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Abstract 
 
This report will present two commercial software environments used to distribute and execute 
real-time simulations: QuaRC and RT-Lab. Both QuaRC and RT-Lab allow the user to develop 
simulation models using Matlab/Simulink and include hardware, such as data acquisition boards, 
to connect to real vehicles and systems. In addition, QuaRC can be used to program embedded 
systems such as wheeled mobile robots and aerial vehicles.  
 
This report will present formation flight models that have been modified in order to be compliant 
to QuaRC or RT-Lab. The simulations are composed of six to ten unmanned aerial vehicles, or 
UAVs, following a commanded trajectory while maintaining a prescribed trajectory. Models 
presented also include abrupt fault detection and formation shape morphing on operator’s 
request. Vehicle models and dynamics are based on almost lighter-than-air (ALTAV) vehicles, 
unicycles  and quadrotor vehicles. Low-level controllers used to stabilize these UAVs are 
feedback linearization controllers. Formation controller is of leader-to-follower type. Simulation 
results are displayed in real-time on a three-dimensional viewer (X-Plane).  
 
The feedback linearization controller has been implemented on an embedded computer on board 
a wheeled mobile robot (QBot). An infrared camera system (OptiTrack camera setup) is used to 
measure the QBot’s position and orientation. This information is then sent from the base station 
to the wheeled mobile robot’s embedded computer using a wireless link in order to close the 
low-level controller’s loop.  
 
This report will then present major differences between QuaRC and RT-Lab as well as 
advantages and inconvenient of using either software solution. 
 
         _______________________________________________________________________ 
 
Résumé 
 
Ce rapport présentera deux logiciels servant à exécuter des simulations distribuées en temps réel; 
QuaRC et RT-Lab. Ces deux logiciels permettent de développer des modèles de simulations en 
utilisant Matlab/Simulink. Ces logiciels permettent également d’exécuter des simulations 
incluant du matériel tel que des cartes d’acquisition de données. De plus, QuaRC permet de 
programmer des systèmes embarqués à bord de robots mobiles et de véhicules aériens. 
 
Ce rapport présentera des modèles de vols en formations qui ont été modifiés pour être 
compatibles avec RT-Lab ou QuaRC. Les simulations présentées sont composées de six à dix 
véhicules suivant une trajectoire commandée tout en maintenant la géométrie prescrite. Les 
modèles présentés montrent des capacités essentielles au vol en formation telles que la détection 
et le recouvrement de fautes abruptes  ainsi que la modification de la géométrie de la formation 
sur la demande de l’utilisateur. Les modèles de véhicules utilisés pour exécuter ces simulations 
sont des véhicules presque plus légers que l’air (ALTAVs), des unicycles et des quadrotors.  
Leur contrôleur de bas niveau est une boucle de rétroaction linéarisée. Le contrôleur utilisé pour 
maintenir la formation est de type leader-suiveur. Les résultats de simulation sont affichés en 
temps réel dans un engin graphique à trois dimensions (X-Plane). 
 
Le contrôleur par rétroaction linéarisée a également été implanté à sur l’ordinateur embarqué 
d’un robot mobile (QBot). Un système de pistage par caméra infrarouge (Système de caméra 
OptiTrack) est utilisé pour mesurer la position et l’orientation du QBot en temps réel. Ces 
informations sont par al suite relayées de la station de base au QBot via un lien sans-fil pour 
fermer la boucle du contrôleur de bas niveau 
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Ce rapport présentera par la suite les différences majeures entre QuaRC et RT-Lab ainsi que les 
avantages et inconvénients d’utiliser l’un ou l’autre des logiciels. 
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Executive Summary 
 
A group of flying vehicles following a requested trajectory while maintaining certain geometry 
(formation) can be useful to execute several kinds of mission: automated aerial refueling, 
coordinated bombing, territorial surveillance, multi-vehicle heavy lift, and low-altitude cruising 
by fleets of missiles. A formation is composed of 2 kinds of vehicle: a leader and followers. The 
leader receives objectives and commands from an operator while followers attempt to keep their 
commanded relative position from neighbors. Note that the operator can either be on board the 
leader or on a ground station. 
 
This report will present Real-Time simulation models where the user can control de leader’s 
trajectory. The user can be considered as an operator who sends high level commands to the 
leader from a base station. Note that complying to real-time constraints is important in order to 
demonstrate the feasibility of the implementation of the formation controller and the low-level 
controller on actual hardware.  
 
The control of a wheeled mobile robot (QBot) has also been developed using the QuaRC 
software. Controllers are executed on board the QBot’s embedded computer. Showing that 
control algorithms are simple enough to be implemented in real-time on embedded computers. 
 
This report will present two commercial software environments used to distribute and execute 
real-time simulations: QuaRC and RT-Lab. Both QuaRC and RT-Lab allow the user to develop 
simulation models using Matlab/Simulink and include hardware, such as data acquisition boards, 
to connect to real vehicles and systems. In addition, QuaRC can be used to program embedded 
systems such as wheeled mobile robots and aerial vehicles.  
 
This report will provide formation flight models that have been modified in order to be 
compliant to QuaRC or RT-Lab. The simulations are composed of six to ten unmanned aerial 
vehicles, or UAVs, following a commanded trajectory while maintaining a prescribed trajectory. 
Models presented also include abrupt fault detection and formation shape morphing on 
operator’s request. Vehicle models and dynamics are based on almost lighter-than-air (ALTAV) 
vehicles, unicycles  and quadrotor vehicles. Low-level controllers used to stabilize these UAVs 
are feedback linearization controllers. Formation controller is of leader-to-follower type. 
Simulation results are displayed in real-time on a three-dimensional viewer (X-Plane).  
 
This report will then present major differences between QuaRC and RT-Lab as well as 
advantages and inconvenient of using either software solution. 
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Sommaire 
 
 
Un groupe de véhicules volants suivant une trajectoire prescrite tout en maintenant une 
géométrie (formation) peut être utile pour plusieurs types de mission : le bombardement 
coordonné, la surveillance territoriale, la levée multi véhiculaire de poids lourd, et le vol à basse 
altitude d'une flotte de missiles de croisière. Une formation est composée de deux types de 
véhicules : Un maître et des suiveurs. Le maître est le véhicule qui reçoit les objectifs et les 
commandes de haut niveau provenant d’un opérateur alors que les suiveurs sont des véhicules 
qui tentent de se positionner par rapport aux véhicules voisins pour maintenir une géométrie. 
 
Ce rapport présentera des modèles de simulations en temps réel où l’utilisateur peut commander 
la trajectoire du maître de la formation. L’utilisateur peut être vu comme l’opérateur qui envoie 
des commandes de haut niveau au maître à partir d’une station de terrestre. Il est à noter que le 
respect des contraintes de temps réel est important afin de démontrer la faisabilité de 
l’implantation des contrôleurs de formation et de bas niveau. 
  
Le contrôle d’un robot mobile (QBot) a également été développé en utilisant le logiciel QuaRC. 
Les contrôleurs de ce robot mobile sont exécutés sur l’ordinateur à bord. Montrant ainsi que les 
algorithmes de contrôle sont suffisamment simples pour être implantés en temps réel sur un 
ordinateur embarqué. 
 
Ce rapport présentera deux logiciels servant à exécuter des simulations distribuées en temps réel; 
QuaRC et RT-Lab. Ces deux logiciels permettent de développer des modèles de simulations en 
utilisant Matlab/Simulink. Ces logiciels permettent également d’exécuter des simulations 
incluant du matériel tel que des cartes d’acquisition de données. De plus, QuaRC permet de 
programmer des systèmes embarqués à bord de robots mobiles et de véhicules aériens. 
 
Ce rapport présentera des modèles de vols en formations qui ont été modifiés pour être 
compatibles avec RT-Lab ou QuaRC. Les simulations présentées sont composées de six à dix 
véhicules suivant une trajectoire commandée tout en maintenant la géométrie prescrite. Les 
modèles présentés montrent des capacités essentielles au vol en formation telles que la détection 
et le recouvrement de fautes abruptes  ainsi que la modification de la géométrie de la formation 
sur la demande de l’utilisateur. Les modèles de véhicules utilisés pour exécuter ces simulations 
sont des véhicules presque plus légers que l’air (ALTAVs), des unicycles et des quadrotors.  
Leur contrôleur de bas niveau est une boucle de rétroaction linéarisée. Le contrôleur utilisé pour 
maintenir la formation est de type leader-suiveur. Les résultats de simulation sont affichés en 
temps réel dans un engin graphique à trois dimensions (X-Plane). 
 
Ce rapport présentera par la suite les différences majeures entre QuaRC et RT-Lab ainsi que les 
avantages et inconvénients d’utiliser l’un ou l’autre des logiciels. 
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1. Introduction 
 
This report presents real-time simulations of formation flight models. Figure 1 presents two 
types of formation geometry. The first formation is a V-Shape formation and the second is a 
string formation. Formations are composed of 2 types of vehicles, Leaders (L) and Followers 
(F). Arrows represents the information flow. In this report it is assumed that the information 
flow contains the position and the speed of previous vehicles. It is also assumed that an operator 
located in a base station and can send high level commands such as trajectories, velocities 
command and orientation commands. to the leader. Followers attempt to maintain the 
formation’s geometry by relying on the information flow available. 
 

 
Figure 1: UAV Formation Example 

 
Simulations presented in this report are based on ALTAV [6], unicycle [7] and quadrotor [8] 
models. Each UAV comprises onboard system and components such as actuators, control 
surfaces, engines, on board computers and wireless communication devices. It is assumed that 
the formation and low-level controllers (feedback linearization controller [9]) are executed 
onboard UAV computer and that the loop is closed by onboard sensors.  
 
Real-Time simulations have been developed using QuaRC and RT-Lab. Both products allow 
developing models using Matlab/Simulink. Models can then be converted to C++ and compiled 
using the Real Time Workshop compiler. It is also important to note that these software 
solutions allow splitting models into smaller models in order to distribute the computation task 
on more than one computer. 
 
The feedback linearization controller [9] has been implemented on an embedded computer 
onboard a wheeled mobile robot (QBot). An infrared camera system (OptiTrack camera setup 
[13]) is used to measure the QBot’s position and orientation. This information is then sent from 
the base station to the WMR’s embedded computer using a wireless link in order to close the 
low-level controller’s loop.  The controller is executed on board the QBot’s embedded computer, 
showing that the controller is simple enough to be implemented in Real-Time on embedded 
computers. 
 
This report will then present major differences between QuaRC and RT-Lab as well as 
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advantages and inconvenient of using either software solutions. 
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2. Distributed Simulations Using RT-Lab 
 
RT-Lab is software that allows developing simulation models that can be executed in real-time. Models 
are developed using Matlab/Simulink. Models can then be converted to C++ source code and compiled 
using RT-Lab’s Real-Time-Workshop compiler. RT-Lab also offers to split models into smaller models in 
order to distribute the computation task to more than one computer or more than one CPU core. Each 
computation node (computer or core) are called a Target. For example, if a computer has 4 cores, it is 
possible to execute 4 different models (one on each core). This computer can then support 4 Targets. 
 
Note that RT-Lab also offers target synchronization. Synchronization will ensure that simulation steps are 
executed periodically. Indeed, non synchronized simulation models will start a new computation step as 
soon as the previous one is finished. It is possible to synchronize targets via software or via hardware. 
Software synchronization is achieved using Target’s CPU clock and hardware synchronization is 
achieved using an I/O board clock. 
 
Note that this report will present software and hardware synchronized simulations. The hardware 
synchronization board is the NI6602 [14] board and has been installed on the computer called Target 1 
(hardware specifications are available at the Annex 1).  
 
Model separation is done entirely by RT-Lab. RT-Lab model separation is always composed of at least 
two targets: one target is called the console and the other is called the master. The console serves the 
purpose of giving an interface to the user with Real-Time Targets and is executed on the same computer 
that compiles models. For example, the joystick controller and data logging must be located in the 
console. The Target called the master is executed in Real-Time on a computer on which the OS is 
RedHawk (real-time linux) or QNX. Such targets will serve the purpose of executing models in real-time, 
acquire computation timings and send simulation results to the console.  
 
Additional real-time targets can be added to the simulation. Those targets are optional, but can prove 
useful when simulation models require more computation power than one target can provide. Indeed, it is 
possible to distribute the computation task to additional targets called slaves and thus reducing 
computation requirements to the master target.  
 
