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Abstract

Motivated by the possibility of engineering nanostructured surfaces for efficient nano-

thermophotovoltaic power generation, we investigate whether and how Stein’s phenomenon

may effectively be incorporated into nanoparticle characterization based on scattering data.

The statistical innovation in our approach is to employ a form of nonlinear shrinkage in the
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compound estimation of scattering profiles and their derivatives, such that the estimation error

is reduced without destroying the self-consistency property of compound estimation (i.e., that

the estimated derivatives are precisely the derivatives of the estimated scattering profiles). Our

numerical experiments found that the estimation error may be reduced by up to 7%, 25%, and

31% respectively in estimating the scattering profiles, their first derivatives, and their second

derivatives. Surprisingly, the reduced estimation error does not translate into demonstrably

superior correct classification rates for nanoparticle configurations. Speculations on the find-

ings and promising avenues for future research are discussed.

Key words: compound estimation, local regression, nano-thermophotovoltaic power genera-

tion, nonparametric regression, self-consistency, Stein’s phenomenon

1 Introduction

Motivation for nanoparticle characterization. The current world energy consumption is ap-

proximately 14 TW, among which less than 1% is coming from clean and renewable sources

(Baxter et al 2009). By 2050, this global demand is expected to reach 25 to 30 TW. In order to

minimize the environmental impacts of this increasing energy consumption, experts estimate

that about 20 TW should come from carbon-free renewable energy resources. Baxter et al

(2009) pointed out the importance of nanoengineering to develop low-cost and high-efficiency

renewable energy technologies, and emphasized solar thermophotovoltaic (TPV) power gen-

erators that could greatly benefit from nanoscale design. In such devices, solar irradiation

is absorbed by a radiator, which, in turn, re-emits thermal radiation in a spectrally selective

fashion toward a cell generating electricity. TPV power generators are not restricted to solar
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application, as any kind of heat source can be used. For instance, direct thermal-to-electrical

energy conversion via TPV devices could diminish waste heat (58% of the 110 EJ consumed

annually in the US is lost to heat, Bergman et al 2011) in various systems such as combustion

chambers, photovoltaic cells and personal computers.

TPV power generation is limited by Plancks blackbody distribution. To improve TPV

performances, Whale and Cravalho suggested spacing the radiator and the cells by a sub-

wavelength vacuum gap (Whale 1997, Whale and Cravalho 2002). At sub-wavelength dis-

tances, radiation heat transfer is in the near-field regime, such that energy exchange can

exceed by a few orders of magnitude the blackbody predictions. The literature on nano-TPV

suggests that power generation can be enhanced by a factor of 20 to 30 when the gap between

the radiator and the cell is a few tens of nanometers (Laroche et al, 2006, Park et al 2008).

This conclusion, however, was made by ignoring the thermal impacts on nano-TPV perfor-

mances. Using a multi-physics model combining near-field thermal radiation, heat conduction

and charge transport in TPV cells, Francoeur et al (2011) showed that that naively spacing

the radiator and the cell by a few tens of nanometers is not a viable solution. This is because

the near-field radiative heat transfer enhancement is broadband, contributing not only to in-

creased photocurrent generation but also to heating of the cell due to absorption by the lattice

and the free carriers, electron-hole pair recombination and thermalization thus leading to low

nano-TPV performances.

The key to developing viable, highly efficient nano-TPV devices is to tune near-field radi-

ation heat transfer from the radiator to the cell so that most of the radiative energy is used

for generating electricity. In practice, lower-temperature nano-TPV devices (∼ 320 - 500 K)

will likely be easier to implement. Polar crystals such as silicon carbide (SiC) and cubic boron
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nitride (cBN), supporting surface phonon polaritons (SPhPs) in the infrared (Narayanaswamy

and Chen 2003, Mulet et al 2002, Joulain et al 2005, Francoeur et al 2010), can potentially be

employed for the radiator. Indeed, the near-field thermal spectrum emitted by polar crystals

is quasi-monochromatic near the resonant frequency of SPhPs. On the other hand, low energy

(i.e., long wavelength) SPhPs modes in polar crystals (∼ 0.12 eV) are difficult to convert into

electricity due to current TPV cell technological limitations. Instead, quasi-monochromatic

near-field thermal sources with resonance in the near-infrared (NIR, ∼ 0.5 - 0.8 eV), which are

difficult to find in nature (West et al, 2010), are needed for viable, highly efficient nano-TPV

power generation. NIR resonance can be obtained using nanoparticles (∼ 5 nm - 200 nm)

with high electric permittivity in that spectral band, such as silicon, germanium, and alumina

(Wheeler et al 2005, Garcia-Etxarri et al 2011, Petersen et al 2013). Indeed, a large collec-

tion of such dielectric particles having strong enough electric and magnetic dipole resonances

can induce “effective” negative permittivity and permeability leading to surface polariton reso-

nance. If the nanoparticles are coated on a low-emitting substrate, then the radiative heat flux

is expected to be large near resonance but small at other frequencies, since thermal emission

at frequencies other than the resonant one is proportional to the volume of the emitter.

Fine tuning of the near-field thermal spectrum can be achieved by varying nanoparti-

cle properties (e.g., size, shape, and agglomeration level); tuning resonance slightly above

the absorption bandgap is anticipated to optimize nano-TPV performance. The viability of

nano-TPV power generation therefore depends crucially on the ability to control nanoparticle

properties. In turn, controlling these properties requires the capacity to characterize nanopar-

ticles non-intrusively and in real time. As the near-field thermal spectrum emitted is very

sensitive to surface characteristics, a solid non-intrusive characterization framework is crucial
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for manufacturing selective thermal emitters. The application of selective near-field thermal

emitters to nano-TPV power generators will allow low temperature waste heat recovery in a

variety of electronic devices, such as cell phones and photovoltaic cells. Among the devices

that can be powered by nano-TPV systems or whose functionality can be improved are several

used by the Army in its mission to provide prompt, sustained land dominance in military

operations: computers, communication devices (e.g., radios) and night vision cameras. Worth

noting is that the design of structures with user-defined thermal radiative properties will have

other applications, such as optical cloaking. In particular, the ability to control the thermal

spectrum will pave the way for developing materials invisible to infrared cameras. Such passive

infrared camouflage is also relevant to military operations.

A scattering paradigm for nanoparticle characterization. Current methods such as scanning

electron microscopy, scattering tunneling microscopy and atomic force microscopy all provide

excellent visual imaging of nanoscale materials, yet are unable to do so without having some

effect on the sample. They are also unable to give precise characteristics in real time such as

size, arrangement and composition. A possible way to perform non-intrusive characterization

is to illuminate nanostructures with visible light. The energy and polarization state of light

can be described by the four-component Stokes vector (Bohren and Huffman 1998). When

radiation interacts with matter, its intensity, polarization state, and direction of propagation

are modified. The general relationship between an incident Stokes vector Ii and a scattered

Stokes vector Is is Is = [Mij ]Ii, where [Mij ] is the 4 by 4 Mueller scattering matrix (Bohren and

Huffman 1998). A Mueller matrix can be associated with any medium modifying the intensity

and polarization state of light. Therefore, by measuring the Mueller scattering matrix elements

Mij due to nanoparticle scattering, one can infer nanoparticle properties using an inversion
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procedure.

