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Abstract 

This dissertation investigates the Vehicle Routing Problem with Split Deliveries and 

Time Windows.  This problem assumes a depot of homogeneous vehicles and set of 

customers with deterministic demands requiring delivery.  Split deliveries allow multiple 

visits to a customer and time windows restrict the time during which a delivery can be 

made.  Several construction and local search heuristics are tested to determine their 

relative usefulness in generating solutions for this problem.  This research shows a 

particular subset of the local search operators is particularly influential on solution quality 

and run time.  Conversely, the construction heuristics tested do not significantly impact 

either.  Several problem features are also investigated to determine their impact.  Of the 

features explored, the ratio of customer demand to vehicle ratio revealed a significant 

impact on solution quality and influence on the effectiveness of the heuristics tested.  

Finally, this research introduces an ant colony metaheuristic coupled with a local search 

heuristic embedded within a dynamic program seeking to solve a Military Inventory 

Routing Problem with multiple-customer routes, stochastic supply, and deterministic 

demand.  Also proposed is a suite of test problems for the Military Inventory Routing 

Problem. 
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I. Background 

1.1 Introduction 

 This dissertation focuses on using heuristics to solve the vehicle routing problem 

with split deliveries and time windows.  This chapter will give an overview of the 

problem and its military application as well as the problem formulations and the research 

questions this dissertation seeks to answer.  Chapter II focuses on the use of local search 

operators on the problem while Chapter III focuses on the use of various construction 

heuristics as well as the impact of problem structure on the solution techniques and 

quality.  Chapter IV applies the results of Chapters II and III to a military inventory 

routing problem.  Finally, Chapter V discusses the original contributions of this work as 

well as some potential areas for future research. 

 

1.2 Vehicle Routing Problem 

 In its simplest form, the capacitated vehicle routing problem (VRP) is represented 

as a depot with some supply of a commodity, a fleet of homogenous vehicles capable of 

carrying some finite capacity of that commodity, a set of destination points commonly 

referred to as customers—each with a demand for that commodity, and a cost associated 

with transporting the commodity between each customer.  In some of the simplest 

instances of the VRP, the vehicles are not necessarily capacitated.  However, any realistic 

implementation and all interesting applications are capacitated because solving a VRP 

using vehicles with unlimited capacity is effectively equivalent to solving a traveling 
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salesman problem (TSP).  Therefore in the remainder of this document, the VRP refers to 

a capacitated VRP. 

 

1.3 Military Application 

 Although varying objectives are used for individual problem instances, the most 

common objective is to minimize the total cost such that each customer’s demand is 

satisfied.  At its core, this describes many of the problems facing United States 

Transportation Command (USTRANSCOM) and Air Mobility Command (AMC).  For 

example, the intra-theater routing problem considers the problem of transporting cargo 

loads from some number of ports of debarkation (POD) to their final destinations.  In 

general, solutions must specify the transport mode for each requirement, the route for 

each requirement, and the time period of departure from each delivery node.  Note 

departure time is preferred to arrival time because in the case of time windows the time 

spent at each node may include a waiting period in addition to a service time.   

 Hartlage [1] investigated aspects of this problem and developed an ant colony 

algorithm for solving the resource constrained shortest path problem.  Lambert [2] 

studied the inter-theater airlift problem and developed a tabu search methodology to solve 

this aspect.  Clapp [3] studied the intra-theater problem but focused on minimizing the 

number of vehicles.  Hafich [4] solved a VRP for an intra-theater problem but his 

algorithm imposes the limitation that vehicles are only allowed to visit a single 

destination before returning to the depot.  This is not a comprehensive review of the 

studies dedicated to military applications of the VRP but rather offers a compact 
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viewpoint on the current state of military research and indicates the need for further work 

in this area.   

 McCormack [5] defines another interesting military application in the form of a 

military inventory routing problem.  The inventory routing problem is a combination of 

the VRP with inventory management in which the customers’ demands evolve over time 

and there exists some optimal fulfillment strategy.  The military version uses stochastic 

supply to account for the risk of destruction of military vehicles.  However, McCormack 

uses direct delivery as opposed to a true routing schema, indicating the need to integrate 

VRP methods into his methodology. 

 

1.4 Mathematical Formulations 

1.4.1 Vehicle Routing Problem 

To express the problem mathematically, consider a graph ( , )G N E= with vertex 

set {0,1,..., }N n=  and edge set {( , ) : , , }E i j i j N i j= ∈ ≠  with 0ijc ≥ being the cost to 

traverse an edge.  Define vertex 0 to be the depot, meaning each vehicle must start and 

end at vertex 0.  The set N\{0} defines the customers.  Also, define m as the size of the 

vehicle fleet and c as the capacity of each vehicle.  Associated with each vertex in the set 

\{0}N is some non-negative demand, iq .  Then, assuming symmetric costs on the edges, 

i.e., cij = cji for every i,j pair, the formulation may be expressed as [6]: 
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 The objective function minimizes the total routing cost where xij = 1 if the edge  

(i, j) belongs to the optimal solution and 0 otherwise.  Constraint set (1) states that each 

customer is visited exactly once.  Constraint (2) states that each vehicle makes a single 

trip.  Constraint set (3) enforces both the connectivity of the solution (i.e., no 

disconnected subtours) and the vehicle capacity requirements where r(S) is the minimum 

number of vehicles required to service the subset S of customers.  Constraint set (4) 

enforces the binary nature of edge traversal (i.e., an edge is used or it is not), with 

Constraint set (5) allowing for an exception in the case of an out-and-back (i.e., a vehicle 

visits a single customer and returns to the depot).  These constraints are optimized in the 

sense that none are redundant with each other or unnecessary.  Also, this research effort 

will not explore the problem of finding r(S), the minimum number of vehicles required 

for each subset S.  See [3] or [6] for more details on this problem.   

 

1.4.2 Vehicle Routing Problem with Split Deliveries and Time Windows 

 This research will center on the vehicle routing problem with split deliveries and 

time windows (SDVRPTW).  These characteristics are explained in detail in Chapter II.  

The SDVRPTW is explicitly defined by Belfiore et al. [7] and Ho and Haugland [8], 
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amongst others.  This section uses a mixture of their formulations.  First, the notation for 

the problem is defined.  The set of customers is defined by N = {0, 1, 2, …, n}, where the 

0th customer is defined as the depot.  Each customer has a location and therefore a 

distance/travel time to every other customer and the depot, where the distance between 

customer i ∈ N and customer j ∈ N is defined as dij.  Also associated with each customer i 

∈ N is a demand, qi, service time, si, and a time window for service, (ei, li), where ei (li) 

is the earliest (latest) time service may begin.  The fleet of vehicles is denoted by V = {1, 

2, …, m}, with each vehicle subject to a capacity, c (i.e., a homogenous fleet).  For 

completeness, q0 = 0, s0 = 0, e0 = 0, and l0 = M, where M is an appropriate big-M value 

(e.g., M = max(djh|j,h ∈ N) * c/min(qi |i ∈ N)).  Another big-M value, Mij, is used below 

in constraint (8).  Each Mij is constraint-specific and both Belfiore et al. [7] and Ho and 

Haugland [8] suggest Mij = li + dij – ej.  Vehicle routes must start and end at the depot 

and each vehicle may be used, at most, once. 

 The decision variables for the problem are: 

  xijk = 

 
1 if vehicle  travels directly from customer  to customer 
0 otherwise

k V i N j N∈ ∈ ∈



 

  bik =  time at which vehicle k ∈ V begins service for customer i ∈ N 

  yik =  fraction of qi, demand of customer i ∈ N, fulfilled by vehicle k ∈ V  

 

 Then, the formulation may be expressed as: 
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 The objective of the model is to minimize total travel distance.  Constraint set (6) 

restricts the maximum fleet size to m.  Constraint set (7) does not allow for a route to 

travel to the same customer on consecutive stops.  Note this restriction is not enforced at 

the depot.  Therefore, the first two constraint sets allow for “dummy” routes, meaning all 

vehicles are forced to leave the depot but some may return directly to the depot.  In 

effect, this allows for a solution with no more than m vehicles.  Constraint set (8) 

guarantees if a vehicle arrives at a customer, it will depart the customer.  Constraint set 

(9) ensures all customer demands are fulfilled.  Constraint set (10) ensures the capacity of 

each vehicle is not exceeded.  Constraint set (11) indicates demand for customer i ∈ N 

may only be fulfilled by vehicle k ∈ V if vehicle k visits customer i.  Constraint set (12) 
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enforces a minimum starting time for customers and guarantees no subtours.  Constraint 

set (13) ensures time window constraints are satisfied.  Constraint sets (14) and (15) are 

non-negativity constraints on the yik and bik decision variables.  Constraint set (16) is a 

binary constraint on the xijk decision variables.  This dissertation will not delve deeply 

into the formulation because in such a form the constraints are not useful for analyzing 

problem characteristics.  Furthermore, the nature of the additional constraints is such that 

modeling them mathematically does not necessarily lend insight into the heuristic 

process, which this research will show represents the most promising and effective 

methods for generating solutions for the VRP. 

 

1.5 Research Questions 

 As the next chapter shows, the literature surrounding the SDVRPTW is 

incomplete.  In fact, very little work exists on the SDVRPTW, particularly concerning 

heuristics.  This research effort will seek to answer several questions.  First, which local 

search (LS) operators are most appropriate for this problem?  The answer must account 

for solution cost, the number of vehicles required by the solution, and the run time of the 

algorithm.  Second, should the choice vary depending on problem structure and 

characteristics?  Is there a single “good” LS operator or set of operators that work well 

for all problem types?  Third, given a strong LS, how does the construction phase and 

quality of the initial solution impact the overall result in terms of both solution quality 

and run time?  Finally, the results of these questions are used to formulate a metaheuristic 

for solving the SDVRPTW which is then applied to a military instance of the inventory 
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routing problem.  The literature review in the next chapter will illustrate the gaps in 

literature these questions seek to fill. 
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II. Literature Review 

2.1 Introduction 

 Chapter I gave an overview of the problem and laid out the research questions this 

dissertation seeks to answer.  This chapter gives a thorough overview of the current state 

of literature for the aspects covered by this dissertation, namely the use of ACO and other 

metaheuristics and local search operators in generating heuristic solutions for the VRP 

and some of its variants.  This review shows that the research questions are not currently 

answered by any available sources. 

 

2.2 Vehicle Routing Problem Variants 

Chapter 1 gives a mathematical model representing the VRP.  But even this 

formulation is a simplistic view of the vehicle routing problem.  Most examples of 

transportation problems found in practice, including the military applications discussed in 

Chapter 1, have some combination of complicating factors.  Split deliveries and time 

windows are two of the more common extensions to the VRP. 

 

2.2.1 Time windows 

In a VRP with time windows (VRPTW), any customer may have a time window 

associated with it.  For example, when delivering a product to a store, that delivery must 

be made during the store’s business hours so the store is able to receive the shipment.  

Typical formulations allow a delivery vehicle to arrive at a customer prior to the 

beginning of the time window but delivery of the commodity is not allowed until the  
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beginning of the time window.  This time window characteristic is intrinsic to virtually 

all problems of military application. 

 Table 1 gives an overview of the background and the sources are detailed further 

here.  Kallehauge [9] gives a review of exact methods for the VRPTW, focusing mainly 

on path-formulation and decomposition methods.  Cordeau et al. [10] give a synopsis of 

the major efforts done for VRPTW through 2002, showing heuristic methods are the most 
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Archetti and Speranza (2008)  
Archetti and Speranza (2012)  
Archetti et al. (2006)  
Archetti et al. (2008)  
Belfiore et al. (2008)  
Campos et al. (2006)  
Chen et al. (2007)  
Cordeau et al. (2001)  
Cordeau et al. (2002)  
Dror and Trudeau (1989)  
El-Sherbeny (2010)   
Frizzell and Griffin (1995)  
Gendreau et al. (2002)  
Gulczynski et al. (2010) 
Ho et al. (2008) 
Kallehauge (2007) 
Laporte (2007)  
Renaud et al. (1996) 
Soeanu et al. (2011) 
Tan et al. (2001) 
Vacca and Salani (2009)  

Table 1: VRP Literature Review 
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promising avenue for large-scale VRPTW and concluding hybrid heuristics offer the best 

chances for meaningful progress.  El-Sheberny [11] gives a more recent overview of 

methods for the VRPTW, also noting heuristics tend to outperform exact methods on 

problems of realistic size in that heuristics often deliver near-optimal solutions using 

significantly less computing time.  El-Sheberny also notes most heuristics are problem-

specific and are only useful on the problem for which they were developed.  Tan et al. 

[12] implemented simulated annealing, tabu search and genetic algorithm approaches for 

the VRPTW, achieving some best-to-date results.  They conclude a LS involving the λ-

interchange operator is the cornerstone for the more complex heuristic implementations.  

Strength is also given to this argument by the fact that nearly all of the approaches 

surveyed here relied upon a LS.  See [11] for a formal mathematical model of the 

VRPTW. 

 

2.2.2 Split Delivery 

In the most basic instance of the VRP defined in Chapter 1, only a single visit to 

each customer is allowed.  This assumes a single vehicle is able to carry all of the 

customers’ demands and the constraint forces the vehicle to do so.  In cases where this 

assumption is met, incorporating this characteristic may make sense because visiting a 

customer multiple times is not only inefficient but is generally not desirable for the 

customer.  However, the general USTRANSCOM problem does not fit this assumption.  

The demands of the customer may (and often will) exceed the capacity of any single 

vehicle, thus requiring multiple vehicles to visit the customer.  Even in cases where the 
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demands fit onto a single vehicle, lower cost solutions may be possible by allowing split 

deliveries.  This variant is known as the split delivery VRP (SDVRP). 

Archetti and Speranza [13] offer a survey on the SDVRP in which they show the 

optimal solution to the SDVRP is no worse than the optimal solution to the analogous 

VRP (i.e., the same problem with split deliveries not allowed).  Archetti and Speranza 

also survey the most popular techniques developed at the time: a LS algorithm developed 

by Dror and Trudeau [14], a tabu search developed by Archetti et al. [15], and an 

optimization-based approach developed by Archetti et al. [16].  The survey shows, in 

general, the optimization approach outperforms the tabu search which in turn outperforms 

the LS algorithm.  Chen et al. [17] also outperform tabu search using a hybrid integer 

programming/LS approach.  Gulczynski et al. [18] use a hybrid mixed integer program 

and record-to-record travel to solve the SDVRP with minimum delivery amounts.  See 

[19] for a formal mathematical model of the SDVRP. 

 

2.2.3 Split Delivery and Time Windows 

 Ho and Haugland [8] also use a tabu search to generate solutions for the split 

delivery VRP with time windows (SDVRPTW) while Belfiore et al. [7] use a scatter 

search.  Favaretto et al. [20] adapt the approach of Gambardella et al. [21] for use in a 

VRP with multiple time windows and multiple customer visits but do not incorporate LS 

into their procedure.  This algorithm could be considered a solution method for 

SDVRPTW by restricting the problem to single time windows and considering multiple 

customer visits as a split delivery.  Frizzell and Giffin [22] use a novel construction 

heuristic along with exchange and relocate operators to solve the SDVRPTW with grid 
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distances.  Vacca and Salani [23] use Dantzig-Wolfe decomposition and a branch-and-

price algorithm to solve the VRPTW with discrete split delivery, meaning customer 

demands consist of discrete items that cannot be split.  Campos et al. [24] use a genetic 

algorithm to solve the SDVRPTW.  See [25] for a more comprehensive review of the 

SDVRPTW, including efforts toward exact solutions. 

 

2.3 Algorithms and Methods 

 Researchers have applied various methods to solve the VRP, ranging from exact 

algorithms to heuristic methods.  This research effort will focus on heuristic methods 

because the VRP is NP-hard and in practice even the most sophisticated exact algorithms 

can only handle relatively small instances (<100 nodes) [26]. 

 

2.3.1 Evolutionary Algorithms 

Evolutionary algorithms are well-known and explored to a great extent in the 

literature.  As a representative example, consider the genetic algorithm given by Baker 

and Ayechew [27] for solving a VRP.  Their algorithm follows the general guidelines for 

a genetic algorithm in that some initial population of solutions is generated.  “Good” 

solutions are then cross-pollinated and mutated to generate new, and hopefully better, 

solutions.  This process continues until either a time or iteration count is reached or the 

current solution (or solution set) is deemed “good enough” according to a pre-defined 

stopping rule. 
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To generate the initial solutions, Baker and Ayechew use a combination of 

random solutions with “sorted” solutions.  In the sorted solutions, customers are sorted 

using some metric (e.g., polar angle from origin or nearest-neighbor groupings).  Given 

this initial population, two solutions are chosen at random and the “better” solution is 

chosen as the first parent.  The second parent is obtained via the same process.  Offspring 

are generated using a 2-point crossover technique and consequently mutated by randomly 

swapping the values of two genes.  In terms of the VRP, this means two random 

customers traded servicing vehicles.  Next, the two children generated either replace the 

parents in the population of solutions (if they are “better” solutions according to a fitness 

function) or discarded if they do not meet the criteria for entrance into the solution 

population. 

However, these algorithms are only tractable on simpler instances of the VRP.  

Evolutionary algorithms are commonly outperformed by tabu search and simulated 

annealing [27] [28] in terms of solution quality for the VRP.  In general, genetic 

algorithms are most successful in problems with relatively relaxed constraints.  However, 

adding the constraints necessary for the VRP variants discussed earlier means introducing 

new constraints and therefore tightening the restrictions on possible solutions. 

 

2.3.2 Tabu Search 

 Tabu search is a very popular method for solving a variety of problems, including 

the VRP and its variants.  Tabu search is regarded as a metaheuristic because it is more of 

an idea for a search process than a specific algorithm.  Tabu search is concerned with a 

particular set of attributes held by solutions.  The search process then uses these attributes 
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as a way of selecting new solutions with certain attributes being “tabu,” meaning these 

attributes are either forced into or not allowed into the solution for some number of 

iterations. 

 As an example, consider the tabu search metaheuristic put forth by Brandao [29].  

This metaheuristic uses a combination of nearest-neighbor and insertion techniques to 

produce an initial solution.  Given this solution, the algorithm then executes a series of 

insert and swap moves.  With an insert move, a customer is moved from one route to 

another, or possibly another location within the same route.  The swap move exchanges 

the locations of two customers from different routes.  In keeping with the tabu idea, the 

algorithm imposes a restriction stating if a customer is removed from a route via insertion 

or swap, the customer cannot return to that route for some number of iterations.  The 

algorithm also has aspiration criteria based on improving the best known objective 

function evaluation.  Brandao claims tabu methods represent the best known heuristics 

for the VRP, and his tabu metaheuristic yielded the best known results to the test 

problems on which he conducted his research. 

 

2.3.3 Local Search/Improvement Algorithms 

 A LS takes a current solution, s0, and tries to either reach a better solution or build 

a neighborhood of solutions about s0, that neighborhood being some or all solutions that 

can be reached from s0 through the application of a particular operator [26].  Elements of 

a neighborhood are referred to as neighbors.  Local improvement operators are restricted 

to only accept improving solutions, while conditions within a LS may allow a sequence 

of non-improving solutions in hope of escaping a local optimum.  The term LS operator 
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refers to a single instance of a LS method and neighborhood while the term LS refers to 

the entire LS heuristic which may include multiple operators. 

 Given the neighborhood structure of a chosen LS operator, one must decide how 

to explore the neighborhood.  The two most common approaches are best improvement 

and first improvement.  In best improvement, the entire neighborhood is explored and the 

neighbor with the greatest improvement is selected as the new solution.  In first 

improvement, the first improving neighbor is selected as the improving solution.  These 

two methods promote solution quality and speed, respectively.  Another approach 

seeking to balance these two qualities is a k-neighbor approach in which k improving 

neighbors are identified and then a selection from this subset is made. 

 For the VRP, these LS operators can be classified as either intra-route or inter-

route operators.  Intra-route operators examine single routes and are often taken from 

literature on the TSP because a single route in the VRP is analogous to that problem.  The 

most common intra-route operators are implementations of the λ-interchange operator in 

which the location of λ nodes are moved or exchanged within a route [30].  Conversely, 

inter-route operators involve multiple routes.  Common methods involve moving or 

exchanging nodes between multiple routes. 

 In the case of the VRP variants considered above, neighborhood searches may 

become more difficult.  As constraints are added, the probability of finding a feasible 

neighbor decreases.  Therefore, finding improving feasible neighbors requires more 

computing time [31].  Three approaches are available to address this issue.  The first 

method is to simply check the feasibility of solutions and only allow feasible improving 

solutions.  This may require checking feasibility for many neighbors depending on the 
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specifications of the search.  Second, an infeasible solution may be accepted and a repair 

operator applied to return the solution to feasibility.  In this case, assuming the new 

solution is not allowed to be the same as the starting solution for this neighborhood, 

bounds do not generally exist on the run time or solution quality of the repair operator.  

Third, infeasible solutions may be allowed with a penalty in the objective function.  The 

downside is the LS may generate many infeasible solutions. 

 Despite these issues, nearly every successful VRP algorithm incorporates at least 

some element of LS.  Most algorithms consist of two phases: construction, in which some 

initial solution (perhaps infeasible) is built, and improvement, in which the neighborhood 

of the initial solution is explored in search of improving (and generally feasible) 

solutions.  The methods and time devoted to each phase vary greatly amongst algorithms. 

 

2.3.3.1 LS for the Vehicle Routing Problem 

 The LS algorithms listed in Table 2 and detailed below represent the most 

promising and widely used techniques from literature.  The most common LS operators 

for the VRP are edge-exchange operators [31].  In general, a k-opt involves exchanging k 

edges with another disjoint set of k edges.  Practical applications usually involve either 

the 2-opt or 3-opt operators as a k-opt with k > 3 is often computationally impractical.  Or 

[32] developed what has become a popular variant of 3-opt called the Or-opt operator in 

which the 3-opt operator used must preserve the orientation of the routes.  Similarly, 

Potvin and Rousseau [33] introduced the 2-opt* operator in which the specific 2-opt 

operator used does not alter the orientation of the routes.  The authors also show a  
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combination of the Or-opt and 2-opt* operators is particularly effective.  Each of these k-

opt operators can be applied as either an inter-route or intra-route operator. 

