 1 0 1 single 47 14 

  44 2 1 0 same time 50 14 
  45 2 1 0 differ time 53 14 
  46 2 1 1 same time 56 15 

  47 2 1 1 differ time 59 16 

  48 0 2 1 same time 61 17 
  49 0 2 1 differ time 63 18 

  50 2 0 1 same time 65 19 

  51 2 0 1 differ time 67 20 

  60 3 0 0 same time 70 20 
  61 0 3 0 same time 73 20 
  62 3 2 0 same time 78 20 

  63 3 2 0 differ time 83 20 

  64 3 2 1 same time 88 21 
  65 3 2 1 differ time 93 22 

  66 0 3 1 same time 96 23 
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  67 0 3 1 differ time 99 24 
  68 3 0 1 same time 102 25 
  69 3 0 1 differ time 105 26 

totals   36 27 13 63     

  TC1 1 0 2 single 106 28 
  TC2 1 0 2 single 107 30 

  TC3 1 0 2 single 108 32 

  TC4 1 0 2 single 109 34 
  TC5 1 0 2 single 110 36 

  TC6 1 0 2 single 111 38 

  TC7 1 0 2 single 112 40 

totals   7 0 14 7     

Notes:  5 - under minimum power packet sent on OPT1; OPT1 & OPT2 - differ time - Passive 
7 - under minimum power packet sent on OPT2; OPT1, OPT2, ENV - differ time - 
Passive 
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Appendix S - Micro-Electromechanical Systems (MEMS) Optical 

Switch 

S.1 Device Description: 

The optical switch is used to route light between one input port and two or more 

input/output ports.  These devices usually consist of an electrically movable mirror that tilts to 

direct the light to either input/output port. The device is non-latching, meaning that electrical 

power must be applied for the device to maintain a connection between two of the ports.  An 

optical connection is maintained to one output port when the electrical power is “off”.  Typically, 

optical switches have control interfaces that allow them to be mounted on circuit boards or have 

some other type of control port (DiConFiberOptics, 2013).  

The micro-electromechanical systems (MEMS) are miniaturized devices integrating 

sensing and actuation functions to control systems (Zangari, 2010), powered by electrostatic 

actuators, and built using the same processes used in fabricating microelectronics.  Typically, 

optical MEMS switches have some type of moving mirror, prism or holographic grating to 

deflect the light beams. Typical switching speeds are between 10ms and 10μs depending on the 

type of switching system. While easily fabricated, the major limitation of these devices is their 

slow response time, but they offer the advantage of low insertion loss and loss crosstalk between 

channels (Saleh & Teich, 1991). See Figure 1 for an example of an optical switch. 
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Figure 181. Example of an optical switch (ThorLabs, 2013). 

 
The optical switch is a bidirectional optical component with three optical ports. Optical 

signals arriving at one of the ports is directed to one of the two input/output ports and propagated 

to the other port after a defined propagation delay. The switch is sensitive to the power of the 

optical signals that are propagated through the component. If the optical power of a pulse 

exceeds a defined threshold, the optical switch may become permanently damaged which 

changes its attenuation characteristics.  Similarly, the optical switch is sensitive to the 

temperature in the environment in which it operates. If the temperature exceeds defined 

thresholds, the optical switch may become temporarily degraded or permanently damaged which 

changes its attenuation characteristics.  If temporarily degraded, the device may recover to 

normal operating behavior after the temperature returns to a “normal” operating temperature. 

The first step involved with the modeling the optical switch is to collect and understand 

the physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the optical switch. The SME developed a series of use cases that exercised 
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the functionality of the device over a wide variety of conditions and verified the model and 

validated the input and output behavior of the device within a single Mathematica model 

(worksheet). The Mathematica worksheet served as the primary means by which the SME 

communicated the behavior of the optical switch to the researcher. Additional information came 

from product data sheets from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the optical 

switch using the DEVS formalism. The bulk of the document following this section is dedicated 

to the detailed development of the DEVS model of the optical switch.  Once developed, the 

model will be simulated using the MS4ME simulator using the same uses cases defined in the 

Mathematica worksheet. The SME will then review the MS4ME simulation output to verify that 

the DEVS formal model matches the behavior of the Mathematica model and hence the real 

component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

 
Figure 182. Symbol for the optical switch in the QKD system architecture.  
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S.2 Optical switch Conceptual Model 

 
Figure 183.  Optical switch conceptual model. 

 
The conceptual model for an optical switch consists of three optical input ports {OptIn1, 

OptIn2, OptIn3}, two optical output ports {OptOut1, OptOut2, OptOut3}, one environmental input 

port {EvnIn} and one electrical controller input port and one electrical controller output port 

{CtrlIn, CtrlOut}. The environmental port allows external sources to communicate changes in 

the operational environment to the optical switch. The electrical controller ports allow for control 

inputs to the controller and responses from the optical switch to the higher system functions. 

 In comparison to the optical switch symbol used in the QKD simulation architecture 

shown in Figure 2, a single bidirectional optical connection is decomposed into an optical input 

and an optical output in the conceptual model. The electrical control port is not shown for clarity 

in Figure 2, and is also decomposed in the model into an input port and an output port. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 

When an optical signal is sent to the input of the optical switch, a small portion of the 

signal will be instantaneously reflected back to the signal source. Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 
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unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The optical switch must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the optical switch 

can determine if it is degraded (a temporary condition) or damaged (a permanent condition). In 

either case, a function determines how the propagation changes as a function of the device state 

and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

S.3 Mathematical Model 

For a detailed mathematical description of the optical switch, refer to Section 17.8 which 

contains the Mathematica worksheet provided by the optical physics SME. 

S.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

optical switch. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 
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 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Place the optical packet into the queue 

 Calculate the reflected power of the signal and send its output with the same port number. 

 Retrieve the input optical signal from the queue and split it into two packets. 

 Update the values for one packet as a ‘strong’ optical signal based on the characteristics 

of the switch, the original values of the input optical signal and the current environment 

and set the correct output port (the “normal signal”).  

 Update the values for the other packet as a ‘weak’ optical signal based on the 

characteristics of the switch, the original values of the input optical signal and the current 

environment and set the correct output port (the “crosstalk” signal). 

 Update the values of the input optical signal based on the characteristics of the switch, the 

original values of the input optical signal and the current environment. 

 Send the changed output signal out of the optical output port numbers determined by the 

state of the switch and the crosstalk characteristics. 

 
When an environmental message arrives: 
 

 Update the CurrrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 
When a control message arrives: 
 

 Change the optical path to the correct output port per the control message. 

 Respond to the controller with an acknowledgement message. 

 

S.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the optical switch in the boxes 

and the transitions represented by arrows between the phases. Each transition is labeled with the 

type of transition (dext – external or dint – internal) and the significant actions that take place 
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during the transition. Each arc has an entry either beneath or beside the arc indicating the value 

of the time advance function for the next phase. Each box is labeled with the name of the phase 

and an entry showing either no lambda output function for that phase or what the phase outputs. 

Note there is a self-loop transition from reflect to reflect if multiple optical packets arrive at the 

optical switch at the same time. 

 
Figure 184. optical switch phase transition diagram. 

S.6 Event-Trace Diagram   

This section shows various examples of packets entering the optical switch. The tables 

list the states the optical switch proceeds through as the packets are processed. Each table has the 

state number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the optical switch, the over temperature flag variable and the 

over power flag variable. The next column shows the contents of the queue at that state, the 

contents of the store state variable and any notes.  

Explanations for each column: 
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 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 

 Notes: any notes for that state 

S.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 74. Case I state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

switch 
position 

queue 
 (xi, 
tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

no 
env 

no ext 0 ctrl          

0 s0 entry passive inf null c n n n n  off null   

0 s0 exit passive 0 null c n n n n  off (x1,5)   

0 s1 entry reflect 0 null c n n n n  off (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  off null   

0 s2 entry respond 5 x1 c n n n n  off null   

5 s2 exit respond inf x1 c n n n n  off null   

5 s3 entry passive inf x1 c n n n n  off null   
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Figure 185. Case I sequence diagram. 

S.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 75. Case II state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

switch 
position 

queue 
 (xi, 
tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

0 env 1 opt 0 ctrl          

0 s0 entry passive inf null c n n n n  off null   

0 s0 exit passive 0 null c n n n n  off (x1,5)   

0 s1 entry reflect 0 null c n n n n  off (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  off null   

0 s2 entry respond 5 x1 c n n n n  off null   

2 s2 exit respond 0 x1 c n n y n  off (x2,5) dext at 
e=2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y n  off (x2,5)   

2 s3 exit reflect 3 x1 c n n y n  off (x2,5)   

2 s4 entry respond 3 x1 c n n y n  off (x2,5)   

5 s4 exit respond 2 x2 c n n n n  off null   

5 s5 entry respond 2 x2 c n n n n  off null   

7 s5 exit respond inf x2 c n n n n  off null   

7 s6 entry passive inf x2 c n n n n  off null   
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Figure 186. Case II sequence diagram. 

S.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 76. Case III state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

switch 
position 

queue 
 (xi, 
tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

0 env 2 opt 0 ctrl          

0 s0 entry passive inf null c n n n n  off null   

0 s0 exit passive 0 null c n n n n  off (x1,5)   

0 s1 entry reflect 0 null c n n n n  off (x1,5)   

0 s1 exit reflect 5 x1 c n n n n  off null   

0 s2 entry respond 5 x1 c n n n n  off null   

2 s2 exit respond 0 x1 c n n y n  off  (x2,5) dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y n  off  (x2,5)   

2 s3 exit reflect 3 x1 c n n y n  off  (x2,5)   

2 s4 entry respond 3 x1 c n n y n  off (x2,5)   

3 s4 exit respond 0 x1 c n n y n  off  (x2,4) 
(x3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y n  off (x2,4) 
(x3,5) 
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3 s5 exit reflect 0 x1 c n n y n  off (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 entry reflect 0 x1 c n n y n  off (x2,4) 
(x3,5) 
(x4,5) 

  

3 s6 exit reflect 2 x1 c n n y n  off (x2,4) 
(x3,5) 
(x4,5) 

  

3 s7 entry respond 2 x1 c n n y n  off (x2,4) 
(x3,5) 
(x4,5) 

  

5 s7 exit respond 2 x2 c n n n n  off (x3,2) 
(x4,2)  

  

5 s8 entry respond 2 x2 c n n n n  off (x3,2) 
(x4,2)  

  

7 s8 exit respond 1 x3 c n n n n  off  (x4,0)   

7 s9 entry respond 1 x3 c n n n n  off  (x4,0)   

8 s9 exit respond 0 x4 c n n n n  off null   

8 s10 entry respond 0 x4 c n n n n  off null   

8 s10 exit respond inf x4 c n n n n  off null   

8 s11 entry passive inf x4 c n n n n  off null   
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Figure 187. Case III sequence diagram. 

S.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 77. Case IV state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

switch 
position 

queue 
 (xi, 
tp) 

Notes: 
assume 
tp= 5 

 1-
packet 

1 env 0 ext 0 ctrl          

0 s0 entry passive inf null c n n n n  off null   

0 s0 exit passive 0 null c n n n n  off (x1,5)   

0 s1  entry reflect 0 null c n n n n  off (x1,5)   

0 s1  exit reflect 5 x1 c n n n n  off (x1,5)   

0 s2 entry respond 5 x1 c n n n n  off null ENV 
arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n y n  off null respond 
temp 

3 s3 entry respond 2 x1 c y n y n  off null   

5 s3 exit respond inf x1 c2 y n n n  off null   

5 s4 entry passive inf x1 c2 y n n n  off null   

 

 
Figure 188. Case IV sequence diagram. 
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S.6.5 CASE V: Initial Passive with Single Optical Packet Arriving at Time 0, Single Control 
Packet Arriving at Time  

 
Table 78. Case V state list. 

time state entry/ 
exit 

phase sigma store 
 (xi) 

temp over 
temp 

over  
power 

interrupt 
respond 

need 
respond 

switch 
position 

queue 
 (xi, 
tp) 

Notes: 
assume 
tp= 5 

 1 opt 1 env 0 opt 1 ctrl          

0 s0 entry passive inf null c n n n n  off null   

0 s0 exit passive 0 null c n n n n  off (x1,5)   

0 s1  entry reflect 0 null c n n n n  off (x1,5)   

0 s1  exit reflect 5 x1 c n n n n  off (x1,5)   

0 s2 entry respond 5 x1 c n n n n  off (x1,5) CTRL 
arrives 
e=3  

3 s2 exit respond 15x10^9 null c n n n n  neutral null   

3 s3 entry update 
switch 

15x10^9 null c n n n n  neutral null   

15x10^9 s3 exit update 
switch 

inf null c n n n n  on null   

15x10^9 s4 entry passive inf null c n n n n  off null   

 

 
Figure 189. Case V sequence diagram. 

S.7 Optical switch Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  
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 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 Assume that only one control packet will arrive at any given time, due to the small time 

scales involved and the length of time necessary for optical path changes. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interrruptRespond”, “needRespond”, “switchPosition”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

Peak power = full width, half maximum power calculation of the pulse  

 
For the optical switch we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 
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DEVSoptical switch = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”, “update detector”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
needRespond= flag variable set when both Reflect and UpdateDetector respond to inputs 
switchPosition= variable that holds the current switch position {“on”, “off”, “neutral”} 
swtchSigma = variable that holds the time advance for the Update Switch phase 
attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

   need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
ctrlOutput = variable that stores the output control message response 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
empty_all_q() = method that empties the queue 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
ctrlMsg() =  method that generates a response message to received control messages 
outputMsg() = method that generates the response message to received optical packets 
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
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remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReflected() = method that calculates reflection  power of an optical packet 
changePolarization() = method that changes current polarization of the PM 
calcAttenPolar() =  method that calculates the optical output as f(current.v, temperature, 

overtemp, peakpwr, overpwr, currentPolarization) 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 

 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “ OptIn3”, “EnvIn”, “CtrlIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“OptIn3”, Vopt), (“EnvIn”, Venv), (“CtrlIn”, Vctrl)} is the 

set of input ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “OptOut3”, “CtrlOut”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“OptOut3”, YOptOut3), (“CtrlOut”, YCtrlOut)} is 

the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue} = {{“passive”, “reflect”, “respond”, “update polarization”} x 0R
x V x 

R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x {“Y”,”N”} x {“off”, “on”, “neutral”}  x V} 
 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond , 

switchPosition, queue, e, ((pi,vi),…. (pn,vn))) = 
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(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
switchPosition, queue.x1..xn)  

  if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
      for messagebag != null 
   current = messagebag_first() 
   if current.value.power > damaged.power 
           overpower =  “Y” 
         insert_event_q(current) 
         remove_event_m(current) 
      queue.current = queue.first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue.x1..xn)  
  if phase = “respond” and p ∈ {“ OptIn1”, “OptIn2”, “OptIn3”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
           overpower =  “Y” 
        insert_event_q(current) 
        remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 
  timeLeftRespond = timeLeftRespond - e 

 
(“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue.x1..xn)  
  if phase = “update switch” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
 update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
   if current.value.power > damaged.power 
          overpower =  “Y” 
        insert_event_q(current) 
        remove_event_m(current) 
      queue.current = queue_first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   switchSigma = switchSigma– e   
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(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
switchPosition, queue.x1..xn) 

    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
    if phase = “respond” and p = “EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(“update switch”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
    if phase = “update switch” and p = “EnvIn” 
      update_delay(queue) 

   temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      switchSigma = switchSigma– e   
 
(“update switch”, 15x109, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
if phase = {“respond”, “passive”} and switchPosition = 3 and p = “CtrlIn” 
  if switchPosition = “off” and store.value.voltage = “on” 
    switchPosition = “neutral” 
    ctrlOutput = ctrlMsg(store) 
    empty_all_q() 
  if switchPosition = “on” and store.value.voltage = “off” 
    switchPosition = “neutral” 
    ctrlOutput = ctrlMsg(store) 
    empty_all_q() 
 

(“update switch”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
switchPosition, queue.x1..xn) 

if phase = “respond” and switchPosition != 3 and p = “CtrlIn” 
      update_delay(queue) 
      ctrlOutput = ctrlMsg(store) 

   interruptRespond= “Y” 
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(“update switch”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
switchPosition, queue.x1..xn) 

if phase = “passive” and switchPosition != 3 and p = “CtrlIn” 
      ctrlOutput = ctrlMsg(store) 

    
 

(“update switch”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
needRespond, switchPosition, queue.x1..xn) 

if phase = “update switch” and p = “CtrlIn” 
  switchPosition = store.value.voltage 
  switchSigma = switchSigma– e   

 
(phase, σ – e, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue.x1..xn) 
            otherwise; 

 
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue)= 
 
  (“reflect”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue.x1..xn))  
 

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

  reflect = (current.p), calcReflected(current.v)) 
  mark_reflected(current) 

  
  (“update switch”, 15x109, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
if phase = “reflect” and need.reflect = null and switchPosition =3 

     need.reflect = queue_need_reflected()          
  empty_all_q() 
 

  (“update switch”, 0, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
switchPosition, queue.x1..xn) 

  if phase = “reflect” and need.reflect = null and switchPosition < 3 
       need.reflect = queue_need_reflected()          

    ctrlOutput = ctrlMsg(store) 
 

  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
needRespond, switchPosition, queue.x1..xn) 

   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
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     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
        if InPort = “OptIn1” and switchPosition = “off” 
          new1 = (“OptOut2”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn1” and switchPosition = “on” 
          new1 = (“OptOut3”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut2”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn2” and switchPosition = “off” 
          new1 = (“OptOut1”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn3” and switchPosition = “on” 
          new1 = (“OptOut1”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
 timeLeftRespond = propagation delay  
    else 
      time.delay = timeLeftRespond 
 
(“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
        if InPort = “OptIn1” and switchPosition = “off” 
          new1 = (“OptOut2”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn1” and switchPosition = “on” 
          new1 = (“OptOut3”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut2”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn2” and switchPosition = “off” 
          new1 = (“OptOut1”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn3” and switchPosition = “on” 
          new1 = (“OptOut1”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
     interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
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  (“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 
needRespond, switchPosition, queue.x1..xn) 

    if phase = “update switch”  and switchPosition =3 
      if store.value.voltage= “off” and switchPosition = 3 
        switchPosition = “off” 
      if store.value.voltage= “on” and switchPosition = 3 
        switchPosition = “on” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
    if phase = “update switch”  and needRespond = “N” 
  
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 

needRespond, switchPosition, queue.x1..xn) 
    if phase = “update switch” and interruptRespond = “N” and needRespond = “Y” 
      current = queue_min() 
      time.delay = current.time.delay 
        if InPort = “OptIn1” and switchPosition = “off” 
          new1 = (“OptOut2”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn1” and switchPosition = “on” 
          new1 = (“OptOut3”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut2”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn2” and switchPosition = “off” 
          new1 = (“OptOut1”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        if InPort = “OptIn3” and switchPosition = “on” 
          new1 = (“OptOut1”, calcStrong(current.v, temperature, overtemp, peakpwr, overpwr) 
          new2 = (“OptOut3”, calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
 
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 

switchPosition, queue) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
   
 (new1.p, new1.v) 
      if phase = “respond” 
	
 (new2.p, new2.v) 
      if phase = “respond” 
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			(“CtrlOut”,	ctrlOutput)	
						if	phase	=	“update	switch”	
	
	 ∅ (null output) 
     otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower, interruptRespond, needRespond, 
switchPosition, queue) = σ;  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

592 
 

S.8 Mathematical Model 
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S.9 Component Use Case 

S.9.1 Respond to an Optical Packet in the Optical Switch 
 

Optical packet arrives at the optical switch. A portion of optical packet reflects back 

down incoming optical line. Place the optical packet into the optical queue. Check to see if 

optical packet overpowers the optical switch. Records overpower condition, if applicable. 