RT-Lab provides Simulink blocks that can be used for fast prototyping. For example, RT-Lab provides 
joystick blocks allowing the user to include a game controller to simulation models. RT-Lab also provides 
communication blocks allowing the user to exchange data in real-time between real-time targets. RT-Lab 
supports following communication protocols: Ethernet/UDP, FireWire and Shared Memory.  
 
Real-Time models can be executed on computers with the following operating systems: RedHawk, QNX. 
 
For more information about RT-Lab, refer to the Annex 2: RT-LAB Quick Start Guide. 
 
RT-Lab computers are presented in Annex 1: Presentation of the Hardware (Table 4, Table 5 and Table 
6). 
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2.1. Altav Convoy model 
 
This model presents a 9-vehicle formation. The first vehicle is called the leader. Other vehicles are called 
followers. The formation geometry for this simulation is a string shape. For example: the follower 1 
(UAV 2) will stay behind the leader, the follower 2 (UAV 3) will stay behind the follower 1 and so on. 
The leader follows trajectory determined by the user. The user can control the leaders’ heading, speed and 
altitude using a joystick. ALTAV’s low level controller is the feedback linearization controller [9]. The 
formation controller used is detailed in [11]. This model also allows the user to trigger an abrupt fault on 
the UAV 2 at any time during the simulation. UAV 3 will detect the anomaly using the DAFD [10] and 
will recover the fault by following the leader of the formation instead of following the UAV 2.  
Simulation results can be viewed in a three dimensional viewer in Real-Time using X-Plane 8.4 [4] 
software. Note that this simulation model is executed at a period of 0.01 s and is software synchronized. 
 
 
The ALTAV model presented in this report is based on the original ALTAV model [6] available at the 
DRDC-Valcartier Precision Weapon section.  
 
 
Following model has been delivered to the Precision Weapons Section at DRDC-Valcartier: 
 
• RT-Lab:ALTAVconvoyTeamFDRSummer2007joystick(DAFD) 
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2.1.1. Objectives 
 
The ALTAV model was already an RT-Lab compliant model. It as however been modified in order to 
allow the user to control the leader of the formation with a joystick more easily. Previously, the joystick 
was controlling directly the X-Y trajectory corresponding to the X-Y values of the joystick output. Now 
the user controls the velocity and the heading vehicles allowing a smoother control of the leader.  
 
 
2.1.2. Block Diagram 
 
This model is composed of two targets; APSEQUANSER and Target 1 computers. APSEQUANSER is a 
non Real-Time windows target that allows the user to control the leader with a joystick and trigger an 
abrupt fault on the UAV 2. The console also logs simulation results and computation time. The Target 1 
executes UAVs 1 to 9 models, low-level controllers (feedback linearization controller [9]) and formation 
controllers [11] for each vehicles. The Target 1 also receives trajectory commands and fault trigger from 
the console using Ethernet/UDP. The UAV 3 model also includes an abrupt fault detector (DAFD [10]) 
that can detect abrupt fault on the UAV 2. Note that the fault DAFD only uses the UAV 2 X and Y 
position. Simulation results are also displayed on a three dimensional viewer (X-Plane 8.4 [4]) that is 
executed on the computer APSERTVIEW. Note that simulation results are transferred in Real-Time from 
the Target 1 to APSERTVIEW using Ethernet/UDP.  
 

 
Figure 2: RT-Lab ALTAV Model
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2.1.3. Joystick Control 
 
The Figure 3 shows the joystick controller developed for the ALTAV. A hysteresis has been added to the 
altitude and the heading. This hysteresis will allow the user to keep the same heading and altitude without 
requiring the joystick to be perfectly centered. The altitude will increase if the user pull the joystick 
toward him or decrease if the user pushes the joystick.  
 
The trajectory is then calculated as follows: 
 

0

0

( ) cos( ( ))

( )sin( ( ))

T

d

T

d

X V t t dt

Y V t t dt

θ

θ

=

=

∫

∫
 

 
Where: V(t) is the requested velocity (Joystick’s throttle command), ( )tθ  the requested heading and T is 
the current simulation time. Note that the requested heading ( )tθ  will increase if the joystick is steered to 
the left and decrease if the joystick is steered to the right. The requested heading will remain still 
otherwise. 
 
 

 
Figure 3: ALTAV Joystick Controller 
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2.2. RT-Lab QuadRotor Models 
 
This model presents a 6-vehicle formation maintaining a V-Shape geometry. The first vehicle is called the 
leader. Other vehicles are called followers. Followers will follow their immediate predecessors.  As 
shown on Figure 4, UAVs 1 and 2 follow the Leader, UAVs 3 and 4 follow the UAV 1 and the UAV 5 
follows the UAV 2. The user can control the leaders’ heading, speed and altitude using a joystick. The 
user can also trigger an abrupt fault on the follower 2. Follower 5 will then detect the fault (using the 
DAFD [10]) and follow the leader instead of following the Follower 2. The low level controller is a 
feedback linearization controller [9] and the formation controller described in [11] is used to maintain the 
geometry of the formation. Simulation results are sent to X-Plane 8.4 [4] in real-time using Ethernet/UDP. 
Note that this simulation model is executed at a period of 0.001 s. 
 
 Note: The QuadRotor model presented in this report is based on the original QuadRotor model [8]. 
 
The following models have been delivered to the Precision Weapons Section at DRDC-Valcartier: 
 
• Formation_6QuadRotors_Fault_fault_detect.mdl (Synchronized by software) 
• Formation_6QuadRotors_Fault_joystick.mdl (Synchronized by software) 
• Formation_6QuadRotors_Fault_joystick_HWSynchro.mdl (Synchronized by hardware 
using the NI6602 board) 
 
 

 
Figure 4: QuadRotor formation topology (lines indicate information flow) 

 
 
 
2.2.1. Objectives 
• Transform the original Simulink model to a RT-Lab compliant model 
• Send the data in real-time to X-Plane (3d environment viewer) 
• Allow the user to use the joystick to control the formation 
• Allow the user to trigger a fault on the follower 2 (The fault will be detected by the Follower 5) 
• Obtain computation time of the model on RT-Lab 
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2.2.2. Block Diagram 
 
This block diagram presents how the model is distributed. The simulation was distributed on one Real-
Time target and one Non-Real-time Target (Console). The model named sc_console has the task to 
acquire joystick commands, allow the user to trigger a fault on the UAV 2 and log the simulation statistics 
(Simulation Step Size, Communication statistics). Each of the 6 UAVs is simulated on the model 
sm_master. The computer named Target 1 is executing the model sm_master. The computer named 
APSEQUANSER executes the model called sc_console. The computer named APSERTVIEW displays 
simulation results in Real-Time on X-Plane 8.4 [4]. Note that simulation results are sent to X-Plane from 
the Target 1 using an Ethernet/UDP link. For more information computers hardware, see the Annex 1: 
Presentation of the Hardware. 
 

 
Figure 5: RT-Lab QuadRotor model 
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2.2.3. Joystick Control 
 
The Figure 6 shows the joystick controller for the QuadRotor. A hysteresis has been added to the altitude 
and the heading. This hysteresis will allow the user to keep the same heading and altitude without 
requiring the joystick to be perfectly centered. The altitude will increase if the user pull the joystick 
toward him or decrease if the user pushes the joystick. The heading will increase or decrease if the user 
steer the joystick. The requested velocity will be 1.1 m/s if the formation is flying in a straight line or 2 
m/s if the formation is turning. This special velocity command will ensure that the followers will keep 
tracking. 
 

 
Figure 6: QuadRotor Joystick Controller 

 
The trajectory is then calculated as follow: 
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Where: V(t) is the requested velocity (Joystick’s throttle command), ( )tθ  the requested heading and T is 
the current simulation time. Note that the requested heading ( )tθ  will increase if the joystick is steered to 
the left and decrease if the joystick is steered to the right. The requested heading will remain still 
otherwise. 
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2.2.4. Results 
 
The Figure 7 and the Figure 8 show the computation time obtained in RT-Lab. All these values are in µs. 
 
These 5 plots represent: 
• Time spent by the RedHawk target to receive data 
• Time spent by the RedHawk target to send data 
• Model calculation time (Computing only) 
• Effective step size (Computing + synchronization) 
• Total step size (Computing + overhead + synchronization) 
 
 
The Figure 7 shows the computation time for the QuadRotor model executed with a hardware 
synchronization. We can see that the communication timing is set to 0 which means this measure is 
considerably small. The total step size is around 1000 µs, which is normal because the sampling time is 
set to 1 ms. The minimum and maximum total step size are 998 µs to 1002 µs which mean that the jitter is 

2± µs. The model calculation time and the effective step size are varying from 60 µs to 85 µs which 
means the step size could be reduced to 90 µs without risking having overruns in the simulation. 
 

 
Figure 7: QuadRotor model with hardware synchronization computation timing 
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Figure 8 shows the computation time for the QuadRotor model executed with a software synchronization. 
We can see that the communication timing is set to 0 which means this measure is considerably small. The 
total step size is around 1000 µs, which is normal because the sampling time is set to 1 ms. The minimum 
and maximum total step size are 998 µs to 1001 µs which mean that the jitter is 2± µs. The model 
calculation time and the effective step size are varying from 60 µs to 85 µs which means the step size 
could be reduced to 90 µs without risking having overruns in the simulation.  
 
Note that the total step size seems to be more stable with the hardware synchronization. 
 

 
Figure 8: QuadRotor model with software synchronization computation timing 
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2.3. RT-Lab AFGsummer2007 
 
This model presents a 6-vehicle formation. The first vehicle is called the leader. Other vehicles are called 
followers. Followers will follow their immediate predecessors in order to maintain a V-Shape geometry. 
The user can control the leaders’ heading, speed and altitude using a joystick. The user can also order the 
formation to perform a shape morphing. Indeed, the user can order vehicles to increase or decrease 
distance between neighbors. Low-level controller are feedback linearization controller [9] and the 
formation controller described in [11]  has been used to maintain the formation geometry. Simulation 
results are displayed in Real-Time using a three dimensional viewer (X-Plane 8.4 [4]). Simulation results 
are sent from a Real-Time target to the X-Plane computer using an Ethernet/UDP link. Note that this 
simulation model is executed at a period of 0.001 s. 
 
 The unicycle model presented in this report is based on the original unicycle model [7].  
 
 The following models have been delivered to the Precision Weapons Section at DRDC-Valcartier: 
 
• RT-Lab:AFG_summer2007joystick (Software synchronized) 
• RT-Lab:AFG_summer2007joystick2CPUs (Software synchronized) 
• RT-Lab:AFG_summer2007joystickHWsynchro (Hardware synchronized) 
 
 
 
2.3.1. Objectives 
The objectives of that model are: 
• Ensure that models were still working in RT-Lab.  
• Obtain the computation timings 
• Show the simulation results in real-time on X-Plane 
 
Note: The model can send simulation data to X-Plane in real-time. This feature is not shown in this 
document. 
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2.3.2. Block Diagram 
 
The Figure 9 presents a block diagram of the distributed unicycle simulation. The simulation was 
distributed on two Real-Time targets and one Non-Real-time Target (Console). The model named 
sc_console has the task to generate a trajectory from the joystick command and log simulation statistics 
(Simulation Step Size, Communication statistics). The leader and UAVs 1 to 5 are simulated on the model 
sm_master. UAVs 6 to 9 are simulated on the model ss_slave. The computer named Target 1 is executing 
the model sm_master and the computer named Target 2 is executing the model ss_slave. The computer 
named APSEQUANSER executes the model called sc_console. The computer named APSERTVIEW is 
used to display simulation results in Real-Time using X-Plane 8.4 [4]. For more information computers 
hardware, see the Annex 1: Presentation of the Hardware. 
 
 

 
Figure 9: RT-Lab AFG summer 2007 distributed on 2 CPU block diagram 
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The Figure 10 presents a block diagram of the unicycle simulation. The simulation was distributed on one 
Real-Time target and one Non-Real-Time Target (Console). The model named sc_console has the task to 
generate a trajectory from the joystick command and log simulation statistics (Simulation Step Size, 
Communication statistics). The leader and UAVs 1 to 8 are simulated on the model sm_master. The 
computer named Target 1 is executing the model sm_master. The computer named APSEQUANSER 
executes the model called sc_console. The computer named APSERTVIEW is used to display simulation 
results in Real-Time using X-Plane 8.4 [4]. For more information computers hardware, see the Annex 1: 
Presentation of the Hardware. 
 
 
 
 

 
Figure 10: RT-Lab AFG summer 2007 block diagram 
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2.3.3. Results  
 
The Figure 11 shows the computation timing for the AFGSummer 2007 model with software 
synchronization. 
 
