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Abstract:

This report summarizes our three-year effort on advanced micro and nanostructures for
fundamental studies of fluid manipulation and enhanced two-phase heat transfer. First, we
studied the role of micro/nanostructures on pool boiling heat transfer. We fabricated well-defined
microstructured surfaces in silicon and performed systematic pool boiling experiments in which
we demonstrated that increasing surface roughness increased critical heat flux. We developed a
force-balance based model, and elucidated the important role of the surface roughness in
increasing the contact line length, which as a result augments the capillary force pinning the
contact line of the bubble and so delaying vapor film formation. Next, we translated this
understanding to investigate the effect of microstructures on two-phase heat transfer in
microchannels. We fabricated and characterized microchannels with micropillars arrays on the
heated channel wall. Small fluctuations in the measured heater surface temperature (+ 3-8 °C)
indicated increased flow stability, and the heat transfer coefficient for the structured surface
microchannel was 37% higher compared to the flat surface microchannel. More importantly, the
mechanism for the increased flow and thermal stability is that the structures, with an enhanced
capillary wicking capability, help maintain a liquid film on the heated surface. Finally, we
successfully developed a flexible uniform responsive microstructure (WFUR) array for dynamic
manipulation capability that can be used to promote bubble departure real time in boiling
systems. We demonstrated uniform, continuous, extreme tilt angles with precise control and an
instantaneous response. Furthermore, we showed that uFUR is capable of real-time manipulation
of fluid spreading directionality, fluid drag, and can tune optical transmittance over a large range
simply by adjusting the applied magnetic field. The collective fundamental insights gained from
our work promises the development of advanced thermal management approaches, among others,
for various defense systems.

Motivation and Program Goals:

In this research program, we studied the role of advanced nanostructures to manipulate coupled
fluidic and heat transport processes for high performance thermal management devices. Thermal
management is a critical bottleneck for the advancement of a variety of important defense, space,
and commercial applications. Pumped phase-change based microfluidic systems promise
compact solutions with high heat removal capability. However, challenges in implementation
lead to poor heat transfer performance. One of the primary limitations is the inability to remove



bubbles during boiling, which results in large interfacial resistances, flow instabilities, and
drastic decreases in cooling performance. We developed state-of-the-art micro and
nanoengineered surfaces and investigated the role of these surfaces on enhancing boiling heat
transfer. Furthermore, we demonstrated a platform that promises real time bubble removal for
enhanced flow stability. Below is a summary of our achievements that elucidate the role of
micro/nanostructures for boiling heat transfer and demonstrate real time manipulation with
magnetically tunable structures.

1. Role of Micro/Nanostructures on Pool Boiling [1, 2]

We investigated the role of micro/nanostructures to enhance boiling for high heat flux dissipation.
While fundamental boiling research has for decades focused on increasing the critical heat flux
(CHF) to extend the heat transfer efficiency of phase-change systems, the role of surface
roughness on CHF has not been well-understood. This is the first step towards implementing
such surface structures for enhanced phase-change heat transfer. Previous studies have
demonstrated that the use of nanostructures, such as silicon nanowires, can increase CHF to >200
W/em®, which has been attributed to the capillary pumping mechanism, i.e., for smaller spacing

between structures, higher capillary pressure is available to provide the liquid supply to delay
CHF [3].
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Figure 1 Enhanced pool boiling heat transfer. a) Microfabricated well-defined pillar arrays in
silicon to investigate role of surface roughness on CHF [1]. b) CHF as a function of o, where 7 is
the roughness and 6,.. is the receding contact angle. The symbols are from data in our work as
well as reported in literature. The solid line is our developed model. The dotted line is the K-Z
model based on hydrodynamic instability [1]. ¢) Image of fabricated hierarchical surfaces with
copper oxide nanostructures and copper pillars [2].

We fabricated well-defined microstructured surfaces in silicon (Figure 1a) and performed
systematic pool boiling experiments in which we demonstrated that increasing surface roughness,
r (=total area/projected area), increased CHF. Furthermore, the results showed that



microstructures could also dissipate heat fluxes comparable to those on nanostructures, which
indicated that the capillary pumping mechanism did not well-explain the CHF mechanism in this
case. Accordingly, we developed a force-balance based model, and elucidated the important role
of the surface roughness in increasing the contact line length, which as a result augments the
capillary force pinning the contact line of the bubble and so delaying vapor film formation [1].
Our model showed excellent agreement with our experiments as well as those reported in past
work (Figure 1b). Note that the commonly used Kutateladze-Zuber (K-Z) model based on
hydrodynamic instabilities does not capture the effects of surface roughness on CHF. In addition,
these insights suggested a path to further enhance CHF by increasing surface roughness via
hierarchical designs. We recently demonstrated CHF values of 250 W/cm” using copper oxide
nanostructures on electroplated copper micropillars with a 7=13.3 (Figure 1c), which showed
excellent agreement with the developed model and further supports our explanation for CHF
enhancement [2]. These studies show new insight of the role of structured surfaces in enhancing
CHF and provide basic design guidelines as a first step for new surface technologies with high
heat removal capability for advanced thermal management applications.

2. Enhanced Flow Boiling Heat Transfer in Microchannels with Structured Surfaces [4]

Building on the understanding gained from the research described in Section 1, we subsequently
studied the fundamental effect of microscale surface structures on flow boiling, which is more
practical for implementation. However, with the introduction of the flow, the role of the
structures on phase change will be different than in the case of pool boiling. Therefore, we
performed systematic parametric studies to investigate the details of the flow with the
incorporation of surface structures. We fabricated and characterized 500 um x 500 um x 10 mm
microchannels with micropillars arrays (heights of ~ 25 pm, diameters of 5—-10 um and pitches of
10—40 um) on the bottom channel wall, where heat was applied (Figure 2). With a custom
experimental setup, we investigated the effects of the geometry of the micropillar arrays on the
heat transfer performance with degassed, de-ionized water as the working fluid. The flow
patterns were simultaneously visualized, which indicated that nucleation occurred primarily on
the side walls.