Remove the optical packet from the queue and create transmitted and crosstalk packets. 

Calculate the attenuated optical output signals based on the input signal and the current 

component state. Propagate the attenuated optical output signals out of the component optical 

ports based on the input port and switch position. 

 
 Identified Alternative Uses Cases 

o Respond to a control message 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 190. Component states. 

 
Figure 191. optical switch phase transition diagram. 
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S.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 

 Optical packet entered and removed from queue in proper sequence 

 Overpower condition properly recognized and recorded 

 Optical packet attenuated properly to the limit of accuracy 

 Optical packet propagated out the correct port at the correct time 

S.9.3 Respond to an Environmental Packet in the Optical Switch 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

S.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

S.9.5 Respond to a Control Message in the Optical Switch 
 
Control Message arrives at the component. Component decodes message properly. Records 

change in condition or state, if applicable. Change component function if in degraded or 

damaged state or by change in component condition, if necessary. 

 Assumptions 

o Component has completed initialization sequence at least once 

S.9.6 Respond to Control Message End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 
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S.10 MES Switch Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 

in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  
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Table 5. MEMS Switch Test Cases 

    Inject Ports   Running Totals 

Phase Case Opt1 Opt2 Opt3 Ctrl Env Notes 
opt 
# 

env 
# 

ctrl 
# 

Passive 1 1 0 0 0 0 single 1 0 0 

  2 0 1 0 0 0 single 2 0 0 

  3 0 0 0 1 0 single 2 0 1 
  4 0 0 0 0 1 single 2 1 1 

  5 1 1 0 0 0 same time 4 1 1 

  6 1 0 0 1 0 same time 5 1 2 
  7 1 1 0 0 0 differ time 7 1 2 
  8 1 0 0 1 0 differ time 8 1 3 

  9 1 1 1 1 1 same time 11 2 4 
  10 1 0 1 2 1 differ time 13 3 6 
  11 0 1 0 0 1 same time 14 4 6 

  12 0 1 0 0 1 differ time 15 5 6 
  13 0 0 0 1 1 same time 15 6 7 
  14 0 0 0 1 1 differ time 15 7 8 

  15 1 0 0 0 1 same time 16 8 8 

  16 1 0 0 0 1 differ time 17 9 8 

  20 2 0 0 0 0 same time 19 9 8 
  21 0 2 0 0 0 same time 21 9 8 
  22 2 1 0 0 0 same time 24 9 8 

  23 2 0 0 1 0 same time 26 9 9 

  24 2 0 0 0 1 same time 28 10 9 
  25 2 0 0 1 0 differ time 30 10 10 

  26 2 1 0 1 1 same time 33 11 11 

  27 2 1 0 1 1 differ time 36 12 12 
  28 0 2 0 0 1 same time 38 13 12 
  29 0 2 0 0 1 differ time 40 14 12 

  30 0 0 0 1 1 same time 40 15 13 
  31 0 0 0 1 1 differ time 40 16 14 
  32 2 0 0 0 1 same time 42 17 14 

  33 2 0 0 0 1 differ time 44 18 14 

  34 0 0 1 0 0 single 45 18 14 

  35 1 0 1 0 0 differ time 47 18 14 
  36 0 1 1 0 0 differ time 49 18 14 

  37 0 0 1 1 0 differ time 50 18 15 

  38 0 0 1 0 1 differ time 51 19 15 

totals   28 16 7 15 19 51       
Respon
d 41 2 0 0 0 0 single 53 19 15 

  42 1 1 0 0 0 single 55 19 15 
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  43 1 0 0 1 0 single 56 19 16 
  44 1 0 0 0 1 single 57 20 16 
  45 2 1 1 0 0 same time 61 20 16 

  46 2 0 0 1 0 same time 63 20 17 
  47 2 0 0 0 1 differ time 65 21 17 
  48 2 0 0 1 0 differ time 67 21 18 

  49 2 1 1 1 1 same time 71 22 19 

  50 2 0 1 2 1 differ time 74 23 21 
  51 1 1 0 0 1 same time 76 24 21 

  52 1 1 0 0 1 differ time 78 25 21 

  60 3 0 0 0 0 same time 81 25 21 

  61 1 2 0 0 0 same time 84 25 21 

  62 3 1 0 0 0 same time 88 25 21 
  63 3 0 0 1 0 same time 91 25 22 

  64 3 0 0 0 1 same time 94 26 22 

  65 3 0 0 1 0 differ time 97 26 23 
  66 3 1 0 1 1 same time 101 27 24 

  67 3 1 0 1 1 differ time 105 28 25 

  68 1 2 0 0 1 same time 108 29 25 
  69 1 2 0 0 1 differ time 111 30 25 

  70 1 0 1 0 0 single 113 30 25 
  71 1 1 1 0 0 differ time 116 30 25 

  72 1 0 1 1 0 differ time 118 30 26 

  73 1 0 1 0 1 differ time 120 31 26 
  74 1 0 2 0 0 differ time 123 31 26 

totals   48 15 9 11 12 72       

  TC1 1 0 0 1 2 single 124 33 27 
  TC2 1 0 0 1 2 single 125 35 28 

  TC3 1 0 0 1 2 single 126 37 29 

  TC4 1 0 0 1 2 single 127 39 30 
  TC5 1 0 0 1 2 single 128 41 31 
  TC6 1 0 0 1 2 single 129 43 32 

  TC7 1 0 0 0 2 single 130 45 32 
  TC8 1 0 0 0 2 single 131 47 32 

totals   8 0 0 6 16         

Notes:  6- Set to "on" position, port 1 to port 3 
10 - Set to "off" position, then opt1, then set to "on" position, then 
opt3, then env   
23 - INIT control message sent; OPT1 & Ctrl - same time - Passive: downstream received 
packets = 216 
25 - INIT control message sent; OPT1 & Ctrl - same time - Passive: downstream received 
packets = 216 

30 - INIT control message sent - Ctrl & ENV - same time - Passive: downstream received 
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packets = 216 

46- Set to "off" position, port 1 to port 2 
50 - Send opt1 for Respond phase, set to "off" position, then opt1, then set to "on" position, 
then opt3, then env 
63 - INIT control message sent - OPT1 & Ctrl - same time - Respond: downstream received 
packets = 209 
67 - INIT control message sent - OPT1, OPT2, Ctrl & ENV - differ time - Respond: downstream 
received packets = 209 
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Appendix T - Wave Division Multiplexer (WDM) 

T.1 Device Description: 

The WDM is an optical device used to combine (or split) different wavelengths of light 

into one stream. Light from each port enters through a collimation lens, combined using a 

dichroic filter, and then focused on a collimation lens and output using single mode fiber. In the 

opposite direction through the WDM, combined optical signals are separated into different 

streams and sent out different ports (OZOptics, 2013). Fiber-only devices exist that split the 

beam by wavelength. Signals above a threshold direct to one port, signals below go to the other.  

A WDM can be made from housing with collimating lenses and some form of a dichroic mirror, 

a mirror made from thin layers of different transparent optical materials. The different materials 

constructively interfere to reflect one wavelength and transmit the other (RPPhotonics, 2013).  

See Figure 1 for an example of a three port fiber-based WDM. 

 
Figure 192. View of a three port WDM (OZOptics, 2013). 

 
Although there are WDMs that can combine many different wavelengths, this document 

will cover a two-wavelength device that utilizes single-mode input and output fiber, per the 

discussion with the SME.  

The WDM is a bidirectional optical component with three optical ports. In one direction, 

optical signals arrive at two of the input ports, slightly attenuated and combined for output on the 
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third. In the opposite direction, a single optical input is split into two steams, each stream slightly 

attenuated, and output to individual ports depending upon wavelength.  

Although designed to pass wavelengths within a specified band around a central 

wavelength (pass width) for each port, there is some undesired throughput to ports 1 and 2 when 

input on port 3. These are highly attenuated signals, with the attenuation increasing as the 

undesired frequency moves outside of the pass width range, much like a bandpass filter. Fiber-

only devices do not have this undesired throughput. 

In the model, this is accounted for by calculating the isolation attenuation for any 

wavelength outside of the bandwidth, increasing the attenuation until the maximum isolation 

value is reached for wavelengths well outside the pass width. A check is made on the power of 

each output optical packet and any that do not have specified minimum amplitude will not be 

emitted. 

Another consideration is the polarization effect of the dichroic mirror material on the 

optical inputs. If the WDM has single-mode fiber and includes a dichroic mirror, the wavelength 

that reflects on the mirror will have a π/2 polarization shift along with any shift induced by the 

single-mode fiber. There are devices that use polarization-maintaining fiber, but as noted earlier, 

this research will consider only single-mode fiber devices (per discussions with the SME). 

The internal material is sensitive to the power of the optical signals that are propagated 

through the component. If the optical power of a pulse exceeds a defined threshold, the WDM 

may become permanently damaged which changes its propagation characteristics. Similarly, the 

WDM is sensitive to the temperature in the environment in which it operates. If the temperature 

exceeds defined thresholds, the WDM may become temporarily degraded or permanently 

damaged which changes its propagation characteristics.  If temporarily degraded, the device may 
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recover to normal operating behavior after the temperature returns to a “normal” operating 

temperature. 

The first step involved with the modeling the WDM is to collect and understand the 

physical, behavioral, and performance characteristics of the component. In this case, this 

information was obtained from Subject Matter Expert (SME) with expertise in optical physics. 

The SME developed a detailed mathematical model in the Wolfram Mathematica software 

program that modeled the WDM. The SME developed a series of use cases that exercised the 

functionality of the device over a wide variety of conditions and verified the model and validated 

the input and output behavior of the device within a single Mathematica model (worksheet). The 

Mathematica worksheet served as the primary means by which the SME communicated the 

behavior of the WDM to the researcher. Additional information came from product data sheets 

from commercial vendors and standard texts from the optical field. 

The next step of the modeling effort was to develop a conceptual model of the WDM 

using the DEVS formalism. The bulk of the document following this section is dedicated to the 

detailed development of the DEVS model of the WDM.  Once developed, the model will be 

simulated using the MS4ME simulator using the same uses cases defined in the Mathematica 

worksheet. The SME will then review the MS4ME simulation output to verify that the DEVS 

formal model matches the behavior of the Mathematica model and hence the real component. 

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 
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Figure 193. Symbol for the 3-port WDM in the QKD system architecture.  
 
 

T.2 WDM Conceptual Model 

 

 
Figure 194.  WDM conceptual model. 

 
The conceptual model for a WDM consists of three optical input ports {OptIn1, OptIn2, 

OptIn3}, three optical output ports {OptOut1, OptOut2, OptOut3}, and one environmental input 

port {EvnIn}. The environmental port allows external sources to communicate changes in the 

operational environment to the WDM. In comparison to the WDM symbol used in the QKD 

simulation architecture shown in Figure 2, a single bidirectional optical connection is 

decomposed into an optical input and an optical output in the conceptual model. This is 

necessary to properly represent the behavior of the device using the DEVS formalism. 
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When an optical signal is sent to the input of the WDM, a small portion of the signal will 

be instantaneously reflected back to the signal source. Since the conceptual model decomposes 

each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 3 will 

instantaneously generate a reflected emitting out of OptOut1.  

The WDM calculates changes to any packet coming through an optical port after a time 

equaling the propagation delay of the module. The packet is calculated at full power minus some 

small amount to account for attenuation through the device if passing through to the correct port 

or heavily attenuated if passing to an incorrect port (for example, passing from port one to port 

two). The model handles this undesired throughput by splitting each incoming optical packet into 

a ‘strong’ packet (one that is output through the correct port) and a ‘weak’ packet (one that is 

output through the incorrect port) and injecting these packets into the queue. Each of these 

entries are a (port, value) pair, just as any other entry into the queue, with the [port] entry equal 

to the output port and the [value] equal to the adjusted values of the incoming packet. 

Additionally, packets output on port two rotate π/2 (i.e. α = α + π/2) due to the effects of the 

dichroic mirror inside the device and is applied by the by the ‘strong’ and ‘weak’ functions. 

The WDM must calculate the power of each incoming optical signal in order to 

determine if the device will become damaged due to excessive power levels. This calculation is 

made when the packet first enters the module. In the case of optical overpowering, once 

overpowered the device will permanently change attenuation. External environmental messages 

sent to the device convey the temperature of the operational environmental so the WDM can 

determine if it is degraded (a temporary condition) or damaged (a permanent condition). In either 
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case, a function determines how the propagation changes as a function of the device state and 

current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed as 

independent signals.  This is a consequence of the high level simulation strategy to only model 

interference at the Single Photon Detector (SPD) devices in the QKD system simulation. This 

greatly simplifies the modeling of all of the other optical components which can treat multiple 

optical signals as independent entities. 

T.3 Mathematical Model 

For a detailed mathematical description of the WDM, refer to Section 18.8 which contains 

the Mathematica worksheet provided by the optical physics SME. 

T.4 English-Language Rules 

In this section, English language rules are developed to express the desired behavior of the 

WDM. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverPower is a flag which indicates if the device is permanently damaged due to 

receiving optical signals whose optical power exceed a defined power threshold.  

Initially, this flag is cleared. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When an optical signal arrives: 
 

 Determine the input port number. 

 Immediately calculate the reflected power of the signal and send its output with the same 

port number. 

 Calculate the optical power of the signal. If the optical power exceeds a defined damage 

threshold, set the OverPower flag. 

 Split the incoming optical packet into two entries in the queue. 
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 Update the values for one queue entry as a ‘strong’ optical signal based on the 

characteristics of the WDM, the original values of the input optical signal and the current 

environment and set the correct output port. 

 Update the values for the other queue entry as a ‘weak’ optical signal based on the 

characteristics of the WDM, the original values of the input optical signal and the current 

environment and set the correct output port. 

 After the propagation time has elapsed, send the output signal out of the optical output 

port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

T.5 Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the WDM in the boxes and the 

transitions represented by arrows between the phases. Each transition is labeled with the type of 

transition (dext – external or dint – internal) and the significant actions that take place during the 

transition. Each arc has an entry either beneath or beside the arc indicating the value of the time 

advance function for the next phase. Each box is labeled with the name of the phase and an entry 

showing either no lambda output function for that phase or what the phase outputs. Note there is 

a self-loop transition from reflect to reflect if multiple optical packets arrive at the WDM at the 

same time. 
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Figure 195. WDM phase transition diagram. 

T.6 Event-Trace Diagram   

This section shows various examples of packets entering the WDM. The tables list the 

states the WDM proceeds through as the packets are processed. Each table has the state number, 

with each state consisting of: phase, time until next transition (sigma), store state variable, 

current temperature of the WDM, the over temperature flag variable and the over power flag 

variable. The next column shows the contents of the queue at that state, the contents of the store 

state variable and any notes.  

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Queue: contents of the queue for that state 
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 Notes: any notes for that state 

T.6.1 CASE I: Initial Passive with Single Optical Packet Arriving at Time 0 
 
Table 79. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet no env no ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   

0 s2 entry respond 5 x1 c n n n null   

5 s2 exit respond inf x1 c n n n null   

5 s3 entry passive inf x1 c n n n null   

 

 
Figure 196. Case I sequence diagram. 

T.6.2 CASE II: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
 
Table 80. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 1 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   



 

610 
 

0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at e= 
2, 1 optical 
packet (x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

5 s4 exit respond 0 x2 c n n n null   

5 s5 entry respond 2 x2 c n n n null   

7 s5 exit respond inf x2 c n n n null   

7 s6 entry passive inf x2 c n n n null   
 

 
Figure 197. Case II sequence diagram. 

T.6.3 CASE III: Initial Passive with Single Optical Packets Arriving at Time 0 and Time 2 
and Multiple Optical Packets Arriving at Time 3 

 
Table 81. Case III state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 0 env 2 opt 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1 entry reflect 0 null c n n n (x1,5)   

0 s1 exit reflect 5 x1 c n n n null   
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0 s2 entry respond 5 x1 c n n n null   

2 s2 exit respond 0 x1 c n n y (x2,5) 

dext at 
e= 2, 1 
optical 
packet 
(x2)  

2 s3 entry reflect 0 x1 c n n y (x2,5)   

2 s3 exit reflect 3 x1 c n n y (x2,5)   

2 s4 entry respond 3 x1 c n n y (x2,5)   

3 s4 exit respond 0 x1 c n n y 
(x2,4)(x
3,5) 

dext at 
e= 1, 2 
optical 
packets 
(x3,x4)  

3 s5 entry reflect 0 x1 c n n y 
(x2,4)(x
3,5)   

3 s5 exit reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 entry reflect 0 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s6 exit reflect 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

3 s7 entry respond 2 x1 c n n y 

(x2,4)(x
3,5)(x4,
5)   

5 s7 exit respond 2 x2 c n n n 
(x3,3)(x
4,3)   

5 s8 entry respond 2 x2 c n n n 
(x3,3)(x
4,3)   

7 s8 exit respond 1 x3 c n n n (x4,1)   

7 s9 entry respond 1 x3 c n n n (x4,1)   

8 s9 exit respond 0 x4 c n n n null   

8 s10 entry respond 0 x4 c n n n null   

8 s10 exit respond inf x4 c n n n null   

8 s11 entry passive inf x4 c n n n null   
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Figure 198. Case III sequence diagram. 

T.6.4 CASE IV: Initial Passive with Single Optical Packet Arriving at Time 0 and Single 
Environmental Packet Arriving at Time 3 

 
Table 82. Case IV state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

interrupt 
respond 

queue 
 (xi, tp) 

Notes: 
assume 
tp=5 

1-packet 1 env 0 ext 0 ctrl 

0 s0 entry passive inf null c n n n null   

0 s0 exit passive 0 null c n n n (x1,5)   

0 s1  entry reflect 0 null c n n n (x1,5)   

0 s1  exit reflect 5 x1 c n n n null   



 

613 
 

0 s2 entry respond 5 x1 c n n n null 

ENV arrives 
e=3, 
overtemp 
the 
component 

3 s2 exit respond 2 x1 c n n n null 
update 
temp 

3 s3 entry respond 2 x1 c y n n null   

5 s3 exit respond inf x1 c2 y n   null   

5 s4 entry passive inf x1 c2 y n   null   

 

 
Figure 199. Case IV sequence diagram. 

T.7 WDM Parallel DEVS Code 

Notes: 
 Peak power is calculated as the packet outputs rather than at input due to the small time scale 

and the short propagation time of the component.  

