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Abstract 

 

In this research, fatigue crack formation from two types of corrosion pits at a 

circular hole was investigated under uniaxial fatigue.  Through pits and corner pits were 

created on the edge of a circular hole in test specimens using an electrochemical process. 

Specimens of 2024-T3 aluminum alloy were subjected to cyclic uniaxial loads with stress 

ratio of R = 0.5 in both air and saltwater environments. A fracture mechanics approach 

was used to investigate the crack initiation and crack growth from corrosion pits. 

Specimens with a through pit at the edge of a circular hole had a closed form solution to 

predict stress intensity factor range, ∆K, which was in agreement with finite element 

analysis. In addition, specimens with a corner pit do not have a closed form solution and 

finite element modeling was used to determine stress intensity range. Optical and electron 

microscopy provided an accurate method to measure the size of corrosion pits. Exposure 

to saltwater reduced the number of cycles for crack initiation in both types of corrosion 

pits. This reduction is up to 90% for through pits and up to 75% for corner pits. The 

required number of cycles for crack initiation for corner pit specimens is less than for 

through pit specimens. Here, the number of cycles decreases up to 94% in air and up to 

88% in saltwater environment. There was a good agreement between crack growth rates 

in machined notch specimens and the specimen with through pit. 
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CRACK INITIATION AND GROWTH BEHAVIOR AT CORROSION PIT 

 IN 2024-T3 ALUMINUM ALLOY 

1. Introduction 

 1.1 Corrosion and Fatigue Effects 

The most essential aspects of human life in the modern era, including infrastructure 

and industrial growth, are dependent on technology. The latter is growing at a faster pace 

than anticipated. Corrosion is a great concern in all industries since corrosion affects the 

longevity of products, hence reducing the design life, cost and efficiency. Corrosion also 

leads to loss, efficiency and contamination of products. The United States Air Force 

(USAF) has a great deal of concerns with respect to fatigue and cracking that costs the 

United States (US) billions of dollars annually in order to overcome the effects of fatigue 

and corrosion cracking for safety, economy and conservation of USAF property.  Metal 

corrosion is caused by exposure to chemicals and oxides, most commonly by exposure to 

the environment [30]. 

Corrosion is defined as the deterioration of a metallic material caused by a reaction 

between the metal and its environment or surroundings in the presence of an electrolyte, 

cathode, anode and an electric circuit. Corrosion can be mitigated by the use of several 

methods, including coatings, chemical inhibitors, non-corrosive or stainless steel materials 

selection, protection by cathode, etc.  Proper understanding of corrosion is crucial for the 

development of corrosion prevention methods.  The dissolution of metal occurs at anode 
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and the process starts in the presence of cathode, therefore the corrosion reaction can be 

mathematically described as follows [13, 30]: 

                      

   General anodic reaction:    M(s) → Mn+ + ne−                           (1.1) 

                       General cathodic reaction: Mn+ + ne− → M(s)                           (1.2) 

 

These equations show that electrons are transferred between the metal and its 

environment to create ions and excess electrons. These reactions must occur in an 

electrolytic solution to allow for the transfer of electrons. For this process there must be an 

anodic surface which will donate the electrons and a cathodic surface which accepts these 

electrons [13]. 

One of the most important metals that is highly resistant to corrosion is aluminum. It 

is widely used because it is highly efficient and economical. The oxide film that develops 

on the aluminum alloys acts as a barrier in protecting the alloy from different environmental 

factors. Therefore, aluminum alloy can be used even in aggressive environment as it can re-

form easily from any attack or loading that causes deformation. In general, the corrosion 

reaction is spontaneous and the reaction occurs in acid solutions because of the proton 

reduction and oxidation. Aluminum alloy is strongly affected by corrosion only in highly 

concentrated acidic solutions. In aqueous solutions that are neutral, the oxide film helps in 

protecting the alloy from passive reactions [9]. 

The USAF is undertaking a great part of research to enhance and control the cause 

of fatigue and corrosion cracking as the designed life period of the USAF fleet has to serve 

its purpose and also reduce the cost of operations and maintenance. Aircraft components 
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under repetitive cyclic loading in corrosion environments often suffer from fatigue failure. 

Fatigue cracking over time develops into physical failure, affecting the metal body of the 

aircraft and thus affecting the service life of the aircraft. Structural design in the early 

development of aircraft was on strength, but now designers also deal with safety, corrosion 

fatigue and maintenance etc. Fatigue is of high concern as the attack of fatigue is seldom 

seen or noticed until failure occurs. Corrosion fatigue implies that a metal/body is exposed 

to a harsh environment in order to cause a corrosive reaction. Environment plays a vital role 

as a catalyst since it contains water in form of vapors and oxygen, which are sufficient for 

the aircraft to be affected by corrosion fatigue, as the aircrafts are meant to spend most of 

their life in such environment. There are many such other sources that are found in 

environment that affect the pitting and fatigue crack growth [19, 31]. Several research 

programs have been approved by the US government regarding fatigue cracking. The 

aircrafts’ sustainability required understanding the behavior and growth of corrosion 

fatigue, crack initiation, crack growth; which leads to the need of systematic approaches 

and the understanding of factors that affect operations and service life. Figure 1.1 shows the 

annual (approximated) corrosion costs for different industry sectors. 

 



4 

 

 

 

Figure 1.1: Annual approximate corrosion costs [17]. 

1.2 Corrosion Types 

There are many ways that corrosion causes failure. In general, corrosion is 

characterized into two forms: localized and generalized. Corrosion occurs on the surface of 

the metal causing corrosion pits which help in the formation and initiation of cracks. 

Corrosion pits form on the surface and act as a starting point for the crack to grow and 

corrode the entire body. Crack development on the surface is generally caused due to 

oxidative attack of oxides on the metal, and is observed everywhere in the environment 

[10]. The atmosphere helps in the development of a corrosion pit and it can be identified 

over the period of time; therefore preventive measures can be taken. Hydrogen 

embrittlement from the atmosphere itself is enough to cause cracks; hydrogen is a small 

element and as a result, it attacks on the metal body of the aircraft and it is difficult to 

prevent such contamination. Corrosion attacks in a non uniform fashion, leading to the 
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development of pitting, corrosion at cracks, internal corrosion and galvanized corrosion; 

which results in dangerous metal degradation such as on the aircraft’s body parts [4, 13]. 

Corrosion fatigue implies that a metal must be exposed to a harsh corrosive environment in 

order to cause corrosion pit which develops into crack, as shown in Figure 1.2.  

 

Figure 1.2: Types of corrosion and pit formation [33]. 

 

Corrosion fatigue is also an important parameter for crack formation that leads to 

failure of the metal due to repeated and cyclic loading along with an intense corrosive 

environment. This repeated and cyclic loading process is called fatigue failure. In general, 

corrosion pits may not be noticed until complete failure of aircraft [6, 33]. This leads to an 

important aspect of this research: the effects of crack initiation due to corrosion pit and 

fatigue. 
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1.3 Background 

The development of a crack or the process of crack initiation starts at corrosion pits 

and propagate deep into the metals and over time leads to the failure of a part or of the 

entire body [5, 38]. An extensive amount of research has been conducted on the metals that 

are typically used for structural purposes. In the aircraft industry, there are few materials 

that used in aircraft structure, and aluminum alloy is one of those metals. Aluminum alloy 

has great strength and great endurance when subjected to repetitive loading. The research 

by McEvily explains the crack growth caused by fatigue that developed from the corrosion 

pits [18]. Most of his work deals with corrosion crack propagation in aluminum alloy. It is 

important to know about fatigue and corrosion individually, but it is much more useful to 

explore how both processes work together during crack growth. Studies from numerous 

research laboratories used aircraft type loading (tension-tension loading) to determine that, 

not surprisingly, fatigue life decreases in the presence of a corrosive environment [6, 9, 31, 

38]. While this information is very useful, these studies focused primarily on the crack 

growth after the initiation of the man-made crack. In other words, they focused on the crack 

growth after the crack has formed. Some research in this area has been conducted, but the 

extent of this research is limited when compared to the previously mentioned research 

topics. 

