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Abstract. We develop a theory describing the operation of an opto-mechanical
oscillator as a phonon laser using a set of coupled equations that is analogous
to the standard set of laser rate equations. We show that laser-like parameters
that characterize gain, stored energy, threshold, efficiency, oscillation frequency
linewidth, and saturation power can be introduced for an opto-mechanical
oscillator driven by photo-thermal or radiation pressure forces. We then
apply the theoretical model to the experimental results for photo-thermally
driven oscillations in a Si waveguide opto-mechanical resonator and show
good agreement between the theory and experiments. We also consider the
microscopic mechanism that transforms the energy of incoherent thermal
phonons into coherent oscillations of a single phonon mode and show remarkable
parallels with the three-wave parametric interactions in optics and also with opto-
electronic oscillators used in microwave photonics.
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1. Introduction

Advances made in the last decade in the field of micro-fabrication have created a number
of new fields in physics and optics, including cavity opto-mechanics. Cavity opto-mechanics
enables resonantly enhanced light to exert forces on small mechanical objects with high-quality
mechanical (acoustic) resonances [1–3]. These forces can be of a direct nature, such as the force
caused by the momentum of light (i.e. radiation pressure), or more involved, mediated by the
heating of the mechanical object (i.e. photothermal force). A feedback mechanism is established
when the mechanical object comprises either the whole resonant cavity (as in micro-discs and
toroids [4]) or a part of it (as in various Fabry–Perot cavities [5]). Tuning the optical wavelength
around the resonance enables external optical control of both the frequency and amplitude
of the mechanical oscillations—a feature that can be used in various practical applications,
particularly in sensing. From a practical point of view, the control of amplitude has been the
main focus of attention of many groups, and it is quite remarkable that by changing the sign
of the detuning one can either decrease or increase the vibration amplitude of a mechanical
mode, which can be construed as ‘cooling’ [6–8] or ‘amplifying’ [9–12] this mode, respectively.
Achieving opto-mechanical cooling has been the goal of most researchers [6–8], since an
optically cooled mechanical mode enables access to the quantum regime of a mechanical
resonator [13]. However, the opposite effect (i.e. the resonant amplification of a mechanical
mode) can be exploited in high sensitivity detection. A large increase in the amplitude of
mechanical oscillations with optical power is always accompanied by a reduction of the
linewidth of these oscillations. Consequently, minute changes in, e.g., the mass of the oscillating
mechanical object due to attached particles, or the strain due to changes in pressure, will induce
a commensurate change in the resonant frequency. This frequency shift can be detected with
great precision by simply monitoring the light emerging from the opto-mechanical resonator
whose motion has now amplitude modulated the optical signal.

This effect of sharp narrowing of the linewidth of opto-mechanical oscillation is the main
focus of this work and we shall show that this narrowing can be treated in a manner similar to
the narrowing of the linewidth occurring in lasers operating above threshold. Indeed, it has been
shown in various opto-mechanical schemes that beyond a certain threshold power, self-sustained
mechanical oscillations materialize [9, 10], causing a number of researchers to claim mechanical
or phonon lasing [11, 12]. In the optical domain the sharp rise in amplitude of oscillations and
simultaneous linewidth collapse are two telltale signs usually accepted as unequivocal proof of
lasing. Since mechanical oscillations are in essence vibrations of phonon modes, it is reasonable
to depict the above-threshold opto-mechanical oscillation as phonon lasing. However, at this
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time the framework in which the ‘phonon lasers’ are described is different from the traditional
laser theory in which such key parameters as ‘gain’, ‘population inversion’ and ‘saturation’
are prominently featured. Lasing is typically described by a set of two coupled rate (balance)
equations: one for the gain (or population inversion) and the other for the bosons in the resonant
mode [14–16] and no equivalent set of equations has been developed for the opto-mechanical
oscillations. Generation of coherent photons and of coherent phonons, two processes that are
described virtually identically on the quantum level, are treated within two entirely different
frameworks. It is precisely the goal of this work to bridge the concepts of laser physics and
opto-mechanical oscillators and to bring these two communities together.