 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 
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Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 

“interruptRespond”, queue} 

Time advance(state) = time advance of the current state 

Time delay = time advance stored in queue for event i 

e = elapsed time since last transition occurred 

“store” = state variable that stores the current input values 

“overtemp” = flag variable set when device meets or exceeds damaged temperature level 

“overpower” = flag variable set when device meets or exceeds damaged optical power level 

“interruptRespond” = flag variable set when device is interrupted by an external event 

Peak power = full width, half maximum power calculation of the pulse  

 
For the WDM we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x 
b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x 
b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R
∪ ∞ or S → +0

R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSWDM = (XM, YM, S, δext, δint, δcon, λ, ta) 
where 
 

tp = transmission time inside the attenuator 
temperature = current temperature of the attenuator 
phase = control state that keeps track of the internal phase of the attenuator 
phase = {“passive”, “reflect”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
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attenpower = variable the holds the attenuated power of the current optical packet 
peak.power = variable the holds the peak power of the current optical packet 
messagebag= variable that stores the current x input value(s) (p,v) 
damaged.power = variable that holds the component damaged optical power level parameter 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  

    need.reflect= variable that stores queue event that needs reflecting 
   reflect = variable that stores the current reflected optical packet  

reflect.port = variable that holds the current reflection output port  
reflect.power = variable that holds the current reflection power 
time.delay = variable that stores the time delay in the queue for event i 
output.pulse= variable that stores the output optical packet 
output.port = variable that holds the output optical packet port  
size= variable that holds the number of events in the queue 
new1= variable to hold 1st output values 
new2 = variable to hold 2nd output values 
queue.current = variable that holds the currently selected queue event 
store = variable that holds values of the current optical packet 
timeLeftRespond = time left in Respond phase for the current optical packet 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
queue = input container object to store the scheduled inputs 
queue_size() = method that returns number of entries in the queue  
queue_min() = method that removes the queue entry with the smallest time delay  
queue_first() = method that returns the first element of the queue 
queue_need_reflected() = method returns the first unreflected queue event 
messagebag_first() =  method that returns the first element of the message bag 
mark_reflected() = method that marks the current queue event as being reflected 
update_delay() = method that updates the time delay of entries in the queue by e  
insert_event_q() = method that inserts the current (xi, time delayi) into the queue  
remove_event_q() = method that removes the current (xi, 0) from the queue   
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
calcPeak() = function that calculates full width, half maximum power calculation of the optical 

pulse 
calcAtten() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcStrong() =  method that calculates the optical packet high power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcWeak() =  method that calculates the optical packet low power output as f(current.v, 

temperature, overtemp, peakpwr, overpwr)) 
calcForward() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcReverse() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
calcPolar() = method that calculates the optical packet output as:  f(store, temperature, 

overtemp, peakpwr, overpwr) 
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calcReflected() = method that calculates reflection  power of an optical packet 
MIN_POWER = global constant that is the minimum acceptable power of an optical packet 
q.v = pointer to a value in the queue 
q.vmin = minimum value in the queue 
v.q = value from a queue entry 
 

Every δext puts all of its x (p,v) values into the variable store 

 
InPorts = {“OptIn1”, “OptIn2”, “OptIn3”, “EnvIn”} with 

XM = {(“OptIn1”, Vopt), (“OptIn2”, Vopt), (“OptIn3”, Vopt), (“EnvIn”, Venv)} is the set of input 

ports and values. 

 
OutPorts = {“OptOut1”, “OptOut2”, “OptOut3”} with 

YM = {(“OptOut1”, YOptOut1), (“OptOut2”, YOptOut2), (“OptOut3”, YOptOut3)} is the set of output 

ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 

S = {phase, σ, store, temperature, overtemp, overpower interruptRespond, queue} = 

{{“passive”, “reflect”, “respond”} x 0R
x V x R x {“Y”, “N”} x {“Y”,”N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue, e, ((pi,vi),…. 

(pn,vn))) = 
(“reflect”, 0, store, temperature, overtemp, overpower, queue.x1..xn) 
 if phase = “passive” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
 for messagebag != null 
    current = messagebag_first() 
       if current.value.power > damaged.power 
             overpower =  “Y” 
          insert_event_q(current) 
          remove_event_m(current) 
      queue.current = queue.first(queue)  

   reflect = (queue.current.p), calcReflected(queue.current.v)) 
   mark_reflected(queue.current) 
   interruptRespond = “N” 

   
(“reflect”, 0, store, temperature, overtemp, overpower, queue.x1..xn) 
if phase = “respond” and p ∈ {“OptIn1”, “OptIn2”, “OptIn3”}   
    update_delay(queue) 
 for messagebag != null 
   current = messagebag_first() 
     if current.value.power > damaged.power 
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           overpower =  “Y” 
        insert_event_q(current) 
         remove_event_m(current) 
     queue.current = queue_need_reflected()  
     reflect = (queue.current.p), calcReflected(queue.current.v)) 

  mark_reflected(queue.current) 
  interruptRespond= “Y” 

    timeLeftRespond = timeLeftRespond - e 
 
(“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(“respond”, time_delay,  store, temperature, overtemp, overpower, interruptRespond, 

queue.x1..xn) 
    if phase = “respond” and p =	“EnvIn” 
      update_delay(queue) 
      timeLeftRespond = time.delay- e 
      temperature = messagebag.temperature 
      if temperature > damage.temp 
        overtemp = “Y” 
      time.delay = timeLeftRespond               
 
(phase, σ – e, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, interruptRespond, queue) = 
(“reflect”, 0, temperature, overtemp, overpower, interruptRespond, queue.x1..xn))  

if phase = “reflect” and need.reflect != null 
     need.reflect = queue_need_reflected()  
     current = need.reflect 

 reflect = (current.p), calcReflected(current.v)) 
 mark_reflected(current) 

 
 
(“respond”, time.delay,  store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
   if phase = “reflect” and need.reflect = null 
     need.reflect = queue_need_reflected()          
     if interruptRespond = “N” 
        current = queue_min() 
        time.delay = current.time.delay 
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    if current.p  = “OptIn1”  /* input port 1 – strong 3 weak 2 */ 
     new1 = (“OptOut3”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

  new2 = (“OptOut2”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
    else 
      if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 1 */ 
        new1 = (“OptOut3”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 
        new2 = (“OptOut1”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
      else    /* input port 3 – strong 1 strong 2*/ 
        new1 = (“OptOut1”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

     new2 = (“OptOut2”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 
 timeLeftRespond = propagation delay 

   else 
      time.delay = timeLeftRespond 
 
  (“respond”, time.delay, store, temperature, overtemp, overpower, interruptRespond, 
queue.x1..xn) 
    if phase = “respond” and size > 0 
      update_delay(queue) 
      size= queue_size()       
      current = queue_min() 
      time.delay = current.time.delay 
      if current.p  = “OptIn1”  /* input port 1 – strong 3 weak 2 */ 
       new1 = (“OptOut3”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

    new2 = (“OptOut2”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
      else 
        if current.p  = “OptIn2”  /* input port 2 – strong 3 weak 1 */ 
          new1 = (“OptOut3”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 
          new2 = (“OptOut1”,calcWeak(current.v, temperature, overtemp, peakpwr, overpwr)) 
        else    /* input port 3 – strong 1 strong 2*/ 
          new1 = (“OptOut1”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 

       new2 = (“OptOut2”,calcStrong(current.v, temperature, overtemp, peakpwr, overpwr)) 
       interruptRespond= “N” 
 
  (“passive”, ∞, store, temperature, overtemp, overpower, interruptRespond, queue.x1..xn) 
    if phase = “respond” and size  = 0 
      size= queue_size()       
   
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower) =  
 (reflect.p, reflect.v)  
 if phase = “reflect”   
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 (new1.p, new1.v) 
      if phase = “respond” 
 
 (new2.p, new2.v) 
      if phase = “respond” 
	 	
	 ∅ (null output) 
 otherwise; 
 
Time advance Function: 

ta(phase, σ, store, temperature, overtemp, overpower) = σ;  
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T.8 Mathematical Model 
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T.9 Component Use Case 

T.9.1 Respond to an Optical Packet in the Wave Division Multiplexer (WDM) 
 

Optical packet arrives at the WDM. A portion of optical packet reflects back down 

incoming optical line. Place the optical packet into the optical queue. Check to see if optical 

packet overpowers the WDM. Records overpower condition, if applicable. Remove the optical 

packet from the queue and create transmitted and reflected packets. Calculate the attenuated 

optical output signal based on the input signal, whether transmitted or reflected, and the current 

component state. Propagate the attenuated optical output signals out of the component optical 

ports based on the input port and being transmitted or reflected. 

 
 Identified Alternative Uses Cases 

o React to an environmental message 

 
 Assumptions 

o Component has completed initialization sequence at least once 

o Reflections are not affected by component state 

o Incoming electrical signals are not affected by component state 
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Figure 200. Component states. 

 
Figure 201. WDM phase transition diagram. 

T.9.2 Respond to Optical Packet End Goals 
 

 Optical packet reflected properly 

 Optical packet entered and removed from queue in proper sequence 
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 Overpower condition properly recognized and recorded 

 Optical packet attenuated properly to the limit of accuracy 

 Optical packet propagated out the correct port at the correct time 

T.9.3 Respond to an Environmental Packet in the Wave Division Multiplexer (WDM) 
 
Environmental packet arrives at the component. Check to see if environmental packet 

temperature sets the component to degraded or damaged state. Check to see if temperature level 

returns component from degraded state to normal state. Records change in condition, if 

applicable. Change component function if in degraded or damaged state. 

 Assumptions 

o None 

T.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

 

T.10 WDM Test Cases 

Each optical component was tested by sending inputs into the component, capturing the 

output, and evaluating the output line-by-line to check behavior and timing. Each component had 

each of its input ports (optical, environmental (env), and/or control (ctrl)) tested singly, then in 

different combinations of ports and input messages. All identified errors were corrected and the 

component retested until it functioned properly for each test case.  

To test an optical port, an optical message is injected into that port when the component 

is in Passive or Respond phase. This tests component behavior when it is do nothing and 

awaiting input or the behavior when the component is interrupted during message processing. 

Control messages work in the same way, but force the component to begin behavior to react to 

the contents of the messages. Environmental packets force an immediate response to the change 
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in temperature, possibly changing the properties of the component if it is damaged or degraded 

by the new temperature. 

The following table summarizes these tests by listing the component on the left and the 

number and type of tests across the top. Each component is in either the Passive or Respond 

phase when reacting to inputs as noted at the top of each table. Each box shows the number of 

tests exercising the particular type of port. The first column lists the total number of tests 

performed on a component; successive columns list the number of those tests that exercise a 

particular port (optical, ctrl, or env) and the number of single or multi-port tests, with the final 

column listing the number of math-specific tests. These math tests were created by the optical 

SME to exercise the early demonstration QKD simulation and added in the MS4ME code for 

possible future work in comparing the conceptual models to the qkdX framework.  

Table 5. WDM Test Cases. 

    Inject Ports   
Running 
Totals 

Phase Case Opt1 Opt2 Opt3 Env Notes opt # env # 

Passive 1 1 0 0 0 single 1 0 

  2 0 1 0 0 single 2 0 

  3 0 0 1 0 single 3 0 
  4 0 0 0 1 single 3 1 

  5 1 1 1 0 same time 6 1 

  6 1 1 1 0 differ time 9 1 
  7 1 1 1 1 same time 12 2 
  8 1 1 1 1 differ time 15 3 

  9 0 1 0 1 same time 16 4 
  10 0 1 0 1 differ time 17 5 
  11 1 0 0 1 same time 18 6 

  12 1 0 0 1 differ time 19 7 
  13 0 0 1 1 same time 20 8 
  14 0 0 1 1 differ time 21 9 

  20 2 0 0 0 same time 23 9 
  21 0 2 0 0 same time 25 9 

  22 0 0 2 0 same time 27 9 
  23 2 2 2 0 same time 33 9 
  24 2 2 2 0 differ time 39 9 
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  25 2 2 2 1 same time 45 10 
  26 2 2 2 1 differ time 51 11 
  27 0 2 0 1 same time 53 12 

  28 0 2 0 1 differ time 55 13 
  29 2 0 0 1 same time 57 14 
  30 2 0 0 1 differ time 59 15 

  31 0 0 2 1 same time 61 16 

  32 0 0 2 1 differ time 63 17 

totals   21 21 21 17 63     

Respond 41 2 0 0 0 single 65 17 

  42 0 2 0 0 single 67 17 
  43 0 0 2 0 single 69 17 

  44 1 0 0 1 single 70 18 

  45 2 1 1 0 same time 74 18 
  46 2 1 1 0 differ time 78 18 
  47 2 1 1 1 same time 82 19 

  48 2 1 1 1 differ time 86 20 
  49 0 2 0 1 same time 88 21 
  50 0 2 0 1 differ time 90 22 

  51 2 0 0 1 same time 92 23 

  52 2 0 0 1 differ time 94 24 
  53 0 0 2 1 same time 96 25 

  54 0 0 2 1 differ time 98 26 

  60 3 0 0 0 same time 101 26 

  61 0 3 0 0 same time 104 26 
  62 0 0 3 0 same time 107 26 
  63 3 2 2 0 same time 114 26 

  64 3 2 2 0 differ time 121 26 
  65 3 2 2 1 same time 128 27 
  66 3 2 2 1 differ time 135 28 

  67 0 3 0 1 same time 138 29 

  68 0 3 0 1 differ time 141 30 
  69 3 0 0 1 same time 144 31 

  70 3 0 0 1 differ time 147 32 

  71 0 0 3 1 same time 150 33 
  72 0 0 3 1 differ time 153 34 

totals   36 27 27 17 90     

  TC1 1 0 0 2 single 154 36 
  TC2 1 0 0 2 single 155 38 
  TC3 1 0 0 2 single 156 40 

  TC4 1 0 0 2 single 157 42 
  TC5 1 0 0 2 single 158 44 
  TC6 1 0 0 2 single 159 46 
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  TC7 1 0 0 2 single 160 48 

totals   7 0 0 14 7     
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Appendix U - Classical Pulse Generator (CPG) 

 

U.1 Device Description: 

 
The ideal conceptual model of a QKD system specifies polarization-encoded single 

photons with the desired bit and basis. In reality, reliable on-demand single photon pulse 

generators are an unrealized technology. Real-world QKD system implementations instead 

generate a laser pulse containing millions of photons and strongly attenuate the pulse down to 

statistical sub-photon (quantum) levels. Within the Alice quantum module, the CPG subsystem 

generates the laser pulses and shifts them into a known polarization. The CPG subsystem 

contains the components shown in Fig. 1. 

 
Figure 202. Classical Pulse Generator (CPG) in the QKD system architecture.  
 

The CPG subsystem contains a controller, a laser, an isolator, an optical polarizer, an 

optical bandpass filter, a beamsplitter, a classical detector, electrical interfaces, and 

interconnecting polarization-maintaining (PM) optical fiber.   

propagation delay.  

U.1.1 CPG Controller 

The controller is an electrical device containing digital and analog circuits responsible for 

controlling the laser and monitoring the classical detector. It has a bidirectional electrical 
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interface to the quantum module controller, an electrical output to the laser, and an electrical 

input from the classical detector. It receives commands from the quantum model controller, 

sends fire commands to the laser, and monitors the health of the laser. 

U.1.2 Laser 

The laser is an electro-optical device which contains an optical oscillator and emits 

coherent light (Saleh & Teich, 1991). It has an electrical input to receive control messages and an 

optical output to emit generated pulses. Within the simulation, the laser creates optical pulses 

when it receives a “fire” command from the controller. The laser generates short-duration laser 

pulses (e.g., 1mW peak intensity with a 500ps duration) containing millions of photons 

(ThorLabs, 2013b). The output of the laser couples to the input of the isolator via PM fiber. 

U.1.3 Isolator 

The isolator is an optical device with two bidirectional optical ports that passes light in 

the forward direction while significantly attenuating light moving in the opposite direction 

(ThorLabs, 2013d). Optical signals arriving at one port propagate to the other port after a defined 

propagation delay with the attenuation based on the propagation direction. The isolator assures 

that virtually no light (e.g., reflections or light from external sources) enters the laser. The output 

of the isolator is coupled to the input of the polarizer via PM fiber 

U.1.4 Polarizer 

The polarizer is an optical device with two bidirectional optical ports allowing light of 

one polarization to pass while highly attenuating light orthogonal to the passed light (ThorLabs, 

2013c). Optical signals arriving at one port propagate to the other port after a defined 

propagation delay and polarized depending on the polarizer orientation with respect to the 
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connected fiber. The output of the polarizer is coupled to the input of the optical bandpass filter 

via PM fiber. 

U.1.5 Bandpass Filter 

The bandpass filter is an optical device with two bidirectional optical ports that passes the 

optical energy in a narrow band around the signal wavelength, λS, but strongly attenuates other 

wavelengths (ThorLabs, 2013a). This ensures that only the appropriate signal wavelength leaves 

the subsystem while preventing other sources of light from entering the laser. Optical signals 

arriving at one port propagate to the other port after a defined propagation delay and are 

attenuated based on the wavelength of the signal. The bandpass filter output couples to port 1 of 

the beamsplitter. 

U.1.6 Beamsplitter 

The beamsplitter is an optical device used to split a single beam of light into two 

components. It can also be used to combine two beams of light into one stream (OZOptics, 

2013). Unlike most of the optical devices, it has four bidirectional optical ports. In the splitting 

configuration, optical signals arriving at one port are split into two beams, propagating to the 

appropriate output ports after a defined propagation delay. Common splitting ratios are 50:50, 

90:10, and 99:1, but devices exist in almost any ratio.  Beams can also be split according to 

optical wavelength or polarization. The beamsplitter passes 99% of the pulse through to port 4, 

leaving the CPG and connecting to the next quantum module subsystem as shown in Fig. 9. 

Meanwhile, port 3 passes 1% of the pulse on to the classical detector via PM fiber. 

U.1.7 Classical Detector 

The classical detector is an opto-electrical device containing an optical photodiode and 
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support electronics to generate an electrical signal proportional to the power contained in the 

optical pulse (ThorLabs, 2013e). This signal connects to the controller which stores this 

information and checks to see if it falls below a predefined threshold. If so, the controller notifies 

the quantum module controller of an error condition. 

U.1.8 Polarization-Maintaining Optical Fiber 

PM fiber is a specialty fiber that intentionally uses the strong birefringence in two modes. 

It is a cylindrical optical waveguide made from a low-loss material, such as silica glass, and has 

two bidirectional optical ports. Light travels down one of the modes faster than down the other 

(fast and slow axes). If the input light is polarized and oriented along either mode, it maintains its 

polarization state even if the fiber is stressed (OZOptics, 2014).  Typically, PM fiber is used in 

components that cannot have drift in the polarization state (such as fiber interferometers and 

some fiber lasers) (RPPhotonics, 2013). Optical signals arriving at one port propagate to the 

other port after a defined propagation delay.  

U.2 CPG and Controller Behavior 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 

components may become temporarily degraded or permanently damaged which changes their 

characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and CPG is to collect and understand 

the physical, behavioral, and performance characteristics of the atomic components. In this case,   

the individual components were constructed earlier and the controller was built as a message 
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handler. The logic for the controller was based on the types of messages necessary for control of 

components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model. 