These 5 plots represent: 
• Time spent by the RedHawk target to receive data 
• Time spent by the RedHawk target to send data 
• Model calculation time (Computing only) 
• Effective step size (Computing + synchronization) 
• Total step size (Computing + overhead + synchronization) 
 
We can see that the communication timing is set to 0 which means this measure is considerably small. The 
total step size is around 1000 µs, which is normal because the sampling time is set to 1 ms. The minimum 
and maximum total step size are 998 µs to 1001 µs which mean that the jitter is 2± µs. The model 
calculation time and the effective step size are varying from 40 µs to 80 µs which means the step size 
could be reduced to 85 µs without risking having overruns in the simulation. 
 

 
Figure 11: RT-Lab timings for AFGSummer2007 
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Figure 12 shows the computation timing for the AFGSummer 2007 model with hardware synchronization. 
 
We can see that the communication timing is set to 0 which means this measure is considerably small. The 
total step size is around 1000 µs, which is normal because the sampling time is set to 1 ms. The minimum 
and maximum total step size are 988 µs to 1010 µs which mean that the jitter is 12± µs. The model 
calculation time and the effective step size are varying from 40 µs to 80 µs which means the step size 
could be reduced to 85 µs without risking having overruns in the simulation. 
 
 

 
Figure 12: RT-Lab timings for AFGSummer2007 with hardware synchronization 
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Figure 13 shows the computation timing for the AFGSummer 2007 model distributed on 2 computers 
with software synchronization. On the left side, the SM_Master timings are shown. On the right side, the 
SS_Slave timings are shown. 
 
The computing time of the master target reaches 70 µs and the slave reaches 18 µs. The effective step size 
of the master reaches 75 µs and the slave’s is the same as the effective step size since the slave is 
synchronizing with the master. 
 
The minimum and maximum total step size of the slave is 987 µs to 1013 µs which mean that the jitter is 

13± µs. The minimum and maximum total step size of the maser is 990 µs to 1010 µs which mean that 
the jitter is 10± µs.  
 
These data shows that the step size could be lowered to 80 µs. The simulation step size could be lowered 
when distributing models. 
 
 
 

 
Figure 13: RT-Lab timings for AFGSummer2007 distributed on 2 CPUs 
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3. QuaRC Models 
 
The QuaRC software allows developing simulation models using Matlab/Simulink. Models can then be 
converted to C++ and compiled using the QuaRC Real-Time-Workshop compiler. Each QuaRC Models 
can be executed in real-time or in a regular Simulink simulation. Note that a QuaRC Target is simply a 
computer on which QuaRC is installed. Note that more than one model can be executed on the same 
Target (or same computer). Indeed, a computer with one core can execute 2 models simultaneously in 
Real-Time. 
 
QuaRC provides Simulink blocks that can be used for fast prototyping. For example, QuaRC provides 
joystick blocks allowing the user to include game controllers to models. QuaRC also provides 
communication blocks allowing data to be exchanged between QuaRC Targets. QuaRC communication 
blocks can also be used to exchange data between QuaRC targets and non QuaRC targets. 
 
Note that users must separate manually models and configure communication blocks in order to distribute 
models. Indeed, unlike RT-Lab, QuaRC users must configure communication parameters manually such 
as IP addresses and port numbers in order to exchange data between models. 
 
In RT-Lab, Targets can be console, master or slaves (refer to the section 2 for more information). In 
QuaRC, there is no such a distinction. Indeed, QuaRC models do not require a Non Real-Time model to 
be executed in order to change simulation parameters. Simulation parameters can be changed directly in 
the Simulink model during the execution. 
 
Real-Time models can be executed on computers with the following operating systems: 
• Windows 
• QNX 
• Embedded QuaRC Target (Linux ARM) 
 

3.1. QuaRC QuadRotor Model 
 
This model presents QuadRotors executing a V-Shape formation flight. The formation is composed of 10 
QuadRotors. The user can control the leader’s velocity, heading and altitude using a joystick. Followers 
will attempt to follow the leader and maintain the prescribed geometry. The user can also trigger an abrupt 
fault on the UAV 3. The UAV 5 will then detect the fault on the UAV 2 using the DAFD [10] and follow 
the leader instead of following the UAV 3. Low level controllers used to stabilize vehicles are feedback 
linearization controllers [9]. The formation controller used to maintain the formation geometry is given in 
[11]. Note that this simulation model is executed at a period of 0.001 s. 
 
 
This model has been delivered to the DRDC-Valcartier Precision Weapons Section. 
  
This simulation model is based on the original Simulink QuadRotor model [8].  
 
3.1.1. Objectives 
 
The objectives of that model are: 
• Simulate the QuadRotor model on a Windows Real-Time Target 
• Allow the user to use the joystick to control the leader of the formation 
• Show that the fault on the UAV 2 can be detected an recovered by the formation 
using the DAFD [10] on board the UAV 5 
• Send the data in Real-Time to X-Plane (3d environment viewer) 
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3.1.2. Block Diagram 
 
The Figure 14 presents the QuaRC QuadRotor block diagram. A joystick is connected to the computer 
APSEQUANSER. The user can use the joystick to control the trajectory of the leader. Followers will 
attempt to follow the leader and hold a V-Shape geometry as shown on the Figure 15. The computer 
APSEQUANSER will then send simulation results to the computer APSERTVIEW using an 
Ethernet/UDP link, where UAVs are displayed in Real-Time on X-Plane 8.4 [4] .For more information 
computers hardware, see the Annex 1: Presentation of the Hardware. 
 
 

Figure 14: QuadRotor Block Diagram 
  
 

 
Figure 15: QuadRotor fleet topology (lines indicate information flow) 
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3.1.3. Plots 
 
 
Figure 16 to Figure 18 show the 2D trajectory of simulated QuadRotors at different simulation instants. 
The black dashed line represents the leader’s requested trajectory. The blue dotted line represents the 
trajectory of the UAV 3 (follower 2) and the blue dashed-dotted line represents the UAV 5 trajectory. An 
abrupt fault has occurred on this UAV after 79 second. On the Figure 17, we can see that the UAV 5 has 
detected the fault and maintain his relative position. On the Figure 18, we see that the UAV 5 now follows 
the Leader. The UAV 5 detected a fault on the UAV 2 using only UAV 2’s X-Y position and speed and 
the DAFD [10]. It is important to note here that the trajectory was generated by a joystick and that the 
formation shape has been maintained using the formation controller of [11]. A fault has been trigged on 
the UAV 3 at a random time by the user and has been detected in real-time during the simulation using the 
DAFD [10] (abrupt fault detector). The formation has then adapted its topology to recover from the fault.  
 
 
 

 
Figure 16: QuadRotor X-Y Trajectory at 79 second of simulation



 

 29

 
Figure 17: QuadRotor X-Y Trajectory at 118 second of simulation 
 
 
 

 
Figure 18: QuadRotor X-Y Trajectory at 158 second of simulation 
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3.2. QuaRC Distributed QuadRotor model  
 
This model presents six QuadRotor executing a V-Shape formation flight. The user can control the 
leader’s velocity, heading and altitude using a joystick. Followers will attempt to follow the leader and 
maintain the formation geometry. This simulation is constituted of three Real-Time models executed on 2 
Real-Time targets. The model is distributed as follow: The console allows the user to control the leader’s 
trajectory, trigger a fault on the UAV 3. The console also sends simulation data to X-Plane 8.4 [4] in 
Real-Time using an Ethernet/UDP link. In this simulation, the leader is executed on the first target and 
followers are executed on the second target. The UAV 5 can detect abrupt faults on the UAV 2 using the 
DAFD [10] and recover by following the leader instead of following the UAV 2. The QuadRotor low-
level controller is the feedback linearization controller in [9]. The V-shape geometry is assured by the 
formation controller [11]. Note that this simulation model is executed at a period of 0.001 s. 
 
This model has been delivered to the DRDC-Valcartier Precision Weapons Section. 
 
 
3.2.1. Objectives 
 
 
• Distribute the computing power 
• Separate the leader model from the followers 
• Send the data in Real-Time to X-Plane (3d environment viewer) 
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3.2.2. Block Diagram 
 
This block diagram presents how models and targets are organized to execute the distributed QuadRotor 
simulation. Note that the vehicles are performing a V-Shape formation as shown on the Figure 15. The 
simulation was distributed on 3 targets. The model named console has the task to generate the leader’s 
commanded trajectory and send simulation results to X-Plane. The leader of the formation is executed on 
the model named Target 1 and followers are executed on the model named Target 2. The computer named 
APSENLEVHI is executing the console and the Target 2 model. The computer named APSEQUANSER 
is executing the Target 1 model. Simulation results are sent in Real-Time using an Ethernet/UDP link 
from the console model to the three dimensional viewer: X-Plane 8.4 [4]. 
 
For more information computers hardware, see the Annex 1: Presentation of the Hardware. 
 
Note that in this configuration, there are three Real-Time models (Console, Target1 and Target2) executed 
on two Real-Time Targets (APSENLECHEVI and APSEQUANSER). X-Plane 8.4 is executed on a third 
computer called APSERTVIEW.  
 

 
Figure 19: QuadRotor with the leader and followers on different targets 
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3.2.3. Plots 
 
Figure 20 to Figure 22 show the 2D trajectory of simulated QuadRotors at different simulation instants. 
The blue dotted line represents the trajectory of the UAV 3 (follower 2) and the blue dashed-dotted line 
represents the UAV 5 trajectory. An abrupt fault has occurred on this UAV after 94 second. On the Figure 
21, we can see that the UAV 5 has detected the fault and maintain his position. On the Figure 22, we see 
that the UAV 5 now follows the Leader. The UAV 5 detected a fault on the UAV 2 using the DAFD [10] 
on board the UAV 5. Note that the DAFD uses only the UAV 2 X-Y position and speed. Note also that 
when the abrupt fault on the UAV 2 is detected by the UAV 5, it begins to follow the leader instead of 
following the UAV 2. On the Figure 21 and the Figure 22, we see that the UAV 5 catching up to the 
leader. 
 
 Note that the trajectory of the UAV 3 has been omitted for Figure 21 and Figure 22 because of its erratic 
motion. 
 

 
Figure 20:  QuadRotor leader executed on a separate target X-Y Trajectory at 94 seconds of simulation 
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Figure 21:  QuadRotor leader executed on a separate target X-Y Trajectory at 141 seconds of simulation 
 

 
Figure 22:  QuadRotor leader executed on a separate target X-Y Trajectory at 158 seconds of simulation 
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4. Wheeled Mobile Robot Control Using QuaRC and Windows Real-Time Targets 
 
The Quanser QBot is a wheeled mobile robot provided by the Quanser Company [1] and shown on the 
Figure 23. The QBot as on board an embedded computer (GumStix [12]) that executes Linux ARM 
Operating System. This robot can be programmed using Matlab Simulink and Real-Time 
Workshop/QuaRC. Simulink models are written in C++ by Real-Time Workshop/QuaRC. The C++ 
source code is then sent to the QBot using a Wi-Fi link. The embedded QBot computer then compiles the 
source code using GCC. The QBot can the execute the compiled code in Real-Time and can communicate 
with other QuaRC targets using Wi-Fi. Its onboard computer can be used to process data and control 
actuators. The QBot can execute tasks without requiring a base station. Indeed, controllers, sensors data 
processing and other tasks can be executed on the on board embedded computer. The QBot can also be 
part of a Real-Time simulation. Indeed, simulations can rely on the QBot hardware data. For instance, a 
virtual vehicle can follow the QBot using its internal sensors. 
 

4.1. Presentation of the QBot 
 
The Figure 23 presents the QBot. The QBot is a Wheeled Mobile Robot provided by Quanser [5]. 
 
