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FIGURES 

 
 

1. Plot of the abstraction vector, which is a two dimensional metaspectral representation of 
fuel composition. 

2. Computational flowchart for the FCAST application. 

3. File export dialog window and export progress bar. 

4. Dialog for setting compositional profiler peak search parameters. 

5. FCAST information window, showing versions of the application and property models 
used. 

6. Main FCAST interface screen, showing 1) List of data files; 2) GCMS data file 
properties, as well as the date the file was processed with FCAST; 3) TIC of selected file, 
showing selected retention time of the selected compound; 4) m/z table for selected 
compound; 5) m/z plot for selected compound; 6) Calculated properties of the sample; 7) 
Compositional profile in area percent; 8) Chemical structure of the selected compound in 
the hydrocarbon profile. 

7. FCAST Hydrocarbon Distribution screen, showing 1) List of data files; 2) Carbon 
number distributions in area percentages for different classes of hydrocarbons in the 
sample; 3) Bar graph depicting the carbon number distributions in a selected compound 
class (selectable via the upper table). 

8. FCAST Compound Class Distribution screen, showing 1) List of data files; 2) Stacked 
Bar graph depicting the carbon number distributions in the selected compound classes 3) 
Compound class list as check boxes to add or remove from bar chart.  

 
9. FCAST Distillation Curve screen, showing 1) List of data files; 2) Predicted distillation 

curve shown in black, along with jet and diesel reference curves. 
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1. Properties predicted by the FCAST.  
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1.0 Introduction 
 
The high cost and limited availability of emerging alternative fuels is often a major impediment 
to certification of these fuels as Fit-For-Purpose (FFP) for the U.S. Navy. A method whereby a 
candidate fuel could be rapidly screened for many FFP properties, using a minimal volume (< 1 
mL), would overcome this limitation. The Navy Fuel Property Monitor (NFPM) was a screening 
tool developed for shipboard quality surveillance, based on chemometric modeling of near-
infrared (NIR) spectra. While this has proven to be a viable approach for known (calibrated) 
fuels, spectral modeling is not practical when applied to fuels that are radically different in 
composition (uncalibrated), from those used to derive the models. Thus, spectral modeling was 
deemed impractical as a tool to model properties of alternative fuels and/or blending stocks with 
unknown compositions. 
 
In order to meet this challenge, algorithmic modeling strategies were derived that establish the 
statistical relationships between composition and critical FFP fuel properties. This has allowed 
us to develop partial least squares (PLS) models based on gas chromatography-mass 
spectrometry (GC-MS) data that predict fuel properties more accurately than NIR. More 
significantly, these models are also capable of predicting critical specification properties of 
blends of Navy mobility fuels with new alternative fuels, regardless of their source or processing 
methods. 
 
The Fuel Composition and Screening Tool (FCAST) was developed as a general fuel screening 
tool that combines GC-MS based property predictions with a compositional profiler to provide a 
variety of useful information about a fuel sample.  
 

2.0 Fuel Characterization by GC-MS 
 

2.1 NRL Compositional Profiler 
 
The NRL compositional profiler1 is an automated chemical component classification tool that 
was developed to provide a classification of all compound classes in a fuel, as an alternative to 
ASTM D24252, which does not function adequately with alternative, non-petroleum derived 
fuels.  The profiler has been implemented in the Navy protocols for alternative jet3 and diesel4 
fuel certification.  The profiler functions by reading the GC-MS data file, identifying each unique 
compound peak, performing a noise analysis, then sending the peak table to a NIST electron 
impact mass spectral library. The chemical compounds thus identified are classified with respect 
to a set of 25 defined compound classes using a set of selection rules that operate on either the 
molecular formula or IUPAC name. In addition, the profiler calculates and reports carbon 
number distributions, average carbon number and degrees of unsaturation for each carbon 
number.   
________________
Manuscript approved April 9, 2014. 
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The accuracy of the NRL compositional profiler has been verified with known fuels and 
surrogate fuel blends. In addition to certification, the profiler has proven to be a useful tool for 
rapid interpretation of GC-MS fuel analyses and is being employed in the FCAST program to 
provide compositional data for the statistical modeling. 
 