 Glover [34] uses ejection chains to solve the VRP.  In this method, a set of k 

nodes are cyclically exchanged, meaning node 1 replaces node 2, node 2 replaces node 3, 
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Aleman (2009)    
Archetti (2008)  
Bent and Hentenryck (2004)  
Braysy (2002)  
Braysy (2003)  
Braysy and Gendreau (2005)  
Braysy et al. (2002)  
Derigs et al. (2010)  
Glover (1992) 
Hashimoto et al. (2008)  
Ho and Haugland (2004)   
Ho et al. (2008) 
Ibaraki et al. (2005)  
Kilby et al. (1997)  
Kytojoki et al. (2007) 
Li and Lim (2002)  
Liu and Shen (1998)  
Or (1976) 
Osman (1993) 
Potvin and Rousseau (1995)  
Renaud et al. (1996) 
Savelsbergh (1985)  
Savelsbergh (1990)  
Soeanu et al. (2011) 
Solomon et al. (1988)  
Taillard et al. (1997)  
Thompson and Psaraftis (1993) 
Van Breedam (1994)   

Table 2: Local Search Literature Review 
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and so on with the kth node inserted into the empty position left by removing node 1.  The 

closely related method of cyclic transfers, introduced to the VRP by Thompson and 

Psaraftis [35], are also regularly used.  Kilby et al. [36] use the 2-opt, relocate, exchange, 

and cross methods to solve a VRP while Kytojoki et al. [37] use the 2-opt, Or-opt, and 3-

opt intra-route operators and the exchange, relocate, 2-opt*, and Cross Exchange inter-

route operators.   

 

2.3.3.2 LS for the Vehicle Routing Problem with Time Windows 

 Savelsbergh [38] combines the edge exchange concept with the methods 

introduced by Or [32] to produce 2-interchanges and Or-interchanges.  Savelsbergh later 

refines these operators [39] and introduces the inter-route operators relocate, exchange, 

and cross [40].  The relocate operator moves a customer from one route to another.  The 

exchange operator is a node exchange in which customers from separate routes are 

swapped.  The cross operator attempts to fix routes such that no two routes cross over 

each other.  Solomon et al. [41] use 2-opt, 3-opt, and Or-opt operators to solve a 

VRPTW.  Osman [30] officially defines the λ-interchange operators in which subsets of 

customers no larger than λ from two routes are exchanged.  This method differs from the 

normal edge exchange in that the size of the two subsets is not restricted to equality.  Van 

Breedam [42] uses four operators closely related to the λ-interchange concepts.   

Gendreau et al. [43] define an algorithm called GENIUS in which constructed solutions 

are improved by inserting new customers into a route in a particular manner.  Taillard et 

al. [44] define the Cross Exchange operator, a two-edge exchange in which some 

arbitrary number of consecutive customers is swapped between two routes.  Braysy [45] 
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uses modified versions of the Or-opt and Cross Exchange operators as well as IRP (not to 

be confused with the Inventory Routing Problem discussed in Chapter 5), which 

constructs neighborhoods based on a distance metric between customers, and O-opt, 

which constructs all possible routes given a specified subset of customers.  Braysy et al. 

[46] use injection trees – an extension of ejection chains, GENICROSS – a hybrid of the 

GENIUS algorithm and Cross Exchange operator, and two methods based on the Cross 

Exchange operator.  Bent and Van Hentenryck [47] use the traditional two-exchange, Or-

exchange, relocation, crossover, and exchange operators to define neighborhoods.  

Braysy [48] uses the Or-opt operator and a special operator based on ejection chains.   

Hashimoto et al. [49] use 2-opt*, Cross Exchange, and Or-opt operators.  Ibaraki et al. 

[50] use the Cross Exchange, 2-opt*, Or-opt, and ejection chain operators.  Li and Lim 

use the relocate, exchange, and rearrange operators, where rearrange is an intra-route 

implementation of k-opt with a variable parameter k.  Liu and Shen [51] use a 

generalization of the λ-interchange operator. 

 

2.3.3.3 LS for the Split Delivery Vehicle Routing Problem 

 Aleman [52] uses the popular relocate (which he calls shift) and exchange 

operators along with a shift* operator in which a single delivery is split if a vehicle 

capacity constraint is violated.  Derigs et al. [53] implement 2-opt*, exchange, and 

relocate operators.  Archetti et al. [54] use integer programming to explore promising 

regions of the solution space identified by a tabu search heuristic.  Chen et al. [17] use a 

record-to-record travel operator. 
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2.3.3.4 LS for the Split Delivery Vehicle Routing Problem with Time Windows 

 Decidedly less attention is devoted to problems with the combination of these 

characteristics.  Ho and Haugland [8] adapt the relocate, exchange, and 2-opt* operators 

to the SDVRPTW and develop a new operator, relocate-split, which splits delivery from 

one node and combines the deliveries from a node whose deliveries are currently split 

into a single delivery on one of the routes currently servicing that node.  Belfiore et al. [7] 

employ relocation, insertion, and route addition operators as well as a novel demand 

reallocation operator. 

 

2.3.4 Ant Colony Optimization 

 First introduced by Dorigo [55], ant colony optimization (ACO) works by 

iteratively constructing a series of solutions [56].  Each ant is an instance of a solution 

construction.  Ants probabilistically add components to their individual solutions until 

reaching a complete solution.  The addition of components is based upon heuristic and 

pheromone information about the problem.  In the case of a VRP, the heuristic 

information consists of the edge costs (e.g., cost or time to transit a commodity over a 

given edge).  The pheromone information is gleaned from previous solutions.  More 

specifically, each edge is initialized with the same amount of pheromone.  As a portfolio 

of solutions is built, a local pheromone update decreases the pheromone on those edges 

used in building a solution while a global pheromone update deposits additional 

pheromone onto the “good” edges.  In general, a good edge is one included in what is 

deemed a good solution.  Good solutions are typically defined as either the “best so far” 

or “best of iteration” solution.  In either case, one can also define either a single best 
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solution or identify some “k-best” solutions.  The exact implementation details depend on 

the algorithm and application, but Stutzle and Hoos [57] give empirical evidence an elitist 

strategy (i.e., only allowing some best solution (or set of solutions) to perform global 

updates) yields improved algorithm performance in both solution time and quality.

 By choosing various values for parameters (e.g., evaporation rates, pheromone 

deposit rates, min/max pheromone amounts), the algorithm can be tuned to solve a 

number of different problems.  One of the greatest advantages of an ACO algorithm is the 

ability to balance exploration versus exploitation.  For example, a high evaporation rate 

combined with a high pheromone deposit rate strongly encourages the ants to use edges 

known to exist in good solutions.  This process is known as exploitation and tends to 

encourage solutions “near” existing solutions in that these newly generated solutions are 

more likely to share components with the current portfolio of solutions.  Conversely, 

weak evaporation and pheromone deposit rates encourage ants toward exploration and 

are more likely to find solutions with less in common than those solutions already known.  

A high-quality ACO algorithm strikes a balance between these two aspects of the 

algorithm.  This balance is also not static amongst problems because some problems are 

more amenable to exploration while exploitation leads to better solutions in others. 

 These rates are also not necessarily static within an algorithm as they can also be 

dynamically adjusted as the algorithm proceeds.  For example, an algorithm may yield a 

good solution.  One would then want to encourage exploitation for several iterations to 

try to find a neighborhood of solutions about that original good solution in hopes of 

reaching a better solution or a local optimum.  However, after some number of iterations 

the algorithm may no longer find improving solutions (e.g., the algorithm is stuck at a  
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local optimum).  At this point, the algorithm may alter the pheromone information along 

with the evaporation and/or pheromone deposit rates to encourage the ants to leave this 
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Bell and McMullen (2004)  
Bullnheimer et al. (1999)  
Ding et al. (2012)   
Dorigo (1992) 
Dorigo and Gambardella (1997)  
Dorigo and Stutzle (2010)  
Favaretto et al. (2007)    
Gambardella et al. (1999)  
Gutjahr (2002) 
Mazzeo and Loiseau (2004)  
Pellegrini et al. (2006)   
Rajappa (2012)   
Reimann et al. (2004)  
Ridge and Kudenko (2007)  
Sodsoon and Changyom (2011)   
Stutzle (1998)   
Stutzle and Dorigo (2002) 
Stutzle and Hoos (1996)   
Stutzle and Hoos (1997)  
Stutzle and Hoos (2000)  
Wang and Yu (2010) 
Xia et al. (2011)  
Yi and Kumar (2006)  
Yu et al. (2009)  
Yu et al. (2011)   
Yucenur and Demirel (2011) 
Zhang and Wang (2012)  

Table 3: Ant Colony Literature Review 
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neighborhood in hopes of finding a better solution not sharing many components with the 

current portfolio of solutions. 

 A literature review of ACO algorithms, summarized in Table 3, reveals the 

application of a LS greatly enhances the performance of many ACO implementations 

[56].  This procedure is generally implemented after an ant has constructed a complete 

solution, at which time a LS attempts to improve this solution.  This coupling tends to 

work well because ACO algorithms perform a rather coarse-grained search meaning a 

solution is generally amenable to improvement via a LS.  Meanwhile the primary issue 

with a LS is the generation of a starting solution.  Therefore, the combination of these 

two methods tends to yield excellent results. 

 The literature also shows ACO algorithms are competitive with other 

metaheuristics [58].  For example, Yu et al. found their implementation of an ACO for a 

VRP produced higher quality solutions but with a slightly higher cost in computation 

time than other known metaheuristics such as tabu search and simulated annealing [59].  

The ACO implemented by Dorigo and Gambardella [60] compared favorably against 

state-of-the-art evolutionary algorithms.  Furthermore, Gutjahr [61] proved ACO will 

converge in the limit to the optimal solution given no lower bound on the pheromone 

levels. 

 

2.3.4.1 MAX-MIN Ant System 

Stutzle and Hoos [62] introduce a variant of ACO called the Max-Min Ant 

System (MMAS) and show it outperforms Dorigo’s original ACO implementation in a 

test set of symmetric and asymmetric TSPs and quadratic assignment problems [58].  The 
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primary change in this variant is the inclusion of explicit upper and lower bounds on the 

pheromones for each edge.  This characteristic helps the algorithm to avoid early 

stagnation at a sub-optimal solution.  MMAS also initializes all pheromones to the 

maximum pheromone amount.  Experimentation shows this initialization produces higher 

quality solutions in the early runs and allows the algorithm to converge more quickly than 

other initialization procedures.  MMAS also introduces a trail smoothing mechanism in 

which, if the search stagnates, all pheromones are updated by some proportion of the 

difference between the maximum pheromone and their current value.  This strategy acts 

to reset the pheromones, but instead of resetting all pheromones to some arbitrary value 

(e.g., maximum pheromone limit) this method allows the algorithm to retain a portion of 

the current knowledge.   

MMAS also employs an elitist strategy, allowing only the best solution (either 

best-so-far or best-of-iteration) to perform global pheromone updates [63].  Finally, 

Stutzle and Hoos [62] incorporate a 2-opt LS operator into MMAS and show empirically 

this implementation improves performance.  Performance is further improved by 

employing an elitist strategy with respect to the LS, allowing only the ant with the current 

best solution to perform a LS.  The specific upper and lower pheromone bounds for 

MMAS are determined in a problem-specific nature, depending on the average heuristic 

value (e.g., edge length) of the problem [57].  Stutzle and Dorigo [64] also extend 

Gutjahr’s work [61] and show MMAS will converge to the optimal solution in the limit. 

Stutzle [63] initially suggests parameter settings for MMAS based on 

experimentation of selected TSPs, concluding the number of ants used should be on the 

same order as the size of the problem (e.g., number of nodes).  Stutzle and Hoos [57] 
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expand on these recommendations, adding further detail to the experiments and 

recommending a best-of-iteration elitism strategy.  Pellegrini et al. [65] expand upon this 

foundation, discussing the specific impacts of the parameters on the solutions generated 

and giving a formula for determining the evaporation rate depending on the desired 

number of runs and the size of the problem.  Ridge and Kudenko [66] further investigate 

the MMAS and recommend optimal parameter settings depending on problem size and 

standard deviation. 

 

2.3.4.2 ACO applied to the Vehicle Routing Problem 

 Bullnheimer et al. [67] first adapted the ACO for use in solving a VRP using a 2-

opt LS operator and candidate lists for route selection.  The use of candidate lists entails a 

pre-processing phase in which the k closest customers to every customer are listed and 

customers on this list are the only customers eligible for selection from a given node.  

The reasoning behind these lists is to avoid complicating selection procedures by 

considering customers very far away from the current customer, and therefore not 

consider edges highly unlikely to be included in a good solution.  Bell and McMullen 

[68] adapt an ACO for the VRP, including a 2-opt operator and candidate lists.  The 

authors also speculate, based upon limited data, multiple ant colonies with independent 

pheromone matrices are more effective than a single colony, particularly on larger 

problems.  Reimann et al. [69] propose a decomposition method for a large-scale VRP 

and then use ACO to solve the smaller subproblems.  The authors incorporate the inter-

route swap LS operator and then apply an intra-route 2-opt operator.  Mazzeo and 

Loiseau [70] implement an ACO with candidate lists and 2-opt and Or-opt operators.  Yu 
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et al. [59] introduce an improved ACO in which a mutation – essentially a specific 

implementation of the λ-interchange LS operator – is introduced in addition to the normal 

2-opt operator.  Zhang and Wang [71] implement an ACO in conjunction with a nearest-

neighbor heuristic and a 2-opt operator.  Wang and Yu [72] introduce an improved 

MMAS in which the authors use feedback mechanisms in the later runs to improve the 

ants’ ability to explore the solution space.  Xia et al. [73] use MMAS with 2-opt and 

relocate operators to solve a VRP.  The authors also use pre-scheduled changes in the 

parameters based on the number of runs to improve the algorithm’s performance.  

 

2.3.4.3 ACO applied to the Vehicle Routing Problem with Time Windows 

 Gambardella et al. [21] use ACO to solve a multi-objective VRP.  The authors 

effectively solve the objectives lexicographically, first minimizing the number of vehicles 

and then minimizing total travel time for the given number of vehicles.  Gambardella et 

al. also incorporate a LS based on the Cross Exchange procedure.  Ding et al. [74] use 

MMAS in concert with 2-opt and Or-opt operators as well as a disaster operator that 

randomly perturbs the pheromone matrix in an attempt to broaden the search space.  

Sodsoon and Changyom [75] adapt MMAS to the VRPTW, incorporating relocate, Or-

opt, and 2-opt operators.  Yu et al. (2011) [76] adapted an ACO/LS hybrid for VRPTW. 

 

2.3.4.4 ACO applied to the Split Delivery Vehicle Routing Problem 

Very little research exists into applying ACO to the other VRP variants under 

consideration here.  Rajappa [19] uses an ACO to solve the SDVRP but does not 
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incorporate a LS.  This literature review did not return any instances of an ACO 

metaheuristic being used to solve the SDVRPTW. 

 

2.4 Gaps in Literature 

 As shown in this literature review, little research exists for the SDVRPTW, 

particularly in the area of heuristics.  The next three chapters will add to the body of 

knowledge of the SDVRPTW by exploring the research questions described in the 

previous chapter.  In particular, this research effort will seek to empirically measure 

performance of several LS operators for the SDVRPTW.  This research will also examine 

the impact of the construction phase and problem structure.  Finally, these results from 

the SDVRPTW are applied to a military instance of the inventory routing problem. 
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III. Testing Local Search Move Operators on the Vehicle Routing Problem with 

Split Deliveries and Time Windows 

3.1 Introduction 

The vehicle routing problem (VRP) is an important transportation problem 

seeking an optimal solution for constructing delivery routes given a depot, a fleet of 

vehicles and some number of geographically dispersed customers, each having a demand 

that must be fulfilled.  The problem also incorporates characteristics such as travel times 

and/or distances as well as side constraints such as a maximum vehicle load.  This 

problem is important due to both its widespread application and its complexity in solving.  

See [26] for a more thorough review of the VRP.  The literature addresses several 

extensions of this problem, including variants having delivery time windows associated 

with customers (VRPTW) and variants allowing split deliveries to customers (SDVRP).  

The problem extension including both of these variations has received less attention in 

the literature.  This research sheds further light on this problem, which is important 

because the addition of these two features more accurately represents important real-

world applications of the VRP.  Furthermore, the problem and methods used to approach 

the problem may differ significantly in the presence of these additional characteristics, 

implying the need for research expressly dedicated to these variants.  Specifically, this 

chapter analyzes the effects of combinations of local search (LS) move operators 

commonly used on the VRP and its variants to empirically determine the combination 

best suited to generating good solutions for the VRP with split deliveries and time 

windows (SDVRPTW) within an ant colony optimization (ACO) metaheuristic and is 
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organized as follows.  Section 3.2 presents background on the problem and provides a 

literature review, Section 3.3 describes the test problems and experimental design for the 

computational results presented in Section 3.4, and, finally, Section 3.5 concludes with 

findings and areas for future research. 

 

3.2 Background 

 This section will cover the relevant literature for the SDVRPTW with a brief 

overview on LS operators and the ACO metaheuristic.  This section will also discuss 

these heuristics as applied to the VRP, focusing specifically on applications involving the 

VRPTW, SDVRP, or SDVRPTW. 

 

3.2.1 LS for SDVRPTW 

 Archetti and Speranza [25] offer a concise review of existing work for the 

SDVRP.  They cover both heuristic and exact methods employed thus far, emphasizing 

the improvements in solutions to various test problems seen when comparing traditional 

VRP solutions without split deliveries to solutions allowing split deliveries.  This 

research will focus in particular on the applications of LS operators from these research 

efforts. 

 Feillet et al. [77] use a branch-and-price algorithm to solve examples of the 

SDVRPTW exactly.  However, like the VRP and many of its variants, the SDVRPTW is 

NP-hard [7] and exact solutions are difficult to come by, generally requiring extremely 

long computation times.  Frizzell and Giffin [22] first introduce LS to the SDVRPTW, 
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pairing two operators–moving a customer to a new route or swapping customers between 

routes–with a look-ahead construction heuristic.  They employ the LS on problems using 

grid network distances.  Ho and Haugland [8] use a tabu search to tackle the SDVRPTW, 

employing the following LS operators: Relocate - moves a customer to new route; 

Relocate-split - splits a customer’s load and moves those two loads to new routes; 

Exchange - trades a pair of customers on separate routes; and 2-opt* - exchanges the last 

m customers from one route with the last n customers of another route.  Campos et al. 

[24] adapt the Clarke-Wright savings algorithm to the SDVRPTW to develop an initial 

solution and then use a genetic algorithm to improve this initial solution.  Belfiore et al. 

[7] use scatter search to generate solutions for the SDVRPTW. 

 Many LS operators are employed in approximating solutions for the VRP and its 

variants.  Some of the most popular or promising operators are now discussed.  As seen 

above, Ho and Haugland [8] successfully utilize four LS operators (Relocate, Relocate-

split, Exchange, and 2-opt*) on the SDVRPTW.  In addition to these operators, one 

question this research will address is how well LS operators from the VRPTW and 

SDVRP variants extend to the SDVRPTW.  Dror and Trudeau [14], generally regarded as 

the first to investigate the SDVRP, introduce the 2-split-interchange LS operator, which 

is also the basis for the Relocate-split operator described above.  Aleman et al. [78] 

introduce a Shift* operator for the SDVRP.  The Shift* operator is similar to the 

Exchange operator described above except it allows for a partial shift of one of the 

customers.  Derigs et al. [53] introduce a series of LS operators specific to the SDVRP, 

including Combine, Relocate, and another operator similar to the Relocate-Split LS 

operator; additionally, the authors introduce the concept of combining a split delivery and 
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introducing a new route for this delivery.  Braysy and Gendreau [31] detail many LS 

operators used to generate solutions for the VRPTW, including 2-opt*, Or-opt, and Cross 

Exchange.  These three LS operators prove very popular and effective in the VRP 

literature (see [73], [71], [59], [21], [74], [75], and [37]).  Each of these methods is 

described in further detail in Section 3.3.  For further details, see [25] for the SDVRP and 

[26] and [31] for the VRPTW. 

 

3.2.2 LS Performance Analysis 

 None of the LS implementations on the SDVRPTW discussed above make any 

explicit argument for why a particular LS operator is chosen.  None tested the LS 

operators to show the one (or several) chosen was the best choice for the problem.  

Rather, LS operators are most likely chosen based on successful implementations on 

other variants of the VRP. 

 Others have undertaken the task of comparing the performances of LS operators 

for several variants of the VRP and related problems, but none have specifically 

investigated the SDVRPTW.  Stutzle [63] investigates the effects of several LS operators 

on the traveling salesman problem, the quadratic assignment problem, and the flow shop 

problem when paired with an ACO metaheuristic.  Van Breedam [42] analyzes the 

effectiveness of several LS operators, paired with several different solution construction 

heuristics, for the VRPTW and the pickup and delivery problem.  Braysy and Gendreau 

[31] further analyze LS operators when applied to the VRPTW.  Derigs et al. [53] 

investigate the effects of LS operators on the SDVRP.  However, this literature review 
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revealed no work done to investigate the effects of LS operators when applied to the 

SDVRPTW. 