U.3 CPG Compound Conceptual Model 

 

 
 
Figure 203. Classical Pulse Generator (CPG) compound module conceptual model. 
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Figure 204. Classical Pulse Generator (CPG) controller conceptual model 
 
 
Table 83. List of CPG Controller messages 
 
Input Messages From  Response 

CPG_ENV Quantum 
controller 

Set the internal CPG controller temperature 

CPG_RESET Quantum 
controller 

Resets the CPG controller and clears the state 
variables 

CPG_STATUS_REQUEST Quantum 
controller 

Sends the CPG controller status and stored 
magnitude value 

CPG_FIRE_LASER Quantum 
controller 

Issues a single Fire Laser command to the laser 

CD_DETECTION Classical 
Detector 

Store the magnitude from the message 

    

Output Messages To Content 

CPG_ACK Quantum 
Controller 

Response to a Reset message 

CPG_STATUS Quantum 
Controller 

Response to a Status Request message 

CPG_LASER_FIRE Laser Command to fire the laser one time 

 
The conceptual model for a CPG consists of one optical input port {OptIn1}, one optical 

output port {OptOut1}, one environmental input port {EvnIn}, one control input port {CtrlIn} 

and one control output port {CtrlOut}. The environmental port allows external sources to 

communicate changes in the operational environment to the CPG. The electrical controller ports 
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allow for control inputs to the controller and responses from the CPG to the higher system 

functions.  

In comparison to the CPG layout used in the QKD simulation architecture shown in Fig. 

1, a single bidirectional optical connection is decomposed into an optical input and an optical 

output in the conceptual model. This is necessary to properly represent the behavior of the device 

using the DEVS formalism. The electrical control port is also decomposed in the model into an 

input port and an output port.  

When an optical signal is sent to the input of the CPG, a small portion of the signal will 

be instantaneously reflected back to the signal source.  Since the conceptual model decomposes 

each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The CPG components must calculate the power of each incoming optical signal in order 

to determine if the device will become damaged due to excessive power levels. This calculation 

is made when the packet first enters each of the components the module. In the case of optical 

overpowering, once overpowered a component will permanently change attenuation. External 

environmental messages sent to the CPG are directed to individual components convey the 

temperature of the operational environmental so the module can determine if it is degraded (a 

temporary condition) or damaged (a permanent condition). In either case, a function determines 

how the attenuation changes as a function of the device state and current temperature. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 
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This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

U.4 English-Language Rules for the Controller 

In this section, English language rules are developed to express the desired behavior of the 

controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 
 

 Determine the arrival port of the signal. 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

U.5 DEVS Phase Transition Diagram (Controller)   

The controller phase transition diagram in Fig. 4 shows the phases of the CPG controller 

in the boxes and the transitions represented by arrows between the phases. Each transition is 

labeled with the type of transition (dext – external or dint – internal) and the significant actions that 

take place during the transition. Each arc has an entry either beneath or beside the arc indicating 

the value of the time advance function for the next phase. Each box is labeled with the name of 
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the phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  

 
Figure 205. CPG Controller DEVS phase transition diagram 

 

U.6 CPG Controller Event-Trace Diagram   

This section shows various examples of packets entering the CPG controller. The tables 

list the states the component proceeds through as the packets are processed. Each table has the 

state number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 

controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

Explanations for each column: 
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 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 LastCDPower: shows the power of the last classical detection message 

 Notes: any notes for that state 

 

U.6.1 CASE I: Initial Passive with Single Control Packet (Fire) Arriving at Time 0 
 
Table 84. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power lastCD power 

Notes: 
assume tp=0 

1-packet no env no ext 1 ctrl 

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 s1 entry respond 0 null c n n null   

0 s1 exit respond inf null c n n null   

0 s2 entry passive inf null c n n null   

 

U.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
 
Table 85. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power lastCD power 

Notes: 
assume tp=5 

1-packet 1 env no ext 0 ctrl 

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 S1 entry passive inf null c n n null   

 

U.7 Classical Pulse Generator (CPG) Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 
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Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, “lastCDPower”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

“lastCDPower” = variable to store the power value of the last classical detector message 

 
For the CPG controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSCPGcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
 
where 
 

tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
lastCDPower = variable that holds the power value of the last classical detector message 
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interruptRespond = flag variable set when Respond phase is interrupted by an external event 
messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  

   store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2” “EnvIn”} with 

XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“CtrlOut1”, “CtrlOut2”} with 

YM = {(“CtrlOut1”, YCtrlOut1), (“CtrlOut2”, Y CtrlOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, lastCDPower} = {{“passive”, 

“respond”} x 0R  x V x R x {“Y”, “N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, lastCDPower, e, ((pi,vi),…. (pn,vn))) = 
(“respond”, 0, store, temperature, overtemp, overpower, lastCDPower)  
  if phase = “passive” and p = “CtrlIn1”   
     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” 
        outputPort = “CtrlOut1” 
     if ctrlMsg.status = “fire laser”  
        outputPort = “CtrlOut2” 
 
(“passive”, 0, store, temperature, overtemp, overpower, lastCDPower)  
  if phase = “passive” and p = “CtrlIn2”   
      lastCDPower = messagebag.magnitude 
 
(“passive”, ∞, store, temperature, overtemp, overpower, lastCDPower) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
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        overtemp = “Y” 
 
(phase, σ – e, store, temperature, overtemp, overpower, lastCDPower) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, lastCDPower) = 
  (“passive”, ∞, store, temperature, overtemp, overpower, lastCDPower) 
    if phase = “respond”   
  
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, lastCDPower) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
  
 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, lastCDPower) = σ;  
 

U.8 Classical Pulse Generator (CPG) Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
For the CPG compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
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Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈	Iportsd}; 

EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈	Oportsd};	

IC  {((a,opa),(b,ipb))|a,b ∈	D,	opa ∈	Oportsa, ipb ∈	Iportsb}; 

((d,opd),(e,ipd)) ∈	IC	implies	d	≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 

DEVSCPG = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn3”, “OptIn4”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn3”, v), (“OptIn4”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “CtrlOut2”, “OptOut1”, “OptOut3”, “OptOut4”}   
Y = {(“CtrlOut1”, v), (“CtrlOut2”, v), (“OptOut1”, v), (“OptOut3”, v), (“OptOut4”, v) |v ∈ V} 
 
D = {controller, laser, isolator, polarizer, bandpass, beamsplitter, classicaldetector, PMfiber1, 
PMfiber2, PMfiber3, PMfiber4, PMfiber5, PMfiber6} 
Md = Mcontroller, Mlaser, Misolator, Mpolarizer, Mbandpass, Mbeamsplitter, Mclassicaldetector, MPMfibe1r, MPMfiber2, 
MPMfiber3, MPMfiber4, MPMfiber5, MPMfiber6   
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(laser, “EnvIn”)), ((N, “EnvIn”),(isolator, “EnvIn”)), ((N, “EnvIn”),(polarizer, 
“EnvIn”)), ((N, “EnvIn”),(bandpass, “EnvIn”)), ((N, “EnvIn”),(beamsplitter, “EnvIn”)), ((N, 
“EnvIn”),(classicaldetector, “EnvIn”)), ((N, “EnvIn”),(PMfiber1, “EnvIn”)), ((N, “EnvIn”), 
(PMfiber2, “EnvIn”)), ((N, “EnvIn”),(PMfiber3, “EnvIn”)), ((N, “EnvIn”),(PMfiber4, “EnvIn”)), 
((N, “EnvIn”),(PMfiber5, “EnvIn”)), ((N, “EnvIn”),(PMfiber6, “EnvIn”)), ((N, “OptIn1”), 
(PMfiber5, “OptIn2”))} 
 
EOC = {((PMfiber5, “OptOut2”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”))} 
 
IC = {((controller, “CtrlOut2”), (laser, “CtrlIn”)), ((classicaldetector, “CtrlOut1”),(controller, 
“CtrlIn2”)), ((laser, “OptOut1”),(PMfiber1, “OptIn1”)), ((PMfiber1, “OptOut1”),(laser, “OptIn1”)), 
((PMfiber1, “OptOut2”), (isolator, “OptIn1”)), ((isolator, “OptOut1”), (PMfiber1, “OptIn2”)), 
((isolator “OptOut2”), (PMfiber2, “OptIn1”)), ((PMfiber2, “OptOut1”), (isolator, “OptIn2”)), 
((PMfiber2, “OptOut2”), (polarizer, “OptIn1”)), ((polarizer, “OptOut1”), (PMfiber2, “OptIn2”)), 
((polarizer, “OptOut2”), (PMfiber3, “OptIn1”)), ((PMfiber3, “OptOut1”), (polarizer, “OptIn2”)), 
((PMfiber3, “OptOut2”), (bandpass, “OptIn1”)), ((bandpass, “OptOut1”), (PMfiber3, “OptIn2”)), 
((bandpass “OptOut2”), (PMfiber4, “OptIn1”)), ((PMfiber4, “OptOut1”), (bandpass, “OptIn2”)), 
((PMfiber4, “OptOut2”), (beamsplitter, “OptIn1”)), ((beamsplitter, “OptOut1”), (PMfiber4, 
“OptIn2”)), ((beamsplitter, “OptOut4”), (PMfiber5, “OptIn1”)), ((PMfiber5, “OptOut1”), 
(beamsplitter, “OptIn4”)), ((beamsplitter, “OptOut3”),(PMfiber6, “OptIn2”)), ((PMfiber6, 
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“OptOut2”),(beamsplitter, “OptIn3”)), ((PMfiber6, “OptOut1”),(classicaldetector, “OptIn1”)), 
((classicaldetector, “OptOut1”),(PMfiber6, “OptIn1”))} 
 

U.9 CPG Controller Use Cases 

 
Figure 206. Component states. 
 

 
Figure 207. Controller phase transition diagram 
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U.9.1 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to a fire laser message 

o React to a classical detector pulse detection message 

 
 Assumptions 

o   Incoming electrical signals are not affected by component state 

U.9.2 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
 Controller ends in Passive phase   

U.9.3 Respond to an Environmental Packet   
 
Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 

controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

U.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 
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U.9.5 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

U.9.6 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

U.9.7 Respond to a Fire Laser Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to laser component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

U.9.8 Respond to Fire Laser Message End Goals 
 

 Fire laser message received properly 

 Fire message recognized and passed to laser 

U.9.9 Respond to a Classical Detection Message 
 
Incoming detection message arrives at the controller from the classical detector. Store the 

message contents.  

 Assumptions 

o Controller has completed initialization sequence at least once 

U.9.10 Respond to Classical Detection Message End Goals 
 

 CD message received properly 

 CD message values stored properly 
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U.10 CPG Module Use Cases 

U.10.1 Respond to an Optical Packet   
 
Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

U.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 

U.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

U.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

U.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 

U.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

U.11 CPG Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was testing the ability of the coupled 
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submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 

appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 CPG submodule – control message fires the signal laser 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 

checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 
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Appendix V - Pulse Modulator (PM) 

V.1 Device Description: 

 
The pulse modulator creates the polarization encoding necessary for the BB84 protocol. 

This subsystem reacts to commands from the quantum controller to polarize the optical pulses 

generated by the CPG laser.  Some QKD systems use a laser for each type of polarization, but 

this architecture uses one laser and component to change each packet polarization. The PM 

subsystem contains the components shown in Fig. 1. 

 
Figure 208. Pulse Modulator (PM) in the QKD system architecture.  

 

The PM subsystem contains a controller, a polarization modulator, electrical interfaces, and 

interconnecting single-mode (SM) and polarization-controlling optical fiber. We briefly discuss 

the behavior of each of the components contained within the module.  

V.1.1 PM Controller 
 

The controller is an electrical device containing digital and analog circuits responsible for 

controlling the module. It has a bidirectional electrical interface to the quantum module 

controller and an electrical output to the controlled device. It receives commands from the 

quantum model controller and sends control messages to and from the controlled device. 
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V.1.2 Polarization Modulator 
 

The polarization modulator (PM) is an abstract component that represents any number of 

devices used to electronically change the polarization of the light stream. This architecture 

conceptualizes these devices as having some form of polarization material that can be moved. 

The effect is to change a known polarization to into one of several output polarizations. The PM 

responds to external commands to set the output polarization to a fixed level and cannot 

determine the input polarization. The PM is an in-line bidirectional optical component with two 

optical ports. Optical signals arriving at one of the ports is attenuated and polarized, then 

propagated to the other port after a defined propagation delay. The optical output no longer needs 

the PM fiber, so the output path changes to single-mode (SM) optical fiber, which couples to the 

input of the next subsystem. 

V.1.3 Single-Mode (SM) Optical Fiber 
 

SM fiber is an optical component used to interconnect optical devices. It has two 

bidirectional optical ports. Optical signals arriving at one port propagate to the other port after a 

defined propagation delay with its attenuation a function of the type and the length of the fiber. It 

is a cylindrical optical waveguide made from a low-loss material, such as silica glass. It has a 

core which guides the light and an outer cladding that reflects the internal light back into the 

core, bouncing the light down the fiber. This cladding helps to reflect outside light to keep in 

from entering the core. This structure allows for low loss over long distances. The single-mode 

of the fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical 

aperture with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & 

Teich, 1991; ThorLabs, 2013). 
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V.2 PM and Controller Behavior 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 

components may become temporarily degraded or permanently damaged which changes their 

characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and module is to collect and 

understand the physical, behavioral, and performance characteristics of the atomic components. 

In this case, the individual components were constructed earlier and the controller was built as a 

message handler. The logic for the controller was based on the types of messages necessary for 

control of components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model.  
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V.3 PM Compound Conceptual Model 

 

 
 
 Figure 209. Pulse Modulator (PM) compound module conceptual model. 

 
 

 
Figure 210. Pulse Modulator (PM) controller conceptual model 

Table 86. List of PM Controller messages. 

Input Messages From  Response 

PM_ENV Quantum 
controller 

Set the internal controller temperature 

PM_RESET Quantum 
controller 

Resets the controller and clears the state variables 

PM_STATUS_REQUES
T 

Quantum 
controller 

Sends the controller status   

PM_SET_HORIZONTA Quantum Sets polarization to horizontal 



 

653 
 

L controller 

PM_SET_VERTICAL Quantum 
controller 

Sets polarization to vertical 

PM_SET_ANTIDIAGO
NAL 

Quantum 
controller 

Sets polarization to anti-diagonal 

PM_SET_DIAGONAL Quantum 
controller 

Sets polarization to diagonal 

PM_SET_ANGLE Quantum 
controller 

Sets polarization to a specific angle 

PM_GET_ANGLE Quantum 
controller 

Requests current polarization angle of the polarization 
modulator 

   

Output Messages To Content 

PM_ACK Quantum 
Controller 

Response to a Reset message 

PM_STATUS Quantum 
Controller 

Response to a Status Request message 

 
The conceptual model for a PM consists of two optical input ports {OptIn1, OptIn2}, two 

optical output ports {OptOut1, OptOut1}, one environmental input port {EvnIn}, one control 

input port {CtrlIn1} and one control output port {CtrlOut1}. The environmental port allows 

external sources to communicate changes in the operational environment to the module. The 

electrical controller ports allow for control inputs to the controller and responses from the 

module to the higher system functions.  

In comparison to the module layout used in the QKD simulation architecture shown in 

Fig. 1, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. This is necessary to properly represent the behavior of 

the device using the DEVS formalism. The electrical control port is also decomposed in the 

model into an input port and an output port.  

When an optical signal is sent to the input of the module, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 
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unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The module components must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters each of the components the module. In the case 

of optical overpowering, once overpowered a component will permanently change attenuation. 

External environmental messages sent to the module are directed to individual components to 

convey the temperature of the operational environmental so the module can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). Changes to components 

based on the temperature determine the behavior of the module. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

V.4 English-Language Rules for the Controller 

In this section, English language rules are developed to express the desired behavior of the 

controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 
 

 Determine the arrival port of the signal. 



 

655 
 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

V.5 DEVS Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the module controller in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  

 
Figure 211. PM Controller DEVS phase transition diagram 
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V.6 PM Controller Event-Trace Diagram   

 
This section shows various examples of messages entering the controller. The tables list 

the states the component proceeds through as the events are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 

controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

 
Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 CurrentPolarization: current polarization modulator polarization setting 

 Notes: any notes for that state 

V.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 87. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

current polari- 
zation 

Notes: 
assume 
tp=0 

1-packet no env no ext 1 ctrl  

0 s0 entry passive inf null c n n null   
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0 s0 exit passive 0 null c n n null   

0 s1 entry respond 0 null c n n null   

0 s1 exit respond inf null c n n null   

0 s2 entry passive inf null c n n null   

 

V.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
 
Table 88. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

current polari- 
zation 

Notes: 
assume 
tp=5 

1-packet 1 env no ext 0 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 S1 entry passive inf null c n n null   

 

V.7 PM Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“currentPolarization”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

“currentPolarization” = variable to store the current polarization value of the polarization 

modulator 

 
For the controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
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YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSPMcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
 
where 
 

tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
currentPolarization = variable that holds the current polarization 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  
store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
ctrlMsg() =  method that generates a response message to received control messages 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2” “EnvIn”} with 

XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“CtrlOut1”, “CtrlOut2”} with 
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YM = {(“CtrlOut1”, YCtrlOut1), (“CtrlOut2”, Y CtrlOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, currentPolarization } = {{“passive”, 

“respond”} x 0R  x V x R x {“Y”, “N”} x {“Y”,”N”} x V } 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, currentPolarization ,e, ((pi,vi),…. 