 

 
Figure 23: Presentation of the QBot 
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QBot’s embedded computer specifications are listed below: 
 
 

Computer 
Type 

GumStix verdex pro XL6P [12] 

Processor Marvell® PXA270 with XScale™ @ 600 Mhz 
Cores 1 
Memory 128 MB ram, 32 MB Flash 
Operatin
g System 

Linux 2.6.21 

Web site http://www.gumstix.net/Hardware/view/Hardware
-Specifications/Verdex-Pro-
Specifications/112.html 

Table 1: QBot computer specifications 
 
 
The QBot has the following hardware on board: 
 
• 5 IR Sensors 
• Battery Capacity Reading from the HIL Read Write Block 
• X-Y-Z Magnetometers 
• 3 Sonar 
• 7 Analog Inputs 
• 7 Digital I/O 
• 8 PWM Outputs 
• 22 5V outputs 
• 23 ground 
• 1 Webcam 
• 1 Wi-Fi interface (802.11) 
• 3 Bumper Sensors 
• 3 Wheel drop sensors 
• 1 Wall sensor 
• 4 Cliff sensors 
• 1 Omnidirectional; Ir Receiver 
• Power Button 
• Play Button 
• Advance Button 
• Battery Voltage, Battery Current, Battery Temperature, Battery Charge and Battery Capacity sensor 
• Velocity and Radius sensor 
• Roomba drive (2 motors for wheels) 
• 1 Speaker 
 
For more information about the QBot hardware and QBot blocks, refer to the QuaRC iRobot 
documentation provided with the purchase of the QBot. 
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4.2. Visual Feedback Camera System and Hardware Setup 
 
QBot models have been developed and tested at the DRDC Valcartier hardware in the loop laboratory. 
This laboratory composed of a QuaRC computer, a X-Plane computer and an OptiTrack infrared camera 
tracking system. The QuaRC computer (APSEPORCOOP) is used as a base station for the QBot and for 
Real-Time simulation purposes.  The X-Plane computer (APSERTCLUSTER) executes X-Plane 8.4 [4] 
and display simulations results in Real-Time in a three dimensional environment. The OptiTrack system is 
composed of 7 OptiTrack V100 infrared cameras [2] connected to the computer APMVSWAT01LAB via 
USB. The OptiTrack Tracking Tools software [2] is executed on APMVSWAT01LAB in order to process 
visual data. This infrared camera system is used to measure the trackable’s position and orientation in 
Real-Time with a refresh rate of 100 Hz. Trackable’s are objects formed by infrared reflectors. As you 
can see on the Figure 24, infrared reflectors (white balls mounted on wooden sticks) has been mounted on 
a QBot in order to be able to track it in Real-Time with the OptiTrack system. The Tracking Tools 
software sends the QBot’s position and orientation to a software called VRPN [3] (Virtual-Reality 
Peripheral Network) Streamer (Also executed on the APMVSWAT01LAB). This software will send the 
QBot’s position and orientation to the QuaRC computer via an Ethernet/UDP link. The QuaRC computer 
then relays the visual feedback to the QBot’s on board computer via a Wi-Fi link. The Figure 26 presents 
a block diagram of the hardware setup used to control one QBot using visual feedback. One can see the 
OptiTrack system as a local indoor GPS. 
 
In order to use the OptiTrack system, refer to the Annex 4: Experimental Setup Quick Start Guide. 
 
For complete computer specifications (Table 11, Table 12 and Table 13), refer to the Annex 1: 
Presentation of the Hardware. 
 
 
 
 

 
Figure 24: QBot with mounted Infrared Reflectors 
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4.2.1. VRPN UDP Streamer 
 
 
The VRPN [3] UDP Streamer is a software that is used to transfer visual data from the Tracking Tools 
software [13] to the QuaRC computer using an Ethernet/UDP link. The Tracking Tools software sends the 
QBot position and orientation to the VRPN Streamer using the VRPN port #3883. The VRPN streamer 
then sends the QBot’s position and orientation to the QuaRC computer using an Ethernet/UDP link. The 
QuaRC computer will then relay visual feedback to the QBot using a Wi-Fi link. The QBot will then use 
the visual feedback to follow the commanded trajectory. 
 
The Tracking Tools software and the VRPN Streamer are both executed on the computer called 
APMVSWAT01LAB. 
 
In order to use the OptiTrack system and the VRPN Streamer, refer to the Annex 4: Experimental Setup 
Quick Start Guide. 
 
Note that the VRPN Streamer executable and the C++ source code have been delivered to the DRDC-
Valcartier Precision Weapons section. 
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4.2.1.1. QuaRC UDP Receiver 
 
Receiving UDP packets using QuaRC communication blocks is very useful. It allows QuaRC models to 
communication with non QuaRC targets. Indeed, the QuaRC UDP receiver is used to receive visual data 
from the VRPN Streamer. 
 
To receive an UDP packet on the QuaRC computer, QuaRC intermediate server communication blocks 
can be used. In the Stream answer block, udp://131.132.57.12:19000 (udp is the communication protocol, 
131.132.57.12 is the IP address of the QuaRC computer and 19000 is the port on which the computer 
receives the message). The Figure 25 presents the CamUDP Simulink model. As you can see on the 
Figure 25, the stream write error is left unconnected because there is no need to send data to the VRPN 
UDP Streamer. You can also see on the Figure 25 the output FPS (Frame per Second). This is a measure 
of the mean refresh rate received from cameras. The FPS information can be used to verify that visual 
data is received on the QuaRC computer. 
 
The CamUDP Simulink model has been delivered to the Precision Weapons section of DRDC Valcartier. 
 

 
 
Figure 25: QuaRC UDP receiver 
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4.3. QuaRC QBot: Unicycle_on_QbotFollowTrajectory_Cameras_direct_drive model 
 
This model allows the QBot to follow a specific trajectory using camera feedback (position and 
orientation, the QBot speed is estimated using the time derivative of the QBot’s position on board the 
QBot’s computer). The low level position controller is a feedback linearization controller [9] also 
executed on board the QBot’s computer. The trajectory commanded to the QBot is a 2 dimensional 
trajectory (X – Y trajectory). Note that Simulink models are executed at a period of 0.01 s on both QBot 
and the QuaRC computer and that the Simulink block that controls QBot’s wheels is executed at a period 
of 0.03 s. 
 
Note that Simulink models developed for this experimentation has been delivered to the DRDC-Valcartier 
precision weapons section. 
 
4.3.1. Objectives 
 
The objectives of that model are: 
• Determining the performance of the feedback linearization (controller developed for the unicycle 
model)  [9] 
• Determine the position error on the QBot when following a trajectory. 
• Use the OptiTrack Infrared Camera system to obtain the QBot’s position in real-time and close the low-
level controller’s loop 
 
4.3.2. Block Diagram 
 
As you can see, the OptiTrack infrared camera system is used to measure the QBot’s position and 
orientation in Real-Time. This information is then sent to the QuaRC computer (on the CamUDP model). 
The QuaRC computer then relays this information and the requested trajectory to the QBot using a 
wireless link. The QBot’s embedded computer executes the feedback linearization controller [9] in order 
to follow the commanded trajectory. 
 
 
For more information on the hardware, see the Annex 1: Presentation of the Hardware. 
 
 

 
Figure 26:  QBot follows trajectory Overall Block diagram 
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4.3.3. QBot’s actuators and control 
 
 
The Figure 27 presents QBot actuators; left and right wheels. Note that the front wheel is not motorized. 
Left and Right wheels angular velocity ( lω and rω ) can be controlled individually. Wheels have a radius 
r = 0.035 m. The distance between wheels d = 0.262 m (center to center). The maximum wheel angular 
velocity is 14.2857 rad/s for both motorized wheel.  
 

 
Figure 27: Presentation of the QBot’s actuators 
 
 
Since the feedback linearization controller [9] outputs velocity and theta commands and the QBot can be 
controlled by differential wheels control, a Simulink block has been designed to convert velocity and 
angle command to left and right wheels angular velocity commands: 
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Where Vc is the commanded speed output from the feedback linearization controller. The QBot 
commanded angular velocity cω  is calculated from the commanded angle output of the feedback 

linearization controller cθ and the actual QBot’s angleθ . Ts is Simulink block that controls wheels 
angular velocity: Ts = 0.03 s. 
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4.3.3.1. Trajectory of the QBot and Initial Positions 
 
The trajectory commanded to the QBot is a 2 dimensional trajectory (X – Y trajectory). The trajectory is 
generated as follow: 
 

)
60

sin(75.0)(

04.0)(
tpity

ttx
×

=

=
 

Where: x(t) (meter) is the position on the X axis , y(t) (meter) is the position on the Y axis and t is the 
simulation time (second). 
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4.3.3.2. Plots 
 
The Figure 28 shows the commanded and the actual trajectories of the QBot on the X-Y plane. The red 
line represents the commanded X trajectory and the black line represents the QBot’s trajectory. 
 
The Figure 29 presents the QBot X trajectory error, the Y trajectory error and the total distance error from 
the commanded trajectory versus time. In the transition state, the QBot has a position error of 5 cm from 
the commanded trajectory. In steady state, the QBot has a position error of 2 cm. Note that the closed loop 

runs at a period of 0.01 s except differential wheel commands ( Lω and Rω ) that are executed at a period of 
0.03 s. Note also that the QBot model and dynamic has been approximated to a simple unicycle[7] model 
for the feedback linearizing controller design and that performances are still satisfactory. 
 
 

 
Figure 28: X and Y position versus Requested X and Y (m) 
 
 

 
Figure 29: Distance of the QBot from the commanded trajectory (m) 
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5. Comparison Between QuaRC and RT-Lab simulation results 
 
This section will present a comparison between QuaRC and RT-Lab. Both software products allow 
developing Real-Time distributed simulations. Simulation models are developed using Matlab/Simulink 
and then converted to C++ source code using Matlab/Real-Time Workshop. Source code is then compiled 
and executed in Real-Time. In addition, both products allow separating models in order to distribute 
computation tasks on more than one computer.  
 
It is important to note that both software products can be used to include hardware to simulations such as 
Analog to Digital converters, Digital to Analog converters, embedded processors and more.  
 

5.1. RT-Lab and QuaRC QuadRotor validity test models 
 
The RT-Lab QuadRotor validity test model and the QuaRC QuadRotor validity test model have been used 
to compare simulation results obtained with QuaRC. These models have been delivered to the DRDC-
Valcartier Precision Weapon section.  
 
These models present six QuadRotor executing a V-Shape formation flight. The user can control the 
leader’s velocity, heading and altitude using a joystick. Followers will attempt to follow the leader and 
maintain the formation’s geometry. In these simulations, the leader, UAVs 2 and 5 are executed on the 
first target and UAVs 1,3 and 4 are executed on the second target. The user can trigger an abrupt fault on 
the UAV 2 at any simulation moment. The UAV 5 can detect abrupt faults that occur on the UAV 2 using 
the DAFD [10] and recover by following the leader instead of following the UAV 2. QuadRotor’s low 
level controller is the feedback linearization controller [9] and the formation geometry is preserved by 
means of the formation controller detailed in [11]. Simulation results are displayed on X-Plane 8.4 [4] 
which is executed on the computer called APSERTVIEW. 
 
Note that these simulations are based on the QuadRotor model [8]. 
 
 
5.1.1. Objectives 
 
The objectives of that model were: 
• Explore and understand how to distribute models using QuaRC.  
• Compare simulation results obtained with RT-Lab, QuaRC and a regular simulation 
• Display the simulation results in real-time on X-Plane 
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5.1.2. Block Diagram 
 
 
Figure 30 presents the block diagram of the distributed QuaRC QuadRotor simulation. Note that the 
topology of the formation is a V-Shape formation as shown on Figure 32. The simulation uses 3 Real-
Time targets. The model named Console has the task to generate a trajectory from the joystick command, 
allow the user to trigger a fault on the UAV 2 and send simulation results in Real-Time to X-Plane[4]. 
The leader, UAVs 2 and 5 are simulated on the model Target 1. UAVs 1,3 and 4 are simulated on the 
model Target 2. The computer named APSEQUANSER is executing the model Target 1 and the computer 
named APSENLECHEVI is executing the console and the Target 2 model. The console model sends 
simulation results in Real-Time to the computer APSERTVIEW using an Ethernet/UDP link. This 
computer displays simulation results using the three dimensional viewer X-Plane 8.4 [4]. 
 
For more information on the hardware, see the Annex 1: Presentation of the Hardware. (See Table 8, 
Table 9 and Table 10). 
 
 
 

 
Figure 30: QuaRC Distributed QuadRotor simulation 
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The Figure 31 presents the block diagram of the distributed RT-Lab QuadRotor simulation. Note that the 
topology of the formation is a V-Shape formation as shown on the Figure 32. The simulation uses 2 Real-
Time targets. The model named sc_console (Executed on APSERTVIEW) has the task to generate a 
trajectory from the joystick command, allow the user to trigger a fault on the UAV 2. The leader, UAVs 2 
and 5 are simulated on the Target 1. UAVs 1,3 and 4 are simulated on Target 2. The computer named 
APSERTVIEW is used to display simulation results in Real-Time on X-Plane 8.4 [4].  
 
 
For more information on the hardware, see the Annex 1: Presentation of the Hardware. (See Table 4, 
Table 5, Table 6 and Table 7). 
 
