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Abstract

Unsteady flow separation during dynamic stall often leads to unacceptably large vibra-

tory loads and acoustic noise, and limit forward flight speeds and maneuverability. To

gain a quantitative understanding of the unsteady separation process, large-eddy simula-

tion (LES) of turbulent flow over a pitching airfoil at realistic Reynolds and Mach numbers

is performed. Numerical stability at high Reynolds number simulation is maintained us-

ing an unstructured-grid LES technology, which obeys higher-order conservation principles

and employs a global-coefficient subgrid-scale turbulence model. A hybrid implicit-explicit

time-integration scheme is employed to provide a highly efficient way to treat time-step size

restriction in the separated flow region locally refined with dense mesh. The present simula-

tions confirm the stability and effectiveness of the presented numerical schemes for dynamic

stall simulations at realistic operating Reynolds and Mach numbers and show the charac-

teristics of flow separation and reattachment processes which are qualitatively congruent

with experimental observation.

To improve quantitative understanding of unsteady separation processes of turbulent

boundary layers, direct numerical simulations are performed. The distinct characteristics

of unsteady separating turbulent boundary layers are revealed by a systematic comparison

with steady attached/separated turbulent boundary layers. For this purpose, four different

flow configurations are simulated: (i) turbulent boundary layer flow with a zero-pressure

gradient; (ii) turbulent boundary layer flow with an adverse-pressure gradient; (iii) steady

separated turbulent boundary layer flow; and (iv) unsteady separating turbulent boundary

layer flow. The present comparative study suggests physical phenomena during the unsteady

separation process including unsteady boundary-layer detachment and reattachment, and

production and dissipation of turbulent kinetic energy and vorticity.
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Chapter 1

Introduction

Dynamic stall is a nonlinear and unsteady aerodynamic phenomenon resulting in stall delay

during a time-dependent motion of an airfoil at angles of attack higher than its static stall

angle. Dynamic stall of high Army relevance occurs on the retreating blade of a helicopter

rotor experiencing a pitching motion which leads to unsteady flow separation followed by

load and pitching-moment overshoots. The unsteady flow separation can in turn lead to

unacceptably large vibratory loads and acoustic noise, and limit forward flight speeds, load,

and maneuverability (Lorber & Carta 1994). The unsteady separation is reported to be

influenced by the Reynolds and Mach numbers, blade geometry, pitch rate, and freestream

turbulence level (McCroskey 1982).

Numerous investigations of unsteady separation associated with dynamic stall have been

conducted at chord-based Reynolds numbers (ReC) in the range of 103 − 107, at Mach

numbers for incompressible to transonic flow, and for a wide variety of blade geometries.

Most experimental studies have concentrated on measurements of aerodynamic forces such

as the surface pressure and overall loads (e.g., Lorber & Carta (1987); Jumper et al. (1987)),

or on the flow field visualization (e.g., McCroskey et al. (1976)). Quantitative measurements

of the separated flow field and wake around a pitching airfoil have been difficult using

experimental techniques, and therefore, have rarely been reported in the literature.

Computational fluid dynamics has become increasingly useful in studying dynamic stall

(see Ekaterinaris & Platzer (1997) for a review). Computational works have often been

performed, especially at practical Reynolds numbers, using the Reynolds-averaged Navier-

Stokes (RANS) equations or its unsteady counterpart (URANS) (e.g., Visbal (1988); Spent-

zos et al. (2005)). However, it is known to be very challenging for (U)RANS to accurately

predict highly unsteady flow involving incipient flow separation, formation and evolution

of stall vortices, and reattachment. So far, none of the available turbulence models has

shown a satisfactory predictive performance for all of these flow phenomena. In a review

article, Carr & McCroskey (1992) concluded that “Turbulence modeling becomes of crucial

importance when dynamic stall is considered. This is particularly true when the question of

incipient separation and dynamic-stall-vortex development is to be represented by a single
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turbulence model; under this condition, the use of a turbulence model based on equilibrium

attached boundary layers in steady flow (e.g., eddy viscosity, Baldwin-Lomax) is open to

question. The task of predicting separation by definition deals with boundary layers that

have experienced very strong pressure gradients, often both positive and negative; the flow

approaching unsteady separation contains high levels of vorticity induced by these pres-

sure gradients, and is strongly unsteady. Recent study has shown that modification of the

turbulence model can completely change the resulting flow results; at the same time, very

little has been experimentally documented about the character of turbulence under these

conditions.”

The detached-eddy simulation (DES) and kinetic-energy simulation (KES, Fang &Menon

2006) have also been explored in dynamic stall applications. Although encouraging results

were obtained using DES over a wide range of flow configurations, flow separation is often

difficult to predict due to the existence of the gray zone in which the model is improperly

converted from attached boundary layer to massive separation (Spalart et al. 1997). KES,

which was designed to predict flow at length scales between the computational grid scale

and the integral scale, is in the evaluation stage as discussed by its developers (Fang &

Menon 2006).

The intrinsic capability of large-eddy simulation (LES) for predicting sufficient details

of unsteady separating flows has recently been explored by a certain number of researchers.

Nagarajan et al. (2006) and Ghias et al. (2005) performed LES of dynamic stall over a

pitching airfoil and tip-flow of a rotor in hover using structured-grid finite-difference methods

on curvilinear coordinates. The Reynolds numbers considered in these simulations were

around 105, which are substantially below that of a typical helicopter rotor during low-

speed maneuvers (O(106)). LES at higher Reynolds numbers has been difficult mainly

due to the numerical instability issue and high computational costs associated with the

spatial and temporal resolution requirements. Simulations and experiments performed at

ReC < 5 × 105 indicate that stall frequently occurs when laminar flow separates near the

leading edge. This process leads to large steady-state stall hysteresis. However, turbulent

separation is more common at high Reynolds number and this makes the unsteady stall

characteristics quite dissimilar from the features observed at low Reynolds number.

Most CFD works so far have focused on the validation of CFD codes and qualitative

features of dynamic stall rather than the understanding of the flow physics under realistic

flight conditions. Detailed quantitative characterization of velocity and pressure are needed
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in the separating flow region for the fundamental understanding of the unsteady separation

process. In this work, we perform wall-resolved LES of unsteady separation over a pitching

airfoil at realistic Mach and Reynolds numbers. The research focus is on a quantitative

understanding of the unsteady separation process rather than validation and qualitative

characterization of the flow field. For this purpose, we will employ an unstructured-grid

LES technology, which maintains numerical stability by obeying higher-order conservation

principles – i.e., kinetic-energy conservation in the inviscid limit in addition to mass and mo-

mentum conservation. The unstructured grid topology as well as a hybrid implicit/explicit

time-integration method provides highly enhanced efficiency in treating spatial and tempo-

ral resolution requirements in the dynamically important separated flow region.

The specific objectives of the proposed work are (i) to develop and provide guidelines

for an accurate LES of dynamic stall at realistic Reynolds and Mach numbers (ReC =

2 − 4 × 106, Ma = 0.2 − 0.4); (ii) to gain a deeper understanding of quantitative aspects

of unsteady separation during dynamic stall, such as turbulent kinetic energy and vorticity

budgets, velocity and pressure fluctuations, and spatiotemporal correlations of primitive

variables; (iii) to quantify the effects of the important parameters on dynamic stall such

as compressibility, type of pitching motion, and pitch rate; (iv) to provide insights for

advancing turbulence models by analyzing the simulation databases; and (v) to develop

strategies for unsteady separation control.
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Chapter 2

Literature survey

Flow-field visualization has been a dominant method to characterize or categorize the dy-

namic stall phenomenon. For example, using an oil-smoke visualization technique, Mc-

Croskey et al. (1976) described three different types of boundary-layer separation: (i)

trailing-edge stall; (ii) leading-edge stall following a progression of flow reversal from the

trailing edge; and (iii) leading-edge stall due to abrupt bursting of a leading-edge separation

bubble. Carr et al. (1991) employed a real-time point-diffraction interferometry technique

to obtain interferograms which visualize the effect of unsteadiness on the leading-edge flow

over a pitching airfoil.

Lorber & Carta (1987) was probably the first to provide an experimental database

of constant-pitch-rate aerodynamic information, such as the surface pressure and overall

loads, at realistic combinations of Reynolds and Mach numbers. They considered an airfoil

oscillating at pitch rates, between 0.001 and 0.020, Mach numbers between 0.2 and 0.4,

and Reynolds numbers between 2− 4× 106. The results demonstrated the influence of the

leading-edge vorticity on the unsteady aerodynamic response during and after stall. The

leading-edge vortex was found to be strengthened by increasing the pitch rate while the

vortex strength was found to be weakened by increasing the Mach number and by starting

the motion close to the steady-state stall angle. In the experiment, they observed a periodic

pressure oscillation after stall at a high pitch angle and moderate Reynolds number. A small

supersonic zone near the leading edge at Ma = 0.4 was found to reduce significantly the

peak suction pressures and the unsteady increments to the airloads. Most recently, Sahoo

et al. (2009) conducted particle image velocimetry (PIV) measurements of the velocity and

pressure during the initiation of dynamic stall processes for a pitching airfoil at realistic

helicopter flight conditions. Unlike other previous experimental work, this research aimed

at gaining a quantitative understanding of the vorticity and turbulent flow characteristics

in the separated flow region.

Among physical processes during dynamic stall, the onset of flow separation has been

studied relatively extensively. Smith (1988) examined several important issues including the

instability of a leading-edge separation bubble and finite-time breakup of a boundary layer.
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Later, Currier & Fung (1992) performed a detailed analysis of experimental data provided

by McCroskey et al. (1982) and Lorber & Carta (1987) to characterize the onset of stall

for airfoils undergoing oscillatory and ramp-type motions about static stall angles. They

found that, although the dependence of stall onset on the Mach number is the same for

different airfoils, the dependence on the frequency can be very different for different airfoils,

or for airfoils with differently shaped leading edges. Currier & Fung’s analysis showed that

dynamic stall cases considered by McCroskey et al. (1982) and Lorber & Carta (1987)

belong to the range of Reynolds number for which stall onset is ascribed to bursting of a

separation bubble, arising from failure of the separated boundary layer to reattach. It was

also suggested that completion of the separation process requires a finite time comparable

to other flow time scales and that, although increased unsteadiness delays the occurrence of

the onset to a higher angle, it actually promotes the process of boundary-layer separation.

Much research has also been conducted to identify the effects of key parameters such as

the Mach number, Reynolds number, and pitch rate on the dynamic stall phenomenon. In

wind-tunnel experiments, Jumper et al. (1987) reported that the magnitude of the maximum

lift coefficient of a pitching airfoil is highly dependent on the pitch rate. McCroskey et al.