Such a non-intrusive characterization technique was proposed by Mengüç and Manick-

avasagam (1998). Their framework entails illuminating particles with a propagating radiation

beam in the visible spectrum, after which far-field scattered light is collected. The scattered

intensity is typically insensitive to the nanoparticles properties (Francoeur et al 2007), while

the change of polarization after scattering usually is. For that reason, the method entails

recovering the Mueller scattering matrix that contains information about the change of po-

larization (Bohren and Huffman 1998). However, their technique applies to particles larger

than a few hundred nanometers, since scattering is too low for smaller particles, while we seek

to characterize nanoparticles from 5 to 200 nm. A way to circumvent this problem, while

keeping the idea of measuring the change of intensity and polarization state of light via the

Mueller scattering matrix elements, is to illuminate nanoparticles deposited on a surface with

evanescent waves generated by total internal reflection of an external radiation beam.

The nanoparticle characterization scattering paradigm has been described by Francoeur

(2010) and Short (2013). Briefly, nanoparticles to be characterized are deposited on a sub-

strate. Elliptically polarized radiation with wavelength in the visible band (400 to 700 nm)

is directed to the interface between the substrate and the air, at which the nanoparticles

are located, at an incidence angle exceeding the critical angle for total internal reflection

(Novotny and Hecht 2006). The nanoparticles then scatter the evanescent waves generated

at the substrate-air interface, and light is again polarized before being recovered at various

angles in the far field. The characterization framework has three essential parts: the forward

model for predicting evanescent wave scattering by nanoparticles on a surface, the database

of scattering profiles and the inversion algorithm. The forward model is used to build the
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scattering profile database, a database that correlates varying characteristics to their corre-

sponding scattering profiles. Then, using the database assembled from the forward model,

an inversion algorithm is employed to back-calculate characteristics from scattering profiles

measured experimentally from an unknown source.

Various methods can be used for predicting scattering of evanescent waves by nanoparticles

on a surface. We used a transfer matrix approach for building a database of scattering profiles

(Venkata et al 2007, Charnigo et al 2007, Charnigo et al 2011, Charnigo et al 2012). This

approach is, however, limited to spherical nanoparticles. An alternative forward model that is

being evaluated for the characterization framework is the Discrete Dipole Approximation with

Surface Interaction (DDA-SI) (Short 2013, Loke and Menguc 2010, Loke et al 2011, Short et al

2013). The DDA-SI is based on discretizing the objects into cubical sub-volumes behaving as

electric point dipoles. Since calculations are made for each individual sub-volume, the DDA-SI

can easily handle any complex-shaped inhomogeneous scatterers.

Experimentally, pre- and post-polarization of light is performed using a set of linear polar-

izer (LP) and quarter-wave plate (QWP) before illuminating the sample and after scattering

by the nanoparticles. The relationship between the incident and scattered Stokes vectors can

be written as (Francoeur 2010): Is = {[Mij ]LP2 · [Mij ]QWP2 · [Mij ] · [Mij ]QWP1 · [Mij ]LP1}Ii,

where the subscripts LP1 and QWP1 imply that the optical components are located before il-

lumination of the sample while the subscripts LP2 and QWP2 refer to the components used to

polarize light after scattering. The Mueller scattering matrices for LPs and QWPs are known

(Bohren and Huffman 1998), while the unknown Mueller matrix due to nanoparticle scattering

[Mij ] is determined from multiple experiments since only the intensity I (first component of

the Stokes vector) is measured. The intensity is a linear combination of N Mueller scattering
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matrix elements, where N depends on the equivalent Mueller matrix multiplying Ii in the

above equation. Therefore, to retrieve N Mueller scattering matrix elements from intensity

measurements, one must perform N distinct experiments. This system of N equations with N

unknowns can be constructed by orienting the LPs and QWPs at different angles (Francoeur

2010). More details about the inversion are provided next.

Using derivatives of scattering profiles. The basic idea of the scattering paradigm, then,

is to compare scattering profiles recently acquired from nanoparticles whose properties are

unknown to established scattering profiles previously obtained from nanoparticles whose prop-

erties are known. From a statistical viewpoint, this is a pattern recognition problem. There

are different ways in which scattering profiles may be compared, but one is L2 distance. In

words, the unknown properties are guessed to match the known properties corresponding to

the established scattering profiles that are closest, in terms of integrated squared deviation, to

the recently acquired scattering profiles.

However, low-frequency high-amplitude content of the scattering profiles (i.e., global trends)

contributes more to L2 distance between scattering profiles than does low-amplitude high-

frequency content (i.e., local trends). If low-frequency high-amplitude content varies substan-

tially with the nanoparticle properties, then this is quite desirable. On the other hand, if low-

amplitude high-frequency content varies more substantially with the nanoparticle properties,

then the aforementioned comparison may not be a good solution to the pattern recognition

problem. This observation prompted Charnigo et al (2007) to examine whether looking at

derivatives of the scattering profiles may lead to a better solution. Of course, the derivatives

must be estimated, and this is accomplished using a nonparametric regression approach called

compound estimation (Charnigo and Srinivasan, 2011a). We briefly review this approach in

8



the Methods section of the present technical report. Charnigo et al (2007) indeed discovered

that, under certain circumstances, examining the distance between derivatives of the scatter-

ing profiles could yield higher correct classification rates than examining the distance between

the scattering profiles themselves. Although they considered L1 distance (integrated absolute

deviation) rather than L2 distance, their reasoning also applies with L2 distance.

Of course, one may obtain different classifications with first derivatives than with second

derivatives. While choosing a single order of derivative may be appealing for its simplicity,

considering multiple orders of derivatives simultaneously may yield higher correct classification

rates. For example, one can attempt to minimize a weighted sum of the distance between first

derivatives and the distance between second derivatives. Indeed, one can attempt to minimize a

weighted sum of the distance between first derivatives, the distance between second derivatives,

and the distance between undifferentiated scattering profiles. This idea was explored in detail

by Charnigo et al (2011). Subsequently, Charnigo et al (2012) demonstrated how to use

derivatives of scattering profiles to obtain confidence intervals (or, to be more technically

precise, Bayesian credible intervals) for nanoparticle properties that may reside in a continuum

(for instance, diameter, which may reside in a continuum between 5 and 100 nanometers).