 
 

 
Figure 31: RT-Lab Distributed QuadRotor simulation 
 
 
 
 

 
Figure 32: QuadRotor Formation topology (lines indicate information flow) 
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5.1.3. Results 
 
Simulations have been done using the original Simulink QuadRotor model [8], the QuaRC distributed 
QuadRotor model and the RT-Lab distributed model. Note that on both QuaRC and RT-Lab models, 
UAVs 0, 2 and 5 are executed on the first target and UAVs 1,3 and 5 are executed on a second target. On 
the Figure 33 the X-Y trajectory of the UAV 4 is plotted for the regular Simulink Simulation (blue dashed 
line), the QuaRC distributed simulation (green dashed line) and the RT-Lab distributed simulation (red 
line).  
 
 
 

 
Figure 33: Simulation results for the UAV 4 in regular simulation, RT-Lab simulation and QuaRC 
Simulation 
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On the Figure 34 the X-Y trajectory of the UAV 5 is plotted for the regular Simulink Simulation (blue 
dashed line), the QuaRC distributed simulation (green dashed line) and the RT-Lab distributed simulation 
(red line). Note that the trajectory of the UAV 5 has an abrupt change around X = 100 m and Y = 40 m. It 
is due to the fact that the UAV 2 had a fault at this moment and that the UAV 5 has detected it and then 
starts to follow the leader instead of following the UAV 2. 
 
 

 
Figure 34: Simulation results for the UAV 5 in regular simulation, RT-Lab simulation and QuaRC 
Simulation 
 
 
As you can see, on QuaRC, plots have been translated to the left compared to curves from the regular 
model and curves from the RT-Lab simulation. It can be explained by the way models are started using 
QuaRC. In QuaRC, the simulation is split in 3 different models. To begin the simulation, models must be 
started sequentially causing a delay between the moment models are started and the moment models are 
enabled (See the Annex 7:Synchronizing QuaRC Models). This delay affects the way the trajectory is 
generated and thus slightly affecting simulation results. 
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6. Major Differences Between QuaRC and RT-Lab 
 
This section presents a comparison chart between QuaRC and RT-Lab. Both software products allow 
developing a simulation model that can be executed in real-time. Model are developed using 
Matlab/Simulink, they are then converted to C++  and compiled using the Real-Time-Workshop compiler. 
Both products allow the user to distribute the computation task over multiple computers and cores. 
 
 

6.1. Major differences between QuaRC and RT-Lab 

 QuaRC RT-Lab 
Compiler QuaRC 

requires 
changing the 
compiler in 
RTW for 
each model 
that was not 
created on a 
computer that 
has QuaRC 
installed. 
You also 
have to 
change the 
model 
configuration 
parameters to 
support the 
external 
mode.  

With RT-
Lab, this is 
completely 
transparent to 
the user. 

Scripts With QuaRC, 
you have to 
execute a .m 
parameter 
files 
manually 
before 
starting the 
model in 
order to 
initialize 
constants. 

With RT-
Lab, you can 
associate a .m 
parameter file 
to a model, 
when you 
open the 
model, the .m 
script is 
executed 
automatically
. 

Malfunction
s 

When you do 
not do the 
operations in 
the right 
order or 
assign 2 
models to a 
same URI, 
Simulink will 
freeze.  

You must 
always reset 
the target 
before 
loading a 
new model, 
sometimes, 
the target has 
a model and 
you can’t get 
rid of it, you 
have to reset 
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the target 
(Reset 
RedHawk 
Computers). 

Initial state In QuaRC, 
you don’t 
need to 
reload the 
model in 
order to 
restart at the 
initial state, 
simply 
reconnect to 
the targets 
and click 
play. 

In RT-Lab, 
you have to 
reload the 
model to 
restart it to 
the initial 
state. 

On-the-fly 
changes 

In QuaRC, 
you can 
change a 
constant on 
the fly when 
executing a 
model. 

In RT-Lab, 
you can 
modify a 
constant on 
the fly in the 
console 
(Non-Real 
Time Model) 
only. 

Model 
separation 
and IP 
addresses 

In QuaRC, 
you must 
separate the 
targets 
manually. In 
addition, the 
user must 
configure 
communicati
ons blocks 
(IP addresses 
and port 
numbers) in 
order to 
exchange 
data between 
targets.  

In RT-Lab, 
target 
separation is 
done 
automatically 
and IP 
addresses are 
handled by 
the software. 
You have to 
specify to 
RT-Lab how 
to separate 
targets.  

Table 2: Major differences between QuaRC and RT-Lab 
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 QuaRC RT-Lab 
Communications When you 

use 
multiple 
targets on 
QuaRC, 
you have 
to 
configure 
communic
ation 
blocks 
manually 
(client/serv
er protocol 
and port 
number) 
for each 
link 
between 
targets. In 
addition 
with 
QuaRC, 
handling 
communic
ations 
takes much 
time, but 
they can 
customize 
for certain 
needs. 

In RT-Lab, 
opComm 
block 
handles 
communic
ations 
between 
targets. 
RT-Lab 
communic
ation 
blocks are 
easy to use 
and user 
friendly. 
 

External 
Communication 

QuaRC 
Targets 
can 
communic
ate with 
Non-
QuaRC 
software or 
hardware 
by using 
the TCP, 
UDP, 
SHMEM 
and serial 
protocol 
which is 
very useful 
for 
developing 
an HIL 
system. 

With RT-
Lab, the 
communic
ation using 
the 
Ethernet 
port to non 
RT-Lab 
Targets 
must be 
programm
ed using S-
Functions. 
This 
constraint 
does not 
allow fast 
prototypin
g when 
including 
non RT-
Lab 
targets. 

Model To have In RT-Lab, 
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Performance and 
Monitoring  

access to 
the 
communic
ation 
statistics, 
models 
have to be 
modified 
in order to 
respect the 
QuaRC 
computatio
n time 
block 
requiremen
ts (refer to 
the Matlab 
Help about 
the 
Computati
on time 
block or 
the QuaRC 
Computati
on Time 
demo) 

network 
statistics 
can be 
found in 
the 
opSimulati
onInfo 
block. In 
the block, 
you have 
access to 
the time 
needed to 
send and 
receive 
packets. 

Model 
Performance and 
Monitoring 

QuaRC 
will most 
of the time 
require to 
modify the 
existing 
model to 
be able to 
obtain the 
computatio
n time. 
This 
process 
may 
require a 
lot of time. 

In RT-Lab, 
the 
OpSimulat
ionInfo 
gives the 
models 
calculation 
time, 
communic
ation 
statistics 
and 
effective 
sample 
time. This 
is 
transparent 
to the user. 
It is as 
simple as 
adding a 
block in 
the model. 

Simulation 
Architecture 

In QuaRC, 
you can 
run a 
model 
which has 
no console. 

In RT-Lab, 
all models 
must have 
a console. 

User Interface 
and Compilation 

In QuaRC, 
you can 
execute 

In RT-Lab, 
you have 
to go 
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your model 
directly in 
Matlab. 
The model 
is built in 
the 
Matlab’s 
console. 

through 
the RT-
Lab 
interface to 
build and 
execute the 
code.  

Data analysis In QuaRC 
real-time 
results are 
accessible 
on any 
target.  

In RT-Lab 
real-time 
results are 
accessible 
only in the 
console 
(Non-Real 
Time 
target). 

Table 3: Major differences between QuaRC and RT-Lab
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6.2. QuaRC Strong Points 
• QuaRC has a very complete communication block set that allows communicating with non QuaRC 
targets. For example, QuaRC communication blocks are used to receive data from the OptiTrack 
computer on an Ethernet/UDP link. 
• Integrating hardware with QuaRC is made easy with the QuaRC Communications Library which is 
available in the Simulink library browser. 
• Quanser also provides hardware boards or robots (ground, air) that are QuaRC compatible. Hardware 
can be integrated to a QuaRC HIL system very quickly. 
• Targets can be windows targets, linux_arm targets, linux_x86, and qnx_x86. QNX 
• Constants can be changed during the real-time execution on any target 
 

6.3. QuaRC Weak Points 
• Using Model and Target URI can be confusing 
• Handling communications can be confusing 
• A model that is not properly configured can crash Matlab when executed 
• Computation timings may be hard to obtain when using windows targets 
 

6.4. RT-Lab Strong Points 
• Handling communications is user friendly 
• Handling targets is user friendly 
• Building and loading is user friendly 
• Obtaining Computation timings is very easy 
• RT-Lab provides hardware boards that allow to design a HIL system 
 

6.5. RT-Lab Weak Points 
• Communication blocks do not allow exchanging data with non RT-Lab targets using the Ethernet port, 
an S-Function must be programmed in order to do so. 
• Constants can’t be changed on real-time targets, but it is indeed possible to initialize constants in the 
RT-Lab console and change them without needing to recompile 
• Real-Time targets can’t be widows target 
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7. Conclusion 
 
This report presented real-time formation flight simulation models. Formations presented are composed of 
ALTAVs, unicycles and quadrotors. Formation geometries used for these models are V-Shape and String-
Shape types. Simulation models include vehicles dynamics, low-level controller and high-level formation 
controller. It was demonstrated through simulations that homogenous formations remained stable. It was 
also demonstrated that both formation controller (leader-follower type) and low-level controller (feedback 
linearization controller) can be ported to several aerial platforms and executed in real-time, and thus are 
realizable. Simulation models were developed using Matlab/Simulink then ported to QuaRC and RT-Lab 
compliant models. Both QuaRC and RT-Lab environments allow compiling, distributing and executing 
Simulink models in real-time. 
 
The feedback linearization controller was implemented onboard a wheeled mobile robot (Quanser QBot) 
embedded processor. It was shown that this low-level controller can be executed on a computer with 
limited computational capabilities and memory, and yet, it was demonstrated that the QBot can follow an 
X-Y trajectory with satisfactory performances. The robot’s position is measured using an infrared camera 
setup and the position information is sent to the robot’s embedded computer where the low-level 
controller is executed. Note that the visual data is sent from the base station to the QBot using a wireless 
link. This experiment showed that the controller was robust to measurement noise on the position, on the 
heading and on the speed estimation.  
 
QuaRC and RT-Lab were compared. Both software solutions enable to develop models using 
Matlab/Simulink, compile, distribute and execute models in Real-Time. Simulink models are 
automatically converted to C++ code, which is then compiled for specified Targets. In general, RT-Lab is 
easier to use than QuaRC, although it provides less flexibility than QuaRC. Indeed, QuaRC provides 
several options such as the possibility to choose and configure communication options. 
 
Finally, this report presented quick start guides for the RT-Lab and QuaRC setups that are used to execute 
distributed real-time simulations and the QuaRC hardware-In-the-loop setup that is used to perform 
experiments using wheeled mobiles robots, QuaRC and the infrared tracking camera system. 
 
Future work will present mixed simulation models and wheeled mobile robot experiments. In other words, 
the development of an experiment including simulated vehicles and real wheeled mobile robots is 
planned. In addition, the development of a formation composed entirely of wheeled mobile robots is also 
planned. Furthermore, there will be experiments on decentralized fault, failure and anomaly detection. 
Ultimately, the formation will use onboard sensors to navigate and thus removing the dependency on the 
infrared camera system. 
 
The formation control can have multiple civil and military applications such as automated aerial refueling, 
coordinated bombing, territorial surveillance, multi-vehicle heavy lift. Formation control can also provide 
unmanned support to manned vehicles for surveillance or combat missions.  
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Appendix 
 
REF 1: Quanser QBot User Manual 
The QBot User Manual is provided with the purchase of the QBot 
 
REF 2: OptiTrack Website 
http://www.naturalpoint.com/optitrack/ [2] 
 
REF 3: Natural Point Rigid Body Toolkit 
     http://www.naturalpoint.com/optitrack/support/downloads-archive.html [2] 
 
REF 4: Natural Point, Point Cloud Calibration Tools 
http://www.naturalpoint.com/optitrack/support/downloads-archive.html [2] 
 
REF 5: Natural Point Tracking Tools 
http://www.naturalpoint.com/optitrack/support/downloads.html#software [2] 
 
REF 6: Natural Point Tutorial Videos 
http://www.naturalpoint.com/optitrack/products/videos.html#tt [2] 
 
REF 7: VRPN UDP Streamer 
The VRPN UDP Streamer source code and visual studio project has been delivered to DRDC-Valcartier 
Precision Weapons Section.  
 
REF 8: QuaRC QBot: Unicycle_on_QbotFollowTrajectory_Cameras_direct_drive 
This model has been delivered to DRDC-Valcartier Precision Weapons Section.  
 
REF 9: QuaRC Windows: QuadRotor_Fault_Detect_Joystick_3onTarget1_3onTarget2 
This model has been delivered to DRDC-Valcartier Precision Weapons Section.  
 