(1976) investigated the influence of various airfoil profiles and leading edge geometries. The

effects of Mach number on the dynamic stall of an oscillating airfoil have been discussed by

Chandrashekhara & Carr (1989).

Although these and other previous studies have provided insights into qualitative aspects

of the breakdown of a boundary layer and onset of dynamic stall, and some effects of key

operation parameters, quantitative aspects of unsteady separation during dynamic stall,

such as turbulent kinetic energy and vorticity budgets, velocity and pressure fluctuations,

and spatiotemporal correlations of primitive variables, are yet not well understood. Such

an understanding is crucial especially for advancing theoretical and computational methods

and models for predicting dynamic stall and for developing new concepts for stall control.

Although computational fluid dynamics has received increasing attention as a means to

develop an understanding of detailed spatiotemporal characteristics of dynamic stall events,

most computational studies so far have focused on the validation of numerical methods

and qualitative features of dynamic stall. Visbal (1988) performed RANS simulations of

dynamic stall of an airfoil which was pitched at a constant rate from zero incidence to

a high angle of attack. The computed dynamic stall events, as well as the complicated

effects of pitch rate and axis location were found in qualitative agreement with experimental
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observations. He also investigated compressibility effects on dynamic stall and found that

the shock/boundary-layer interaction at high Mach numbers significantly alters the dynamic

stall process (Visbal 1990). Later, Visbal (1991) presented a computational assessment of

various techniques for dynamic stall control using RANS. Choudhuri et al. (1994) conducted

a low Reynolds number (ReC = 104) simulation of initial stages of two-dimensional unsteady

leading-edge boundary-layer separation of laminar subsonic flow over a pitching NACA-0012

airfoil using the compressible laminar Navier-Stokes equations.

Large-eddy simulation (LES) has emerged as a tool for studying detailed physics of

unsteady separating flows. Ghias et al. (2004, 2005) performed LES of dynamic stall over

a pitching airfoil and tip-flow of a rotor in hover using structured-grid finite-difference

methods on curvilinear coordinates at relatively low Reynolds numbers (ReC = 104 and

4.5 × 104). They could successfully compare their computational results with the experi-

mental data of Walker et al. (1985). They could also utilize the LES database to develop

control strategies for dynamic stall. Nagarajan et al. (2006) demonstrated advantages of

LES for dynamic stall applications by conducting comparative RANS and LES of dynamic

stall over a pitching NACA 0012 airfoil at a transitional Reynolds number (ReC = 1.3×105).

They also suggested that the predictive capability of RANS not only for the flow-field but

also for the radiated noise can be significantly improved with refined turbulence models

whose construction can be deduced from an analysis of an LES database.

The Reynolds numbers considered in the previous LES were substantially below that of

a typical helicopter rotor during low-speed maneuvers (O(106)). This was mainly because

LES at higher Reynolds numbers has been difficult mainly due to the numerical instability

issue and high computational costs associated with the spatial and temporal resolution

requirements. While the issue of high computational costs may be relieved by alternative

LES-related methods such as hybrid LES-RANS methods, detached-eddy simulation (DES),

and kinetic-eddy simulation (KES) (Fang & Menon 2006), numerical instability remains a

major obstacle for an accurate simulation of dynamic stall at high Reynolds number.
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Chapter 3

Computational methodology

3.1 Flow configuration

The flow configuration is shown in figure 3.1 and corresponds to the experimental setup

of Lorber & Carta (1987), which was developed to study dynamic stall penetration at

constant pitch rate and realistic combinations of Reynolds and Mach numbers. The flow

configuration models conditions occurring during aircraft post-stall maneuvers and during

helicopter high speed forward flight. A Sikorsky SSC-A09 airfoil with a chord length of

43.9 cm was installed in the UTRC Wind Tunnel. The surface pressure was measured using

miniature transducers, and the locations of transition and separation were determined using

surface hot film gages.

There are four basic parameters that characterize the experimental conditions: Mach

number, Reynolds number, pitch rate, and pitch range. While the majority of the data was

taken at Mach number of 0.2, some data at Mach numbers of 0.3 and 0.4 were also recorded.

These Mach numbers cover the range expected both for aircraft maneuvers at high angle

of attack and helicopter blades on the retreating side of the rotor at high advance ratio.

The corresponding Reynolds numbers based on the airfoil chord were 2, 3, and 4 × 106,

respectively. The pitch angle was controlled by hydraulic actuators attached to each end of

the airfoil. Unsteady oscillating configurations with 9 different sinusoidal and 36 different

constant pitch rate ramping motions were considered at angles of attack in a range between

−5◦ and 30◦. Both positive and negative pitch rate ramps were studied at nondimensional

pitch rates, A = α̇c/2U∞ = 0.001− 0.02, where α̇, c, and U∞ are the pitch rate, chord, and

freestream velocity, respectively. For the sinusoidal oscillations, data were taken at reduced

frequencies, k = ωc/2U∞ = 0.025, 0.050, and 0.100, where ω is the angular frequency.

Pressure time histories, aerodynamic forces and moment, surface pressure distributions,

and transition and separation locations are available as a function of pitch rate, type of

pitching motion (ramp and sinusoidal), Mach number, and Reynolds number.
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Figure 3.1. Flow configuration for LES of flow over a pitching airfoil.

3.2 Numerical methods

We employ an unstructured-grid LES solver which was developed at the Center for Tur-

bulence Research (You et al. 2008a; Shoeybi et al. 2007) and has recently been further

developed by the PI to include a new subgrid-scale LES model (You & Moin 2007). The

numerical method is based on unstructured-grid finite-volume discretization of the Favre-

filtered compressible Navier-Stokes equations with subgrid-scale stress and heat flux models.

The present numerical method overcomes two major difficulties encountered in the previous

rotor applications using structured-curvilinear-grid LES approaches such as employed by

the teams at the Center for Turbulence Research (Nagarajan et al. 2006) and at George

Washington University (Ghias et al. 2005).

Firstly, it is known that non- or low-dissipative finite-difference schemes on curvilinear

coordinates do not strictly conserve kinetic energy (Nagarajan et al. 2004), and therefore, are
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more prone to be numerically unstable (see figure 3.2(a)). Due to the numerical instability,

the Reynolds numbers in the previous LES (Nagarajan et al. 2006; Ghias et al. 2005) were

lower by an order of magnitude (O(105)) than the practical Reynolds number in rotor

applications (> O(106)). The present Cartesian-coordinate-based finite-volume method

maintains the numerical stability as well as the numerical accuracy at high Reynolds number

by employing an unstructured-grid spatial-discretization algorithm that minimizes the non-

conservation of kinetic energy (figure 3.2(b)).

The Favre-filtered compressible Navier-Stokes equations can be written as

∂U

∂t
+

∂Fj

∂xj
=

∂Gj

∂xj
, (3.1)

where

U =






ρ

ρũ1

ρũ2

ρũ3

E






, Fj =






ρũj

ρũ1ũj + pδ1j

ρũ2ũj + pδ2j

ρũ3ũj + pδ3j

(E + p)ũj + qj






, Gj =






0

σ1j − τ sgs1j

σ2j − τ sgs2j

σ3j − τ sgs3j

ũkσjk − qsgsj






.

U is the vector of the Favre-filtered conserved variables and Fj and Gj are the flux

vectors in the j-direction. ρ, p, ui, and E denote density, pressure, velocity component,

and energy, respectively. σij and qj are the filtered stress tensor and heat flux, respectively.

τ sgsij and qsgsj are the subgrid-scale stress tensor and heat flux, respectively.

Finite-volume discretization of the governing equation (3.1) leads to

∂Uk

∂t
+

1

VΩk

∑

f

3∑

j=1

(
F f
j −Gf

j

)
nf
j = 0, (3.2)

where VΩk
is the volume measure of a volume-element Ωk, and Uk is the state variable

vector at grid point k. F f
j and Gf

j are the flux vectors at the element-boundary faces ∂Ωf
k .

nf
j denotes the face-normal unit vector.

In the present study, the convective and diffusive fluxes are obtained using the Summation-

By-Parts operators (e.g., skew-symmetric averaging for the convective flux; see also Strand

(1994)) which guarantee non-growing positive norms of primary variables, thereby main-

taining numerical stability. The present method is proven to be particularly well suited for
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predicting subtle separation effects in turbulent boundary layers at high Reynolds number

where boundary layer energetics play a crucial role (You et al. 2008a).

In addition, the proposed LES will employ the dynamic global-coefficient subgrid-scale

(SGS) model which has recently been developed by the PI (You & Moin 2007). In the

dynamic Smagorinsky model (Germano et al. 1991; Moin et al. 1991), which has widely

been used in LES, the model coefficient is dynamically determined as a function of space

and time using the scale-invariance concept and the local-equilibrium hypothesis (i.e., an

equilibrium between the subgrid-scale dissipation and the viscous dissipation at the same

physical location). Although the dynamic model coefficient vanishes where the flow is

laminar or fully resolved, it can cause numerical instability since its value often becomes

negative and/or highly fluctuates in space and time.

To overcome the deficiency of the dynamic Smagorinsky model, the PI developed a dy-

namic procedure for determining the model coefficient utilizing a global equilibrium between

the subgrid-scale dissipation and the viscous dissipation (You & Moin 2007). In this ap-

proach, the model coefficient is globally constant in space but varies in time, and it still

guarantees zero eddy viscosity in the laminar-flow regions. The model does not require

any ad hoc numerical stabilization or clipping operation which is usually necessary in the

local-equilibrium based dynamic models.

Secondly, it has been difficult to selectively resolve dynamically important separated

flow regions using H- and O-type curvilinear mesh topologies, which are most commonly

used in rotor applications. Previous experience with wall-resolved LES of turbulent flows

indicates that streamwise and spanwise spacings of about 50–100 and 30–50 wall-units,

respectively, are required in the separated flow region and wake. Although local-refinement

or overset type grids may be used, it is known that numerical errors associated with the

spatial interpolation adversely affect the simulation results. In the present method, the

issue is overcome by an unstructured-grid topology, which provides higher flexibility and

efficiency in distributing mesh resolution (figure 3.3(a)).

Furthermore, the high CFL number restriction in the local dense mesh region is allevi-

ated with the use of a hybrid implicit/explict time-advancement scheme. The discretized

governing equation (3.1) is recast as

∂U

∂t
= H(U), (3.3)
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where U = (UT
1 , U

T
1 , UT

1 , · · · , U
T
N )T is the solution vector andN is the number of grid points.