In this paper, we review our initial experimental work [17] on optically pumped micro-
mechanical oscillators. We expand our recently developed opto-mechanical rate equation theory,
which was only briefly introduced in [18]; this allows us to describe the dynamics of an
optically driven micro-mechanical oscillator in terms of gain, stored energy, slope efficiency and
saturation power. In this picture, the driven mechanical oscillator behaves much like a laser in
which pump photons generate coherent acoustic phonons. Our theory is verified by experiments
that show a threshold behavior beyond which the mechanical resonance linewidth collapses
and the oscillation amplitude increases sharply. We conclude with an analysis of the device
behavior at the quantum level, in which the population inversion required for optical lasers now
consists of high-frequency phonon pairs whose phase coherence enables phonon ‘lasing’ and
discuss parallels with the three-wave parametric interactions in optics and with opto-electronic
oscillators used in microwave photonics.

2. Experiment

The opto-mechanical oscillator [17] we consider is shown in figure 1. It consists of a waveguide
Fabry–Perot microcavity with two sets of silicon/air gratings as mirrors fabricated from a
silicon-on-insulator wafer. One of the gratings is movable and attached to the center of a silicon
microbridge whose buried SiO2 layer has been etched away to leave a suspended beam anchored
only at its ends. As the bridge oscillates (e.g. due to thermal fluctuations) the mirror is displaced
and the Fabry–Perot cavity is tuned. For a fixed input laser wavelength and power, the cavity
tuning implies a modulation of transmitted output power corresponding to the mirror/bridge
motion.

For high-Qoptical cavities there can be a large instantaneous circulating power inside the
cavity when the laser wavelength is tuned close to the cavity optical resonance. Any optical
forces are then amplified so that they can have a significant effect on the mirror/bridge motion.
Feedback is achieved since the optical force implies a subsequent change in mirror position with
a resulting cavity tuning. For a fixed laser wavelength the cavity tuning results in a change in
circulating cavity power and a change in the optical force exerted on the mirror/bridge.

In our device both radiation pressure and photothermal forces exist. However, there is a
large difference in force time constants—radiation pressure is governed by the short (fast) cavity
photon lifetime, while photothermal forces are dictated by the device’s long (slow) thermal
time constant [17]. The result is that optical force-induced frequency tuning of the mechanical
oscillator is governed by radiation pressure, while damping (cooling) and amplification of the
oscillator motion is dominated by photothermal forces. As we will show below, self-oscillation
in our device is dominated by photothermal forces.
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Figure 1. (a, b) Schematic diagram of the fabricated device showing the
micromechanical oscillator (green) and the waveguide optical Fabry–Perot
cavity with silicon/air gratings (red/orange). The images were taken by a
scanning electron microscope in which charging leads to electrostatic self-
actuation of the microbridge (green). In this work, the actual mirror displacement
due to optical forces will be much smaller.

Since our opto-mechanical device architecture is fully integrated, the measurements are
made using a relatively simple setup shown in figure 2. The device is placed in a vacuum
cell with sapphire windows and all experiments are performed at room temperature and
∼20 mTorr pressure. Further experimental details can be found in [17]. Figure 3 shows a set of
measurements exhibiting the well-known opto-mechanical instability in which self-oscillation
occurs once the optical power crosses a threshold value; in our experiments the threshold power
is around 300 µW (device 1). We emphasize that in contrast to radiation pressure-based opto-
mechanical instability occurring for a blue-detuned laser (e.g. [7]), our device exhibits self-
oscillation for a red-detuned laser. The reason for the change in the required detuning has to do
with the unique device architecture. While radiation pressure always displaces a mirror in the
positive direction (i.e. to lengthen the Fabry–Perot cavity as in figure 1(b)), the photothermal
force can act in either the positive or the negative direction. In our case, photothermal effects
result in local heating that displaces the movable mirror to shorten the Fabry–Perot cavity
(i.e. in the negative direction as in figure 1(a)) [17].