REF 10: RT-Lab:AFG_summer2007joystick 
 This model has been delivered to DRDC-Valcartier Precision Weapons Section.  
 
REF 11: RT-Lab:AFG_summer2007joystick2CPUs 
 This model has been delivered to DRDC-Valcartier Precision Weapons Section. 
 
REF 12: RT-Lab:AFG_summer2007joystickHWsynchro 
    This model has been delivered to DRDC-Valcartier Precision Weapons Section. 
 
REF 13: RT-Lab:ALTAVconvoyTeamFDRSummer2007(DAFD)HWSynchro 
This model has been delivered to DRDC-Valcartier Precision Weapons Section. 
 
REF 14: RT-Lab:ALTAVconvoyTeamFDRSummer2007joystick(DAFD) 
This model has been delivered to DRDC-Valcartier Precision Weapons Section. 
 
REF 15: RT-Lab: QuadRotor_validity_test 
This model has been delivered to DRDC-Valcartier Precision Weapons Section. 
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Annex 1: Presentation of the Hardware 

This annex presents computers that compose the RT-Lab distributed simulation setup, the QuaRC distributed 
simulation setup and the QuaRC Hardware In the Loop setup. 

1. RT-Lab Setup 
 
The Figure 35 presents the RT-Lab setup block diagram. This setup is used to distribute Real-Time 
simulations using RT-Lab. This setup is composed of one non Real-Time Target (APSEQUANSER 
executing Windows XP OS) and two Real-Time Targets (Target 1 and Target 2 executing RedHawk 
Linux OS). The non Real-Time Target allows the user to visualize simulation results and modify 
simulation parameters during the model’s execution. RedHawk targets execute simulation models in Real-
Time. Note that RedHawk targets can be synchronized via software (using Ethernet/UDP or FireWire) or 
via an hardware synchronization board. A fourth computer (APSERTVIEW) executes X-Plane 8.4. This 
software displays simulations results in Real-Time in a 3 dimensional environment in Real-Time.  
 
 

 
Figure 35: RT-Lab Hardware Setup 

1.1. RT-Lab Windows Target (Non Real Time Target) 
 

Computer Name APSEQUANSER 
Computer Type DELL OPTIPLEX GX280 
Processor Pentium® 4 3.00GHz 
Cores 1 
Memory 1.5 GB Ram 
Video Card Intel® 82915G/GV/910GL 

Express 
Operating System Microsoft Windows XP 

Professional SP3 
Matlab Version R2007b 
QuaRC Version 1.2 
RT-Lab version  8.2 beta 4 

Table 4: APSEQUANSER computer specifications 
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1.2. RT-Lab RedHawk Linux Target (Real-Time Target) 
 
 

Computer Name Target1 
Computer Type Dell Precision 530 
Processor Intel P4/Xeon Extended 

MCE 2.2 GHz 
Cores 1 
Memory 1 GB Ram 
Operating System RedHawk Linux 2.3 
Hardware Synchronization 
card 

National Instrument NI-6602 

Table 5: Target 1 computer specifications 
 

Computer Name Target 2 
Computer Type Dell Precision 530 
Processor Intel P4/Xeon Extended 

MCE 2.2 GHz 
Cores 1 
Memory 1 GB Ram 
Operating System RedHawk Linux 2.3 
Hardware Synchronization 
card 

No 

Table 6: Target 2 computer specifications 

 

1.3. X-Plane computer (Non RT-Lab Target) 
 

Computer Name APSERTVIEW 
Computer Type DELL XPS 600 
Processor Intel ® Pentium® D CPU 

3.46 GHz 
Cores 4 
Memory 2 GB Ram 
Video Card nVIDIA GeForce 7900 GTX 
Operating System Microsoft Windows XP 

Professional SP2 
Matlab Version R2007b 
QuaRC Version 1.2 
X-Plane version 8.4 

Table 7: APSERTVIEW computer specifications 
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2. QuaRC Windows Setup 
 
The Figure 36 presents the QuaRC distributed hardware setup. As you can see, three Windows XP 
computer are connected together using an Ethernet connection. Each computer can be used as a target 
and/or to build models. The computer APSERTVIEW executes X-Plane 8.4. X-Plane is a three 
dimensional viewer that displays simulation results in Real-Time. Any QuaRC target can send data in 
Real-Time to X-Plane using an Ethernet/UDP link. QuaRC models can exchange data using an 
Ethernet/TCP link.  
 

 
Figure 36: QuaRC Distributed Simulation Hardware Setup 
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Following tables presents QuaRC computers specifications. 
 
 

Computer Name APSERTVIEW 
Computer Type DELL XPS 600 
Processor Intel ® Pentium® D CPU 

3.46 GHz 
Cores 4 
Memory 2 GB Ram 
Video Card nVIDIA GeForce 7900 GTX 
Operating System Microsoft Windows XP 

Professional SP2 
Matlab Version R2007b 
QuaRC Version 1.2 
X-Plane version 8.4 

Table 8: APSERTVIEW computer specifications 
 

Computer Name APSENLECHEVI 
Computer Type DELL Precision 360 
Processor Pentium® 4 3.20GHz 
Cores 1 
Memory 1 GB Ram 
Video Card nVIDIA Quadro FX 500/600 
Operating System Microsoft Windows XP 

Professional SP2 
Matlab Version R2007b 
QuaRC Version 1.2 

Table 9:  APSENLECHEVI computer specifications 
 

Computer Name APSEQUANSER 
Computer Type DELL OPTIPLEX GX280 
Processor Pentium® 4 3.00GHz 
Cores 1 
Memory 1.5 GB Ram 
Video Card Intel® 82915G/GV/910GL 

Express 
Operating System Microsoft Windows XP 

Professional SP3 
Matlab Version R2007b 
QuaRC Version 1.2 

Table 10: APSEQUANSER computer specifications 
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3. QuaRC HIL setup 
 
The Figure 37 presents the block diagram of the QuaRC HIL setup. This setup is used to execute 
Hardware In the Loop simulations and Wheeled Mobile Robot experiments. This setup is composed of 
one QuaRC computer (APSEPORCOOP), one X-Plane computer [4] (APSERTCLUSTER), one 
OptiTrack computer (APMVSWAT01LAB) and Wheeled Mobile Robots (QBots). Note that the QBot 
possesses an embedded computer on board. Each computer can exchange data using an Ethernet link. 
Indeed, The OptiTrack computer sends visual feedback data to the QuaRC computer using Ethernet/UDP. 
The QuaRC computer sends simulation results to the X-Plane computer using Ethernet/UDP. Note also 
that the QuaRC computer and the QBot can exchange data using a wireless link (Wi-Fi). 
 

 
Figure 37: QuaRC HIL hardware specifications 
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3.1. QuaRC Computer 
 
This computer is used to develop, compile and load QuaRC models. This computer can also be used as a 
QuaRC Real-Time Target or processing base station for Wheeled Mobile Robots. In fact, visual feedback 
is relayed by this computer from the Camera feedback computer to QBots. 
 

Computer Name APSEPORCOOP 
Computer Type DELL Inspiron 9300 
Processor Intel® Pentium M 2.00 GHz 
Cores 2 
Memory 2 GB Ram 
Video Card nVIDIA GeForce Go 6800 
Operating System Microsoft Windows XP 

Professional, Service Pack 3 
Matlab Version R2007b 
QuaRC Version 1.2 

Table 11: APSEPORCOOP computer specifications 

3.2. Natural Point OptiTrack computer 
 
This computer is used to process in real-time the infrared cameras data and extract the position and 
bearing of rigid bodies. This computer is connected to seven infrared cameras (OptiTrack V100). The 
Tracking Tools software 2.0 beta [2] is used to process visual data. 
 

Computer Name APMVSWAT01LAB 
Computer Type DELL XPS 720 
Processor Intel core™ 2 extreme 

Q6800 @ 2.93 GHz  
Cores 4 
Memory 3 GB Ram 
Video Card nVIDIA GeForce 7300 GS 
Operating System Microsoft Windows XP 

media center, Service Pack 2 
Tracking tools version 2.00 Beta 
Infrared Cameras OptiTrack V100 

Table 12: APMVSWAT01LAB computer specifications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3. X-Plane Computer 
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This computer is used to show the simulation results in a 3d environment called X-Plane [4]. X-Plane is 
used to display up to ten aerial vehicles in a 3D environment. Vehicles position and orientation can be 
updated in Real-Time during simulations or Wheeled Mobile Robot experiments. 
 

Computer Name APSERTCLUSTER 
Computer Type Dell Precision T5400 
Processor Intel® Xeon® E5405 @ 2.00 

GHz  
Cores 1 
Memory 3.25 GB Ram 
Video Card nVIDIA Quadro NVS 290 
Operating System Microsoft Windows XP 

Professional, Service Pack 2 
X-Plane version 8.4 

Table 13: APSERTCLUSTER computer specifications 

 

3.4. QBot computer 
 
The QBot is a Wheeled Mobile Robot that can be programmed using Real-Time Workshop/QuaRC. This 
robot has an embedded computer that allows executing algorithms on board. This robot also possesses a 
Wi-Fi interface that allows communicating with the QuaRC base station or other QBots.  
 
 
The QBot has following sensors on board: 
 
• 5 IR Sensors 
• Battery Capacity Reading from the HIl Read Write Block 
• X-Y-Z Magnetometers 
• 3 Sonars 
• 7 Analog Inputs 
• 7 Digital I/O 
• 8 PWM Outputs 
• 22 5V outputs 
• 23 ground 
• 1 Webcam 
• 1 Wi-Fi interface (802.11) 
• 3 Bumper Sensors 
• 3 Wheel drop sensors 
• 1 Wall sensor 
• 4 Cliff sensors 
• 1 Omnidirectional; Ir Receiver 
• Power Button 
• Play Button 
• Advance Button 
• Battery Voltage, Battery Current, Battery Temperature, Battery Charge and Battery Capacity sensor 
• Velocity and Radius sensor 
• Roomba drive (2 motors for wheels) 
• 1 Speaker 
 
 
Table 14 presents the hardware specification of the QBot on board computer: 
 

Computer 
Type 

GumStix verdex pro XL6P [12] 
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Processor Marvell® PXA270 with XScale™ @ 600 Mhz 
Cores 1 
Memory 128 MB ram, 32 MB Flash 
Operatin
g System 

Linux 2.6.21 

Web site http://www.gumstix.net/Hardware/view/Hardware
-Specifications/Verdex-Pro-
Specifications/112.html 

Table 14: QBot computer specifications 
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Annex 2: RT-LAB Quick Start Guide 

1. RT-Lab Quick Start Guide  
 
RT-Lab is a software that allows to developing simulation models that can be executed in real-time. 
Models are developed using Matlab/Simulink. They can then be converted to C++ and compiled using the 
RT-Lab Real-Time-Workshop compiler. RT-Lab also offers to split models into smaller models in order 
to distribute the computation task to more than one computer or more than one computer core. Each 
computation node (computer or core) will be called a Target. For example, if a computer has 4 cores, it is 
possible to execute 4 different models (one on each core). This computer can then support 4 Targets. 

1.1. Available example 
 
Following models are available the DRDC-Valcartier Precision Weapon Section. These models can be 
used as example to begin using RT-Lab. 
 
• RT-Lab:AFG_summer2007joystick 
• RT-Lab:AFG_summer2007joystick2CPUs 
• RT-Lab:AFG_summer2007joystickHWsynchro 
• RT-Lab:ALTAVconvoyTeamFDRSummer2007(DAFD)HWSynchro 
• RT-Lab:ALTAVconvoyTeamFDRSummer2007joystick(DAFD) 
• RT-Lab QuadRotor model 
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1.2. RT-Lab Main Control 
 
The Figure 38 shows the RT-Lab main control panel. This panel allows configuring simulation and 
models parameters. In order to compile and execute a model, RT-Lab must connect to the Simulink 
model; click on the Connect button and select the desired model. Once the model is connected, click on 
compile. A new window will then open and display compilation results. Once models are compiled, click 
on load to send executables to Targets. Once models are loaded, click on execute to start models. 
 

 
Figure 38: RT-Lab Main Control Panel  
 



 

 67

 
 
The Figure 39 presents RT-Lab an example of model distribution scheme. Four Targets are presented: 
SC_Console, SM_Master, SS_Slave1 and SS_Slave2. The model called SC_Console is a Non Real-Time 
Target executed on windows. This Target is used to give the user an interface with Real-Time Targets. 
Indeed, users can change simulation parameters in the console. These changes will then be sent to Real-
Time Targets (Each Target besides the SC_Console). SM_Master is the target that handles software 
synchronization or hardware synchronization. This Target can also be used as a calculation node. This 
Target is mandatory in a Real-Time RT-Lab simulation. SS_Slave1 and SS_Slave2 are used as calculation 
nodes and are optional in RT-Lab simulations. However, these Targets can be useful to distribute 
calculation tasks. 
 