(pn,vn))) = 
(“respond”, 0, store, temperature, overtemp, overpower, currentPolarization)  
  if phase = “passive” and p = “CtrlIn1”   
     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” or “get angle” 
        outputPort = “CtrlOut1” 
     if ctrlMsg.status = “any set msg”  
        outputPort = “CtrlOut2” 
 
(“passive”, 0, store, temperature, overtemp, overpower, currentPolarization)  
  if phase = “passive” and p = “CtrlIn2”   
      currentPolarization = messagebag.polarization 
 
(“passive”, ∞, store, temperature, overtemp, overpower, currentPolarization) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(phase, σ – e, store, temperature, overtemp, overpower, currentPolarization) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, currentPolarization) = 
  (“passive”, ∞, store, temperature, overtemp, overpower, currentPolarization) 
    if phase = “respond”   
  
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, currentPolarization) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
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 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, currentPolarization) = σ;  
 

V.8 PM Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
For the PM compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈	Iportsd}; 

EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈	Oportsd};	

IC  {((a,opa),(b,ipb))|a,b ∈	D,	opa ∈	Oportsa, ipb ∈	Iportsb}; 

((d,opd),(e,ipd)) ∈	IC	implies	d	≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 

DEVSPM = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn2”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn2”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “CtrlOut2”, “OptOut1”, “OptOut2”}   
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Y = {(“CtrlOut1”, v), (“CtrlOut2”, v), (“OptOut1”, v), (“OptOut2”, v)|v ∈ V} 
 
D = {controller, polarizationmodulator, PMfiber, SMfiber} 
Md = Mcontroller, Mpolarizationmodulator, MPMfiber, MSMfiber   
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(polarizationmodulator, “EnvIn”)), ((N, “EnvIn”),(PMfiber, “EnvIn”)), ((N, “EnvIn”), 
(SMfiber, “EnvIn”)),((N, “OptIn1”),(PMfiber, “OptIn1”)), ((N, “OptIn2”),(SMfiber, “OptIn2”))} 
 
EOC = {((PMfiber, “OptOut1”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”)), 
((SMfiber, “OptOut2”),(N, “OptOut2”))} 
 
IC = {((controller, “CtrlOut2”), (polarizationmodulator, “CtrlIn1”)), ((polarization modulator, 
“CtrlOut1”),(controller, “CtrlIn2”)) ,((PMfiber, “OptOut2”), (polarizationmodulator, “OptIn1”)), 
((polarizationmodulator, “OptOut1”), (PMfiber, “OptIn2”)), ((polarizationmodulator, “OptOut2”), 
(SMfiber, “OptIn1”)), ((SMfiber, “OptOut1”), (polarizationmodulator, “OptIn2”))} 
 

V.9 PM Controller Use Cases 

 
 

 
Figure 212. Component states. 
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Figure 213. Controller phase transition diagram 

V.9.1 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to a set horizontal message 

o React to a set vertical message 

o React to a set antidiagonal message 

o React to a set diagonal message 

o React to a set angle message 

o React to a get angle message 

 

 Assumptions 

o   Incoming electrical signals are not affected by component state 

V.9.2 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
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 Controller ends in Passive phase   

V.9.3 Respond to an Environmental Packet   
 
Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 

controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

V.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

V.9.5 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

V.9.6 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

V.9.7 Respond to a Set Horizontal Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 
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V.9.8 Respond to Set Horizontal Message End Goals 
 

 Set Horizontal message received properly 

 Message recognized and passed to the proper component 

V.9.9 Respond to a Set Vertical Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

V.9.10 Respond to Set Vertical Message End Goals 
 

 Set Vertical message received properly 

 Message recognized and passed to the proper component 

V.9.11 Respond to a Set AntiDiagonal Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

V.9.12 Respond to Set AntiDiagonal Message End Goals 
 

 Set AntiDiagonal message received properly 

 Message recognized and passed to the proper component 

V.9.13 Respond to a Set Diagonal Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

V.9.14 Respond to Set Diagonal Message End Goals 
 

 Set Diagonal message received properly 
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 Message recognized and passed to polarization controller 

V.9.15 Respond to a Set Angle Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to proper component 

.   Assumptions 

o Controller has completed initialization sequence at least once 

V.9.16 Respond to Set Angle Message End Goals 
 

 Set Angle message received properly 

 Message recognized and passed to proper component 

V.9.17 Respond to a Get Angle Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

V.9.18 Respond to Get Angle Message End Goals 
 

 Get Angle message received properly 

 Message recognized and passed to the proper component 

 

V.10 PM Module Use Cases 

V.10.1 Respond to an Optical Packet   
 
Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

V.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 
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V.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

V.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

V.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 

V.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

V.11 PM Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was testing the ability of the coupled 

submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 

appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 PM submodule – control message changes polarization of polarization controller 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 
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checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 
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Appendix W - Decoy State Generator (DSG) 

W.1 Device Description: 

 
The ideal version of a QKD system would emit single photons, but existing hardware is not 

capable of producing on-demand single photons. This allows eavesdroppers the opportunity to 

conduct a ‘photon-number-splitting attack’ (PNS) but Alice and Bob have countermeasures in 

‘decoy states.’ The Decoy State Generator (DSG) allows the quantum controller to randomly 

vary the power of the optical pulses. This variance, along with statistic collection, allows Alice 

and Bob to detect PNS activity in the quantum channel. The DSG contains the components 

shown in Fig. 1. 

 
Figure 214. Decoy State Generator (DSG) in the QKD system architecture.  
 

The DSG subsystem contains a controller, an electronically variable optical attenuator 

(EVOA), electrical interfaces, and interconnecting single-mode (SM) optical fiber. We briefly 

discuss the behavior of each of the components contained within the module.  

W.1.1 DSG Controller 
 

The controller is an electrical device containing digital and analog circuits responsible for 

controlling the EVOA. It has a bidirectional electrical interface to the quantum module controller 

and an electrical output to the EVOA. It receives commands from the quantum model controller 

to vary the attenuation, creating differing power levels within the optical pulses.  
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W.1.2  EVOA 
 

The EVOA is an opto-electrical device containing a variable attenuator and support 

electronics to vary the output attenuation. The EVOA attenuates the power of optical signals by a 

variable amount. These devices usually have some form of blocking material such as an opaque 

slab or a window tilted in the path of the light. This blocking material is connected to an electric 

motor controlled by the higher system functions, allowing for a variable amount of light to exit 

the device (OZOptics, 2013; ThorLabs, 2013b). Optical signals arriving at one port propagate to 

the other port after a defined propagation delay with the attenuation based on the current 

controlled value. The EVOA output couples to input of the next subsystem via SM fiber. 

W.1.3  Single-Mode Optical Fiber 
 

SM fiber is an optical component used to interconnect optical devices. It has two 

bidirectional optical ports. Optical signals arriving at one port propagate to the other port after a 

defined propagation delay with its attenuation a function of the type and the length of the fiber. It 

is a cylindrical optical waveguide made from a low-loss material, such as silica glass. It has a 

core which guides the light and an outer cladding that reflects the internal light back into the 

core, bouncing the light down the fiber. This cladding helps to reflect outside light to keep in 

from entering the core. This structure allows for low loss over long distances. The single-mode 

of the fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical 

aperture with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & 

Teich, 1991; ThorLabs, 2013). SM fiber couples the EVOA with the next subsystem. 

W.2 DSG and Controller Behavior 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 
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components may become temporarily degraded or permanently damaged which changes their 

characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and module is to collect and 

understand the physical, behavioral, and performance characteristics of the atomic components. 

In this case, the individual components were constructed earlier and the controller was built as a 

message handler. The logic for the controller was based on the types of messages necessary for 

control of components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model.  

W.3 DSG Compound Conceptual Model 

 
 

 Figure 215. DSG compound module conceptual model. 
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Figure 216. DSG controller conceptual model 

Table 89. List of DSG Controller messages. 

Input Messages From  Response 

DSG_ENV Quantum controller Set the internal controller temperature 

DSG_RESET Quantum controller Resets the controller and clears the state variables 

DSG_STATUS_REQUEST Quantum controller Sends the controller status   

DSG_INCREASE_ATTEN Quantum controller Increases the attenuation 

DSG_DECREASE_ATTEN Quantum controller Decreases the attenuation 

DSG_SET_ATTEN Quantum controller Sets the attenuation 

DSG_GET_ATTEN Quantum controller Gets the current attenuation value 

   

Output Messages To Content 

DSG_ACK Quantum Controller Response to a Reset message 

DSG_STATUS Quantum Controller Response to a Status Request message 

 
The conceptual model for a DSG consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut1}, one environmental input port {EvnIn}, one control 

input port {CtrlIn1} and one control output port {CtrlOut1}. The environmental port allows 

external sources to communicate changes in the operational environment to the module. The 

electrical controller ports allow for control inputs to the controller and responses from the 

module to the higher system functions.  
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In comparison to the module layout used in the QKD simulation architecture shown in 

Fig. 1, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. This is necessary to properly represent the behavior of 

the device using the DEVS formalism. The electrical control port is also decomposed in the 

model into an input port and an output port.  

When an optical signal is sent to the input of the module, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The module components must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters each of the components the module. In the case 

of optical overpowering, once overpowered a component will permanently change attenuation. 

External environmental messages sent to the module are directed to individual components to 

convey the temperature of the operational environmental so the module can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). Changes to components 

based on the temperature determine the behavior of the module. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 
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W.4 English-Language Rules for the Controller 

In this section, English language rules are developed to express the desired behavior of the 

controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 
 

 Determine the arrival port of the signal. 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

W.5 DEVS Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the module controller in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  
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Figure 217. DSG Controller DEVS phase transition diagram 

W.6 DSG Controller Event-Trace Diagram   

This section shows various examples of messages entering the controller. The tables list 

the states the component proceeds through as the events are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 

controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 
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 Over Power: shows the value of the over power flag variable 

 Current Attenuation: current EVOA attenuation setting 

 Notes: any notes for that state 

W.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 90. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

current 
attenuation 

Notes: 
assume 
tp=0 

1-packet no env no ext 1 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 s1 entry respond 0 null c n n null   

0 s1 exit respond inf null c n n null   

0 s2 entry passive inf null c n n null   

 

W.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
Table 91. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

current 
attenuation 

Notes: 
assume 
tp=5 

1-packet 1 env no ext 0 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 S1 entry passive inf null c n n null   

 

W.7 DSG Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“currentAttenuation”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
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“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

“currentAttenuation” = variable to store the current attenuation value of the EVOA 

 
For the controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSDSGcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
 
where 
 

tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
currentAttenuation = variable that holds the current attenuation 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  
store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
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σ = state variable that holds the time to next transition 
ctrlMsg() =  method that generates a response message to received control messages 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2” “EnvIn”} with 

XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“CtrlOut1”, “CtrlOut2”} with 

YM = {(“CtrlOut1”, YCtrlOut1), (“CtrlOut2”, Y CtrlOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, currentAttenuation } = {{“passive”, 

“respond”} x 0R  x V x R x {“Y”, “N”} x {“Y”,”N”} x V } 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, currentAttenuation ,e, ((pi,vi),…. (pn,vn))) 

= 
(“respond”, 0, store, temperature, overtemp, overpower, currentAttenuation)  
  if phase = “passive” and p = “CtrlIn1”   
     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” or “get attenuation” 
        outputPort = “CtrlOut1” 
     if ctrlMsg.status = “increase” or “decrease” or set” 
        outputPort = “CtrlOut2” 
 
(“passive”, 0, store, temperature, overtemp, overpower, currentAttenuation)  
  if phase = “passive” and p = “CtrlIn2”   
      currentAttenuation = messagebag.attenuation 
 
(“passive”, ∞, store, temperature, overtemp, overpower, currentAttenuation) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(phase, σ – e, store, temperature, overtemp, overpower, currentAttenuation) 

           otherwise; 
  
Internal Transition Function: 
 



 

678 
 

δint(phase, σ, store, temperature, overtemp, overpower, currentAttenuation) = 
  (“passive”, ∞, store, temperature, overtemp, overpower, currentAttenuation) 
    if phase = “respond”   
  
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, currentAttenuation) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
  
 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, currentAttenuation) = σ;  
 

W.8 DSG Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
For the DSG compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈	Iportsd}; 
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EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈	Oportsd};	

IC  {((a,opa),(b,ipb))|a,b ∈	D,	opa ∈	Oportsa, ipb ∈	Iportsb}; 

((d,opd),(e,ipd)) ∈	IC	implies	d	≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 

DEVSDSG = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn2”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn2”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “CtrlOut2”, “OptOut1”, “OptOut2”}   
Y = {(“CtrlOut1”, v), (“CtrlOut2”, v), (“OptOut1”, v), (“OptOut2”, v)|v ∈ V} 
 
D = {controller, evoa, SMfiber1, SMfiber2} 
Md = Mcontroller, Mevoa, MsMfiber1, MSMfiber2   
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(evoa, “EnvIn”)), ((N, “EnvIn”),(SMfiber1, “EnvIn”)), ((N, “EnvIn”), (SMfiber2, 
“EnvIn”)),((N, “OptIn1”),(SMfiber1, “OptIn1”)), ((N, “OptIn2”),(SMfiber2, “OptIn2”))} 
 
EOC = {((SMfiber1, “OptOut1”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”)), 
((SMfiber2, “OptOut2”),(N, “OptOut2”))} 
 
IC = {((controller, “CtrlOut2”), (evoa, “CtrlIn1”)), ((evoa, “CtrlOut1”),(controller, “CtrlIn2”)) 
,((SMfiber1, “OptOut2”), (evoa, “OptIn1”)), ((evoa, “OptOut1”), (SMfiber1, “OptIn2”)), ((evoa, 
“OptOut2”), (SMfiber2, “OptIn1”)), ((SMfiber2, “OptOut1”), (evoa, “OptIn2”))} 
 

W.9 DSG Controller Use Cases 
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Figure 218. Component states. 

 
Figure 219. Controller phase transition diagram 

W.9.1 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to an increase attenuation message 

o React to a decrease attenuation message 

o React to a set attenuation message 
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o React to a get attenuation message 

 Assumptions 

o   Incoming electrical signals are not affected by component state 

W.9.2 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
 Controller ends in Passive phase   

W.9.3 Respond to an Environmental Packet   
 
Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 

controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

W.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

W.9.5 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

W.9.6 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 
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 Change component function properly, if necessary 

W.9.7 Respond to an Increase Attenuation Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

W.9.8 Respond to Increase Attenuation Message End Goals 
 

 Increase Attenuation message received properly 

 Message recognized and passed to proper component 

W.9.9 Respond to a Decrease Attenuation Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

W.9.10 Respond to Decrease Attenuation Message End Goals 
 

 Decrease Attenuation message received properly 

 Message recognized and passed to proper component 

W.9.11 Respond to a Set Attenuation Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

W.9.12 Respond to Set Attenuation Message End Goals 
 

 Set Attenuation message received properly 

 Message recognized and passed to proper component 

W.9.13 Respond to a Get Attenuation Message  
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Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

W.9.14 Respond to Get Attenuation Message End Goals 
 

 Get Attenuation message received properly 

 Message recognized and passed to proper component 

 

W.10 DSG Module Use Cases 

W.10.1 Respond to an Optical Packet   
 
Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

W.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 

W.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

W.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

W.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 
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W.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

W.11 DSG Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was testing the ability of the coupled 

submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 

appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 DSG submodule – control message changes attenuation of EVOA 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 

checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 
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Appendix X - Classical To Quantum (CTQ) 

X.1 Device Description: 

Optical pulses generated by the laser in the CPG contain millions of photons, far more 

than required by QKD protocols. Since single photon generators are not available, existing QKD 

systems take these classical-level pulses (meaning they contain many photons) and attenuate 

them down to quantum-level pulses (meaning less than one photon) with an average photon 

count of 0.1. This low number is necessary to achieve the single-photon requirements of QKD.  

The Classical To Quantum subsystem contains the components shown in Fig. 1. 

 
Figure 220. Classical To Quantum (CTQ) in the QKD system architecture.  
 

The CTQ subsystem contains an electronically variable optical attenuator, a fixed optical 

attenuator and interconnecting SM optical fiber. We briefly discuss the behavior of each of the 

components contained within the module.  

24.1.1 EVOA 

The EVOA is an opto-electrical device containing a variable attenuator and support 

electronics to vary the output attenuation. The EVOA attenuates the power of optical signals by a 

variable amount. These devices usually have some form of blocking material such as an opaque 

slab or a window tilted in the path of the light. This blocking material is connected to an electric 

motor controlled by the higher system functions, allowing for a variable amount of light to exit 

the device (OZOptics, 2013; ThorLabs, 2013c). Optical signals arriving at one port propagate to 
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the other port after a defined propagation delay with the attenuation based on the current 

controlled value.   

X.1.2 Fixed Attenuator 
 

The fixed attenuator is an optical device with two bidirectional optical ports that 

attenuates moving through the component. They are typically fabricated using either doped 

fibers or misaligned splices. The alternative build out-style attenuator is a small male-female 

adapter used to adjust the level of attenuation by coupling one or more FAs between fiber cables 

(ThorLabs, 2013a). Optical signals arriving at one port propagate to the other port after a defined 

propagation delay. The output of the fixed attenuator couples to the input of the isolator in the 

next subsystem using SM fiber. 

X.1.3 Single-Mode Optical Fiber 
 

SM fiber is an optical component used to interconnect optical devices. It has two 

bidirectional optical ports. Optical signals arriving at one port propagate to the other port after a 

defined propagation delay with its attenuation a function of the type and the length of the fiber. It 

is a cylindrical optical waveguide made from a low-loss material, such as silica glass. It has a 

core which guides the light and an outer cladding that reflects the internal light back into the 

core, bouncing the light down the fiber. This cladding helps to reflect outside light to keep in 

from entering the core. This structure allows for low loss over long distances. The single-mode 

of the fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical 

aperture with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & 

Teich, 1991; ThorLabs, 2013b). SM fiber couples devices within the module. 
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X.2 CTQ and Controller Behavior 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 

components may become temporarily degraded or permanently damaged which changes their 

characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and module is to collect and 

understand the physical, behavioral, and performance characteristics of the atomic components. 

In this case, the individual components were constructed earlier and the controller was built as a 

message handler. The logic for the controller was based on the types of messages necessary for 

control of components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model.  
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X.3 CTQ Compound Conceptual Model 

 

 
 

 Figure 221. CTQ compound module conceptual model. 

 
 

 
Figure 222. CTQ controller conceptual model 

Table 92. List of CTQ Controller messages. 

Input Messages From  Response 

CTQ_ENV Quantum controller Set the internal controller temperature 

CTQ_RESET Quantum controller Resets the controller and clears the state variables 

CTQ_STATUS_REQUEST Quantum controller Sends the controller status   

CTQ_INCREASE_ATTEN Quantum controller Increases the attenuation 

CTQ_DECREASE_ATTEN Quantum controller Decreases the attenuation 

CTQ_SET_ATTEN Quantum controller Sets the attenuation 
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CTQ_GET_ATTEN Quantum controller Gets the current attenuation value 

   

Output Messages To Content 

CTQ_ACK Quantum Controller Response to a Reset message 

CTQ_STATUS Quantum Controller Response to a Status Request message 

 
The conceptual model for a CTQ consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut1}, one environmental input port {EvnIn}, one control 

input port {CtrlIn1} and one control output port {CtrlOut1}. The environmental port allows 

external sources to communicate changes in the operational environment to the module. The 

electrical controller ports allow for control inputs to the controller and responses from the 

module to the higher system functions.  

In comparison to the module layout used in the QKD simulation architecture shown in 

Fig. 1, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. This is necessary to properly represent the behavior of 

the device using the DEVS formalism. The electrical control port is also decomposed in the 

model into an input port and an output port.  