3. Derivation of rate equations

The ‘lasing’ process follows the cycle shown in figure 4 and is based on photothermal forces (we
note that a similar lasing process occurs for radiation pressure-based devices). The DBR mirror
and microbridge oscillate, initially due to thermal fluctuations. This causes the optical power
circulating inside the cavity to be modulated in proportion to the oscillations. A fraction of the
optical power is absorbed by the distributed Bragg reflector (DBR) mirror [17], resulting in local
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Figure 2. The experimental setup: continuous wave (CW) light from a tunable
laser is sent to the device using a high-numerical aperture (NA) objective (PC:
polarization controller); the device optical response is similarly collected and
the modulated signal is measured in a photodetector (PD). The optical resonance
spectrum is measured using a digital multi-meter (DMM) by sweeping the laser
wavelength. The mechanical resonance is obtained by fixing the laser wavelength
and measuring the modulated optical signal in an electrical spectrum analyzer
(ESA). For all measurements the device is kept in vacuum (∼20 mTorr).

Figure 3. Measured mechanical resonance spectrum for different optical powers
(device 1). The laser wavelength is red-detuned with respect to the cavity optical
resonance. We measure a clear threshold power beyond which the oscillation
amplitude increases sharply and the mechanical linewidth collapses (linewidth
was deconvolved from ESA filter response).

heating, thermal expansion and an effective photothermal force. The optical force changes the
microbridge displacement and the process repeats itself.

We now offer a detailed derivation of a set of two opto-mechanical laser rate equations.
Since the ‘output power’ of a mechanical laser is related to the vibration amplitude and the gain
to the temperature rise (for a photothermal force), it is the equations for these two variables
that serve as a basis for our derivations. The position of the beam has both steady state and
oscillating components,

1z = 1z̄ + zm cos(ωt) = 1z̄ + 1
2 zmexp (jωt) + c.c., (1)
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Figure 4. The lasing cycle in the photo-thermal oscillator: oscillating mechanical
mode (a) modulates the optical power in the cavity (b), causing a temperature
change and a resulting force (c). This force causes the microbridge to be
displaced (a) and the cycle repeats itself.

where ω is the resonant frequency of the beam modified by the optical force, 1z̄ is the steady-
state shift of the beam position relative to its position in the absence of light, and zm is the
slow-variable amplitude (i.e. dzm/dt � ω). Note that we choose the initial phase of oscillation
to be 0 which makes zm real and simplifies the derivations. A change in the optical cavity length
causes a change in the optical power P at the DBR etched into the microbridge. This power also
has two components,

1P = 1P̄ + 1
2 Pm exp (jωt) + c.c., (2)

which causes the temperature of the mechanical oscillator to rise relative to the ambient
temperature

1T = 1T̄ + 1
2 Tm exp (jωt) + c.c. (3)

The temperature rise can be determined by substituting (2) and (3) into the equation

dT

dt
=

αRt P

τt
−

T

τt
, (4)

where α is the total absorption in the beam, Rt is the thermal resistance and τt is the thermal
relaxation time. This yields

1T̄ = αRt1P̄,

dTm/dt = −(jω − 1/τt)Tm + αRt Pm/τt,
(5)

with the delay τt indicating that temperature oscillations are shifted in phase relative to the
optical power and thus their amplitude Tm is complex.

The relation between the displacement and the power on the DBR is determined by the
resonance characteristics of the Fabry–Perot cavity incorporating the DBR and characterized
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by the finesse F, quality factor Qopt and cavity transmission at the resonance Tcav, which in our
experiments was significantly less than unity due to scattering at the air gaps in the DBR. When
c/λQopt � ω the power at the DBR follows the DBR displacement adiabatically, and can be
given as

P(1z) =

2
πnSi

FT 1/2
cav

1 +
(

2
π

F sin π
2(lopt+1z)

λ

)2 Pin(t), (6)

where Pin(t) is the slowly variable waveguide optical power incident on the cavity and lopt is the
optical length of the cavity. When the cavity is at the exact resonance lopt = Nλ/2, the power
inside it is at a maximum, the derivative over the DBR displacement is equal to zero and there
is no feedback between the mechanical oscillations and optical force causing them. To optimize
that feedback, i.e. to maximize the derivative dP/dz, the resonator should be detuned by a small
amount, 1λ ≈ ∓λ/(2

√
3Qopt). This causes the second derivative d2 P/dz2 to vanish and only

the first and third-order derivatives may be kept in a series expansion of power

P(1z − 1z̄) = P(lopt + 1z̄) +
dP

dz

∣∣∣∣
lopt+1z̄

(1z − 1z̄) +
1

6

d3 P

dz3

∣∣∣∣
lopt+1z̄

(1z − 1z̄)3, (7)

where
dP

dz
= z−1

1 Pin ≈ ∓(3F)2/(πnSi

√
3)T 1/2

cav λ−1 Pin,

d3 P

dz3
= z−3

3 Pin ≈ ±8 (3F)4 /(π
√

3)T 1/2
cav λ−3n−3

Si Pin.

