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This paper surveys graphical tools developed in the past three decades that are applicable to
linear structural equation models (SEMs). These tools permit researchers to answer key re-
search questions by simple path-tracing rules, even for highly complex models. They include
parameter identification, causal effect identification, regressor selection, selecting instrumental
variables, finding testable implications of a given model, identifying equivalent models and
estimating counterfactual relationships.
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Introduction

Recent advances in graphical models have had a trans-
formative impact on causal analysis and machine learning.
Among the tasks facilitated by graphical models are: model
testing, identification, policy analysis, bias control, medi-
ation, external validity, and the analysis of counterfactu-
als and missing data (Pearl, 2014a). Only a meager por-
tion of these developments have found their way to main-
stream structural equation modeling (SEM) literature which,
by and large, prefers algebraic over graphical representations
(Joreskog and Sorbom, 1982; Bollen, 1989; Mulaik, 2009;
Hoyle, 2012). The reason for this disparity rests primarily
in the fact that graphical techniques were developed for non-
parametric analysis, while most SEM research is conducted
within the confines of Gaussian linear models, to which ma-
trix algebra and powerful statistical tests are applicable.

The purpose of this paper is to introduce SEM researchers
to modern tools of graphical models and to describe the ben-
efits, as well as new insights that graphical models can pro-
vide. These include new methods of testing models, new
ways of identifying structural parameters, new techniques of
reducing confounding bias, and new paradigms for handling
missing data.

To make this paper self contained, we will start with
the basic definitions of regression analysis, linear structural
equations models, path analysis, causal effects, and Wright’s
path tracing rules. We then introduce more advanced no-
tions of graph separation, which were developed for non-
parametric analysis, but have simple and meaningful inter-
pretation in linear models. These tools provide the basis for
model testing and identification criteria, discussed in sub-
sequent sections. We then cover advanced applications of
path diagrams including equivalent regressor sets, minimal

regressor sets, and variance minimizing for causal effect es-
timation. Lastly, we discuss counterfactuals and their com-
putation in linear SEMs before showing how the tools pre-
sented in this paper provide simple solutions to five examples
representing non-trivial problems in SEM research.

Preliminaries

Expected Value, Covariance, Regression, and Correla-
tion

The expected value of a variable X, denoted E[X], is de-
fined as

E[X] =

∫
x · P(x)dx (1)

and can be interpreted as the “weighted average” of X, where
P(x) stands for the probability density function of X.

The variance of X is defined as

σ2
X = E[X − E(X)]2 (2)

and measures the degree to which X deviates from its mean
E[X].

The covariance of X and Y is defined as

σXY = E[(X − E[X])(Y − E[Y])] (3)

and measures the degree to which X and Y vary together.
The covariance matrix of a set of variables,

{X1, X2, ..., Xn}, is the matrix, [σXiX j ], containing the co-
variance between each pair of variables and the variance of
each variable along the diagonal.

The correlation coefficient of X and Y , ρXY , and regres-
sion coefficient, βYX of Y on X are two other measures of
association, which we define in terms of the covariance:
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ρXY =
σXY

σXσY
(4)

βYX =
σXY

σ2
X

=
σY

σX
ρXY (5)

ρXY is a normalized measure of association and confined
to the unit interval; 0 ≤ ρXY ≤ 1. If the distribution is Gaus-
sian (assumed for the remainder of the paper), the regres-
sion coefficient, βYX , represents the slope of the least squares
line in the prediction of Y given X: βYX = ∂

∂x E[Y |X = x]
for all x. Finally, notice that if the variables have been
standardized (also assumed, without loss of generality, for
the remainder of the paper) so that the mean and variance
of each variable are equal to 0 and 1 respectively, we have
σXY = ρXY = βXY = βYX .

Conditional Expectation, Partial Covariance, Partial
Correlation, and Partial Regression

The conditional expectation of Y given X = x, denoted
E[Y |X = x], is the expected value of Y when X = x. More
formally,

E[Y |X = x] =

∫
y · P(y|X = x)dy (6)

We will also utilize partial covariances, correlations, and
regressions, which measure the association between X and
Y conditioned on a given set of variables, Z. For example,
the partial regression coefficient of Y on X given Z = z or
z-specific regression coefficient of Y on X is given by:

βYX.z =
∂

∂x
E[Y |X = x,Z = z] (7)

In words, βYX.z is the slope of the regression line of Y on X
when we consider only cases for which Z = z. Since we are
assuming a Gaussian distribution, βYX.z, does not change for
different values of z, which allows us to write βYX.z = βYX.Z ,
where βYX.Z is the coefficient for X when we regress Y on X
and Z.

The partial correlation coefficient, ρXY.Z can be defined by
normalizing βYX.Z :

ρXY.Z = βYX.Z
σX.Z

σY.Z
(8)

A well known result in regression analysis (Crámer, 1946)
permits us to express ρYX.Z , σYX.Z , or βYX.Z recursively in
terms of pair-wise correlation coefficients. When Z is a sin-
gleton, this reduction reads:

ρYX.Z =
ρYX − ρYZρXZ

[(1 − ρ2
YZ)(1 − ρ2

XZ)]
1
2

(9)

σYX.Z = σYX −
σYZσZX

σ2
Z

(10)

βYX.Z =
σY

σX

ρYX − ρYZρZX

1 − ρ2
XZ

(11)

If we wish to reduce ρYX.ZS , σYX.ZS , or βYX.ZS when Z is a
singleton and S a set containing one or more variables, it can
be done as follows:

ρYX.ZS =
ρYX.S − ρYZ.S ρXZ.S

[(1 − ρ2
YZ.S )(1 − ρ2

XZ.S )]
1
2

(12)

σYX.ZS = σYX.S −
σYZ.SσZX.S

σ2
Z.S

(13)

βYX.ZS =
σY.S

σX.S

ρYX.S − ρYZ.S ρZX.S

1 − ρ2
XZ.S

(14)

We see that ρYX.ZS , σYX.ZS , or βYX.ZS can be expressed in
terms of pair-wise coefficients by recursively applying the
above formulas for each element of S . When the condition-
ing set becomes large, this procedure can yield rather compli-
cated expressions. However, if our aim is merely to identify
vanishing partial correlations, which is the case in many ap-
plications, we can be spared the effort entailed by this recur-
sion and use graphical criteria instead. These are reviewed in
the subsection on d-separation.

Linear Structural Equation Models

Structural equation models (SEMs) use mathematical
functions to describe the data generating mechanism for a
set of variables. For example, the structural equation Y =

aX +UY describes a physical process by which Nature exam-
ines the values of X and UY and assigns the value aX + UY

to variable Y1. If the model specification accurately reflects
the data generating mechanism, it is capable of answering
all causally related queries regarding the model variables, in-
cluding questions of prospective and introspective counter-
factuals2. In this paper, we focus on linear SEMs.

Consider a set of observed variables, y1, y2, ..., yn. A linear
SEM consists of a set of equations of the form,

1The equal sign in structural equations is not symmetric. Y =

aX + UY does not imply the structural equation X = 1
a (Y − UY )

because X may be assigned its value according to other variables in
the model, not Y and UY .

2Prospective counterfactual queries are queries of the form,
“What value would Y take if X were set to x?” Introspective coun-
terfactual queries are queries of the form, “Given that Y currently
takes the value of y, what would have been the value of Y if X had
been x?” Counterfactuals will be discussed in more detail in the
section on counterfactuals.
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(a)

(b)

Figure 1. (a) Model with latent variables (Q1 and Q2) shown
explicitly (b) Same model with latent variables summarized

yi = Λ1iy1 + Λ2iy2 + ... + Λniyn + ui

where y1, ..., yn are the model variables, Λ ji is a coefficient
that conveys the strength of the causal relationship from y j

to yi, and ui a random error term due to latent or omitted
factors that is generally assumed to be normally distributed.
If Λ ji = 0, indicating zero direct influence of y j on yi then
we usually omit the term Λ jiy j from the equation. Note that
the notion of direct effect depends on the set of variables we
decide to include in the model, with the understanding that
every coefficient Λ ji from y j to yi may summarize a chain of
many microprocesses whose precise nature remains outside
the model. Throughout the paper we often use distinct letters
(e.g. a, b, c) in place of Λ ji for the coefficients. For example,
in Model 1 shown below, the coefficient ΛCS is given the
label b while coefficient ΛQ2S is given the label e.

Typically, the modeler specifies the equations from do-
main knowledge and attempts to estimate the coefficients
from data. For example, suppose we wish to estimate the
effect of attending an elite college on future earnings (Figure
1a). Clearly, simply regressing earnings on college rating
will not give an unbiased estimate of the target effect. Since
elite colleges are highly selective, students attending them
are likely to have qualifications for high-earning jobs prior
to attending the school. This background knowledge is ex-
pressed in the following model specification:

(a)

(b)

Figure 2. Diagrams associated with Model 2 in the text (a)
with latent variables shown explicitly (b) with latent vari-
ables summarized

Model 1.

Q1 = U1

C = a · Q1 + U2

Q2 = c ·C + d · Q1 + U3

S = b ·C + e · Q2 + U4,

where Q1 represents the individual’s qualifications prior to
college, Q2 represents qualifications after college, C contains
attributes representing the quality of the college attended,
and S the individual’s salary. Both Q1 and Q2 may be la-
tent variables, meaning they are unobserved and, therefore,
not present in the dataset. The path diagram for this model is
depicted in Figure 1a.