The experimental data showed a significant heat dissipation capability through the structured
surface microchannel (q” = 1470 W/cm® and h = 2.7x105 W/m® K, with a mass flux of 1849
kg/m’ss and a heater temperature rise of 45 °C). The small fluctuations in the measured heater
surface temperature (3-8 °C) indicated increased flow stability. When compared to the
structured surfaces, higher fluctuations in both pressure and heater temperature were observed
for a flat surface microchannel at lower heat fluxes. While the overall maximum heat flux values
were comparable, the heat transfer coefficient for the structured surface microchannel was 37%
higher. The enhanced performance and reduced temperature fluctuations support the idea of
using structured surfaces to mitigate flow instability and increase heat transfer performance. We
attribute the increased flow and thermal stability to the fact that the structures, with an enhanced
capillary wicking capability, help maintain a liquid film on the heated surface.
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Figure 2 Images and SEM of fabricated microchannel. (a) Top and (b) bottom view image. (c)
SEM of the cross section image of a representative, fabricated microchannel and magnified view
of micropillars on the channel bottom surface (inset).

Our observations suggest that with these microchannel designs, two-phase heat transfer and fluid
flow behavior can be decoupled. Bubbles are generated via the less hydrophilic sidewalls while
the superhydrophilic microstructures at the bottom of the channel enhance the capillary wicking
capability to prevent dry out. This approach can potentially increase the critical heat flux and is
an important step towards understanding the role of microstructured surfaces in microchannels
for high performance two-phase microchannel heat sinks.

3. Real-Time Manipulation with Magnetically Tunable Structures [5-7]

We successfully developed a flexible uniform responsive microstructure (LWFUR) array for
dynamic manipulation capability that can be used to promote bubble departure real time in
boiling systems. Responsive actuating surfaces have attracted significant attention as promising
materials for liquid transport in microfluidics, cell manipulation in biological systems, and light
tuning in optical applications via their dynamic regulation capability. Significant efforts have
focused on fabricating static micro and nanostructured surfaces, even with asymmetric features
to realize passive functionalities such as directional wettability and adhesion. Only recent
advances in utilizing materials that mechanically respond to thermal, chemical or magnetic
stimuli have enabled dynamic regulation. However the challenges with these surface designs are
associated with the tuning range, accuracy, response time and multi-functionality for advanced
systems.
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Figure 3 a) The fabricated flexible uniform responsive microstructures (WFUR). Scale bar is 5
mm. Side view images of the fabricated uFUR with an applied magnetic field strength of 0.5 T
and field angle of b) a = 60° and c¢) a = 95° respectively. Scale bars are 50 um. d) Fluid (30%
IPA and 70% water) spreading direction is dynamically controlled while the fluid only
propagates in the pillar tilt direction (red arrow) and is pinned in all other directions. Field
strength is 0.5 T. Scale bar is 0.5 mm. e) Normalized drag force as a function of the field angle.
Field strength is 0.35 T. The negative sign represents that the tilt direction is against the sliding
direction. f) Transmittance of a 635 nm laser as a function of the magnetic field angle. Magnetic
field strength is 0.35 T.

In this work, we demonstrated dynamically tunable micropillar arrays (Figure 3a) with uniform,
reversible, continuous and extreme tilt angles (Figure 3b and 3¢) with precise control for real-
time fluid and optical manipulation. Inspired by hair and motile cilia on animal skin and plant
leaves for locomotion, liquid transportation and thermal-optical regulation, our flexible uniform
responsive microstructures (WFUR) consist of a passive elastic polymer skin and active
ferromagnetic microhair whose orientation is controlled by a magnetic field. We experimentally
showed uniform tilt angles ranging from 0° to 57°, and developed a model to accurately capture
the tilting behavior.

The surfaces were created by fabricating ferromagnetic micropillars and then bonding to a soft
PDMS substrate. A dense array of nickel pillars with diameters (d) of 26-30 pm, heights (h) of
70-75 um, and spacings (1) of 60 pm was electroplated. The nickel posts were subsequently
bonded to a PDMS surface through a silica adhesion layer. The fabrication of pFUR was
demonstrated repeatably over an area of 8 mm x 8§ mm and can be easily scaled to larger arrays.



We showed that pFUR is capable of real-time manipulation of liquid spreading directionality,
fluid drag, and optical transmittance. First, we achieved real-time liquid directional spreading by
dynamically changing the pillar tilt orientation and angle (Figure 3d), where past studies have
only shown uni-directional wetting in a fixed direction on static asymmetric structures. We also
showed that puFUR can tune the drag force with high surface tension fluids, e.g., water, with a

maximum reduction in drag of 28% (Figure 3e). Furthermore, we demonstrated that by utilizing
the asymmetry of the microstructures, the surface can function similar to ‘window blinds’, where
the transmittance can be tuned in a range of 0.38 to 0.71 (Figure 3f). The versatile surface
developed in this work enables new opportunities for real-time fluid control, cell manipulation,
drag reduction and optical tuning in a variety of important engineering systems, including
applications that require manipulation of both fluid and optical functions. Furthermore, we
anticipate such a surface can be incorporated into microchannels to increase flow stability during
phase-change by promoting bubble departure real time.
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