The profiler classifies all detectable compounds in the sample with respect to the following 
compound classes: 
 

Saturates 
• Normal Alkanes 
• Iso Alkanes 
• Monocyclo Alkanes 
• Alkyl Monocyclo Alkanes 
• Dicyclo Alkanes 
• Alkyl Dicyclo Alkanes 
• Tricyclo Alkanes 
• Alkyl Tricyclo Alkanes 

Olefins 
• Acyclic Alkenes 
• Cyclo Alkenes 

Aromatics 
• Alkyl Benzenes 
• Indans and Tetralins 
• Indenes 
• Naphthalenes 
• Branched Naphthalenes 
• Acenaphthenes 
• Acenaphthylenes 
• Tricycloaromatics 

Heteroatomics 
• Methyl Esters 
• Sulfur-Bound 
• Nitrogen-Bound 
• Oxygen-Bound 
• Chlorine-Bound 
• Other Halogen-Bound 

Other (not in above classes) 
 

A prefilter is also used to pre-emptively remove known interferents, e.g., polysiloxanes, which 
are associated with bleed from the GC column stationary phase and methylene chloride, 
commonly used as a solvent. 
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The NRL Compositional Profiler has been demonstrated5,6 to be effective for rapid 
compositional profiling of complex mixtures that would otherwise take unreasonable times to 
manually analyze.  Nevertheless, a major limitation of the NRL profiler algorithm is that it 
reports relative contribution of each class of compounds as a percentage of the total area counts 
measured in each analysis, thus neglecting the effect of differing response factors among 
different compounds on the GC-MS. Compound-specific response factors observed with GC-MS 
are dependent on the molecular ionization efficiency of the compound, and to some extent, the 
fragmentation pattern induced by the mass spectrometer.  This makes them highly dependent on 
molecular structure in ways that are difficult to generalize across a wide range of possible 
mixture constituents7. 
   
While peak area abundances are self-consistent within a given sample or group of similar fuels, it 
is not always possible to mathematically operate with such area based profiler results, when 
comparing as alternative and petroleum fuels. Efforts are underway to empirically measure 
compound class MS response factors, and when these become available, they will be 
implemented in the FCAST application to enable the calculation of compound abundances in 
weight percent. 
   
2.2 Modeling Fuel Properties from GC-MS Data 

 
It is known8-11 that a great deal of information regarding fuel composition can be obtained from 
GC-MS, and the wide availability of this instrumentation make it an ideal analytical technique 
upon which to base a fuel modeling tool. Compositional information can be derived from the 
analysis of GC data or GC×GC data without the benefit of mass spectrometry12-15 and from MS 
without the benefit of chromatography16, as well as GC-MS data and GC×GC-MS data without 
the benefit of complete mass/charge ratio information17-22. Nevertheless, fuel-based FFP 
modeling requires the discrimination of hundreds of discrete compounds, and gas 
chromatography-mass spectrometry (GC-MS) has the potential to provide this level of 
discrimination. Algorithms such as Target Factor Analysis (TFA)23, instrumental modes such as 
selected ion monitoring24, or comparative techniques requiring the use of internal standards25 can 
be used to interrogate GC-MS data sets for individual target compounds. However, attempting to 
explicitly target every compound that could potentially be found in a fuel sample is not realistic. 
Previous multi-way modeling26 performed at NRL focused on elucidating the compositional 
differences between different fuel samples. The data features quantified in that work were the 
same type of data features from which fuel constituencies would be derived in this study, but a 
more direct focus on fuel constituency is necessary for direct fuel property modeling. 
  
GC-MS data are represented by a 3-dimensional array27 consisting of (mass/charge) vs 
(abundance) vs (chromatographic retention time). In order to apply a PLS analysis to these data, 
it is first necessary to represent it with an appropriate 2-dimensional abstraction. This was 
accomplished by the construction of an n-dimensional abstraction vector, where n equals the 
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number of discrete chemical compounds found in our worldwide fuel calibration set. Each 
element of this abstraction vector is assigned to a different specific compound and the magnitude 
of each element represents the abundance of that compound in the fuel sample. This 2-
dimensional abstraction vector that represents the fuel composition can be referred to as a 
metaspectrum of compound vs abundance, as shown graphically in Figure 1. In order to 
construct the metaspectra, the TIC peaks are identified and, then sent to the NIST Mass Spectral 
search engine. Compound abundances are calculated from the TIC peak areas and these peak 
areas used to set the magnitudes of the appropriate elements in the abstraction vector. With 
appropriate peak thresholds, the vast majority of chromatographic artifacts and masking 
compounds are automatically eliminated. It was determined that a peak area threshold of 0.001% 
was the best choice for most analyses. 
 
 

 
 
Figure 1. Plot of the abstraction vector, which is a two dimensional metaspectral representation 
of fuel composition. 
 