Note that RT-Lab models are split as such: 
 
Each Targets are defined in the same Simulink Model. Targets are subsystems called SC_”Something” for 
the console, SM_”Something” for the Master and SS_”Something” for slaves. Where “Something” is a 
name the user can choose. 
 

 
Figure 39:RT-Lab Model Separation 
 
For more information about RT-Lab or RT-lab blocks, refer to the RT-Lab help  located in the Matlab 
Help or to the RT-Lab Web site: http://www.opal-rt.com/ 
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Annex 3: QuaRC documentation 
 
This Annex presents QuaRC documentation and QuaRC demos that a new QuaRC user should explore to 
learn QuaRC basics. 

1. Demo QuaRC 
To access the QuaRC demo list, type qc_show_demos in the Matlab console. 
 
Note that to execute demos, simply choose a QuaRC demo and follow the instructions. 
 
The following demos are recommended for new QuaRC users: 
 
• QuaRC Sine and Scope Demo (Only execute the windows target demo) 
• QuaRC Data Logging Demo 
• QuaRC Computation Time Demo 
• QuaRC System Time Base Demo 
• QuaRC Basic Communications Demo 
• QuaRC Intermediate Communications Demo 

2. Demo QBot 
Type qc_show_demos in Matlab console and execute the following demo: 
• Running Models using the QuaRC GumStix (Linux ARM) Target 
 
Also executes the QuaRC QBot demo models delivered with the purchase of the QBot 
• keyboard_control 
• qbot_drive 
• qbot_camera 
• qbot_sensors 
 
Note: It is recommended to execute demos presented in the section 1 before these ones. 

3. Matlab help 
For any help concerning QuaRC blocks or QuaRC functions, refer to the Matlab/Simulink help under the 
QuaRC Target tab. 

4. IRobot user manual 
It is recommended to read the QuaRC iRobot documentation that has been provided with the purchase of 
the QBot. 

5. Quarc Installation Guide 
It is recommended to read the QuaRC installation guide that has been provided with the purchase of 
QuaRC. 
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Annex 4: Experimental Setup Quick Start Guide 
 
 
This Annex presents a quick start guide for executing wheeled mobile robot experiments using the 
QuaRC Wheeled Mobile Robot/Hardware In the Loop setup. This annex will present software and 
hardware requirements and software configurations. 

1. Requirements 
 
To be able to operate the OptiTrack + QuaRC setup, one must have the following hardware and software: 
 
• A QuaRC computer with a wireless adapter and an Ethernet adapter. 
• Valid QuaRC models with the proper Quarc_init.m file 
• 1 or more QBot 
• A Computer with OptiTrack Tracking Tools 
• A version of VRPN Streamer configured to send data to the IP address of the QuaRC computer 
• Infrared reflectors 
• Calibration Wand 
• A computer with X-Plane (Required only to visualize simulation results in real-time) 
 
 
One would follow these steps: 
 
• Log on computers 
• Start X-Plane 
• Calibrate the camera setup (Or open an existing one) 
• Set the ground plane in the Tracking Tools Software (Only after a calibration) 
• Place Infrared Reflectors on QBots (or the objects to track) 
• Create Trackables in the Tracking Tools Software (Or Open an existing one) 
• Configure the Tracking Tools Software to send Trackables data to a VRPN port 
• Configure the VRPN Streamer to send the data to the QuaRC Computer 
• Open QBots and place them in the playground 
• Verify that the QuaRC computer receives the camera data. 
• Open Models and Quarc_init.m 
• Enable the wireless adapter of the QuaRC Computer 
• Verify that QBots are connected to the QuaRC Computer 
• Open remote consoles on QBots (Facultative) 
• Launch Quarc_init.m 
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2. Additional documentation 
There is also a video based on this document that is available. The video shows how to start a simulation 
using the camera setup and the QuaRC setup. It also shows how to calibrate and create Trackables with 
the OptiTrack Tracking tools software. 

3. Log on computers 
Make sure that the Ethernet adapter of each computer is connected to the Valcartier network, then log on 
using your personal login name and password. One would log on the QuaRC computer, the viewer 
computer (X-Plane computer) and the OptiTrack camera computer. 
 

4. Start X-Plane 
Launch X-Plane on the X-Plane computer. 
 

5. Calibrate the camera setup 
In order to calibrate, refer to the Tracking Tools video tutorial section: 
http://www.naturalpoint.com/optitrack/products/tracking-tools/videos.html. 
One can then save the calibration by clicking on File->Save Calibration. One could open an existing 
calibration file and start using the setup right away. Note that a calibration file also saves the ground 
plane. 
 

6. Set the ground plane 
In order to set the ground plane properly, refer to the Tracking Tools video tutorial section: 
http://www.naturalpoint.com/optitrack/products/tracking-tools/videos.html. 
 
Note that each model has been developed to use only the X and Y axis and ignore the Z axis (elevation). 
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7. Place Infrared Reflectors on QBots 
 
The Figure 40 presents a QBot on which infrared reflectors are installed (white glowing balls mounted on 
wooden sticks). It is recommended to respect following tips when placing reflectors: 
 
Place at least 4 markers on QBots to ensure that the Tracking Tools Software will be able to estimate the 
position and the angle of the QBot properly. In order to do so, one must not place markers in a way that a 
plan is formed by the marker set. The reason this constraint is that 2 possible angles can now be estimated 
from the camera system. When placing markers on more than one QBot, make sure that the form created 
by these marker is not too similar to others because the Tracking Tools Software will have difficulty 
differencing them.  
 
 

 
Figure 40: QBot with IR Reflectors 
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8. Create Trackables in the Tracking Tools Software 
 
In order to create a trackable, refer to the Tracking Tools video tutorial section: 
http://www.naturalpoint.com/optitrack/products/tracking-tools/videos.html. One can then save Trackables 
by clicking on File->Save Trackables. One could open an existing trackable file and jump to the next step. 
 
As you can see on the Figure 41, markers corresponding to the QBot are displayed in the Tracking Tools 
Main window. On the Figure 42, you can see that the markers has been selected (hold the left mouse 
button and cover the markers area, then release it). With the right mouse button, click on one of the 
selected markers and click on create trackable. One the Figure 43, one can see that the trackable has been 
created. On the right pane, there are trackable options. One can change Trackables’ name. Changing the 
name of the trackable is required to send data to the VRPN Streamer since the current VRPN Streamer is 
configured to accept trackable with the following names: Tracker and Tracker2. 
 
 

 
Figure 41: QBot Markers 
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Figure 42: Create Trackable from visible markers 
 

 
Figure 43: Trackable created 
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9. Configure Tracking Tools Software to send Trackable data 
 
In order to send trackable data to the QuaRC computer, one must configure the Tracking Tools Software 
to send trackable data to the VRPN Streamer, and then the VRPN Streamer will send the Data to the 
QuaRC Computer. The VRPN Streamer is a software running on the OptiTrack Computer that retransmits 
trackable data from the Tracking Tools Software to the QuaRC Computer. 
 
To send data to the VRPN Streamer, one would need to change the names of the tracker to valid names. 
The VRPN Streamer is configured to accept 2 Trackable: Tracker and Tracker2. One can see that a 
Trackables can be renamed on the trackable option pane as shown on the Figure 43.  
 
To send data to the VRPN Streamer, the Tracking Tools Software must also be configured to broadcast on 
the VRPN port. In order to do so, click on view then click on streaming pane, then check “Broadcast 
VRPN Data” as shown on the Figure 44. Typically, the VRPN port used the VRPN Streamer is 3883. On 
the Figure 44, the VRPN streamer main window is shown. As you can see, there are data passing in this 
window. This means that the VRPN Streamer is sending vision data to another computer. 
 

 
Figure 44: Streaming Pane 
 
 
One can see the data on the VRPN Streamer main window as sown on the Figure 44. 
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10. Configure the VRPN Streamer to send the data to the QuaRC Computer 
 
 
One must realize that the VRPN Streamer is the key software to send data from the OptiTrack computer to 
the QuaRC Computer. The VRPN Streamer must be configured to send trackable data to the IP address of 
the QuaRC Computer. Note that the VRPN Streamer is configured to send UDP packets to networked 
computers. It is possible to configure the port number and the IP address of the destination by recompiling 
the C++ VRPN Streamer project. QuaRC models developed to use the following UDP ports: 19000 and 
19001.  
 

11. Verify that the QuaRC computer receives the camera data. 
 
Open the model that is used to receive the camera data (CamUDP.mdl is commonly used). Set the model 
to normal execution mode and click play. Verify that the FPS (Frame Per Second) box shows does not 
show 0. If so, there a connection issue.  
 
Connection Issues can be: 
• One or more Network cable are unplugged 
• IP addresses are not configured properly either in the CamUDP model or in the VRPN Streamer.  
• The camera system can not see QBots 
• The OptiTrack software is not configured to stream Trackables on the VRPN port 
• Trackables does not have the right name. 
 
Note: One must initialize constants required to execute the model before launching it. Constants are 
commonly located in the Init.m file.  
 
Note that in order to use CamUDP.mdl, it must be executed once in normal mode before being executed 
in external mode. It is sometimes required to launch the execution of this model in normal mode to reset 
the connection. For example, sometimes, CamUDP.mdl will fail to receive camera data after a 
compilation. 
 



 

 76

 

12. Open Models and Quarc_init.m 
 
Open each models required to the simulation you wish to start and open the corresponding Quarc_init.m 
script file.  
 
The reason to open required .mdl files and .m files at this moment is simple: Once a computer is 
disconnected from the Valcartier network, the windows file browser becomes very slow. Note that the 
effectiveness of Matlab, Simulink, Real-Time workshop and QuaRC remains unaffected.  
 

 

13. Open QBots 
 
Press the power button. The power led should light up. If the power is green, the QBot is ready. If the 
power led is not green or blinking, refer to the Quanser QBot user manual. 
 

 
Figure 45:`QBot Button Layout 
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14. Enable the wireless adapter on the QuaRC computer 
 
Since a computer with a wireless adapter should never be connected to the Valcartier network, one would 
have to unplug the Valcartier network while preserving a local network composed of the QuaRC 
computer, the X-Plane computer and the OptiTrack computer. The network configuration is shown on the 
Figure 46. It is obvious that the red arrow represents an Ethernet cable that connects the local network to 
the Valcartier network. By simply removing this Ethernet cable, it is now allowed to enable the wireless 
adapter on the QuaRC computer. When you do so, the IP address of all computers will remain unchanged. 
It is then possible to use the IP address of your computers even they are not connected to the Valcartier 
domain.  
 
 
Important Note: 
 
• It is important that the QuaRC computer, the X-Plane computer and OptiTrack computer stay connected 
since they need to exchange data during the simulation. 
• The Valcartier network assigns computer IP addresses when a user logs in. It is then important that the 
user logs in before disconnecting the Valcartier network. 
 
Once the wireless adapter is enabled, make sure to connect to the wireless ad-hoc network called GSAH. 
GSAH is an ad-hoc network broadcasted by QBots when they are running. 
 
 

 
Figure 46: Network Management 
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15. Verify that QBots are connected to QuaRC computers and open remote consoles 
 
One easy way to verify that QBots are connected to the QuaRC computer is to open a remote console on 
each QBot.  
 
 

 
Figure 47: QuaRC Monitor 
 
 
To access the console on a target that is running on another computer or even on the QBot, you can use 
the remote console. 
• Click on the QuaRC monitor located in the task bar (see the Figure 47) 
• Expand the Target tab 
• Click on Remote… 
• Enter the Target URI (QBots IP Addresses are written on QBots). The tcpip protocol must be used to 
reach a remote target. The port 17000 is always used to connect to a target. For example, use the 
following URI: tcpip://182.168.1.200:17000. 
• Click OK 
• Verify that the gray Q passes to green and has no exclamation mark. If there is and exclamation mark, 
the QuaRC monitor is attempting to connect to the target.  
• Click again on the QuaRC monitor 
• Click Console… 
• Now you have access to the remote console.  
• More than one QuaRC monitor can be opened at a time. This means that you can open a remote console 
on as many targets as you want. To open a new monitor, click on the Start menu -> All Programs -> 
Quanser -> QuaRC -> Monitor 
 

 
Figure 48: QuaRC Console 
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16. Launch Quarc_init.m 
 
Open each Simulink models required to the simulation you wish to start and open the corresponding 
Quarc_init.m script file.  
 