(8)

The change of sign corresponds to the red and blue shifts of the wavelengths, the first-order
term describes the strength of the feedback exerted by the DBR displacement onto the optical
force, and the third-order term (which always has an opposite sign) describes the saturation. If

one introduces the saturation amplitude as zsat =

√
−z3

3/z1 ≈ λnSi/3F and then substitutes (1)
into (7), one arrives at the relation

Pm(t) = Pin(t)
zm

z1

(
1 −

z2
m

z2
sat

)
. (9)

In figure 5, we have plotted the exact value of the derivative dP/dz as a function of
DBR displacement as well as its parabolic approximation. Clearly, the saturation amplitude
zsat defines the range of sustainable opto-mechanical oscillations.

Substituting (9) into (5), we obtain the relation between the amplitudes of temperature rise
and DBR displacement

dTm(t)

dt
+ jωTm(t) +

Tm(t)

τt
=

αRt

τt
Pin(t)

zm

z1

[
1 −

z2
m

z2
sat

]
. (10)

Splitting the temperature rise into in-phase (real: T ′) and quadrature (imaginary: T ′′)
components yields

dT ′

m(t)

dt
− ωT ′′

m(t) +
T ′

m(t)

τt
=

αRt

τt
Pin(t)

zm

z1

[
1 −

z2
m

z2
sat

]
,

dT ′′

m(t)

dt
+ ωT ′

m(t) +
T ′′

m(t)

τt
= 0.

(11)
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Figure 5. Change in cavity optical power as a function of reflector position
and its lowest-order series expansion (dashed line) with the quiescent point for
optimal device operation and the saturation amplitude, zsat, listed.

Working in our slowly varying approximation framework d/dt � ω, τ−1
t , we can drop the

derivative term in the second equation and assume that the quadrature component of temperature
oscillations follows the real component adiabatically as T ′′

m(t) = −ωτtT ′

m(t) and obtain by
substitution into the first of equations (11)

dT ′

m(t)

dt
+

T ′

m(t)

τt

(
1 + ω2τ 2

t

)
=

1

τt
αRt Pin(t)

zm

z1

[
1 −

z2
m

z2
sat

]
,

dT ′′

m(t)

dt
+

T ′′

m(t)

τt

(
1 + ω2τ 2

t

)
= −ωαRt Pin(t)

zm

z1

[
1 −

z2
m

z2
sat

]
.

(12)

Now that we have determined how the amplitude and phase temperature oscillations relate
to the mechanical oscillations, we need to determine the feedback process that causes a change
in the amplitude and phase of mechanical oscillations because of the oscillations in temperature.
The equation governing the displacement of the beam 1z(t) is that of a damped harmonic
oscillator

d21z

dt2
+ γ

d1z

dt
= −ω2

0 [1z(t) − 1z0(t)] , (13)

whose ‘instant equilibrium’ position (i.e. the position to which the elastic force is trying to
return at a given instant) depends on the temperature as

1z0(t) = −
dz

dT
T (t), (14)

where −∂z/∂T is a thermal-displacement gain coefficient that relates the beam displacement to
changes in temperature via thermal expansion [17]. Using (3) we obtain

1z0(t) = −
dz

dT
1T̄ −

1

2

dz

dT

[
Tm exp (jωt) + c.c.