Because it would be impossible to predict every possible compound that could be present in a 
future fuel population, and to produce a training data set that would allow for their future 
identification, a methodology was developed to more ably accommodate those compounds that 
do not appear to any significant extent in the training data set.  Instead of simply using the best 
possible NIST database identity match alone, the second best possible identity is also considered.  
These identities are then each compared to a master list of compounds that were actually found 
during the production of the original fuel property prediction models.  If the first most likely 
compound does not appear in the master list, then the second most likely compound can be 
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tested.  In this fashion, uncalibrated compounds that are nonetheless structurally similar to 
calibrated compounds won’t be ignored and are allowed to influence fuel property prediction 
results in an appropriate fashion. 
 
PLS Regression Analysis. PLS regression was used to develop the statistical correlations 
between the component spectra of the fuel samples to their measured ASTM fuel property 
values. The technique of PLS is based on singular value decomposition (SVD), which 
mathematically transforms data based on the underlying linear variances that can be found within 
it. SVD results in a linear transformation of the data into new variables, known as latent variables 
(LVs) because they are not directly observable in the original data. These LVs are calculated so 
as to maximize covariance between the data and the variable to be predicted, which allows the 
differentiation of larger and smaller sources of variance not only from each other, but also from 
possible interfering factors, producing multivariate prediction models that provide a higher level 
of overall model robustness than can be afforded by simple univariate prediction models.  
 
It is critical to choose the appropriate number of LVs to use in a particular property model.  The 
trade off is one of bias versus variance:  if too few LVs are used, the model will inadequately 
model the property of interest, producing biased predictions, while if too many are used, the 
model will overfit to spurious variance in the calibration data and poorly predict the properties of 
new, uncalibrated sample data.  Achieving this balance between modeling precision and 
robustness is particularly challenging when modeling fuel properties, due to the variable nature 
of fuel compositions. The number of LVs to be retained in each PLS fuel property model 
construction were determined using leave-one-out cross-validation (LOO-CV)28 which 
approximates model performance with uncalibrated data. In LOO-CV, the predicted fuel 
property value of each fuel sample in a given model is based on a sub-model built from every 
other sample except for the sample given a prediction value. This operation produces a single 
Root Mean Square Error of Cross-Validation (RMSECV) result for each number of LVs 
evaluated. Choosing the number of LVs that minimizes this RMSECV value theoretically 
maximizes the performance of a given model with uncalibrated data. However, RMSECV results 
are ultimately an imperfect metric to use to optimize the number of LVs in this type of 
modeling.29-31 This is because RMSECV results are still based on models that take almost all of 
the available training data into account and are, therefore, being created under the assumption 
that the training data are completely representative of all possible future data. This assumption 
may be valid when only modeling petrochemical fuels, but is not necessarily valid with the 
inclusion of alternative fuels of unknown compositions in sample populations. 
 
To compensate for this reality, the numbers of LVs to be used for each fuel property prediction 
model produced were instead chosen automatically using an F-test statistic.32-34 The F-test was 
applied to the LOO-CV cumulative predicted residual error sum of squares (CUMPRESS) results 
with an 85% confidence interval, using a maximum of 10 LVs. The use of the F-test tends to 



6 
 

select a smaller number of LVs than the minimum RMSECV value would suggest, which, in 
turn, sacrifices the immediate quality of a model in order to better preserve its robustness and its 
potential utility in the presence of uncalibrated data. By limiting the number of LVs that can be 
incorporated into a model, the F-test protects against overfitting. Once the number of LVs was 
chosen using the F-test, each model was rebuilt using all possible calibration data to obtain the 
final Root Mean Square Error of Prediction (RMSEP) results. 
 
Uninformative Variable Elimination PLS. A modified version of PLS known as UVE-PLS35 
was used in this work to remove variables from the PLS model training data that contribute 
minimal or no relevant information toward the given modeling goal. With GC-MS derived 
metaspectra, this results in the elimination of uninformative individual compounds, focusing the 
construction of the PLS models on those compounds that are most statistically significant with 
respect to the fuel property being modeled. Although the elimination of specific compounds may 
seem counterintuitive, given the stated goal of developing a comprehensive FFP modeling 
strategy, the eliminated compounds deemed to be uninformative through UVE-PLS were not 
contributing constructively to model quality, and thus constituted only noise or interference. 
Furthermore, because the models produced through the use of UVE-PLS still retained many 
compounds, regardless of the strategy being used, it is our hypothesis that these models will still 
be capable of accommodating future fuels, regardless of their composition. 
In order to understand how UVE-PLS functions, first consider the basic equation for Partial 
Least Squares: 

 y = (Xc*b) + e  (1) 
 

where, y is the (n x 1) vector of calibration values (in our case, fuel properties), one for each of 
the n fuel samples; Xc is the (n x p) data used to predict the calibration values (in this case, our 
metaspectral data, one vector of length p per sample because there are p possible compounds); b 
is the (p x 1) vector of regression coefficients that is obtained by using PLS; and e is the (n x 1) 
error vector (i.e. the data variance not described by the regression coefficients).  
The actual (n x 1) vector of fuel property predictions one obtains from the PLS model (ŷ) can be 
summarized as: 