In order to estimate the values of the coefficients b, c, and
e, which convey the causal effect of attending an elite college
on future earnings, the coefficients must have a unique solu-
tion in terms of the covariance matrix, [σi j]. The task of find-
ing this solution is known as identification and is discussed
in a later section. In some cases, one or more coefficients
may not be identifiable, meaning that no matter the size of
the dataset, it is impossible to obtain an unbiased estimate
of these values. Indeed, we will see that the coefficients in
Model 1 are not identified if Q1 and Q2 are latent.

However, if we include the strength of an individual’s col-
lege application, A, in the model, as shown in Figure 2a, we
obtain the following structural equations:
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Model 2.

Q1 = U1

A = a · Q1 + U2

C = b · A + U3

Q2 = e · Q1 + d ·C + U4

S = c ·C + f · Q2 + U5,

from which the causal effect of attending an elite college on
future salary is identifiable, as we will show.

The ability to determine identifiability directly from the
model specification is a valuable feature of graphical mod-
els. For example, it would be a waste of resources to specify
the structure in Model 1 and gather data only to find that the
parameter of interest is not identified. The tools provided in
subsequent sections will allow modelers to determine imme-
diately from the path diagram that the effect of attending an
elite college on future salary, c + d f , is not identified using
Model 1 but is identified using Model 2. Further, we will
also be able to determine, again by inspection, that c + d f
equals βS C.A, and that the regression coefficient βS A.CQ1 van-
ishes, which can be used to test whether the specification of
Model 2 is compatible with the data. Most importantly, these
tools will be applicable to far more complex models where
questions of identifiability and testable implications are near
impossible to determine by hand or even by standard soft-
ware.

Path Diagrams and Graphs

Path diagrams were introduced by Sewell Wright (1921),
who aimed to estimate causal influences from statistical data
on animal breeding. Today, SEM is generally implemented
in software3, and, as a result, when users experience unex-
pected behavior (due to unidentified parameters, for exam-
ple) they are often at a loss as to how to proceed4. For the
remainder of this section, we will review the basics of path
diagrams and provide users with simple, intuitive tools to re-
solve questions of identification, goodness of fit, and more
using graphical methods.

The path diagram or causal graph5 of an SEM can be eas-
ily drawn from the equations in the model. The vertices rep-
resent model variables, and for each equation,

yi = Λ1iy1 + Λ2iy2 + ... + Λniyn + ui,

arrows are drawn from the variables in y j to yi whenever
Λ ji , 0. Each arrow, therefore, is associated with a coeffi-
cient in the SEM, which we will label as its path coefficient.
The error terms, ui, are usually not represented in the graph.
However, a bidirected arc between two variables, yi and y j,
indicates that their corresponding error terms, ui and u j, may
be statistically dependent while the lack of a bidirected arc
indicates that the error terms are independent. An edge is

defined to be either an arrow or a bidirected arc. Figure 1a is
a path diagram for Model 1 while Figure 2a is a path diagram
for Model 2.

If an arrow, called (X,Y), exists from X to Y we say that
X is a parent of Y . If there exists a sequence of arrows all of
which are directed from X to Y we say that X is an ancestor
of Y . If X is an ancestor of Y then Y is a descendant of X.
Finally, the set of nodes connected to Y by a bidirected arc
are called the siblings of Y .

A path between X to Y is a sequence of edges, connecting
the two vertices. A path may go either along or against the
direction of the arrows. A directed path from X to Y is a path
consisting only of arrows pointed towards Y .

A graph is acyclic if it does not contain any cycles, a di-
rected path that begins and ends with the same node. A graph
is cyclic if it contains a cycle. A model in which the causal
graph is acyclic is called recursive while models with cyclic
graphs are called non-recursive.

For conciseness and clarity, latent variables will not be
included in the model specification or depicted as nodes in
the graph. Instead, their effect will be summarized by the
correlation they induce on error variables as represented in
the diagram by bidirected arcs. It was shown by Verma
(1993) that one can always summarize a sequence of inter-
connected latent variables in the form of pairwise correla-
tions. For example, the effect of the latent variables in Fig-
ures 1a and 2a are summarized by Figures 1b and 2b respec-
tively. We see that the effect of College on Salary in Fig-
ure 1a is now summarized by the coefficient α in Figure 1b.
Similarly, the bidirected arc between C and S (representing
the correlation of the error terms of C and S ) in Figure 1b
summarizes the correlation between C and S due to the path
C ← Q1 → Q2 → S .

Causal Effects

Let Π = {π1, π2, ..., πk} be the set of directed paths from X
to Y and pi be the product of the path coefficients along path
πi. The total effect of X on Y is often defined as the

∑
i pi

(Bollen, 1989). For example, in Figure 3a, the total effect of
X on Y is a · b + e.

The rational for this additive formula and its extension to
non-linear systems can best be seen if we define the causal
effect of X on Y as the expected change in Y when X is as-
signed to different values by intervention, as in a randomized
experiment. The act of assigning a variable X to the value

3Common software packages include AMOS (Arbuckle, 2005),
EQS (Bentler, 1989), LISREL (Jöreskog and Sörbom, 1989), and
MPlus (Muthén and Muthén, 2010) among others.

4Kenny and Milan (2011) write, “Identification is perhaps the
most difficult concept for SEM researchers to understand. We have
seen SEM experts baffled and bewildered by issues of identifica-
tion.”

5We use both terms interchangeably.
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(a)

(b)

(c)

Figure 3. Models depicting interventions (a) Original model
(b) After intervening on X (c) After intervening on X, Z, and
W

x is represented by removing the structural equation for X
and replacing it with the equality X = x. This replacement
dislodges X from its prior causes and ensures that variation
between X and Y reflects causal paths from X to Y only.

The expected value of a variable, Y , after X is assigned the
value x by intervention is denoted E[Y |do(X = x)], and the
causal effect of X on Y is defined as

E[Y |do(X = x + 1)] − E[Y |do(X = x)], (15)

where x is some reference point. In non-linear systems, the
effect will depend on the reference point but in the linear
case, x will play no role and we can replace (15), with the
derivative,

∂

∂x
E[Y |do(X = x)]. (16)

Consider again Models 1 and 2 with C a binary variable
taking value 1 for elite colleges and 0 for non-elite colleges.
For defining the total effect of attending an elite college on
salary, we would hypothetically assign each member of the
population to an elite college and observe the average salary,
E[S |do(C = 1)]. Then we would rewind time and assign
each member to a non-elite college, observing the new aver-

age salary, E[S |do(C = 0)]. Intuitively, the causal effect of
attending an elite college is the difference in average salary,

E[S |do(C = 1)] − E[S |do(C = 0)].

The above operation provides a mathematical procedure that
mimics this hypothetical (and impossible) experiment using
a SEM.

In linear systems, this “interventional” definition of causal
effect coincides with the aforementioned “path-tracing” def-
inition as can be seen using Figure 3a and its corresponding
structural equations:

Model 3.

Z = UZ

X = cZ + UX

W = aX + UW

Y = dZ + bW + eX + UY

Using the do operation we obtain the new set of equations:

Z = UZ

X = x

W = aX + UW

Y = dZ + bW + eX + UY

The corresponding path diagram is displayed in Figure 3b.
(Notice that paths between X and Y due to common causes,
Z, have been cut, and as a result, all paths between X and Y
now reflect the causal effect from X to Y only.)

Recalling that we assume model variables have been stan-
dardized to mean 0 and variance 1 so that E[Ui] = 0 for all i,
we see that setting X to x gives the following expectation for
Y:

E[Y |do(X = x)] = E[d · Z + b ·W + e · X + UY ]
= d · E[Z] + b · E[W] + e · x + E[UY ]
= d · E[UZ] + b · E[a · x + UW ] + e · x + E[UY ]
= 0 + b · a · x + b · E[UW ] + e · x + 0
= b · a · x + 0 + e · x + 0
= b · a · x + e · x.

As a result,

E[Y |do(X = x + 1)] − E[Y |do(X = x)] = ab + e (17)

for all x, aligning the two definitions. Note, moreover, that
this equality holds even when the coefficients, a, b, and e, are
not identified (e.g. if the U terms are correlated).

In many cases, we may be interested in the direct effect
of X on Y . The term “direct effect” is meant to quantify an
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(a) (b)

Figure 4. Models illustrating Wright’s rules of path tracing

effect that is not mediated by other variables in the model or,
more accurately, the sensitivity of Y to changes in X while
all other factors in the analysis are held fixed (Pearl, 2000).

“Holding all other factors fixed” can be simulated by as-
signing all variables other than X and Y by intervention to
arbitrary set of reference values6. (Like the total effect, in
linear systems, the direct effect does not change with respect
to the reference values.) Doing so severs all causal links in
the model other than those leading into Y . As a result, all
links from X to Y other than the direct link will be severed.
For example, Figure 3c shows the path diagram of Model 3
after intervention on all variables other than X and Y .

Now, the direct effect of X on Y can be defined as

E[Y |do(X = x + 1, S = s)] − E[Y |do(X = x, S = s)],

where S is a set containing all model variables other than X
and Y and {x ∪ s} a set of reference values. It is not hard to
show that, in linear models, the direct effect is equal to the
path coefficient from X to Y . It provides, in fact, a formal in-
terventional justification for associating the path coefficient
with the notion of “direct effect”, and permits us to extend
this notion to non-linear models.