Similarly, the right-hand side H = (HT
1 ,H

T
1 ,H

T
1 , · · · ,H

T
N )T is the flux vector defined as

Hk = −
1

VΩk

∑

f

3∑

j=1

(
F f
j −Gf

j

)
nf
j . (3.4)

The right-hand side of equation (3.3) is decomposed as H = He + H i, where He and H i

are the explicit and implicit parts of H. The stiffness of H is estimated from eigenvalues of

the flux Jacobian matrix J as follows

J =
∂H

∂U
=
[
J ij
]
, J ij =

∂Hi

∂Uj
, i = 1, 2, 3, · · · , N, j = 1, 2, 3, · · · , N.

Since the computation of eigenvalues is very costly for large-scale simulations, we utilize

the Gerschgorin theorem which gives a radius of a disc including all the eigenvalues of the

Jacobian matrix, thereby providing maximum allowable time step size for stable zone of

an explicit scheme. The decomposed equation is advanced in time using a semi-implicit

Runge-Kutta method proposed by Le & Moin (1991).

This feature allows to adaptively divide the mesh into explicit and implicit zones (fig-

ure 3.3(b)) and leads to significantly reduced memory requirements while maintaining the

advantage of an implicit integration scheme. This method is especially advantageous for

long-time integration of low-pitch-rate unsteady separating flow.
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(a)

(b)

Figure 3.2. Contours of the instantaneous streamwise velocity around the leading-edge of an

airfoil predicted by (a) LES based on a second-order centered finite-difference method on curvilinear

coordinates and by (b) LES based on a second-order centered finite-volume method on Cartesian

coordinates (the present scheme).
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(a)

(b)

Figure 3.3. Schematic illustration of (a) a grid resolution topology and (b) separation of implicit

and explicit time-integration zones.
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Chapter 4

Flow over a pitching airfoil

4.1 Effects of mesh resolution

A series of computational grids were employed to investigate the effects of mesh resolution

on the prediction of flow over a steady and pitching airfoils. As discussed in section 3.2, the

present method utilizes advantages of using unstructured grid and adaptive implicit-explicit

time-integration scheme. Each grid consists of multiple zones with different grid resolution.

Grid lines are clustered around the suction surface of the airfoil and in the wake region so

that the separated shear layer, recirculating flow, and turbulent wake are well resolved.

Most of the computational domain is discretized using hexahedral-shape elements. Es-

pecially near the airfoil surface, an elliptic-type mesh generator is employed to align grid

lines to be parallel and orthogonal to the airfoil surface in the streamwise and wall-normal

directions, respectively. As illustrated in figure 4.1, there are numbers of interfaces where

mesh resolution is transitioned from fine to coarse. These interfaces are patched with prism-

shape elements to maintain the quality of arrangement of primitive variables.

A mesh with about 6 million cells was designed first and employed for a coarse-resolution

LES of flow over a steady airfoil at a fixed angle of attack in order to assess the resolution

requirement. Subsequently, a 24 million cell mesh is designed.

Figure 4.2 shows pressure distributions on the surface of the Sikorsky SSC-A09 airfoil

at a fixed angle of attack of 14 degrees. The Reynolds number and Mach number are

2× 106 and 0.2, respectively. The pressure distribution predicted by the present LES on a

24 million-cell mesh is found to agree well with the experimental measurement in Lorber &

Carta (1987). The near wall resolution in wall units on the 24 million-cell mesh is found to

be ∆x+ = 50 − 450, ∆y+ = 1− 2, and ∆z+ = 60− 130.

4.2 Results and discussion

The 24 million cell mesh, which was demonstrated to be reasonably capable of predicting

flow over the Sikorsky SSC-A09 airfoil at the operating Reynolds and Mach numbers, is also
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employed for large-eddy simulations of flow during a pitching motion of the airfoil. To avoid

mesh rotation or re-meshing during the pitching motion, the Favre-filtered compressible

Navier-Stokes equations are recast into forms in a non-inertial reference frame. Therefore,

large-eddy simulations are performed for variables in a non-intertial reference frame along

with the effects of the Coriolis, centrifugal, and rotational acceleration forces.

Simulations are ongoing for two different cases. The first case corresponding to an

experimental case conducted at Mach number of 0.2 and a sinusoidal pitching motion of

which angle of attack varies in time as follows:

α(t) = 20◦ − 10◦ cos(ωt),

where α is the angle of attack as defined in figure 3.1 and ω is the reduced frequency and

is 0.10 × 2U∞/c. The second case also corresponds to an experimental case conducted at

Mach number of 0.3 and a sinusoidal pitching motion as follows:

α(t) = 12◦ − 8◦ cos(ωt),

where the reduced frequency is identical to the first case.

These two simulations are ongoing while the present simulations confirm the stability and

effectiveness of the presented numerical schemes for dynamic stall simulations at realistic

operating Reynolds and Mach numbers.

Large-eddy simulations are being conducted with the acoustic Courant-Friedrichs-Lewy

(CFL) numbers of 25 and 20 for Mach number of 0.2 and 0.3 cases, respectively. The

acoustic CFL numbers correspond to the time-step sizes of 0.27 × 10−3 and 0.23 × 10−3

normalized by the airfoil chord length and the speed of sound for Mach 0.2 and 0.3 cases,

respectively. Using 512 cores of SGI Altix ICE 8200LX computer, about 12 - 16 days are

required for large-eddy simulation over a pitching period when a 24 million-cell mesh is

employed.

Figures 4.3 and 4.4 show gross features of flow over pitching airfoils at two different con-

ditions. The characteristics of flow separation and reattachment processes are qualitatively

congruent with experimental observation by Lorber & Carta (1987).

In figure 4.5, the lift coefficient and the pressure drag coefficient over the pitching airfoil

are compared against the experimental data of Lorber & Carta (1987) as a function of pitch

angle during a pitching cycle at Mach number of 0.2. Overall, the lift coefficient is in good
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agreement with the experimental data. However, in the early stage of downward pitching

motion (30◦ → 23◦), a noticeable deviation of the pressure drag is predicted by the present

LES when compared to the experimental data.

The pitching moment coefficient over a pitching cycle is plotted in figure 4.6 (top) and

is found to well agree with the experimental measurement. The variation of the pressure

coefficient near the leading edge of the pitching airfoil (x/c = 0.005) is also found to be in

good agreement with the experimental data as shown in figure 4.6 (bottom).

4.3 Summary

To gain a quantitative understanding of the unsteady separation process over a pitching

airfoil, large-eddy simulations (LES) of turbulent flow over a pitching airfoil at realistic

Reynolds and Mach numbers have been conducted. A novel combination of discretization

schemes and time-integration schemes was employed to achieve numerical stability at high

Reynolds number simulations through higher-order conservation and to be equipped with a

highly efficient way to treat time-step size restriction in the separated flow region locally re-

fined with dense mesh. The present simulations confirm the stability and effectiveness of the

presented numerical schemes for dynamic stall simulations at realistic operating Reynolds

and Mach numbers and show the characteristics of flow separation and reattachment pro-

cesses which are qualitatively congruent with experimental observation.
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Figure 4.1. Computational grid topology for LES of flow over a pitching airfoil.
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Figure 4.2. Pressure distribution on the airfoil surface at the angle of attack 14 degrees. Solid

line, the present LES solution on a 24 million-cell mesh; symbol, experimental data.
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Figure 4.3. Contours of the spanwise vorticity predicted by the present LES over a half period of

pitching motion at Mach number of 0.2.
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Figure 4.4. Contours of the spanwise vorticity predicted by the present LES over a period of

pitching motion at Mach number of 0.3.
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Figure 4.5. Lift coefficient and pressure drag coefficient as a function of pitch angle at Mach

number of 0.2.
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Figure 4.6. Pitching moment coefficient and pressure coefficient at x/c = 0.005 as a function of

pitch angle at Mach number of 0.2.
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Chapter 5

Direct numerical simulation of unsteady

separation of turbulent boundary layers

5.1 Introduction

The term, turbulent flow separation, describes a process of detachment of turbulent boundary-

layer flow from the wall. In contrast to a steady separating turbulent boundary layer, where

the detachment location is statistically fixed, in an unsteady separating turbulent bound-

ary layer, the flow detachment location varies in time due to an organized time-dependent

flow condition and/or a time-varying wall motion (Simpson, 1989; McCroskey, 1982). Un-

derstanding unsteady separation of turbulent boundary layers has considerable practical

significance because unsteady separation often characterizes the performance and efficiency

of many aerodynamic applications such as helicopter rotor blades, wind turbine blades,

pitching and flapping airfoils and wings, and rotating turbomachinery blades.

For instance, helicopter rotor blades experience a pitching motion which leads to un-

steady flow separation followed by load and pitching-moment overshoots. The unsteady

flow separation can in turn lead to unacceptably large vibratory loads and acoustic noise,

and limit forward flight speeds and maneuverability. Steady separation of a turbulent

boundary layer over an airfoil is often converted to unsteady separation when the separa-

tion is controlled by oscillatory blowing-suction actuations such as synthetic jets (Gilarranz

et al., 2005). The separation point over a composite-material propeller blade becomes time-

dependent as the blade is deformed during the operation.

In spite of past experimental and numerical studies on separating flows in both modeled

and realistic configurations, quantitative aspects of unsteady separating turbulent bound-

ary layers, such as Reynolds stress and vorticity budgets, velocity and pressure fluctuations,

and spatiotemporal correlations of primitive variables, are not well understood. Agarwal

& Simpson measured phase-averaged velocity profiles in an unsteady separating turbulent

boundary layer over a flat plate where the unsteady adverse pressure gradient was imposed
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by time-varying upper-wall suction (Agarwal & Simpson, 1990). They suggested that quan-

titative measurements of Reynolds stresses and turbulence structures near the wall in the

separated flow region are necessary to improve our understanding of the unsteady separa-

tion process. However, most experimental studies have concentrated on measurements of

aerodynamic forces such as the surface pressure and overall loads, or on the flow-field visual-

ization. Quantitative measurements of the unsteady separated flow field have been difficult

using experimental techniques, and therefore, have rarely been reported in the literature.

Computational works, especially at practical Reynolds numbers, have mostly been per-

formed using the Reynolds-averaged Navier-Stokes (RANS) equations or its unsteady coun-

terpart (URANS) (e.g., Visbal (1988); Spentzos et al. (2005)). However, it is known to be

very challenging for (U)RANS to accurately predict highly unsteady flow involving incipient

flow separation, formation and evolution of stall vortices, and reattachment. So far, none

of the available turbulence models have shown a satisfactory predictive performance for all

of these flow phenomena. A comprehensive database, especially Reynolds stress equation

budgets, would be highly valuable for progress in this area. In a review article, Carr &

McCroskey (1992); McCroskey (1982) concluded that under this condition (unsteady sep-

aration), the use of a turbulence model based on equilibrium attached boundary layers in

steady flow (e.g., eddy viscosity, Baldwin-Lomax) is open to question. The task of predicting

separation by definition deals with boundary layers that have experienced strong pressure

gradients, often both positive and negative; the flow approaching unsteady separation con-

tains high levels of vorticity induced by these pressure gradients, and is strongly unsteady.