 The development of cracks from corrosion pits needs to be understood because it 

deals with both fatigue crack initiation and growth which requires concepts of fracture 

mechanics. Corrosion crack initiation or growth can develop when exposed to continuous or 

intermittent humid environment during the service. Once corrosion pits are formed, cracks 

will initiate and propagate and the failure in many engineering structures are observed due 
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to these cracks that are formed and developed by corrosion pits [19, 24]. Small corrosion pit 

formations that cause loss of metal can develop into a major issue that may lead to failure of 

the aircraft. These corrosion pits that cause crack initiation due to anodic and cathodic 

reactions may not be seen immediately [10, 29]. Corrosion pits are often small in 

appearance near the surface and may be large when crack initiation propagates deeper into 

the metal. In many studies the concept of fracture mechanics has been used. For example, 

Lee and Dorman [20] concentrated on the crack growth rate of corner pit on a hole and 

cycles that were required to cause them, in their study. They used the fracture mechanics to 

estimate initial stress intensity range. The rest of the crack growth is specified only as a 

function of the number of cycles. As a result, there is a need to investigate not only the 

transition from corrosion pit to fatigue crack growth, but also to study this transition using 

fracture mechanics principles. 

1.4 Problem Statement 

Understanding of the transition from a corrosion pit to a fatigue crack is a very 

important issue. The focus of the current research is in this area. There have been many 

researches already completed for crack growth and pit formation individually [4, 5, 8, 11, 

36], but further research is required to examine the interactions between the two studies 

using the fracture mechanics principles. Furthermore, more research is necessary for the 

crack growth in specimens that have pits that exist at holes. Since there has been no study 

on both crack initiation and growth behaviors of 2024-T3 at corrosion pit, in this study 

these behaviors will be investigated. For the experiments, 50.8 mm wide and 3.2 mm thick 

aluminum specimens with 6 mm diameter circular holes at the center were machined. Two 
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types of corrosion pits were electrochemically created at the hole edge and subjected to uni-

axial fatigue with stress ratio of 0.5 in both ambient air and saltwater (3.5% NaCl)  

environments. A high magnification camera was used to observe and measure the crack 

initiation and growth per cycle. Additionally, the scanning electron microscope was used to 

examine the fracture surfaces. Finite element analyses were conducted to calculate the 

stress intensity factor range. These ranges were then correlated with the measured crack 

initiation life and crack growth rates. This research provided understanding of transition 

from corrosion pit to long crack in both air and saltwater environments. Current research 

emphasizes fatigue crack initiation and growth behaviors from a corrosion pit on the 2024-

T3 aluminum alloy. This study will provide a great deal of useful information for fatigue 

crack initiation and growth from a corrosion pit and will make useful data for uniaxial 

loading to better predict the lifetimes of an aging fleet of aircraft, and finally will help to fill 

the void that exists from previous studies [4, 5, 8, 11, 13, 25, 36].  
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2. Background 

  2.1 Corrosion Theories 

   Aluminum alloy containing noticeable amounts of soluble alloying elements such 

as zinc, magnesium are susceptible to stress corrosion cracking (SCC), an analysis of failure 

shows the way these serviceability failures occurred and the kind of reaction led to the 

initiation and propagation of stress corrosion cracks that caused failure. Alloys such as 

7079-T6, 7075-T6 and 2024-T3 have contributed more than 90% of failures that have 

occurred due to service failure of all high strength aluminum [5]. Corrosion is a problem as 

it is energetically favorable for an alloy to return to its oxidized state from cultivated state 

as energy is required to create metals for both the mentioned cases. Systems as explained in 

thermodynamics are attracted towards states of higher entropies of disorder and energy of 

lower levels, thus resulting that any metal will linearly reach a corroded state and the best 

that could be done is to protect and try to reduce the possibility of occurrence of corrosion 

and if corroded replacing the affected metal parts would prevent any disastrous events. 

Electrochemistry and thermodynamics explain the theory of corrosion as corrosion is a 

process that evolves naturally. 

          The electrochemical theory of stress corrosion was developed in 1940 to explain 

stress corrosion. The theory defines the electrochemical reaction occurs when a transfer of 

electrons takes place, resulting in oxidation and reduction. Oxidation is a process in which a 

metal tends to lose electrons during the reaction and reduction is a process in which a metal 

tends to gain electrons. This phenomenon of losing or gaining of electrons is known as 

electrochemical process, to explain in a more approachable way, basically a cathode, anode 
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and an electric circuit connecting them is required to cause corrosion. Dissolution of metal 

occurs on the node where the corrosion enters the electrolyte and propagates through 

cathode. 

Electrolytic solution is required for this reaction to take place so that transfer of 

electrons is possible, for this process electron that are lost at anode flow through the 

metallic circuit towards the cathode and develop a cathode reaction.  The same metal can 

consist of these anode and cathode regions and the presence of an electrolytic solution is 

required to complete this process as shown in Figure 2.1. A great deal of corrosion process 

takes places for electrochemical reactions. These regions of anode and cathode can also be 

adjacent to each other in a metal [5, 13]. 

 

 

 

Figure 2.1: Reaction mechanism of electrochemical process [5]. 

 

The anodic and catholic regions may shift when the process of electrochemical 

reaction takes place, which explains that corrosion can occur in dissimilar metals which are 



11 

 

in proximity to each other. This is known as localized corrosion or galvanic corrosion. In 

other words, this type of corrosion is also called as metal to metal corrosion. This type of 

corrosion attacks the junction or connecting points where the metals are connected and this 

type of corrosion attack is caused due to metals of different composition are easily 

vulnerable to attacks. Presence of galvanic series, electrical contact or presence of an 

electrolyte causes galvanic corrosion attacks [9]. In this type of corrosion the electron 

transfer occurs when current is generated during reaction, where the loss of mass and rate of 

corrosion can be determined by using Faraday’s law. 

In Faraday’s law a systematic relationship between the dissolution metal rate at any 

potential of a metal and the anodic partial density of current for metal dissolution is linear 

[3]. The moles of the metal that is corroded and the total amount of charge that is carried by 

the moles of that metal can be related by Faraday’s law, 

 

                                                Q = F∆Nn                                               (2.1) 

 

Where, ‘F’ is Faraday’s constant, ‘∆N’ is change in number of moles of the material, and 

‘n’ is the number of electron per moles of the material. The rate or current is expressed by 

equation 2.3, in which ‘I’ is total current in amperes and ‘t’ is the time/duration of the 

reaction expressed in seconds [12]. 

 

                                                  Q = ∫ Idtt
0                                                (2.2) 

 To understand corrosion phenomenon the study of electrochemical thermodynamics 

and electrochemical kinematics has to be understood. The rate of corrosion depends on the 
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kinetics of an electrode and it is defined in general, if all parameters of electrochemical 

anodic and cathode partial reactions are known [12]. 

  2.2 Pitting Corrosion 

Pitting corrosion is a form of localized corrosion that produces attacks in the form of 

pits, crevices or spots. When there is loss of volume in a metal such that cavity or crack is 

formed on the surface that leads to formation of pits. When left unnoticed pits can 

propagate into the metal causing holes and thus destroying the metal. This type of corrosion 

is one of the affective and dangerous type of corrosion due to uncertainty of recognizing 

and forecasting of pits. Tiny pits can cause severe problems as the formation of it in a 

crucial place of the metal structure can lead to calamity and even cause loss of life. This is 

true and it is important to identify when pits are of shapes as explained in Figure 2.2. 

 

 

Figure 2.2: Different shapes of pits [34]. 