Motivating and describing the present work. As noted above, using derivatives of scattering

profiles for nanoparticle characterization necessarily entails estimation of these same deriva-

tives. This is actually a high-dimensional estimation problem, for a few reasons: multiple

response variables are considered, corresponding to different elements of the Mueller scatter-

ing matrix (Cf. Bohren and Huffman, 1998); multiple orders of derivatives are considered; and,

numerous observation angles are considered (in fact, strictly speaking, they reside in a con-

tinuum). The nonparametric regression approach of compound estimation effectively reduces
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the dimensionality inherent to the observation angles by focusing attention on a comparatively

smaller number of “centering points”, but even then the dimensionality is fairly high. The

concept of centering points is explained in the Methods section of this technical report when

we describe compound estimation.

In the comparatively simpler problem of estimating the mean of a multivariate normal

distribution, Stein (1956) demonstrated that the sample mean was not generally the best

estimator available in the sense of minimizing the expected squared error. This counterintuitive

result is known as Stein’s phenomenon and has a profound connection to the dimensionality

of the estimation problem. When there are three or more dimensions, a nonlinear adjustment

to the sample mean can reduce the expected squared error, and the reduction becomes more

pronounced as the number of dimensions increases. James and Stein (1961) gave an explicit

prescription for the nonlinear adjustment, and further variants were subsequently proposed by

other authors including Efron and Morris (1973). Charnigo and Srinivasan (2011b) provide

a detailed review of Stein’s phenomenon. However, the key idea for the present technical

report is that Stein’s phenomenon has the potential to improve the estimation of derivatives

of scattering profiles due to the aforementioned high dimensionality.

Actually, there are several ways in which Stein’s phenomenon may be exploited, since as

noted above there are several sources of the high dimensionality: multiple response variables,

multiple orders of derivatives, and multiple centering points. Herein we consider two of these

ways, namely: Steinization simultaneously across multiple response variables and multiple

orders of derivatives at each centering point; and, Steinization across multiple centering points

for each response variable and order of derivative. We describe these modes of applying Stein’s

phenomenon in the Methods section and illustrate them via Figures 1 and 2 in the present
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technical report.

The hope is that, if the scattering profiles and their derivatives can be estimated more ac-

curately, particularly from data heavily contaminated by disturbances to proper experimental

conditions and stochastic noise (Cf. Figure 3), then the resulting characterization of nanopar-

ticles may be more accurate. We investigate whether this is so by conducting numerical

experimentation, as described in the Methods section. The findings from the numerical exper-

imentation are summarized in the Results section and Tables 1 through 4. We conclude this

technical report with a Discussion of the findings, including implications for ongoing research.

2 Methods

Scattering profiles. Figure 1 of Charnigo et al (2011) illustrates the experimental apparatus

from which radiation is scattered for the purpose of characterizing nanoparticles whose prop-

erties are unknown. This experimental apparatus is also described in Section 1 of Charnigo

et al (2011). Letting θ ∈ [0, 180] denote the angle in degrees at which scattered radiation is

observed in the far field, we may summarize the relationship between incident and scattered

Stokes vectors for a nanoparticle using four functions M11(θ), M12(θ), M33(θ), and M34(θ).

These functions, which are called scattering profiles, describe the flux and polarization state of

the scattered radiation in relation to the observation angle. See Bohren and Huffman (1998) for

details regarding underlying physics and Aslan et al (2005), Videen et al (2005), and Venkata

et al (2007) for information on numerical computation. In what follows, we let M(θ) denote

any one of M11(θ), M12(θ), M33(θ), and M34(θ) generically when no distinction is required.

A laboratory experiment (or numerical simulation thereof) does not actually entail acqui-
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sition of M(θ) but rather samples M(θ) at a grid of points {θ1, . . . , θG}, where G denotes

the size of the grid. In this technical report, we shall take G := 177 and θj := j + 1 for

j ∈ {1, 2, . . . , 177}. In addition, there may be some systematic and stochastic errors in the

sampling of M(θ), so that, instead of acquiring {M(θ1),M(θ2), . . . ,M(θG)}, one acquires

{M(θ1)+ ǫ1,M(θ2)+ ǫ2, . . . ,M(θG)+ ǫG} for some “perturbations” ǫ1, ǫ2, . . . , ǫG. We empha-

size that these perturbations are unknown in practice, so they cannot simply be subtracted

out to acquire {M(θ1),M(θ2), . . . ,M(θG)}. In other words, {M(θ1),M(θ2), . . . ,M(θG)} are

themselves unknown.

Compound estimation. Charnigo and Srinivasan (2011a) developed a nonparametric re-

gression method called compound estimation, useful for estimating a function such as M(θ)

from perturbed data {M(θ1) + ǫ1,M(θ2) + ǫ2, . . . ,M(θG) + ǫG} acquired on a grid of points.

No assumptions are made about the precise mathematical form of M(θ), but M(θ) is assumed

to be a smooth function of θ. In this technical report, we shall assume that M(θ) has (at

least) three continuous derivatives with respect to θ. Compound estimation differs from other

nonparametric regression methods, such as local regression (Cleveland, 1979; Loader, 1999),

in that the derivatives of M(θ) are estimated along with M(θ) and these estimated derivatives

are exactly equal to the derivatives of the estimated M(θ). This property is referred to as self-

consistency and ensures that no logical contradictions (regarding, for example, the locations

of local extrema) arise from simultaneous inspection of the estimated M(θ) and the estimated

derivatives.

While compound estimation is described in detail by Charnigo and Srinivasan (2011a), we

present a few highlights here for convenience. Compound estimation begins by defining a grid

of “centering points” {a1, a2, . . . , aI} and using an auxiliary nonparametric regression method
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to acquire estimates of M(θ) and its derivatives at the centering points. In this technical

report, we shall use local regression as the auxiliary nonparametric regression method, as

implemented in Loader’s (1999) locfit package for R statistical software with nearest neighbor

parameter 0.20, local polynomial degree 3, and rectangular kernelfunction. We shall also take

I := 27 and aj := (180/27)(j − 0.5) for j ∈ {1, 2, . . . , 27}.

Let c̃k,aj ,M denote the local regression estimate of the kth derivative of M(θ) evaluated

at aj , divided by k!, for k ∈ {0, 1, 2, 3}. We refer to this as a “pointwise estimate”. This

pointwise estimate has the linear representation
∑G

i=1
L̃k(θi, aj){M(θi) + ǫi} for a real-valued

function L̃k(x, y) of two real variables x and y, a fact that will be useful later. Compound esti-

mation continues by defining an estimate of M(θ) as
∑I

i=1
exp[−β(θ− ai)

2]{
∑

3

k=0
c̃k,ai,M (θ−

ai)
k}/

∑I
i=1

exp[−β(θ − ai)
2] and an estimate of its kth derivative as the kth derivative of the

aforementioned quantity, for k ∈ {0, 1, 2}. In this technical report, we shall take β := 100.