]
. (15)

Inserting (1) and (15) into (13), equating the terms with the same harmonic dependence,
and neglecting the second-order derivative of slowly varying amplitude zm and another small
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term γ dzm/dt , we obtain

dzm

dt
= −

γ

2
zm −

j

2ω

(
ω2

− ω2
0 − ω2

0

dz

dT

T ′

m

zm

)
zm −

1

2ω
ω2

0

dz

dT
T ′′

m. (16)

The first term describes the damping; since zm is real, the term in parentheses must be equal
to zero, indicating an observed resonant frequency shift [17, 19]

ω2
= ω2

0 + ω2
0

dz

dT

T ′

m

zm
, (17)

that can also be thought of as frequency pulling in a conventional laser theory ([14],
equations (12) and (13)). The last term, which can be modified by dividing and multiplying
by zm , describes the gain, i.e. the equation can be written as

dzm

dt
=

1

2
(g(t) − γ ) zm, (18)

where we have introduced our gain (per unit of time) as

g = −(ω2
0/ω)(dz/dT )T ′′

m/zm. (19)

Note that just the quadrature component of Tm contributes to the gain, which is precisely
the 90◦ phase shift occurring in optical parametric oscillators [14]—an analogy explored below.
Finally, from (18), we obtain for the square of the amplitude

dz2
m

dt
= [g(t) − γ ]z2

m. (20)

The rate equation for the gain is then obtained from the second equation in (12) as

dg

dt
+

g

τ ′
t
=

g0

τ ′
t

(
1 − z2

m/z2
sat

)
, (21)

where the unsaturated gain is g0(Pin) = α (dz/dT ) Rt Pin(t)z
−1
1 ω2τ ′

t , and the modified thermal
relaxation time is τ ′

t = τt/(1 + ω2τ 2
t ). Equations (20) and (21) represent our main result: a

coupled set of equations for gain and oscillating power (oscillation amplitude) in an opto-
mechanical system.

We rewrite equations (20) and (21) as a set of standard laser rate equations (equation
13.43 in [14]) to better describe the energy balance. The energy of mechanical vibrations is
Um =

1
2meffω

2z2
m, its saturation value is defined as Usat =

1
2meffω

2z2
sat, where meff is the effective

mass of the beam, and another variable, the stored energy of phase-locked thermal phonons that
are available for ‘lasing’, is given by Ust = gτ ′

t Usat, whose unsaturated value is Ust,0 = g0τ
′

t Usat.
We also include the thermal noise power PN = γ kT/2 in the equation to obtain

dUst

dt
=

Ust,0

τ ′
t

[
1 −

Um

Usat

]
−

Ust

τ ′
t
,

dUm

dt
=

[
Ust

τ ′
t Usat

− γ

]
Um + PN.

(22)
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For the relatively weak vibrations (zm � zsat), equation (22) can be approximated as

dUst

dt
= ηp Pin −

Ust

τ ′
t

−
Ust

τ ′
t

Um

Usat
,

dUm

dt
=

Ust

τ ′
t Usat

Um − γUm + PN ,

(23)

where we have introduced the pumping efficiency

ηp =
Ust,0

Pinτ
′
t
=

ωT 1/2
cav

2π
√

3
αRt

dz

dT
KeffλnSiωτ ′

t , (24)

and Keff = meffω
2
0 is the effective spring coefficient. The stimulated emission term UstUm/Usatτ

′

t
appears in both equations for stored and released energies with opposite signs indicating perfect
energy balance as the energy is transferred from thermal phonons in all acoustic modes into
coherent phonons in a single resonant mechanical mode. Also, note that neither Ust,0 nor ηp

depends on cavity finesse, which is consistent because they basically represent the area under
the optical force curve in figure 5.

Next, we divide all the energies by a phonon energy h̄ω to obtain a standard set of the
Statz–de-Mars [15, 16] balance equations

dNst

dt
=

Nst,0

τ ′
t

−
Nst

τ ′
t

[
1 +

nm

Nsat

]
,

dnm

dt
=

[
Nst

τ ′
t Nsat

− γ

]
nm + γ

kT

2h̄ω
,

(25)

with nm being the number of coherent phonons, Nst playing the role of population inversion and
(τ ′

t Nsat)
−1 being the equivalent of the stimulated emission coefficient. One difference between

rate equations (25) and the standard laser equations is that the noise term is of thermal nature
and thus appears to be classical. However, this is simply the approximation of a fully quantum
Bose–Einstein distribution term for the case of kT � h̄ω and is not related to the fact that our
quanta are phonons and not photons.