 

3.2.3 Metaheuristics 

 Testing the performance of the LS operators requires combining these LS 

operators with a construction heuristic into a metaheuristic.  This research effort uses an 

ACO metaheuristic.  This metaheuristic is chosen for two reasons: first, it is successfully 

implemented on the VRP and several of its variations (see [21], [74], [75], and [68]); and 

second, it is studied less extensively than other metaheuristics such as tabu search (see 

[26] and [11]).  The ACO metaheuristic was first introduced by Dorigo [55].  The ACO 

metaheuristic iteratively constructs a series of solutions [56] where each ant provides an 

instance of a solution construction.  Ants probabilistically add components to their 

individual solutions until reaching a complete solution.  The addition of components is 

based on heuristic and pheromone information about the problem.  In the case of a VRP, 

the heuristic information consists of the edge costs (e.g., cost or time to transit a 

commodity over a given edge).  The pheromone information is gleaned from previous 

solutions.  More specifically, each edge is initialized with the same amount of 

pheromone.  As a portfolio of solutions is built, a local pheromone update decreases the 

pheromone on those edges used in building a solution while a global pheromone update 

deposits additional pheromone onto the “good” edges.  In general, a “good” edge is one 

included in what is deemed a high-quality solution (e.g., “global best” or “iteration best” 

solution).  The local pheromone update encourages exploration of new solutions while 

the global update encourages exploitation of high-quality solutions. 
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 A literature review of ACO algorithms reveals the application of LS greatly 

enhances the performance of many ACO implementations [56].  The LS is generally 

implemented after an ant has constructed a complete solution, at which time the LS 

attempts to improve this solution.  This coupling tends to work well because ACO 

algorithms perform a rather coarse-grained search meaning a solution is generally 

amenable to improvement via LS.  Meanwhile the primary issue with LS is the 

generation of a starting solution.  Therefore, the combination of these two methods tends 

to yield excellent results and make the ACO metaheuristic a good candidate for the 

constructive phase when paired with a LS. 

 This research uses the MAX-MIN Ant System (MMAS), an implementation of an 

ACO metaheuristic introduced by Stutzle and Hoos [62].   They show MMAS 

outperforms Dorigo’s original ACO implementation in a test set on symmetric and 

asymmetric TSPs and quadratic assignment problems [58].  The ACO metaheuristic, and 

in particular MMAS, has also proven capable and competitive in the context of the VRP 

(see [21], [74], [75], and [68]).  The primary change in the MMAS variant compared to 

other ACO metaheuristics is the inclusion of explicit upper and lower bounds on the 

pheromone levels for each edge.  This characteristic helps the algorithm avoid early 

stagnation at a sub-optimal solution.  This implementation allows for split deliveries in 

the following manner: a customer is selected for addition to a route in the standard ACO 

manner.  If the entire demand fits onto the vehicle, it is added.  If only part of the demand 

fits onto the vehicle, the maximum delivery amount is added to the vehicle and the 

customer’s demand is updated to reflect the remaining unfilled demand.  Since the sole 

purpose of the MMAS metaheuristic in this research is to provide initial solutions for the 
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LS, any further discussion of the MMAS details is beyond the scope of this paper; see 

[63] for further details on the MMAS metaheuristic. 

 Given the descriptions of the relevant work from literature as it relates to the 

problem of interest, the SDVRPTW, the next section discusses in greater detail the 

experimental design and the implementation of the ACO metaheuristic, as well as details 

on the problem sets used. 

 

3.3 Method 

 The experimental design consists primarily of 93 experiments that form the 

backbone for the results in Section 3.5.  This section describes how and why these 93 

experiments are conducted.  This section also describes the test problems used in the 

experimentation. 

 

3.3.1 Experimental Design 

 This research investigates the use of eight LS operators, in combinations of up to 

three, paired with an MMAS metaheuristic.  This yields 93 different configurations of LS 

operators: 1 configuration with no LS, 8 configurations with one LS operator, 28 

configurations with two LS operators, and 56 configurations with three LS operators.  

The eight LS operators were chosen due to either their widespread use in finding good 

solutions for the VRP and its variants (as is the case for 1, 3, 4, and 5) and/or because of 

promising results on the SDVRP (2, 6, 7, and 8) or SDVRPTW (1, 3, and 8).  The eight 

LS operators are listed and described below.  In this case, a delivery refers to a route 
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visiting a customer and making a non-empty delivery since referring to customer visits, in 

the context of split deliveries, is too vague.  Furthermore, each of the LS operators must 

return a feasible solution in terms of time windows, vehicle capacity, and customer 

demand.  Let Ra denote the ath route in the solution and gi denote the ith delivery on a 

given route. 

 

1. Relocate:  

Two deliveries, gi, gj ∈ Ra, are selected and gi is removed from its original position 

and inserted following gj.  Figure 1 depicts gj as occurring after gi in the initial 

solution, but it may occur either before or after gi. 

 

 

Figure 1: Relocate operator 

 

2. Split-to-single: 

A pair of deliveries, gi ∈ Ra and gj ∈ Rb, is chosen such that both belong to a single 

customer.  These two deliveries, gi and gj, are combined and a new route is created 

that satisfies this delivery (i.e., the new route departs the depot, makes the new 

delivery, g1, and returns to the depot).  See Figure 2. 

 

gi-1 gi gi+1… …

gi-1 gi+1 gj gi gj+1… ……

gj gj+1 …Initial route:

New route:
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Figure 2: Split-to-single operator 

 

3. 2-opt*:  

Two deliveries, gi ∈ Ra and gj ∈ Rb (a≠b), are chosen.  Then, the edges connecting 

gi to gi+1 and gj to gj+1 are removed.  Two new edges are added adjoining gi with 

gj+1 and gj with gi+1.  See Figure 3. 

 

 

Figure 3: 2-opt* operator 

 

4. Or-opt: 

Three deliveries, gi, gi+δ ∈ Ra (δ ≥ 2) and gj ∈ Rb (a≠b), are chosen.  Then, the 

sequence of deliveries beginning with gi+1 and ending with gi+δ-1 is removed from 

gi-1 gi gi+1… …

gi-1 gi+1

gj-1 gj gj+1

…

…

…

Initial routes:

New routes:

…

gj-1 gj+1 ……

g1depot depot

gi gi+1… …

gj gj+1 ……

Initial routes:

gi gj+1… …

gj gi+1 ……

New routes:
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Ra.  An edge is then added to Ra such that gi and gi+δ are now consecutive deliveries. 

The removed segment is then inserted into Rb such that gj precedes gi+1 and gi+δ-1 

precedes gj+1.  See Figure 4. 

 

 

Figure 4: Or-opt operator 

 

5. Cross Exchange: 

Four deliveries, gi, gi+δ ∈ Ra and gj, gj+ε ∈ Rb (a ≠ b; δ, ε ≥ 2), are chosen.  The 

sequence of deliveries beginning with gi+1 and ending with gi+δ-1 is removed from 

Ra.  Similarly, the sequence of deliveries beginning with gj+1 and ending with gj+ε-1 

is removed from Rb.  Four new edges are then added connecting the following pairs 

of deliveries: gi to gj+1, gj to gi+1, gi+δ-1 to gj+ε, and gj+ε-1 to gi+δ.  See Figure 5. 

 

 

Figure 5: Cross Exchange operator 

gi gi+1 gi+δ… …

gi gi+δ ……

Initial routes:

New routes:

gj gj+1 ……

… gi+δ-1

gj gi+1 gj+1… …… gi+δ-1

Initial routes:

New routes: gi gj+1… … gj+ε-1 gi+δ …

gj gi+1… … gi+δ-1 gj+ε

…

gi gi+1… … gi+δ-1 gi+δ …

gj gj+1… … gj+ε-1 gj+ε

…
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6. 2-split-interchange:  

A delivery, gi ∈ Rc, and a pair of routes, Ra and Rb (a≠c, b≠c, a≠b), are chosen such 

that neither route has the capacity for gi.  The delivery, gi, is then split between the 

two routes, Ra and Rb, such that the maximum amount possible is transferred to Ra 

and the remainder to Rb.  Each split delivery is inserted in the first feasible location 

after departing the depot on its new route.  See Figure 6. 

 

 

Figure 6: 2-split-interchange operator 

 

7. Combine:  

A pair of deliveries, gi ∈ Ra and gj ∈ Rb, is chosen such that both belong to a single 

customer.  The deliveries are then combined in one of the two existing deliveries, 

with gi being the first choice.  See Figure 7, where the case with the deliveries 

combined into gi is illustrated. 

 

Initial routes:

New routes:

gj gj+1
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…

…
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…

gj gi
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…

…

…

gk

gi-1 gi+1… …

… gk+1
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Figure 7: Combine operator 

 

8. Shift*: 

A pair of deliveries, gi ∈ Ra and gj ∈ Rb (a≠b), is chosen such that the vehicle 

servicing Rb has the capacity for gi but the vehicle servicing Ra lacks the capacity 

for gj.  Then, gi is inserted into Rb at the first feasible location after departing the 

depot.  Then gj is split such that a partial delivery remains on Rb and a partial 

delivery is inserted into Ra.  More explicitly, the partial delivery randomly chooses 

to capacitate one of the routes, meaning either the maximum possible amount 

remains on Ra or the maximum possible amount moves to Rb.  Figure 8 illustrates 

this process with the gi inserted into Rb after gj+1 and the partial delivery of gj 

inserted into Ra after gi+1, but this precedence relation is not necessary.  Both 

deliveries are simply inserted into the first location yielding a feasible and improving 

solution. 

 

Initial routes:

New routes:

gj-1 gj… …

gi-1 gi gi+1… …

gj-1 gj+1… …

gj+1

gi-1 gi… …gi+1
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Figure 8: Shift* operator 

 

 

Figure 9: Pseudocode for metaheuristic 

 

 The pseudocode for the overall metaheuristic is shown in Figure 9 and is a 

standard application of MMAS.  The specifics involving the LS phase are more 

complicated and are therefore not detailed here.  For further details or the MATLAB code 

used, please contact the author.  The LS operator (or operators) is applied to the best 

Initial routes:

New routes:

gj-1 gj… …

gi-1 gi gi+1… …

gj+1

gj-1 gj… …

gi-1 gi+1

gi

…

…gj+1

… gj …

Pseudocode for metaheuristic:
-Initialize parameters

-For i = 1:iteration_count

**Construction phase**
--For i = 1:ant_count

---Construct         solutions using MMAS
---Save solution with lowest cost

**Improvement Phase**
--Apply LS operator(s) until a local optimum is reached

--Update global best solution
--Global pheromone update

-Return global best solution

n
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solution from the current MMAS iteration, call it γb.  The first LS operator is then applied 

to γb and the first improving solution is accepted and becomes the new γb solution.  The 

same LS operator then attempts to find another improving solution, continuing this 

iterative process until it cannot improve the current solution, meaning the final solution is 

a local optimum for that specific LS operator.  In configurations with a single LS 

operator, this solution is returned to the metaheuristic. In configurations with multiple LS 

operators, the LS operators are applied in the order (1-8) shown above.  The first LS 

operator iteratively repeats in the manner described above until it reaches a local 

optimum.  When the first LS operator reaches a local optimum, that solution becomes the 

starting point for the second LS operator, which then runs in the iterative manner 

described above.  This process repeats once more for configurations with three LS 

operators.  In the configurations with two or three LS operators, if the final solution 

generated by the last LS operator used is an improvement over γb, then this iterative 

process begins anew with the first LS operator.  This process repeats until none of the LS 

operators are able to improve γb, thus guaranteeing the solution returned from the LS is a 

local optimum for all LS operators applied.  This local optimum is returned to the 

metaheuristic.  This process is depicted in Figure 10.  One final note about the 

implementation: if a LS operator creates a route that visits the same customer more than 

once, the deliveries are combined into the earliest delivery. 
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Figure 10: LS Implementation 

 

 Including the ordering of the LS operators in the experimental design requires 401 

solution instances on each of the 12 problems described in Section 3.3.2 below, while a 

fixed-order schema requires 93 solution instances for each problem.  Therefore, a fixed-

order for the LS operators is chosen because of these run-time concerns.  To determine 

the ordering, the 28 possible combinations of pairs of LS operators are applied to each 

problem twice–once using each permutation.  A comparison of these results (see 

Appendix A for data) showed no more than a 2% variation in solution cost between any 

pairs of metaheuristics using permutations of the same LS operators.  However, solution 

run time varied much more, with one pair having a second permutation requiring twice 

the run time of the first permutation (735 seconds vs. 1462 seconds).  Since the 

variability between pairs of solution costs is negligible, these pair-wise comparisons are 

used to order the LS operators as shown above (1-8) with the goal of minimizing run-

time. 
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 Using the nomenclature given by Stutzle [63], our MMAS implementation 

includes α = 1 and β = 2, meaning the heuristic information is considered twice as 

important as the pheromone information [58].  Upper and lower pheromone bounds were 

determined using Stutzle’s rule [63] with a pbest = 0.95 [58].  The implementation uses a 

candidate list of size n/5 (n = number of non-depot customers) as suggested by Bell and 

McMullen [68].  Pheromone deposits are performed using the global best solution [64] 

with a deposit rate of n/cost where cost is the total cost of the best solution found so far 

[72].  Pheromone evaporation rate, ρ, is defined according to the equation set forth by 

Pellegrini et al. [65].  Finally, the number of ants is n  as initial experiments indicated 

this number of ants struck an acceptable balance between the solution quality and run-

time of the construction phase of the metaheuristic. 

 

3.3.2 Problems 

 The test problems used are a subset of Solomon’s classic set of VRPTW test 

problems [79].  Specifically, the set Solomon refers to as R1–problems R101-R112–is 

used for the majority of the analysis.  This test set consists of 12 problems wherein the 

customers are randomly dispersed.  Also, the vehicles are given a fairly small capacity 

relative to the demands with each vehicle able to handle the complete demand for 

approximately 5-10 customers.  For a more in-depth look at these problems, see 

Solomon’s original text [79].   

For the purposes of this analysis, this restricted data set is used in an attempt to 

control as many variables as possible.  The remainder of Solomon’s test set varies the 

distributions used to generate customer locations and/or the vehicle load capacity.  If 
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these variations were to induce changes into the algorithmic performance, then those 

problem characteristics would obscure any conclusions drawn on the performance of the 

algorithms themselves. 

 Given the experimental design and problems described above, the following 

section will delve into the results of these methods as applied to Solomon’s test problems.  

On a final note, Solomon’s test set was developed for the VRPTW.  To transform into a 

SDVRPTW, the constraint stating a customer may only be visited once is simply 

removed.  For detailed formulations of the SDVRPTW, see [7] or [8]. 

 

3.4 Results 

 This section presents computational and statistical results for the problem sets and 

experimental design presented in Section 3.3.  Specifically, the section begins with some 

initial observations followed by an application of a hierarchical clustering technique to 

the data and other statistical analyses.  This section also discusses how the results from 

the initial 93 experiments described in Section 3.3 extend to the remaining 44 problems 

of Solomon’s test set (i.e., sets R2, C1, C2, RC1, and RC2). 

 

3.4.1 Initial Observations 

 The results are characterized by three important qualities: the solution cost, the 

number of vehicles required, and the solution run time (shown here in seconds).  The 

solution cost and the number of vehicles required exhibit a strong correlation as 

evidenced by a 0.83 correlation coefficient.  This means good solutions tend to use fewer 
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routes.  Previous research on the SDVRP supports this conclusion.  Dror and Trudeau 

[14] first postulated this correlation and subsequent research [53], [80], [81], and [82] 

supports this hypothesis.  Given this correlation, the results in this research focus on 

solution cost vs. run time. 

 

 

Figure 11: Raw results 
 

 
Figure 12: Average results 

 The heuristics were tested in MATLAB on a Windows 7 x64 PC with an Intel 

Xeon CPU E5-1650 @ 3.2GHz with 32 GB of RAM.  The raw results are shown in 

Figure 11 with 93 LS configurations (henceforth referred to as configurations) 

implemented on 12 problems.  At first glance there appears to be no pattern in this data.  

However, looking at the average result for a given configuration across the 12 problems, 

a pattern does emerge.  Figure 12 shows the average of the results from the 12 problems 

for each of the 93 configurations (see Appendix B for data).  In this grouping, clear 

distinctions amongst the configurations emerge.  Instinctively, the first question is: “Do 

the configurations that implement more LS operators outperform those with fewer LS 

operators?”  Figure 13 again depicts the average results, but distinguishes amongst the 
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configurations based on the number of LS operators used.  Note “LS x3” means the data 

points use three LS operators, “LS x2” data points use two LS operators, “LS x1” data 

points use one LS operator, and “no LS” is the case of the MMAS metaheuristic with no 

LS.  However, this view exhibits no discernible relationship between either cost or run 

time with the number of LS operators used, with configurations employing various 

numbers of LS operators scattered throughout the data points. 

 

 
Figure 13: Average results colored by number of LS operators employed 

 

3.4.2 Clusters 

 An initial glance at Figure 12 hints the data are not random, but rather are 

separable into clusters based on performance.  To further explore this hypothesis, both 

cost and run time are normalized to account for the differences in scaling between these 

two values.  For each data set, the minimum value in that set is subtracted from each data 

point in the set; this difference is then divided by the difference between the maximum 

and minimum values.  This re-scales each of the data sets onto the [0,1] interval such that 

the minimum value in each set corresponds to 0 and the maximum to 1.  Then, using a 
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hierarchical clustering algorithm [83] in MATLAB [84], the averaged data set is divided 

into k clusters.  The similarity scores for the groupings of the data using a shortest 

Euclidean distance measure are shown in Table 4. 

 

Table 4: Similarity scores for 

hierarchical clustering 

 

 

 
Figure 14: Six clusters 

 The clustering algorithm starts with a cluster for each data point and then 

iteratively joins clusters–joining one cluster at a time to another existing cluster–until the 

data are all in a single cluster.  A large difference in similarity scores indicates the 

clusters joined together at that particular step are more different than two clusters joined 

with a smaller similarity gap [83].  The similarity scores in Table 4 suggest the data have 

natural divisions at either six or seven clusters due to the differences in the similarity 

scores.  For example, going from six clusters to five requires joining clusters with a 

difference in similarity scores of 0.059 whereas the difference between five clusters and 

four is only 0.017.  This means the clusters joined when eliminating a fifth cluster are 

more similar than those joined when a sixth is removed.  Therefore, representing the data 
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with five clusters requires joining two less similar clusters compared to the clusters 

joined in previous steps.  Seven clusters is also a possibility for a natural division because 

the clusters joined to remove the seventh cluster are also quite dissimilar.  One may also 

argue the same for two clusters, but two clusters do not yield any meaningful insights.  

The scores in Table 4 are truncated to only show up to eight clusters.  The scores for 

clusters 9 through 93 never significantly differ, with differences in similarity scores over 

this range all less than 0.02. 

 Consider the six clusters in Figure 14.  The LS configurations comprising each of 

the clusters in this figure are shown in a table in Appendix C with a “1” indicating the LS 

operator for that column was used by the configuration of that row and a “0” otherwise.  

This table reveals a striking pattern as it relates to the clusters.  Cluster 1 consists of every 

configuration that includes Or-opt but not Cross Exchange.  Cluster 2 is the inverse of 

Cluster 1, that is, every configuration that uses Cross Exchange but not Or-opt, with one 

exception being that the configuration using Relocate, Cross Exchange, and 2-split-

interchange is its own cluster due to its significantly longer run times than the data points 

in Cluster 2.  Cluster 3 consists of those configurations that use 2-opt* but neither Or-opt 

nor Cross Exchange.  Cluster 4 consists of those configurations that use both Cross 

Exchange and Or-opt.  Finally, configurations in Cluster 5 do not use 2-opt*, Or-opt, or 

Cross Exchange. 

 Dividing the data set into seven clusters presents a similar picture, with the 

seventh cluster consisting of the lowermost point from Cluster 3, which is the 

configuration using 2-opt*, Or-opt, and Cross Exchange.  However, taking into account 
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both similarity scores in Table 4 and the composition of the clusters, a division of the 

data into six clusters appears to be the best way to cluster the LS configurations. 

 Based on the six clusters shown in Figure 14, the optimal methods -in terms of 

both solution cost and run time - are those in Clusters 1, 4, and 5.  The averaged data 

actually show Configuration 49–using Relocate, Or-opt, and Cross Exchange–of Cluster 

4 lies on the Pareto front, but, compared with the configuration in Cluster 1 with the 

lowest solution cost - Configuration 44 - this configuration in Cluster 4 represents a 0.5% 

improvement in cost with the penalty of more than tripling the run time.  Due to this 

unfavorable trade-off, combined with the fact that the difference in solution costs of the 

two configurations is statistically negligible, this configuration is not considered as a 

candidate for a good metaheuristic. 

 Furthermore, Cluster 5 consists of those configurations that do not use 2-opt*, Or-

opt, or Cross Exchange.  As the data in Table 5 show, this cluster, while Pareto optimal, 

offers very poor solutions with solution costs approximately 70% worse than the best 

solution costs seen in Figure 12.  A comparison of the means in JMP version 10.0 using 

Dunnett’s Method [85] with Configuration 1 (MMAS with no LS) as the control group 

reveals the other configurations in Cluster 5 are not statistically different with respect to 

solution cost than the control group.  However, this same method also shows each of 

these methods is statistically the same as the control group with regards to solution time.  

This means these methods do not substantially improve the solution cost generated by the 

MMAS construction phase of the metaheuristic, but they also do not require longer run 

times.  This is most likely due to the nature of the problems and the construction process 

in the MMAS metaheuristic.  For example, consider the Relocate operator.  The time 
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windows constraint restricts a customer’s movement within a route while maintaining 

feasibility in this regard.  Therefore, the nature of the problem is likely preventing this 

operator from contributing any substantial improvements.  Also consider the Combine 

operator.  In the construction process, customers are only split if the route cannot carry 

the customer’s entire requirement.  Therefore, the Combine operator alone is hampered 

given this construction process because split loads cannot possibly be combined onto one 

of the routes since the load was originally split out of necessity. 

 This research effort uses greedy implementations of the LS operators, meaning 

only improving solutions are accepted.  Others (e.g., [1]) successfully combine some of 

these particular operators by allowing for non-improving moves, but this research effort 

does not consider that scenario.  Given this particular construction process and 

implementation of the LS operators, any configuration that does not include at least one 

of 2-opt*, Or-opt, or Cross Exchange (i.e., the configurations in Cluster 5) is statistically 

no different than an MMAS metaheuristic, and as evidenced by Figure 14, the results 

given by Cluster 5 are quite poor with respect to solution cost compared to Clusters 1-4. 