Finally, in linear models, the effect of X on Y mediated by
W is equal to the sum of the product of coefficients associated
with directed paths from X to Y that go through W. In Figure
3a, we see that this effect is equal to ab. For a non-linear
and non-parametric extension of this definition, see indirect
effect in Pearl (2000).

Wright’s Path Tracing Rules

The earliest usage of graphs in causal analysis can be
found in Sewell Wright’s 1921 paper, “Correlation and Cau-
sation”. This seminal paper gives a method by which the
covariance σYX of any two variables in a recursive model
can be expressed as a polynomial over a subset of the model
coefficients. In this way, Wright’s equations characterize the
relationship between the model coefficients and the covari-
ance matrix and, subsequently, provide an algebraic repre-
sentation of the identification problem. A coefficient is iden-
tified if and only if it can be solved in terms of the elements
of the covariance matrix using Wright’s equations7.

Figure 5. Model illustrating the rules of d-separation

Wright’s method consists of equating the standardized co-
variance σYX = ρYX between any pair of variables to the sum
of products of path coefficients and error covariances along
certain paths between X and Y . Let Π = {π1, π2, ..., πk} de-
note the paths between X and Y that do not trace colliding
arrowheads, i.e. →←,↔←,→↔, or↔↔, and let pi be the
product of path coefficients along path πi. (We call nodes
where colliding arrowheads meet a collider, e.g. Z in Figure
6a and C in Figure 5.) Then the covariance between variables
X and Y is

∑
i pi. For example, if we wish to express the co-

variance of C and E in Figure 5, we sum the product of the
coefficients along paths C ← F → A→ E, C ← A→ E, and
C → D→ E, givingσCE = b·a·g+c·g+d·h. However, we do
not include the coefficients along C → D← B→ E because
it traces a collider. For models represented by the diagram in
Figure 4a, we have σYX = a + bc while σYX = a + bc + CYX

for the diagram in Figure 4b.
To express partial covariances, correlations, or regression

coefficients in terms of path coefficients we first apply Equa-
tions 9-14 and then use Wright’s tracings rules for each co-
variance term. For example, reducing βYX.Z for the model
represented by Figure 4a can be done as follows:

βYX.Z =
σY

σX

ρYX − ρYZρZX

1 − ρ2
XZ

=
1
1

(a + bc) − (c + ab)(b)
1 − b2

=
a + bc − bc − ab2

1 − b2

=
a(1 − b2)

1 − b2

= a

D-Separation

As mentioned previously, when the conditioning set be-
comes large, applying the recursive formula of Equations

6In footnote 12 we give an example demonstrating that “holding
all other factors fixed” cannot be simulated using conditioning but
instead must invoke intervention.

7However, as Wright’s equations are non-linear, it can be very
difficult to analyze the identification of large models by studying
solutions for the system of equations.
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(a)

(b)

Figure 6. Examples illustrating conditioning on a collider

12-14 can become complex. Vanishing partial correlations,
however, can be readily identified from the path diagram us-
ing a criterion called d-separation (Pearl, 1988)8.

The idea of d-separation is to associate “correlation”
with “connectedness” in the graph, and independence
with “separation”. The only twist on this simple idea
is to define what we mean by “connected path”, given
that we are dealing with a system of directed arrows in
which some vertices (those residing in the conditioning
set, Z) correspond to variables, whose values are measured
precisely. To account for the orientations of the arrows we
use the terms “d-separated” and “d-connected” (d denotes
“directional”).

Rule 1: X and Y are d-separated if there is no active path
between them.

By “active path”, we mean a path that can be traced with-
out traversing a collider. If no active path exists between X
and Y then we say that X and Y are d-separated. As we can
see from Wright’s rules, ρXY vanishes when X and Y are d-
separated.

When we measure a set Z of variables, and take their
values as given, the partial covariances of the remaining
variables changes character; some correlated variables
become uncorrelated, and some uncorrelated variables
become correlated. To represent this dynamic in the graph,
we need the notion of “partial d-connectedness” or more
concretely, “d-connectedness conditioned on a set Z of
measurements”.

Rule 2: X and Y are d-connected, conditioned on a set of Z
nodes, if there is a collider-free path between X and Y that
traverses no member of Z. If no such path exists, we say
that X and Y are d-separated by Z or we say that every path

Figure 7. Diagram illustrating why Ice Cream Sales and
Drowning are uncorrelated given Temperature and/or Water
Activities

between X and Y is “blocked” by Z.

A common example used to show that correlation does not
imply causation is the fact that ice cream sales are correlated
with drowning deaths. When the weather gets warm people
tend to both buy ice cream and play in the water, resulting
in both increased ice cream sales and drowning deaths.
This causal structure is depicted in Figure 7. Here, we see
that Ice Cream Sales and Drownings are d-separated given
either Temperature or Water Activities. As a result, if we
only consider days with the same temperature and/or the
same number of people engaging in water activities then the
correlation between Ice Cream Sales and Drownings will
vanish.

Rule 3: If a collider is a member of the conditioning set Z,
or has a descendant in Z, then the collider no longer blocks
any path that traces it.

According to Rule 3, conditioning can unblock a blocked
path from X to Y . This is due to the fact that conditioning
on a collider or its descendant opens the flow of information
between the parents of the collider. For example, X and Y
are uncorrelated in Figure 6a. However, conditioning on the
collider, Z, correlates X and Y giving ρXY.Z , 0. This phe-
nomenon is known Berkson’s paradox or “explaining away”.
To illustrate, consider the example depicted in Figure 6b.
It is well known that higher education often affords one a
greater salary. Additionally, studies have shown that height
also has a positive impact on one’s salary. Let us assume that
there are no other determinants of salary and that Height and

8See also (Hayduk et al., 2003) and (Mulaik, 2009) for an intro-
duction to d-separation tailored to SEM practitioners.
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Education are uncorrelated. If we observe an individual with
a high salary that is also short, our belief that the individual is
highly educated increases. As a result, we see that observing
Salary correlates Education and Height. Similarly, observing
an effect or indicator of salary, say the individual’s Ferrari,
also correlates Education and Height.

The fact that σYX.Z , 0 when σYX = 0 and Z a common
child of X and Y can also be illustrated using Wright’s path
tracing rules. Consider Figure 6a where Z is a common effect
of X and Y . We have σYX = 0 and, using Equation 10,

σYX.Z = σYX −
σYZσZX

σ2
Z

= 0 −
ab
1

= −ab.

When a and b are non-zero we have an algebraic confir-
mation of our intuition from the salary example that X and Y
are uncorrelated marginally, but becoming correlated when
we condition on Z.

Berkson’s paradox implies that paths containing colliders
can be unblocked by conditioning on colliders or their de-
scendants. Let π′ be a path from X to Y that traces a collider.
If for each collider on the path π′, either the collider or a
descendant of the collider is in the conditioning set Z then π′

is unblocked given Z. The exception to this rule is if Z also
contains a non-collider along the path π′ in which case X and
Y are still blocked given Z. For example, in Figure 5 the path
F → C ← A→ E is unblocked given C or D. However, it is
blocked given {A,C} or {A,D}.

The above three rules characterize d-separation while the
following theorem makes explicit the relationship between
partial correlation and d-separation.

Theorem 1. Let G be the path diagram for a SEM over a set
of variables V. If X ∈ V and Y ∈ V are d-separated given
a set Z ⊂ V in the path diagram, G, then σXY.Z = ρXY.Z =

βXY.Z = βYX.Z = 0.

If X and Y are d-connected given Z then σXY.Z is generally
not equal to zero but may equal zero for particular parame-
terizations. For example, it is possible that the values of the
coefficients are such that the unblocked paths between X and
Y perfectly cancel one another.

We use the diagram depicted in Figure 5 as an example to
illustrate the rules of d-separation. In this example, F is d-
separated from E by A and C. However, C is not d-separated
from E by A and D since conditioning on D opens the col-
lider C → D ← B. Finally C is d-separated from E by
conditioning on A, D, and B.

To illustrate the power and applicability of d-separation,
we pose and answer two questions regarding regression on
the model depicted in Figure 5.

Figure 8. The fact that M d-separates X from Y implies
βYX.M = 0

(i) Suppose we regress B on all other variables,

B = βE · E + βD · D + βA · A + βC ·C + βF · F + εB,

which regression coefficients will be 0?

We might naively expect that all regression coefficients
associated with variables that are not connected to B,
βA, βC , and βF , will vanish. However, D and E are
colliders so regressing on them opens the path to A and
C. Therefore, the only vanishing regression coefficient
is βF .

(ii) Suppose we regress E on A and B. Which variable can
be added to the regression without changing the coeffi-
cient of B?

Since F and C are d-separated from B given A they can
be added to the regression without changing the coeffi-
cient of B. However, adding D is liable to change the
regression coefficient of B. Equivalent regressor sets
will be discussed in more detail in a later section.

Some SEM researchers regard the resilience and stability
of regression coefficients to additional regressors to be a sign
of robustness9. As can be seen from the above example, sen-
sitivity to adding regressors has little to do with misspecifi-
cation; whether or not a regression coefficient changes when
regressors are added is dependent on the structure of the data-
generating model.