 ŷ = (Xn*b)  (2) 
 

where, Xn is the data for the new sample to be analyzed, and ŷ is a vector of fuel property 
predictions. UVE-PLS requires a cross-validation procedure. In this work, as described 
previously, a leave-one-out cross-validation was used. Each step in the leave-one-out cross-
validation produces not only a separate ŷ vector of fuel property predictions (from which to 
ultimately calculate RMSECV values), but also a separate b vector of regression coefficients. 
Each of these vectors is the length of the number of compounds considered during the modeling 
procedure, which means that each compound is associated with a set of regression coefficients, 
consisting of one regression coefficient obtained from each step in the cross-validation 
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procedure. Since each compound has a separate set of regression coefficients, they can then be 
averaged and assigned a standard deviation value. The ratio of the average over the standard 
deviation is defined as the reliability ratio of that particular compound in the context of a 
particular PLS property model.  
 
If random variables (compounds) are then added to the list of compounds for a given fuel sample 
(the original Xn data set), and thus added to the abstraction vector, then the reliability ratio 
described above can be calculated for them as well. This is done by adding a number of random 
variables to the abstraction vector equal to one-fifth of the number of compounds found in that 
fuel. By comparing the reliability ratios of the added random variables with the actual 
compounds found in the fuel, it is possible to determine if a given fuel constituent is more 
informative to a particular model than a random compound.  
 
In this manner, each compound detected in a fuel is tested to determine if its reliability ratio is 
higher than at least 85% of the random-variable reliability ratios. If it is equal to or greater than 
85%, then that compound is retained in the final model. Otherwise, it is removed, since it is 
inconsistently informative and not contributing to that particular property model. 
 

3.0 The FCAST Software Overview 
 
The FCAST combines the functionality of an improved version of the NRL compositional 
profiler1 with modeling of critical fuel properties. The software requires the NIST Mass Spectral 
Search program to identify the compounds in the sample, and it will notify the user if the spectral 
database is not installed on the computer.  If it is not installed, the software will still run and load 
Agilent Chemstation GC-MS data files, but no new analyses can be run.  The FCAST saves all 
results of the analyzed data and can display processed results without the original data files. In 
this way, the FCAST will always show any files that have been analyzed without the need for 
directory navigation. However, in order to get the results in a readable format, the data must be 
exported. Analyzed results can be imported from or exported to another computer running the 
FCAST software.  
 
The FCAST performs all necessary preprocessing and processing steps automatically, and 
presents the user with the predicted properties, the composition organized by compound class, a 
lists of compounds found in a fuel, the fuel-relevant compound classes within which these 
compounds can be classified, carbon number distributions, and other analysis results that may be 
of interest to various expert and non-expert users. The overall process is illustrated in the 
flowchart shown in Figure 2.  
 
In the current version of the FCAST software (version 2.5), the compositional profiling is 
performed independently of the fuel property modeling. This allows a level of versatility in the 
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compositional profiling that is not available in the property modeling because the property 
modeling must be performed using a certain set of analysis parameters. Changing, for example, 
the peak area threshold value to be used with an incoming data set creates a metaspectrum that is 
fundamentally ill-suited for use in models constructed using different peak area threshold values. 
However, the compositional profiler, not being similarly restricted, can be used with different 
minimum peak area thresholds, MF thresholds, and MS data ranges to parse and explore fuel 
composition in a more free-form manner. The default settings for these parameters are nearly the 
same as those used for the property modeling, so leaving them unchanged will still result in an 
effective analysis. A solvent delay can also be an input into the compositional profiler in order to 
exclude non-compositional, early-spectrum data artifacts. 
 

 
 
Figure 2. Computational flowchart for the FCAST application. 

 
The property predictions are checked against the models to determine if the data falls within the 
model to make a valid prediction.  If the sample falls outside of the property model, the value is 
reported as NaN (Not a Number), so as to not report a false value. In addition, since the property 
models were designed for conventional fuels and fuel blends containing alternative fuels, these 
models are not accurate when applied to compositionally sparse or pure compounds. Thus, if any 
single component makes up more than 80% of the sample no property calculations are 
performed. The fuel properties that are predicted by PLS modeling of the GC-MS metaspectra in 
the FCAST are shown in Table 1. 
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Detection of sample overloading. In a GC-MS analysis, there are two ways that a sample can 
overload the system that will impact the integrity of the final results: 1) Chromatographic 
overloading, and 2) detector overloading. Chromatographic overloading occurs when the 
quantity of an analyte on a GC column exceeds the capacity of the stationary phase, causing the 
analyte to elute in a non-Gaussian manner characterized by non-symmetrical peak shapes and 
can adversely affect peak area calculations. However, even when column overloading is not 
evident, GC-MS detector overloading can still occur. This is a consequence of a limitation in the 
Agilent GC-MS data file format, where the number of ion counts for a particular m/z fragment 
peak is limited to a maximum value of 8388608. Since the TIC is calculated as the sums of 
detector counts at each GC retention time, if this variable limit is exceeded, the peak areas will 
not be correct.   
 