Recent study has shown that modification of the turbulence model can completely change

the resultant flow; at the same time, very little has been experimentally documented about

the character of turbulence under these conditions.

The unsteady separation process is known to be highly dependent on the unsteady

characteristics and strength of the adverse-pressure gradient while the dependence on the

Reynolds number is virtually unknown (McCroskey, 1982). Although, in many cases, the

surface curvature also influences the separation of turbulent boundary layers, it would be

instructive to isolate the effects of the unsteady adverse pressure gradient by considering

a flat plate surface with imposed adverse pressure gradients. Coleman & Spalart (1993)

and Na & Moin (1998) performed direct numerical simulations (DNS) of steady separated

turbulent boundary layers on a flat plate with an imposed steady adverse pressure gradient.
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They were able to provide insight into the characteristics of steady separated flows and flow-

field databases containing complete budgets of Reynolds stresses. However, for unsteady

separating turbulent boundary layers, such detailed characterization of flow physics and

comprehensive flow-field databases are not available so far.

In this study, we will employ a computational setup consisting of a turbulent boundary

layer over a flat plate with a deliberate unsteady adverse pressure gradient imposed by

time-varying blowing-suction on the upper boundary. The setup will allow us to focus on a

quantitative physical understanding of the unsteady separation process including boundary-

layer detachment and reattachment, and production and dissipation of turbulent kinetic

energy and vorticity. An understanding of the characteristics of pressure fluctuations in

unsteady separating turbulent boundary layers is also anticipated. Since the Reynolds

shear stress and its gradient are largest away from the wall in separated flows, it has

been suggested that the largest pressure fluctuations are not at the wall but away from it

(Gilarranz et al., 2005). Identifying the structure of pressure fluctuations away from the

wall is critical to the prediction and understanding of turbulent boundary layer acoustics.

DNS is ideal for the analysis of pressure fluctuations because static pressure within the flow

cannot be measured experimentally.

5.2 Computational methodology

5.2.1 Flow configuration

The present DNS configuration is motivated by the experimental configuration of Agarwal

& Simpson (1990) and is schematically shown in figure 5.1. In the present DNS, the in-

flow is a fully-developed zero-pressure-gradient turbulent boundary layer and is generated

using a recycling technique developed by Lund et al. (1998). No-slip boundary conditions

are used along the lower boundary of the computational domain while periodic boundary

conditions are applied in the spanwise direction. At the exit, convective outflow conditions

are employed to allow turbulence structures to smoothly leave the computational domain.

A novel feature of the present computational setup is that deliberate unsteady adverse

pressure gradients (e.g., replicating the oscillatory adverse pressure gradient in Agarwal &

Simpson (1990)’s experiment) can be imposed by Vtop(x, t) which represents time-varying

blowing and suction at the upper boundary. One way of obtaining approximate but rea-

sonable Vtop(x, t) is to use a potential flow solution (from the panel method, for example).
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Figure 5.1. Schematic illustration of computational modeling of unsteady separating turbulent

boundary layers.

Several iterations of viscous-inviscid calculations can be performed to improve the approx-

imation. At the upper boundary, the streamwise velocity Utop(x, t) is adjusted from a

zero-vorticity condition prescribed by the equations (5.1,5.2,5.3):

v(x,Ly , z, t) = Vtop(x), (5.1)

∂u

∂y

∣∣∣
x,Ly,z,t

=
dVtop(x)

dx
, (5.2)

∂w

∂y

∣∣∣
x,Ly,z,t

= 0, (5.3)

where Ly is the height of the domain. This boundary condition assures zero vorticity in the

spanwise and streamwise directions.

The distinct characteristics of unsteady separating turbulent boundary layers are re-

vealed by a systematic comparison with steady attached/separated turbulent boundary

layers. For this purpose, four different flow configurations are simulated: (i) turbulent

boundary layer flow with a zero-pressure gradient (ZPG); (ii) turbulent boundary layer

flow with an adverse-pressure gradient (APG); (iii) steady separated turbulent boundary

layer flow (SBL); and (iv) unsteady separating turbulent boundary layer flow (USBL).

For all configurations grid spacings in the streamwise and spanwise directions are uni-

form. In the wall-normal direction, the grid is stretched based on a one-parameter hyper-

bolic tangent function described by Na & Moin (1998). All simulations are performed in a
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configuration similar to that employed by Na & Moin (1998). The extent on the domain in

the streamwise direction is equivalent to 350δ∗in, where δ∗in is the displacement thickness at

the inlet of the computational domain. The inlet location is defined as where x = 0.0, and

is marked by the dotted line in figure 5.2. The spanwise and wall-normal domain sizes are

50 and 64δ∗in, respectively, as shown schematically in figure 5.2. The Reynolds number is

fixed to 300, based on the momentum thickness and freestream velocity at the inlet in all

four flow configurations.

Figure 5.2. Computational domain sizes in terms of the inlet-displacement thickness and corre-

sponding number of grid points.

The Vtop(x) prescribed for the APG and SBL cases are shown in figures 3 (a) and (b),

respectively, and correspond to the boundary conditions developed by Na & Moin (1998).

The inflow zero-pressure gradient turbulent boundary layer is generated by a recycling

technique developed by Lund et al. (1998) in the upstream region which extends the domain

by 44δ∗in, (L
′

x in figure 5.2). In the USBL case a time-varying Vtop(x, t), which is similar in

shape to that of SBL but oscillates in amplitude, is employed as illustrated in figure 5.1.

5.2.2 Numerical methods

The incompressible Navier-Stokes equations are discretized in space using a second-order

central-difference scheme on a staggered grid. The discretized governing equations are in-

tegrated in time using a semi-implicit scheme. A low-storage third-order Runge-Kutta

scheme is employed for treating convective terms explicitly and a second-order Crank-

Nicolson scheme is employed for treating viscous terms implicitly. The hybrid Runge-

Kutta/Crank-Nicolson scheme is combined with a modified fractional-step procedure, where
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(a) APG

(b) SBL

Figure 5.3. Vertical velocity profiles imposed on the top boundary of the computational domain.

Velocity magnitudes are normalized with the freestream velocity.
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the divergence-free velocity field is obtained by solving the pressure Poisson equation only

at the last substep. The Poisson equation is solved using multi-grid with Fast Fourier

Transform in the spanwise direction. The numerical algorithm and solution methods are

described in detail in You et al. (2007). The code has been modified for simulations of

unsteady separating turbulent boundary layers. The present solver has been extensively

validated in several cases of internal and external turbulent flows (e.g., You et al. (2007)).

5.3 Results and discussion

5.3.1 Steady boundary layers

The present DNS results in the steady attached (ZPG and APG) and separated turbulent

boundary layer (SBL) configurations are extensively validated against other available DNS

data. Data collected from the ZPG configuration agrees very well with Na & Moin’s results

(Na & Moin, 1998). Some results of ZPG are shown in figure 5.4(b) and compared against

results by Na & Moin (1998). Both the mean velocity and root-mean-squared fluctuating

velocity profiles are recorded at 92δ∗in downstream from inlet.

Data collected from APG are shown in figures 5.5 and 5.6. Velocity profiles in wall-

coordinates and root-mean-squared profiles are shown for three downstream distances. In

the upstream location, the mean velocity and rms velocity fluctuation profiles are found to be

nearly identical to those in the ZPG case. The change in the shape of the wall-coordinate

velocity, shown in figure 5.5, is a result of the imposed adverse pressure gradient. The

increase of the magnitude near the top boundary is a result of mass being inserted into the

domain in the suction region of Vtop(x). The effect of an adverse pressure gradient on the

distributions of the root-mean-squared profiles is shown in figure 5.6 in three streamwise

locations. With the increasing streamwise distance, the peak of the streamwise velocity

fluctuation profile gradually decreases in magnitude while the peak of the cross-stream

velocity fluctuation profiles increases slightly, illustrating a slight increase in isotropy.

Figure 5.7 shows the mean velocity profiles in the SBL case in several upstream and

downstream locations from the separation bubble. The time-averaged location of the sep-

aration bubble spans approximately from 150 to 260 inlet-displacement thicknesses (δ∗in)

downstream of the inlet. The increase in the streamwise velocity is due to the decrease in

wall shear stress as the flow approaches the separation bubble (figure 5.7(a)). Unlike in

the APG configuration, the blowing region precedes the suction. As a result, the mass flux
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(a) Mean streamwise velocity in wall units

(b) RMS velocity fluctuations normalized with the freestream
velocity

Figure 5.4. DNS results in the ZPG case. Na & Moin’s results shown with dotted lines.

34



CHAPTER 5. DNS OF UNSTEADY SEPARATION

Figure 5.5. Mean streamwise velocity profiles in the APG case at three streamwise locations in

wall units.

through the domain is minimized at the inflection point of Vtop(x), approximately 220δ∗in

downstream of the inlet. Thus, unlike APG results (figure 5.5), where the mean velocity

near the upper boundary increases through the adverse pressure gradient, it actually de-

creases in the SBL configuration (figure 5.7(b)). Downstream of the separation bubble,

the shear stress begins to recover its original magnitude. This recovery does not require a

considerable distance.
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Profiles of the root-mean-squared velocity fluctuations in the SBL case are shown in

figure 5.8. Profiles in figures 5.8(a)-(c) are computed inside the separation bubble, and

profiles in figure 5.8(d) are computed well after reattachment. Figure 5.8(b) shows that

the maximum turbulent kinetic energy is found away from the wall where the separation

bubble height is maximized. This is because the energy-containing turbulent structures are

lifted around the separation bubble. Downstream the near-wall peak of turbulent kinetic

energy reappears, however the overall profiles are significantly altered from those in zero-

pressure-gradient flow. Figure 5.9 illustrates the skin-friction coefficient throughout the

computational domain. The change in the average spanwise spacing of the streaks from

upstream to downstream of the separation bubble is clearly identified.