 This leaves Clusters 1 and 3.  The configurations in Cluster 1 have an average 

cost of 1269.1 with an average run time of 504.6 seconds.  Cluster 3 averages 1534.9 and 

88.7 seconds for cost and run time, respectively.  In terms of cost and run time, these 

solutions are both non-dominated and are therefore Pareto optimal.  Cluster 1 represents, 

on average, a 17% improvement in solution cost but with a 469% increase in run time in 

comparison to Cluster 3.  One should note for Cluster 1, the run times are still of the 

order of a few minutes.  However, given the results of this experiment, a 2-opt* LS 

operator should be employed if good solutions with fast run times are desired. 
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Table 5: Results averaged by cluster 

 

 

 Conversely, Or-opt should be employed if solution cost is valued more highly 

than run time.  However, the other six LS operators investigated should not be used 

without combining them with at least 2-opt* or Or-opt, and Cross Exchange should not 

be used at all as Or-opt achieves similar results in terms of cost with much better 

performance in run time. 

 Of the non-dominated clusters, Cluster 1 is the focus of this research because, in 

most applications for the VRP, solution cost outweighs computational speed.  Cluster 1 

offers better performance than Clusters 3 or 5 in terms of solution quality.  Isolating 

Cluster 1 and again applying the hierarchical clustering technique yields Figure 15.  The 

similarity scores are shown in Table 6.  Data are appended to show only up to six clusters 

because, of the remaining similarity scores, consecutive groupings all differ by less than 

0.02. 

 

Cluster Avg Solution Cost Avg Run Time (s)
1 1269.1 504.6
2 1524.7 863.0
3 1534.9 88.7
4 1237.8 1521.7
5 2147.0 9.0
6 1518.3 1668.5
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Table 6: Similarity scores for sub-

clusters of Cluster 1 

 

 

Figure 15: Sub-clusters of Cluster 1

 

 The configurations and their accompanying LS operators are shown in Table 7.  

Just as before, the clustering revolves around the inclusion/exclusion of a subset of the 

total number of LS operators tested.  Recall each of the configurations in Cluster 1 uses 

Or-opt and none use Cross Exchange.  Given that, the inclusion of 2-opt* and Relocate 

drive the location within the cluster.  More specifically, notice Cluster 1c contains 

Configuration 5, the configuration using only Or-opt.  It also contains each of the 

configurations that do not use the Relocate or 2-opt* operators.  Therefore, compared to 

Configuration 5, using the Combine, 2-split-interchange, Split-to-single, or Shift* 

operators in combination with Or-opt do not significantly affect the algorithm’s 

performance in terms of either solution cost or run-time.  Furthermore, every 

configuration within Cluster 1c is dominated by Cluster 1d.  Next, note all of the 

configurations in Cluster 1b use Or-opt in conjunction with Relocate, but none use 2-

opt*.  Again, this cluster is dominated by Cluster 1d as well as Cluster 1a.  The 

configurations in Clusters 1a and 1d use both Or-opt and 2-opt*.  Cluster 1a also uses  
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Table 7: Composition of Cluster 1 sub-clusters 

 

 

Relocate, while Cluster 1d consists of the remaining 5 configurations that use 2-opt* and 

Or-opt. 

 From the results shown in Table 8, comparing Cluster 1b with Cluster 1c shows 

that including Relocate, but not 2-opt*, with Or-opt decreases the solution cost by an 

average of 2% but increase run time by 12%.  The use of Relocate with 2-opt* and Or-

opt, the lone configuration in Cluster 1a, improves the solution cost even further, with an 

average improvement of 4% but with less than 1% increase in run time.  Furthermore, 

Cluster 1d shows including 2-opt* but not Relocate with Or-opt decreases both solution 

cost and run time–average improvements of 3% and 8%, respectively–relative to Cluster 

1c.  Therefore, the inclusion of 2-opt* with Or-opt is critical to further improving the 

quality of the solution in terms of both cost and run-time.  Comparing the two non-

dominated solutions, the inclusion of Relocate with 2-opt* and Or-opt–Cluster 1a–creates 

a non-dominated solution compared to Cluster 1d, decreasing the cost by an average of 

over 1% but with an average increase in run time of nearly 10%. 

LS1: Relocate LS5: Cross Exchange
LS2: Split-to-single LS6: 2-split-interchange Configuratio LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8
LS3: 2-opt* LS7: Combine 5 0 0 0 1 0 0 0 0
LS4: Or-opt LS8: Shift* 18 0 1 0 1 0 0 0 0

29 0 0 0 1 0 1 0 0
30 0 0 0 1 0 0 1 0

onfiguratio LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 31 0 0 0 1 0 0 0 1
44 1 0 1 1 0 0 0 0 65 0 1 0 1 0 1 0 0

66 0 1 0 1 0 0 1 0
67 0 1 0 1 0 0 0 1

onfiguratio LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 87 0 0 0 1 0 1 1 0
12 1 0 0 1 0 0 0 0 88 0 0 0 1 0 1 0 1
39 1 1 0 1 0 0 0 0 89 0 0 0 1 0 0 1 1
50 1 0 0 1 0 1 0 0
51 1 0 0 1 0 0 1 0
52 1 0 0 1 0 0 0 1 Configuratio LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8

23 0 0 1 1 0 0 0 0
59 0 1 1 1 0 0 0 0
75 0 0 1 1 0 1 0 0
76 0 0 1 1 0 0 1 0
77 0 0 1 1 0 0 0 1

Cluster 1c

Cluster 1a

Cluster 1b

Cluster 1d
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Table 8: Results averaged by sub-cluster 

 

 

 Note the three most important LS operators as identified by clustering analysis are 

not specific to split delivery problems, but rather are borrowed directly from the VRPTW 

literature.  Therefore, the data show implementing a LS operator with specific split 

delivery features does not improve the solution quality.  This observation is unlikely an 

artifact of the problem set because Ho and Haugland [8] show splitting deliveries is 

effective in reducing cost for these problems.  Note this does not mean splitting is not 

valuable in general because the construction phase used in this research incorporates 

splitting.  Rather the data suggest, given a construction phase with a splitting option, LS 

operators taken from VRPTW solution implementations are more effective than operators 

that explicitly seek to again split deliveries. 

 

3.4.3 Individual Problems 

 The results above depend upon the average result for a configuration across 12 

problems that differ in customer time windows.  While implementing a hierarchical 

clustering technique on each individual problem does not yield the same clusters as 

hypothesized in the previous section, for each of the problems the clustering presented 

represents a satisfactory view of the data.  Figure 16 and Figure 17 show the clustering 

presented above applied to results from two individual problems.  The data for the 

Sub-cluster Avg Solution Cost Avg Run Time (s)
1a 1232.4 500.6
1b 1260.2 558.5
1c 1285.4 497.6
1d 1250.0 456.0
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remaining 10 problems can be seen in Appendix D.  Figure 16 shows the solutions for 

R106 and the clusters to which each solution belongs according to the average clusters.  

This plot is representative of each of the problems in that the individual problems 

generally agree with the conclusions drawn from the averaged data.  The few existing 

discrepancies are not large enough to dispute the overall results.  For example, results for 

problem R112, shown in Figure 17, disagrees most with the average clusters out of these 

12 problems, but the basic premises still remain; specifically, even for problem R112, 

Clusters 1 and 3 dominate Clusters 2 and 6 while Clusters 4 and 5 represent 

unsatisfactory trade-offs between solution cost and run time.

 

 

Figure 16: R106 denoted with average 
clusters 

 

Figure 17: R112 denoted with average 
clusters 

 

3.4.4 Statistical Analysis 

 Other statistical methods reinforce the conclusions made via clustering.  Using 

JMP version 10.0 with the raw data as shown in Figure 11, a least squares regression 

fitting a third degree polynomial (i.e., up to three way interactions) with α = 0.05 shows 

2-opt*, Or-opt, Cross Exchange, and all of the 2 and 3-way interactions using only those 
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LS operators are the most significant factors impacting the solution cost.  The other 

significant factors all involve Relocate in combination with other factors, meaning the 

Relocate operator is important to include if using multiple LS operators.  Second, a 

partition of the data set based upon the solution cost with a validation portion of 0.1 

reveals these same four LS operators–Relocate, 2-opt*, Or-opt, and Cross Exchange–are 

again the most significant factors in producing a statistically meaningful partition of the 

data.  The Combine operator is shown as statistically significant, but only if 2-opt* and 

Or-opt are not used. 

 A regression fitting a third degree polynomial with respect to run time indicates 

the use of Or-opt or Cross Exchange significantly increases the run time as evidenced by 

the fact that these two individual treatments are the most significant factors and all of the 

significant factors involve at least one of these two operators with the exception of the 

treatment using only 2-opt*.  However, the parameter estimates for Or-opt and Cross 

Exchange are an order of magnitude greater than that of 2-opt*.  The results also indicate 

a significant negative two-way interaction between the 2-opt* and both Or-opt and Cross 

Exchange, meaning the inclusion of 2-opt* with one (or both) of these operators 

significantly reduces run time compared to using only Or-opt or Cross Exchange (or Or-

opt and Cross Exchange).  Furthermore, a partition of the data, with a validation portion 

of 0.15, reinforces the assertion that Or-opt and Cross Exchange are the most impactful 

LS operators in terms of run time.  The mean run time for all instances is 505 seconds, 

while the mean run time using both Or-opt and Cross Exchange is 1521 seconds.  The 

mean run times for instances using neither is 39 seconds while the mean run time for 

those instances using at most one of the two is 708 seconds.  The partition also shows 
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using the Relocate operator in combination with either Or-opt or Cross Exchange (but not 

both) significantly increases run time. 

 These analyses reinforce the results from the clustering analyses, namely that 2-

opt*, Or-opt, and Cross Exchange are the most impactful LS operators in terms of both 

solution cost and run time.  It also reinforces the idea of a tradeoff between solution cost 

and run time because the LS operators that significantly decrease solution cost are the 

same operators that increase run time. 

 

3.4.5 Replicates 

 Experimental results were replicated for a limited number of configurations.  

Practical restrictions with regards to run time prohibit running replications for the entire 

data set.  The idea of Tongarlak et al. [86] of experimenting at selected points of the 

design space is utilized.  Specifically, the configurations in Cluster 1 are replicated 10 

additional times (11 runs total).  Subsequently, joint confidence intervals for both 

solution cost and run time are constructed based on the non-parametric sign test.  The 

intervals each have a 98.8% confidence level, yielding a 97.7% joint confidence level.  

These joint confidence intervals are plotted in Figure 18 against the 71 configurations not 

in Cluster 1.  Based upon the distance between the clusters relative to the width of the 

confidence intervals, the above results do not appear to be statistically anomalous, but 

rather seem representative of the true performance of the algorithms on the given 

problem set. 
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Figure 18: Cluster 1 confidence intervals 

 

3.4.6 Additional Test Problems 

 Within each cluster is a basis for the cluster; that is, the simplest configuration 

containing the LS operators necessary for inclusion in the cluster.  Those configurations 

are listed below for each cluster: 

  Cluster 1: Or-opt 

  Cluster 2: Cross Exchange 

  Cluster 3: Or-opt & Cross Exchange 

  Cluster 4: 2-opt* 

  Cluster 5: No LS 

 Each of these five configurations was tested against the 44 remaining problems of 

Solomon’s test set [79] along with just these configurations for problem set R1 for 

reference.  Results are shown in Figure 19.  As in the original experiment, results are 

averaged across all of the problems in the data set for each configuration.  Again, 

practical restrictions with respect to run time disallow testing all 93 configurations on the 

entire data set.  Cluster 6 is omitted; recall this cluster consisted on the lone configuration 
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Figure 19: LS performance on additional problem sets 

 

employing Relocate, Cross Exchange, and 2-split-interchange.  The results detailed in the 

previous section strongly suggest this configuration will not match the performance of 

Cluster 2, let alone any of the non-dominated clusters. 
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 While the performance of the algorithm does exhibit a dependence on the problem 

characteristics as evidenced by fluctuations in average solution cost and run time, the 

plots for each of the different problem types exhibit the same basic pattern as the plot for 

the R1 problem set.  In particular, the metaheuristics incorporating Cross Exchange 

(Clusters 2 and 6) are Pareto-dominated by the metaheuristic that uses Or-opt (Cluster 1).  

Also, the metaheuristic with both Or-opt and Cross Exchange (Cluster 4) slightly 

outperforms the Or-opt metaheuristic (Cluster 1) in each of the cases in terms of solution 

cost, but always at a great expense in run time.  Conversely, in terms of solution cost, the 

2-opt* metaheuristic (Cluster 3) greatly outperforms the metaheuristic that does not 

incorporate LS (Cluster 5) with a relatively small increase in run time. 

 Based upon the results shown, clustered or random-clustered customer locations 

do not significantly impact the relative performance of the LS configurations.  Similarly, 

extending the planning horizon from vehicles capable of servicing 5-10 customers to 

vehicles capable of servicing in excess of 30 customers has little impact on the relative 

performance of the LS configurations. 

 Next, a representative sample set is tested–similar to the above approach–of each 

of the sub-clusters of Cluster 1 for the remainder of Solomon’s test problems.  The 

representative configurations are: 

  Cluster 1a: Relocate, 2-opt*, & Or-opt 

  Cluster 1b: Relocate & Or-opt 

  Cluster 1c: Or-opt 

  Cluster 1d: 2-opt* & Or-opt 
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Figure 20: Sub-clusters of Cluster 1 on additional problem sets 
 

 Results are shown in Figure 20 and are again the average of the results of each of 

the individual problems within a test set.  For these problems with varying vehicle load 

capacities and distributions of customer locations, the inclusion of 2-opt* with Or-opt 

improves both solution cost and run time for all of the problems.  Also, including 

Relocate as a third LS operator improves solution cost on all of the problems, but with 
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varying impacts on run time.  The R2 problem set is the exception where this triplet is the 

lone optimal solution within Cluster 1, dominating the other four data points.  Based upon 

these samples, the conclusions from the sub-clusters of Cluster 1 on problem set R1–

namely, including 2-opt* with Or-opt improves both solution cost and run time and 

including Relocate as a third LS operator improves solution cost but with an increase in 

run time–appear to extend to problem sets R2, C1, C2, RC1, and RC2. 

 This section presented several computational and statistical results on the 

effectiveness of LS operators applied to the VRPTW.  These results are summarized in 

Section 3.5. 

 

3.5 Conclusions 

 This chapter shows through computational and statistical results a metaheuristic 

consisting of an MMAS constructive process paired with a LS performs significantly 

different depending on the LS operators used.  Unless an application has an extreme 

focus on run time or solution cost, Or-opt or 2-opt* appear to be the ideal LS operators to 

employ on the SDVRPTW with Or-opt finding higher quality solutions (i.e., lower cost) 

and 2-opt* requiring less run time. 

 Future research efforts should further explore some of the details of this analysis.  

In particular, this research bases the implementation and parameters of the MMAS 

metaheuristic and LS operators on previous research efforts found in the literature.  

Further experimentation focusing on these aspects may yield better implementations for 

each.  Also, this research chooses to focus on the cluster of metaheuristics using Or-opt 
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(Cluster 1) because it balances the trade-off between solution cost and run time.  

However, three other clusters contain at least one configuration not Pareto-dominated by 

Cluster 1, and hence, these clusters may deserve more attention if a specific application 

values cost or run time differently.  Similarly, run time concerns dictated only 5 of the 93 

configurations are tested on the remainder of Solomon’s data set (problem sets R2, C1, 

C2, RC1, and RC2).  Further experimentation on these problem sets is needed in order to 

develop a more robust empirical data set from which to draw conclusions.  Finally, this 

chapter uses MMAS as the lone construction heuristic, leaving open the research question 

of how the quality of the initial solution may impact LS performance and the clusters 

formed. 
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IV. Examining the Effects of Construction Heuristics and Problem Structure on 

Solution Quality of the Vehicle Routing Problem with Split Deliveries and Time 

Windows 

4.1 Introduction 

 The vehicle routing problem (VRP) is an important transportation problem 

seeking an optimal solution for constructing delivery routes given a depot, a fleet of 

vehicles and some number of geographically dispersed customers, each having a demand 

that must be fulfilled.  The problem also incorporates characteristics such as travel times 

and/or distances as well as side constraints such as a maximum vehicle load.  This 

problem is important due to both its widespread application and its complexity in solving.  

See [26] for a more thorough review of the VRP.  The literature addresses several 

extensions of this problem, including variants having delivery time windows associated 

with customers (VRPTW) and variants allowing split deliveries to customers (SDVRP).  

The problem extension including both of these variations has received less attention in 

the literature.  This research sheds further light on this problem, which is important 

because the addition of these two features more accurately represents important real-

world applications of the VRP.  Furthermore, the problem and methods used to approach 

the problem may differ significantly in the presence of these additional characteristics, 

implying the need for research expressly dedicated to these variants. 

 Chapter III investigated local search (LS) move operators applied to the vehicle 

routing problem with split deliveries and time windows (SDVRPTW), revealing strong 

conclusions about which LS operators are best suited to this problem.  In this research, 
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several features of the SDVRPTW are investigated to determine the influence of these 

features on the overall solution.  This chapter is organized as follows: Section 4.2 gives a 

literature review of relevant topics.  Section 4.3 details the experimental design for and 

results of testing construction heuristics while Section 4.4 shows how problem features 

such as split loads and customer demands impact solution quality.  Finally, Section 4.5 

finishes with conclusions and areas for future work. 

 

4.2 Literature Review 

 This section covers the relevant literature for the SDVRPTW with a brief 

overview on LS operators and metaheuristics.  This section also discusses these heuristics 

as they have been applied to the VRP, focusing specifically on applications involving the 

VRPTW, SDVRP, or SDVRPTW. 

 

4.2.1 LS Move Operators 

 Chapter III empirically shows the relocate, 2-opt*, and Or-opt LS operators are a 

good combination for the SDVRPTW, offering near-best solutions compared to other LS 

operator combinations while also having acceptable run times.  Ho and Haugland [8] 

introduce relocate and 2-opt* for the SDVRPTW.  Chapter III adapts Or-opt [32] to the 

SDVRPTW. 

 The LS operators are listed and described below.  In this case, a delivery refers to 

a vehicle on a route visiting a customer and making a non-empty delivery.  Furthermore, 

each of the LS operators must return a feasible solution in terms of time windows, vehicle 
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capacity, and customer demand.  Let Ra denote the ath route in the solution and gi denote 

the ith delivery on a given route. 

 

1. Relocate:  

Two deliveries, gi, gj ∈ Ra, are selected and gi is removed from its original position 

and inserted following gj.  Figure 21 depicts gj as occurring after gi in the initial 

solution, but it may occur either before or after gi. 

 

 

Figure 21: Relocate operator 

 

2. 2-opt*:  

Two deliveries, gi ∈ Ra and gj ∈ Rb (a≠b), are chosen.  Then, the edges connecting 

gi to gi+1 and gj to gj+1 are removed.  Two new edges are added adjoining gi with 

gj+1 and gj with gi+1.  See Figure 22. 

 

gi-1 gi gi+1… …

gi-1 gi+1 gj gi gj+1… ……

gj gj+1 …Initial route:

New route:
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Figure 22: 2-opt* operator 

 

3. Or-opt: 

Three deliveries, gi, gi+δ ∈ Ra (δ ≥ 2) and gj ∈ Rb (a≠b), are chosen.  Then, the 

sequence of deliveries beginning with gi+1 and ending with gi+δ-1 is removed from 

Ra.  An edge is then added to Ra such that gi and gi+δ are now consecutive deliveries. 

The removed segment is then inserted into Rb such that gj precedes gi+1 and gi+δ-1 

precedes gj+1.  See Figure 23. 

 

 

Figure 23: Or-opt operator 
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4.2.2 Metaheuristics 

 Testing the performance of the LS operators requires combining these LS 

operators with a construction heuristic to form a metaheuristic.  For this research effort, 

three basic construction heuristics are chosen: Ant Colony Optimization (ACO), Greedy 

Randomized Adaptive Search Procedure (GRASP), and Probabilistic Nearest Neighbor 

(PNN).  These three are chosen because they broadly cover the range of available 

metaheuristics.  The ACO heuristic has a learning feature and attempts to build solutions 

similar to previous good solutions.  The implementations of GRASP and PNN used here 

do not have learning features.  Unlike ACO in which the pheromone matrix adapts over 

time, each iteration of these two construction heuristics has the same inputs (e.g., static 

distance matrix) every time it is used.  These three construction heuristics cover the full 

range of construction heuristics available in the sense they cover the spectrum of learning 

and non-learning heuristics as well as the spectrum of exploration versus exploitation.  

These two basic characteristics define the main thrust of any construction heuristic.  With 

proper choices for parameters the multiple implementations of these construction 

heuristics, any construction heuristic will fall somewhere within the spectrum covered by 

these construction heuristics.  Note there are other metaheuristics (e.g., tabu search, 

variable neighborhood search) not covered here.  These metaheuristics tend to focus 

primarily on the local search, which was the purview of Chapter III. 

 

4.2.2.1 Ant Colony Optimization 

 The ACO heuristic was first introduced by Dorigo [55].  The ACO heuristic 

iteratively constructs a series of solutions [56] where each ant provides an instance of a 
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solution construction.  Ants probabilistically add components to their individual solutions 

until reaching a complete solution.  The addition of components is based on heuristic and 

pheromone information about the problem.  In the case of a VRP, the heuristic 

information consists of the edge costs (e.g., cost or time to transit a commodity over a 

given edge).  The pheromone information is gleaned from previous solutions.  More 

specifically, each edge is initialized with the same amount of pheromone.  As a portfolio 

of solutions is built, a local pheromone update decreases the pheromone on certain edges 

while a global pheromone update deposits additional pheromone onto the “good” edges.  

In general, a “good” edge is one included in what is deemed a high-quality solution (e.g., 

“global best” or “iteration best” solution).  The pheromone deposit and evaporation rates, 

as well as the parameters controlling the balance of influence between the heuristic and 

pheromone matrices, determine how the ACO balances exploration versus exploitation. 

 This research uses the MAX-MIN Ant System (MMAS), an implementation of an 

ACO heuristic introduced by Stutzle and Hoos [62].   They show MMAS outperforms 

Dorigo’s original ACO implementation in a test set on symmetric and asymmetric TSPs 

and quadratic assignment problems [58].  The primary change in the MMAS variant 

compared to other ACO implementations is the inclusion of explicit upper and lower 

bounds on the pheromone levels for each edge.  This characteristic helps the algorithm 

avoid early stagnation at a sub-optimal solution. 