Note that, even though local regression is not self-consistent, compound estimates of M(θ)

and its derivatives are automatically self-consistent, by definition. This would be true, by the

way, regardless of how the pointwise estimates were defined.

The principle of minimizing L2 distance. Let µ̂k(θ) denote the vector-valued function whose

components are the compound estimates of the kth derivatives of M11(θ), M12(θ), M33(θ), and

M34(θ), for k ∈ {0, 1, 2}. Let µk,p(θ) denote the vector-valued function whose components

are the actual kth derivatives of M11(θ), M12(θ), M33(θ), and M34(θ), for k ∈ {0, 1, 2}, for

nanoparticles with property p. In this technical report, we shall let p ∈ {1, 2, 3, 4} correspond to

agglomeration levels of 0%, 25%, 75%, and 100% respectively. Agglomeration levels refer to the

percentages of single nanoparticles; the Appendix of Charnigo et al (2011) provides technical

details regarding assumptions on the geometries of non-single nanoparticles. We assume that
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µk,p(θ) is known, with negligible error, based on prior experimentation on nanoparticles whose

properties were known.

Consider the weighted L2 distance w1

∑
i=1

||µ̂0(θi)− µ0,p(θi)| |
2/

∑
i,j L̂0(θi, θj)

2+

w2

∑
i=1

||µ̂1(θi)− µ1,p(θi)| |
2/

∑
i,j L̂1(θi, θj)

2+w3

∑
i=1

||µ̂2(θi)− µ2,p(θi)| |
2/

∑
i,j L̂2(θi, θj)

2,

where L̂k(x, y) is a real-valued function of two real variables x and y such that
∑G

i=1
L̂k(θi, θ){M(θi)+

ǫi} is the compound estimate of the kth derivative of M(θ). If the weighted L2 distance is min-

imized at p = 1, then we infer (perhaps incorrectly) that the unknown agglomeration level is

0% for the nanoparticles to be characterized. If the weighted L2 distance is minimized at p = 2,

p = 3, or p = 4, then we infer (again, perhaps incorrectly) that the unknown agglomeration

level is 25%, 75%, or 100% respectively for the nanoparticles to be characterized.

Note that the inference regarding the unknown agglomeration level depends on the choices

of w1, w2, and w3. In this technical report, we consider (w1, w2, w3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.

The latter choice uses the estimated scattering profiles and their first two derivatives simul-

taneously. The denominators of
∑

i,j L̂k(θi, θj)
2 in the weighted L2 distance are proportional

to the variances of the estimated scattering profiles and their first two derivatives, so that

each of these objects makes a comparable contribution to the weighted L2 distance when

(w1, w2, w3) = (1, 1, 1).

The concept of Steinization. Charnigo and Srinivasan (2011b) provide a detailed review of

Stein’s phenomenon, including heuristic explanations for it and the roles of Stein’s phenomenon

in both the development of new methods for statistical inference and modern data analysis. We

offer a few highlights here for convenience. Stein (1956) showed that, if one wished to estimate

parameters τ1, τ2, . . . , τD for someD ≥ 3 upon observing normally distributed and uncorrelated

X1,X2, . . . ,XD with means τ1, τ2, . . . , τD and unit variances, there were better estimates of
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τ1, τ2, . . . , τD available than X1,X2, . . . ,XD themselves. More specifically, the expected value

of the L2 distance between τ1, τ2, . . . , τD and X1,X2, . . . ,XD is greater than that between

τ1, τ2, . . . , τD and τ̂1, τ̂2, . . . , τ̂D with τ̂j := {1− b/(
∑D

k=1
X2

k + a)}Xj for j ∈ {1, 2, . . . ,D} and

appropriately chosen constants a and b. James and Stein (1961) proposed, more specifically,

taking b := (D − 2) and a := 0. Note that τ̂j is obtained, essentially, by nonlinearly shrinking

Xj partway toward zero. Stein’s phenomenon is so named because one would not anticipate

that, for example, X2, . . . ,XD should have anything to do with estimation of τ1.

Efron and Morris (1971, 1972, 1973, 1975) subsequently published a series of papers on

Stein’s phenomenon and its connections to Bayesian inference. Among other contributions,

they advocated nonlinearly shrinking Xj partway toward X̄ :=
∑D

i=1
Xk/D, rather than to-

ward zero, by defining τ̂j := X̄+{1−(D−3)/(
∑D

k=1
[Xk−X̄]2)}(Xj−X̄) for j ∈ {1, 2, . . . ,D}.

The aforementioned definitions of τ̂j can also be adapted to situations in which X1,X2, . . . ,XD

are correlated and/or have different from unit variances.

The theoretical justification of Stein’s (1956) phenomenon uses the fact that τ1, τ2, . . . , τD

are the means of the observations X1,X2, . . . ,XD. However, some nonlinear shrinkage may

still be of benefit even if the means of X1,X2, . . . ,XD are not exactly equal to τ1, τ2, . . . , τD

(no “bias”, in statistical parlance), provided that the means of X1,X2, . . . ,XD are “close” to

τ1, τ2, . . . , τD in relation to the variances of X1,X2, . . . ,XD (low bias). This idea, developed

theoretically in the Ph.D. thesis of Feng (2013), is proposed for application to nanoparticle

characterization in the present technical report.

Steinization of pointwise estimates across centering points. The first way in which we

attempt to employ Steinization entails letting c̃k,a1,M , c̃k,a2,M , . . . , c̃k,a9,M play the role of

X1,X2, . . . ,XD with D = 9 for each k ∈ {0, 1, 2, 3}. More specifically, let c̄k,a1,...,a9,M :=

15



∑
9

m=1
c̃k,am,M/9 and Σ̃k,a1,...,a9,M denote the estimated covariance matrix of c̃k,a1,M , c̃k,a2,M , . . . , c̃k,a9,M ,

defined in itsmn element by
∑G

i=1
L̃k(θi, am)Lk(θi, an) multiplied by the average of the residual

mean squares in estimating M11(θ),M12(θ),M33(θ),M34(θ).

Put ĉk,aj ,M := c̄k,a1,...,a9,M+{1−6/(c̃k,aj ,M−c̄k,a1,...,a9,M)′Σ̃−1

k,a1,...,a9,M
(c̃k,aj ,M−c̄k,a1,...,a9,M )}+

(c̃k,aj ,M − c̄k,a1,...,a9,M) for k ∈ {0, 1, 2, 3} and j ∈ {1, 2, . . . , 9}, where ′ denotes a vector trans-

pose, −1 denotes a matrix inverse, and + denotes the positive part. Thus, we nonlinearly shrink

each c̃k,aj ,M toward the average of c̃k,a1,M , c̃k,a2,M , . . . , c̃k,a9,M . This form of Steinization is il-

lustrated in Figure 1 of the present technical report.