5.3.2 Unsteady separating turbulent boundary layer

Flow configuration

As mentioned in section 5.2.1 the time varying adverse pressure gradient is imposed by

Vtop(x, t) in the USBL case. The Vtop(x) used in the SBL case, is multiplied by an ampli-

fication factor which is a function of time to create Vtop(x, t). The Vtop(x, t) used for the

present USBL case employs a compound trigonometric function which produces a synco-

pated amplification factor ranging between 1.0 and 0.6:

Vtop(x, t) = Vtop(x) ∗ [cos(ωt− sin(ωt)) + 4.0]/5.0 (5.4)

The period, 1
ω , is equivalent to 1.5 flow through times based on the freestream velocity and

the potential separation bubble length, i.e. the maximum distance between detachment

and reattachment locations. One cycle of the amplification factor as a function of the phase

number is shown in figure 5.10.

Unsteady flow-reversal

The time-dependent boundary condition results in a separation bubble which intermittently

stops circulating, and subsequently becoming what will be referred to as a hump. Figure 5.11

shows the spanwise-averaged fraction of time (γ̄u) that the flow moves downstream for a

series of phases. The stalling of the circulation, and full attachment, is a direct result of

the changes in streamwise pressure gradient. It should be noted that the pressure field at

a given time, τ , is not only a function of the magnitude of Vtop(x, τ), but also depends on
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its time rate, ∂Vtop(x,t)
∂t

∣∣
τ
. The phase of the pressure field, and circulation response, lead the

phase of the amplification factor.

The skin-friction coefficient, Cf , depicts the region in which flow is reversed. Figure 5.12

illustrates the streamwise distribution of Cf and pressure coefficient, Cp , evaluated at the

wall. Time-averaged Vtop,max(x, t) closely resembles that in the SBL case. However, the

phase-averaged pressure distribution in each phase deviates significantly from the time-

averaged pressure distribution. The pressure field is shifted such that a point near the top

boundary in the far upstream remains zero throughout the simulation. The variation in

wall Cp ,
∂p
∂x

∣∣
wall

, leads the changes in Cf by approximately one phase. In the SBL case,

the plateaus in both curves correspond closely in the streamwise location. In this USBL

case, Cp varies considerably, while Cf exhibits little shifting in location. ∂Cp

∂x shows little

variation in the boundary layer recovery region, x/δ∗in > 300.

Mean velocity field

As shown in figure 5.13, the averaged skin-friction and pressure coefficients in the USBL

case are found to be nearly identical to those in the SBL case. This suggests that strong

similarities would exist in other mean flow statistics between the USBL and SBL cases.

Upstream of the bubble the mean streamwise velocity profiles agree well each other

(figure 5.14(a)). Inside the separation bubble in the SBL case, much stronger backflow

is observed (figure 5.14(b)). This would be expected because during the USBL case the

circulation is completely seized for at least ten percent of the cycle period. As a result of

the decrease in average backflow the USBL case recovers more rapidly (figure 5.14(c)). And,

downstream of the bubble, the similarity reappears (figure 5.14(d)), where both exhibit a

depression below the log-law region, as observed by Na & Moin (1998).

Figures 5.15(a)-(d) illustrate differences in turbulence intensities between the USBL and

SBL cases. While both SBL and USBL cases agree in the upstream location (figure 5.15(a)),

the maxima in the SBL are shifted more away from the wall than those in the mean USBL

case (figures 5.15(b) and (c)). In following sections, the changes in the separation bubble

height (section 5.3.2) as well as the stability of the upstream boundary of the bubble which

supplies the wall-normal momentum needed to push up incoming vortical structures (section

5.3.2) are discussed. Figure 5.15(d) shows the turbulence intensities after the reattachment.

The SBL case displays a higher degree of isotropy, and also has more exaggerated near wall

peaks in the streamwise and spanwise curves.
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Figure 5.16 shows the turbulent kinetic energy and turbulent kinetic energy production

and dissipation. The turbulent kinetic energy is a compilation of the rms velocity fluctu-

ations and follows the similar trend of the turbulence intensities (figures 5.15(a)-(d)). As

the detachment point is approached the peaks of the turbulent kinetic energy and turbulent

kinetic energy production and dissipation move away from the wall. Both the production

and dissipation decrease in magnitude, while the turbulent kinetic energy increases (fig-

ure 5.16(b)). Inside the bubble, the turbulent kinetic energy and turbulent kinetic energy

production and dissipation become smaller, and toward the reattachment point, the vertical

shifts between the two cases become negligible (figure 5.16(c)).

The time-averaged flow field is similar to that of the SBL case. There exists a hump

in the streamlines throughout the boundary condition cycle, which remains slightly smaller

than the separation bubble in the SBL case (figure 5.17). The contour lines shown in fig-

ure 5.17 illustrate the maximum and minimum heights that occur during the boundary

condition cycle. The mean streamwise velocity contours above ū/U∞ = 0.4 show little vari-

ation throughout the simulation. Likewise the wall-normal velocity contours in this upper

region maintain a symmetric half-circle shape which heaves in phase with the syncopated

Vtop(x, t). Within the boundary layer the mean streamwise velocity contours experience a

much wider variation particularly during the brief Vtop,min(x, t) when the ū/U∞ = 0 col-

lapses onto the wall. The vertical displacement between ū/U∞ = 0.0 and 0.4 maxima and

minima is significantly different (figure 5.18). This suggests that the incipient mechanism

of full reattachment is a thickening of the shear-layer which blankets the separation bubble.

Streamwise velocity profiles in wall-coordinates are depicted in figure 5.19. In order to scale

using shear stress velocity, uτ , during separation, Skote & Henningson (2002)’s definition is

employed:

uτ =

√

−ν
∂u

∂y

∣∣∣
y=0

. (5.5)

Phases 5 and 9 are chosen because they represent phases in which the maximum and

minimum backflow velocities occur, respectively. Interestingly, while the minimum backflow

velocity occurs at the phase 9 (approximately −0.07 ∗ U∞), the minimum shear stress

occurs during phase 8 (figure 5.12(e)). While the phase in which flow is fully attached is

easily identifiably using γ̄u = 1.0 and Cf ,max, the phase in which the separation bubble

is fully formed is much harder to define. In fact, the maximum ∂p
∂x , minimum skin-friction
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coefficient, minimum backflow velocity, and maximum bubble height all occur in consecutive

phases, in the order listed.

Vortex identification and vorticity

Vortex identification is performed using the λ2 definition of Jeong & Hussain (1995). The

large scale structures present are consistently elongated in the streamwise direction (fig-

ures 5.20(a) and (b)). Their distribution before and after the separation bubble, or hump,

have a direct influence on the streaks seen in wall shear stress contours (figures 5.20(c) and

(d)). As the circulation reestablishes in the hump following following full reattachment,

the vortices in the detachment region begin to bunch up like a rug. This stall in motion

results in a gap in structures on the leeward side of the bubble 5.20(b). Once development

of the bubble is complete, the vortices advect over the bubble just as they do during the

SBL case. When the circulation seizes and the flow reattaches the height of the structures

is not greatly affected. However, downstream of the hump the spanwise spacing of large

structures increases, and subsequently, λz, the average spanwise spacing of wall shear stress

contour streaks (figure 5.20(c)). Throughout the simulation there is a void of vortices with

the bubble and hump, despite full reattachment.

The orientation and inclination of the vortices indicates that the magnitude of the

streamwise vorticity dominates the vorticity vector. This is true in all but the detachment

region. During bubble development the bunching of the vortices described above also affects

their orientation, and thus the wall-normal vorticity is actually fed by the structures that

were oriented streamwise when they developed. Instantaneous contours of streamwise vor-

ticity at two different streamwise stations are shown in figure 5.21. Contrary to the variation

of bubble height observed based on mean velocity fields, the vorticity field in the leeward

side of the hump actually grows in height upon full reattachment (figures 5.21(a) and (b)).

However, downstream of the bubble, this relationship is inverted (figures 5.21(c) and (d)).

This is best explained using Taylor’s Hypothesis (Taylor, 1938). The heightening of the

vorticity distribution seen during the attached phase(s) advects and appears downstream

during subsequent phases. This also indicates that the region of decreased momentum which

defines the hump, begins to advect during full attachment. It is a slow process, and begins

weakly, so this motion is not readily apparent from mean velocity contours or large scale

structures.

The lifting of the vortices seen in figure 5.20 can also be seen in sideviews of the vorticity
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distributions (figure 5.22). Na & Moin describe the separation bubble in the SBL case as

acting as a streamlined obstacle, not allowing the separation zone to be penetrated by

the higher momentum flow. In figure 5.22(b) one can see that the seizure of circulation

immediately allows the hump to be penetrated, near x/δ∗in = 210. Again, only weak vortical

structures are allowed to pass, so this phenomenon is not readily apparent when viewing

the mean contours or large scale structure motion.

5.4 Summary

Direct numerical simulations of turbulent boundary layers with steady and unsteady pres-

sure gradients were performed to improve the understanding of unsteady separation pro-

cesses of turbulent boundary layers. A time varying blowing-suction velocity distribution

along the upper boundary induces an unsteady adverse pressure gradient to the turbulent

boundary layer. This produces a separation bubble in which the backflow cycles between

full separation and complete seizure of circulation. The distinct characteristics of unsteady

separating turbulent boundary layers were revealed by a systematic comparison with steady

attached/separated turbulent boundary layers.

In the USBL case, the process of creating and annihilating circulation is observed to

be hysteretic. As the adverse pressure gradient subsides the shear layer which blankets

the separation bubble begins to thicken. This continues until the flow is fully attached.

As the circulation reappears the shear layer compresses at a slower rate. As a result the

backflow exists in a flatter region and relatively high negative shear stresses are observed.

Throughout the simulation the displacement thickness in the region of the bubble remains

large. When circulation stops the bubble does not appear to advect downstream. The

hump does however lose some of its strength, and allows vortical structures to penetrate its

upstream face.
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(a) x/δ∗in = 135 (b) x/δ∗in = 225

(c) x/δ∗in = 315

Figure 5.6. RMS velocity fluctuations in the APG case in three streamwise locations.
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(a) Velocity profiles upstream of the separation

(b) velocity profiles downstream of the reattachment

Figure 5.7. Mean streamwise velocity profiles in the SBL case in streamwise locations in wall units.
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(a) x/δ∗in = 160

(b) x/δ∗in = 220
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(c) x/δ∗in = 270

(d) x/δ∗in = 330

Figure 5.8. RMS velocity fluctuations normalized with the freestream velocity in the SBL case.
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Figure 5.9. Contours of the instantaneous skin-friction coefficient. Negative values are dashed.

Figure 5.10. Amplification factor used to convert Vtop(x) to Vtop(x, t). x-axis indicates the phase

number.
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(a) γ̄u distributions in phases 2-5.

(b) γ̄u distributions in phases 5-8.