 

4.2.2.2 Greedy Randomized Adaptive Search Procedure 

 Resende and Ribeiro [87] offer a concise review of another popular construction 

method: GRASP.  The GRASP heuristic functions similarly to the ACO in that it 
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constructs a solution by iteratively adding edges.  Where it differs is in the edge selection 

procedure.  The GRASP procedure entails composing a restricted candidate list (RCL).  

Given a parameter α∈[0,1], an edge is included in the RCL if it is less than the product of 

α and the difference between the closest and farthest feasible neighbors.  Choosing the 

level for α allows the implementation to vary from completely greedy (α=0) to 

completely random (α=1).  Some popular implementations of GRASP (e.g., Reactive 

GRASP and path-relinking [87]) are more complicated and use learning mechanisms on 

top of this simple construction method.  However, as discussed above, this simplistic 

implementation of GRASP is specifically chosen because it does not have a learning 

feature with the intent of determining the usefulness of the learning feature of ACO by 

comparing it to metaheuristics without such a feature. 

 

4.2.2.3 Probabilistic Nearest Neighbor 

 The PNN construction heuristic is the most simplistic of the heuristics used here.  

This implementation defines an empirical distribution of all feasible neighbors based on 

the linear distance from the current location.  This distribution then guides the edge 

selection process, resulting in edge selections where closer neighbors are more likely to 

be selected than those neighbors farther away.  The implementation of the PNN 

construction heuristic in this research borrows the idea of a candidate list from the ACO, 

using a list of size n/5 where n is the total number of customers. 

 Now that the heuristic methods are defined, the next section lays out the 

experimental design by which the construction heuristics are tested. 
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4.3 Construction Heuristics 

 This section describes the process of testing the construction heuristics.  Shown 

first are the experimental design and results of tuning the ACO metaheuristic followed by 

the experimental design and results of testing the different construction heuristics 

discussed in the previous section. 

 

4.3.1 Optimization of ACO metaheuristic 

 Chapter III uses ACO as the sole construction technique.  Therefore, the first 

aspect investigated here is the tuning of the ACO metaheuristic in hopes of achieving 

better solutions than those found in the previous work.  Research identified nine 

parameters within the ACO metaheuristic of particular interest to this problem.  Of those, 

the following three parameters are not included in the experimental design for two 

reasons.  First, including all nine parameters would yield either an extremely time-

consuming experiment (e.g., full factorial) or an experiment with weak conclusions (e.g., 

fractional factorial).  Second, initial results indicated setting the parameters to values 

identified in previous research efforts yielded good solutions.   

 

4.3.1.1 Experimental Design 

Therefore, this research uses the values identified by these previous efforts as 

discussed below. 

1. Size of the candidate list: A candidate list is an explicit restriction on the 

number of feasible neighbors for each customer.  Bell and McMullen [68] 

researched this parameter for the VRPTW and recommend n/5.  Some others 
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[70][69][67] recommend n/4; however, as seen below, other parameters are in 

further need of testing.  Therefore, this experiment uses n/5. 

2. Upper Pheromone Bound: Stutzle [63] quantitatively develops the upper 

pheromone bound used in this experiment.  It is 
1 1*

1 optsρ−
where sopt is the 

optimal solution and ρ is defined below.  Since obtaining sopt is non-trivial, 

the algorithm runs one iteration of the MMAS metaheuristic without 

pheromones and uses the best solution value obtained as an approximation for 

sopt. 

3. Pheromone deposit rate: Wang and Yu [72] propose a pheromone deposit rate 

of n divided by the cost of the global best solution.  Others—e.g., [75], [69], 

[88], and [20]—propose various rates representing some fraction of the cost of 

the global best solution.  However, this deposit rate is highly correlated to the 

distance between the upper and lower pheromone bounds.  The relative size of 

the pheromone deposit is dependent on how many deposits are required to 

reach the upper bound from the current pheromone level.  Therefore, this 

research fixes the deposit rate at n/cost as suggested by Wang and Yu while 

focusing experimentation on the pheromone lower bound. 

 

 Results from Chapter III indicate a combination of the relocate, 2-opt*, and Or-

opt operators is the preferred LS operator combination, but permutations were not 

investigated.  Here, the six permutations are investigated.  Results indicate the only “bad” 

designs are those that use Or-opt ahead of 2-opt* because these designs had run times 
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50% greater than those that use 2-opt* ahead of Or-opt with negligible differences in 

solution quality.  Therefore, the LS operator order is fixed with 2-opt* first, followed by 

Or-opt, and finally Relocate. 

 The following six parameters were either less investigated in prior literature or 

results from various sources conflicted.  Therefore, the following are included in the 

experiment.  Also discussed here is the rationale for choosing the levels for each of the 

factors. 

1. Number of ants.  Recommendations varied amongst sources, ranging from n 

(see [62] and [67]) to n/10 (see [21] and [89]).  This range of values is used in 

this experiment. 

2. Pheromone evaporation, ρ.  Evaporation rates also varied amongst sources, 

ranging from 0.5 (see [72] and [19]) to 0.99 (see [90]).  Most researchers—

e.g., [20], [21], [58], [59], [67], [75], and [89]—conclude a value for ρ 

between 0.5 and 0.9 is appropriate, so those bounds are used here. 

3. Pheromone deposit.  Sources conflict on whether a global or iteration best 

solution is preferred as a basis on which edges to deposit pheromone.  Some 

(see [64] and [70]) argue for use of the global-best solution while other 

sources such as [58] prefer an iteration-best solution.  Both are tested in this 

experiment along with linear combinations of the two—e.g., deposit half of 

the pheromone from both a global-best and an iteration-best solution on the 

appropriate edges. 

4. pbest.  This parameter governs the difference between the minimum and 

maximum pheromone values.  More specifically, the maximum pheromone 
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value is fixed and the minimum pheromone value is then determined by the 

formula given by Stutzle and Hoos [57].  This formula is dependent on pbest.  

In a separate work, Stutzle and Hoos [58] use 0.95 but provide no rationale.  

In general, this parameter is not well investigated throughout the literature.  

This experiment uses a range of 0.1 to 0.9 for pbest. 

5. α/β.  In the ACO construction, the next delivery on a route is chosen by the 

following rule: ( )
( ) ( )

p(  = next delivery | current location = ) = 
( ) ( )
ij ij

ik ik
k f

d
j i

d

α β

α β

η
η

∀ ∈
∑

 

where f is the set of all feasible deliveries and d and η are heuristic and 

pheromone matrices, respectively, with the entry in the ith row and jth column 

corresponding to the edge connecting the ith and jth customers [55].  The 

values of α and β govern the relative importance of the heuristic and 

pheromone matrices, respectively.  Results of testing these values vary greatly 

amongst sources, with recommendations for an α/β ratio ranging from 1/1 (see 

[62]) to 1/20 (see [20]).  However, most research (e.g., [19], [57], [58], [67], 

[74], and [75]) uses a ratio lying between 1/1 and 1/3.  Therefore this test sets 

α = 1 while β varies from 1 to 3. 

6. q0.  In addition to MMAS, Ant Colony System (ACS) is the other popular 

variation on ACO [60].  One of its primary differences from the original ACO 

is the introduction of the parameter q0 where 0≤q0≤1.  Under ACS, a random 

number, q, between 0 and 1 is drawn.  If q<q0, then a greedy selection for the 

next customer is made while constructing a route.  Otherwise, the empirical 

selection procedure shown above is used.  A value of q0 = 0.9 is widely used 
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(see [20], [21], and [68]).  This experiment varies the parameter between 0 

and 0.9 to investigate its impact of inclusion on an MMAS. 

 

 Another contribution of the ACS heuristic is the introduction of a parameter 

denoted here as φ.  This parameter governs a second pheromone update called the local 

update where a pheromone edge is evaporated by φ every time it is selected for inclusion 

in a solution.  This encourages further exploration amongst the ants.  This parameter is 

not included in the initial experiment but is used in later experiments in Section 4.3.2. 

 

4.3.1.2 Results 

All experiments in this paper were conducted using MATLAB on a Windows 7 x64 PC 

with an Intel Xeon CPU E5-1650 @ 3.2GHz with 32 GB of RAM.  In this section, a full 

3-level factorial design with 2 replications using the six parameters discussed above 

tested on Solomon’s R101 problem [79] indicates the factors shown in Table 9 are 

significantly influential on solution cost as indicated by their p-values with Type I error 

(traditionally called α, but not to be confused with the α governing the pheromone 

update) controlled at 0.05.  Based on this information, a series of smaller experiments 

focusing on this subset of data were crafted.  However, these experiments, even when 

tested over the same range of parameters, yielded vastly different results.  Some 

experiments showed no influential factors beyond the intercept estimate.  Others 

indicated first order terms initially shown as not influential are now influential.  Overall, 

the results from subsequent experiments did not align in a cogent manner with the results 

of the original experiment. 
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 As an example, one such follow-on experiment is described in detail here.  First, 

note in Table 9 the vast majority of the explanatory power lies in a combination of the 

first order effects and a single two-way interaction—more specifically, the first four 

terms listed in the table.  This is evidenced by p-values all <0.01.  Based on this 

observation, a 28 run design was built using the Custom Design feature in the JMP 

statistical software to estimate first order effects and two-way interactions as well as the 

pure quadratic terms.  The six most significant factors and their p-values from this 

experiment are shown in Table 10.  These results show two significant findings: first, 

none of the factors are significant at the 0.05 level for Type I error.  Second, even the 

marginally significant factors shown here do not align very well with the results from the 

initial experiment.  Only the first order term for β and interaction between ρ and 

Pheromone Deposit appear in both tables and their p-values in the second experiment 

indicate it is unlikely either significantly impact solution quality. 

Table 9: Full Factorial ACO Results 

 

Table 10: Follow-on Experiment 

 

 

 Even though some factors are statistically significant in individual experiments, 

these conflicting results likely indicate none of the factors exhibit a consistently strong 

influence.  In other words, an influential parameter for one problem instance may not be 

significant for another instance.  Overall, this indicates the choice of ACO parameters is 

Term p-value
q0 <.0001
Number of Ants <.0001
ρ x Pheromone Deposit 0.0001
β 0.0064
pbest x q0 x β x Pheromone Deposit 0.0335

pbest x q0 x ρ x β x Number of Ants 0.0391

Term p-value
q0

2 0.0527
Number of Ants x Pheromone Deposit 0.0772
q0 x Pheromone Deposit 0.0903
ρ x Pheromone Deposit 0.1898
ρ2 0.2138

β 0.2356
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not highly influential on the solution quality for a general SDVRPTW.  In turn, this may 

indicate the choice of construction heuristic is not of great importance. 

 

4.3.2 Testing Different Construction Heuristics 

 In order to determine if the choice of construction heuristic is important, several 

construction algorithms were tested.   

 

4.3.2.1 Experimental Design 

The following seven algorithms were chosen.  See Section 4.2.2 for supporting rationale.  

Note the size of the candidate list, the upper pheromone bound, and the pheromone 

deposit rate remain fixed as described above for the two ACO metaheuristics and each of 

the seven metaheuristics runs for 50 total iterations. 

1. ACO1 (tuned for exploration) 

pbest = 0.05, q0 = 0.5, ρ = 0.7, β = 2, pheromone deposit = iteration-best solution, 

φ = 0.2 

2. ACO2 (tuned for exploitation) 

pbest = 0.95, q0 = 0.9, ρ = 0.5, β = 5, pheromone deposit = global-best solution, φ 

= 0 

3. PNN 

4. GRASP1 - α=0 (greedy construction procedure) 

5. GRASP2 - α=0.35 

6. GRASP3 - α=0.65 

7. GRASP4 - α=1 (random construction procedure) 
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4.3.2.2 Results 

 This section describes the results from testing the construction heuristics 

described in the previous section.  The test set is Solomon’s R1, C1, and RC1 sets [79].  

These sets were chosen over the R2, C2, and RC2 data sets because Ho and Haugland 

showed splitting deliveries is more valuable when the customer demands are closer to the 

vehicle capacity [8]. 

 A Wilcoxon Ranked Sum nonparametric test for matched samples indicates no 

statistical differences in the means for the number of vehicles used when comparing each 

metaheuristic.  Therefore, the remainder of the results in this research focuses on the 

solution cost and run time.  The results given in Figure 24 are the averages across the 

indicated problem sets. 

 The ACO2 metaheuristic―the ACO tuned for exploitation―and the GRASP1 

metaheuristic―the greedy construction heuristic―are the only two metaheuristics Pareto 

optimal for any of the problem sets.  The results of the Wilcoxon Ranked Sum 

nonparametric tests for each data set comparing these two metaheuristics is shown in 

Table 11 with an alpha = 0.05.  Note the greedy algorithm, GRASP1, is statistically faster 

than the ACO in every situation.  The ACO delivers higher quality solutions in the 

random problems (R1) but neither metaheuristic is statistically better than the other for 

the clustered (C1) nor random-clustered (RC1) customer sets.  When comparing all of the 

problems simultaneously, the one-tailed version of the test concludes ACO2 is 

statistically better than GRASP1 with respect to solution cost but the two-tailed test is not 

statistically significant.  The practical significance is likely negligible in this case because 
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the mean difference in solution costs of 1.8 in favor of ACO2 represents <1% 

improvement for ACO2 over GRASP1. 

 The data in Figure 25 and Table 12 are duplicates of Figure 24 and Table 11, 

again with five replicates, except the problems are Ho and Haugland’s first augmented 

data set with l = 0.01 and u = 0.50 [8].  Note ACO2 is again among the best performers, 

but GRASP4―the random construction heuristic―is now slightly better in terms of both 

solution cost and run time in the combined data set. 

 

 

 
Figure 24: Construction Heuristic Results for Solomon’s problems 
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Table 11: Wilcoxon Ranked Sum Tests for Solomon’s Problems 

 

 

 

 
Figure 25: Construction Heuristic Results for Ho and Haugland’s first augmented 

problem set 

 

 

 

R_C_RC1 R1 C1 RC1
Cost Cost Cost Cost

GRASP1-ACO2 GRASP1-ACO2 GRASP1-ACO2 GRASP1-ACO2
Test Statistic S 1462 Test Statistic S 870 Test Statistic S -72 Test Statistic S 20
Prob>|S| 0.0821 Prob>|S| 0.0009 Prob>|S| 0.4223 Prob>|S| 0.8951
Prob>S 0.0411 Prob>S 0.0005 Prob>S 0.7889 Prob>S 0.4475
Prob<S 0.9589 Prob<S 0.9995 Prob<S 0.2111 Prob<S 0.5525

Run Time Run Time Run Time Run Time
GRASP1-ACO2 GRASP1-ACO2 GRASP1-ACO2 GRASP1-ACO2

Test Statistic S -10557 Test Statistic S -1820 Test Statistic S -1035 Test Statistic S -814
Prob>|S| <.0001 Prob>|S| <.0001 Prob>|S| <.0001 Prob>|S| <.0001
Prob>S 1 Prob>S 1 Prob>S 1 Prob>S 1
Prob<S <.0001 Prob<S <.0001 Prob<S <.0001 Prob<S <.0001
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Table 12: Wilcoxon Ranked Sum Tests for Ho and Haugland’s first augmented 

problem set (statistically significant results highlighted) 

 

 

4.3.2.3 Comparing with Previously Published Results 

 A comparison with previously published results for the SDVRPTW shows ACO2 

compares favorably.   Table 13 shows the results for ACO2 for Solomon’s original 

problems as well as Ho and Haugland’s [8] augmented data sets.  Also shown are the 

results for the same problems given by Ho and Haugland using a tabu search 

metaheuristic [8] and by Belfiore et al. using a scatter search metaheuristic [7], except 

Belfiore et al. did not publish results for Solomon’s original problem.  The ACO2 

metaheuristic is competitive, beating both of the other metaheuristics in terms of solution 

quality for R1 and RC1 of the unmodified data set and C1 of Ho and Haugland’s first and 

second augmented data sets.  However, ACO2 does not perform as well on the last two 

R_C_RC1 R1
Cost Cost

GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1 GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1
Test Statistic S 4335 -270 -5181 Test Statistic S 412 220 -382
Prob>|S| <.0001 0.7888 <.0001 Prob>|S| 0.1305 0.4227 0.1615
Prob>S <.0001 0.6056 1 Prob>S 0.0653 0.2113 0.9193
Prob<S 1 0.3944 <.0001 Prob<S 0.9347 0.7887 0.0807

Run Time Run Time
GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1 GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1

Test Statistic S -10585 -9697 10585 Test Statistic S -1830 -1562 1830
Prob>|S| <.0001 <.0001 <.0001 Prob>|S| <.0001 <.0001 <.0001
Prob>S 1 1 <.0001 Prob>S 1 1 <.0001
Prob<S <.0001 <.0001 1 Prob<S <.0001 <.0001 1

C1 RC1
Cost Cost

GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1 GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1
Test Statistic S 771 64 -821 Test Statistic S 278 -264 -466
Prob>|S| <.0001 0.7134 <.0001 Prob>|S| 0.0608 0.0756 0.001
Prob>S <.0001 0.3567 1 Prob>S 0.0304 0.9622 0.9995
Prob<S 1 0.6433 <.0001 Prob<S 0.9696 0.0378 0.0005

Run Time Run Time
GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1 GRASP1-ACO2 GRASP4-ACO2 GRASP4-GRASP1

Test Statistic S -1035 -1011 1035 Test Statistic S -820 -730 820
Prob>|S| <.0001 <.0001 <.0001 Prob>|S| <.0001 <.0001 <.0001
Prob>S 1 1 <.0001 Prob>S 1 1 <.0001
Prob<S <.0001 <.0001 1 Prob<S <.0001 <.0001 1
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data sets in which the customer demand is very high relative to the vehicle capacity.  This 

phenomenon is explored further in the next section. 

 

Table 13: Comparison of Algorithms 

 

 

4.4 Problem Structure 

 Comparing the ACO2 results to the tabu search of Ho and Haugland reveals an 

interesting difference in solution characteristics.  The ACO2 algorithm does not 

incorporate splitting as heavily as the tabu search.  As Table 14 shows, this difference 

increases as the average customer demand increases.  Therefore, the next two subsections 

detail modifications to ACO2 meant to introduce more split deliveries.  Within each 

section, the effects of changes in customer demands are also explored. 

l,u Algorithm Cost Vehicles Cost Vehicles Cost Vehicles
ACO2 1231.12 14.42 849.71 10.02 1424.98 14.23
HH 1247.17 13.50 833.76 10.00 1431.94 13.38
BY -- -- -- -- -- --

ACO2 1497.25 19.82 1087.59 13.38 1993.36 22.53
HH 1471.49 18.25 1182.12 12.22 1965.05 20.13
BY 1471.49 18.25 1160.74 12.22 1941.25 21.00

ACO2 2395.12 38.47 1883.97 25.51 3489.38 44.58
HH 2291.46 35.00 2168.57 22.22 3339.20 40.00
BY 2291.46 35.00 2009.37 24.00 3339.20 40.00

ACO2 4132.00 71.08 4160.52 62.85 5732.65 73.67
HH 4040.67 67.00 3979.78 61.00 5453.10 70.00
BY 4035.84 69.50 3975.49 60.75 5231.85 73.75

ACO2 4700.61 84.25 5198.25 79.89 6310.38 85.50
HH 4581.54 79.00 4962.28 77.00 6095.20 81.00
BY 4464.85 82.75 4950.81 76.88 6013.92 82.50

RC1

0.50,1.00

0.70,1.00

unmodified

0.01,0.50

0.02,1.00

R1 C1
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Table 14: Average number of customer deliveries 

 

 

4.4.1 More splits during construction phase 

 The constructive phase of the ACO2 algorithm is modified in the following way 

to attempt to introduce more split deliveries.  In the original construction phase of ACO2, 

when the next customer to be added to a route is chosen, its load is only split if the 

vehicle does not possess the capacity to fulfill that customer’s entire demand.  In the 

modified version of ACO2, denoted ACO2-split, after the next customer is chosen, a 

random uniform number, x1, on the interval [0, 1] is drawn.  If x1<y, where y is the 

desired percentage of forced splits, then ACO2-split draws a second random uniform 

number, x2, on the interval [1, demand-1] representing the amount of demand added to 

the current route.  If x1>y, the entire demand (or as much as possible if the demand 

exceeds vehicle capacity) is added to the route. 

 Results are shown in Table 15.  The algorithm that forces splits 25% of the time 

(i.e., y=0.25) is the only algorithm able to outperform the original algorithm (see the 

unmodified and third augmented data sets).  However, the improvement is miniscule, and 

the results from the last two augmented data sets, which is where improvement is most 

necessary relative to the results from Table 13, is significantly worse.  Furthermore, the 

data in Table 16 show the forced splitting modification does not result in any appreciable 

l,u HH ACO2 HH ACO2 HH ACO2
0.01,0.50 103 100 102 100 106 100
0.02,1.00 116 107 117 105 119 106
0.50,1.00 167 142 125 124 163 140
0.70,1.00 180 154 171 156 176 154

R1 C1 RC1
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gain in the number of split deliveries.  It actually uses significantly fewer splits in a 

couple of the instances (e.g., the fourth augmented R1 problem set with 25% and 100% 

splitting). 

 

4.4.2 More splits during local search phase 

 Another option to address the lack of splitting in the ACO2 solutions is to use 

another LS operator that will introduce new split loads for customers.  Chapter III 

investigates two such techniques, two split interchange and split*.  While both of these 

operators are shown to be inferior to the combination of the 2-opt*, Or-opt, and Relocate 

operators, they are re-introduced here for the sake of this investigation.  Specifically, 

Table 17 shows the results of the ACO2 algorithm with three combinations of LS 

operators: ACO2 is the original algorithm with the 2-opt*, Or-opt, and Relocate LS 

operators; ACO2a uses the two split interchange, 2-opt*, and Or-opt LS operators; and 

ACO2b uses the 2-opt*, Or-opt, and split*.  The order of LS operators is based on the 

research found in Chapter III.  These runs were conducted independently of the runs in 

Table 13, so while the ACO2 algorithms are identical, the results are not exactly the 

same.   