 

The formation of pits is observed where there is loss of a protective layer which is 

lost due scraping, removing or due to environmental conditions. This type of losing the 
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protective layer possesses a problem as certain area of any size when left unprotected 

influences in causing corrosion and as a result the rate of formation of corrosion pits tend to 

grow at an unexpected rate. Pitting corrosion may occur in alloys and metals in neutral or 

acid solutions containing chlorides and this type of corrosion occurs in place where the 

layer protected by passive nature might be deteriorated or damaged. Few types of attack can 

penetrate into great depth with a short period of time. Under conditions in the presence of 

chlorides and exaggerated temperatures pits may form on the surface of the metals and the 

propagation of these pits are dependent on the environment and type of corrosion attack and 

can lead to perforation. For metals that are passive in nature a uniform form of pitting 

corrosion is not usually formed or it is possible in the presence of more exaggerated 

environments [33]. These pits in time can cause an increase in parts of the metal that are 

corroded and lead to catastrophic failure. 

 The cracks known as fatigue cracks grow from these pits which act as nucleation 

sites. For many materials of the structure such as Al, steel the growth of fatigue cracks from 

corrosion pit stands legitimate and in positive conditions, even titanium can be affected due 

to this type of attack. It is observed that some values for the size of pits that are critical or 

rather threshold values below which the nucleation of fatigue crack is not possible [6]. 

Under certain conditions that prevail on surrounding defects the pit may develop into a 

crack though the size of pit is below the threshold value [31]. In pitting corrosion, the 

corrosion attacks start at the surface of the passive layer and develop into a crevice or crack 

corrosion that is more of a geometrical problem which may be of granular or inter-granular 

attacks. Presence of aggressive anions and the higher rate of equilibrium potential of the 

material called pitting potential cause passive materials naive enough to come under pitting 
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corrosion attacks. Metallography helps to identify the configuration of the pitting corrosion 

through which pit shape, pit depth, pit size and the area of the pit can be explained [13, 34]. 

 Pits can also form in regions where the surfaces of anode and cathode are adjacent to each 

other. In general the identification of pits can be done by detecting the regions of cathode 

which are not corroded. This kind of identification may be difficult as the protective layer 

can cover the regions of cathode leading to change in place or change in geometry. The 

formation of ions of hydrogen on the surface of the material is formed in this type of a 

localized reaction of cathode. Thus formed hydrogen, which is unwanted, can travel to pit 

and cause embrittlement developing lattice structures [24]. This process, called hydrogen 

embrittlement causes the metal to weaken and is sufficient to cause initiation of cracks 

under cyclic loading [13, 30].    

 2.3   Fatigue Corrosion 

Corrosion fatigue is important and the mode of failure caused by it is complex in 

nature for the metals which are used for high performance in tedious and detrimental 

environments. The application of cyclic varying loads on any structure and in the presence 

of active chemical environments that need for longevity of the design period of any 

structure is important. The prediction of the long term life component performance under 

these cyclic loads and environmental factors is high importance. Corrosion fatigue is 

defined as the damage of a metal or sometimes the whole body due to accumulated and 

repetitive loading cycle in attendance of chemically active environment. In the past, 

corrosion fatigue has affected airspace systems, power systems, nuclear systems, turbines, 

pipelines, marine constructions and many more industries. The importance of experimental 
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methods, design and loading, formation of cracks and measurement and other related 

aspects are to be exemplified in order to overcome corrosion fatigue. Moreover, 

electrochemical environments and mechanical experiments and result analysis regarding 

fatigue can be helpful in understanding the concept of corrosion fatigue. Simultaneous 

loading accompanied by tensile stresses and aggressive environment leads to initiation of 

corrosion cracking which is caused due to fatigue failure mechanisms. The process of 

fatigue is assumed to cause rupture or damage to the protective passive film, which causes 

an acceleration of corrosion and helps in forming pits or crevices. Corrosion fatigue failure 

may cause even at lower rates of loading and at a much faster pace of time [19]. The 

fracture caused by fatigue is mostly brittle and the crevices formed as trans-granular. When 

stresses are applied at high frequency fine cracks are formed. Importance in understanding 

the mechanisms behind corrosion fatigue is necessary in order to interpret the lab results. 

Corrosion fatigue is similar to stress corrosion cracking in many ways, such as rupture, re-

passivation and other aspects [34]. Size and shape play an important role in formation of 

crack growth and once the size passes the point it has a comparatively less effect on crack 

growth [2]. The smaller to average pits are active when compared to larger pits which are 

fewer in number. These small to average pits helps in formation of a crack which would 

propagate deep through the material [31] as shown in Figure 2.3.   
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Figure 2.3: Narrow and deeper cracks [31]. 

 

The development of pits to crack growth due to fatigue is related to shape factor, 

and at higher aspect ratio fatigue cracks that are deeper and narrow are formed rather than 

wider cracks [31]. These formed pits are anisotropic in nature and the size is larger at the 

grains in the direction of propagation, which shows that the pit grow along the surface of 

the metal due to cyclic fatigue that enhance to the propagation of cracks [30].   

  2.4 Effects of Corrosion on Fatigue Life 

Mechanical variables and mechanical driving forces are factors that should be 

considered for effects of corrosion fatigue. The variables such as conductivity, temperature 

and other sources are responsible for the metal to get damaged.  Firstly the formation of 

crack is a complex process that can result from the formation of pits, electrochemical 

reaction conditions including the role of strain in creating crevices. Secondly corrosion 

fatigue is also dependent on time factor.  Therefore, slow rate of loading causes more 



17 

 

damage than higher loading rates.  Increasing the strain rate at cracks starting point can 

cause a detrimental effect on the design life period by enhancing electrochemical reactions. 

One of the prominent factors is an electrochemical environment that influences to cyclic 

deformation of the structure. Loops that are caused due to high temperatures and water 

under inactive environmental conditions affect the relation between stresses and strains 

causing elastic and plastic deformation and hence lead to micro cracking [34]. Very low 

values of stress failures and very short failure timing can be absorbed in a corrosive 

environment, as shown in Figure 2.4, compared to noncorrosive environment.  

 

 

Figure 2.4: Number of cycles vs. stresses [34]. 

To estimate the life of the structure with the existence of crevices, the loading and 

experiment is carried out even in presence of the crevice. The formation of the pit under the 

surface, the shape and cross section of the pit/hole is difficult to determine the value of 

stress intensity factor. Unless failure occurs, these two factors, the stress intensity and 

change in stress intensity cannot be determined. On inspection of the initial corrosion crack 

the values can be obtained and this helps in improving fatigue life. Fatigue corrosion failure 
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can be prevented from minimizing cyclic stresses, reducing and distributing stresses, 

change in design, avoiding internal stresses, more resistive material should be used; a 

corrosive free environment would be of great prominence [4, 16].  

2.5 Fracture Mechanics 

Fracture mechanics is the study of the propagation of cracks through a material [2]. 

This field uses solid mechanics to determine the crack growth through the relationship 

between an applied load and the material’s resistance to fracture. Crack propagation is 

broken down into three different modes. Mode I is known as the opening mode and it is a 

result of a force normal to the direction of crack growth. Mode II is known as the sliding 

mode and it is caused by an in-plane shear stress. Mode III is known as the tearing mode 

and it is a result of out of plane shear stress [2]. Fig. 2.5 illustrates all three modes and the 

forces which cause them. Since the current research involves tensile testing, mode I is the 

mode of primary concern. 

 

Figure 2.5: The three modes shapes referred to in fracture mechanics. Mode I is the 
mode of concern for the current research [2]. 
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For each of these modes, the effect on an applied force on crack growth has a unique 

relationship. For mode I, the primary measure of the effect of the load on crack growth is 

known as a stress intensity factor  KI , Equation 2.4, where σ is the applied stress and ’ a’ is 

the crack length.  