To emphasize this point, we demonstrate an extreme case
of sensitivity in a well-specified model. Those familiar with
the concept of exogeneity will recognize that, in Figure 8, X
is uncorrelated with the error term of Y . As a result, simply

9According to Lu and White (2014), “A common exercise in
empirical studies is a ‘robustness check,’ where the researcher ex-
amines how certain ‘core’ regression coefficient estimates behave
when the regression specification is modified by adding or remov-
ing regressors.” “Of the 98 papers published in The American Eco-
nomic Review during 2009, 76 involve some data analysis. Of
these, 23 perform a robustness check along the lines just described,
using a variety of estimators.” In a more recent survey of non-
experimental empirical work, Oster (2013) finds that 75% of 2012
papers published in The American Economic Review, Journal of Po-
litical Economy, and Quarterly Journal of Economics explored the
sensitivity of results to varying control sets. Since this practice is
conducted to help diagnose misspecfication, the answer to Question
5 is essential for discerning whether an altered coefficient indicates
misspecification or not.
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regressing Y on X will give an unbiased estimate of the total
effect of X on Y . However, if we add the mediator, M, to the
regression then the coefficient for X, βYX.M , vanishes.

D-separation formalizes the intuition that paths carry as-
sociational information between variables and that this flow
of information can be blocked by conditioning. This intuition
drives many of the results in identification, model testing,
and other problems that will be discussed in subsequent sec-
tions, making d-separation an essential component of graph-
ical modeling.

We conclude this section by noting that d-separation im-
plies vanishing partial correlation in both recursive and non-
recursive linear models (Spirtes, 1995). Further, all vanish-
ing partial correlations implied by a SEM can be obtained us-
ing d-separation (Pearl, 2000). Finally, in models with inde-
pendent error terms, these vanishing partial correlations rep-
resent all of the model’s testable implications (Pearl, 2000).

Identification

A model parameter is identified if it is uniquely deter-
mined from the covariance matrix. If every parameter in the
model is identified then the model is said to be identified. If
there is at least one unidentified parameter than the model
is not identified or unidentified10. For example, consider the
model represented by Figure 4a. Using Wright’s equations
we obtain the following equalities:

σXY = a + bc (18)
σZX = b (19)
σZY = c + ba (20)

As a result, b is uniquely identified with b = σZX . Now, sub-
stituting σZX for b into the other two equations we obtain:

σXY = a + σZXc (21)
σZY = c + σZXa (22)

Both a and c are identified with a = σXY − σZXσZY and
c = σZY − σZXσXY . We see that all model parameters have
unique solutions in terms of the covariance matrix, and hence
the model is identified.

In contrast, the model depicted in Figure 9 is not iden-
tified. Using Wright’s rules we obtain a single equation:
a + CXY = σXY . Since there are infinite values for a and
CXY that satisfy this equation, neither parameter is identified
and the model is not identified.

Many SEM researchers identify structural models by sub-
mitting the specification and data to an SEM program, which
attempts to minimize a fitting function. If there is difficulty
in this computation, the program warns that the model may
not be identified. While convenient, there are disadvantages

Figure 9. A diagram representing an unidentified model

to using typical SEM software to determine model identifia-
bility. Kenny and Milan (2011) list the following drawbacks:

(i) If poor starting values are chosen, the program could
mistakenly conclude the model is not identified when
in fact it may be identified.

(ii) The program is not very helpful in indicating which pa-
rameters are not identified.

(iii) Most importantly, the program only gives an answer
after the researcher has taken the time to collect data.

We add two additional drawbacks to this list:

(iv) If poor starting values are chosen, the program may exit
with parameter values at a local minimum of the fitting
function rather than the global minimum, giving incor-
rect values to the parameters.

(v) If even one coefficient is not identifiable, most soft-
ware11 are unable to identify any of the path coeffi-
cients.

In this section, we give graphical criteria that allows the
modeler to determine the identifiability of individual param-
eters from mere inspection of the path diagram. Further, our
criteria also give the values of the identified parameters in
terms of the entries of the covariance matrix. While these
methods are not complete in the sense that they may not be
able to identify every coefficient that is identifiable, they sub-
sume the identifiability rules in the existing SEM literature,
including the well known recursive and null rules (Bollen,
1989) and the regression rule (Kenny and Milan, 2011).

A Simple Criterion for Identifying Individual Coefficients

In Figure 4a, Z is a common cause of both X and Y and is
often called a confounder. In epidemiology and other areas,
it is well known that, in order to estimate α using regres-
sion, we must “adjust for” Z by including it in the regression
equation. However, common causes are not always available

10Many authors also use the term “under-identified”. This term
can be confusing because it suggests models that are not identifiable
have no testable implications. This is not the case.

11According to Kenny and Milan (2011), AMOS is the only pro-
gram that attempts to identify parameters when the model is under-
identified.
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(a) (b)

(c)

Figure 10. Diagrams illustrating identification by the single-
door criterion (a) α is identified by adjusting for Z or W (b)
The graph Gα used in the identification of α (c) α is identified
by adjusting for Z (or Z and W) but not W alone

for measurement or adjustment. Instead, proxies are often
used. For instance, in Figure 10a, W might well serve to re-
place Z in the adjustment and, thus, deconfound the relation-
ship between X and Y . The question arises, how can we, in
general, determine whether a set of variables is adequate for
adjustment when attempting to identify a given coefficient?
In other words, when would the regression coefficient of X in
the regression of Y on X and Z be equal to the path coefficient
from X to Y? The following criterion, called single-door, al-
lows the modeler to answer this question by inspection of the
path diagram.

Theorem 2. (Pearl, 2000) (Single-door Criterion) Let G be
any recursive causal graph in which α is the path coefficient
associated with link X → Y, and let Gα denote the diagram
that results when X → Y is deleted from G. The coefficient α
is identifiable if there exists a set of variables Z such that (i)
Z contains no descendant of Y and (ii) Z d-separates X from
Y in Gα. If Z satisfies these two conditions, then α is equal to
the regression coefficient βYX.Z . Conversely, if Z does not sat-
isfy these conditions, then βYX.Z is not a consistent estimand
of α (except in rare instances of measure zero).

In Figure 10a, we see that Z blocks the spurious path
X ← Z → W → Y and X is d-separated from Y by Z in
Figure 10b. Therefore, α = βYX.Z . This is to be expected
since Z is a common cause of X and Y . Theorem 2 tells
us, however, that W can also be used for adjustment since
W also d-separates X from Y in Figure 10b, and we obtain
α = βYX.W . Moreover, we will see in a subsequent section

(a)

(b)

Figure 11. Example showing that adjusting for a descendant
of Y induces bias in the estimation of α

that the choice of W is superior to that of Z in terms of esti-
mation power. Consider, however, Figure 10c. Z satisfies the
single-door criterion but W does not. Being a collider, W un-
blocks the spurious path, X ← Z → W ↔ Y , in violation of
Theorem 2, leading to bias if adjusted for12. In conclusion, α
is equal to βYX.Z in Figures 10a and 10c. However, α is equal
to βYX.W in Figure 10a only.

It is well known that estimating α using regression re-
quires that X be uncorrelated with the error term of Y . Notice
that the single-door criterion gives the graphical conditions
for when conditioning on a set Z renders X and the error term
of Y uncorrelated. Whenever X is d-separated from Y when
the edge X → Y is removed then X must also be d-separated
from the error term of Y in the original graph since Y acts as
a collider. For example, in Figure 11b, X is d-separated from
UY and X is d-separated from Y when X → Y is removed.

The intuition for the requirement that Z not be a descen-
dant of Y is depicted in Figures 11a and 11b. We typically do
not display the error terms, which can be understood as latent
causes. In Figure 11b, we show the error terms explicitly. It
should now be clear that Y is a collider and conditioning on Z
will create spurious correlation between X, uY , and Y leading
to bias if adjusted for.

No matter how complex the model, the given single-door
criterion gives us a quick and reliable criterion, sufficient for
identification of a structural parameter using regression. It
allows us to choose a variety of conditioning sets using con-
siderations of estimation power, sample variability, cost of
measurement and more. Further, it is an important tool that
plays a role in the identification of parameters in more elab-
orate models.
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(a)

(b)

Figure 12. (a) Z qualifies as an instrumental variable (b) Z is
a conditional instrument (given W)

(a) (b)

Figure 13. Diagrams illustrating instrumental sets

Instrumental Variables

It is well known that an instrumental variable, Z, can be
used to identify a path coefficient, α, even when there is un-
observed confounding between X and Y , as in Figure 12a.
The following is a standard definition of an instrumental vari-
able, adapted from Wikipedia (2014):

Definition 1. A variable Z qualifies as an instrumental vari-
able for a coefficient from X to Y if

(i) Z is correlated with X

(ii) Z is uncorrelated with the error term of Y

Explanation typically stops here and the modeler has to
determine judgmentally whether condition (ii) is satisfied in
a complex model containing multiple equations and error
terms. The major obstacles in such judgment are:

(i) To understand what is meant by the “the error term” of
Y within a system of many equations.

(ii) To judge whether Z is uncorrelated with that “error
term” within a system of correlated errors.

As a result, instrumental variables are often incorrectly de-
termined. In this section, we show how to utilize the path
diagram to determine by inspection whether a variable is an
instrument. Bollen and Bauer (2004) called such variables
“model-implied” instruments and used algebraic methods for
their identification. Kyono (2010), on the other hand, used
graphical methods similar to those described here13. Finally,
we also show how to find conditional instrumental variables
and instrumental sets (Brito and Pearl, 2002a), allowing us
to identify α in Figure 12b and both γ and α in Figure 13a.