However, software variable overloading of this nature is not always evident from TIC peak 
shapes and must be explicitly checked. The FCAST software checks each incoming GC-MS data 
file for variable overloading by checking all m/z values to ensure that they are less than the 
maximum value (8388608). Any m/z values that are at maximum are classified as “overloaded” 
and the total percentage of overloaded peaks are calculated as a percentage of the total number of 
peaks.  Overloaded peaks will introduce errors in the relative abundances of the different 
compounds calculated by the profiler, as well as cause errors in the calculated properties.  If the 
user processes a file that contains overloaded peaks, this will be shown in red in the information 
box, to the right of the TIC display. It is recommended that overloaded GC-MS data be 
reacquired with a lower sample concentration.  
 
Direct Calculations. Those fuel characteristics that can be directly calculated from the GC-MS 
data are not modeled. Fuel system icing inhibitor (FSII) is required to be added to military jet 
fuels. FSII, more specifically diethylene glycol monomethyl ether (DiEGME), is a single 
compound which can be identified by its two most abundant mass fragment ions at m/z=45 and 
59.  There are a limited number of other typical fuel constituents that produce the same m/z=45 
ion, but since those interfering compounds do not also produce the m/z=59 ion, they can be 
eliminated.  Examining these two fragment ions, the software first determines if there is any 
DiEGME at all and returns zero (0) as a value if not.  If DiEGME is determined to be present, 
then the sum of the two fragment ions are compared to the whole sample and used to determine 
FSII composition in the fuel.   
 
Distillation curves acquired in accordance with ASTM D8636 can be modeled from composition, 
but direct calculations are more precise. A method was developed by which a simulated 
distillation (SIMDIS) type of calculation can be performed on the GC-MS data without 
calibration standards. The SIMDIS determines the temperatures at which 10%, 20%, 50%, and 
90% of the fuel would be distilled from the fuel. This is accomplished by using the GC retention 
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Table 1. Properties predicted by the FCAST. 
  

PROPERTY Units ASTM #Samples LVs RMSEP 

Collegative 
Density (g/cm3)  g/cm3 D4052 749 9 0.0034 

Flash Point  °C D93 796 7 5.1428 
Pour Point  °C D5949 191 6 5.6025 

Freeze Point  °C D5972 402 9 1.9876 
Cloud Point  °C D2500 351 6 2.5880 

Viscosity -20C   cSt D445 76 2 0.7721 
Viscosity 40C  cSt D445 570 8 0.9007 
Acid Number  mg/g KOH D3242 280 5 0.0296 
Cetane Index -- D976 508 5 1.5487 

Dist.  IBP (°C) °C D86 (a) (a) (a) 
Dist. 10% (°C) °C D86 (a) (a) (a) 
Dist. 20% (°C) °C D86 (a) (a) (a) 
Dist. 50% (°C) °C D86 (a) (a) (a) 
Dist. 90% (°C) °C D86 (a) (a) (a) 
Dist. FBP (°C) °C D86 (a) (a) (a) 

Constituents-Major 
Olefins vol% D1319 61 6 0.2922 

Saturates vol% D1319 61 7 0.3130 
Aromatics vol% D6379 84 5 1.8466 

Naphthalenes vol% D1840 47 4 0.1432 
Constituents-Minor 

FSII (DiEGME) (b) wt% D5006 (a) (a) (a) 
Hydrogen wt% D3701  83 7 0.4325 

Sulfur wt% D4294 559 8 0.0788 
Karl-Fischer Water ppm D6304 50 6 3.8428 

Insolubles 

Existent Gum mg/100 mL D381 233 3 1.5600 
Lubricity (BOCLE) WSD mm D5001 253 6 0.0393 

Storage Stability mg/100 mL D5304 389 7 0.7067 
Demulsification minutes D1401 405 3 2.9141 

 
(a) Predicted by direct calculation. 