                                                   KI =  σ ∗  √π ∗ a                                    (2.4) 

 

This stress intensity factor accounts for the flaw in a given specimen, in this case ‘a’ 

crack, will continue to grow as well. In the case of cyclical loading, the stress intensity 

factor is modified to account for the maximum and minimum stresses. The range of the 

stress intensity factor ∆K, Equation 2.5, is used in the Paris law [8]. 

                ∆K =  Kmax −  Kmin                                     (2.5) 

 

Also, Equation 2.6, to define the rate of the crack growth as a function of the stress intensity 

factor ∆K. Material constants are denoted by m and C. As Paris law states, as the stress 

intensity factor increases the growth rate of crack also increases. 

                                                      da
dN

= C ∗ ∆Km                                     (2.6) 

 

Figure 2.6, illustrate three regions or three modes are observed. At low levels of 

stress intensity represented as region 1, the crack growth rate is rapid and sensitive to stress 

intensity within the region, a value where the stress corrosion crack growth rate is very low 
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Figure 2.6: Typical fatigue crack growth behavior in metals [9]. 

 

pointed or determined and this value may also be zero. The second region represented the 

rate of crack growth depends on factors like temperature and properties such as viscosity 

[2].   

2.6 Previous Research 

Pitting and fatigue have always been interest of research in the recent past. The 

foundation step for this area of research has been laid by McEvily and Paris; they 

concentrated on the growth of cracks and their mechanism and led to the fundamentals of 

fracture mechanics. The research conducted by them helped a lot in studying how corrosion 

pit leads to the initiation of crack and the growth of crack rates, influence of stresses 

induced due to cyclic loading [18, 21]. The stress intensity factor and time factor explained 

by Paris is highly preferred to predict the results of a specimen. In recent times an intensive 

research was conducted at the microscopic level in order to evaluate the proposed 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=TxFSlqcn-X5C3M&tbnid=xbe6jzGLXp0RLM:&ved=0CAUQjRw&url=http://www.ascgenoa.com/newsletter/9/&ei=udx9U87tNObhsASB8YLYAw&bvm=bv.67229260,d.aWw&psig=AFQjCNFEkRHUSE0E_UwGzRQa4qQ5_LGLBA&ust=1400843811034004
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mathematical concepts. Forman’s research on 7075-T6 under uni-axial cyclic loading, 

resulted in flaws that had an effect of fatigue nature and he couldn't measure these flaws 

that affected the metal’s fatigue behavior [9]. Wright and White idealized a conceptual 

study in which loading amplitude is varied in order to produce marker bands from and 

examined with the use of electron scanning microscope [37].  Similar type of research with 

the help of marker bands was conducted by Burns et al for fatigue crack growth. The rate of 

crack growth is compared and correlated to the values that are predicted by using the 

method of creating these marker bands. An investigation on pitting corrosion effect was 

studied by Wang but he did not apply the concepts of fracture mechanics like Forman used 

in his research [4, 5, 11, 36]. In addition to long crack growth research, Forman’s work in 

the study of where and how cracks initiate in aluminum alloy specimens spawned a totally 

new area of research that concerned itself with the crack initiation [8, 11]. Forman’s work 

confirmed that the stress intensity factor range was a primary factor in crack growth rate. 

He also determined that cracks more easily initiated from engineering defects such as 

scratches or nicks in the surface. He performed his experimental testing using uni-axial 

cyclic loading in 7075-T6 aluminum specimens in a non-corrosive environment [11]. 

Previous studies state that the presence of corrosive environment affects and reduces 

fatigue life [13, 25, 28, 38]. This type of corrosion attack may result in reducing fatigue life, 

so it is a significant point to account for this type of attack to predict the lifetime of the 

structure. Pao et al. conducted various researches and stated that the presence of corrosive 

environment helped in decreasing the fatigue life and decreased the crack growth initiation 

[28]. To explain this concept of crack formation, a study on micro crack formation under 

repetitive loads was conducted by Lukas [22]. This research stated that a noticeable effect 
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in initiation of fatigue growth due to this micro cracks, but was not able to explain a method 

for determining these phenomena. The formation of cracks often initiated from the pits on 

specimens. For the specimens without corrosion pits there was no particular region from 

which such a crack developed [22]. Later Burns developed a method to determine this 

phenomenon of the initiation of crack [5]. The surface near the pits, in which initiation of 

crack took place, had a significant influence on crack initiation behavior.  

Various studies on development of pit to crack using fracture mechanics were 

conducted in laboratories and did not have any corrosive environment. Lee conducted some 

tests to examine the fatigue life under the influence of pre-existing corrosion pits in 2024-

T3 and found that crack initiated from corrosion pit [19]. However, he focused on pre-

existing corrosion specimens from saltwater. After analysis he concluded that fatigue life of 

2024-T3 was reduced due to the presence of pitting corrosion and post fracture analysis 

helped to identify nucleation of crack, and variation of fatigue life was correlated with crack 

nuclei size variation [19]. There have been several studies on the transition from pit to crack 

done experimentally under laboratory air and corrosive environments. Air Force Institute of 

Technology (AFIT) also conducted some fatigue tests. Misak et al. conducted a research on 

fatigue crack growth uni-axial loading condition on 2024-T3 aluminum alloy [25]. Also, 

they developed finite element models to predict the stress intensity factor for a circular hole 

with a machined notch [25]. 

Lee and Dorman studied the fatigue of specimens of aluminum alloy in corrosive 

environment [20]. The study did not use the concept of fracture mechanics and did not try 

to calibrate the crack growth rate during the transition of crack from corrosion pit. The 
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result of this study is explained in Table 2.1 in terms of aspect ratio, pit radius, and the 

number of cycles [20]. 

Table 2.1 Results from a study by Lee and Dorman [20]. 

 

Moreover, there has also been many researches and experiments in the field of stress 

concentration factors and stress intensity factors, and for a wide range of shapes. There 

already exists a solution for calculating the stress intensity factor of a circular hole with one 

radial crack at the hole boundary in an infinite plane.  

In addition to all these, Hunt did a research on fatigue crack initiation and growth 

from two types corrosion pits at a circular hole in a 7075-T6 aluminum alloy subjected to 

uniaxial loads with stress ratio of R = 0.5 in both air and saltwater environments [14]. His 

work used a fracture mechanics approach to explore the transition from corrosion pit to 

crack growth. This research showed that corner-pit specimens initially have a smaller crack 

growth rate than through pit specimens due to the propagation of a quarter-circular crack 

front through the thickness of the sample [14].  
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 2.7 Purpose of Research 

The purpose of this research is to determine the crack initiation and growth behavior 

from a corrosion pit on the edge of a hole in 2024-T3, which is a common aircraft grade 

aluminum alloy. The following list provides some of the considerations of this research: 

• Study crack formation from through and corner pit. 

• Use concept of fracture mechanics in this study. 

• Study crack initiation in ambient air and saltwater environments. 

• Calculate stress intensity factors for through and corner pits. 

• Make a comparison with previous studies. 

2.8 Approach 

In this thesis, the crack initiation and growth behavior from a corrosion pit that is 

electrochemically created at the edge of a hole on the specimen machined from 2024-T3 

aluminum alloy are determined. In the specimens two types of corrosion pits are made, 

corner pit and through pit, dissimilarity among these two is explained in this thesis. The 

primary outcome of this thesis is to study the relationship between crack initiation duration 

with stress intensity factor of the specimens with through and corner pits after being 

exposed to air and saltwater environment respectively. Also, an approach to determine 

stress intensity factor was used for the hole with corrosion pit and a thin plate with crack in 

finite element analysis software, Abaqus. This approach is adapted as there are neither 

closed form solutions nor accepted models of the previously mentioned shape of specimens. 