Also, in the event that Σ̃3,a1,...,a9,M is not invertible, we put ĉ3,aj ,M := c̄3,a1,...,a9,M + {1 −

6/(c̃2,aj ,M − c̄2,a1,...,a9,M )′Σ̃−1

2,a1,...,a9,M
(c̃2,aj ,M − c̄2,a1,...,a9,M)}+(c̃3,aj ,M − c̄3,a1,...,a9,M ). In words,

the shrinkage factor for ĉ3,aj ,M is “borrowed” from ĉ2,aj ,M in the event that Σ̃3,a1,...,a9,M is not

invertible.

We proceed similarly to define Steinized versions of c̃k,a10,M , c̃k,a11,M , . . . , c̃k,a18,M and

c̃k,a19,M , c̃k,a20,M , . . . , c̃k,a27,M . Then, instead of using c̃k,a1,M , c̃k,a2,M , . . . , c̃k,a27,M when defin-

ing compound estimates of M(θ) and its derivatives, we use ĉk,a1,M , ĉk,a2,M , . . . , ĉk,a27,M .

Let µ̂k,Stein(θ) denote the vector-valued function whose components are the compound es-

timates (with Steinization of the pointwise estimates) of the kth derivatives of M11(θ), M12(θ),

M33(θ), and M34(θ), for k ∈ {0, 1, 2}. We can use the weighted L2 distance

w4

∑
i=1

||µ̂0,Stein(θi)− µ0,p(θi)| |
2/

∑
i,j L̂0(θi, θj)

2+ w5

∑
i=1

||µ̂1,Stein(θi)− µ1,p(θi)| |
2/

∑
i,j L̂1(θi, θj)

2+

w6

∑
i=1

||µ̂2,Stein(θi)− µ2,p(θi)| |
2/

∑
i,j L̂2(θi, θj)

2 to make an inference about the unknown

agglomeration level by determining for which p ∈ {1, 2, 3, 4} this weighted L2 distance is

minimized.

Steinization of pointwise estimates across orders of derivatives and response variables.
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The second way in which we attempt to employ Steinization entails letting normalized ver-

sions of c̃0,aj ,M11
, c̃1,aj ,M11

, . . . , c̃3,aj ,M34
play the role of X1,X2, . . . ,XD with D = 16 for

each j ∈ {1, 2, . . . , 27}. The normalization entails division by
√∑G

i=1
L̃k(θi, aj)2σ̂2, with

σ̂2 defined as above. Let d̃0,aj ,M11
, d̃1,aj ,M11

, . . . , d̃3,aj ,M34
denote the normalized versions of

c̃0,aj ,M11
, c̃1,aj ,M11

, . . . , c̃3,aj ,M34
, d̄j their average, and Σ̃j their estimated covariance matrix.

This matrix is block diagonal, with nonzero entries of the form

∑G
i=1

L̃k1(θi, aj)L̃k2(θi, aj)/
√∑G

i=1
L̃k1(θi, aj)

2
∑G

i=1
L̃k2(θi, aj)

2.

Put d̂k,aj ,M := d̄j + {1 − 13/(d̃k,aj ,M − d̄j)
′Σ̃−1

j (d̃k,aj ,M − d̄j)}
+ (d̃k,aj ,M − d̄j) for k ∈

{0, 1, 2, 3}. Thus, we nonlinearly shrink each of d̃0,aj ,M11
, d̃1,aj ,M11

, . . . , d̃3,aj ,M34
toward their

average. Then put ĉk,aj ,M := d̂k,aj ,M

√∑G
i=1

L̃k(θi, aj)2σ̂2 and, instead of using

c̃0,aj ,M11
, c̃1,aj ,M11

, . . . , c̃3,aj ,M34
when defining compound estimates of M(θ) and its derivatives,

we use ĉ0,aj ,M11
, ĉ1,aj ,M11

, . . . , ĉ3,aj ,M34
. This form of Steinization is illustrated in Figure 2 of

the present technical report.

As before, we can use the weighted L2 distance w4

∑
i=1

||µ̂0,Stein(θi)− µ0,p(θi)| |
2/

∑
i,j L̂0(θi, θj)

2+

w5

∑
i=1

||µ̂1,Stein(θi)− µ1,p(θi)| |
2/

∑
i,j L̂1(θi, θj)

2+ w6

∑
i=1

||µ̂2,Stein(θi)− µ2,p(θi)| |
2/

∑
i,j L̂2(θi, θj)

2

to make an inference about the unknown agglomeration level.

Numerical experimentation. Using a numerical model proposed by Aslan et al (2005)

and validated by Venkata (2006), we generated M11(θ), M12(θ), M33(θ), and M34(θ) for

θ ∈ {2, 3, . . . , 178} corresponding to nanoparticles with diameters of 50 nanometers (nm) and

agglomeration levels of 0%, 25%, 75%, and 100%. We assume, as in Charnigo et al (2011),

that the radiation wavelength is 514.5 nm and has a 23-degree angle of incidence, the prism

and substrate are made of sapphire with refractive index 1.77304, the substrate is coated with

a 20 nm gold film having (complex) refractive index 0.50 + 1.86i, and the scatterers are gold
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spherical nanoparticles having refractive index 0.50 + 1.86i. Agglomeration levels refer to the

percentages of single nanoparticles; the Appendix of Charnigo et al (2011) provides technical

details regarding assumptions on the geometries of non-single nanoparticles.

We applied compound estimation toM11(θ), M12(θ),M33(θ), andM34(θ) for θ ∈ {2, 3, . . . , 178}

in order to obtain estimates of M11(θ), M12(θ), M33(θ), and M34(θ) and their first two deriva-

tives for θ ∈ [0, 180]. These estimates were used to define µ0,p(θ), µ1,p(θ), and µ2,p(θ) for the

aforementioned weighted L2 distances.

We then generated alternate versions of M11(θ), M12(θ), M33(θ), and M34(θ) for θ ∈

{2, 3, . . . , 178} based on 14 prescribed deviations from the numerical model referred to by

Charnigo et al (2011) as “disturbances” and specifically enumerated in Section 4.1 of their

manuscript. Both the original and alternate versions of M11(θ), M12(θ), M33(θ), and M34(θ)

for θ ∈ {2, 3, . . . , 178} were subjected to 10 different realizations of stochastic noise, to obtain

a total of 600 data sets: 150 data sets in which the true agglomeration level was 0%, 150

with 25% agglomeration, 150 with 75%, and 150 with 100%. The stochastic noise added to

M(θ1), . . . ,M(θG) in any particular data set was drawn from a normal distribution with mean

zero and standard deviation 0.50 times
√

{
∑G

i=1
M(θi)2 − [

∑G
i=1

M(θi)]2/G}/(G − 1). Note

that the 0.50 is a much higher noise level than the 0.03 considered by Charnigo et al (2007,

2011). Thus, the present investigation considers a scenario in which Steinization is potentially

helpful, inasmuch as estimation bias is very low relative to estimation variance, since the

latter is quite high at a 0.50 noise level. This noise level is illustrated in Figure 3 of the present

technical report.