(b) FSII calibration is specific to DiEGME; this tool will not detect other icing inhibitors.    
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time indices of identified straight chain alkanes (with known boiling points) as an internal 
standard. The alkane retention time indices are used to map boiling point to retention time and 
the distillation points are then calculated as percentages of total fuel eluted from the column.  If 
there are too few identified alkanes to adequately define the boiling point map (e.g., a pure 
compound or a mixture of two pure compounds), the software will not display the distillation 
point numbers.  

 
4.0 Using the FCAST Software 
 
The FCAST was developed to operate with Agilent GC-MS Chemstation data files. It is 
important to bear in mind that the information presented by the FCAST is based on library 
pattern matching and chemometric analyses of the GC-MS data. Thus, the quality of the results 
obtained will be directly related to the quality of the raw GC-MS data and care must be taken to 
ensure that the instrument is configured properly and the chromatography and mass detection are 
functioning properly. 
 
 
4.1 GC-MS Data Acquisition 
 
The Instrument must be configured as follows: 
  

• Instrument: Agilent 7890A GC connected to an Agilent 5975C MSD with a heated 
transfer capillary line (250 °C) 

• Column: 60m x .25mm x 0.5 µm Agilent DB-1ms fused silica with a helium flow of 
2.0 mL/min. 

• MS Parameters: Source temperature 250 °C, Quad temperature 150 °C, Scan Mode 
scanning from 35 – 400 m/z with a threshold of 250 and a gain factor of 1.5. 

• Oven Program: 40 °C for 2 min, 5 °C/min to 165 °C, 2.5 °C/min to 265 °C,  10 
°C/min to 295 °C for 0 min, Total Run Time of 70 min. 

• GC Inlet: Split mode, 35:1 split ratio, 285°C 

• Sample Preparation:  dilute 5:1 with methylene chloride 

• Injection Volume: 0.5 µL  

It is imperative that the GC-MS method used when generating data for the FCAST be 
identical or as similar as possible to that used to collect the training data upon which the 
models and direct property calculations are based. Slight deviations between GC-MS 
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instruments will exert minimal impact on the accuracy of the compositional profiler, as the peak-
based mass spectral abstraction process is relatively robust with respect to calibration transfer 
between different similar instruments.  However, the precision of the property models is 
sensitive to the acquisition parameters used, since they are based on compositional distribution 
data.  
 
4.2 Data Processing System Requirements 
 
The FCAST application is designed to run on the Microsoft Windows platform and the .NET 4.0 
Framework. It will run on both 32- and 64-bit versions of Windows. A minimum screen 
resolution of 1024x768 pixels is required and the FCAST software also requires that the NIST 
Mass Spectral Search Program (NIST11) be installed in the default directory 
(C:\NIST11\MSSEARCH).  If the NIST11 program is not installed, the FCAST software will 
still run and load samples (even those imported from other systems) but no new analyses can be 
conducted. When data are being processed using FCAST, any running instance of NIST11 will 
be terminated, so that a clean start can be used for the analysis.  Additionally NIST11 will 
terminate when the analysis is complete and the NIST11 history files will be cleared. 

 
4.3 Software Installation 

 
The FCAST Installation program will install the FCAST program and check whether the .NET 
4.0 Framework is installed.  The Installer will NOT check if NIST11 is installed as the software 
does not need it to run, but is necessary to process data. 
 
If you are upgrading from a previous version of FCAST, the Installer will remove the previous 
version.  Any data files created by the program will remain, and the preferences will be 
maintained. 

 
4.4 Interface Design 

 
The interface is designed to be user friendly with the ability to open data folders and select which 
files to process.  The program also displays previously processed data, eliminating the need to 
reprocess the data to display results.  The interface displays many of the results generated within 
the program. In addition to the predicted fuel properties, the complete output of the 
compositional profiler is displayed in a tree format that allows the operator to expand the tree to 
display the individual compounds detected with estimated abundances in normalized volume 
percent.  Once a compound is selected, the eluted peak is indicated by a marker on the plot of the 
total ion chromatogram (TIC), as well as the mass spectrum, chemical structure, and NIST 
library match factor.  A tabbed interface also allows the user to view the carbon distributions of 
the total fuel, as well as in the aromatic, saturated and olefinic fractions.  Degrees of unsaturation 
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are also shown, organized by carbon number.  Additional tabs show the carbon distribution by 
hydrocarbon class, and an approximated distillation curve. 
 
The program uses a simple method to identify the peaks in the TIC.  For samples such as 
hydrocarbon fuels, the compounds involved are too similar to separate by considering the mass 
fragment information.  The identified peaks are sent to the NIST database for identification, 
resulting in computation times on the order of 10 – 20 minutes per sample for typical petroleum 
based fuels.  To account for uncalibrated compounds not in the master list for property 
prediction, the second result returned from the NIST search is used.  The FCAST also 
incorporates a data export functionality that allows the operator to select which processed data 
will be sent to a formatted MS Excel spreadsheet.  There is also the option to export the 
compositional information, including compound classes, carbon numbers and other data to text 
files for import into other software applications.  
 