Figure 5.11. Spanwise-averaged fraction of time (γ̄u) that flow moves downstream.
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(a) Phase 4 (b) Phase 5

(c) Phase 6

(d) Phase 7 (e) Phase 8

(f) Phase 9

Figure 5.12. Streamwise distributions of phase averaged skin-friction and pressure coefficients.
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(a) USBL

(b) SBL

Figure 5.13. Streamwise distributions of total averaged skin-friction and pressure coefficients.
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(a) x/δ∗in = 40 (b) x/δ∗in = 220

(c) x/δ∗in = 270 (d) x/δ∗in = 320

Figure 5.14. Streamwise velocity profiles in wall units. — USBL; −− SBL.
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(a) x/δ∗in = 120 (b) x/δ∗in = 170

(c) x/δ∗in = 270 (d) x/δ∗in = 320

Figure 5.15. Turbulence intensity profiles normalized with U2
∞
. — USBL; −− SBL.
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(a) x/δ∗in = 120 (b) x/δ∗in = 170

(c) x/δ∗in = 270 (d) x/δ∗in = 320

Figure 5.16. Comparisons of the turbulent kinetic energy and turbulent kinetic energy production

and dissipation normalized with U3

∞

100∗δ∗
in

. — USBL; −− SBL.
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Figure 5.17. Contours of ū/U∞ = 0.4;−− SBL; — Phase 1; -·- Phase 6.

Figure 5.18. Contours of ū/U∞ = 0.4 and ū/U∞ = 0.0; — Phase 1; -·- Phase 6.
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(a) Phase 5

(b) Phase 9

Figure 5.19. Mean streamwise velocity normalized with δ∗in.
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(a) Vortex field during full reattachment

(b) Vortex field during bubble development

(c) Contours of τwall during full reattachment

(d) Contours of τwall during bubble development

Figure 5.20. Instantaneous vortex fields defined by λ2 = −0.1, and corresponding wall shear stress

distributions.
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(a) Phase 1 (b) Phase 5

(c) Phase 2 (d) Phase 5

Figure 5.21. Instantaneous vorticity contours at x/δ∗in = 260 ((a) and (b)), and x/δ∗in = 320 ((c)

and (d)).
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(a) Phase 5

(b) Phase 6

Figure 5.22. Instantaneous vorticity distributions.
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Appendix A

A fully conservative finite volume method

for incompressible Navier-Stokes

equations on locally refined nested

Cartesian grids

A.1 Motivation and objectives

A signifiant portion of research in the field of computational fluid dynamics has been focused

on improving solution accuracies and reducing computational costs. Despite the massive

increase to our computational capacity over the last decade, the scale at which we require

highly accurate large-scale simulations has grown at a significantly faster rate. Large-

scale simulations today employ hundreds of billions cells, impose significant computational

costs, and require massive amounts of memory, oftentimes exceeding the capability of many

mainframe computers.

One of the most common ways to lower computational costs is to lower the total num-

ber of grid points being employed throughout the domain. The unfortunate tradeoff to this

approach is a significant loss in simulation fidelity. To combat this, some have employed

higher-order numerical methods to improve solution accuracy while still lowering the number

of computational cells (Peng et al., 2003; Shiau et al., 1999; Sau et al., 2004). This approach

has been shown to be effective when compared to low-order schemes primarily due to the

cost savings associated with fewer computational cells. However, higher-order methods are

oftentimes very difficult to implement on the complex grids required for practical applica-

tions. Furthermore, higher-order methods tend to have wider discretization stencils making

them particularly ill-suited for simulations of physical phenomena with sharp local gradi-

ents. In such cases, the higher-order schemes effectively serve to smooth out the solution,

yielding a solution that no longer accurately represents the intended physical phenomena.

A more practical alternative to higher-order methods involves effective mesh utilization.
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Localizing cells in areas of interest, namely regions where high wave numbers are present,

can reduce the total number of computational cells required. This approach is especially

important in flow configurations with walls and obstacles, as the resolution must be sig-

nificantly high near these objects to fully capture the boundary layer physics. In simple

configurations, stretched grids generally allow for effective cell utilization. However, as flow

configurations become more complicated, stretched grids become less effective and more

time and effort is required to generate grids for specific computational configurations.

A particularly attractive local refinement methodology is the nested Cartesian grid ap-

proach (Berger & Oliger, 1984). In this case, local refinement is achieved by embedding fine

Cartesian grids within coarse Cartesian grids. The attractive properties of such a scheme are

that Cartesian grids are simple to create and manipulate while allowing for simple, efficient,

structured algorithms to be implemented. Significant prior work as been done to develop

nested Cartesian grid methodologies (Berger & Oliger, 1984; Khokhlov, 1998; Durbin &

Iaccarino, 2002; Pember et al., 1995; Gerritsen & Olsson, 1998). Unfortunately, one draw-

back to using nested Cartesian grids is that simulations are generally limited to Cartesian

geometries. Significant work has been done over the last three decades to create numeri-

cal algorithms, such as immersed boundary methods, that can handle complex geometries

while utilizing Cartesian meshes (Peskin, 1972; Kim et al., 2001; Tseng & Ferziger, 2003).

These algorithms have been combined with nested Cartesian grids to allow for simulations

of complex geometries (Roma et al., 1999; Ye et al., 1999; Peng et al., 2010; McCorquodale

et al., 2001).

Even though locally refined grids offer many computational benefits, numerical errors

introduced at mesh refinement interfaces are still a significant concern. Over the last two

decades, significant resources have been invested into developing methods to improve the

solution accuracy at refinement boundaries (Almgren et al., 1998; Minion, 1996; Martin &

Colella, 2000; Martin et al., 2008; McCorquodale et al., 2001). Interpolation-based methods

have become the most popular answers to this problem because they can be tuned to control

the order of accuracy at mesh interfaces and they have have the added benefit of allowing

for efficient, fully-structured algorithms to be implemented for each individual nested block.

Despite this, one of the major drawbacks regarding interpolated schemes is that they are

numerically non-conservative with regards to kinetic energy.

Non-interpolated algorithms, on the other hand, allow for energy-conservative numerics

to be implemented at mesh interfaces. This is done by ensuring that face-centered variables
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are defined as the simple arithmetic mean between two neighboring cells’ values (Mahesh

et al., 2004). Unfortunately, non-interpolated algorithms on nested Cartesian grids suffer

from inherent mesh skewness that can adversely affect the solution accuracy. Prior work

on reducing the adverse effects of mesh skewness has focused on correcting the numerical

schemes themselves by introducing some sort of skewness correction factor (Mahesh et al.,

2004; You et al., 2008b; Zwart, 2000). However, this correction factor often employs some

kind of weighted interpolation that can ultimately destroys a scheme’s ability to conserve

energy.

This paper will introduce a new hanging node scheme designed to be fully conservative

and improve on prior methods. The focus of this method is to geometrically reduce the

inherent mesh skewness found in nested Cartesian grids by virtually slanting cell faces at

refinement interfaces to align cell faces with the normal vector connecting neighboring cell-

centers. This implementation will allow for numerics that conserve mass, momentum, and

energy while retaining the benefits of an overall structured implementation.

A.2 Computational method

A.2.1 Fractional step method

The incompressible momentum and continuity equations in Cartesian coordinates are

∂ui
∂t

+
∂uiuj
∂uj

= −
∂p

∂xi
+ ν

∂

∂xj

∂ui
∂xj

(A.1)

and

∂ui
∂xi

= 0, (A.2)

where ui, p, and ν are the velocity, pressure, and kinematic viscosity. For incompressible

flows, the density is considered constant and is absorbed into the pressure term. The prim-

itive variables, velocity and pressure, are stored in a collocated, cell-centered arrangement,

with an independent face normal velocity, un = /u · /n stored at cell faces.

Time integration of equations (A.1) and (A.2) is performed using the fractional-step
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method of Kim & Moin (1985). The semi-discretized fraction-step algorithm is as follows:

ûi − uni
∆t

= −
∂pn

∂xi
−

∂uiuj
∂xj

+ ν
∂2ui
∂x2j

, (A.3)

u∗i − ûi = ∆t
∂pn

∂xi
, (A.4)

∂2pn+1

∂x2i
=

1

∆x

u∗i
∂xi

, (A.5)

un+1
i − u∗i
∆t

= −
∂pn+1

∂xi
, (A.6)

where ûi and u∗i are intermediate cell-center velocities and the convective and diffusive

fluxes are integrated using the third-order accurate Runge-Kutta and second-order accurate

Crank-Nicolson schemes, respectively. All spatial discretizations are performed using non-

weighted, second-order accurate central difference scheme.

Integrating equation (A.3) over a computational cell volume, ∆V , and applying the

divergence theorem yields

ûi − uni
∆t

∆V = −
∑

CS

pn∆S −
∑

CS

ui,faceun∆S +
∑

CS

∆ui
∆xn

∆S, (A.7)

where CS, ∆S, and ui,face denote the control surface, the surface area of a single cell face,

and the interpolated velocity at the face.

A.2.2 Conservation principles

Conservation of mass, momentum, and energy is of significant importance in ensuring that

numerical computations capture the physical phenomena more accurately. For compress-

ible flows, discrete energy conservation requires that the convective and pressure terms are

expressible in divergence form. The following derivation is available in the literature (Ma-

hesh et al., 2004) and is repeated here for clarity as to the implementation in the current

methodology.

In a non-staggered formulation, this is complicated by the fact that the face-normal

velocities stored at the face-centers are treated as independent variables in relation to the

Cartesian velocities components stored at the cell centers. We can see this by looking at
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the convective term for a passive scalar equation,

∂φ

∂t
+

∂

∂xiφui
= 0. (A.8)

Integrating equation A.8 over a cell and applying the divergence theorem yields

Vcv
dφcv

dt
+

∑

facesofcv

φfacevnAf = 0, (A.9)

where φcv is the value of the scalar, Vcv is the cell volume, and Af and vn denote the face

area and the face-normal velocity, respectively. In this case, since the incompressibility con-

dition requires that ∂ui

∂xi
= 0, φ is conserved regardless of how φface is computed. However,

conservation of φ does not imply conservation of φ2. In face, φ2 is only conserved if φface

is computed as the simple arithmetic mean of the adjacent cell-center values,

∑

volumes

Vcv
dφ2

cv

dt
+

∑

boundaryfaces

φface =
1

2
(φc + φnbr) . (A.10)

Multiplying equation (A.9) and substituting equation (A.10) yields the discrete equation

for φ2,

Vcvφcv
dφcv

dt
+

φcv

2

∑

facesofcv

(φcv + φneigh) vnAf = 0, (A.11)

which can be rewritten and simplified as

Vcv

2

dφ2
cv

dt
+

φcv

2

∑

facesofcv

vnAf

︸ ︷︷ ︸
=0

+
1

2

∑

facesofcv

φcvφneighvnAf = 0. (A.12)

Summation over all cells in the domain yields

∑

volumes

Vcv
dφ2

cv

dt
+

∑

volumes

∑

facesofcv

φcvφneighvnAf = 0, (A.13)

in which the contribution of all interior faces cancel out and result in

∑

volumes

Vcv
dφ2

cv

dt
+

∑

boundaryfaces

φcvφneighvnAf = 0. (A.14)
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As long as φneigh is also defined according to equation (A.10), this implies that both φ and

φ2 are only influenced by the boundary conditions and are, in face, discretely conserved.