When an optical signal is sent to the input of the module, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The module components must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters each of the components the module. In the case 

of optical overpowering, once overpowered a component will permanently change attenuation. 
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External environmental messages sent to the module are directed to individual components to 

convey the temperature of the operational environmental so the module can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). Changes to components 

based on the temperature determine the behavior of the module. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

X.4 English-Language Rules for the Controller 

In this section, English language rules are developed to express the desired behavior of the 

controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 
 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 
 

 Determine the arrival port of the signal. 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 
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X.5 DEVS Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the module controller in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  

 
Figure 223. CTQ Controller DEVS phase transition diagram 

X.6 CTQ Controller Event-Trace Diagram   

This section shows various examples of messages entering the controller. The tables list 

the states the component proceeds through as the events are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 
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variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 

controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Current Attenuation: current EVOA attenuation setting 

 Notes: any notes for that state 

X.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 93. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

current 
attenuation 

Notes: 
assume 
tp=0 

1-packet no env no ext 1 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 s1 entry respond 0 null c n n null   

0 s1 exit respond inf null c n n null   

0 s2 entry passive inf null c n n null   

 

X.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
 
Table 94. Case II state list. 
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time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

current 
attenuation 

Notes: 
assume 
tp=5 

1-packet 1 env no ext 0 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 S1 entry passive inf null c n n null   

 

X.7 CTQ Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“currentAttenuation”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

“currentAttenuation” = variable to store the current attenuation value of the EVOA 

 
For the controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  
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Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSCTQcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
 
where 
 

tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
currentAttenuation = variable that holds the current attenuation 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  
store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
ctrlMsg() =  method that generates a response message to received control messages 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2” “EnvIn”} with 

XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“CtrlOut1”, “CtrlOut2”} with 

YM = {(“CtrlOut1”, YCtrlOut1), (“CtrlOut2”, Y CtrlOut2)} is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, currentAttenuation } = {{“passive”, 

“respond”} x 0R  x V x R x {“Y”, “N”} x {“Y”,”N”} x V } 

 
External Transition Function: 
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δext(phase, σ, store, temperature, overtemp, overpower, currentAttenuation ,e, ((pi,vi),…. (pn,vn))) 
= 

(“respond”, 0, store, temperature, overtemp, overpower, currentAttenuation)  
  if phase = “passive” and p = “CtrlIn1”   
     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” or “get attenuation” 
        outputPort = “CtrlOut1” 
     if ctrlMsg.status = “increase” or “decrease” or set” 
        outputPort = “CtrlOut2” 
 
(“passive”, 0, store, temperature, overtemp, overpower, currentAttenuation)  
  if phase = “passive” and p = “CtrlIn2”   
      currentAttenuation = messagebag.attenuation 
 
(“passive”, ∞, store, temperature, overtemp, overpower, currentAttenuation) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(phase, σ – e, store, temperature, overtemp, overpower, currentAttenuation) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, currentAttenuation) = 
  (“passive”, ∞, store, temperature, overtemp, overpower, currentAttenuation) 
    if phase = “respond”   
  
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, currentAttenuation) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
  
 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, currentAttenuation) = σ;  
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X.8 CTQ Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
For the CTQ compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈	Iportsd}; 

EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈	Oportsd};	

IC  {((a,opa),(b,ipb))|a,b ∈	D,	opa ∈	Oportsa, ipb ∈	Iportsb}; 

((d,opd),(e,ipd)) ∈	IC	implies	d	≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 

DEVSCTQ = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn2”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn2”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “CtrlOut2”, “OptOut1”, “OptOut2”}   
Y = {(“CtrlOut1”, v), (“CtrlOut2”, v), (“OptOut1”, v), (“OptOut2”, v)|v ∈ V} 
 
D = {controller, evoa, fixedattenuator, SMfiber1, SMfiber2, SMfiber3} 
Md = Mcontroller, Mevoa, Mfixedattenuator, MsMfiber1, MSMfiber2, MsMfiber3   
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(evoa, “EnvIn”)), ((N, “EnvIn”),(fixedattenuator, “EnvIn”)), ((N, “EnvIn”),(SMfiber1, 
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“EnvIn”)), ((N, “EnvIn”),(SMfiber2, “EnvIn”)), ((N, “EnvIn”),(SMfiber3, “EnvIn”)), ((N, 
“OptIn1”),(SMfiber1, “OptIn1”)), ((N, “OptIn2”),(SMfiber3, “OptIn2”))} 
 
EOC = {((SMfiber1, “OptOut1”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”)), 
((SMfiber3, “OptOut2”),(N, “OptOut2”))} 
 
IC = {((controller, “CtrlOut2”),(evoa, “CtrlIn1”)), ((evoa, “CtrlOut1”),(controller, “CtrlIn2”)), 
((SMfiber1, “OptOut2”),(evoa, “OptIn1”)), ((evoa, “OptOut1”),(SMfiber1, “OptIn2”)), ((evoa, 
“OptOut2”),(SMfiber2, “OptIn1”)), ((SMfiber2, “OptOut1”),(evoa, “OptIn2”)), ((SMfiber2, 
“OptOut2”),(fixedattenuator, “OptIn1”)), ((fixedattenuator, “OptOut1”),(SMfiber2, “OptIn2”)),  
((fixedattenuator, “OptOut2”),(SMfiber3, “OptIn1”)), ((SMfiber3, “OptOut1”),(fixedattenuator, 
“OptIn2”))} 
 

X.9 CTQ Controller Use Cases 

X.9.1 Respond to a Quantum Controller Message 
 

  

 
Figure 224. Component states. 
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Figure 225. Controller phase transition diagram 

X.9.2 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to an increase attenuation message 

o React to a decrease attenuation message 

o React to a set attenuation message 

o React to a get attenuation message 

 Assumptions 

o   Incoming electrical signals are not affected by component state 

X.9.3 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
 Controller ends in Passive phase   

X.9.4 Respond to an Environmental Packet   
 
Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 
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controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

X.9.5 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

X.9.6 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

X.9.7 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

X.9.8 Respond to an Increase Attenuation Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

X.9.9 Respond to Increase Attenuation Message End Goals 
 

 Increase Attenuation message received properly 

 Message recognized and passed to proper component 

X.9.10 Respond to a Decrease Attenuation Message  
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Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

X.9.11 Respond to Decrease Attenuation Message End Goals 
 

 Decrease Attenuation message received properly 

 Message recognized and passed to proper component 

X.9.12 Respond to a Set Attenuation Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

X.9.13 Respond to Set Attenuation Message End Goals 
 

 Set Attenuation message received properly 

 Message recognized and passed to proper component 

X.9.14 Respond to a Get Attenuation Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

X.9.15 Respond to Get Attenuation Message End Goals 
 

 Get Attenuation message received properly 

 Message recognized and passed to proper component 

 

X.10 CTQ Module Use Cases 

X.10.1 Respond to an Optical Packet   
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Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

X.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 

X.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

X.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

X.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 

X.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

X.11 CTQ Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was testing the ability of the coupled 

submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 
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appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 CTQ submodule – control message changes attenuation of EVOA 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 

checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 
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Appendix Y - Optical Security Layer (OSL) 

Y.1 Device Description: 

The optical security layer (OSL) works to detect and limit the amount of outside light 

entering the QKD system. The bandpass filter narrows the incoming light frequencies and the 

circulator routes the incoming light to the classical detector. The detector acts as the ‘alarm’ by 

creating an electrical signal to the quantum controller. The circulator allows very little light to 

pass from port one to three and any that does is heavily attenuated by the isolator. The OSL 

subsystem contains the components shown in Fig. 1. 

 
Figure 226. Optical Security Layer (OSL) in the QKD system architecture.  
 

The OSL subsystem contains a controller, an isolator, a circulator, a bandpass filter, a 

classical detector, electrical interfaces, and interconnecting SM optical fiber. We briefly discuss 

the behavior of each of the components contained within the OSL.  

Y.1.1 OSL Controller 
 

The controller is an electrical device containing digital and analog circuits responsible for 

monitoring the classical detector. It has a bidirectional electrical interface to the quantum module 

controller and an electrical input from the classical detector. It receives commands from the 

quantum model controller and stores information from the classical detector. 
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Y.1.2 Isolator 

The isolator is an optical device with two bidirectional optical ports that passes light in 

the forward direction while significantly attenuating light moving in the opposite direction 

(ThorLabs, 2013b). Optical signals arriving at one port propagate to the other port after a defined 

propagation delay with the attenuation based on the propagation direction. The isolator assures 

that virtually no light (e.g., reflections or light from external sources) enters the laser. The output 

of the isolator is coupled to the input of the circulator via SM fiber 

Y.1.3 Circulator 
 

The circulator is an optical device with three bidirectional optical ports that allows light 

to pass through in one direction. Light entering port one exits port two with minimal attenuation 

but is highly attenuated leaving port three. Light entering port two exits port three with minimal 

attenuation and is highly attenuated leaving port one. A “full” circulator allows light to enter port 

three and pass on to port one with minimal attenuation but heavily attenuating port two. A 

“quasi” circulator highly attenuates any light entering port three at ports one and two (ThorLabs, 

2013d). In the OSL, the circulator directs light from the laser in port 1 and out port 2 out to the 

bandpass filter. Light entering port 2 directs to port 3 and on to the classical detector.  

Y.1.4 Bandpass Filter 

The bandpass filter is an optical device with two bidirectional optical ports that passes the 

optical energy in a narrow band around the signal wavelength, λS, but strongly attenuates other 

wavelengths (ThorLabs, 2013a). This ensures that only the appropriate signal wavelength leaves 

the subsystem while preventing other sources of light from entering the laser. Optical signals 

arriving at one port propagate to the other port after a defined propagation delay and are 

attenuated based on the wavelength of the signal. 
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Y.1.5 Classical Detector 
 

The classical detector is an opto-electrical device containing an optical photodiode and 

support electronics to generate an electrical signal proportional to the power contained in the 

optical pulse (ThorLabs, 2013c). This signal connects to the controller which stores this 

information and checks to see if it falls below a predefined threshold. If so, the controller notifies 

the quantum module controller of incoming light and functions as an alert device.   

Y.1.6 Single-Mode Optical Fiber 
 

SM fiber is an optical component used to interconnect optical devices. It has two 

bidirectional optical ports. Optical signals arriving at one port propagate to the other port after a 

defined propagation delay with its attenuation a function of the type and the length of the fiber. It 

is a cylindrical optical waveguide made from a low-loss material, such as silica glass. It has a 

core which guides the light and an outer cladding that reflects the internal light back into the 

core, bouncing the light down the fiber. This cladding helps to reflect outside light to keep in 

from entering the core. This structure allows for low loss over long distances. The single-mode 

of the fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical 

aperture with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & 

Teich, 1991; ThorLabs, 2013e). SM fiber couples devices within the module. 

Y.2 OSL and Controller Behavior 

 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 

components may become temporarily degraded or permanently damaged which changes their 
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characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and module is to collect and 

understand the physical, behavioral, and performance characteristics of the atomic components. 

In this case, the individual components were constructed earlier and the controller was built as a 

message handler. The logic for the controller was based on the types of messages necessary for 

control of components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model.  

Y.3 OSL Compound Conceptual Model 

 

 
 Figure 227. OSL compound module conceptual model. 
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Figure 228. OSL controller conceptual model 

Table 95. List of OSL Controller messages. 

Input Messages From  Response 

OSL_ENV Quantum 
controller 

Set the internal CPG controller temperature 

OSL_RESET Quantum 
controller 

Resets the CPG controller and clears the state variables 

OSL_STATUS_REQUE
ST 

Quantum 
controller 

Sends the CPG controller status and stored magnitude 
value 

CD_DETECTION Classical Detector Store the magnitude from the message 

   

Output Messages To Content 

OSL_ACK Quantum 
Controller 

Response to a Reset message 

OSL_STATUS Quantum 
Controller 

Response to a Status Request message 

 
The conceptual model for the OSL consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, one environmental input port {EvnIn}, one control 

input port {CtrlIn1} and one control output port {CtrlOut1}. The environmental port allows 

external sources to communicate changes in the operational environment to the module. The 

electrical controller ports allow for control inputs to the controller and responses from the 

module to the higher system functions.  

In comparison to the module layout used in the QKD simulation architecture shown in 

Fig. 1, a single bidirectional optical connection is decomposed into an optical input and an 
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optical output in the conceptual model. This is necessary to properly represent the behavior of 

the device using the DEVS formalism. The electrical control port is also decomposed in the 

model into an input port and an output port.  

When an optical signal is sent to the input of the module, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The module components must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters each of the components the module. In the case 

of optical overpowering, once overpowered a component will permanently change attenuation. 

External environmental messages sent to the module are directed to individual components to 

convey the temperature of the operational environmental so the module can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). Changes to components 

based on the temperature determine the behavior of the module. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

Y.4 English-Language Rules for the Controller 
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In this section, English language rules are developed to express the desired behavior of the 

controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 
 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 
 

 Determine the arrival port of the signal. 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

Y.5 DEVS Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the module controller in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  
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Figure 229. OSL Controller DEVS phase transition diagram 

Y.6 OSL Controller Event-Trace Diagram   

This section shows various examples of messages entering the controller. The tables list 

the states the component proceeds through as the events are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 

controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

Explanations for each column: 
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 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 LastCDPower: shows the value of the last detection message 

 Notes: any notes for that state 

Y.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 96. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power lastCD power 

Notes: 
assume tp=0 

1-packet no env no ext 1 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 s1 entry respond 0 null c n n null   

0 s1 exit respond inf null c n n null   

0 s2 entry passive inf null c n n null   

 

Y.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
 
Table 97. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power lastCD power 

Notes: 
assume tp=0 

1-packet 1 env no ext 0 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 S1 entry passive inf null c n n null   

 

Y.7 OSL Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 
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Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, “lastCDPower”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

“lastCDPower” = variable to store the power value of the last classical detector message 

 
For the controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSOSLcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
 
where 
 

tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
lastCDPower= variable that holds the magnitude of the last detection message 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
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messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  
store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
ctrlMsg() =  method that generates a response message to received control messages 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2” “EnvIn”} with 

XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“EnvIn”, Venv)} is the set of input ports and values. 

 
OutPorts = {“CtrlOut1”} with 

YM = {(“CtrlOut1”, YCtrlOut1) is the set of output ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, lastCDPower} = {{“passive”, 

“respond”} x 0R  x V x R x {“Y”, “N”} x {“Y”,”N”} x V} 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, lastCDPower ,e, ((pi,vi),…. (pn,vn))) = 
(“respond”, 0, store, temperature, overtemp, overpower, lastCDPower)  
  if phase = “passive” and p = “CtrlIn1”   
     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” 
        outputPort = “CtrlOut1” 
 
(“passive”, 0, store, temperature, overtemp, overpower, lastCDPower)  
  if phase = “passive” and p = “CtrlIn2”   
      lastCDPower = messagebag.magnitude 
 
(“passive”, ∞, store, temperature, overtemp, overpower, lastCDPower) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
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(phase, σ – e, store, temperature, overtemp, overpower, lastCDPower) 
           otherwise; 

  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, lastCDPower) = 
  (“passive”, ∞, store, temperature, overtemp, overpower, lastCDPower) 
    if phase = “respond”   
  
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, lastCDPower) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
  
 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, lastCDPower) = σ;  
 

Y.8 OSL Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
For the OSL compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
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Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈	Iportsd}; 

EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈	Oportsd};	

IC  {((a,opa),(b,ipb))|a,b ∈	D,	opa ∈	Oportsa, ipb ∈	Iportsb}; 

((d,opd),(e,ipd)) ∈	IC	implies	d	≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 

DEVSOSL = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn2”, “OptIn3”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn2”, v), (“OptIn3”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “OptOut1”, “OptOut2”, “OptOut3”}   
Y = {(“CtrlOut1”, v), (“OptOut1”, v), (“OptOut2”, v), (“OptOut3”, v)|v ∈ V} 
 
D = {controller, isolator, circulator, bandpass, classicaldetector, SMfiber1, SMfiber2, SMfiber3, 
SMfiber4, SMfiber5} 
Md = Mcontroller, Misolator, Mcirculator, Mbandpass, Mclassicaldetector, MsMfiber1, MSMfiber2, MsMfiber3, MsMfiber4, 
MsMfiber5 
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(isolator, “EnvIn”)), ((N, “EnvIn”),(circulator, “EnvIn”)), ((N, “EnvIn”),(bandpass, 
“EnvIn”)), ((N, “EnvIn”),(classicaldetector, “EnvIn”)), ((N, “EnvIn”),(SMfiber1, “EnvIn”)), ((N, 
“EnvIn”),(SMfiber2, “EnvIn”)), ((N, “EnvIn”),(SMfiber3, “EnvIn”)), (SMfiber4, “EnvIn”)), 
(SMfiber5, “EnvIn”)), ((N, “OptIn1”),(SMfiber1, “OptIn1”)), ((N, “OptIn2”),(SMfiber4, 
“OptIn2”))} 
 
EOC = {((SMfiber1, “OptOut1”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”)), 
((SMfiber4, “OptOut2”),(N, “OptOut2”))} 
 
IC = {((classicaldetector, “CtrlOut1”),(controller, “CtrlIn2”)),  
((SMfiber1, “OptOut2”),(isolator, “OptIn1”)), ((isolator, “OptOut1”),(SMfiber1, “OptIn2”)),  
((isolator, “OptOut2”),(SMfiber2, “OptIn1”)), ((SMfiber2, “OptOut1”),(isolator, “OptIn2”)),  
((SMfiber2, “OptOut2”),(circulator, “OptIn1”)), ((circulator, “OptOut1”),(SMfiber2, “OptIn2”)),  
((circulator, “OptOut2”),(SMfiber3, “OptIn1”)), ((SMfiber3, “OptOut1”),(circulator, “OptIn2”)) 
((SMfiber3, “OptOut2”),(bandpass, “OptIn1”)), ((bandpass, “OptOut1”),(SMfiber3, “OptIn2”)),  
((bandpass, “OptOut2”),(SMfiber4, “OptIn1”)), ((SMfiber4, “OptOut1”),(bandpass, “OptIn2”)), 
((circulator, “OptOut3”),(SMfiber5, “OptIn2”)), ((SMfiber5, “OptOut2”),(circulator, “OptIn3”)) 
((SMfiber5, “OptOut1”),(classicaldetector, “OptIn1”)), ((classicaldetector, “OptOut1”),(SMfiber5, 
“OptIn1”))} 
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Y.9 OSL Controller Use Cases 

Y.9.1 Respond to a Quantum Controller Message 
 

 

 
Figure 230. Component states. 

 
Figure 231. Controller phase transition diagram 
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Y.9.2 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to a fire laser message 

o React to a classical detector pulse detection message 

 
 Assumptions 

o   Incoming electrical signals are not affected by component state 

Y.9.3 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
 Controller ends in Passive phase   

Y.9.4 Respond to an Environmental Packet   
 
Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 

controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

Y.9.5 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 
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Y.9.6 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

Y.9.7 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

Y.9.8 Respond to a Classical Detection Message 
 
Incoming detection message arrives at the controller from the classical detector. Store the 

message contents.  

 Assumptions 

o Controller has completed initialization sequence at least once 

Y.9.9 Respond to Classical Detection Message End Goals 
 

 CD message received properly 

 CD message values stored properly 

 

Y.10  OSL Module Use Cases 

Y.10.1 Respond to an Optical Packet   
 
Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

Y.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 
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Y.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

Y.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

Y.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 

Y.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

Y.11 OSL Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was testing the ability of the coupled 

submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 

appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 OSL submodule – no control message to change internal settings 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 
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checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 
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Appendix Z - Timing Pulse Generator (TPG) 

Z.1 Device Description: 

The optical frames used by the QKD system need a way to synchronize between Alice 

and Bob. Even the best timing devices have error and other external timing (e.g. GPS) do not 

have the accuracy necessary for frame timing. Bob needs to know with a high-degree of accuracy 

when to open the gates windows for his single photon detectors. Alice provides this timing by 

injecting a bright pulse (i.e. classical level) of light (λt ) into the quantum channel to start each 

frame. The wave division multiplexer multiplexes the TPG timing signal λt, and the CPG signal 

pulse λS. Once intermixed, the pulses output to the output monitor subsystem. The TPG contains 

the components shown in Fig. 1. 

 

Figure 232. Timing Pulse Generator (TPG) in the QKD system architecture.  

The TPG subsystem contains a controller, a laser, an optical polarizer, a fixed attenuator, 

wave division multiplexer, electrical interfaces, and interconnecting SM optical fiber. We briefly 

discuss the behavior of each of the components contained within the TPG.  

Z.1.1 TPG Controller 
 

The controller is an electrical device containing digital and analog circuits responsible for 

controlling the laser. It has a bidirectional electrical interface to the quantum module controller 
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and an electrical output to the laser. It receives commands from the quantum model controller, 

sends fire commands to the laser, and monitors the health of the laser. 

Z.1.2 Laser 
 

The laser is an electro-optical device which contains an optical oscillator and emits 

coherent light (Saleh & Teich, 1991b). It has an electrical input to receive control messages and 

an optical output to emit generated pulses. Within the simulation, the laser creates optical pulses 

when it receives a “fire” command from the controller. The laser generates short-duration laser 

pulses (e.g., 1mW peak intensity with a 500ps duration) containing millions of photons 

(ThorLabs, 2013a). The output of the laser couples to the input of the polarizer via SM fiber. 