Finally, let us introduce the threshold value of stored energy, Ust,th = γ τ ′

t Usat, and the
threshold pump power

Pth = Ust,th/ηpτ
′

t ≈
0.62

Qm F2T 1/2
cav

1 + ω2τ 2
t

ωτt

λnSi

α (dz/dT ) Rt
, (26)

where Qm is the Q-factor of mechanical oscillation.
Before proceeding further, let us consider the case when the force acting on the beam is

due to radiation pressure. Since the optical force in that case is simply twice the optical power
divided by the speed of light, it is rather straightforward to repeat all the derivations with the
main result being that, instead of mω2

0α(dz/dT )Rt, one should substitute 1/c, where c is the
speed of light. In place of the thermal time constant (τt) a cavity photon lifetime (τc ∼ Qoptλ/c)
should be used, resulting in

Pth,rad ≈
0.62

Qm F2

1 + ω2τ 2
c

ωτc
λnSicmeffω

2
≈

0.62

Qm Qopt F2
meffnSic

2ω, (27)

consistent with [9]. Unless the cavity has an extraordinarily high Qopt., ωτc � 1 and the
threshold of radiation pressure-driven oscillations is quite high. In contrast, in the case of
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Table 1. Relevant parameters for the experimentally studied opto-mechanical
oscillators.

Device γ /2π (Hz) Qm F Tcav (%) z−1
1 (nm−1) zsat (nm)

1 5.54 1.89 × 104 140 4.7 1.6 12.9
2 3.98 2.79 × 104 380 4.1 7.7 4.8

a photothermal scheme one can design an optimum ωτt ∼ 1 and achieve a low threshold in
small cavities with a relatively modest Qopt, as used in our experiments. At the same time,
the radiation pressure-induced frequency shift term (dz/dT)(T ′

m/zm) in equation (16), which
according to (12) is proportional to 1/(1 + ω2τ 2

c ), is much larger than the photo-thermally
induced shift as is indeed observed in our experiments (figure 3).

4. Rate equation solution and comparison with experiment

To obtain input–output curves, it is convenient to define all the relevant energies and power
as ust = Ust/Ust,th, um = Um/Usat and pin = Pin/Pth to obtain from (22) dimensionless laser
equations identical to those in [15, 16]

dust

dt
=

1

τt
[pin(1 − um) − ust] ,

dum

dt
= γ (ust − 1) um + γ

kT

2Usat
,

(28)

where as we shall see below the noise term kT/2Usat � 1. Note that (28) is obtained directly
from (22) and is not limited to the weak vibration condition. Above threshold, the ‘population
inversion’ gets clamped at a threshold ust = 1 and the steady-state solution for the energy of
mechanical oscillation can be found as um = (pin − 1) /pin with the term in the denominator
indicating the phenomenon of ‘gain compression’ [20]. In real units we obtain for the output
power dissipated by the mechanical beam and otherwise available to perform work Pout =

γUm = ηp (Pin/Pth)
−1 (Pin − Pth) with the slope efficiency being equal to the pump efficiency

modified by the gain compression term (Pin/Pth)
−1. Using the second equation in (28) we can

write for the linewidth:

γeff = γ (1 − ust) ≈

{
γ (1 − Pin/Pth) , Pin < Pth,

γ 2 kT
2Pout

, Pin > Pth,
(29)

which is precisely the Schawlow–Townes expression for the linewidth [22] in which thermal
noise energy kT replaced the quantum noise energy hν. Let us now estimate the relevant
parameters for two cavities (device 1 and device 2) for which we have made ‘lasing’
measurements: the mechanical oscillation frequency for both devices is ω/2π = 101 kHz; the
other parameters are given in table 1. The thermal time constant has two components—the
slower one equal to 162 µs (dominated by the microbridge) and the faster one equal to 3.0 µs
(dominated by the DBR silicon slabs); only the fast component contributes appreciably to
the resonance response with the term ωτt/(1 + ω2τ 2

t ) equal to 0.412 versus only 0.01 for the

New Journal of Physics 14 (2012) 105022 (http://www.njp.org/)

http://www.njp.org/


12

Figure 6. Comparison of the experimental (points) and the theoretical (lines)
results for two devices: (a) device 1 output power and linewidth and (b) device 2
output power and linewidth. A few measured spectra corresponding to device 1
are shown in figure 3.

slow component [17]. Finally, the expansion term was estimated from a finite-element thermal-
mechanical structural model to be Rt (dz/dT ) = 19.0 × 103 nm W−1 [17].