Secondly the goal of this thesis is to determine the crack growth rate with respect to stress 

intensity factor for the specimens. Each test was done using cyclic loading in order to 
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replicate a fatigue environment.  Fracture mechanics concept is used for this research for 

explanation the results. Likewise, there is presently no model for establishing the stress 

intensity factor for specimens with a crack from a corrosion pit. This method of developing 

a finite element model and then correlating this model to experimental testing by using 

fracture mechanics will give accurate, useful, and consistent results which will help to 

extend the life of the Air Force’s aging fleet. 
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3. Methodology 

3.1 Material 

In this research 2024-T3 aluminum alloy is used. It is a commonly used aircraft 

structure material. Tables 3.1 and 3.2 show the chemical composition and the material 

mechanical properties.  

Table 3.1: Component materials of a typical sample of 2024-T3 aluminum alloy [35]. 

Element  %component 

Aluminum, Al 90.7-94.7 

Chromium, Cr Max 0.1 

Copper, Cu 3.8-4.9 

Iron, Fe Max 0.50 

Magnesium, Mg 1.2-1.8 

Manganese, Mn 0.3-0.9 

Other, each Max 0.05 

Other, total Max 0.15 

Silicon, Si Max0.5 

Titanium, Ti Max 0.15 

Zinc, Zn Max0.25 

 

Table 3.2: Mechanical properties of a typical sample of 2024-T3 aluminum alloy [35]. 

Material Property Value 

Ultimate Strength 483MPa 
Yield Strength 345 MPa 
Young’s Modulus 73 GPa 
Shear Modulus 28 GPa 
Poisson’s Ratio 0.3 
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The corrosion fatigue resistance of aluminum alloys varies greatly. 2024-T3 has a 

high ultimate yield strength, which is considered very high aluminum alloy strength for use 

in high stress applications. Therefore, this is one of the most common used alloys in the 

aircraft structures, with its high strength and excellent fatigue resistance.  

3.2 Test Specimens 

 Figure 3.1 shows the dimensions for the uni- axial specimens.  Each specimen is cut 

from 2024-T3 rolled aluminum sheets using of a high-pressure water jet in the AFIT 

machine shop. After machining the specimen, the surfaces surrounding the hole on both 

sides were polished using 1000 grit sandpaper. The polishing allowed to have a clean 

surface before chemical reaction. After polishing an electrochemical corrosion procedure 

was followed [28]. The procedure begins with the corners of the holes’ bore being filleted 

with a razor-sharp blade. The radius of the fillet was approximately 0.2 mm. The fillet 

radius was checked with a magnifying lens to ensure the correct size. The radius is 

necessary because without it, the E-470 electroplating tape would not adhere well to the 

corner of the bore because of the 90 degree angle. The electroplating tape was used to 

create the shape of the corrosion pit. The electroplating tape serves as a shield against the 

electrochemical corrosion / etching. All surfaces that would be in contact with the tape were 

cleaned with isopropyl alcohol to ensure strong adhesion.  
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Figure 3.1: Diagram of test specimen. 

 

  Each type of pit required different taping configurations. The through pit shape was 

created by placing two 2.0 mm wide strips of tape approximately  0.25 mm apart on the 

edge of the hole perpendicular to the loading direction. The corner pits shape was created 

by placing a single 2.0 mm wide strip of tape with a 0.21 mm hole drilled in the center over 

the edge of the hole perpendicular to the loading direction. The hole was aligned so that it 

was centered over the edge and was bounded by the front face and the bore of the hole [14]. 

An example of both tape scenarios is shown in Figure. 3.2. 

 

6.0 mm 
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Figure 3.2: a) Tape configuration for through pit etching. b) Tape configuration for 
corner pit etching. Black arrows show the loading direction for each specimen [14].  
 

Once the tape was applied, the areas in which corrosion was not needed were coated 

with XP 2000 Stop-off lacquer. The lacquer was applied in a circular shape with a radius of 

approximately 2 cm around the hole in a single coat and allowed to dry for 12 hours. Once 

the lacquer cured, a small plastic cylinder was attached and secured to one side of the 

painted region using silicone caulking. The attached plastic cylinder acted as a container for 

the corrosive solution in order to protect the rest of surface area from the chemical reaction.  

The caulking was used to both seal and secure the plastic cylinder to the painted region in 

order to prevent the container from leaking. To prevent any of the solution from leaving 

through the hole, a 2.5 cm piece of tape was applied to the side of the hole that was opposite 

the lacquer coating. As a result, the only areas exposed to the corrosive solution were the 

areas that would be investigated and named as the corrosion pits. The caulking was allowed 
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to cure for 12 hours before completing the reaction. A solution of 0.1MAlCl3 + 0.86MNaCl 

+ HCl (pH =2) was used to corrode the aluminum specimen [14]. The chemical reaction 

was driven by a power supply. The positive output lead was clipped to the non-coated 

portion of the specimen, and the negative output lead was clipped to a platinum electrode 

that was submerged in the corrosive solution. During the reaction, hydrogen bubbles would 

form over the corrosion site and act as an insulator; ultimately stifling or stopping the 

reaction. A small brush or pipette was used to circulate the solution in the chamber and to 

remove the bubbles so that the reaction could continue at a satisfactory rate. After 

approximately 9-15 minutes, the corrosion pit reached the desired size and the reaction was 

terminated [14]. The solution was removed using a glass pipette. The plastic cylinder, 

lacquer, and tape were also removed from the specimen to expose the newly formed 

corrosion pit.  

Figures 3.3 and 3.4 show the two types of pits formed during the reaction. The 

specimen was then rinsed with water and dried thoroughly. The corrosion pits were 

measured using the Zeiss optical microscope.  The measured pit sizes were used in the 

calculations to approximate the stress intensity ranges for each specimen. The initial pit size 

and the approximated stress intensity ranges for each specimen are shown in Table 3.3. 

The specimens were labeled with a three letter code. The first letter (2) refers to the 

current set of specimens. The second letter refers to either air (A) or salt (S) environments. 

Finally, the third letter refers to the type of pit; either through pit (l) or corner pit (S).  
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Figure 3.3: Example of through corrosion pit.         

       

 

Figure 3.4: Example of corner corrosion pit. 
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Table 3.3: Details of test specimens.  

     * Initial ΔK values were calculated by FEA. 

3.3 Test Procedures 

 After preparing the specimens, they were tested under cyclical uniaxial loading with 

stress ratio of 0.5 in a material testing system machine, MTS.  Fatigue tests were conducted 

until either crack initiated and grew to a length of 17 mm or 1 million cycles without crack 

initiation.  

 Initially, the experimental applied loads were calculated using closed form solutions 

from a book written by Dowling shown in Equation 3.1, where a is the crack length, c is 

radius of the hole, w is the width of the specimen, Fmin and Fmax are the minimum and 

Specimen Pit Radius (mm) Pit Type Environment ∆K (MPa√m) 

 

 

 

2AI-01 0.5 Through Air 5.06 

2AI-02 0.30 Through Air 6.08 

2AI-03 0.30 Through Air 3.12 

2AI-04 0.28 Through Air 4.19 

2AS-01 0.51 Corner Air 3.89 

2AS-02 0.46 Corner Air 4.60 

2AS-03 0.35 Corner Air 3.43 

2AS-04 0.54 Corner Air 2.31 

2SI-01 0.44 Through Saltwater 5.40 

2SI-02 0.50 Through Saltwater 3.00 

2SI-03 0.38 Through Saltwater 3.75 

2SI-04 0.45 Through Saltwater 3.47 

2SS-01 0.45 Corner Saltwater 2.47 

2SS-02 0.34 Corner Saltwater 4.03 

2SS-03 0.38 Corner Saltwater 1.98 

2SS-04 0.50 Corner Saltwater 2.98 



33 
 

 

maximum applied loads respectively, and ∆KI is the stress intensity range for mode I 

loading [8].  This equation used the crack length, other geometric properties and applied 

loads to calculate the approximate stress intensity factor for a through crack originating 

from a circular hole with a radial circular pit.  