We next applied compound estimation without Steinization to each of the 600 data sets

and used the principle of minimizing weighted L2 distance to classify each of the 600 data
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sets. This was done for (w1, w2, w3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}, as described above.

We also applied compound estimation with Steinization across centering points to each of the

600 data sets and again employed the principle of minimizing weighted L2 distance to classify

each of the 600 data sets. This was done for (w4, w5, w6) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},

as described above. Because this was a numerical experiment, the “correct” classification was

known to us, and so we could ascertain correct classification rates with and without Steinization

for each choice of weights.

These findings are reported in Table 1, which we describe in the Results section. We

also mention here that we calculated not only correct classification rates but also the av-

erage weighted L2 distance from µ̂0(θ), µ̂1(θ), µ̂2(θ) or µ̂0,Stein(θ), µ̂1,Stein(θ), µ̂2,Stein(θ) to

µ0,correct(θ), µ1,correct(θ), µ2,correct(θ) and µ0,incorrect(θ), µ1,incorrect(θ), µ2,incorrect(θ). The “cor-

rect” subscript is p = 1 for the first 150 data sets, p = 2 for the next 150, p = 3 for the third

150, and p = 4 for the last 150. The “incorrect” subscripts are p ∈ {2, 3, 4} for the first 150

data sets, p ∈ {1, 3, 4} for the next 150, p ∈ {1, 2, 4} for the third 150, and p ∈ {1, 2, 3} for the

last 150.

The preceding numerical experiment was also repeated with a 0.25 noise level, which is still

rather high, and with Steinization across orders of derivatives and response variables rather

than across centering points. These findings are reported in Tables 2, 3, and 4, which we

describe in the Results section.

3 Results

Steinization of pointwise estimates across centering points. Table 1 displays findings at the 0.50
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noise level when pointwise estimators are Steinized across clusters of nine centering points for

each outcome and each order of derivative. The average L2 distance from scattering profiles

estimated at the 0.50 noise level to the actual scattering profiles corresponding to correct

classifications was reduced by 7% with Steinization. Yet, Steinization did not increase the

frequency with which minimizing the L2 distance over different nanoparticle configurations

yields a correct classification, which remained around 90%. This may have been because

Steinization also reduced by 3% the average L2 distance from estimated scattering profiles

to the actual scattering profiles corresponding to incorrect classifications. There were only

six data sets out of the 600 for which the classification was modified by Steinization. In one

instance, Steinization changed an incorrect classification to a correct one; in five instances,

Steinization changed a correct classification to an incorrect one.

When first derivatives are considered instead of undifferentiated scattering profiles, Steiniza-

tion reduced by 25% the average L2 distance from the estimated derivatives to the actual

derivatives corresponding to correct classifications, versus 20% for the actual derivatives for in-

correct classifications. Steinization slightly increased the correct classification rate, from about

73% to 75%. There were 61 data sets for which the classification was altered by Steinization,

34 in which Steinization changed an incorrect classification to correct, 26 in which Steinization

denatured a correct classification, and one in which one incorrect classification converted to

another incorrect classification. Interestingly, all 15 of the 61 with a true aggregation level

of 0% were misclassified without but correctly classified with Steinization. Among 21 with a

true aggregation level of 25%, eight instances saw Steinization change an incorrect classifica-

tion to a correct one and 13 saw Steinization change a correct classification to an incorrect

one. However, in all 21 instances, Steinization changed the classification to one with a lower
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agglomeration level.

As for second derivatives, Steinization diminished by 31% the average L2 distance from the

estimated derivatives to the actual derivatives corresponding to correct classifications, rather

than 30% for the actual derivatives for incorrect classifications. Steinization slightly increased

the correct classification rate, from about 44% to 46%. There were 78 data sets for which

the classification was modified by Steinization, 31 in which Steinization changed an incorrect

classification to correct, 18 in which Steinization denatured a correct classification, and 29 in

which one incorrect classification converted to another incorrect classification. In all but two

instances, Steinization changed the classification to one with a lower agglomeration level.

When scattering profiles, first derivatives, and second derivatives are considered simulta-

neously, Steinization reduced by 19% the average weighted L2 distance from the estimated

objects to the actual objects corresponding to correct classifications, versus 10% for the ac-

tual objects for incorrect classifications. Yet, Steinization did not increase the frequency with

which minimizing the L2 distance over different nanoparticle configurations yields a correct

classification, which remained around 91%. There were 12 data sets for which the classification

was altered by Steinization, four in which Steinization changed an incorrect classification to a

correct one and eight in which Steinization changed a correct classification into an incorrect

one.

Table 2 shows findings at the 0.25 noise level. As anticipated, average L2 distances are

uniformly and considerably lower than at the 0.50 noise level. However, Steinization still

decreases these distances, both when the actual objects correspond to correct classifications and

when they do not. While correct classification rates are uniformly higher than at the 0.50 noise

level (and considerably so for the first and second derivatives), Steinization has little impact
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on them. There were no data sets in which classification based on undifferentiated scattering

profiles was affected by Steinization, 14 in which classification based on first derivatives was

altered, 35 in which classification based on second derivatives was modified, and two in which

Steinization impacted classification from the scattering profiles and their first two derivartives

simultaneously.

Steinization of pointwise estimates across orders of derivatives and response variables. Ta-

ble 3 displays findings at the 0.50 noise level when pointwise estimators are Steinized across

each outcome and each order of derivative for each centering point. Steinization reduces aver-

age L2 distances by 1% to 2%, but correct classification rates are virtually unaltered. There

were 11 data sets in which classification based on undifferentiated scattering prorfiles was af-

fected by Steinization, four in which classification based on first derivatives was altered, nine in

which classification based on second derivatives was modified, and eight in which Steinization

impacted classification from the scattering profiles and their first two derivatives simultane-

ously. Among these 32 data sets, there were 25 in which Steinization changed a classification

of 100% agglomeration to 75% agglomeration.

Table 4 shows findings at the 0.25 noise level. As anticipated, average L2 distances are

uniformly and considerably lower than at the 0.50 noise level. However, Steiniation has negli-

gible impact on these distances, regardless of whether the actual objects correspond to correct

classifications. Although correct classification rates are uniformly higher than at the 0.50 noise

level (and considerably so for the first and second derivatives), Steinization has little effect on

them. There were four data sets in which classification based on undifferentiated scattering

prorfiles was affected by Steinization, one in which classification based on first derivatives

was altered, three in which classification based on second derivatives was modified, and none
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in which Steinization impacted classification from the scattering profiles and their first two

derivatives simultaneously.