 The results in Table 17 show the original ACO2 algorithm outperforms ACO2a 

and ACO2b in terms of solution cost on each of the first three data sets (i.e., Solomon’s 

original data sets [79] and the first two augmented data sets from Ho and Haugland [8]).  

The third augmented data set has mixed results with ACO2 still superior for the clustered 

and random-clustered data sets but ACO2b having a lower solution cost for the random  
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Table 15: Forcing splits during construction 

 

 

Table 16: Average number of customer deliveries for R1 problems 

 

 

l,u Forced Split % Cost Vehicles
0 1231.1 14.4
10 1238.0 14.5
25 1229.5 14.3
100 1271.7 14.6

0 1497.2 19.8
10 1501.1 19.9
25 1501.3 19.8
100 1542.3 20.3

0 2395.1 38.5
10 2399.3 38.6
25 2394.9 38.8
100 2425.0 38.3

0 4132.0 71.1
10 4205.8 71.8
25 4197.0 73.8
100 4306.6 78.0

0 4700.6 84.3
10 4931.6 85.1
25 4876.7 87.3
100 4905.3 93.2

unmodified

R1

0.70,1.00

0.50,1.00

0.02,1.00

0.01,0.50

l,u 0% 10% 25% 100%
0.01,0.50 100 100 100 102
0.02,1.00 107 106 105 107
0.50,1.00 142 142 140 131
0.70,1.00 154 155 149 126

Forced Split Percentage
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data set.  For the fourth augmented data set, ACO2b is superior to the other two 

algorithms in all three instances.  This means the introduction of a splitting LS operator is 

only beneficial in the case of extremely high load factors as is the case for the fourth 

augmented data set.  

 However, even on the latter two augmented data sets, ACO2, while worse than 

ACO2b, still performs quite similarly with the differences between the two algorithms 

being less than 1% in each case.  Therefore, these results reinforce the conclusion from 

Chapter III stating the combination of 2-opt*, Or-opt, and Relocate LS operators 

represents a strong LS search for the SDVRPTW. 

 Furthermore, while ACO2b slightly outperforms ACO2 on the fourth augmented 

data set, that performance is not the result of more splitting as anticipated.  In fact, as 

Table 18 shows, ACO2b uses an average of one less delivery in two of the instances and 

the same number of deliveries in a third.  While the final solutions from ACO2b do not 

use more splits, the splitting option in the LS phase may give the LS more flexibility in 

finding intermediate solutions given the large customer demands. 

 Table 19 shows the average vehicle utilization for each of the ACO2, ACO2a, and 

ACO2b algorithms.  For each problem in the set, the load for each vehicle is averaged.  

Then, those averages for each problem are averaged again, yielding an overall average 

vehicle utilization rate for each problem set.  These data show as the customer demand 

ratio increases, vehicle loading becomes a dominant problem feature.  The solutions for 

Solomon’s unmodified problem set achieve results on par with the results of Ho and 

Haugland (see Table 13) with relatively poor vehicle utilization rates.  On average, 

vehicles are only approximately two-thirds full.  However, on Ho and Haugland’s  
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Table 17: Using LS operators that split loads (lowest cost solutions highlighted) 

 

 

Table 18: Average number of customer deliveries 

 

 

augmented problems, most rates are above 90%.  This indicates efficiently packing the 

vehicle is the key to good solutions in the presence of high customer demand ratios 

whereas other problem features—likely the time windows—drive good solutions for 

problems with lower customer demand ratios. 

 

Algorithm Cost Vehicles Run Time (m) Cost Vehicles Run Time (m) Cost Vehicles Run Time (m)
ACO2 1230.7 14.3 7.9 848.6 10.1 9.3 1428.3 14.3 7.5
ACO2a 1249.1 14.4 7.6 870.6 10.0 9.0 1460.2 14.3 6.9
ACO2b 1247.7 14.5 7.5 866.1 10.0 9.6 1456.9 14.4 7.2

ACO2 1492.0 19.8 5.2 1085.2 13.0 8.7 1986.6 22.3 4.8
ACO2a 1518.2 19.9 5.1 1096.9 13.3 8.3 2028.4 22.3 4.6
ACO2b 1522.3 19.8 6.3 1093.9 13.3 9.5 2023.4 22.4 5.7

ACO2 2395.2 38.2 4.3 1868.9 25.2 6.6 3454.6 44.3 3.9
ACO2a 2409.9 38.3 4.8 1879.9 25.4 6.7 3501.1 44.4 4.6
ACO2b 2403.5 38.3 5.9 1871.8 25.4 8.1 3464.1 44.3 5.0

ACO2 4091.4 71.0 4.2 4093.6 62.7 3.6 5547.2 74.0 4.1
ACO2a 4087.8 71.0 7.2 4120.1 62.6 5.6 5557.8 73.4 6.8
ACO2b 4084.7 71.2 7.1 4100.8 62.7 5.0 5577.1 73.9 6.0

ACO2 4700.6 84.3 4.1 5198.3 79.9 5.2 6310.4 85.5 4.3
ACO2a 4696.9 83.8 7.5 5213.0 80.0 9.3 6295.1 85.1 7.8
ACO2b 4678.8 84.0 6.6 5176.1 80.0 8.4 6266.8 85.3 5.8

R1 C1 RC1

l,u ACO2 ACO2b ACO2 ACO2b ACO2 ACO2b
0.01,0.50 100 100 100 102 100 103
0.02,1.00 107 107 105 115 106 107
0.50,1.00 142 141 124 131 140 142
0.70,1.00 154 154 156 155 154 153

R1 C1 RC1
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Table 19: Vehicle utilization percentages 

 

 

4.5 Conclusions 

 This research shed light on various aspects of the SDVRPTW.  The results 

presented indicate the construction technique used is not of significant impact to the final 

solution.  Therefore, when using a strong LS, the most appropriate construction technique 

is one that runs quickly.  This allows the algorithm to spend more time in the LS phase, 

shown in Chapter III to be highly impactful.  To that end, ACO appears to be a robust 

construction method, performing well compared to a tabu search [8] and a scatter search 

[7] on most problems.  However, the ACO is weakest in cases where the customer 

demands are large relative to the vehicle capacity because the ACO, in combination with 

l,u Algorithm R1 C1 RC1
ACO2 0.63 0.63 0.63
ACO2a 0.64 0.64 0.64
ACO2b 0.52 0.83 0.63

ACO2 0.93 0.93 0.92
ACO2a 0.91 0.92 0.92
ACO2b 0.89 0.85 0.92

ACO2 0.93 0.93 0.93
ACO2a 0.93 0.93 0.93
ACO2b 0.92 0.88 0.93

ACO2 0.95 0.95 0.95
ACO2a 0.96 0.96 0.96
ACO2b 0.94 0.96 0.95

ACO2 0.95 0.95 0.96
ACO2a 0.96 0.95 0.96
ACO2b 0.96 0.95 0.96

0.02,1.00

0.50,1.00

0.70,1.00

unmodified

0.01,0.50
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these particular LS operators, do not appear to take advantage of splitting enough.  In 

those cases, the tabu or scatter searches may be more appropriate.  This performance is 

not necessarily indicative of the potential of ACO for the SDVRPTW, but rather reflects 

upon the implementation used here.  In particular, this implementation does not take 

advantage of the splitting option to the same degree as the tabu search.  This difference 

warrants further investigation. 

 This research also presents several opportunities for future work.  First, further 

experimentation on the ACO parameters may yield more solid results and indicate a 

better choice of parameters chosen here.  Second, ACO was chosen as a representative 

for learning algorithms.  A comparison of ACO with other learning algorithms such as 

Reactive GRASP or genetic algorithms is warranted.  Ultimately however, the results 

shown here indicate the most logical direction for future research is further investigation 

on the implementation of the LS.  Comparing the results here with those from Chapter III 

suggest the LS is far more influential than the construction heuristic on overall solution 

quality and is therefore offers the best chance for significant improvements in solution 

quality.  
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V. Application of Techniques from the Vehicle Routing Problem with Split 

Deliveries and Time Windows to the Military Inventory Routing Problem with 

Multiple-customer Routes 

5.1 Introduction 

 The inventory routing problem (IRP) is a combination of the vehicle routing 

problem (VRP) and inventory management.  McCormack [5] proposes a military 

inventory routing problem (MILIRP) in which the delivery vehicles operate in a hostile 

environment and the risk of loss of vehicles must be taken into account.  This is a novel 

approach to the IRP untouched by the larger research community.  McCormack proposes 

a direct delivery model of vehicle routing.  This research will expand McCormack’s work 

by incorporating a vehicle routing metaheuristic that allows for multiple customers per 

route. 

 

5.2 Literature Review 

 An IRP solution identifies which customers are scheduled for a delivery during 

the current time period, how much supply will be carried to each of those customers, 

routes for each vehicle, and a delivery schedule for each route [91].  Formulations of the 

IRP vary and can be defined by its characteristics.  Coelho et al. list seven such 

characteristics by which IRP instances may be classified [91]: 

• Time horizon.  The time horizon considered by the problem may be finite or 

infinite. 
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• Structure.  The problem may contain one depot and one customer (one-to-one) 

one depot and many customers (one-to-many), or many depots and many 

customers (many-to-many). 

• Routing.  Possibilities are direct in the case of only direct deliveries, multiple in 

the case that vehicles visit multiple customers, or continuous in the case that no 

central depot exists. 

• Inventory policy.  The policy governing the customers’ inventory levels may be a 

maximum level in which the customer has a maximum capacity that may not be 

exceeded or an order-up-to level in which a delivery to a customer always 

contains the quantity required to fill the customer’s inventory. 

• Inventory decisions.  In some cases, inventories may be allowed to go into the 

negative, resulting in a shortage.  Shortages may be modeled as back-orders, in 

which case the shortage is fulfilled in a later time period, or lost sales, in which 

case the shortage is not filled.  Alternatively, the inventory may be restricted to be 

non-negative.  In this case, if the inventory reaches zero, a direct delivery is made 

to the customer at the expense of a cost penalty. 

• Fleet composition.  The vehicle fleet may be homogeneous or heterogeneous. 

• Fleet size.  The fleet may consist of a single vehicle, multiple vehicles, or be 

unconstrained. 

 

 Coelho et al. [91] also use the demand properties to distinguish between problem 

types.  Specifically, if the demand is known a priori for each time period, then it is 
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deterministic.  Alternatively, the demand may be unknown, in which case it is generally 

modeled using a probability distribution. 

 McCormack [5] defines the MILIRP with the following characteristics: finite time 

horizon, one-to-many structure, direct delivery routing, maximum level inventory policy, 

non-negative inventory decisions, homogeneous fleet composition, and multiple vehicles 

fleet size.  However, the second nomenclature offered by Coelho et al. does not 

adequately describe the MILIRP.  The MILIRP models the customer demand 

deterministically but Coelho et al. [91] assume a deterministic supply whereas the 

MILIRP assumes stochastic supply.  This is because the MILIRP takes hostile threats to 

the vehicles into account, meaning a vehicle dispatched on a route may reach none, some, 

or all of the customers.  Therefore, the supply is stochastic based upon the probability of 

success associated with a vehicle’s route.  McCormack is the first to entertain the notion 

of stochastic supply within the context of an IRP.  Mu et al. [92] consider vehicle 

breakdowns for a VRP but only allot one spare vehicle because breakdowns rarely occur. 

 Kleywegt et al. [93] offer a dynamic programming approximation scheme for the 

IRP with stochastic demand that serves as a model for McCormack’s work.  One 

weakness to their algorithm is all of the routing problems are solved in a pre-processing 

stage, meaning all combinations of deliveries must be solved. Then, within the dynamic 

program, the optimal set of routes for any set of inputs is already given.  This approach is 

not feasible for larger problems due to the fact that the VRP is NP-hard [70].  Kleywegt 

et al. alleviate this concern by restricting routes to no more than three customers.  This 

research extends the work of McCormack [5] and Kleywegt et al. [93] by using a 

multiple customer routing concept (vs. direct deliveries for McCormack) wherein the 
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routing solutions are generated during the problem solving process (vs. during the 

preprocessing stage for Kleywegt et al.) with no explicit limit on the number of 

customers per route.  See [91] for a detailed review of the IRP and associated research. 

 

5.3 Pertinent Review of McCormack’s Model 

 To model the risk to the vehicles, McCormack [5] proposes the imposition of a 

hex grid onto the geography of the problem wherein each hex is assigned a threat level 

(high or low).  The threat map is assumed static within each time period but may change 

between time periods.  Transitions between hexes are assigned a probability based on the 

threat level of the current hex and the hex into which the vehicle is moving.  McCormack 

then uses Dijkstra’s shortest path algorithm [94] to construct paths between each 

customer and the depot in which the shortest path is the path with the maximum 

probability of survival.  McCormack then employs a dynamic programming approach to 

solve the MILIRP with direct deliveries.  These are the pertinent details of the MILIRP 

necessary to develop a routing metaheuristic to embed within the MILIRP.  See [5] for 

more details on McCormack’s formulation and direct delivery solution method for the 

MILIRP. 

 

5.4 Routing metaheuristic for the MILIRP 

 This research incorporates a routing metaheuristic to change the delivery model 

from direct to multiple.  The metaheuristic used is an ant colony optimization (ACO) 

metaheuristic based on the results from Chapters III and IV.  In those chapters, the 



95 

authors showed the Max-Min Ant System variant of ACO coupled with 2-opt*, Or-opt, 

and Relocate local search operators offers strong solutions to the VRP with time windows 

and split deliveries (SDVRPTW).  This algorithm is now adapted to the MILIRP.  

Following in the nomenclature of McCormack [5], customers are combat outposts (COP), 

the depot is a brigade support battalion (BSB), and the vehicles are cargo unmanned 

aerial systems (CUAS). 

 First, a subset of COPs is defined for whom split deliveries are not allowed.  This 

consideration is a military one where the risk of loss of the CUAS is substantial.  

Therefore, based on the threat map described above, a threat vector for the set of COPs 

designates each COP as residing in either a high or low threat environment.  Those COPs 

in a high threat environment will not accept a split delivery, while those COPs in a low 

threat environment will accept a split delivery.  Hence, the threat vector is an n-

dimensional vector, where n is the number of COPs and the ith element is 1(0) if the ith 

COP is in a high (low) threat environment. 

 The inputs to the routing algorithm are a distance matrix, a probability matrix, a 

threat vector, the number of CUAS allotted, the current inventory level of each COP, and 

a theta vector.  The distance matrix is a matrix with the distance from each node (COPs 

and BSB) to every other node.  These distances are the physical distances associated with 

the path of highest survivability between two nodes.  The probability matrix denotes the 

probability of survival for each of the paths in the distance matrix.  The threat vector is 

described above.  The number of CUAS is bounded above by some maximum number of 

available crews or vehicles.  The current inventory levels of the COPs are the levels of 
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inventory at the current time step.  The theta vector defines the parameters for the value 

curve, described in greater detail below. 

 Note several usual inputs to the vehicle routing problem with time windows 

(VRPTW), such as demand, service times, and time windows, are missing from the list of 

inputs used here.  Service times are fixed at zero because the model emulated uses a drop 

system.  In this particular research, the time windows are defined as the entire current 

time interval, t, in the interest of run time concerns and simplicity. 

 This algorithm also introduces several aspects not typically present on traditional 

instantiations of the VRP.  First, this algorithm introduces a distance limit because the 

CUAS have a limited range.  Therefore, in both the solution construction and 

improvement phases, each route is restricted by this limit. 

 The biggest difference between the MILIRP and a traditional VRP is the demands 

are not fixed in the MILIRP.  In a traditional VRP, the demands are fixed and a feasible 

solution must satisfy those demands.  However, in addition to solving a routing problem, 

the routing portion of this algorithm must also determine what the demand of each COP 

should be.  This differs from the concept of stochastic demand because the demand for 

each COP is fixed within the current time step, t, but the set of deliveries chosen for that 

time step may satisfy all, part, or none of this demand. 

 Within the dynamic program, a set of thetas, [θ1, θ2, θ3], is developed iteratively.  

This set of three coefficients defines a quadratic function as 2
1 2 3( )f x x xθ θ θ= + +  which 

in turn defines the value of deliveries to the COPs.  The thetas are constant between the 

COPs but may change between time steps.  The input to the quadratic function is a COP 

inventory level and the output is the value of that inventory level.  In general, the 
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quadratic function will be either a strictly increasing function or an increasing function on 

some interval [0, x] where x < COP capacity.  In this case, the function reaches a 

maximum at inventory level equal to x and transitions to decreasing on the interval [x, 

COP capacity].  The reason for this second scenario is because while delivering any 

amount to a COP may be beneficial when viewed as an individual delivery, it may be 

detrimental in the overall scheme because of the risk incurred with deliveries.  More 

specifically, the risk may outweigh the reward of making a small delivery to a well-

stocked COP, yielding a decrease in the overall value of the solution when including that 

delivery. 

 Given this set of thetas, the concept of the value of a delivery, route, and solution 

can be defined.  The value of a delivery is simply the delta between the current value and 

the future value (i.e., the value of that COP’s inventory if the delivery is made).  The 

value of a route is simply the sum of the values of each delivery.  The value of a total 

solution is slightly more complicated because, in the case of a split delivery, the values 

are not additive because the value curve is non-linear.  Therefore, the total delivery 

amount to each COP from all routes is calculated and then the future value of each COP’s 

inventory is calculated in the same fashion as for a single delivery.  The value of the total 

solution is then the sum of these future COP inventory values. 

 Now, given these thetas and the definition of the values above, an initial demand 

is defined.  This initial demand is calculated based on the delta between a current 

inventory value and inventory level at which the maximum value is achieved.  If the delta 

is negative—meaning the COP’s inventory level is above the level at which the 

maximum value occurs—then the delta is defined as zero.  These deltas are then divided 
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by the sum of all the deltas to give a demand for each COP that is a proportion of the total 

demand.  This proportional demand is then multiplied by the product of the number of 

vehicles and vehicle capacity to define an initial demand.  The demands are then rounded 

down and each demand is checked against the COP’s maximum capacity.  If any demand 

fulfillment would exceed the COP’s maximum capacity, then that COP’s demand is set to 

the difference between the current inventory and COP capacity. 

 The dynamic program also requires routing solutions for any number of CUAS up 

to the maximum bound given as an input parameter to the routing subroutine.  Therefore, 

the routing algorithm returns solutions for one CUAS, two CUAS, and so forth.  A zero 

CUAS solution is defined as having a value of zero. 

 The goal of the routing portion is to return a solution with both a high value and 

secure routes.  The algorithm uses a lexicographic ordering of these two priorities with 

solution value being more important than routing security.  Therefore, the ACO 

metaheuristic is modified thusly: first, solutions are constructed based on value.  When 

the ants choose a COP to add to the current route, high value COPs (i.e., those lower in 

inventory) are more attractive than low value or higher inventory COPs.  Compare this to 

a traditional ACO in which a physical distance metric constitutes the heuristic 

information and geographically closer COPs are more attractive.  This algorithm uses 

these values as the heuristic information and combines this with a pheromone matrix in 

the same manner as a traditional ACO metaheuristic. 

 Next, the LS attempts to improve the value of the solution.  This implementation 

of the ACO does not explicitly restrict the number of vehicles.  Instead, it constructs as 

many routes as necessary to satisfy all of the COPs’ demands and then chooses the 
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highest value routes.  The initial solution is partitioned into two sets: a set of “good” 

routes and a set of “bad” routes.  The good routes are simply the first m routes where m is 

the number of CUAS allotted in this particular solution step.  The 2-opt* and Or-opt 

operators then attempt to swap deliveries between the two partitions in an attempt to 

increase the overall value of the good routes.  The total vehicle loads on the bad routes 

are ignored here to avoid excluding a valuable delivery only because the delivery or 

deliveries it is replacing in the good route do not fit onto the bad route. 

 In this phase, the Relocate operator cannot increase the value of the solution 

because it is an intra-route operator but it is included in the current LS phase because it is 

possible the 2-opt* and Or-opt operators may be able to further increase the value of the 

solution by allowing the Relocate operator to rearrange deliveries within a route.  These 

LS operators are run iteratively and in a greedy fashion until the total value of the 

solution is at a local optimum.  The traditional implementations of the LS operators are 

then applied to only the good routes portion of the solution in order to improve the 

security of those good routes.  This is accomplished by using the probability matrix as an 

input instead of the distance matrix.  Therefore, the “shorter” routes are those with higher 

probabilities of survival.  See Chapter III for details on the LS implementation. 

 The metaheuristic iterates through these steps for some number of pre-defined 

iterations.  The solution given as an output is for the initial demand as defined above.  

The next step is to alter this demand in an attempt to allow for a solution of greater value.  

Therefore, the initial demand is altered in the following way: a COP is randomly chosen 

and its demand is randomly incremented or decremented by one unit.  Again, no demands 
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are allowed to be negative and the sum of a COP’s demand and its current inventory must 

not exceed the COP’s capacity.  The ACO metaheuristic is then applied to this new  

 

Figure 26: Routing metaheuristic pseudocode 

 

demand.  If the total value of the solution returned by the routing metaheuristic is higher 

than that of the previous solution, or if the total value is equal to that of the previous 

solution but requires fewer vehicles, this solution is accepted and the demand alteration 

step is repeated.  Otherwise, another COP is selected and its demand is randomly 

perturbed.  This method is similar to that of Kleywegt et al. [93] except they use a best 

improvement schema.  In other words, they explore each possible demand change and 

choose the change yielding the greatest improvement in value, repeating until no further 

improvement is possible.  The size of the problem under investigation here yields this 

method highly impractical so instead a first improvement schema is implemented in 

which the first improving solution is accepted.  This demand alteration loop continues 

until some pre-defined bound on non-improving iterations is reached, after which the 

1: For i = 1 : number of CUAS allotted
1: Define initial demand
2: Define initial solution with value = 0
3: While counter < consecutive non-improving solutions limit

1: Implement ACO metaheuristic
1: Construct solutions based on value
2: Improve solutions based on value
3: Improve solutions based on probabilities of survival

2: Compare solution to previous best
1: If higher value, accept new solution and reset counter to 0
2: If not higher value, increment counter

3: Alter demand

Pseudocode for routing subroutine
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highest value solution found so far is accepted.  See Figure 26 for the pseudocode for the 

routing metaheuristic. 