         

min
3 max

max

1
0.5 3 1 1.243 1I

FF
Fa aK a

c a c a wt
π

 
−        ∆ = ⋅ − ⋅ + − ⋅      + +     

 

 

This equation was used to calculate the stress intensity factor for the geometry of 

current experiment. The equation was thought to be accurate enough to give approximate 

values used in the calculation of future experimental methods. The results from the equation 

and the ones calculated by means of  the finite element analysis (FEA) are slightly different. 

These results are discussed in the Finite Element Analysis section of this thesis. After the 

tests the values from the FEA was used in the analysis of the tests.   

Figure 3.5 shows the test machine that was used in this research. This machine has 

three main part, load frame, camera, and software program. Software program can 

communicate with the load frame in order to get a required data from experiment testing. 

Also, MTS controls the loading situation where the crack growth must be monitored through 

external equipment. Result of the crack growth is small; therefore, a high fidelity and high 

magnification camera was a perfect fit. 

(3.1) 
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Figure 3.5: The floor-standing 810 mechanical testing system (MTS) [27]. 

 

In order to measure the crack growth as the number of cycles progressed, a Pixelink 

camera and software package were used to photograph and measure a crack length. Figure 

3.6 shows the test setup of the camera and the specimen in the grips of the MTS machine. 

The Pixelink software uses the pixels in the image to calculate a length of an object in the 

image. Calibration of the software and machine was set up in front of the camera so that the 

specimen was in focus and a picture of the hole was taken. By means of this the dimensions 

of the hole could be verified by the optical method.  
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Figure 3.6: The test setup. 
 

Then the software was calibrated so that the number of pixels across the diameter of the 

hole corresponded to the actual length of the hole. Particular attention was paid to the 

stability of the camera, care was taken so that the camera was not moved in anyway during 

the testing. During the testing the camera was not to be disturbed. Additionally, the camera 

and software were re-calibrated when a new specimen was tested. Furthermore, an 

incandescent light bulb was used to provide light for the picture where the angle of the light 

hit the surface of the specimen to expose cracks in their infancy. It is impossible to see the 

cracks until they reached a significant length if an incorrect lighting is used. Figure 3.7 

shows a chamber with saltwater (3.5% NaCl) installed on the specimen.   
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Figure 3.7: A chamber with salt water installed on the specimen. 

 When the crack reached a length of approximately 17 mm as shown in Figure 3.8, 

the test was stopped and the specimen was considered to have failed. This was done to 

preserve the fracture surfaces.  

 

Figure 3.8: Crack propagation for uniaxial loading. 
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3.4 Finite Element Modeling 

 As discussed in Section 3.3, there is a closed form solution for calculating the stress 

intensity factor of a crack that originates from a hole in a flat plate as given in Equation 3.1. 

To determine if this equation could be used to approximate the stress intensity factor of the 

test specimens, the specimens were analyzed by Abaqus, which is a finite element analysis 

(FEA) code. Abaqus requires a number of assumptions to be declared by the user. The 

author assumed the following throughout the modeling procedures [14]: 

 

 • The aluminum material was isotropic and homogeneous. 

 • The mechanical properties of the aluminum alloy were constant (E=73 GPa, 

ν=0.33). 

 • The pits are a uniform shape with smooth edges and no irregularities. 

 • There were no other flaws of any kind in the specimens and the crack initiated 

from the corrosion pit. 

 • The applied load was completely perpendicular to the crack growth direction. 

 • There is no variation in the applied loads [14]. 

 

       The test consisted of loading the specimen in tension in the longitudinal direction to 

determine the stress concentration factor caused by the hole [14]. After refining the mesh 

elements in finite element analysis, the values from Abaqus matched within 10% of the 

calculated values from Dowling Equation 3.1 as shown in Table 3.4. The final meshed 

models are shown in Appendix A. Moreover the mesh is more refined near the hole 

compared to the other area of the model. Global mesh of a uni-axial specimen is shown in 

Figure 3.9. 
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Figure 3.9: Global mesh of uniaxial specimen. 

 

Figures 3.10 and 3.11 show the global and the refined meshes of the specimens with 

the crack length of 0.25 mm and 15 mm. This mesh is more refined near the crack tip when 

compared with the other location of the specimen. Therefore, accurate stress intensity factor 

values will be achieved.  
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Figure 3.10: Global mesh of uniaxial specimen with a refined mesh around corrosion 
pit with a crack length of 0.25 mm. 
 

The next step is to develop a finite element model to confirm results from the closed 

form solution provided by a horizontal crack from the edge of the hole. The same 

refinement procedures were used as in the stress concentration factor scenario and final 

mesh is shown in Figures A.3.  
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 Figure 3.11: Global mesh of uniaxial specimen with a refined mesh around corrosion 
pit with a crack length of 15 mm.  
 

        The differences between the closed form and finite element solution are because of 

the assumptions of the equation. The closed form solution assumed an infinitely long and 

wide specimen. In reality, experimental specimens do not fulfill these assumptions 

therefore, deviation from the equation is expected. But in finite element analysis the 

dimensions were taken into account.   



41 
 

 

       After successful completion of a two-dimensional model of a hole with a horizontal 

crack, the mesh and element settings were applied to another different model consisting of a 

crack originating from corrosion through pit on a circular hole.  This second model more 

accurately mimicked the actual geometry of the specimens. The results for the initial ∆K for 

expected value of the closed form solution as well as the corresponding results of the finite 

element models are shown in Table 3.4. 

  

Table 3.4: ∆K values from the closed form solution and finite element solution.   

 

The pit diameter in the model was set and the pits were assumed smooth, i.e. 

uniform half-circles to reduce the complexity of the finite element model. The ∆K values 

predicted by Abaqus for through pit specimens for this model matched identically to the 

results from closed form solution.  
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After through pit specimens were modeled, the next step was modeling the corner 

pit specimens. For corner pit that requires three dimensional modeling, finite element 

analysis does have the ability to mesh complex shapes as shown in Figure 3.12. 

 

 
 

Figure 3.12: 3D model of specimen with corner pit. 
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4. Results and Discussion 

4.1 Chapter Overview 

This chapter presents the research results conducted on 2024-T3 aluminum alloy for 

corrosion fatigue. The uni-axial specimens with through pits are discussed in section 4.2. 

Section 4.3 discusses the results for uni-axial specimens with corner pits. The results are 

displayed in plots demonstrating the stress intensity factor range with respect to number of 

cycles required for fatigue crack initiation and growth. Also, the SEM images from fatigue 

crack initiation are discussed in section 4.4. Table 4.1 shows results from all tests.  

Table 4.1: Results of all tests.  

Specimen R Δσ radius of pit Ni Initial ΔK 

  
MPa mm cycles MPa*m^1/2 

2AI-01 0.5 46 0.50 640,421 5.06 

2AI-02 0.5 56 0.30 120,012 6.08 

2AI-03 0.5 29 0.30 1,000,000 3.12 

2AI-04 0.5 41 0.28 850,000 4.19 

2SI-01 0.5 49 0.44 34,506 5.40 

2SI-02 0.5 29 0.50 1,000,000 3.00 

2SI-03 0.5 35 0.38 220,022 3.75 

2SI-04 0.5 32 0.45 408,000 3.47 

2AS-01 0.5 75 0.51 45,000 4.60 

2AS-02 0.5 53 0.46 290,000 3.43 

2AS-03 0.5 36 0.35 1,000,000 2.30 

2AS-04 0.5 60 0.54 175,000 3.89 

2SS-01 0.5 38 0.45 690,000 2.47 

2SS-02 0.5 56 0.34 34,506 4.03 

2SS-03 0.5 31 0.38 1,000,000 1.98 

2SS-04 0.5 46 0.50 240,000 2.98 
* Initial ΔK values were calculated by FEA. 
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4.2 Through Pit Specimens  