Z.1.3 Polarizer 
 

The polarizer is an optical device with two bidirectional optical ports allowing light of 

one polarization to pass while highly attenuating light orthogonal to the passed light (ThorLabs, 

2013c). Optical signals arriving at one port propagate to the other port after a defined 

propagation delay and polarized depending on the polarizer orientation with respect to the 

connected fiber. The output of the polarizer is coupled to the input of the fixed attenuator via SM 

fiber. 

Z.1.4 Fixed Attenuator 
 

The fixed attenuator is an optical device with two bidirectional optical ports that 

attenuates moving through the component. They are typically fabricated using either doped 

fibers or misaligned splices. The alternative build out-style attenuator is a small male-female 

adapter used to adjust the level of attenuation by coupling one or more FAs between fiber cables 

(ThorLabs, 2013b). Optical signals arriving at one port propagate to the other port after a defined 
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propagation delay. The output of the fixed attenuator couples to the input of the WDM using SM 

fiber. 

Z.1.5 Wave Division Multiplexor (dichroic mirror) 
 

The WDM is an optical device with three bidirectional optical ports used to combine (or 

split) different wavelengths of light into one stream. In the opposite direction through the WDM, 

combined optical signals are separated into different streams and sent out different ports 

(OZOptics, 2013). Here, the WDM combines the signal and timing pulse. Optical signals 

arriving at one port propagate to the other port after a defined propagation delay. The WDM 

output couples to input of the next subsystem via SM fiber. 

Z.1.6 Single-Mode Optical Fiber 
 

SM fiber is an optical component used to interconnect optical devices. It has two 

bidirectional optical ports. Optical signals arriving at one port propagate to the other port after a 

defined propagation delay with its attenuation a function of the type and the length of the fiber. It 

is a cylindrical optical waveguide made from a low-loss material, such as silica glass. It has a 

core which guides the light and an outer cladding that reflects the internal light back into the 

core, bouncing the light down the fiber. This cladding helps to reflect outside light to keep in 

from entering the core. This structure allows for low loss over long distances. The single-mode 

of the fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical 

aperture with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & 

Teich, 1991a; ThorLabs, 2013d). SM fiber couples devices within the module. 
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Z.2 TPG and Controller Behavior 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 

components may become temporarily degraded or permanently damaged which changes their 

characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and module is to collect and 

understand the physical, behavioral, and performance characteristics of the atomic components. 

In this case, the individual components were constructed earlier and the controller was built as a 

message handler. The logic for the controller was based on the types of messages necessary for 

control of components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model.  
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Z.3 TPG Compound Conceptual Model 

 

 Figure 233. TPG compound module conceptual model. 

 

Figure 234. TPG controller conceptual model 

Table 98. List of TPG Controller messages. 

Input Messages From  Response 

TPG_ENV Quantum 
controller 

Set the internal CPG controller temperature 

TPG_RESET Quantum 
controller 

Resets the CPG controller and clears the state 
variables 

TPG_STATUS_REQUEST Quantum 
controller 

Sends the CPG controller status and stored 
magnitude value 

TPG_FIRE_LASER Quantum 
controller 

Issues a single Fire Laser command to the laser 
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Output Messages To Content 

TPG_ACK Quantum 
Controller 

Response to a Reset message 

TPG_STATUS Quantum 
Controller 

Response to a Status Request message 

TPG_LASER_FIRE Laser Command to fire the laser one time 

 

The conceptual model for the TPG consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, one environmental input port {EvnIn}, one control 

input port {CtrlIn1} and one control output port {CtrlOut1}. The environmental port allows 

external sources to communicate changes in the operational environment to the module. The 

electrical controller ports allow for control inputs to the controller and responses from the 

module to the higher system functions.  

In comparison to the module layout used in the QKD simulation architecture shown in 

Fig. 1, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. This is necessary to properly represent the behavior of 

the device using the DEVS formalism. The electrical control port is also decomposed in the 

model into an input port and an output port.  

When an optical signal is sent to the input of the module, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The module components must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters each of the components the module. In the case 



 

728 
 

of optical overpowering, once overpowered a component will permanently change attenuation. 

External environmental messages sent to the module are directed to individual components to 

convey the temperature of the operational environmental so the module can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). Changes to components 

based on the temperature determine the behavior of the module. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

Z.4 English-Language Rules for the Controller 

In this section, English language rules are developed to express the desired behavior of the 

controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 

 Determine the arrival port of the signal. 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 

When an environmental message arrives: 
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 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 

 

Z.5 DEVS Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the module controller in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  

 
Figure 235. TPG Controller DEVS phase transition diagram 

Z.6 TPG Controller Event-Trace Diagram   

This section shows various examples of messages entering the controller. The tables list 

the states the component proceeds through as the events are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 
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variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 

controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

Explanations for each column: 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Notes: any notes for that state 

Z.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 99. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Notes: 
assume tp=0 

1-packet no env no ext 1 ctrl 

0 s0 entry passive inf null c n n   

0 s0 exit passive 0 null c n n   

0 s1 entry respond 0 null c n n   

0 s1 exit respond inf null c n n   

0 s2 entry passive inf null c n n   

 

Z.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
 
Table 100. Case II state list. 
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time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power 

Notes: 
assume tp=0 

1-packet 1 env no ext 0 ctrl 

0 s0 entry passive inf null c n n   

0 s0 exit passive 0 null c n n   

0 S1 entry passive inf null c n n   

 

Z.7 TPG Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 
 
For the controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 
XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 
YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 
S = set of sequential states; 

δext = Q x 
b
MX

→ S is the external state transition function; 
δint = S → S is the internal state transition function; 

δcon = Q x 
b
MX

→ S is the confluent transition function; 
λ = S → Yb is the output function;  

ta = S → 0R

∪ ∞ or S → +0
R

 is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  
 
Xb = a set of bags over elements of X; 
M = an atomic instance of P-DEVS. 
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DEVSTPGcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
 
where 
 
tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  
store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
ctrlMsg() =  method that generates a response message to received control messages 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 
Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2” “EnvIn”} with 
XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“EnvIn”, Venv)} is the set of input ports and values. 
 
OutPorts = {“CtrlOut1”, “CtrlOut2”} with 
YM = {(“CtrlOut1”, YCtrlOut1), (“CtrlOut2”, Y CtrlOut2)} is the set of output ports and values. 
 
phase is a control state used to keep track of where the full state is. 
 

S = {phase, σ, store, temperature, overtemp, overpower} = {{“passive”, “respond”} x 0R

 x V x 
R x {“Y”, “N”} x {“Y”,”N”}} 
 
 
 
 
 
External Transition Function: 
δext(phase, σ, store, temperature, overtemp, overpower,e, ((pi,vi),…. (pn,vn))) = 
(“respond”, 0, store, temperature, overtemp, overpower)  
   if phase = “passive” and p = “CtrlIn1”   
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     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” 
        outputPort = “CtrlOut1” 
     if ctrlMsg.status = “fire laser”  
        outputPort = “CtrlOut2” 
 
(“passive”, ∞, store, temperature, overtemp, overpower) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(phase, σ – e, store, temperature, overtemp, overpower) 
           otherwise; 
  
Internal Transition Function: 
δint(phase, σ, store, temperature, overtemp, overpower) = 
  (“passive”, ∞, store, temperature, overtemp, overpower) 
    if phase = “respond”   
  
Confluence Function: 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
  
 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower) = σ;  
 

Z.8 TPG Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 The component will always reflect a portion of any incoming optical packet, regardless of 

the environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same 

delay time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 
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For the TPG compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈ Iportsd}; 
EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈ Oportsd}; 
IC  {((a,opa),(b,ipb))|a,b ∈ D, opa ∈ Oportsa, ipb ∈ Iportsb}; 
((d,opd),(e,ipd)) ∈ IC implies d ≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 
DEVSTPG = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn2”, “OptIn3”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn2”, v), (“OptIn3”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “OptOut1”, “OptOut2”, “OptOut3”}   
Y = {(“CtrlOut1”, v), (“OptOut1”, v), (“OptOut2”, v), (“OptOut3”, v)|v ∈ V} 
 
D = {controller, wdm, laser, polarizer, attenuator, SMfiber1, SMfiber2, SMfiber3, SMfiber4, 
SMfiber5} 
Md = Mcontroller, Mwdm, Mlaser, Mpolarizer, Mattenuator, MsMfiber1, MSMfiber2, MsMfiber3, MsMfiber4, MsMfiber5 
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(wdm, “EnvIn”)), ((N, “EnvIn”),(laser, “EnvIn”)), ((N, “EnvIn”),(polarizer, “EnvIn”)), 
((N, “EnvIn”),(attenuator, “EnvIn”)), ((N, “EnvIn”),(SMfiber1, “EnvIn”)), ((N, “EnvIn”), 
(SMfiber2, “EnvIn”)), ((N, “EnvIn”),(SMfiber3, “EnvIn”)),(SMfiber4, “EnvIn”)), (SMfiber5, 
“EnvIn”)), ((N, “OptIn1”),(SMfiber1, “OptIn1”)), ((N, “OptIn2”),(SMfiber2, “OptIn2”))} 
 
EOC = {((SMfiber1, “OptOut1”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”)), 
((SMfiber2, “OptOut2”),(N, “OptOut2”))} 
 
IC = {((laser, “CtrlOut1”),(controller, “CtrlIn2”)),  
((SMfiber1, “OptOut2”),(wdm, “OptIn1”)), ((wdm, “OptOut1”),(SMfiber1, “OptIn2”)),  
((wdm, “OptOut3”),(SMfiber2, “OptIn1”)), ((SMfiber2, “OptOut1”),(wdm, “OptIn3”)), 
((laser, “OptOut1”),(SMfiber5, “OptIn1”)), ((SMfiber5, “OptOut1”),(laser, “OptIn1”)),  
((SMfiber5, “OptOut2”),(polarizer, “OptIn1”)), ((polarizer, “OptOut1”),(SMfiber5, “OptIn2”)),  
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((polarizer, “OptOut2”),(SMfiber4, “OptIn1”)), ((SMfiber4, “OptOut1”),(polarizer, “OptIn2”)), 
((SMfiber4, “OptOut2”),(attenuator, “OptIn1”)), ((attenuator, “OptOut1”),(SMfiber4, “OptIn2”)),  
((attenuator, “OptOut2”),(SMfiber3, “OptIn1”)), ((SMfiber3, “OptOut1”),(attenuator, “OptIn2”)), 
((SMfiber3, “OptOut2”),(wdm, “OptIn2”)), ((wdm, “OptOut2”),(SMfiber3, “OptIn2”))} 
 

Z.9 TPG Controller Use Cases 

 
 

 
Figure 236. Component states. 
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Figure 237. Controller phase transition diagram 

Z.9.1 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to a fire laser message 

o React to a classical detector pulse detection message 

 
 Assumptions 

o   Incoming electrical signals are not affected by component state 

Z.9.2 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
 Controller ends in Passive phase   

Z.9.3 Respond to an Environmental Packet   
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Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 

controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

Z.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

Z.9.5 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

Z.9.6 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

Z.9.7 Respond to a Fire Laser Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to laser component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

Z.9.8 Respond to Fire Laser Message End Goals 
 

 Fire laser message received properly 
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 Fire message recognized and passed to laser 

 

Z.10 TPG Module Use Cases 

Z.10.1 Respond to an Optical Packet   
 
Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

Z.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 

Z.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

Z.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

Z.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 

Z.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

Z.11 TPG Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 
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submodule. The primary purpose of the test cases was testing the ability of the coupled 

submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 

appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 TPG submodule – control message fires timing laser 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 

checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 
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Appendix AA - Output Power Monitor (OPM) 

AA.1 Device Description: 

Alice needs a way to verify her output into the quantum channel. Components change as 

they age and some protocols may call for pulses of differing optical power. The output power 

monitor (OPM) allows Alice to sample the outgoing optical packets by using a photon detector 

capable of counting photons. By sampling the photon numbers, Alice can adjust the EVOAs to 

output the proper optical power. The switch alters the optical path by diverting optical packets to 

either the OPM or out of Alice into the quantum channel. .The Output Power Monitor subsystem 

contains the components shown in Fig. 1. 

 
Figure 238. Output Power Monitor (OPM) in the QKD system architecture.  
 

The OPM subsystem contains a controller, a photon number resolving single photon 

detector (PNR-SPD), an optical switch, electrical interfaces, and interconnecting SM optical 

fiber. We briefly discuss the behavior of each of the components contained within the OPM.  

AA.1.1 OPM Controller 
 

The controller is an electrical device containing digital and analog circuits responsible for 

controlling the single photon detector (SPD). It has a bidirectional electrical interface to the 

quantum module controller and an electrical output to the SPD. It receives commands from the 
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quantum model controller, receives information from the SPD, and monitors the health of the 

SPD.  

AA.1.2 Photon Number Resolving Single Photon Detector (PNR-SPD) 
 

The PNR-SPD is an opto-electrical device containing detection equipment and support 

electronics capable of counting individual photons. The PNR-SPD has a single bidirectional 

optical port and a bidirectional electrical port connected to the OPM controller 

AA.1.3 Optical Switch 
 

The optical switch is used to route light between one input port and two or more 

input/output ports.  The optical switch is a bidirectional optical component with three optical 

ports. Optical signals arriving at one of the ports is directed to one of the two input/output ports 

and propagated to the other port after a defined propagation delay. Typically, optical switches 

have control interfaces that allow them to be mounted on circuit boards or have some other type 

of electrical control port (DiConFiberOptics, 2013; ThorLabs, 2013a). The switch output couples 

using SM fiber to either the PNR-SPD or the quantum channel. 

AA.1.4 Single-Mode Optical Fiber 
 

SM fiber is an optical component used to interconnect optical devices. It has two 

bidirectional optical ports. Optical signals arriving at one port propagate to the other port after a 

defined propagation delay with its attenuation a function of the type and the length of the fiber. It 

is a cylindrical optical waveguide made from a low-loss material, such as silica glass. It has a 

core which guides the light and an outer cladding that reflects the internal light back into the 

core, bouncing the light down the fiber. This cladding helps to reflect outside light to keep in 

from entering the core. This structure allows for low loss over long distances. The single-mode 
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of the fiber comes from using a small core diameter (~10μm @ 1550nm) and small numerical 

aperture with the fundamental mode having a bell-shaped spatial distribution similar (Saleh & 

Teich, 1991; ThorLabs, 2013b). SM fiber couples devices within the module. 

AA.2 OPM and Controller Behavior 

The controller and individual components are sensitive to the temperature in the 

environment in which they operate. If the temperature exceeds defined thresholds, the 

components may become temporarily degraded or permanently damaged which changes their 

characteristics.  If temporarily degraded, the devices may recover to normal operating behavior 

after the temperature returns to a “normal” operating temperature. 

The first step involved with modeling the controller and module is to collect and 

understand the physical, behavioral, and performance characteristics of the atomic components. 

In this case, the individual components were constructed earlier and the controller was built as a 

message handler. The logic for the controller was based on the types of messages necessary for 

control of components inside the module.  

Once completed, the DEVS model is passed to the Software Development team that 

created a behaviorally equivalent C++ model in the OMNeT++ simulation environment during 

construction of the demonstration simulation. Comparing the demonstration simulation and 

timing and behavior outputs of the MS4ME models is the final step in validation testing the 

DEVS model.  
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AA.3 OPM Compound Conceptual Model 

 

 
 

 Figure 239. OPM compound module conceptual model. 

 
 

 
Figure 240. OPM controller conceptual model 

Table 101. List of OPM Controller messages. 

Input Messages From  Response 

OPM_ENV Quantum controller Set the internal controller temperature 

OPM_RESET Quantum controller Resets the controller and clears the state 
variables 

OPM_STATUS_REQUEST Quantum controller Sends the controller status   

OPM_SET_SWITCH_PORT_
2 

Quantum controller Set the switch to port 2 

OPM_SET_SWITCH_PORT_
3 

Quantum controller Set the switch to port 3 
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Output Messages To Content 

OPM_ACK Quantum 
Controller 

Response to a Reset message 

OPM_STATUS Quantum 
Controller 

Response to a Status Request message 

 
The conceptual model for the OPM consists of two optical input ports {OptIn1, OptIn2}, 

two optical output ports {OptOut1, OptOut2}, one environmental input port {EvnIn}, one control 

input port {CtrlIn1} and one control output port {CtrlOut1}. The environmental port allows 

external sources to communicate changes in the operational environment to the module. The 

electrical controller ports allow for control inputs to the controller and responses from the 

module to the higher system functions.  

In comparison to the module layout used in the QKD simulation architecture shown in 

Fig. 1, a single bidirectional optical connection is decomposed into an optical input and an 

optical output in the conceptual model. This is necessary to properly represent the behavior of 

the device using the DEVS formalism. The electrical control port is also decomposed in the 

model into an input port and an output port.  

When an optical signal is sent to the input of the module, a small portion of the signal 

will be instantaneously reflected back to the signal source.  Since the conceptual model 

decomposes each bidirectional connection to a discrete unidirectional output input and a discrete 

unidirectional optical output, this means that an optical signal arriving at OptIn1 in Fig. 2 will 

instantaneously generate a reflected emitting out of OptOut1.  

The module components must calculate the power of each incoming optical signal in 

order to determine if the device will become damaged due to excessive power levels. This 

calculation is made when the packet first enters each of the components the module. In the case 

of optical overpowering, once overpowered a component will permanently change attenuation. 
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External environmental messages sent to the module are directed to individual components to 

convey the temperature of the operational environmental so the module can determine if it is 

degraded (a temporary condition) or damaged (a permanent condition). Changes to components 

based on the temperature determine the behavior of the module. 

When multiple optical signals arrive at a port at the same time, they will be processed 

each as independent signals.  This is a consequence of the high level simulation strategy to only 

model interference at the Single Photon Detector (SPD) devices in the QKD system simulation. 

This greatly simplifies the modeling of all of the other optical components which can treat 

multiple optical signals as independent entities. 

AA.4 English-Language Rules for the Controller 

In this section, English language rules are developed to express the desired behavior of 

the controller. 

 CurrentTemp stores the current temperature. Initially, this is set to 25 degrees Centigrade. 

 

 OverTemp is a flag which indicates if the device is permanently damaged due to being 

exposed to temperatures which exceed a defined temperature threshold. Initially, this flag 

is cleared. 

 
When a control signal arrives: 
 

 Determine the arrival port of the signal. 

 Evaluate the content of the message 

 Generate a response message to the incoming signal (if necessary). 

 Generate a forwarded message to the appropriate device (if necessary). 

 Output the response or forwarded message out the appropriate port. 

 
When an environmental message arrives: 
 

 Update the CurrentTemp with the current temperature contained in the environmental 

message. 

 If the current temperature exceeds the damage temperature threshold, set the OverTemp 

flag. 
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AA.5 DEVS Phase Transition Diagram   

The phase transition diagram in Fig. 4 shows the phases of the module controller in the 

boxes and the transitions represented by arrows between the phases. Each transition is labeled 

with the type of transition (dext – external or dint – internal) and the significant actions that take 

place during the transition. Each arc has an entry either beneath or beside the arc indicating the 

value of the time advance function for the next phase. Each box is labeled with the name of the 

phase and an entry showing either no lambda output function for that phase or what the phase 

outputs.  