 

5.5 Developing test problems 

 Testing this algorithm required the generation of a set of test problems.  Real-

world examples are not available in great enough numbers to sufficiently test the 

algorithm’s performance and no current test set incorporates the threat map aspect.  

Furthermore, a real-world threat map presents security concerns.  Therefore, a new set of 

notional test problems is generated.  This new test set is modeled after the well-known 

and oft-used set of test problems for the VRPTW generated by Solomon [79].  The test 

set also expands upon McCormack’s [5] use of a hex grid.  The hexes are fixed at a size 

of two for the test set, meaning the distance from the center of a hex to the middle point 

on an edge is two. 

 In his test set, Solomon [79] uses customer sets with random, clustered, and 

random-clustered geographical orientations.  Random orientation means customers are 

randomly scattered throughout the area of interest.  In the clustered set, subsets of 

customers are grouped together.  The random-clustered set is a mixture of these two, with 

some customers grouped together and others randomly spread throughout the area of 

interest.  This test set emulates this geographical relationship with three customer sets, 

one of each type, with one minor change.  In the problem of interest, customers who are 

very close to the depot are easily resupplied using ground transportation.  Therefore, all 

of the customers in this test set are a minimum of two hexes away from the depot.  The 
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clustered data set groups the customers into four groups while the random-clustered set 

uses two groups.  The number of customers is fixed at 36 because this is the approximate 

size of the real-world problems of interest.  Similarly, the vehicle capacity is fixed at 

8000 lbs with delivery increments of 500 lbs because this also reasonably approximates 

the real-world situation.  Customer demands are random on the interval of [4000, 8000], 

meaning the test problems assume all of the customers’ inventories are at least half full at 

the beginning of the problem. 

 The main thrust of the problem generation is in the generation of the threat maps.  

Using Solomon’s ideas as a basis, three types of threat maps are developed: random, 

clustered, and random-clustered.  Five distinct instantiations of each threat map are 

developed and used in conjunction with each of the instantiations of the customer 

locations, yielding a total of 45 test problems.  The final parameter is in deciding the 

number of high threat hexes.  In this problem set, the distance from the center of a hex to 

the center of any side is two kilometers with a 26x26 hex grid for a total of 676 hexes.  

Given this size, subject matter experts indicate approximately 10% of the hexes, or 68 

hexes, should be high threat.  For the random maps, this is accomplished simply by 

choosing 68 of the hexes to be high threat.  For the clustered set, seven hexes are 

randomly chosen as high threat.  Then, each adjacent hex (hexes one step from the 

original) is assigned a threat level with an 80% chance of being high threat.  Each semi-

adjacent hex (hexes two steps from the original) is assigned a threat level with a 40% 

chance of being high threat.  To produce the desired parameter of 68 high threat hexes, if 

the number is too small, then an appropriate number of adjacent and semi-adjacent hexes 

are chosen to augment the original data with the adjacent hexes having twice the 
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likelihood of selection compared with the semi-adjacent hexes.  Similarly, if the number 

of high threat hexes is greater than 68, then the appropriate number of adjacent or semi-

adjacent hexes are converted to low threat with the semi-adjacent hexes now having 

twice the likelihood of being converted.  Combining these two for the random-clustered 

data set, the clustered hexes are assigned as above but with only three seed hexes as 

opposed to seven.  Of the remaining low threat hexes, the appropriate number are 

randomly assigned as high threat such that the total number of high threat hexes is 68.  

For each of these data sets, the parameters are easily adjusted, allowing for generation of 

new threat maps to account for varying conditions such as an overall higher or lower 

threat level or for stronger or weaker clustering of the threats.  See Appendix E for the 

associated data. 

 

5.6 Results 

 Results are presented for a test problem with simulated inputs from the dynamic 

program.  The customer data is the random set and the threat data is the C1 set from the 

test problems from Appendix E.  These data sets are shown graphically in Figure 27 with 

customers as black dots, the depot as the green dot, and high threat hexes as red dots.  In 

this example, the theta vector is [0,2000,-2] implying the quadratic function 

2( ) 0 2000 2f x x x= + −  and the maximum number of vehicles is 6.  The limit on non-

improving iterations is used as a parameter for comparative results.  Initial inventories for 

the customers are a random vector of values between 2000 and 8000.  These initial 

inventories are developed once and held constant between the instances described below.  
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The probability of a successful transition between low threat hexes is 0.999, the 

probability of a successful transition between low and high threat hexes is 0.994, and the 

probability of a successful transition between high threat hexes is 0.99.  Other parameters 

include a range of 494 kilometers for the vehicles and a vehicle speed of 148 kilometers 

per hour.   

 

Figure 27: Random customers with clustered threats 

 

 Average solutions for three replications for the problem are shown in Table 20.  

The limit on non-improving iterations is indicated in the table.  In the cases with Or-opt, 

the local search phases consist of the 2-opt*, Or-opt, and Relocate operators while the 

cases without Or-opt use the 2-opt* and Relocate operators.  While not a large enough 
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Table 20: Routing algorithm results 

 

 

sample from which to draw definitive conclusions, these results contain some interesting 

observations.  Based on the results from Chapter III, the inclusion of Or-opt is expected 

to influence solution quality positively and run time negatively.  However, only one of 

these expectations is met for this particular problem.  The solution quality in terms of 

both value and probability of survival is nearly identical irrespective of the inclusion of 

Or-opt.  The run time increases as expected.  The results are also solved using two limits 

on the number of non-improving iterations—5 and 15 as indicated in Table 20.  The case 

with a higher limit requires more run time as expected but again the solution quality in 

terms of both value and survivability are quite similar regardless of the limit with the 

exception of the six vehicle case.  When allotted six vehicles, the higher limit runs are 

able to find better solutions in terms of value in both the cases where Or-opt is and is not 

used.  This may indicate a higher limit is useful for larger number of vehicles.  Therefore, 

Total solution 
time (s)

Number of 
vehicles Value

Avg probability of survival
 for each vehicle

Total solution 
time (s)

Number of 
vehicles Value

Avg probability of survival
 for each vehicle

50.2 1 250.3 0.78 179.6 1 250.0 0.78
2 407.9 0.84 2 408.0 0.86
3 506.8 0.90 3 513.4 0.87
4 552.6 0.91 4 558.3 0.90
5 557.5 0.90 5 568.4 0.90
6 470.1 0.91 6 521.0 0.91

Total solution 
time (s)

Number of 
vehicles Value

Avg probability of survival
 for each vehicle

Total solution 
time (s)

Number of 
vehicles Value

Avg probability of survival
 for each vehicle

74.7 1 250.0 0.78 237.1 1 251.0 0.78
2 407.4 0.86 2 407.5 0.84
3 508.8 0.89 3 516.1 0.90
4 558.2 0.89 4 565.4 0.89
5 568.9 0.90 5 566.8 0.90
6 467.4 0.91 6 506.7 0.92

Or-opt 
included?

No

Yes

5 15
Limit on number of non-improving iterations
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a dynamic limit that increases as the number of vehicles increases may yield better 

results. 

 Overall, these results indicate two things: first, the viability of this method is 

shown because the routing algorithm is able to solve the problem as expected.  Second, 

the unexpected solution characteristics point to the need for a more detailed analysis into 

both the method and the parameters used in this experiment.  Furthermore, these solution 

characteristics may hint at an inherently different problem structure for the MILIRP 

compared to the SDVRPTW. 

 

5.7 Conclusions 

 This research introduces multiple-customer routing to the MILIRP with results 

presented for a test problem.  This novel approach allows for more flexibility than 

McCormack’s [5] method.  The next phase of research will involve subjecting the 

algorithm to the test problems to determine its effectiveness.  Since no previous solutions 

exist for comparison, the goal is to field an algorithm that produces good solutions, as 

judged by subject matter experts, within a reasonable time frame.  Beyond that, this 

method is merely an initial attempt and improvement is likely possible.  Adapting more 

complex solution methods used on the IRP as documented in [91] will likely yield 

superior results for the MILIRP.   

 The addition of time windows to the problem may require significant changes to 

the routing algorithm.  In the current implementation, the time windows for all customers 

cover the entire period.  In effect, this means time windows are not incorporated into the 
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current method.  In a future effort incorporating this aspect, the time windows will be 

randomly generated within each period.  This randomness is preferred for the MILIRP 

because unpredictability is important for security purposes.  A customer in the MILIRP 

does not want to be forced into a predictable pattern of deliveries. 

 If time windows are in effect, it may be necessary to place the customer(s) being 

removed from the good route onto a new route entirely within the 2-opt* and Or-opt 

operators during the value LS phase.  This is necessary because the algorithm should not 

exclude an improving solution simply because the customer(s) being removed from the 

good route does not fit into the bad route.  However, if time windows are simply ignored 

on the bad route, then it may be infeasible.  This is not an issue for a bad route, but in 

later iterations the algorithm may try to move part of this infeasible route back into a 

good route, thereby yielding an infeasible solution. 

 Furthermore, the traditional VRPTW assumes a waiting time adds to the time of 

the route but not the cost (e.g., it doesn’t cost a truck to sit in a parking lot other than the 

lost time).  However, in the case of the MILIRP with CUAS as the vehicles, loitering 

does add to the cost of the solution because it decreases the range of the CUAS.  This 

waiting time must be accounted for in the cost of the solution. 

 This research also uses a lexicographic ordering of route value and route security.  

Furthermore, physical distance is not accounted for except in limiting the total range of 

each vehicle.  It is not used as an objective.  The application of more sophisticated multi-

criteria optimization techniques may yield solutions that better balance these competing 

objectives.  



108 

VI. Conclusions 

6.1 Original Contributions 

 This dissertation contains several original contributions.  First, the rigorous testing 

of LS operators for the SDVRPTW is unprecedented.  Results indicate the LS operators 

from VRPTW literature tend to outperform the operators developed for the SDVRP.  

Specifically, this work showed, of the eight LS operators tested, the inclusion of 2-opt*, 

Or-opt, and Cross Exchange impacted performance in terms of solution quality and 

algorithm run-time far more than the other five operators.  This research also concludes 

the choice of LS operator is far more important than the number of operators used.  

Furthermore, the customers’ physical dispersion (i.e., random vs. clustered vs. random-

clustered) does not affect these results. 

 This research also tested several construction heuristics, concluding the choice of 

construction heuristic is of minimal significance to the overall solution quality.  This 

research also shed some light on how the ratio of customer demand to vehicle capacity 

affects solution results.  First, the results show LS operators which split loads are only 

beneficial in the cases of extremely high customer demands relative to the vehicle 

capacity.  Second, this research indicates high quality solutions for the SDVRPTW are 

possible with relatively poor vehicle utilization rates if the ratio of customer demand to 

vehicle capacity is relatively low.  However, as the ratio increases, high quality solutions 

utilize vehicles more efficiently.  The results of this research also indicate forcing more 

splits during the construction phase is not beneficial to the overall solution. 



109 

 This research also makes several contributions to advance the state of research on 

the IRP, specifically to the MILIRP instance of the IRP.  The MILIRP is the only known 

IRP variant with stochastic supply.  This research introduces multiple-customer routes to 

the problem.  Previous work used only direct deliveries.  The introduction of multiple-

customer routes required substantial modifications, most notably the incorporation of the 

concept of the value of a delivery.  Unlike the VRP, the IRP does not generally have set 

customer demands.  Rather, a certain value is acquired from delivering a particular 

amount of supply to a customer.  This research introduced a method that not only 

constructs routes but also determines the customer demands in such a fashion as to 

attempt to maximize the value of the total solution.  This research also introduced the 

idea of a “partial” split delivery problem in which certain customers do not allow split 

delivery.  Finally, a set of test problems is proposed for the MILIRP.  This set of test 

problems varies the customer locations as well as the threat locations, each being random, 

clustered, or random-clustered. 

 

6.2 Future Work 

 Study of the SDVRPTW is relatively sparse, particularly in the area of heuristics.  

While this research offers many insights into this particular problem, much work remains.  

Future research efforts should further explore some of the details of this analysis.  In the 

study of LS operators, this research chooses to focus on the cluster of metaheuristics 

using Or-opt (Cluster 1) because it strikes a balance between solution cost and run time.  

However, three other clusters contain at least one configuration not Pareto-dominated by 
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Cluster 1, and hence, these clusters may deserve more attention if a specific application 

values cost or run time differently.  Similarly, run time concerns dictated only 5 of the 93 

configurations are tested on the remainder of Solomon’s data set (problem sets R2, C1, 

C2, RC1, and RC2) [79].  Further experimentation on these problem sets as well as the 

augmented data set proposed by Ho and Haugland [8] is needed in order to develop a 

more robust empirical data set from which to draw conclusions. 

 This research also uses a “first-improving” implementation for all of the LS 

operators.  Future research should study the impact of other schemes on the solution 

quality and run-time.  This work also allows each LS operator to reach a local minima 

before moving on to the next operator.  A more complex integration of the operators may 

yield promising results. 

 The routing heuristic proposed for the MILIRP is also a first effort.  The goal is a 

working algorithm by which future work can be judged.  The SDVRPTW algorithms of 

Ho and Haugland [8] and Belfiore et al. [7] outperform the ACO algorithm proposed by 

this research in many of the cases tested, perhaps indicating ACO is not a good choice as 

a metaheuristic and further improvement is likely possible.   

 Furthermore, time windows are basically excluded in this instance of the MILIRP.  

Future work should seek to fully incorporate time windows and study the effect of the 

characteristics of the time windows (e.g., length of the time windows and relationships 

between time windows in terms of the location within the period).  The stopping criterion 

for this heuristic is simply some number of non-improving iterations.  Future work should 

seek to explore this criterion in hopes of developing a more robust stopping criterion. 
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 In addition, value and survivability are handled in lexicographic order.  Future 

work should incorporate more sophisticated multi-objective optimization procedures in 

hopes of finding a more robust solution set. 
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Appendix A: Pairwise comparisons of LS operators 

 

  

LS1: Relocate LS5: Cross Exchange
LS2: Split-to-single LS6: Two split interchange
LS3: 2-opt* LS7: Combine
LS4: Or-opt LS8: Shift*

Configuration Cost Run Time Cost Run Time Cost Run Time
LS1 & LS2 2080.65 8.39 2066.94 9.06 -0.01 0.08
LS1 & LS3 1508.27 95.26 1511.29 104.04 0.00 0.09
LS1 & LS4 1259.22 538.29 1257.30 609.87 0.00 0.13
LS1 & LS5 1507.78 1126.25 1513.48 1262.19 0.00 0.12
LS1 & LS6 2044.06 8.63 2092.99 9.48 0.02 0.10
LS1 & LS7 2081.09 8.48 2053.31 8.46 -0.01 0.00
LS1 & LS8 2099.18 10.98 2075.27 13.16 -0.01 0.20
LS2 & LS3 1531.80 80.95 1536.49 81.11 0.00 0.00
LS2 & LS4 1280.30 494.66 1281.39 482.80 0.00 -0.02
LS2 & LS5 1532.22 824.67 1529.20 796.18 0.00 -0.03
LS2 & LS6 2222.56 7.85 2204.22 8.74 -0.01 0.11
LS2 & LS7 2194.00 7.51 2190.13 8.35 0.00 0.11
LS2 & LS8 2198.26 9.64 2188.16 10.02 0.00 0.04
LS3 & LS4 1249.60 437.90 1253.44 628.16 0.00 0.43
LS3 & LS5 1538.58 595.05 1539.65 933.69 0.00 0.57
LS3 & LS6 1548.99 82.12 1537.56 103.24 -0.01 0.26
LS3 & LS7 1546.25 81.68 1542.06 80.09 0.00 -0.02
LS3 & LS8 1536.96 82.30 1534.85 87.03 0.00 0.06
LS4 & LS5 1238.33 1495.08 1240.87 1734.12 0.00 0.16
LS4 & LS6 1287.45 485.25 1287.41 604.03 0.00 0.24
LS4 & LS7 1277.52 494.28 1283.51 483.15 0.00 -0.02
LS4 & LS8 1280.88 485.02 1284.06 492.1302 0.00 0.01
LS5 & LS6 1525.96 782.81 1520.47 1000.67 0.00 0.28
LS5 & LS7 1529.71 735.47 1529.29 1461.76 0.00 0.99
LS5 & LS8 1536.25 844.67 1541.18 785.0086 0.00 -0.07
LS6 & LS7 2158.94 7.84 2208.09 8.11 0.02 0.03
LS6 & LS8 2204.43 9.91 2177.33 10.14 -0.01 0.02
LS7 & LS8 2210.12 9.78 2193.87 9.86 -0.01 0.01

Permutation 1 Permutation 2
Difference 

(expressed as (P2-P1)/P1)
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Appendix B: Average data for problem set R1 

 Cross-reference Appendix C for details on each configuration. 

  

Configuration
Avg 

Cost
Avg 

Run Time Configuration
Avg 

Cost
Avg 

Run Time
1 2202.05 7.91 48 1519.14 103.32
2 2042.42 8.77 49 1224.19 1760.29
3 2192.78 7.83 50 1261.67 568.00
4 1545.48 85.19 51 1261.43 586.33
5 1280.59 504.21 52 1264.47 558.04
6 1533.53 792.19 53 1518.31 1668.52
7 2186.39 8.40 54 1514.63 1184.67
8 2191.22 7.93 55 1514.76 1185.95
9 2193.10 10.08 56 2179.59 7.72
10 2080.65 8.39 57 2081.69 10.97
11 1508.27 95.26 58 2074.48 10.71
12 1259.22 538.29 59 1251.80 445.22
13 1507.78 1126.25 60 1525.86 527.17
14 2044.06 8.63 61 1543.26 82.88
15 2081.09 8.48 62 1551.72 83.90
16 2099.18 10.98 63 1542.92 82.64
17 1531.80 80.95 64 1240.38 1469.51
18 1280.30 494.66 65 1285.36 507.80
19 1532.22 824.67 66 1290.01 502.45
20 2200.00 7.95 67 1288.52 479.61
21 2177.14 7.66 68 1523.48 811.11
22 2198.26 9.64 69 1532.94 851.59
23 1249.60 437.90 70 1529.20 788.66
24 1538.58 595.05 71 2168.66 7.93
25 1537.53 82.87 72 2202.22 10.36
26 1553.84 83.12 73 2181.99 10.27
27 1536.96 82.30 74 1244.11 1178.26
28 1238.33 1495.08 75 1250.63 469.38
29 1285.18 507.92 76 1250.39 475.22
30 1282.90 499.34 77 1247.75 452.30
31 1280.88 485.02 78 1516.46 546.25
32 1530.67 773.12 79 1522.52 774.72
33 1531.39 876.15 80 1525.27 832.79
34 1536.25 844.67 81 1550.83 84.12
35 2186.61 7.82 82 1550.95 87.89
36 2204.43 9.91 83 1536.38 86.76
37 2210.12 9.78 84 1240.60 1616.90
38 1524.90 95.85 85 1239.24 1629.16
39 1254.29 541.72 86 1237.42 1502.84
40 1498.38 1153.67 87 1285.50 509.48
41 2064.51 8.83 88 1285.57 465.27
42 2103.05 8.53 89 1294.96 518.00
43 2079.03 10.53 90 1531.00 897.79
44 1232.39 500.56 91 1536.20 749.41
45 1506.66 1099.23 92 1531.55 887.27
46 1514.28 101.54 93 2196.03 7.64
47 1509.48 100.81
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Appendix C: Six cluster composition

  

LS1: Relocate LS5: Cross Exchange
LS2: Split-to-single LS6: 2-split-interchange Configuration LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8
LS3: 2-opt* LS7: Combine 4 0 0 1 0 0 0 0 0
LS4: Or-opt LS8: Shift* 11 1 0 1 0 0 0 0 0

17 0 1 1 0 0 0 0 0
25 0 0 1 0 0 1 0 0

Configuration LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 26 0 0 1 0 0 0 1 0
5 0 0 0 1 0 0 0 0 27 0 0 1 0 0 0 0 1

12 1 0 0 1 0 0 0 0 38 1 1 1 0 0 0 0 0
18 0 1 0 1 0 0 0 0 46 1 0 1 0 0 1 0 0
23 0 0 1 1 0 0 0 0 47 1 0 1 0 0 0 1 0
29 0 0 0 1 0 1 0 0 48 1 0 1 0 0 0 0 1
30 0 0 0 1 0 0 1 0 61 0 1 1 0 0 1 0 0
31 0 0 0 1 0 0 0 1 62 0 1 1 0 0 0 1 0
39 1 1 0 1 0 0 0 0 63 0 1 1 0 0 0 0 1
44 1 0 1 1 0 0 0 0 81 0 0 1 0 0 1 1 0
50 1 0 0 1 0 1 0 0 82 0 0 1 0 0 1 0 1
51 1 0 0 1 0 0 1 0 83 0 0 1 0 0 0 1 1
52 1 0 0 1 0 0 0 1
59 0 1 1 1 0 0 0 0
65 0 1 0 1 0 1 0 0 Configuration LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8
66 0 1 0 1 0 0 1 0 28 0 0 0 1 1 0 0 0
67 0 1 0 1 0 0 0 1 49 1 0 0 1 1 0 0 0
75 0 0 1 1 0 1 0 0 64 0 1 0 1 1 0 0 0
76 0 0 1 1 0 0 1 0 74 0 0 1 1 1 0 0 0
77 0 0 1 1 0 0 0 1 84 0 0 0 1 1 1 0 0
87 0 0 0 1 0 1 1 0 85 0 0 0 1 1 0 1 0
88 0 0 0 1 0 1 0 1 86 0 0 0 1 1 0 0 1
89 0 0 0 1 0 0 1 1

Configuration LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8
Configuration LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 1 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0
13 1 0 0 0 1 0 0 0 3 0 1 0 0 0 0 0 0
19 0 1 0 0 1 0 0 0 7 0 0 0 0 0 1 0 0
24 0 0 1 0 1 0 0 0 8 0 0 0 0 0 0 1 0
32 0 0 0 0 1 1 0 0 9 0 0 0 0 0 0 0 1
33 0 0 0 0 1 0 1 0 10 1 1 0 0 0 0 0 0
34 0 0 0 0 1 0 0 1 14 1 0 0 0 0 1 0 0
40 1 1 0 0 1 0 0 0 15 1 0 0 0 0 0 1 0
45 1 0 1 0 1 0 0 0 16 1 0 0 0 0 0 0 1
54 1 0 0 0 1 0 1 0 20 0 1 0 0 0 1 0 0
55 1 0 0 0 1 0 0 1 21 0 1 0 0 0 0 1 0
60 0 1 1 0 1 0 0 0 22 0 1 0 0 0 0 0 1
68 0 1 0 0 1 1 0 0 35 0 0 0 0 0 1 1 0
69 0 1 0 0 1 0 1 0 36 0 0 0 0 0 1 0 1
70 0 1 0 0 1 0 0 1 37 0 0 0 0 0 0 1 1
78 0 0 1 0 1 1 0 0 41 1 1 0 0 0 1 0 0
79 0 0 1 0 1 0 1 0 42 1 1 0 0 0 0 1 0
80 0 0 1 0 1 0 0 1 43 1 1 0 0 0 0 0 1
90 0 0 0 0 1 1 1 0 56 1 0 0 0 0 1 1 0
91 0 0 0 0 1 1 0 1 57 1 0 0 0 0 1 0 1
92 0 0 0 0 1 0 1 1 58 1 0 0 0 0 0 1 1

71 0 1 0 0 0 1 1 0
72 0 1 0 0 0 1 0 1

Configuration LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 73 0 1 0 0 0 0 1 1
47 1 0 0 0 1 1 0 0 93 0 0 0 0 0 1 1 1

Cluster 6

Cluster 3

Cluster 4

Cluster 1

Cluster 5
Cluster 2
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Appendix D: Individual results for problem set R1 
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Appendix E: Test Problems 

 Customer 37 is the depot for each of the following test problems.  A problem 

instance is constructed by pairing a set of customer coordinates with a threat map and the 

customer demands. 