  Crack initiation and growth occurred for ∆K’s of 5.06, 6.08, 3.12 and 4.19 

MPa*m^(1/2) when exposed to air and for ∆K’s of 5.40, 3.0, 3.75, and 3.74 MPa*m^(1/2) 

when exposed to a saltwater environment. For the specimen with ∆K of 3.13 MPa*m^(1/2) 

crack did not initiate over 1 million cycles in the laboratory air environment so this 

particular experiment was terminated. Also in the saltwater environment the specimen with 

∆K of 3.0 MPa*m^(1/2) didn’t have any crack over 1 million cycles. The crack lengths 

versus the number of cycles curves are shown in Figures B.1, B.2, B.3, B.4, B.5, B.6, and 

B.7 (Appendix B). The da/dN vs. ∆K curves derived from the experimental data are shown 

in Figures B.8, B.9, B.10, B.1, and B.12 (Appendix B). During the tests, the crack length 

was measured at every 5000 load cycles. The crack length with respect to the number of 

cycles was plotted. Trend lines were drawn by using Excel.  The trend line predicted when 

the crack initiated with more accuracy than the camera monitoring technique. This is 

because during some experiments the cracks would be unseen only until they reached 

approximately 1 mm. Moreover, the crack growth rate curves were developed by using the 

slope of the least-squares fit from the crack length vs. number of cycles plot. This was done 

because da/dN is by definition the rate of change of a crack length vs. cycles curve. Since 

the trend line of the crack length reduced some of the data scatter, the derivate of this line 

further reduced the data scatter that is inherent in experimental measurements.  This data 

was used to plot the cycles until initiation vs. initial ∆K, and the crack growth rate vs. ∆K as 

shown in Figure. 4.1 and 4.2a, respectively. 
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Figure 4.1: Plot of the cycles until crack initiation vs. the stress intensity factor for the 
through pit specimens in both air and saltwater (3.5 %) environment. 
 
 

 
 

Figure 4.2a: The crack growth rate as a function of the stress intensity factor for 
corrosion pit and machined notch. 
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Figure 4.2b: The crack growth rate as a function of the stress intensity factor in 
logarithmic scale for corrosion pit and machined notch. 
 
  

 The crack growth rate as a function of the stress intensity factor on logarithmic scale 

was also drawn as shown in Figure 4.2b. By using these curves and Paris constants were 

determined as C= 1.316E-08, and m=4.16 for both studies. 

 

4.3   Corner Pit Specimens  

 Crack initiation and growth occurred for ∆K values of 3.43, 3.89, and 4.6 

MPa*m^(1/2) in air. Fatigue crack did not initiate in the specimen with ∆K value of 2.31 

MPa*m^(1/2) over 1 million cycles. The crack growth plots for the specimens that did have 

crack growth in air are shown in Figures C.1, C.2 and C.3 (Appendix C). In the saltwater 

environment, crack initiated for ∆K of 2.47, 2.98, and 4.03 MPa*m^(1/2). In saltwater, for 
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the specimen with ∆K value of 1.98 MPa*m^(1/2) crack did not initiate over 1 million 

cycles so this particular test was terminated. The crack growth vs. ∆K plots are shown in 

Figures C.5, C.6, and C.7 (Appendix C). Additionally, the da/dN vs. ∆K plots for the 

specimens that had crack initiation and growth are shown in Figures C.8, C.9, C.10, C.11, 

C.12, and C.13 (Appendix C). Figure 4.3 shows the relation between the crack initiation vs. 

the stress intensity factor for corner pit tests. 

 

 

Figure 4.3: Plot of the cycles until crack initiation vs. the stress intensity range for the 
corner pit specimens in both air and saltwater (3.5 %) environments. 
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4.4 Microscopic Results 

 After completion of the tests, the test specimens were cut into two halves and then 

they were separated. Henceforth, the actual pit size could be measured with the SEM or 

other optical microscopes because the entire pit could be examined. Examples of both 

through pit and corner pit are shown in Figures 4.4 and 4.5, and the measurements are 

shown in Figures 4.6 and 4.7, respectively. Since the pits have non-uniform geometries, 

many measurements were required along the length of the pit. 

 

      

Figure 4.4: Top view of the through pit and fracture surface. 
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Figure 4.5: Top view of the corner pit and fracture surface. 

 

The average pit size from each specimen was used in the corresponding Abaqus 

model to determine the stress intensity factor prior to any fatigue loading.  Changing ∆K 

values allowed the values previously calculated from the closed form solution to be 

replaced in the various plots and tables. The microscopes were important for determining 

the initial conditions of the specimen and consequently, examining the way fatigue cracks 

started. 
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Figure 4.6: SEM through measurements made at different locations along the 2Al-03 
specimen, thickness used for an average pit size calculation.  
 

 

Figure 4.7:  SEM measurements of the pit for specimen 2AS-03. 
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Using the SEM, the crack initiation at the corrosion pit could be detected with more 

detail compared to an optical microscope. For through pit specimens, the crack initiation 

occurred in a uniform manner regardless of the existence of multiple initiation locations. 

Micro-cracks typically started at several different areas. The micro-cracks grew briefly and 

after many cycles, these micro-cracks combined into a single crack front that continued to 

move through the specimen until reaching the boundary of the specimen. The SEM allows 

important finding in the crack initiation for the specimens with corner pit. Due to the 

geometry of the corner pit, there are fewer possible crack initiation locations than a through 

pit specimen. As a result, the crack initiation location can be narrowed down to a smaller, 

better defined region.  

4.5 Discussion of Results  

        There is an inverse relationship between the stress intensity factor and the cycles until 

crack initiation based on experiments.  When the stress intensity factor increases number of 

cycles to initiate a crack decreases. However, the specimens that are exposed to saltwater 

(3.5%) develop fatigue cracks in fewer cycles than the similar specimen only exposed to 

laboratory air. This is true for both through and corner pit specimens as shown in Figure 

4.8. As we can see, the fatigue life of the through pit and corner pit specimens decreased in 

a corrosive environment (3.5% saltwater), compared with a laboratory environment. This 

reduction was 90% for the specimens with through pit and 75% for the specimens with 

corner pit. Moreover, the required number of cycles for crack initiation for corner pit 

specimens is lesser than the one for through pit specimens. The number of cycles decreases 

up to 94% in air, and up to 88% in saltwater environment. 
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Figure 4.8: Number of cycles until crack initiation for all tested specimens vs. stress 
intensity range. 

 

Correlating the crack growth rates of the current study with the previous ones 

conducted Misak et al. [25] was an important result as shown in Figure 4.2a.  The crack 

growth rates versus stress intensity range for current research with chemically corroded 

through pit specimen and the previous ones with machined notch specimens showed no 

noticeable difference between two types of imperfections. The figure shows a higher 

growth rate for the saltwater exposed specimens than the laboratory air exposed specimens.  

The aggressive environment increases crack growth rate approximately 65% at a given 

stress intensity factor range.  
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Figure 4.9: The crack growth rate of the through pit specimen 2AI-02 as a function of 
the stress intensity factor range. There is little variation between the current and 
AFGROW result [1]. 
 

On the other hand, Figure 4.9 shows experimental and measurement crack growth 

rate versus stress intensity range, in which the experimental data matches with the standard 

AFGROW data. It is a commonly used program that was developed by Air Force for 

predicting of crack growth of materials. This program has experimental database on fatigue 

crack growth for different materials and different stress ratios. 

Additionally, when we compare the results of the experiments done by Hunt [14] on 

7075-T6 with the current experiments on 2024-T3 with the same conditions, number of 

cycles for crack initiation is less in the previous study for both types of corrosion pit as 

shown in Figures 4.10 and 4.11.  
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Figure 4.10: Number of cycles to crack initiation in 2024-T3 and 7075-T6 aluminum 
alloy for corner pit. 