Quarc_init.m is specifically made to build models, load and execute models, initialize constants and 
define model arguments. Note, there is one Quarc_init.m file for each simulations. Indeed, communication 
parameters are different for different simulation models.  
 
For more information about the Quarc_init.m script file, refer to the Annex 8. 
 
 
Annex 5: Configuring the VRPN Streamer Listening port and Broadcasting port 
 
The VRPN streamer is a relay between the Tracking Tools software and the QuaRC computer. The VRPN 
streamer must then be connected to the Tracking Tools software and to the QuaRC computer. 
 
In order to connect the VRPN Streamer to the Tracking Tools software, the VRPN Streamer must listen to 
the same VRPN port that Tracking Tools uses to broadcast visual data. Typically, the Tracking Tools 
software uses the VRPN port # 3883. 
 
In order to connect the VRPN Streamer to the QuaRC computer, it must send data to the QuaRC 
computer’s IP address and configured UDP ports. 
 
Both changing the VRPN listening port and the UDP streaming address and port requires recompiling the 
VRPN C++ project. 
 
 
To change the IP address or the port on which to send data, simply modify the following line of the 
VRPN-Listener.cpp file : 
 
string tIP = "131.132.57.12"; // IP du PC executant xPC Target 
unsigned short tPORT = 19000; // Port UDP utilisé sur le PC executant 
xPC Target 
unsigned short tPORT1 = 19001; 
 
 
Where: 131.132.57.12 is the IP address of the computer that will receive the UDP data (QuaRC 
computer). UDP ports used here are 19000 and 19001. There are 2 ports used here because the VRPN 
Stream can handle 2 rigid bodies (Tracker and Tracker2 by default). Rigid bodies must be called Tracker 
and Tracker2 in the OptiTrack software. 
 
 
To modify the VRPN port on which this program listens, modify these lines of the VRPN-Listener.cpp 
file: 
 
    if(UseUDP) 
        connection = new vrpn_Connection("localhost", 3883); 
    else 
 connection = new vrpn_Connection("tcp://localhost", 3883); 
 
The VRPN port used here is 3883. 
 
To modify the rigid bodies’ name, modify the following lines: 
 
vrpn_Tracker_Remote *tracker2 = new vrpn_Tracker_Remote("Tracker2", 
connection); 
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 vrpn_Tracker_Remote *tracker = new vrpn_Tracker_Remote("Tracker", 
connection); 
 
Where: Tracker and Tracker2 are the rigid bodies names used in the Tracking Tools software. 
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Annex 6: Configuring X-Plane 
 
The Figure 49 shows the X-Plane block parameters. As you can see, the IP Address of the X-Plane 
computer is required. The second parameter allows the user to set the number of planes to plot in X-Plane. 
Note that the maximum number of planes is 10 with the X-Plane version 8.40. The third parameter is the 
decimation which is used to reduce the amount of data sent to X-Plane. Indeed the decimation is simply a 
scale of down sample. Indeed, if the decimation is 10, vehicles position will be update 10 times less often 
than they are calculated by the simulation model. The fourth parameter is the 3D aircraft X-Plane models 
(.acf files) which will be used to display UAVs in the three dimensional environment. Each acf file is 
located in the X-Plane installation folder. 
  
 

 
Figure 49: X-Plane Block Parameters 
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Annex 7:Synchronizing QuaRC Models 
 
When a simulation is distributed into more than one model, each model may require to be started at the 
same time. Since every models are started sequentially,  models must be enabled when model are loaded. 
In order to start models at the same time, models are composed of enabled subsystems. These subsystems 
are enabled when every model are loaded (or connected). This will ensure that there is no delay between 
each enabled subsystems. The Figure 50 shows an enabled subsystem which the trigger signal indicates 
that each communication blocks are connected and exchanging data.  
 
As an example, if there is a simulation composed of 2 Simulink models (model A and model B). The 
model A contains an UAV which leads a formation. The model B contains UAVs following the leader. If 
the synchronization is not done between the model A and the model B, it is easy to see that if the model B 
is started first, followers model will be executed before the leader’s model. It is easy to see that a similar 
problem will occur if the model A is started first. A synchronization is then required. 
 
 
 
 
 

 
Figure 50: Synchronizing models 
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Annex 8:Quarc_init.m 
 
 
There are several reasons for using Quarc_init.m. For instance, when executing more than one model at a 
given time (distributed simulations), it is required to input default model and target URI manually in the 
QuaRC preferences between each compilation and execution. By proceeding that way, one would need to 
wait until a model is loaded to a target, then change the default model and target URI for the next model 
in order to load it. Proceeding that way is time inefficient and induces many configuration mistakes. For 
such a reason, Quarc_init.m has been developed to automatize the process of building, assigning URIs 
and loading models.  
 
To build a model, you must follow a specific order of operations: 
• Defining the model and the target default URI 
• Build and load the model 
• Connect to the model 
• Start the model 
 
Each of these steps is done by the Quarc_init.m script file. 
 
%------------------------------------- % 
%                                      % 
% Target, Model and Server Configuration 
%                                      % 
%------------------------------------- % 
  
  
%apseporcoop -  182.168.1.100 
%QBOT -         182.168.1.202 
  
%close all 
%clear all 
  
%% Constant definition these files are different for each models 
LTAVNOVR_PLOTS 
Init 
  
%% Targets configuration 
  
%Set the number of target to 0 (do not edit) 
nTarget=0; 
  
%Define servers that will be used by the comm blocks 
Server1 = '-SERVER1 tcpip://182.168.1.202:18001'; 
Server2 = '-SERVER2 tcpip://182.168.1.202:18002'; 
Server6 = '-SERVER6 tcpip://182.168.1.202:18003'; 
  
%% Model 1 
  
%Increase the number of target by 1 
nTarget = nTarget+1; 
  
%Name of the model 
ConfigStruct.ModelInfo(nTarget).Name = 'CamUDP'; 
  
%Model URI - Since the model is executed on the machine that compile 
and 
%lauche the execution, the shared memory can be used 
ConfigStruct.ModelInfo(nTarget).ModelUri = 'shmem://quarc-target:11'; 
  
%Target URI - Since the model is executed on the machine that compile 
and 
%lauche the execution, the shared memory can be used 
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ConfigStruct.ModelInfo(nTarget).TargetUri = 'shmem://quarc-target:1'; 
  
%Define the target type - This one is executed on a windows machine 
ConfigStruct.ModelInfo(nTarget).TargetType = 'windows'; 
  
%The protocol used to communicate with the target is shared memory 
ConfigStruct.ModelInfo(nTarget).Protocol = 'shmem'; 
  
%This model only uses the Server 6 to communicate with the QBot 
ConfigStruct.ModelInfo(nTarget).Arguments = sprintf('%s', Server6); 
  
%Always set this to Yes, it is used to stop the model with Quarc_stop.m 
%(Yes/No) 
ConfigStruct.ModelInfo(nTarget).Running = 'Yes'; 
  
%Decide wether you wish to stay connected with the model during the 
%execution (Yes/No) 
ConfigStruct.ModelInfo(nTarget).StayConnected = 'Yes'; 
  
%Decide if that model needs to be compiled (Yes/No) 
ConfigStruct.ModelInfo(nTarget).Compile = 'No'; 
  
%% Model 2 
%Increase the number of target by 1 
nTarget = nTarget+1; 
  
%Name of the model 
ConfigStruct.ModelInfo(nTarget).Name = 'ALTAV'; 
  
%Model URI - Since the model is executed on the machine that compile 
and 
%lauche the execution, the shared memory can be used 
ConfigStruct.ModelInfo(nTarget).ModelUri = 'shmem://quarc-target:12'; 
  
%Target URI - Since the model is executed on the machine that compile 
and 
%lauche the execution, the shared memory can be used 
ConfigStruct.ModelInfo(nTarget).TargetUri = 'shmem://quarc-target:1'; 
  
%Define the target type - This one is executed on a windows machine 
ConfigStruct.ModelInfo(nTarget).TargetType = 'windows'; 
  
%The protocol used to communicate with the target is shared memory 
ConfigStruct.ModelInfo(nTarget).Protocol = 'shmem'; 
  
%This model uses the Server 1 and the Server 2 to communicate with the 
%Qbot_Control model 
ConfigStruct.ModelInfo(nTarget).Arguments = sprintf('%s', Server1,' ', 
Server2); 
  
%Always set this to Yes, it is used to stop the model with Quarc_stop.m 
%(Yes/No) 
ConfigStruct.ModelInfo(nTarget).Running = 'Yes'; 
  
%Decide wether you wish to stay connected with the model during the 
%execution (Yes/No) 
ConfigStruct.ModelInfo(nTarget).StayConnected = 'Yes'; 
  
%Decide if that model needs to be compiled (Yes/No) 
ConfigStruct.ModelInfo(nTarget).Compile = 'No'; 
  
%% Model 3 
  
%Increase the number of target by 1 
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nTarget = nTarget+1; 
  
%Name of the model 
ConfigStruct.ModelInfo(nTarget).Name = 'Qbot_Control'; 
  
%Model URI - Since the model is executed on the Qbot you have to use 
the 
%tcpip protocol to communicate with it 
ConfigStruct.ModelInfo(nTarget).ModelUri = 
'tcpip://182.168.1.202:17003'; 
  
%Target URI - Since the model is executed on the Qbot you have to use 
the 
%tcpip protocol to communicate with it 
ConfigStruct.ModelInfo(nTarget).TargetUri = 
'tcpip://182.168.1.202:17000'; 
  
%Define the target type - This one is executed on a linux_arm machine  
%(The Qbot board is a linux_arm machine) 
ConfigStruct.ModelInfo(nTarget).TargetType = 'linux_arm'; 
  
%The protocol used to communicate with the target is tcp 
ConfigStruct.ModelInfo(nTarget).Protocol = 'tcpip'; 
  
%The Qbot Use the Server 1 and Server 2 to communicate with the Altav 
model 
%and the Server 6 to communicate with the CamUDP model 
ConfigStruct.ModelInfo(nTarget).Arguments = sprintf('%s', Server1,' 
',Server2,' ', Server6); 
  
%Always set this to Yes, it is used to stop the model with Quarc_stop.m 
%(Yes/No) 
ConfigStruct.ModelInfo(nTarget).Running = 'Yes'; 
  
%Decide wether you wish to stay connected with the model during the 
%execution (Yes/No) 
ConfigStruct.ModelInfo(nTarget).StayConnected = 'Yes'; 
  
%Decide if that model needs to be compiled (Yes/No) 
ConfigStruct.ModelInfo(nTarget).Compile = 'No'; 
  
%% Building, loading models  
  
%Display the number of model 
nTarget 
  
%For each model, compile if requested 
for i=1:nTarget 
    if(strcmp('Yes',ConfigStruct.ModelInfo(i).Compile)) %Verify if the 
compilation is requested 
        qc_set_default_target_uri(ConfigStruct.ModelInfo(i).Protocol, 
ConfigStruct.ModelInfo(i).TargetUri) %Set the target URI 
        qc_set_default_model_uri(ConfigStruct.ModelInfo(i).ModelUri) 
%Set the model URI 
        qc_build_model(ConfigStruct.ModelInfo(i).Name) %Build the model 
    end 
end 
  
  
%------------------------------------- % 
%                                      % 
% Execute models                       %    
%                                      % 
%------------------------------------- % 
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%Load and execute each model 
for i=1:nTarget 
    qc_set_default_target_uri(ConfigStruct.ModelInfo(i).Protocol, 
ConfigStruct.ModelInfo(i).TargetUri) %Set the target URI 
    
qc_set_default_model_uri(ConfigStruct.ModelInfo(i).TargetType,ConfigStr
uct.ModelInfo(i).ModelUri) %Set the model URI 
    qc_load_model(ConfigStruct.ModelInfo(i).Name,sprintf('%s','-w -d %d 
-uri %u',' ',ConfigStruct.ModelInfo(i).Arguments)) %Load the model with 
the proper arguments 
    qc_connect_model(ConfigStruct.ModelInfo(i).Name) % Connect to the 
model 
    qc_start_model(ConfigStruct.ModelInfo(i).Name) % Start the model 
     
    if ~strcmp(ConfigStruct.ModelInfo(i).StayConnected, 'Yes') 
        qc_disconnect_model(ConfigStruct.ModelInfo(i).Name); 
%Disconnect if requested 
    end 
     
end 
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