In this work, discrete energy conservation is achieved by defining the interpolation for any

face variable, φface, such that it is the simple arithmetic mean of the current cell and its

neighboring cell, as expressed in equation (A.10).

A.2.3 Virtual-slanting nested Cartesian grid scheme

Local grid refinement is implemented by introducing logically nested Cartesian blocks. The

benefit of this approach is that it allows for simple, computationally efficient, structured

discretization schemes to be applied with a lower memory requirement compared to un-

structured algorithms. Furthermore, by localizing grid refinement, computational cells can

be localized in areas of interest and necessity, ultimately lowering the number of computa-

tional nodes necessary . However, these nested Cartesian grids carry with them an inherent

skewness which can adversely affect the numerical accuracy of the discretization schemes

that are employed. The following sections will describe a method by which cells located

at refinement interfaces are virtually slanted to reduce this inherent skewness and improve

both the numerical accuracy and the conservation principles of a numerical scheme. Fig-

ure A.1 shows three types of grids: a regular Cartesian grid, a non-slanted hanging node

grid, and a slanted hanging node grid. These grids will be used to illustrate the differences

between numerical discretizations on each grid and how a simple geometric relationships

can be used to transform grid (figure A.1(b) into figure A.1(c)).

For the sake of simplicity, only two dimensions will be considered and the grid spacings

in the x- and y-directions will be assumed to be the same, namely ∆x = ∆y. The grid

resolution of uniform cells will be referred to as ∆x, while the grid resolutions of fine and

coarse cells will be referred to as ∆xf and ∆xc, respectively. Furthermore, the coarse and

fine grid resolutions are assumed to differ only by a factor of two, such that ∆xf = 1
2∆xc.

Regular Cartesian grids

On two-dimensional regular Cartesian grids, as shown in figure A.1(a), the discrete volume

of any given cell is easily defined as

∆VCart = ∆x∆y = ∆x2. (A.15)
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A B

∆x

∆y

un

(a)

A

C

BD

∆x

∆y

un

un

(b)

A

C

BD

∆x

∆y

un

un

(c)

Figure A.1. Three example grids: (a) a regular Cartesian grid, (b) a non-slanted nested Cartesian

grid, and (c) a virtually-slanted nested Cartesian grid. It can be seen that virtually-slanting mesh

(b) aligns the face-normal velocities, un, with the vectors connecting the coarse and fine cell-centers,

thus reducing the inherent skewness in the hanging-node mesh.
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Furthermore, the surface area connecting any two cells, ∆S, is defined simply as

∆SCart = ∆y = ∆x (A.16)

and the distance between the cell-centers projected along the face-normal vector, ∆xn, is

equal to the grid spacing,

∆xn,Cart = ∆x. (A.17)

Non-slanted nested Cartesian grids

For the nested Cartesian grids, we will focus only on the cells adjacent to a refinement

interface, as all other cells are covered under the regular Cartesian grid discretizations.

Furthermore, the non-slanted methodology described here does not employ interpolation to

fill the hanging node values. Instead, cells at mesh interfaces are evaluated directly, much

like they would be in unstructured implementations. This means that one extra face must

be evaluated for coarse cells, while the number of operations for all other cells.

On non-slanted nested Cartesian grids, figure A.1(b), we can see that the coarse and

fine cell volumes are easily computed as

∆Vf,NS = ∆xf∆yf = ∆xf
2 (A.18)

and

∆Vc,NS = ∆xc∆yc = ∆xc
2, (A.19)

just as they are on the regular Cartesian grids. However, the surface area connecting any

two cells across a refinement interface is now defined by the fine resolution,

∆SNS = ∆yf = ∆xf =
1

2
∆xc. (A.20)

Furthermore, since the cell-centers are now farther apart, the face-normal distance between

the cells becomes

∆xn,NS =
3

2
∆xf =

3

4
∆xc. (A.21)
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We can easily observe that this length is not computed along the vector connecting the

two cell-centers, introducing a skewness in the mesh that can adversely affect the numerical

accuracy of the discretization schemes.

Virtually-slanted nested Cartesian grids

To reduce the inherent skewness at refinement interfaces, the faces can be virtually-slanted

to align their normal vector to the vector connecting the fine and coarse cell-centers, as

shown in figure A.1(c). The amount a surface needs to be slanted is simply a function of

the cell’s geometry. In the case where ∆x = ∆y, the appropriate virtual-slanting requires

that node D be shifted 1
3∆xf away from the coarse cell-center. The new fine and coarse

cell volumes become

∆Vf,SL = ∆xf∆yf −
1

6
∆xf∆yf =

5

6
∆xf

2 (A.22)

and

∆Vc,SL =
7

6
∆xc∆yc =

7

6
∆xc

2, (A.23)

respectively. Furthermore, both the surface area and face-normal distance between cells

change such that

∆SSL =

√(
1

3
∆xf

)2

+ (∆yf)
2 =

√
10

3
∆xf =

√
10

6
∆xc, (A.24)

and

∆xn,SL =

√(
3

2
∆xf

)2

+

(
1

2
∆yf

)2

=

√
10

2
∆xf =

√
10

4
∆xc. (A.25)

Aside from modifying the geometry of faces along a refinement interface, it can be seen

in figure A.1(c) that the virtually-slanting scheme also modifies the surface shared by cells

A and C. The regular Cartesian surface area of ∆xf between cells A and C now becomes

∆SAC = ∆xf −∆xshift = ∆x−
1

3
∆x =

2

3
∆x. (A.26)

Again, this is a simple change in the geometric coefficients for these cells. Coarse cells are
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A
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B

∆x

∆y

un

un

Figure A.2. Virtual-slanting in the case where ∆y/∆x =
√
3.

not affected by this as the shift only occurs within the fine cell block.

Comparing equations (A.18) - (A.24), we see that the only difference between the non-

slanted and virtually-slanted scheme is a simple modification of the geometric coefficients.

Furthermore, the virtual-slanting scheme does not introduce any additional neighbor con-

nectivity. Therefore, the same matrix solvers used for the non-slanted approach can be used

for the slanted scheme without increasing the computational cost.

A.2.4 Virtual slanting limitation

The amount of virtual slanting necessary to align a face to the normal vector connecting the

cell-centers varies according to the cell geometry. Cells with a high aspect ratio will require

more slanting. However, if the aspect ratio is too high, it will not be possible to slant a

face appropriately without propagating mesh skewness into the nested Cartesian blocks or

without creating additional cell connectivity. Figure A.2 shows a case in which a face is

slanted to the point of creating triangular fine cells. It can be seen that slanting the faces

any further will affect the fine cells located on the interior of a nested Cartesian block.

One can avoid creating such complicated geometries by limiting the extent to which

faces are virtually slanted. Assuming the coarse and fine resolutions differ by a factor of
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two, this geometric limitation is defined by

∆xj
∆xi

≤
√
3 (A.27)

for any given direction i. The slant angle could be fixed such that for all directions i where

∆xj/∆xi >
√
3, the face may only slant to the point where ∆xj/∆xi =

√
3. While this

avoids the creation of complicated geometries, the slanted face would no longer aligned to

the normal vector connecting the coarse and fine cell-centers and the overall effectiveness of

this scheme will be lessened. However, even partial virtual-slanting should serve to reduce

the skewness inherent in nested Cartesian and improve the mesh quality.

A.2.5 Extension to three-dimensional configurations

In the case of three dimensions, slanting the fine cell faces such that they are aligned to

the normal vector connecting the cell-centers generates new cell connectivity. Figure A.3(a)

shows a diagram of the mesh topology resulting from three-dimensional mesh slanting. The

shaded regions in figures A.3(a) and A.3(c) highlight the new faces generated in the case

of three-dimensional slanting. This additional connectivity increases matrix sparseness and

increasing the overall computational cost of the simulation. Moreover, these new faces would

also require their own slanting in order to align them with the normal vector connecting

diagonal cell-centers, increasing the implementation complexity even further.

In order to avoid these complications, an approximated slanting is introduced in the case

of three dimensions. Rather than virtually slanting each face to perfectly align it to the

normal vector connecting the cell-centers, only the node at which the four fine cells meet

is shifted. This creates two sub-faces on each fine cell, each of which is perfectly aligned

to one of the two components of the normal vector connecting the two cell-centers. The

dashed lines in figure A.3(b) illustrate where the two sub-faces meet on each fine cell. It is

interesting to note that the creation of these sub-faces does not add to the computational

cost of the algorithm as each sub face does not need to be evaluated separately for every

time step. The reason for this is because each discretized evaluation calls only for the

projection of the face area onto the normal direction under consideration. Since no two

sub-faces overlap, the projected face area for each face is simply the summation of the

projected areas of each sub-face onto the normal direction being considered.

67



APPENDIX A

(a) (b)

(c) (d)

Figure A.3. Isometric views of the fine cells at a refinement interface are shown above for the

(a) fully-slanted and (b) approximated slanting configurations. A side view of each each method

is also shown in (c) and (d), respectfully, for clarity. The alternating shaded regions in (a) and

(c) are used to show the new faces generated between edge cells when the fully-slanted approach is

employed. These new faces expose the coarse cell to diagonal cells, requiring additional connectivity

information and increasing the computational cost of the simulation. (c) and (d)clearly illustrate

that no new faces are introduced in the approximated slanting approach.
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A.3 Verification and validation

A.3.1 Unsteady convection-diffusion of a Gaussian pulse

Unsteady convection-diffusion of a Gaussian pulse is evaluated to verify the accuracy of the

present virtual-slanting scheme. The computational domain is defined on [0, 2]2 with the

analytical solution to the problem being

φ(x, y, t) =
1

4t+ 1
exp

(

−
(x− ut− 0.5)2

ν(4t+ 1)
−

(y − vt− 0.5)2

ν(4t+ 1)

)

. (A.28)

The analytical solution is used to both initialize the field at t = 0 and apply Dirichlet

boundary conditions at the edges of the domain. Cell Reynolds numbers of 2 and 200 are

considered by imposing a fixed viscosity of ν = 0.01 and setting convection velocities of

u = v = 0.8 and u = v = 80, respectively.