4 Discussion

The findings from our numerical experimentation were decidedly mixed. Although Steiniza-

tion across centering points substantially reduced error in estimating the derivatives of scat-

tering profiles, there was not a commensurate improvement in the correct classification rates

from using the estimated derivatives with Steinization versus from using the estimated deriva-

tives without Steinization. Moreover, the slight uptick from 263/600 correct classifications to

276/600 based on second derivatives, while ostensibly mildly encouraging, is of limited practi-

cal import because correct classification rates considerably higher than 276/600 are available

from first derivatives and scattering profiles themselves without recourse to Steinization. There

is some possibility that Steinization might confer greater benefit if the noise level were higher

than 0.50, but this seems more of a theoretical than a practical consideration. As shown

in Figure 3, a noise level of 0.50 is already very high. One has difficulty imagining that an

experimenter would regard as viable an approach to nanoparticle characterization based on

scattering profiles, much less their derivatives, if the data were of worse quality (i.e., more

noisy and/or disturbed) than shown in Figure 3.

We reiterate that the noise levels of 0.25 and 0.50 considered herein are much higher than

the noise level of 0.03 considered by Charnigo et al (2007, 2011). As such, we are not surprised

that derivatives of scattering profiles did not yield more accurate nanoparticle characterization

than the scattering profiles themselves in the present numerical experimentation (although a
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slight advantage was conferred by looking at scattering profiles and their derivatives simulta-

neously). This conclusion appears to differ from the findings of Charnigo et al (2007, 2011),

but estimation of a derivative is impaired much more than estimation of the underlying curve

in the presence of high noise. Indeed, if the noise level had been as low as 0.03, the correct

classification rates would have been near perfect for all orders of derivative considered herin,

with or without Steinization. Incidentally, such near-perfect correct classification rates do not

conflict with the findings of Charnigo et al (2007, 2011), which were based mostly on separate

analyses of M11(θ), M12(θ), M33(θ), and M34(θ) with their respective derivatives. Although

suppressed from Tables 1 through 4 for brevity, results based on L2 distances involving M11(θ)

and its respective derivatives only (rather than all four scattering profiles and their respec-

tive deriatives) were considerably worse than results based on L2 distances involving M11(θ),

M12(θ), M33(θ), and M34(θ) and their respective derivatives simultaneously. The same is true

for L2 distances involving M12(θ) and its respective derivatives only and, to a lesser degree,

M33(θ) only and M34(θ) only. In sum, the results described in this technical report are not at

variance with but are complementary to the results of Charnigo et al (2007, 2011).

In contrast to Steinization across centering points, Steinization across orders of derivatives

and response variables had almost no detectible effect either on the quality of estimation or

on the correct classification rates. This is apparently because the shrinkage factor for this

type of Steinization was much closer to 1 (i.e., almost as if there were no Steinization at all).

One may wonder whether a more sophisticated calculation of the shrinkage factor, taking

into account the bias inherent to estimation in the nonparametric regression setting, would

be of consequence. Indeed, a more sophisticated calculation is possible, and Feng (2013)

theoretically examined this possibility in her Ph.D. thesis. However, we do not anticipate that

24



a more sophisticated calculation would be of consequence here because its effect would be to

bring the shrinkage factor even closer to 1. By the same token, one may wonder whether

a more sophisticated calculation would be of consequence with Steinization across centering

points. That answer is less obvious. Clearly, Steinization across centering points had some

benefit in reducing the error in estimating the derivatives of the scattering profiles; a more

sophisticated calculation could potentially reduce the error further, to the point that correct

classification results improved as a consequence. This possibility bears closer examination in

ongoing research.

There are, of course, other ways to exploit Stein’s phenomenon besides the two consid-

ered herein. For instance, one may Steinize across orders of derivatives and centering points

simultaneously, or across response variables and centering points simultaneously. Perhaps a

more creative idea for ongoing research is to perform Steinization across multiple data sets

presumed to arise from a common collection of nanoparticles (or, at worst, multiple collec-

tions of nanoparticles with common properties). To illustrate this idea, consider again Figure

2. However, this time imagine that the black and red curves correspond not to estimates of

M11(θ), M12(θ), M33(θ), and M34(θ) at centering points from a single data set but rather

estimates of M11(θ) at centering points from different data sets. If these data sets arise from

a common collection of nanoparticles, then the black and red curves are actually estimating

the same object, so there is a very compelling motivation to adjust the black curve toward

the red curves. Indeed, even if one were unaware of Stein’s phenomenon, the idea of somehow

averaging the black curve and the red curves would be appealing inasmuch as averaging tends

to reduce error when the quantities involved are estimating the same object.

The preceding point, however, is also the crux of a major conceptual question: If the black
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and red curves in Figure 2 really are estimating the same object, then why Steinize across

multiple data sets instead of simply averaging ? If one does Steinize, then one adjusts the

black curve and each of the red curves so that they are all mutually closer. Yet, one still has

four distinct curves and will subsequently obtain four distinct estimates of M11(θ) over the

continuum of observation angles. Each one of these four estimates of M11(θ) can be used to

classify the nanoparticles, but there is no guarantee that these four classifications will be the

same. Quite possibly, for example, three classifications may be correct and one incorrect. Now

contrast the preceding approach with taking a simple average of the black curve and the red

curves to get a single curve and a single estimate of M11(θ) over the continuum of observation

angles. This single estimate of M11(θ) can be used to classify the nanoparticles, and in terms

of the original data sets the result will either be four correct classifications out of four or none.

So, unless one anticipates a fairly sizable probability of incorrect classification through simple

averaging of the black curve and the red curves, the expected correct classification rate from

simple averaging may be superior to that from Steinization across multiple data sets.

Notwithstanding this conceptual question, there remain multiple avenues for future research

that may be profitably pursued. One of them is, indeed, to perform the simple averaging over

multiple data sets but then Steinize the simple averages themselves, either across centering

points or across response variables and orders of derivatives. Another is to make the classifi-

cations probabilistic. That is, instead of merely identifying the most plausible configuration

for the nanoparticles in question, assign indices of plausibility to the various possible con-

figurations. If this is done, then some further benefits of Steinization may manifest. For

instance, even if the correct classification rate is unchanged from 559/600 after Steinization is

performed, perhaps the experimenter may go from being “80% confident” in the classifications
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(on average) to “90% confident”. Of course, phrases such as “80% confident” and “90% confi-

dent” must be formalized, but the point is that probabilistic classifications may become more

definitive after Steinization. And, presumably, a greater level of confidence is desirable if such

classifications will eventually be relied upon to engineer nanostructured surfaces for efficient

nano-TPV power generation.
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Illustration of Steinization by centering points