 
Figure 241. OPM Controller DEVS phase transition diagram 

AA.6 OPM Controller Event-Trace Diagram   

This section shows various examples of messages entering the controller. The tables list 

the states the component proceeds through as the events are processed. Each table has the state 

number, with each state consisting of: phase, time until next transition (sigma), store state 

variable, current temperature of the component, the over temperature flag variable and the over 

power flag variable. The queue column shows the contents of the queue at that state, the contents 

of the store state variable and any notes. Note in contrast to most other components, the 
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controller is very simple and only responds to incoming messages; it does not generate any 

messages on its own. There are two types of inputs: control messages and environmental 

messages. 

Explanations for each column: 
 

 Time: elapsed time since beginning of the case 

 State: shows the state number starting with s0, the start state 

 Phase: shows the phase for that state 

 Sigma: the time until next internal transition. A 0 sigma indicates a transitory state 

 Store: contents of the store variable for that state 

 Temp: value of the current internal temperature. In this case, always some degree C value 

 Over Temp: shows the value of the over temperature flag variable 

 Over Power: shows the value of the over power flag variable 

 Click Count: the number of clicks (photons) counted by the PNR SPD 

 Notes: any notes for that state 

AA.6.1 CASE I: Initial Passive with Single Control Packet Arriving at Time 0 
 
Table 102. Case I state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power click count 

Notes: 
assume tp=0 

1-packet no env no ext 1 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   

0 s1 entry respond 0 null c n n null   

0 s1 exit respond inf null c n n null   

0 s2 entry passive inf null c n n null   

 

AA.6.2 CASE II: Initial Passive with Single Environmental Packet Arriving at Time 0 
 
Table 103. Case II state list. 

time state 
entry/ 
exit phase sigma 

store 
 (xi) temp 

over 
temp 

over  
power click count 

Notes: 
assume tp=0 

1-packet 1 env no ext 0 ctrl  

0 s0 entry passive inf null c n n null   

0 s0 exit passive 0 null c n n null   
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0 S1 entry passive inf null c n n null   

 

AA.7 OPM Controller Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 

 
Definitions: 
 
State = {phase, time advance, “store”, temperature, “overtemp”, “overpower”, 
“currentAttenuation”} 
Time advance(state) = time advance of  the current state 
Time delay = time advance stored in queue for event i 
e = elapsed time since last transition occurred 
“store” = state variable that stores the current input values 
“overtemp” = flag variable set when device meets or exceeds damaged temperature level 
“overpower” = flag variable set when device meets or exceeds damaged optical power level 
“interruptRespond” = flag variable set when device is interrupted by an external event 

“clickCount” = variable to store the current number of photons counted by the PNR SPD 

 
For the controller we define: 
 
Parallel-DEVS atomic M= (XM, YM, S, δext, δint, δcon, λ, ta) 
 
Where: 
 

XM = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values; 

YM = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values; 

S = set of sequential states; 

δext = Q x b
MX → S is the external state transition function; 

δint = S → S is the internal state transition function; 

δcon = Q x b
MX → S is the confluent transition function; 

λ = S → Yb is the output function;  

ta = S → 0R ∪ ∞ or S → +0
R


is the time advance function;  

Q := {(s,e) | s ∈ S, 0≤ e ≤ ta(s)} is the total set of states;  

 

Xb = a set of bags over elements of X; 

M = an atomic instance of P-DEVS. 

 
DEVSOPMcontroller = (XM, YM, S, δext, δint, δcon, λ, ta) 
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where 
 

tp = transmission time inside the component 
temperature = current temperature of the component 
phase = control state that keeps track of the internal phase of the component 
phase = {“passive”, “respond”} 
overtemp = flag variable set when device meets or exceeds damaged temperature level 
overpower = flag variable set when device meets or exceeds damaged optical power level 
clickCount = variable that holds the number of photons 
interruptRespond = flag variable set when Respond phase is interrupted by an external event 
messagebag= variable that stores the current x input value(s) (p,v) 
damage.temp = variable that holds the component damaged temperature level parameter 
current = variable that stores the queue event being manipulated  
ctrlOutput = variable that stores the output control message response 
output.port = variable that holds the output optical packet port  
store = variable that holds values of the current input values 
timeLeftRespond = time left in Respond phase for the current event 
e = elapsed time since last transition occurred 
σ = state variable that holds the time to next transition 
ctrlMsg() =  method that generates a response message to received control messages 
messagebag_first() =  method that returns the first element of the message bag 
remove_event_m() = method that remove the current (xi, time delayi) from messagebag 
 

Every δext puts all of its x (p,v) values into the variable store 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “CtrlIn3”, “EnvIn”} with 

XM = {(“CtrlIn1”, Vctrl), (“CtrlIn2”, Vctrl), (“CtrlIn3”, Vctrl), (“EnvIn”, Venv)} is the set of input 

ports and values. 

 
OutPorts = {“CtrlOut1”, “CtrlOut2”, “CtrlOut3”} with 

YM = {(“CtrlOut1”, YCtrlOut1), (“CtrlOut2”, Y CtrlOut2), (“CtrlOut3”, Y CtrlOut3)} is the set of output 

ports and values. 

 

phase is a control state used to keep track of where the full state is. 

 
S = {phase, σ, store, temperature, overtemp, overpower, clickCount } = {{“passive”, “respond”} 

x 0R  x V x R x {“Y”, “N”} x {“Y”,”N”} x V } 

 
External Transition Function: 

 
δext(phase, σ, store, temperature, overtemp, overpower, clickCount ,e, ((pi,vi),…. (pn,vn))) = 
(“respond”, 0, store, temperature, overtemp, overpower, clickCount)  
  if phase = “passive” and p = “CtrlIn1”   
     ctrlOutput = ctrlMsg(store) 
     if ctrlMsg.status = “init” or “get status” 
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        outputPort = “CtrlOut1” 
     if ctrlMsg.status = “set gate”  
        outputPort = “CtrlOut2” 
     if ctrlMsg.status = “set port”  
        outputPort = “CtrlOut3” 
 
(“passive”, 0, store, temperature, overtemp, overpower, clickCount)  
  if phase = “passive” and p = “CtrlIn3”   
      clickCount = messagebag.count 
 
(“passive”, ∞, store, temperature, overtemp, overpower, clickCount) 
    if phase = “passive” and p = “EnvIn” 
     temperature = messagebag.temperature 
     if temperature > damage.temp 
        overtemp = “Y” 
 
(phase, σ – e, store, temperature, overtemp, overpower, clickCount) 

           otherwise; 
  
Internal Transition Function: 
 
δint(phase, σ, store, temperature, overtemp, overpower, clickCount) = 
  (“passive”, ∞, store, temperature, overtemp, overpower, clickCount) 
    if phase = “respond”   
  
Confluence Function: 
 
δcon(s, ta(s), x) = δext(δint(s), 0, x); 
 
Output Function: 
λ(phase, σ, store, temperature, overtemp, overpower, clickCount) =  
  (outputPort, ctrlOutput) 
      if phase = “respond” 
  
 ∅ (null output) 
     otherwise; 
 
Time advance Function: 
ta(phase, σ, store, temperature, overtemp, overpower, clickCount) = σ;  
 

AA.8 OPM Parallel DEVS Code 

Notes: 
 Assume that only one environmental packet will arrive at any given time, due to the small 

time scales involved and the length of time necessary for temperature fluctuations. 
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 The component will always reflect a portion of any incoming optical packet, regardless of the 

environmental state, discussions with the optical SMEs. 

 If multiple optical packets arrive at the same time, they will be processed through the 

reflection state as a group, but then input into the queue as single entries with the same delay 

time. 

 The reflection function always reflects the optical packet back out the port it arrived on. 

 
For the OPM compound module we define: 
 
Parallel-DEVS compound N= (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
Where: 
 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D = set of component names; 
Md = (Xd, Yd, S, δext, δint, δcon, λ, ta) is a DEVS atomic model; 
Xd = {(p,v) | p ∈ IPorts, v ∈ Xp}; 
Yd = {(p,v) | p ∈ OPorts, v ∈ Yp}; 
EIC  {((N, ipN),(d,ipd))| ipN ∈ IPorts, d ∈ D, ipd ∈	Iportsd}; 

EOC  {((d,opd),(N,opN))| opN ∈ OPorts, d ∈ D, opd ∈	Oportsd};	

IC  {((a,opa),(b,ipb))|a,b ∈	D,	opa ∈	Oportsa, ipb ∈	Iportsb}; 

((d,opd),(e,ipd)) ∈	IC	implies	d	≠ e (no feedback loops); 
M = an atomic instance of P-DEVS. 
N = a compound instance of P-DEVS. 
 

DEVSOPM = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC) 
 
InPorts = {“CtrlIn1”, “CtrlIn2”, “OptIn1”, “OptIn2”, “EnvIn”}   
X = {(“CtrlIn1”, v), (“CtrlIn2”, v), (“OptIn1”, v), (“OptIn2”, v), (“EnvIn”, v) |v ∈ V} 
 
OutPorts = {“CtrlOut1”, “CtrlOut2”, “OptOut1”, “OptOut2”}   
Y = {(“CtrlOut1”, v), (“CtrlOut2”, v), (“OptOut1”, v), (“OptOut2”, v) |v ∈ V} 
 
D = {controller, switch, pnrspd, SMfiber1, SMfiber2, SMfiber3} 
Md = Mcontroller, Mswitch, Mpnrspd, MSMfiber1, MSMfiber2, MSMfiber3   
 
EIC = {((N, “CtrlIn1”),(controller, “CtrlIn1”)), ((N, “EnvIn”),(controller, “EnvIn”)), ((N, 
“EnvIn”),(switch, “EnvIn”)), ((N, “EnvIn”),(pnrspd, “EnvIn”)), ((N, “EnvIn”),(SMfiber1, 
“EnvIn”)), ((N, “EnvIn”),(SMfiber2, “EnvIn”)), ((N, “EnvIn”),(SMfiber3, “EnvIn”)), ((N, 
“OptIn1”),(SMfiber1, “OptIn1”)), ((N, “OptIn2”),(SMfiber2, “OptIn2”))} 
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EOC = {((SMfiber1, “OptOut1”),(N, “OptOut1”)), ((controller, “CtrlOut1”),(N, “CtrlOut1”)), 
((SMfiber2, “OptOut2”),(N, “OptOut2”))} 
 
IC = {((controller, “CtrlOut3”),(switch, “CtrlIn1”)), ((switch, “CtrlOut1”),(controller, “CtrlIn3”)),  
((controller, “CtrlOut2”),(pnrspd, “CtrlIn1”)), ((pnrspd, “CtrlOut1”),(controller, “CtrlIn2”)), 
((SMfiber1, “OptOut2”),(switch, “OptIn1”)), ((switch, “OptOut1”),(SMfiber1, “OptIn2”)),  
((switch, “OptOut2”),(SMfiber3, “OptIn1”)), ((SMfiber3, “OptOut1”),(switch, “OptIn2”)),  
((switch, “OptOut3”),(SMfiber2, “OptIn1”)), ((SMfiber2, “OptOut1”),(switch, “OptIn3”)),  
((SMfiber3, “OptOut2”),(pnrspd, “OptIn1”)), ((pnrspd, “OptOut1”),(SMfiber3, “OptIn2”))} 
 

AA.9 OPM Controller Use Case 

 

 
Figure 242. Component states. 
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Figure 243. Controller phase transition diagram 

AA.9.1 Respond to a Reset Message    

Incoming reset message arrives at the module from the quantum controller. Pass the message to 

the module controller. Controller clears any stored variable values and prepares an 

acknowledgement message. Response message is sent out the appropriate port. 

 Identified Alternative Uses Cases 

o React to an environmental message 

o React to a status request message 

o React to a fire laser message 

o React to a classical detector pulse detection message 

 
 Assumptions 

o   Incoming electrical signals are not affected by component state 

AA.9.2 Respond to Reset Message End Goals 
 

 Message properly received 
 Controller enters Respond phase and sets storage values to zero. 
 Controller forwards Reset Message to proper component(s) as necessary 
 Acknowledgement message created and sent out the appropriate port 
 Controller ends in Passive phase   

AA.9.3 Respond to an Environmental Packet   
 
Environmental packet arrives at the controller. Check to see if environmental packet temperature 

sets the controller to degraded or damaged state. Check to see if temperature level returns 
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controller from degraded state to normal state. Records change in condition, if applicable. 

Change controller function if in degraded or damaged state, if necessary. 

 Assumptions 

o None 

AA.9.4 Respond to Environmental Packet End Goals 
 

 Environmental packet received properly 

 Overtemperature condition properly recognized and recorded 

 Change of state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

AA.9.5 Respond to a Status Request Message  
 
Status Request message arrives at the module from the quantum controller. Module controller 

prepares response message. Response message is sent out the appropriate port.   

 Assumptions 

o Controller has completed initialization sequence at least once 

AA.9.6 Respond to Status Request End Goals 
 

 Control message received properly 

 Change of condition or state completed and recorded properly, if necessary 

 Change component function properly, if necessary 

AA.9.7 Respond to a Set Switch Port 2 Message  
 
Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

AA.9.8 Respond to Set Switch Port 2 Message End Goals 
 

 Set Switch Port 2 message received properly 

 Message recognized and passed to the proper component 

AA.9.9 Respond to a Set Switch Port 3 Message  
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Incoming control message arrives at the module from the quantum controller. Pass the message 

to the module controller. Module controller passes control message to the proper component.    

 Assumptions 

o Controller has completed initialization sequence at least once 

AA.9.10 Respond to Set Switch Port 3Message End Goals 
 

 Set Switch Port 3 message received properly 

 Message recognized and passed to the proper component 

 

AA.10 OPM Module Use Cases 

AA.10.1 Respond to an Optical Packet   
 
Optical packet arrives at the module. Pass the optical packet to the proper internal component.   

 Assumptions 

o Reflections are not affected by module or component state 

AA.10.2 Respond to Optical Packet End Goals 
 

 Optical packet sent to proper internal component 

AA.10.3 Respond to an Environmental Message    

Environmental packet arrives at the module. Environmental message is passed to the module 

controller and each component in the module.   

 Assumptions 

o Incoming electrical signals are not affected by component state 

AA.10.4 Respond to Environmental Message End Goals 
 

 Environmental packet received properly and forwarded to each component 

AA.10.5 Respond to a Control Message    

Control message arrives at the module. Control message is passed to the module controller. 

 Assumptions 

o Incoming electrical signals are not affected by component state 
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AA.10.6 Respond to Environmental Message End Goals 
 

 Control message received properly and forwarded to the module controller 

 

AA.11 OPM Test Cases 

Each coupled submodule was tested by sending messages to the submodule and using the 

operational graphics of the MS4ME simulator to track the progress of the message through the 

submodule. The primary purpose of the test cases was testing the ability of the coupled 

submodule to receive messages, pass them internally to the submodule controller and pass 

internal output to external ports. The controller processed these input messages and passed an 

appropriate message to the controlled opto-electrical component. The type of control message 

passed to each coupled submodule depended on the internal components.   

 OPM submodule – control message changes optical switch position 
 

These test cases led to iterations of testing and correction. Optical messages were tracked 

through the internal components and out the submodule output. Environmental messages were 

checked to ensure they replicated to each internal component. All the errors identified in the 

coupled submodules were problems with coding the controllers, as the atomic components 

functioned properly during coupling.   

Table 4. Summary of Coupled Submodule Behavior Testing. 

  
total 
tests 

optical 
ports 

ctrl 
port 

env 
port 

Classical Pulse Generator 4 0 3 1 
Polarization  Modulator 5 1 3 1 
Decoy State Generator 5 1 3 1 
Classical To Quantum 5 1 3 1 
Optical Security Layer 4 1 2 1 
Timing Pulse Generator 5 1 3 1 
Optical Power Monitor 5 1 3 1 

 
 

 



 

758 
 

AA.12 References  

DiConFiberOptics. (2013). MEMS 1x2 switch. Retrieved, 2013, Retrieved from 
http://www.diconfiberoptics.com/products/scd0044/0044h.pdf  

Saleh, B. E. A., & Teich, M. C. (1991). Guided waves. Fundamentals of photonics (2nd ed., pp. 
340-342). New York: John Wiley & Sons, Inc.  

ThorLabs. (2013a). MEMS fiber-optic switches. Retrieved, 2013, Retrieved from 
http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1553  

ThorLabs. (2013b). Single-mode fiber. Retrieved, 2013, Retrieved from 
http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949  

 



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

asharp
Sticky Note
Accepted set by asharp


	1_REPORT_DATE_DDMMYYYY: 18-09-2014
	2_REPORT_TYPE: Dissertation
	3_DATES_COVERED_From__To: Sept 2011 - Sept 2014
	4_TITLE_AND_SUBTITLE: Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification
	5a_CONTRACT_NUMBER: 
	5b_GRANT_NUMBER: 
	5c_PROGRAM_ELEMENT_NUMBER: 
	5d_PROJECT_NUMBER: 14V137
	5e_TASK_NUMBER: 
	5f_WORK_UNIT_NUMBER: 
	6_AUTHORS: Morris, Jeffrey D., MSG, USA
	7_PERFORMING_ORGANIZATION: Air Force Institute of TechnologyGraduate School of Engineering and Management (AFIT/EN)2950 Hobson WayWright-Patterson AFB  OH  45433-7765
	8_PERFORMING_ORGANIZATION: AFIT-ENV-DS-14-S-25
	9_SPONSORINGMONITORING_AG: Laboratory for Telecommunication Sciences  Dr. Gerry Baumgartner 8080 Greenmead DriveCollege Park MD 20740gbaumgartner@ltsnet.net
	10_SPONSORMONITORS_ACRONY: LTS
	1_1_SPONSORMONITORS_REPOR: 
	12_DISTRIBUTIONAVAILABILI: Distribution Statement A. Approved for Public Release;Distribution Unlimited 
	13_SUPPLEMENTARY_NOTES: This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
	14ABSTRACT: Quantum Key Distribution (QKD) is a revolutionary security technology that exploits the laws of quantum mechanics to achieve information-theoretical secure key exchange. QKD is suitable for use in applications that require high security such as those found in certain commercial, governmental, and military domains. As QKD is a new technology, there is a need to develop a robust quantum communication modeling and simulation framework to support the analysis of QKD systems. This dissertation presents conceptual modeling QKD system components using the Discrete Event System Specification (DEVS) formalism to assure the component models are provably composable and exhibit temporal behavior independent of the simulation environment. These attributes enable users to assemble and simulate any collection of compatible components to represent QKD system architectures. The developed models demonstrate closure under coupling and exhibit behavior suitable for the intended analytic purpose, thus improving the validity of the simulation. This research contributes to the validity of the QKD simulation, increasing developer and user confidence in the correctness of the models and providing a composable, canonical basis for performance analysis efforts. The research supports the efficient modeling, simulation, and analysis of QKD systems when evaluating existing systems or developing next generation QKD cryptographic systems.
	15_SUBJECT_TERMS: Conceptual Modeling; Discrete Event Simulation; Discrete Event System Specification; Quantum Key Distribution; Modeling and Simulation
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU 
	number_of_pages: 769
	19a_NAME_OF_RESPONSIBLE_P: Dr. Michael R. Grimaila, AFIT/ENV
	19b_TELEPHONE_NUMBER_Incl: (937) 255-3636 x4800    michael.grimaila@afit.edu
	Reset: 