The computational mesh is composed of two different refinement levels, as shown in

figure A.4(a). The left half of the mesh is the coarse grid with a resolution of ∆xc, while

the right half of the mesh is the fine grid with a resolution of ∆xf = 1
2∆xc. Only the

resolution in the x-direction will be discussed, as ∆x = ∆y is assumed for all results in this

paper.

Figure A.4(b) shows that the Gaussian pulse passes through the mesh refinement inter-

face without numerical artifacts. Figure A.5 shows L2-norm errors with respect to the exact

solution for the present method at Re = 2 and Re = 200 and various levels of grid refine-

ment. Grid convergence tests were performed with a fixed time-step size of ∆t = 2.5×10−4

for Re = 2 and ∆t = 2.5 × 10−5 for Re = 200. The present method is found to be globally

second-order accurate in both cases.

A.3.2 2D Taylor-Green vortex

Two-dimensional Taylor-Green vortices are simulated to both identify the present method’s

accuracy when solving the incompressible Navier-Stokes equations and verify its energy

conserving properties. The computations are performed on a [−1, 1]2 computational domain
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Figure A.4. Diagrams of (a) the computational mesh layout employing two levels of refinement

and (b) the contours of the convected Gaussian pulse from left to right (at t = 0 and t = 1.0,

respectively) for Re = 2. The thick black line along the centerline of (b) denotes the refinement

interface.
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Figure A.5. The above plot shows the L2-norm errors as a function of grid spacing for (a) Re = 2

and (b) Re = 200. Both plots show that the virtually-slanting scheme is globally second-order

accurate.
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with the following analytical solutions for velocity and pressure:

u = − cos(πx) sin(πy)e−2π2t/Re, (A.29)

v = sin(πx) cos(πy)e−2π2t/Re, (A.30)

p = −
1

4
[cos(2πx) + cos(2πy)]e−4π2t/Re. (A.31)

The field is initialized using the analytical solutions at t = 0 with periodic boundary con-

ditions imposed in all directions.

The computation mesh is composed of quadrants of alternating levels of refinement, as

shown in figure A.6(a). This arrangement ensures that each quadrant is surrounded by a

refinement interface, even across periodic boundaries.

Grid convergence tests are performed at Re = 100, where the Reynolds number is defined

as Re = UmL/ν with Um being the initial maximum velocity and L being the vortex length.

A fixed time step of ∆t = 0.001 is used to ensure that CFL < 1 for all cases.

Figure A.7 shows L2-norm errors for various levels of grid refinement. Again, the present

method is found to be globally second-order accurate for both velocity and pressure.

Figure A.8 shows the time history of kinetic energy for the non-slanted and virtually-

slanted schemes. The kinetic energy is evaluated to serve as an indication of a method’s

ability to conserve energy. It can easily be seen that the virtually-slanted scheme shows

improved kinetic energy conservation properties compared to the non-slanted scheme.

A.3.3 Flow in a lid-driven cavity

Flow in a lid-driven cavity is used to evaluate the virtually-slanted scheme’s ability to predict

steady-state solutions. The computational flow configuration is shown in figure A.9(a).

Coarse grid spacing of ∆xc = ∆yc = 0.0125 is used in the center of the domain with local

refinement embedded near the walls using ∆xf = ∆yf = 1
2∆xc = 6.25× 10−3

The computations were carried out at a Reynolds number of Re = 1000, where the

Reynolds number is defined as Re = UlidL/ν, where Ulid is the speed of the top lid and L

is the length of each side of the square cavity. Contours for the steady-state solution for

the lid-driven cavity are shown in figure A.9(b) and centerline velocity profiles of u and v

are shown in figure A.10. The centerline velocity profiles show good agreement with the

results obtained using a uniform mesh with resolution ∆x = ∆xf = 6.25 × 10−3. These

results demonstrate that the present method is able to achieve comparable results to uniform
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Figure A.6. Diagrams of (a) the computation mesh layout used to simulate two-dimensional

Taylor-Green vortices and (b) the pressure contours of the initial field. The thick black likes in (b)

illustrate the refinement interfaces.
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Figure A.7. The above plots show that the virtually-slanted scheme is globally second-order

accurate for both (a) velocity and (b) pressure at Re = 100.
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Figure A.8. The kinetic energy time-history shows that the virtually-slanting scheme conserves

energy better than the standard non-slanted hanging node scheme.
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Figure A.9. The above plots illustrate the (a) computational grid employed and (b) the u-velocity

contours for the steady-state solution at Re = 1000.
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meshes while utilizing fewer computational cells.

A.3.4 Flow over a square cylinder

Flow over a square-cylinder is used to validate the present scheme’s ability to predict un-

steady flow phenomena. The computational domain is defined on [0, 51D]2, where D is

the square-cylinder diameter, and is shown in figure A.11. The cylinder is located in the

center of the computational domain, ensuring that there is adequate distance from both

the inlet and the far-field boundaries. A Dirichlet boundary condition of u = U and v = 0

is imposed at the inlet, where U is the free stream velocity. Free-slip boundary conditions

are imposed at the far-field boundaries and a Neumann boundary condition is set at the

outflow boundary.

Five distinct levels of local refinement were implemented, as shown in figure A.11. Again,

each level of refinement is a factor of two different from it’s neighboring level, with the

smallest grid size being ∆xf = 7.8125 × 10−3 near the wall.

The computations were carried out at Re = 100 using a time-step size determined by

the CFL = 1 criterion. Figure A.12 shows contours of the instantaneous vorticity, while

figure A.13 shows the variation of the lift force as a function of time. Table A.1 shows the

resulting mean drag, RMS lift, and Strouhal number (St) for the present scheme, as well as

from a variety of literature results. The present method shows good agreement with data

from the literature for the Strouhal number and RMS lift. The mean drag appears to be

under predicted, but further studies are being performed to determine whether this is an

issue of grid resolution or a limitation of the virtually-slanted scheme.

St Mean Drag RMS Lift
Virtual-Slanting Scheme 0.144 1.36 0.16
Chung & S.-H.Kang (2000) 0.141 1.46 0.20
Franke et al. (1990) 0.154 1.61 0.27
Sohankar et al. (1997) 0.146 1.48 0.16
Robichaux et al. (1999) 0.154 1.53 —
Okajima (1965) 0.14 1.45 —
Sohankar et al. (1997) 0.143 — —

Table A.1. Computational results for the Strouhal number (St), mean drag, and RMS lift at

Re = 100 for the virtually-slanting scheme, as well as several results from the literature.
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Figure A.10. Good agreement can be seen between the virtually-slanting scheme and the uniform

mesh results for the centerline velocities of both (a) u and (b) v. The uniform mesh resolution was

set according to the finest resolution in the locally refined case, ∆x = ∆xf = 6.25× 10−3.
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Figure A.11. The overall computational configuration is shown above in (a), with a closer look at

the refinement interfaces around the square-cylinder shown in (b). Five distinct levels of refinement

are shown, with the highest resolution of ∆xf = 7.8125× 10−3 located at the cylinder wall.
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Figure A.12. Contours for the instantaneous z-vorticity are shown in (a), with a closer look at the

contours around the square-cylinder presented in (b).
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Figure A.13. The above plot shows the smooth variation in the coefficient of lift (CL) as a function

of time.
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A.3.5 3D Taylor-Green vortex

The virtually-slanting scheme was further tested using the three-dimensional Taylor-Green

vortex case shown by Shu et al. (2005). This computational configuration is known to

undergo a kinetic energy cascade, whereby the kinetic energy in the system drops very

rapidly. The length of time required for this kinetic energy cascade to take place is a strong

indicator of the amount of numerical and viscous dissipation in a discretization scheme,

where a longer time-delay indicates a lower level of dissipation.

Much like its two-dimensional counterpart, the computational mesh for the three-dimensional

Taylor-Green vortex case is composed of octants of alternating levels of refinement and is

shown in figure A.14(a). Again, this arrangement ensures that each octant is surrounded

by a refinement interface, even across periodic boundaries.

The computational domain is defined on [0, 2π]3 with periodic boundary conditions

imposed in all directions. The flow field is initialized at time t = 0 using

u (x, y, z) = sin(kx) cos(ky) cos(kz), (A.32)

v (x, y, z) = − cos(kx) sin(ky) cos(kz), (A.33)

w (x, y, z) = 0, (A.34)

p(x, y, z) =
1

16
[ (cos(2z) + 2)(cos(2x) + cos(2y)) − 2 ] , (A.35)

where the wavenumber k = 2π/λ = 1. Even though the initial conditions impose a two-

dimensional flow field, the existence of a pressure gradient in the z-direction (shown in

figure A.14(b)) forces the creation of three-dimensional flow for time t > 0.

The energy cascade described previously is purely a numerical phenomena, therefore a

uniform mesh case is being used as a standard for comparison. Figure A.15 shows the the

time-history of kinetic energy for a uniform mesh case, the virtually-slanted scheme, and an

interpolated scheme. The virtually-slanted scheme shows good agreement with the results

from the uniform mesh case, both of which appear to initiate a kinetic energy cascade at

very similar points in time. Conversely, the interpolated scheme begins rapidly losing energy

much sooner than either of the previous cases, indicating that it suffers more strongly from

numerical and viscous dissipation. These results strongly suggest that the virtually-slanted

scheme is able to be applied to three-dimensional flows, conserve energy quite well, and

produce results comparable to those found on uniformly refined meshes.
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Figure A.14. The above diagrams depict (a) the computation mesh used to simulate three-

dimensional Taylor-Green vortices and (b) contours of the initial pressure field.
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Figure A.15. The above plot shows the time-history of the kinetic energy for three-dimensional

Taylor-Green vortices. The virtually-slanted (- - - red line) scheme shows good agreement with

the uniform results (— black line), while the kinetic energy cascade begins much sooner for the

interpolated scheme (- · - blue line).
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A.4 Summary

A second-order-accurate finite-volume method for kinetic energy conserving simulations of

incompressible flows on hanging node meshes has been developed. The order of accuracy

was verified to be globally second order on both the unsteady convection-diffusion equations

and the incompressible Navier-Stokes equations. The present scheme showed good predic-

tion of both steady and unsteady flow phenomena using lid-driven cavity and flow over a

square cylinder, respectively. Improved energy conservation was demonstrated using decay-

ing Taylor-Green vortices in both two and three dimensions. The virtually-slanted method

showed good agreement with uniform mesh results in the case of a lid-driven cavity, and

good agreement with literature data in the case of flow over a square cylinder.
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