All processed data are listed in an XML index and stored in a separate binary database, so that it 
is not necessary to retain the original raw GC-MS data files to view or reprocess the analysis 
results. It is only necessary to retain the raw data if it is desired to maintain the original context 
for the data. When the user selects a directory containing Agilent Chemstation data, or selects the 
processed data folder, the names of the files in that directory are shown in the pane on the left. 
Selecting any of the file names immediately displays the TIC and file header information. The 
user has the option of processing selected files or all files and once processed, they file names are 
displayed in bold text 
 

5.0 Menu Commands 
 

5.1  File 

Load Data: Select the folder containing the Agilent Chemstation GC-MS “.D” files to 
process 

Recent Folders: Keeps track of the last 5 folders selected 

Export Results: Saves a comprehensive summary results from all processed samples in an 
Excel spreadsheet “Summary-MM-DD-YYYY hh-mm-ss.xlsx” in the folder containing the 
“.D” data files. The spreadsheet contains a summary tab with the calculated property results 
and compositional profiler results for all samples, and a separate tab for each fuel sample that 
contains the above results for that sample, in addition to the entire list of identified 
compounds from the NIST search.   

The first window (Figure 3) allows for selection files to export.  Once the export is complete, 
the user has the option to open the file in Excel, or return to the FCAST program. 

 



14 
 

 
 
Figure 3. File export dialog window and export progress bar. 
 
Processed Files: This menu item allows for importing, exporting and viewing processed data 
files. 

• Import: Imports the XML and processed data files previously exported from another 
computer running the FCAST software.  The software will ask for a folder location 
containing the file and copy them into the user directory. 

• Export: Exports the XML and processed data files to a folder, for moving to another 
computer running the FCAST software.  The user will be prompted for which files to 
export from the list of ALL processed files (not just the directory selected).  Then the 
user will be prompted for which folder (or create a new folder) to save the files. 

• View: This option will populate the list of files stored in the database that are already 
processed (but without knowing the original location).  All other options of seeing the 
GCMS data, Properties, and Profile are available, as well as reprocessing the file. 

Exit: Exits the FCAST program.  The user will first be prompted to confirm.  

 
5.2   Process 

The FCAST software analyzes the TIC for identifiable peaks meeting the minimum area 
criteria.  These peaks are then sent to the NIST MS Search program for identification.  The 
returned results are then screened, selecting those that are above the minimum match factor 
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criteria.  All the results are saved so that the minimum match factor can be changed without 
needing to reprocess the file. These compounds are then sent to the profiler to determine 
which class they fall into. Additionally, the results of the NIST search are used to calculate 
the properties of the fuel.  The status of the analysis is shown at the bottom of the window 
indicating how many peaks are being analyzed and approximately how long the current 
processing should take. 

Selected File(s): Process the currently selected file(s) 

New Files: Process all unprocessed files 

All Files: Process all files in the current directory 

Cancel Processing: Terminate the analysis, without saving any information.  This will also 
terminate the current instance of the NIST MS Search Program. 

Reduced Profile: Once the fuel is profiled, the user can select a section of the sample, based 
on retention time, and view the compounds in only that section of the sample.  The 
percentages listed will still be based on the entire sample and not only from the reduced set 
of compounds. This feature is useful to selectively examine, for example, heavy 
contaminants in a fuel sample. 

 
5.3 Settings 

Search Parameters: These settings (figure 4) allow the user to select the search parameters 
for the compositional analysis. Selecting Reset, returns the settings to their default values. 
The file currently viewed will be reloaded to account for any change in the Min Match Factor 
in the display of the profiled hydrocarbon results. 

 
Figure 4. Dialog for setting compositional profiler peak search parameters. 
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• MinArea: The minimum area for a component to be added to the profile (default = 
0.001%) 

• Min Match Factor: The minimum match factor from the NIST MS Search for the 
component to be added to the profile (default = 750). 

• Solvent Delay: The number of minutes to exclude from the data at the beginning of 
the acquisition to account for solvent elution (default = 0) 

• Mass Range: The minimum/maximum mass range to use for the NIST MS Search, 
constrained by the mass range used to acquire the GC-MS data (default = 35 to 400). 

 
Profile Order: Allows the user to specify whether the compounds listed under each 
compound class in the compositional profiles are sorted with respect to Abundance or 
Retention Time. 
 

5.4   Help 
 
About: The about screen (Figure 5) shows the current version of the FCAST Software as 
well as the current version of the property models being used.  These version numbers are 
saved into the results files as the data is processed, so a record is kept as to how and when 
the samples were processed. 