Theorem 3. A variable Z qualifies as an instrumental vari-
able for coefficient α from X to Y if

(i) Z is d-separated from Y in the subgraph Gα obtained
by removing edge X → Y from G and

(ii) Z is not d-separated from X in Gα

When Z is an instrument for α then α =
βZY
βZX

.

Z in Figure 12a is an example of an instrumental variable
since Z is d-separated from Y but still d-connected to X when
we remove the edge associated with α. Using Wright’s path
tracing rules, it is easy to see that ρZY

ρZX
=

γα
γ

= α.
Theorem 3 clarifies the circumstances for which Z quali-

fies as an instrument. Even if the underlying structure is not
clear to the modeler, he or she is able to consider competing
explanations for the data generating process and determine
immediately which of them qualifies Z as an instrument.

In Figure 12b, Z is not an instrument because it is d-
connected to Y even after deleting the edge from X to Y .
However, we can condition on W to block the spurious path
from Z to Y through W and obtain α =

βZY.W
βZX.W

. Thus, we see
that in some cases, variables may become instrumental vari-
ables by conditioning on other variables.

Theorem 4. (Brito and Pearl, 2002a) A variable Z is a con-
ditional instrumental variable given a set W for coefficient α
from X to Y if

(i) W contains only non-descendants of Y

(ii) W d-separates Z from Y in the subgraph Gα obtained
by removing edge X → Y from G

(iii) W does not d-separate Z from X in Gα

When Z is a conditional instrument for α given W then
α =

βZY.W
βZX.W

.

12 It is for this reason that the direct effect cannot be defined
by conditioning on a mediator but must instead invoke intervention
(Pearl, 2013, 2014b), as we did earlier.

13Kyono (2010) also released software that implements d-
separation, the single-door criterion, graphical techniques for iden-
tifying instruments, and more. Much of this functionality is also
implemented in DAGitty (Textor et al., 2011), which includes a con-
venient GUI for manipulating graphs.
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Additionally, it may be possible to use multiple variables
as an instrumental set in order to identify parameters when,
individually, none of the variables qualify as an instrument.
In Figure 13a, neither Z1 nor Z2 are conditional instruments
for the identification of γ or α. However, using them simul-
taneously allows the identification of both coefficients. Us-
ing Wright’s equations, as we did in the single instrumental
variable case, we have:

σZ1Y = σZ1X1γ + σZ1X2α

σZ2Y = σZ2X1γ + σZ2X2α

As a result, we are able to obtain two linearly independent
equations with two unknowns and solve for γ and α. We call
a set of variables that enables a solution in this manner an
instrumental set.

Definition 2. {Z1,Z2, ...,Zn} is an instrumental set for the co-
efficients α1, ..., αn associated with edges X1 → Y, ..., Xn → Y
if the following conditions are satisfied.

(i) Let Ḡ be the graph obtained from G by deleting edges
X1 → Y, ..., Xn → Y. Then, Zi is d-separated from Y in
Ḡ for all i ∈ {1, 2, ..., n}.

(ii) There exists paths p1, p2, ..., pn such that pi is a path
from Zi to Y that includes edge Xi → Y and if paths pi

and p j have a common variable V, then either

(a) both pi[Zi...V] and p j[V...Y] point to V or

(b) both p j[Z j...V] and pi[V...Y] point to V.

for all i, j ∈ {1, 2, ..., n} and i , j.

The second condition in Definition 2 can be understood
as requiring that two paths pi and p j cannot be broken at a
common variable V and have their pieces swapped and rear-
ranged to form two unblocked paths. One of the rearranged
paths must contain a collider. This condition is illustrated in
the example below.

Theorem 5. Let {Z1,Z2, ...,Zn} be an instrumental set for the
coefficients α1, ..., αn associated with edges

X1 → Y, ..., Xn → Y.

Then the linear equations,

σZ1Y = σZ1X1α1 + σZ1X2α2 + ... + σZ1Xnαn

σZ2Y = σZ2X1α1 + σZ2X2α2 + ... + σZ2Xnαn

...

σZnY = σZnX1α1 + σZnX2α2 + ... + σZnXnαn,

are linearly independent for almost all parameterizations of
the model.

(a) (b)

Figure 14. (a) Z1 and Z2 qualify as an instrumental set (b) Z1
and Z2 do not qualify as an instrumental set

Like Z1 and Z2 in Figure 13a, Z1 and Z2 in Figure 14a qual-
ify as an instrumental set. Z1 and Z2 are d-separated from Y in
the graph Ḡ, where the edges X1 → Y and X2 → Y have been
removed. Additionally, we have p1 = Z1 → Z2 → X1 → Y
and p2 = Z2 ↔ X2 → Y . Using Wright’s rules we obtain

σZ1Y = abγ = σZ1X1γ + 0 · α = σZ1X1γ + σZ1X2α and
σZ2Y = bγ + cα = σZ2X1γ + σZ2X2α,

in accordance with Theorem 5. Solving the equations identi-
fies α and γ giving:

γ =
σZ1Y

σZ1X1

α =
σZ2Y

σZX2

−
σZ2X1σZ1Y

σZ2X2σZ1X1

Notice that p1 and p2 satisfy the second condition of Def-
inition 2 because in p1, the arrow associated with coefficient,
a, entering the shared node, Z2, is pointing at Z2 while in
p2, the arrow associated with parameter, c, leaving Z2 is also
pointing at the shared node, Z2. As a result, if the paths
p1 and p2 are broken at the common variable, Z2, and their
pieces swapped and rearranged, p1 will become a blocked
path due to the collider at Z2. Algebraically, this means that
σZ1Y lacks the influence of the path Z2 ↔ X2 → Y and,
therefore, does not contain the term acα. σZ2Y , on the other
hand, contains the term cα associated with the path. It is in
this way that condition (ii) of Definition 2 allows pi and p j

to share a node while still ensuring linear independence.
In contrast, consider Figure 14b. Here, Z1 and Z2 are not

an instrumental set for α and γ. Every path from Z2 to Y is
a “sub-path” of a path from Z1 to Y , which, using Wright’s
rules, implies that the equation for σZ1Y is not linearly inde-
pendent of σZ1Y with respect to Y’s coefficients:

σZ1Y = bγ + cα

σZ2Y = abγ + acα = a(bγ + cα) = aσZ1Y
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In some cases, condition (i) of Definition 2 can be sat-
isfied by conditioning on a set W. Brito and Pearl (2002a)
show how conditioning can be used to obtain a conditional
instrumental set. Due to the more complex nature of apply-
ing Wright’s rules over partial correlations, we do not cover
conditional instrumental sets in this paper and instead refer
the reader to (Brito and Pearl, 2002a).

C-Component Decomposition

In this subsection, we show that the question of coeffi-
cient identification can be addressed using smaller and sim-
pler sub-graphs of the original causal graph. Further, in some
cases, the coefficient is not identified using any methods con-
sidered thus far on the original graph but is identified using
those methods on the sub-graph.

A c-component in a causal graph is a maximal set of
nodes such that all nodes are connected to one another by
paths consisting of bidirected arcs. For example, the graph
in Figure 14b consists of three c-components, {X1, X2,Y},
{Z2}, and {Z1}, while the graph depicted in Figure 16 con-
sists of a single c-component. Tian (2005) showed that a
coefficient is identified if and only if it is identified in the
sub-graph consisting of its c-component and the parents of
the c-component.

More formally, a coefficient from X to Y is identified if
and only if it is identified in the sub-model constructed in the
following way:

(i) The sub-model variables consist of the c-component to
which Y belongs, CY , union the parents of all variables
in that c-component.

(ii) The structural equations for the variables in CY are the
same as their structural equations in the original model.

(iii) The structural equations for the parents simply equate
each parent with its error term.

(iv) If the error terms of any two variables in the sub-model
were uncorrelated in the original model then they are
uncorrelated in the sub-model.

For example, the sub-model for the coefficient α from X
to Y in Figure 15a consists of the following equations:

Z = UZ

X = aX + UX

W = bW + UW

V = UV

Y = αX + dV + UY

Additionally, ρUXUY and ρUW UY are unrestricted in their
values. All other error terms are uncorrelated.

It is not clear how to identify the coefficient α depicted
in Figure 15a using any of the methods considered thus far.

(a)

(b)

Figure 15. (a) Example illustrating c-component decomposi-
tion (b) Sub-graph consisting of c-component, {W, X,Y}, and
its parents, Z and V .

However, the sub-graph for the c-component, {W, X,Y}, de-
picted in Figure 15b, shows that α is identified using Z as an
instrument. Therefore, α is identified in the original model.

It is important to note that the covariances in the sub-
model are not necessarily the same as the covariances in
the original model. As a result, the identified expressions
obtained from the sub-model may not apply to the original
model. For example, Figure 15b shows that α =

βZY
βZ X . How-

ever, this is clearly not the case in Figure 15a. The above
method simply tells us that α is identified. It does not give us
the identified expression for α.

Tian (2005) shows how the covariance matrix for the sub-
model can be obtained from the original covariance matrix
thus enabling us to obtain the identified expression for the
parameter in the original model. However, we do not cover
it here.

Advanced Algorithms

In this subsection, we survey advanced algorithms that uti-
lize the path diagram to identify model parameters. The de-
tails of these algorithms are beyond the scope of this paper,
and we instead refer the reader to the relevant literature for
more information.