To estimate the effective absorption in the DBR, we must take into account the fact that
most of the absorption takes place in the first Si layer (facing the cavity) with thickness dSi =

653 nm and that the power inside that layer is reduced relative to the power bouncing inside
the main Si spacer of the cavity. With the Si absorption coefficient equal to αSi = 1.6 cm−1, we
obtain α ≈ 3.2 × 10−5 and find the threshold powers for our two devices as 268 and 31.1 µW,
respectively. Concerning the saturation power, we use the calculated result for the spring
constant Keff = 2.75 × 10−9 N nm−1 to obtain saturation powers Psat = γUsat equal to 7.98 and
0.86 fW, respectively, with slope efficiencies of 3.1 × 10−11 and 3.6 × 10−11, respectively.

The results of our calculation are plotted in figure 6, along with our experimental results
for device 1 and device 2. Our instrument bandwidth is 1 Hz, which is deconvolved from our
measured Lorentzian lineshapes. The experimental output powers are found by first converting
our measured output laser oscillation amplitude into an oscillating displacement amplitude,
which is then converted into a mechanical power. The experimentally observed threshold and
linewidth are very well predicted by our theory in both devices. In the lower finesse device 1,
the experiment shows earlier onset of saturation than theory, possibly due to the influence of
the higher order terms in the Taylor expansion of the photo-thermal force. Also, while the
average mechanical power follows the theoretical curve rather well, there are rather significant
oscillations around the average power, which can also be associated with higher order nonlinear
terms providing instability. In the higher finesse device 2 the observed output power is larger
than predicted, which can be explained by the fact that in a higher Q cavity any small variation
in laser wavelength can shift the position of the ‘quiescent’ point in figure 5 away from the
one used to minimize threshold and effectively increase the saturation power. This accounts
for some of the discrepancy between theory and experiment in both devices 1 and 2, although
any wavelength shift will more significantly affect the threshold of the higher finesse device.
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Furthermore, the coupling efficiency can differ between the two devices by a small amount due
to the waveguide facet quality, for example. Also, even when they exist, the power variations in
our device do not show a complicated, often multi-stable character observed in cantilevered
designs [10, 21]. This can be explained by the fact that our cavity length is much shorter
(LC = 3 µm) and we can keep the laser tuned close to a single quiescent point.

5. Microscopic picture

We now describe ‘phonon lasing’ on a quantum level. The majority of opto-mechanical
oscillators in which phonon lasing has been demonstrated are driven by radiation pressure
and can be explained in the framework of Raman lasers: a parametric process in which the
stimulated decay of a higher frequency photon creates a quantum of mechanical oscillation and
a lower frequency (Stokes) photon in the cavity. The Stokes shift is manifest in the fact that
radiation pressure-driven phonon lasing always occurs when the pump photons are blue-shifted
from the cavity resonance [7, 12]. Alternatively, one can visualize phonon lasing as a parametric
oscillator in which pump photons are split into the low-frequency mechanical (acoustic) ‘idler’
phonon and a Stokes shifted ‘signal’ photon. But the situation is far more involved when the
driving force is of a photo-thermal nature [5, 10] and the interaction is mediated by a sequence
of processes taking place inside the medium (figures 4(a)–(c)). What is particularly intriguing
is that depending on the particular design the ‘lasing’ can occur with either a blue- or a red-
shifted pump (the latter being the case in our experiments), a fact that cannot be explained by
conventional parametric and Raman-like processes.