 

Customer coordinates and initial inventory levels: 

  

Customer X Coord Y Coord
1 88 45
2 76 48
3 68 28
4 8 21
5 64 24
6 84 55
7 84 31
8 84 52
9 76 69
10 48 62
11 68 21
12 12 42
13 20 52
14 80 10
15 20 7
16 28 17
17 32 52
18 8 7
19 12 69
20 76 14
21 52 7
22 16 21
23 60 59
24 40 66
25 8 35
26 24 62
27 40 14
28 44 69
29 16 59
30 88 59
31 68 69
32 76 7
33 80 28
34 68 10
35 80 73
36 68 73
37 48 38

Random customer coordinates
Customer X Coord Y Coord

1 12 9
2 19 12
3 26 17
4 17 15
5 9 19
6 23 6
7 14 16
8 17 20
9 19 6

10 21 18
11 7 55
12 12 61
13 16 58
14 9 68
15 14 68
16 11 77
17 16 75
18 19 75
19 59 9
20 64 14
21 65 9
22 72 9
23 75 9
24 74 15
25 59 20
26 64 5
27 68 17
28 57 61
29 54 68
30 59 68
31 65 64
32 70 71
33 54 78
34 59 75
35 64 74
36 66 77
37 48 38

Clustered customer coordinates Random-clustered customer coordinates
Customer X coord Y coord

1 12 9
2 19 12
3 26 17
4 17 15
5 9 19
6 23 6
7 14 16
8 17 20
9 19 6

10 57 61
11 54 68
12 59 68
13 65 64
14 70 71
15 54 78
16 59 75
17 64 74
18 66 77
19 21 19
20 65 41
21 66 10
22 28 8
23 32 60
24 13 33
25 31 48
26 49 14
27 41 70
28 61 66
29 20 68
30 64 34
31 69 22
32 33 29
33 32 10
34 60 57
35 15 43
36 12 72
37 48 38

Customer

Initial 
Inventory 

Level
1 7500
2 6000
3 6000
4 8000
5 4000
6 4000
7 5000
8 4000
9 8000
10 7500
11 7500
12 5000
13 7000
14 5000
15 7000
16 4000
17 4000
18 6000
19 6500
20 8000
21 5000
22 6000
23 5500
24 8000
25 8000
26 5500
27 8000
28 6500
29 5000
30 7500
31 7500
32 4000
33 8000
34 4000
35 6500
36 5000
37 4500
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Random threats: 

 

R1 R2 R3 R4 R5
X coord Y Coord X coord Y Coord X coord Y Coord X coord Y Coord X coord Y Coord

0 0 0 27.71281 2 45.03332 0 6.928203 4 48.49742
0 27.71281 0 76.21024 4 6.928203 0 27.71281 6 65.81793
2 51.96152 4 55.42563 4 13.85641 4 69.28203 6 86.60254
2 86.60254 4 62.35383 6 31.17691 6 24.24871 10 58.88973
4 6.928203 4 69.28203 10 17.32051 6 38.10512 10 72.74613
4 13.85641 8 34.64102 12 20.78461 6 58.88973 10 79.67434
6 17.32051 10 65.81793 14 24.24871 6 86.60254 12 41.56922
8 20.78461 10 86.60254 14 72.74613 8 41.56922 12 48.49742
8 55.42563 14 10.3923 18 45.03332 10 45.03332 12 76.21024
8 62.35383 16 0 18 79.67434 10 51.96152 16 34.64102
8 76.21024 16 20.78461 20 48.49742 12 13.85641 16 69.28203
10 38.10512 16 69.28203 20 76.21024 12 41.56922 18 65.81793
12 69.28203 22 65.81793 22 3.464102 14 38.10512 20 55.42563
14 65.81793 22 86.60254 22 31.17691 18 51.96152 22 72.74613
14 79.67434 26 65.81793 22 65.81793 20 0 22 79.67434
18 45.03332 28 20.78461 24 13.85641 20 20.78461 24 6.928203
18 58.88973 28 62.35383 24 34.64102 20 48.49742 26 86.60254
18 79.67434 30 51.96152 34 17.32051 22 31.17691 34 38.10512
20 34.64102 30 58.88973 34 24.24871 24 34.64102 36 55.42563
20 48.49742 32 76.21024 34 45.03332 26 24.24871 36 62.35383
20 83.13844 34 45.03332 34 65.81793 26 72.74613 38 86.60254
22 24.24871 36 69.28203 34 86.60254 30 51.96152 40 6.928203
22 31.17691 38 17.32051 36 0 32 34.64102 40 13.85641
24 69.28203 38 38.10512 36 76.21024 34 24.24871 40 27.71281
24 76.21024 38 79.67434 40 55.42563 36 55.42563 40 41.56922
26 10.3923 44 0 42 51.96152 40 13.85641 40 69.28203
28 34.64102 46 72.74613 42 79.67434 44 27.71281 42 65.81793
28 83.13844 48 0 44 76.21024 44 62.35383 44 27.71281
30 10.3923 48 83.13844 44 83.13844 44 69.28203 44 41.56922
32 55.42563 50 79.67434 46 17.32051 44 83.13844 46 31.17691
32 62.35383 54 10.3923 46 24.24871 50 10.3923 46 86.60254
38 51.96152 54 45.03332 46 72.74613 50 38.10512 48 76.21024
38 58.88973 54 65.81793 52 41.56922 52 6.928203 52 20.78461
40 6.928203 54 72.74613 56 13.85641 52 13.85641 52 55.42563
40 55.42563 58 3.464102 56 55.42563 56 0 52 69.28203
40 76.21024 58 58.88973 60 0 56 6.928203 54 58.88973
46 51.96152 58 65.81793 60 48.49742 56 13.85641 56 62.35383
48 6.928203 60 6.928203 62 65.81793 60 20.78461 60 34.64102
48 62.35383 62 17.32051 66 65.81793 60 41.56922 62 31.17691
54 51.96152 62 24.24871 68 69.28203 64 0 64 20.78461
54 58.88973 64 0 70 17.32051 64 6.928203 64 55.42563
56 41.56922 66 38.10512 70 31.17691 64 69.28203 68 62.35383
58 24.24871 66 51.96152 70 45.03332 66 58.88973 70 24.24871
60 6.928203 66 65.81793 70 58.88973 66 72.74613 70 45.03332
60 13.85641 68 34.64102 72 6.928203 68 0 70 79.67434
62 17.32051 70 86.60254 72 13.85641 68 6.928203 72 62.35383
62 38.10512 74 65.81793 74 45.03332 70 65.81793 76 20.78461
62 79.67434 74 86.60254 74 51.96152 72 62.35383 76 55.42563
66 45.03332 76 0 76 27.71281 74 24.24871 78 17.32051
68 0 76 62.35383 76 83.13844 74 45.03332 78 51.96152
68 62.35383 78 45.03332 78 51.96152 76 76.21024 80 27.71281
72 6.928203 78 51.96152 78 65.81793 78 24.24871 80 76.21024
72 55.42563 80 34.64102 78 72.74613 82 3.464102 82 3.464102
74 79.67434 82 3.464102 80 20.78461 82 31.17691 82 45.03332
78 65.81793 86 10.3923 80 34.64102 82 45.03332 84 34.64102
80 69.28203 86 72.74613 80 41.56922 84 27.71281 84 76.21024
82 24.24871 88 0 84 76.21024 84 76.21024 88 13.85641
82 31.17691 90 17.32051 86 17.32051 86 3.464102 88 69.28203
86 86.60254 90 38.10512 86 79.67434 88 34.64102 90 38.10512
88 6.928203 90 86.60254 88 0 90 45.03332 90 51.96152
90 10.3923 92 20.78461 88 48.49742 90 65.81793 94 3.464102
90 38.10512 92 34.64102 90 51.96152 92 76.21024 94 79.67434
90 51.96152 94 65.81793 92 41.56922 94 24.24871 96 6.928203
90 58.88973 98 51.96152 92 48.49742 96 34.64102 96 62.35383
92 62.35383 98 58.88973 94 3.464102 96 48.49742 98 65.81793
96 13.85641 102 17.32051 94 72.74613 98 31.17691 100 69.28203
98 65.81793 102 45.03332 96 27.71281 100 6.928203 100 76.21024

102 24.24871 102 65.81793 96 69.28203 102 79.67434 102 58.88973
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Clustered threats: 

 

C1 C2 C3 C4 C5
X coord Y Coord X coord Y Coord X coord Y Coord X coord Y Coord X coord Y Coord

24 34.64102 0 72.74613 0 38.10512 0 0 24 31.17691
24 38.10512 0 76.21024 0 41.56922 0 3.464102 24 34.64102
24 41.56922 0 79.67434 6 38.10512 0 6.928203 24 38.10512
30 38.10512 6 69.28203 6 41.56922 0 41.56922 24 58.88973
30 41.56922 6 72.74613 8 31.17691 0 45.03332 24 62.35383
30 45.03332 6 76.21024 8 34.64102 6 3.464102 24 69.28203
32 6.928203 6 79.67434 8 38.10512 6 6.928203 24 72.74613
32 10.3923 8 69.28203 8 41.56922 6 38.10512 24 76.21024
32 13.85641 8 72.74613 8 48.49742 6 41.56922 30 31.17691
32 34.64102 14 72.74613 14 34.64102 6 45.03332 30 34.64102
32 38.10512 14 76.21024 14 38.10512 6 48.49742 30 38.10512
32 41.56922 46 45.03332 14 41.56922 8 0 30 55.42563
32 45.03332 46 48.49742 14 45.03332 8 41.56922 30 58.88973
32 48.49742 48 45.03332 14 48.49742 8 45.03332 30 62.35383
38 10.3923 48 48.49742 14 51.96152 14 45.03332 30 65.81793
38 13.85641 48 51.96152 14 55.42563 30 6.928203 30 69.28203
38 41.56922 54 41.56922 16 34.64102 30 13.85641 30 72.74613
38 45.03332 54 45.03332 16 41.56922 32 3.464102 30 76.21024
40 3.464102 54 48.49742 16 45.03332 32 6.928203 30 79.67434
40 6.928203 54 51.96152 16 48.49742 32 10.3923 32 27.71281
40 10.3923 56 45.03332 16 51.96152 38 3.464102 32 31.17691
40 13.85641 56 48.49742 22 45.03332 38 6.928203 32 34.64102
40 38.10512 56 51.96152 22 48.49742 38 10.3923 32 55.42563
40 41.56922 62 65.81793 22 51.96152 38 13.85641 32 58.88973
40 45.03332 64 62.35383 32 41.56922 38 17.32051 32 69.28203
40 48.49742 64 69.28203 38 38.10512 40 6.928203 32 72.74613
40 51.96152 64 72.74613 38 45.03332 40 10.3923 32 76.21024
46 6.928203 70 69.28203 40 38.10512 46 13.85641 32 79.67434
46 10.3923 70 72.74613 40 41.56922 48 31.17691 38 34.64102
46 48.49742 72 58.88973 40 45.03332 48 34.64102 38 38.10512
46 51.96152 72 62.35383 46 13.85641 54 34.64102 38 55.42563
46 55.42563 72 65.81793 46 34.64102 54 38.10512 38 58.88973
48 6.928203 72 69.28203 46 38.10512 54 79.67434 38 62.35383
48 41.56922 72 72.74613 46 41.56922 56 31.17691 38 65.81793
48 45.03332 78 3.464102 48 10.3923 56 34.64102 38 72.74613
48 48.49742 78 6.928203 48 13.85641 56 38.10512 38 76.21024
54 48.49742 78 10.3923 48 41.56922 56 55.42563 38 79.67434
54 51.96152 78 58.88973 54 0 56 76.21024 40 34.64102
56 48.49742 78 62.35383 54 3.464102 56 79.67434 40 38.10512
56 51.96152 78 65.81793 54 6.928203 62 31.17691 40 51.96152
62 55.42563 78 69.28203 54 10.3923 62 34.64102 40 55.42563
64 3.464102 78 72.74613 54 13.85641 62 38.10512 40 58.88973
64 10.3923 78 76.21024 54 17.32051 62 41.56922 40 62.35383
64 48.49742 80 3.464102 56 0 62 48.49742 40 69.28203
64 72.74613 80 6.928203 56 3.464102 62 51.96152 40 76.21024
64 79.67434 80 10.3923 56 6.928203 62 76.21024 46 58.88973
70 6.928203 80 48.49742 56 10.3923 62 79.67434 46 62.35383
70 10.3923 80 51.96152 56 13.85641 64 31.17691 48 24.24871
70 45.03332 80 55.42563 56 17.32051 64 38.10512 48 27.71281
70 48.49742 80 58.88973 62 0 64 45.03332 48 55.42563
70 76.21024 80 62.35383 62 3.464102 64 48.49742 48 58.88973
70 79.67434 80 65.81793 62 17.32051 64 51.96152 48 62.35383
72 6.928203 80 69.28203 64 0 64 55.42563 54 31.17691
72 10.3923 80 72.74613 64 3.464102 64 58.88973 54 34.64102
72 38.10512 80 76.21024 70 3.464102 70 51.96152 56 24.24871
72 41.56922 86 3.464102 70 6.928203 70 55.42563 56 27.71281
72 45.03332 86 6.928203 70 31.17691 72 6.928203 56 31.17691
72 48.49742 86 10.3923 72 24.24871 72 48.49742 62 27.71281
72 76.21024 86 13.85641 72 27.71281 72 55.42563 62 31.17691
72 79.67434 86 55.42563 72 31.17691 78 6.928203 64 24.24871
78 41.56922 86 65.81793 78 24.24871 78 10.3923 64 27.71281
78 48.49742 86 69.28203 78 27.71281 78 13.85641 64 31.17691
78 51.96152 86 72.74613 78 31.17691 78 17.32051 72 3.464102
78 76.21024 88 3.464102 78 34.64102 80 6.928203 78 0
80 41.56922 88 51.96152 80 24.24871 80 10.3923 78 3.464102
80 45.03332 88 55.42563 80 27.71281 86 6.928203 80 0
96 58.88973 88 58.88973 80 31.17691 86 10.3923 86 0
96 69.28203 94 3.464102 80 34.64102 86 13.85641 86 3.464102
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Random-clustered threats: 

  

RC1 RC2 RC3 RC4 RC5
X coord Y Coord X coord Y Coord X coord Y Coord X coord Y Coord X coord Y Coord

2 51.96152 4 27.71281 8 20.78461 0 13.85641 0 76.21024
4 20.78461 4 69.28203 8 27.71281 0 62.35383 2 51.96152
4 48.49742 6 45.03332 12 13.85641 0 69.28203 6 31.17691
6 17.32051 6 38.10512 14 79.67434 0 27.71281 10 65.81793
6 31.17691 8 41.56922 16 6.928203 2 58.88973 12 0
6 45.03332 10 51.96152 16 27.71281 4 6.928203 16 69.28203
6 65.81793 14 51.96152 18 72.74613 4 20.78461 18 24.24871
8 13.85641 18 31.17691 18 79.67434 4 34.64102 18 65.81793
8 20.78461 20 48.49742 24 76.21024 4 69.28203 20 62.35383
10 17.32051 22 31.17691 26 79.67434 6 17.32051 22 45.03332
10 24.24871 24 20.78461 28 41.56922 6 65.81793 26 65.81793
10 79.67434 26 24.24871 30 17.32051 6 38.10512 28 76.21024
12 13.85641 28 13.85641 32 62.35383 8 13.85641 28 20.78461
12 20.78461 30 31.17691 34 17.32051 8 20.78461 28 62.35383
14 17.32051 32 13.85641 34 24.24871 8 62.35383 30 10.3923
14 38.10512 34 24.24871 36 6.928203 8 69.28203 30 17.32051
16 13.85641 36 6.928203 36 34.64102 10 17.32051 40 34.64102
18 10.3923 36 13.85641 36 62.35383 10 58.88973 40 41.56922
18 17.32051 36 69.28203 36 69.28203 10 65.81793 42 38.10512
18 24.24871 36 76.21024 38 65.81793 10 45.03332 42 45.03332
20 55.42563 38 10.3923 38 72.74613 12 20.78461 44 34.64102
22 10.3923 38 17.32051 40 69.28203 12 48.49742 44 41.56922
22 17.32051 38 24.24871 42 65.81793 14 10.3923 44 48.49742
24 41.56922 38 79.67434 42 79.67434 14 17.32051 46 38.10512
26 31.17691 40 6.928203 44 69.28203 18 17.32051 48 13.85641
26 72.74613 40 13.85641 44 76.21024 18 24.24871 48 34.64102
32 48.49742 40 76.21024 46 65.81793 18 31.17691 48 41.56922
38 45.03332 42 3.464102 46 72.74613 28 69.28203 48 48.49742
40 69.28203 42 10.3923 48 0 32 76.21024 48 69.28203
42 31.17691 42 51.96152 48 6.928203 34 38.10512 48 83.13844
44 48.49742 42 79.67434 48 48.49742 34 65.81793 50 38.10512
44 55.42563 44 69.28203 48 69.28203 36 34.64102 50 45.03332
46 31.17691 44 76.21024 48 76.21024 38 58.88973 54 38.10512
50 58.88973 46 79.67434 50 79.67434 42 38.10512 54 65.81793
54 38.10512 48 34.64102 52 6.928203 44 6.928203 58 65.81793
54 45.03332 48 76.21024 52 76.21024 44 27.71281 58 3.464102
54 51.96152 50 17.32051 54 3.464102 44 83.13844 60 0
54 58.88973 50 38.10512 54 17.32051 50 10.3923 60 6.928203
56 20.78461 50 79.67434 54 45.03332 54 3.464102 60 41.56922
58 45.03332 54 72.74613 56 0 62 24.24871 60 62.35383
58 51.96152 56 69.28203 56 6.928203 64 41.56922 60 69.28203
58 58.88973 56 6.928203 56 55.42563 64 0 62 10.3923
60 20.78461 58 38.10512 56 13.85641 66 38.10512 62 24.24871
60 27.71281 60 69.28203 58 3.464102 66 45.03332 62 65.81793
60 41.56922 62 65.81793 58 10.3923 66 65.81793 64 0
62 51.96152 64 69.28203 60 6.928203 68 41.56922 64 6.928203
62 31.17691 64 76.21024 62 3.464102 68 48.49742 64 62.35383
64 13.85641 66 51.96152 62 72.74613 68 0 64 69.28203
64 20.78461 66 72.74613 64 48.49742 70 45.03332 66 3.464102
64 27.71281 66 58.88973 64 69.28203 72 20.78461 66 10.3923
64 20.78461 68 69.28203 66 3.464102 72 48.49742 66 24.24871
66 24.24871 68 76.21024 66 17.32051 74 45.03332 66 51.96152
68 13.85641 68 0 66 24.24871 74 51.96152 66 72.74613
68 20.78461 70 72.74613 66 72.74613 74 79.67434 68 0
70 17.32051 72 20.78461 68 6.928203 74 45.03332 68 62.35383
70 24.24871 72 76.21024 70 24.24871 78 51.96152 68 76.21024
70 79.67434 72 62.35383 70 58.88973 84 0 70 65.81793
72 20.78461 74 65.81793 70 31.17691 84 41.56922 70 72.74613
74 58.88973 74 72.74613 72 48.49742 84 69.28203 74 58.88973
82 45.03332 78 72.74613 74 72.74613 86 58.88973 76 0
82 51.96152 82 10.3923 78 31.17691 86 65.81793 82 38.10512
84 34.64102 84 69.28203 80 62.35383 86 3.464102 82 65.81793
84 27.71281 88 76.21024 82 65.81793 88 48.49742 84 55.42563
88 41.56922 92 6.928203 88 41.56922 90 65.81793 86 10.3923
90 58.88973 92 13.85641 90 38.10512 92 48.49742 90 38.10512
92 0 94 65.81793 90 79.67434 94 45.03332 92 41.56922
94 3.464102 96 48.49742 92 41.56922 94 24.24871 94 24.24871
94 79.67434 102 79.67434 94 3.464102 96 48.49742 102 17.32051
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