 

 

 

Figure 4.11 Number of cycles to crack initiation in 2024-T3 and 7075-T6 aluminum 
alloy for through pit. 
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For the corner pit, since the crack front is initially a quarter circle, it requires a 

certain number of cycles to grow into a full width through crack. Consequently, the crack 

growth rate may be firstly slower than the through pit specimens. Due to the difference in 

the stress state along the corrosion pit direction and through the thickness, the crack growth 

rate is different. During the corner crack growth, the growth of the crack behavior from the 

pit to a full width crack front shown in Figure 4.12. 

 

 

Figure 4.12: SEM photograph showing the change in aspect ratio, a/c, during the 
corner crack growth. 
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Figure 4.13a: SEM photograph showing fracture surface of saltwater environment for 
through pit (left) and corner pit (right). 

 
 

Figure 4.13a shows fracture surface for through pit and corner pit in a saltwater 

environment. The left image shows the fracture surface for a through pit of uniaxial loading 

condition in salt environment, crack was along the plane of maximum mode I. The fracture 

surface was smooth, which is typical of planar slip dislocation mechanism. The right image 

shows a wavy surface for a saltwater corner pit in uniaxial loading condition. SEM images 

showing fracture surface of air environment for through pits and corner pits are shown in 

figure 4.13b. In the figure images 1, and 4 represent the fracture surfaces close to the 

corrosion pits. Because of planar slip dislocation mechanism these images exhibit a smooth 

region along the crack front. Images 2, and 5 show fracture surfaces of the region 0.25 mm 

away from corrosion pit these microstructure appears rough. Images 3, and 6 represent the 

surfaces 0.5 mm away from corrosion pit, in which microstructure looks more rough due to 

wavy slip dislocation mechanism.  
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Figure 4.13b: SEM photograph showing fracture surface of air environment for 
through pit and corner pit. 
  

Corner Pit Through Pit 
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5. Conclusions and Recommendations 

5.1 Conclusions 

The research conducted in this thesis investigated fatigue crack initiation and growth in 

2024-T3 aluminum alloy specimens at through and corner pits in a central hole exposed to 

laboratory air and saltwater environments. Using the uni-axial MTS load frame, the 

specimens were cyclical loaded until crack length grew 17 mm.  The experimental results 

captured the number of cycles until crack initiation as well as fatigue crack growth rate. In 

addition to the fatigue testing, the fracture surfaces were analyzed to examine the 

mechanisms of crack initiation for the fatigued specimens using SEM. Finite element 

analyses were used to calculate the stress intensity factor. The following conclusion could 

be made. 

• In a corrosive environment, the required number of cycles for crack initiation 

decreases for both types of corrosion pits relative to those in laboratory 

environment. The number of cycles decreases up to 90% for through pits, and up to 

75% for corner pits. 

• In a corrosive environment, the crack growth is faster than laboratory air 

environment at a given ΔK. 

• The required number of cycles for crack initiation for corner pit specimens is less 

than the one for through pit specimens. The number of cycles decreases up to 94% 

in air, and up to 88%  in saltwater environment. 

• Corner pit specimens have a slower crack growth rate than through pit specimens. 
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• Closed form solution is not accurate in calculating stress intensity range for the 

specimen with corner pit until the crack reaches the other side of the surface. Finite 

element model is needed to calculate stress intensity factor range for corner pit. 

• In 2024-T3, the shape and size of pit are major factors affecting fatigue crack 

nucleation. 

• There is a good agreement between crack growth rates for the specimen with 

machined notch and the specimen with through pit. 

5.2 Recommendations 

 Due to the variability that is natural with materials testing, further testing on the 

fatigue crack growth from corrosion pits in 2024-T3 Al should be conducted. To simulate 

real life boundary conditions, further test parameters need to be considered such as: 

• Different shape and depth of corrosion pit 

• Multiple pits 

  Also, more FE modeling effort needs to be included for future research to include 

complicated geometries and test conditions 
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Appendix A: Finite Element Details 

 
 
 

 
 

Figure A.1: Mesh of a uni-axial specimen with the crack length of 0.25 mm around the 
crack tip.  
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Figure A.2: Finite element model with crack length of 0.25 mm 
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Figure A.3: Finite element model with crack length of 15 mm. 
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Figure A.4: Mesh created by Abaqus for the uni-axial specimen with a crack on a 

hole with refined mesh near the crack tip.  
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  Appendix B: Crack Growth Plots for Through Pit Specimens 

 
 
 
 
 

 
 

Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-

01 specimen.  
 
 
 
 

 
 

Figure B.2: The crack length vs. number of cycles during fatigue testing for the the 

2AI-02 specimen.  
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Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-

01 specimen.  
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Figure B.4: The crack length vs. number of cycles during fatigue testing for the 2Sl-

03 specimen.  

 
 

 
 
 
 

 
 

 

Figure B.5: The crack length vs. number of cycles during fatigue testing for the 2Sl-

04 specimen.  
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Figure B.6: The crack length vs. number of cycles during fatigue testing for the 2Sl-

02 specimen that has no crack.  

 
 

 
 

 
 

 
Figure B.7: Crack growth rate vs. the stress intensity range for 2Al-01 specimen.  
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Figure B.8: Plot of crack growth rate vs. the stress intensity range for 2Al-02.  

 
 
 
 
 
 
 
 
 

                
 
 
 
Figure B.9: Plot of crack growth rate vs. the stress intensity range for 2Sl-01.
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Figure B.10: Plot of crack growth rate vs. the stress intensity range for 2Sl-03.  

 
 
 
 
 

 
 

                   
 

Figure B.11: Plot of crack growth rate vs. the stress intensity range for 2Sl-04.  
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Appendix C: Crack Growth Plots for Corner Pit Specimens 

 
 
 
 
 

 
 
Figure C.1: The crack length vs. number of cycles during fatigue testing for  the 
2AS-01specimen.  
 
 

        

 

Figure C.2: The crack length vs. number of cycles during fatigue testing for  the 
2AS-02 specimen. 
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Figure C.3: The crack length vs. number of cycles during fatigue testing for  the 
2AS-03 specimen.  
 
 
 
            

 
 
Figure C.4: The crack length vs. number of cycles during fatigue testing for the 2AS-
04 specimen.  
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Figure C.5: The crack length vs. number of cycles during fatigue testing for  the 2SS-
01 specimen.  
 
 
 
 
 
 

 
 
Figure C.6: The crack length vs. number of cycles during fatigue testing for  the 2SS-
02 specimen.  
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Figure C7: The crack length vs. number of cycles during fatigue testing for  the 2SS-
04 specimen.  
 

 

 

 
 

    
 
Figure C.8: Plot of crack growth rate vs. the stress intensity range for 2AS-01.  
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Figure C.9: Plot of crack growth rate vs. the stress intensity range for 2AS-02.  

 
 
 
 
 
 

    
 

 
Figure C.10: Plot of crack growth rate vs. the stress intensity range for 2AS-03. 
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Figure C.11: Plot of crack growth rate vs. the stress intensity range for 2SS-01.  

 
 
 
 
 
 
 

 
 
Figure C.12: Plot of crack growth rate vs. the stress intensity range for 2SS-02. 
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Figure C.13: Plot of crack growth rate vs. the stress intensity range for 2SS-04.  
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Appendix D: SEM Photographs  

 
 

 
 

 
 

 
 
 

Figure D.1: Side view of the through pit specimen 2Al-03 using the SEM. 
Measurements of the pit were taken at several locations therefore an average pit size 
could be calculated.
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Figure D.2: Side view of the through pit specimen 2Sl-03 using the SEM. 
Measurements of the pit depth were taken at several locations therefore an average 
pit size could be measured.
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Figure D.3: Side view of the through pit specimen 2AS-03 using the SEM. 
Measurements of the pit size were taken at several locations therefore an average pit 
size could be calculated.
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Figure D.4: Side view of the through pit specimen 2SS-02 using the SEM. 
Measurements of the pit size were taken at several locations therefore an average pit 
size could be calculated. 
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