Shown in black are pointwise estimates ofM11(a1),M11(a2), . . . ,M11(a9) without Steinization and in

green are pointwise estimates with Steinization, where a1, a2, . . . , a9 denote the first nine centering

points for compound estimation. Note that the latter pointwise estimates represent a compromise of

the former pointwise estimates with their average, so that Steinization pulls the smallest pointwise

estimates upward and the largest pointwise estimates downward. Line segments connecting the

pointwise estimates are included solely for ease of visualization. Likewise, pointwise estimates of

M11(a10),M11(a11), . . . ,M11(a18) and M11(a19),M11(a20), . . . ,M11(a27) are shown without (black)

and with (green) Steinization.
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Figure 2
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Illustration of Steinization by derivative order and response variable

Shown in black are pointwise estimates of M34(a1),M34(a2), . . . ,M34(a27) without Steinization

and in green are pointwise estimates with Steinization, where a1, a2, . . . , a27 denote the 27

centering points for compound estimation. Also, shown in red are pointwise estimates of

M11(a1),M11(a2), . . . ,M11(a27), M12(a1),M12(a2), . . . ,M12(a27), andM33(a1),M33(a2), . . . ,M33(a27)

without Steinization. Note that the pointwise estimates in green represent a compromise of the

pointwise estimates in black with the pointwise estimates in red (along with 12 other sets of point-

wise estimates that are not shown because their inclusion would make the graph illegible); this is

most obvious at left. Line segments connecting the pointwise estimates are included solely for ease

of visualization.
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Figure 3
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Illustration of 0.50 noise level

Displayed are M11(θ1) + ǫ1,M11(θ2) + ǫ2, . . . ,M11(θG) + ǫG, where ǫ1, ǫ2, . . . , ǫG embody systematic

errors (from “disturbances”, in the parlance of Charnigo et al, 2011) as well as stochastic errors at

noise level 0.50, as defined in the Methods section. Also displayed is the curve for M11(θ), without

noise or disturbance.
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Table 1: Numerical study results — Scenario 1

(w1, w2, w3, w4, w5, w6) Distance Distance Correct

to correct to incorrect classification

(1, 0, 0, 0, 0, 0) 0.273 0.928 541/600

(0, 0, 0, 1, 0, 0) 0.255 0.903 537/600

(0, 1, 0, 0, 0, 0) 0.202 0.255 440/600

(0, 0, 0, 0, 1, 0) 0.151 0.203 448/600

(0, 0, 1, 0, 0, 0) 0.196 0.205 263/600

(0, 0, 0, 0, 0, 1) 0.135 0.143 276/600

(1, 1, 1, 0, 0, 0) 0.671 1.389 547/600

(0, 0, 0, 1, 1, 1) 0.541 1.249 543/600

Scenario 1 indicates Steinization across centering points with a noise level of 0.50, as

described in the Methods section. The first column presents the average, over 600

data sets, of the weighted L2 distance w1

∑
i ||µ̂0(θi)− µ0,correct(θi)| |

2/
∑

i,j L̂0(θi, θj)
2 +

w2

∑
i ||µ̂1(θi)− µ1,correct(θi)| |

2/
∑

i,j L̂1(θi, θj)
2 + w3

∑
i ||µ̂2(θi)− µ2,correct(θi)| |

2/
∑

i,j L̂2(θi, θj)
2 +

w4

∑
i ||µ̂0,Stein(θi)− µ0,correct(θi)| |

2/
∑

i,j L̂0(θi, θj)
2+w5

∑
i ||µ̂1,Stein(θi)− µ1,correct(θi)| |

2/
∑

i,j L̂1(θi, θj)
2+

w6

∑
i ||µ̂2,Stein(θi)− µ2,correct(θi)| |

2/
∑

i,j L̂2(θi, θj)
2, with notation as in the Methods section. The

second column presents the average, over 600 data sets and 3 incorrect classifications, of the

analogous quantity with µ0,correct, µ1,correct, and µ2,correct replaced by µ0,incorrect, µ1,incorrect, and

µ2,incorrect. The third column indicates the number of the 600 data sets for which minimization of

weighted L2 distance yields a correct classification.
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Table 2: Numerical study results — Scenario 2

(w1, w2, w3, w4, w5, w6) Distance Distance Correct

to correct to incorrect classification

(1, 0, 0, 0, 0, 0) 0.126 0.787 552/600

(0, 0, 0, 1, 0, 0) 0.125 0.784 552/600

(0, 1, 0, 0, 0, 0) 0.056 0.110 550/600

(0, 0, 0, 0, 1, 0) 0.049 0.102 550/600

(0, 0, 1, 0, 0, 0) 0.051 0.059 374/600

(0, 0, 0, 0, 0, 1) 0.042 0.050 379/600

(1, 1, 1, 0, 0, 0) 0.233 0.957 563/600

(0, 0, 0, 1, 1, 1) 0.216 0.937 561/600

Scenario 2 indicates Steinization across centering points with a noise level of 0.25, as described in

the Methods section. The columns are defined as in Table 1.
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Table 3: Numerical study results — Scenario 3

(w1, w2, w3, w4, w5, w6) Distance Distance Correct

to correct to incorrect classification

(1, 0, 0, 0, 0, 0) 0.272 0.938 546/600

(0, 0, 0, 1, 0, 0) 0.269 0.927 545/600

(0, 1, 0, 0, 0, 0) 0.205 0.260 453/600

(0, 0, 0, 0, 1, 0) 0.200 0.255 453/600

(0, 0, 1, 0, 0, 0) 0.200 0.209 253/600

(0, 0, 0, 0, 0, 1) 0.196 0.204 253/600

(1, 1, 1, 0, 0, 0) 0.677 1.407 551/600

(0, 0, 0, 1, 1, 1) 0.665 1.386 551/600

Scenario 3 indicates Steinization across outcomes and orders with a noise level of 0.50, as described

in the Methods section. The columns are defined as in Table 1.
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Table 4: Numerical study results — Scenario 4

(w1, w2, w3, w4, w5, w6) Distance Distance Correct

to correct to incorrect classification

(1, 0, 0, 0, 0, 0) 0.125 0.784 554/600

(0, 0, 0, 1, 0, 0) 0.125 0.782 552/600

(0, 1, 0, 0, 0, 0) 0.055 0.109 543/600

(0, 0, 0, 0, 1, 0) 0.055 0.108 544/600

(0, 0, 1, 0, 0, 0) 0.050 0.058 354/600

(0, 0, 0, 0, 0, 1) 0.050 0.058 352/600

(1, 1, 1, 0, 0, 0) 0.230 0.951 559/600

(0, 0, 0, 1, 1, 1) 0.229 0.948 559/600

Scenario 4 indicates Steinization across outcomes and orders with a noise level of 0.25, as described

in the Methods section. The columns are defined as in Table 1.
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