Instrumental variables and sets demonstrate that algebraic
properties of linear independence translate to graphical prop-
erties in the path diagram that can be used to identify model
coefficients. The G-Criterion algorithm (Brito, 2004; Brito
and Pearl, 2006) expands this notion in order to give a
method for systematically identifying the coefficients of a
recursive SEM.
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Figure 16. A bow-free graph; the absence of a ‘bow’ pattern
assures identification

This algorithm was generalized by Foygel et al. (2012) to
determine identifiability of a greater set of graphs14. Addi-
tionally their criterion, called the half-trek criterion, applies
to both recursive and non-recursive models. The half-trek
algorithm was further generalized by Chen et al. (2014) to
identify more coefficients in under-identified models.

The aforementioned algorithms of Brito (2004), Foygel
et al. (2012), and Chen et al. (2014) identify coefficients by
searching for graphical patterns in the diagram that corre-
spond to linear independence between Wright’s equations.
Tian (2005), Tian (2007), and Tian (2009) approach the prob-
lem differently and give algorithms that identify parameters
by converting the structural equations into orthogonal partial
regression equations.

Finally, do-calculus (Pearl, 2000) and non-parametric al-
gorithms for identifying causal effects (Tian and Pearl, 2003;
Shpitser and Pearl, 2006; Huang and Valtorta, 2006) may
also be applied to parameter identification in linear models.
These methods have been shown to be complete for non-
parametric models (Shpitser and Pearl, 2006; Huang and Val-
torta, 2006) and, if theoretically possible, are able to identify
any expectations of the form E(Y |do(X = x,Z = z), where Z
represents any susbet of variables in the model other than X
and Y . As mentioned in the preliminaries, a coefficient from
X to Y equals ∂

∂x E[Y |do(X = x, S = s), where S represents
all variables in the model other than X and Y .

A Simple Criterion for Model Identification

In order to determine identifiability of the model using the
single-door criterion or instrumental variables, the modeler
must check the identifiability of each path coefficient. In
large and complex models, this process can be tedious. In
this section, we give a simple, sufficient criterion that allows
the modeler to determine immediately whether a recursive
model is identified called the bow-free rule (Brito and Pearl,
2002b; Brito, 2004). We will see that even a model as com-
plicated as Figure 16 can be immediately determined to be
identified using this rule.

A bow-arc is a pair of variables, one of which is a direct
function of the other, whose error terms are correlated. This
is depicted in the path diagram as a parent-child pair that
are also siblings and looks like a bow-arc. In Figure 4b, the
variables X and Y create a bow-arc.

Theorem 6. (Brito and Pearl, 2002b) (Bow-free Rule) Ev-
ery recursive model whose path diagram lacks bow-arcs is
identified.

The bow-free rule is able to identify models that the
single-door criterion is not. In Figure 16, for example, the
coefficient α is not identified using the single-door criterion.
Attempting to block the back-door path, X1 ↔ X2 → Y , by
conditioning on X2 opens the path X1 ↔ Z2 ↔ Y because X2
is a descendant of the collider, Z2. However, because Figure
16 does not contain any bow-arcs it is identified according
to Theorem 6. Finally, since the single-door criterion is un-
able to identify any model that contain bow-arcs15, the bow-
free rule subsumes the single-door criterion when applied to
model identification. (Note that the single-door criterion may
be able to identify some coefficients even when the model as
a whole is not identified. In contrast, the bow-free rule only
addresses the question of model identifiability, not the iden-
tifiability of individual coefficients in unidentified models.)

Total Effects

When the model is not identifiable, modelers typically
consider research with SEMs “impossible” (Kenny and Mi-
lan, 2011) without imposing additional constraints or collect-
ing additional data. However, as should be clear from the
single-door criterion (and is acknowledged by Kenny and
Milan (2011)), it is often possible to identify some of the
model coefficients even when the model as a whole is not
identifiable. Further, we show in this section that it is often
not necessary to identify all coefficients or even coefficients
along a causal path in order to identify the causal effect of
interest16. For example, in Figure 17a, the total effect of X
on Y , ∂

∂x E[Y |do(X = x)], is identified and equal to βYX even
though it is unclear how to identify b, d, or e. The back-
door criterion, given below, is a sufficient condition for the
identification of a total effect.

Theorem 7. (Pearl, 2000) (Back-door Criterion) For any
two variables X and Y in a causal diagram G, the total of
effect of X on Y is identifiable if there exists a set of measure-
ments Z such that

14Foygel et al. (2012) also released an R package implementing
their algorithm called SEMID, which determines whether the entire
model is identifiable given its causal graph.

15To prove this statement, consider any model that contains a
bow-arc from X to Y . There is no way to block the path X ↔ Y and
identify the coefficient from X to Y using the single-door criterion.

16This fact was noted by Marschak (1942) and was dubbed
“Marschak’s Maxim” by Heckman (2000).
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(a)

(b)

Figure 17. Unidentified graphs for which the total effect of
X on Y is identified

(i) no member of Z is a descendant of X; and

(ii) Z d-separates X from Y in the subgraph G
¯
X formed by

deleting from G all arrows emanating from X.

Moreover, if the two conditions are satisfied, then the total
effect of X on Y is given by βYX.Z .

Returning to the example in Figure 17a we see that the
total of effect of X on Y , ∂

∂x E[Y |do(X = x)], is βYX while the
total effect of X on Y in Figure 17b is βYX.Z .

Do-calculus (Pearl, 2000) and the aforementioned non-
parametric algorithms (Tian and Pearl, 2003; Shpitser and
Pearl, 2006; Huang and Valtorta, 2006) can also be used to
identify total effects in linear models.

Model Testing

A crucial step of structural equation modeling is to test the
structural and causal assumptions of the model, ensuring to
the best of our ability that the model specification accurately
reflects the data generating mechanism. The most common
method of testing a linear SEM is a likelihood ratio or chi-
square test that compares the covariance matrix implied by
the model to that of the sample covariance matrix (Bollen,
1989; Shipley, 1997). While this test simultaneously tests all
of the restrictions implied by the model, it relies critically on
our ability to identify the model. Moreover, bad fit does not
provide the modeler with information about which aspect of
the model needs to be revised. Finally, if the model is very
large and complex, it is possible that a global chi-square test

(a) (b)

Figure 18. (a) Example illustrating vanishing partial correla-
tion (b) The skeleton of the model in (a)

will not reject the model even when a crucial testable impli-
cation is violated. Global tests represent summaries of the
overall model-data fit and, as a result, violation of specific
testable implications may be masked (Tomarken and Waller,
2003). In contrast, if the testable implications are enumer-
ated and tested individually, the power of each test is greater
than that of a global test (Bollen and Pearl, 2013; McDon-
ald, 2002), and, in the case of failure, the researcher knows
exactly which constraint was violated. Path diagrams allow
modelers to identify vanishing partial correlations by inspec-
tion, provide a necessary and sufficient condition for equiva-
lence among recursive models with uncorrelated error terms
(often called Markovian models), and permit us to predict
new types of constraints, beyond the vanishing correlation
variety.

Vanishing Correlation Constraints

D-separation allows modelers to predict vanishing partial
correlations simply by inspecting the graph, and in the case
of Markovian models, these vanishing partial correlations
represent all of the constraints implied by the model (Pearl,
2000). For the example depicted in Figure 18a, we obtain
the following vanishing partial correlations: ρV2V3.V1 = 0,
ρV1V4.V2V3 = 0, ρV2V5.V4 = 0, and ρV3V5.V4 = 0. If a constraint,
say ρV2V3.V1 = 0 does not hold in the dataset, we have reason
to believe that the model specification is incorrect and should
reconsider the lack of edge between V2 and V3.

In large and complex graphs, it may be infeasible to list
all conditional independence constraints by inspection. Ad-
ditionally, some constraints obtained using d-separation may
be redundant. Kang and Tian (2009) gave an algorithm that
utilizes the graph to enumerate a set (not necessarily min-
imal) of vanishing partial correlations that imply all others
for recursive models with or without correlated error terms.

Lastly, we note that d-separation implies vanishing partial
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correlation even in non-linear models.

Equivalent Models

Since vanishing partial correlations represent all of the
constraints that Markovian SEMs impose on the data, two
models are observationally indistinguishable if they share the
same set of vanishing partial correlations. In other words,
Markovian models that share the same set of vanishing par-
tial correlations cannot be distinguished using data. In this
case, we say that the models are covariance equivalent since
every covariance matrix generated by one model (through
some choice of parameters) can also be generated by the
other. The skeleton of a graph, used in the following theo-
rem, is the undirected graph obtained by replacing all arrows
with undirected edges. For example, the skeleton for Figure
18a is Figure 18b.

Theorem 8. (Verma and Pearl, 1990) Two Markovian
linear-normal models are covariance equivalent if and only
if they entail the same sets of zero partial correlations. More-
over, two such models are covariance equivalent if and only
if their corresponding graphs have the same skeletons and
the same sets of v-structures, that is, two converging arrows
whose tails are not connected by an arrow.

The first part of Theorem 8 defines the testable impli-
cations of linear Markovian models. It states that, in non-
experimental studies, Markovian SEMs cannot be tested for
any feature other than those vanishing partial correlations
that the d-separation test imposes. It also provides a sim-
ple test for equivalence that requires merely a comparison of
corresponding edges and their directionalities (Pearl, 2000).