 

 
 
Figure 5. FCAST information window, showing versions of the application and property 
models used. 
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6.0 Output of Processed Results 
 
Exported Data. The results of processed data files can be exported to an Excel spreadsheet.  The 
data exported consists of a summary sheet that contains for all exported files, the filename, 
sample name, noise factor, number of components found, a measure of data overloading, and 
which version of the software/property models was used.  It also contains the profiler output, 
which consists of a summary of abundance in the major compound classes (saturates, aromatics, 
olefins, heteratomics), compounds and their abundances in volume percent for each defined 
compound class, degrees of unsaturation (0-11), carbon number distributions (average, C6-C28) 
and the calculated properties. 
 
Each individual sample that was exported also has a tab that contains more specific details about 
that sample. In addition to the information listed on the summary sheet.  The report is broken 
down into several sections: 

• general sample identification information 
• area % by hydrocarbon class 
• 20 largest peaks 
• area% by degrees of unsaturation 
• carbon profile by hydrocarbon class 
• component listing by hydrocarbon class 
• calculated properties 
• plot of the total ion chromatogram  

 
GCMS information Screen. The main screen of the FCAST (Figure 6) was designed to provide 
the analyst with an informative overview of the composition and properties of the processed fuel 
GC-MS data file. A variety of types of information are displayed about the selected sample, 
including the predicted properties, composition, total ion chromatogram, as well as the mass 
spectrum and mass fragmentation pattern of any selected fuel constituent.  The slider in the 
Properties section allows the user to choose whether to evaluate the predicted properties against 
the relevant specifications for Jet or Diesel fuel.  The property values are shown as green (in 
spec), red (out of spec), or black (no spec available). Any predicted property values that are not 
considered valid, are not displayed (NaN). 
 
The list of data files indicates if a file has been processed by showing that entry as bold. The 
status bar at the bottom of the screen shows the data directory selected, the number of samples 
processed and the total number in the directory.  The right side of the status bar contains a 
progress bar used in many aspects of the program. 
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Figure 6. FCAST GCMS Information screen, showing 1) List of data files; 2) GCMS data file 
properties, as well as the date the file was processed with FCAST; 3) TIC of selected file, 
showing selected retention time of the selected compound; 4) m/z table for selected compound; 
5) m/z plot for selected compound; 6) Calculated properties of the sample; 7) Compositional 
profile in area percent; 8) Chemical structure of the selected compound in the hydrocarbon 
profile. 
 
 
 
Hydrocarbon Distribution Screen. This screen (Figure 7) displays various information about 
the hydrocarbon distribution of the sample.  The upper table shows area percentages for All 
CxHy/Saturates/Olefins/Aromatic by carbon number.  By selecting the rows of this table, the bar 
graph changes to display the carbon number distribution of the saturates, olefins or aromatics 
detected in the fuel sample. Additionally, the degrees of unsaturation by carbon number in the 
fuel are shown.  
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Figure 7. FCAST Hydrocarbon Distribution screen, showing 1) List of data files; 2) Carbon 
number distributions in area percentages for different classes of hydrocarbons in the sample; 3) 
Bar graph depicting the carbon number distributions in a selected compound class (selectable via 
the upper table). 
 
 
 
Compound Class Distribution Screen. This screen (Figure 8) displays the abundance of 
different compound classes in a stacked bar graph.  The operator can select which compound 
classes are displayed on the right side of the graph and the bar graph changes to display the 
carbon number distribution of each of the selected compound classes in the fuel sample. A 
context menu is available by right-clicking on the graph to choose all or none of the compounds 
as well as changing the colors of the bars displayed for each class. By right clicking on the graph, 
the operator can copy the plot to the clipboard for export to other applications. 
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Figure 8. FCAST Compound Class Distribution screen, showing 1) List of data files; 2) Stacked 
Bar graph depicting the carbon number distributions in the selected compound classes 3) 
Compound class list as check boxes to add or remove from bar chart.  
 
 
 
Distillation Curve Screen. This screen (Figure 9) displays a predicted distillation curve using 
the same algorithm as the property calculations for the distillation points.  The current sample 
selected is displayed with a black line along with typical jet and diesel distillation curves, for 
reference..  If there is insufficient alkane peaks to calculate the temperature access, the screen 
will indicate that with an “insufficient data to generate plot” warning. 
 

1
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Figure 9. FCAST Distillation Curve screen, showing 1) List of data files; 2) Predicted 
distillation curve shown in black, along with jet and diesel reference curves.  
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9.0 Appendix A 

 
FCAST software on CD 
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