However, the parametric explanation can be obtained on the microscopic level by noting
that the thermal expansion driving the oscillating mechanical object is a consequence of
the anharmonicity of the binding forces in the crystalline lattice. Both are described by the
Grüneisen parameter [23]. It is precisely this anharmonicity that engenders the three-phonon
quantum interactions, specifically the process in which a higher energy thermally excited
acoustic phonon ωp can split into two lower energy phonons. Here, one is the phonon of the
mechanical oscillating mode with frequency ω0 (‘idler’ phonon), while the other one is the
thermal ‘signal’ phonon with frequency ωp − ω0 as shown in figure 7. The correspondence
between the phonon anharmonicity and the second-order optical nonlinearity is well established
and acoustic analogies of nonlinear optical process have been observed [24]. Hence, one can
think of the oscillations as an ‘acoustic parametric oscillator’. It is critical that the coherent
buildup of idler oscillations takes place only if the ‘pump’ and ‘signal’ phonons remain locked
in phase with each other for all phonon modes ωp. Such a coherence is imposed by the fact
that the light inside the optical cavity is modulated by the mechanical oscillations of one of the
mirrors as cos(ω0t). Hence, the power absorbed by the oscillating mirror and the temperature,
i.e. the number of photo-generated phonons, is modulated as cos(ω0t + ϕ) (figure 4(c)), and this
modulation can be interpreted as interference between the phonons ωp and phonon side bands
ωp ± ω0 whose phases are coherently related. When ϕ = π/2, (strong quadrature component in
equation (12)), a buildup of coherent ‘idler’ oscillations will result in a manner similar to that
of an optical parametric oscillator [25].

It is crucial to understand that there is no need for all the thermal phonons at different
frequencies ωp to be coherent among themselves. It is quite sufficient to have a relatively small
fraction of these phonons separated by the idler frequency ω0 to be locked in a phase relationship
imposed by the oscillations of optical power. The energy of these pairs, Ust, can in principle be
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Figure 7. Coherent phonons at the difference frequency ω0 that were generated
in the resonant mechanical mode via anharmonicity.

transferred to the mechanical mode and it is this energy that plays the role of the energy stored
at the upper level of the conventional laser.

Another analogy can be made with a different optical device: the opto-electronic
microwave oscillator [26, 27]. This device is a source of microwave radiation in which the
pump light is modulated by an electro-optic modulator driven by a microwave of frequency ω0

obtained when the optical radiation is detected by a photodiode. The photodiode is a power
detector (i.e. its response is quadratic in amplitude, similar to the second-order nonlinearity in
parametric processes), and one can think of the photodetection as a process of down converting
(heterodyning) of photons at laser frequency (‘pump’) and its side band (‘signal’) into the
microwave ‘idler’. A key feature of opto-electronic oscillators is that with a good microwave
filter the linewidth of the generated microwaves can be much narrower than the linewidth of
the pump laser, because each photon interacts only with its own sub-band shifted by ω0 and the
coherence of microwave radiation is not related to the coherence of the pump, but is determined
by the quality factor of the microwave feedback loop and the output power. Similarly, the
coherence of idler phonons in our experiments is determined only by the quality of mechanical
resonance and the mechanical output power (equation (28)).

These analogies provide straightforward reasons for the low efficiency seen in our
measurements. First of all, only a small fraction of all the phonons are the coherently locked
ones. Secondly, in each three-phonon process the average pump photon of THz frequency
creates a coherent phonon with less than a MHz frequency—hence the efficiency is low due
to the Manley–Rowe limit in nonlinear optics [23]. Indeed, the frequency ω in the numerator of
the expression for the efficiency is indicative of a Manley–Rowe relation.

6. Conclusions

We have derived a set of coupled phonon rate equations that describe above-threshold
amplification and coherent self-oscillation in cavity opto-mechanical systems. These equations
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have a form that is analogous to the laser rate equations, and consequently can be used to
predict threshold pump powers, mechanical oscillation amplitudes and mechanical linewidths.
The laser rate equation analogy also enables the identification of parameters such as effective
opto-mechanical gain, saturation and slope efficiency. These equations are general for any opto-
mechanical force, and we show excellent agreement with our experimental results obtained from
photothermal pressure within an integrated Fabry–Perot microcavity coupled to a microbridge.
Finally, we describe how this ‘phonon-lasing’ can be understood in terms of parametric
amplification resulting from second-order nonlinear mixing between coherent phonons. We
believe that the ultra-low mechanical linewidth that results from this coherent self-oscillation
is of interest for sensing applications, in which a large mechanical Q-factor leads to enhanced
sensing resolution, or microwave photonics in which an extremely narrow linewidth and low
phase noise optical signals are required.
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[6] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer
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