The graphs in Figures 19b, 19c, and 19d are equivalent
because they are all compatible with the graph in Figure 19a,
which displays the skeleton and v-structures. Note that we
cannot reverse the edge from V4 to V5 since doing so would
generate a new v-structure, V2 → V4 ← V5.

The graphical criterion given in Theorem 8 is necessary
and sufficient for equivalence between Markovian models.
It is a necessary condition for equivalence between non-
recursive models and models with correlated error terms
since d-separation in the graph implies vanishing partial cor-
relation in the covariance matrix. (Models that are either
non-recursive or have correlated error terms are called non-
Markovian. Non-Markovian models that are recursive are
called semi-Markovian.) In contrast, the more prevalent re-
placement criterion (Lee and Hershberger, 1990) is not al-
ways valid17. Pearl (2012) gave the following example de-
picted in Figure 20. According to the replacement crite-
rion, we can replace the arrow X → Y with a bidirected
edge X ↔ Y and obtain a covariance equivalent model when
all predictors (Z) of the effect variable (Y) are the same as
those for the source variable (X). Unfortunately, the post-
replacement model imposes the constraint, ρWZ.Y = 0, which

(a)

(b)

(c)

(d)

Figure 19. Models (b), (c), and (d) are equivalent. The ar-
rows in (a) cannot be reversed.

Figure 20. Counterexample to the standard Replacement
Rule; The arrow X → Y cannot be replaced.

17The replacement rule violates the transitivity of equivalence
(Hershberger, 2006), yet it is still used in most of the SEM literature
(Mulaik, 2009; Williams, 2011, pp. 247-260).
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Figure 21. A graph illustrating a Verma constraint

is not imposed by the original model. This can be seen from
the fact that, conditioned on Y , the path Z → Y ← X ↔ W
is unblocked and becomes blocked if replaced by Z → Y ↔
X ↔ W. The same applies to path Z → X ↔ W, since Y
would cease to be a descendant of X.

Testable Implications in Semi-Markovian Models

In the case of non-Markovian models, additional testable
implications may be present, which are not revealed by d-
separation. First noted by Verma and Pearl (1990), these con-
straints, often called Verma constraints in the non-parametric
literature, impose invariance rather than conditional indepen-
dence restrictions. Algorithms that enumerate certain types
of Verma constraints for semi-Markovian, non-parameteric
SEMs are given by Tian and Pearl (2002) and Shpitser and
Pearl (2008).

In Figure 21, for example, one can show that
regardless of the structural equations, the quantity∑

V2
P(V4|V3,V2,V1)P(V2|V1) is not a function of V1.

Testable implications can also be obtained by overidenti-
fying model parameters18. In some cases, these constraints
will be conditional independence constraints while in others
they are not. The Verma constraint shown in Figure 21 is
obtainable using overidentification. Using the single-door
criterion (Pearl, 2000) and Wright’s path-tracing rules, we
identify two expressions for c in terms of the covariance ma-
trix:

c = β43.2 =
σ43.2

1 − σ2
32

, and

c =
abc
ab

=
σ41

σ31

Equating the two expressions, we obtain the following con-
straint:

σ43.2

1 − σ2
32

=
σ41

σ21σ32
.

This constraint is equivalent to the one obtained using the
non-parametric methods of Tian and Pearl (2002) and Sh-
pitser and Pearl (2008). An algorithm for systematically dis-
covering constraints by overidentifying coefficients using the
causal graph is given by Chen et. al. (2014). As yet, testable
implications in semi-Markovian and non-Markovian models
have not been fully characterized, and subsequently, we do
not have a necessary and sufficient condition for equivalence
between semi-Markovian or non-Markovian models.

Learning Structure from Data

The question naturally arises whether one can learn the
structure of the data generating model from its data. In other
words, rather than specify the structural equation model and
use the data to test it, can one use the data to discover aspects
of the model’s structure? There are a number of algorithms
that search the data for vanishing partial correlations to ac-
complish this goal for recursive models. See (Cooper, 1999),
(Pearl, 2000, ch. 2), and (Spirtes et al., 2000, chs. 5 and 6)19

for examples. For non-recursive models, Hoover and Phi-
romswad (2013) make use of overidentifying constraints re-
sulting from both multiple instruments and vanishing partial
correlations to uncover aspects of the model’s structure.

Additional Applications of Graphical Models

Equivalent Regressor Sets and Minimal Regressor Sets

In some cases, we may wish to know whether two sets,
when used for adjustment, have the same asymptotic bias.
For example, an investigator may wish to assess, prior to tak-
ing any measurement, whether two candidate sets of covari-
ates, differing substantially in dimensionality, measurement
error, cost or sample variability are equally valuable in their
bias-reduction potential (Pearl and Paz, 2010). This problem
pertains to prediction tasks as well. A researcher wishing to
predict the value of some variable given a set of observations
may wonder whether another set of observations is a valid
substitute.

In the linear case, the problem can be stated in the fol-
lowing way. Under what conditions would replacing Z =

{Z1, ...,Zn} with W = {W1, ...,Wn} yield the same value for α
in the regression Y = αX+β1Z1+...+βnZn+εn, or equivalently,
when does βYX.Z = βYX.W?

Here we adapt Theorem 3 in (Pearl and Paz, 2010) for
linear SEMs.

Theorem 9. βYX.Z = βYX.W if one of the following holds:

(i) Z and W satisfy the back-door criterion for the total
effect of X on Y,

(ii) Z ∩W separates X from all other elements of Z and W

If βYX.Z = βYX.W then we say that Z and W are confounding
equivalent, or c-equivalent for short.

18Parameters are often described as overidentified when they
have “more than one solution” (MacCallum, 1995) or are “deter-
mined from [the covariance matrix] in different ways” (Jöreskog
et al., 1979). However, expressing a parameter in terms of the co-
variance matrix in more than one way does not necessarily mean
that equating the two expressions actually constrains the covariance
matrix. See (Pearl, 2004) for a formal definition of parameter overi-
dentification.

19Software implementing these algorithms is available from the
TETRAD Project (http://www.phil.cmu.edu/projects/tetrad/).
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Figure 22. {V1,W2} and {V2,W1} are c-equivalent but not
{W1} and {W2}

Figure 23. Graph illustrating preference to Z1 over Z2;
Var[βYX.WZ2 ] ≤ Var[βYX.WZ1 ]

Consider the graph depicted in Figure 22. Let Z =

{V1,W2} and W = {W1,V2}. Since both Z and W satisfy the
back-door criterion they are c-equivalent and βYX.Z = βYX.W .
Now consider Z = {V1} and W = {V1,V2}. Z and W no longer
satisfy the back-door criterion. However, since Z ∩W = {V1}

separates X from (Z ∪ W) \ Z ∩ W = {V2}, Z and W are
c-equivalent and βYX.Z = βYX.W .

C-equivalence can also be used to find a minimal sub-
set of regressors needed for estimating a given partial re-
gression coefficient. Consider a regression equation, Y =

αX + β1Z1 + ... + βnZn. What is the smallest subset of
Z = {Z1, ...,Zn} that yields the same value for the regression
coefficient, α? This subset is unique and can be found simply
by removing elements from Z one at a time such that every
removed node is d-separated from X given the remaining el-
ements of Z.

Variance Minimization

In some cases, there may be multiple sets that satisfy the
back-door criterion when identifying a total effect. While
each set provides an unbiased estimate of the causal effect,
the estimates may differ in their asymptotic variance. As
a result, some sets may be preferable to others. The fol-
lowing theorem is adapted from Theorem 5 of (Kuroki and
Miyakawa, 2003):

Theorem 10. Suppose that sets {W,Z1} and {W,Z2} satisfy
the back-door criterion relative to (X,Y) in a linear-normal
SEM. If {W,Z1} d-separates X from Z2 and {X,Z2,W} d-

separates Y from Z1, then Var[βYX.WZ2 ] ≤ Var[βYX.WZ1 ]. In
other words, the asymptotic variance of the effect estimated
when controlling for {W,Z2} is less than or equal to the one
estimated by controlling for {W,Z1}.

For the model depicted by Figure 23, both {W,Z1} and
{W,Z2} are back-door admissible sets for estimating the to-
tal effect of X on Y . However, {W,Z2} is preferable since
{W,Z1} d-separates X from Z2 while {X,Z2,W} d-separates Y
from Z1. The intuition here is that Z2 is ‘closer’ to Y hence
more effective in reducing variations in Y due to uncontrolled
factors. Similar results were derived without graphs by Hahn
(2004).

Counterfactuals in Linear Models

We have seen in the subsection on causal effects how a
SEM can be used to predict the effect of actions and policies
that have never been implemented before. The action of set-
ting a variable, X, to value x, is simulated by replacing the
structural equation for X with the equation X = x. In this
section, we show further that SEMs can be used to answer
counterfactual queries. A counterfactual query asks, “Given
that we observe E = e for a given individual, what would we
expect the value of B for that individual to be if A had been
a?” For example, given that Joe’s salary is s, what would his
salary be had he had five more years of education? This ex-
pectation is denoted E[BA=a|E = e]. The E = e after the con-
ditioning bar represents the observed evidence while the sub-
script A = a represents a hypothetical condition specified by
the counterfactual sentence. Structural equation models are
able to answer counterfactual queries because each equation
represents an invariant mechanism by which a variable ob-
tains its values. If we identify these mechanisms we should
also be able to predict what values would be obtained had
circumstances been different.

The following model, depicted in Figure 24a, represents
an “encouragement design” (Holland, 1988; Pearl, 2014b)
where X represents the amount of time a student spends in an
after-school remedial program, H the amount of homework a
student does, and Y a student’s score on the exam. The value
of each variable is given as the number of standard deviations
above the mean so that the model is standardized to mean 0
and variance 1. For example, if Y = 1 then the student scored
1 standard deviation above the mean on his or her exam.

Model 4.

X = UX

H = a · X + UH

Y = b · X + c · H + UY

σUiU j = 0 for all i, j ∈ {X,H,Y}

We also give the values for the coefficients (which can be
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(a)

(b)

Figure 24. Answering counterfactual question by setting H
equal to 2

estimated from population data):

a = 0.5
b = 0.7
c = 0.4

Let us consider a student named Joe, for whom we mea-
sure X = 0.5,H = 1,Y = 1.5. Suppose we wish to answer
the following query: What would Joe’s score have been had
he doubled his study time?

In a linear SEM, the value of each variable in the model is
determined by the coefficients and U variables, and the latter
accounts for all variations among individuals. As a result, we
can use the evidence X = 0.5,H = 1,Y = 1.5 to determine
the values of the U variables associated with Joe. These val-
ues are invariant to external variations, such as those which
might cause Joe to double his homework.

In this case, we are able to obtain the specific characteris-
tics of Joe from the evidence:

UX = 0.5,
UH = 1 − 0.5 · 0.5 = 0.75, and
UY = 1.5 − 0.7 · 0.5 − 0.4 · 1 = 0.75.

Next, we simulate the action of doubling Joe’s study time
by replacing the structural equation for H with the constant
H = 2. The modified model is depicted in Figure 24b. Fi-
nally, we compute the value of Y in our modified model using
the updated U values giving:

YH=2(UX = 0.5,UH = 0.75,UY = 0.75)
= 0.5 · 0.7 + 2.0 · 0.4 + 0.75
= 1.90

We thus conclude that Joe’s new score, predicated on dou-
bling his homework, would have been 1.9 instead of 1.5.

In summary, we first applied the evidence X = 0.5,H =

1,Y = 1.5 to update the values for the U variables or their
probabilities. We then simulate an external intervention to
force the condition H = 2 by replacing the structural equa-
tion H = aX + UH with the equation H = 2. Finally, we
computed the value of Y given the structural equations and
the updated U values.

The following three steps generalize the above procedure
for non-linear systems and arbitrary counterfactuals of the
form, E[BA=a|E = e] (Pearl, 2000):

(i) Abduction - Update P[U] by the evidence to obtain
P[U |E = e]

(ii) Action - Modify the model, M, by removing the struc-
tural equations for the variables in A and replacing them
with the appropriate equalities to obtain the modified
model, MA.

(iii) Prediction - Use the modified model, MA, and the up-
dated probabilities over the U variables, P[U |E = e], to
compute the expectation of B, the consequence of the
counterfactual.

Notice that the above procedure applies not only to retro-
spective counterfactual queries (queries of the form “What
would have been the value of Y had X been x?”) but
also prospective counterfactual queries (queries of the form
“What will the value of Y be if X is set to x by interven-
tion?”). For example, suppose we wish to estimate the effect
on test score provided by a school policy that sends students
who are lazy on their homework (S ≤ −1) to attend the af-
terschool program for X = 1. The expected value of this
quantity is denoted E[YX=1|S ≤ −1] and can, in principle,
be computed using the above three step method. Counter-
factual reasoning and the above procedure are necessary for
estimating the effect of actions and policies on subsets of the
population characterized by features that, in themselves, are
policy dependent (e.g. S ≤ −1).

In non-parametric models, counterfactual quantities of
the form E[BA=a|E = e] may not be identifiable, even if
we have the luxury of running experiments (Pearl, 2009).
In linear models, however, any counterfactual of the form,
E[YX=x|E = e], with e an arbitrary evidence, is identified
whenever E[Y |do(X = x)] is identified (Pearl, 2009, p. 389).
As a result, if the data generating mechanism is linear, any
counterfactual quantity is identifiable whenever the model
parameters are identifiable20.

Theorem 11. (Pearl, 2009) Let T be the slope of the total
effect of X on Y, ∂

∂x E[Y |do(X = x)], then E[YX=x|E = e] =

E[Y |E = e] + T (x − E[X|E = e]).

20Any expectation of the form E[Y |do(X = x)] can, of course, be
identified experimentally by randomizing the value of X and com-
puting the average of Y over the population for which X = x.
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Figure 25. Graph corresponding to Model 5 in text

This provides an intuitive interpretation of counterfactu-
als in linear models: E[YX=x|E = e] can be computed by
first calculating the best estimate of Y conditioned on the ev-
idence e, E[Y |e], and then adding to it whatever change is ex-
pected in Y when X is shifted from its current best estimate,
E[X|E = e], to its hypothetical value, x.

Methodologically, the importance of Theorem 11 lies in
enabling researchers to answer hypothetical questions about
individuals (or set of individuals) from population data. The
ramifications of this feature in legal contexts and political
science are explored, respectively, in (Pearl, 2009, ch. 9) and
Yamamoto (2012).

Example Problems

In this section, we apply graphical tools to solve non-
trivial problems that SEM researchers are likely to encounter.

Model 5.

Y = aW3 + bZ3 + cW2 + U X = t1W1 + t2Z3 + U′

W3 = c3X + U′3 W1 = a′1Z1 + U′1
Z3 = a3Z1 + b3Z2 + U3 Z1 = U1

W2 = c2Z2 + U′2 Z2 = U2

Given the model depicted above, we pose the following
questions:

(i) Identify three testable implications of this model

(ii) Identify a testable implication assuming that only X, Y ,
W3, and Z3 are observed

(iii) Suppose X, Y , and W3 are the only variables observed.
Which parameters can be identified from the data?

(iv) If we regress Z1 on all other variables in the model,
which regression coefficient will be zero?

(v) The model in Figure 25 implies that certain regression
coefficients will remain invariant when an additional
variable is added as a regressor. Identify five such co-
efficients with their added regressors.

Solutions:

Figure 26. Graph representing Model 5 when Z1, W1, Z2, and
W2 are unobserved

(i) Figure 25 shows that {W1,Z3,W2,W3} blocks all paths
between X and Y . Therefore, σXY.W1Z3W2W3 = 0. Like-
wise, {W1,Z3} blocks all paths between X and Z1 and
{Z3,W2} blocks all paths between Y and Z2. As a result,
σXZ1.W1,Z3 = 0 and σYZ2.Z3W2 = 0.

(ii) When X, Y , W3, and Z3 are latent variables, Model 5 is
equivalent to the graph in Figure 26. We see that W3 is
d-separated from Z3 by X. Therefore, σW3Z3.X = 0.

(iii) c3 is identified using the single-door criterion. When
we remove the edge X → W3, X is d-separated from
W3. Likewise, a can be identified using the single-door
criterion. When we remove the edge W3 → Y , W3 is
d-separated from Y by X. Therefore, c3 = βW3X and
a = βYW3.X .

(iv) The coefficients for X, W3, W2, and Y will be zero since
they are d-separated from Z1 by {W1,Z3,Z2}. The coef-
ficient for Z2 may not be zero since Z3 is a collider.

(v) (a) βYX.W1Z3 = βYX.W1,Z3Z1 since both {W1,Z3} and
{W1,Z3,Z1} satisfy the back-door criterion for the
total effect of X on Y .

(b) βYW3.X = βYW3.XW1 since {X} and {X,W1} satisfy
the back-door criterion for the total effect of W3
on Y .

(c) βZ2Z1 = βZ2Z1.W1 since Z2 is d-separated from Z1 by
∅ and W1. As a result, both regression coefficients
vanish.

(d) βYW2.Z2 = βYW2.Z2Z3Z1 since both {Z2} and
{Z2,Z3,Z1} satisfy the back-door criterion for the
total effect of W2 on Y .

(e) βW1Z1 = βW1Z1.Z3 since both ∅ and {Z3} satisfy the
back-door criterion for the total effect of Z1 on
W1.

Conclusion

The benefit of graphs are usually attributed to their abil-
ity to represent theoretical assumptions visibly and trans-
parently, by abstracting away unnecessary algebraic details.
What is not generally recognized is graphs’ ability to serve
as efficient computational engines. This paper demonstrates
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how graphs can compute the testable implications of model-
ing assumptions and how they can combine those assumption
with data and generate quantitative answers to both statistical
and causal questions about populations and individuals.

We showed that a few basic principles of reading van-
ishing partial correlations from graphs can give rise to new
methods of model testing and identification that far exceed
traditional methods of SEM. The construction of equivalent
models and characterization of instrumental variables follow
directly from these principles. Auxiliary techniques of coun-
terfactual analysis further permit researchers to quantify indi-
vidual behavior from population data and to reason backward
into alternative courses of action.

Graphical representations have become an indispensable
second language in the health sciences (Glymour and Green-
land, 2008; Lange et al., 2012) and are making their way to-
wards the social and behavioral sciences (Chalak and White,
2011; Lee, 2012; Morgan and Winship, 2007). We hope that
the potential of these tools will be recognized by SEM re-
searchers as well.
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