
DISTRIBUTED SENSING AND PROCESSING ADAPTIVE
COLLABORATION ENVIRONMENT (D-SPACE)

APTIMA, INC.

JULY 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-195

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2014-195 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
WILLIAM D. LEWIS JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2013 – MAY 2014
4. TITLE AND SUBTITLE

DISTRIBUTED SENSING AND PROCESSING ADAPTIVE
COLLABORATION ENVIRONMENT (D-SPACE)

5a. CONTRACT NUMBER
FA8750-13-C-0136

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Georgiy Levchuk, Andres Ortiz, and John-Collonna Romano

5d. PROJECT NUMBER
S2MA

5e. TASK NUMBER
SA

5f. WORK UNIT NUMBER
AP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Aptima, Inc.
12 Gill Street, Suite 1400
Woburn, MA 01801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-195
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2014-3165
Date Cleared: 1 JUL 2014
13. SUPPLEMENTARY NOTES
14. ABSTRACT
With the proliferation of physical military and commercial sensors, and increasing use of open source social media data
for situation understanding, traditional stove-piped exploitation solutions no longer achieve required accuracy in a timely
manner. Alternatively, the new “cloud” technologies are not appropriate for situation understanding in areas of denial,
where computation resources are limited, data not easily moved around, and communication highly constrained and
unreliable. D-SPACE is a Distributed Sensing and Processing Adaptive Collaborative Environment designed to perform
large-scale data queries in resource-constrained domains, where the data comes from diverse sources, modalities, and
contains high degree of interdependencies among the variables. D-SPACE represents such data as large-scale graphs,
enabling online graph analytics via inexact graph matching process. D-SPACE distributes graph exploitation among a
network of autonomous computational resources, designs the collaboration policy among them, and assures that
processing is robust to communication and resource failures. D-SPACE achieves its objectives by highly efficient work
balancing among the resources, graph data indexing, message compression and prioritization to reduce communication
load, and adaptive roll-back, re-planning, and re-biasing to deal with communication delays and resource failures. When
complete, D-SPACE will provide increased autonomy, improved analysis accuracy, and fault-tolerance, while decreasing
the time required for data processing.

15. SUBJECT TERMS
D-SPACE, Algorithms, Software prototype, Heterogeneous Computing Resources

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM D. LEWIS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-7707

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

44

TABLE OF CONTENTS
List of Figures ... ii
List of Tables ... iii
1. Summary ... 1
2. Introduction ... 2

2.1 Motivation and Summary of Accomplishments .. 2
2.2 Background and Functional Requirements .. 3
2.3 Research Objectives ... 5

3. Methods, Assumptions, and Procedures ... 6
3.1 Querying Using Inexact Graph Matching .. 6

3.1.1 Formal definition of data querying as inexact matching problem 6
3.1.2 Solving inexact matching using belief propagation .. 7
3.1.3 Generating query output ... 9

3.2 Distributed Collaborative Querying Model ... 11
3.2.1 Problem Formulation .. 11
3.2.2 Defining tasks for computation units by restructuring the factor graph 12
3.2.3 The case of complete data access ... 13
3.2.4 Collaborative distributed belief propagation .. 13

3.3 Scalability Improvements to Collaborative Query Model .. 15
3.3.1 Data Prioritization ... 15
3.3.2 Communication Compression... 16
3.3.3 Complexity Reduction Using Question-Answer Process 16

3.4 Collaborative Pattern Learning ... 17
3.4.1 Types of Learning ... 18
3.4.2 Learning Patterns from Graph Instances .. 18
3.4.3 Collaborative Distributed Learning Model ... 20
3.4.4 Learning Frequent Patterns ... 22

3.5 Software Implementation .. 23
3.5.1 Software architecture .. 23
3.5.2 Query processor .. 24
3.5.3 BSP controller ... 24
3.5.4 Processing unit .. 24
3.5.5 Performance and system metrics .. 25
3.5.6 User interfaces .. 25

4. Results and Discussion ... 29
4.1 Experiments with randomly generated data .. 29

4.1.1 Solution scalability ... 29
4.1.2 Solution sensitivity to noise .. 31

4.2 Experiments with LUBM data .. 31
5. Conclusion .. 35
6. References ... 36
List of Acronyms..38

i

List of Figures
Figure Page

Figure 1: Analysis of data collected by multiple heterogeneous sources (a) is moving
away from manual stove-pined processing (b) to Cloud-based (c) or autonomous
collaborative solutions (d)... 2

Figure 2: Illustration of graph matching variables .. 7
Figure 3: Message passing policy is derived from the structure of the query graph. For the

example of query (a), the factor graph (b) contains five variable nodes and four factor
nodes. During message passing, variable nodes send their messages to factor nodes,
and vice versa. In original formulation, the messages are passed between factor and
variable nodes (d) .. 8

Figure 4: Data accessibility and query results across partitions ... 11
Figure 5: Design of the tasks for distributed computational units .. 12
Figure 6: Examples of query partitioning for distributed assignment .. 13
Figure 7: Example of subsets of nodes connected to and from data nodes accessed by the

computational unit .. 14
Figure 8: Example of changes in the values of forward messages over iterations 16
Figure 9: Example of belief message compression... 17
Figure 10: Question-answer process can reduce number of communicated belief

messages ... 17
Figure 11: Different types of pattern learning .. 18
Figure 12: Example of variables and communications in distributed pattern learning

algorithm ... 21
Figure 13: Learning patterns in distributed manner .. 22
Figure 14: SW architecture of DSPACE system .. 23
Figure 15: Subcomponents of the DSPACE system ... 24
Figure 16: Engineering interface for experiments with synthetic data ... 27
Figure 17: Interface for connecting with LUBM triple store .. 27
Figure 18: Metrics interfaces .. 28
Figure 19: Interactions between user interfaces, controller components, and the agents 28
Figure 20: Experimental setup .. 29
Figure 21: Results of scalability experiments: algorithm run time is linear with size of

data .. 30
Figure 22: Improvements in scalability can be achieved by using information

prioritization model which reduces the amount of data actively processed at each
iteration ... 30

Figure 23: Results of noise sensitivity experiments ... 31
Figure 24: Example statistic of a single-university LUBM data subset 32
Figure 25: Knowledge fragments are subgraphs in LUBM data graph .. 32
Figure 26: Knowledge fragments are subgraphs in LUBM data graph .. 33
Figure 27: Examples of queries and matches in LUBM data – Publication pattern 33
Figure 28: Examples of queries and matches in LUBM data – Student-adviser pattern 34
Figure 29: Examples of queries and matches in LUBM data – Student attendance pattern 34

ii

List of Tables
Table Page

Table 1: Functional requirements for distributed collaborative data mining 4

iii

1. SUMMARY
This final report contains the results of our work on DSPACE: Distributed Sensing and
Processing Adaptive Collaborative Environment. During this 1-year effort, we developed a
formal process, algorithms, and software (SW) prototype to enable processing of distributed
relational data across multiple autonomous heterogeneous computing resources in environments with
limited control, resource failures, and communication bottlenecks. This work was accomplished
through five tasks.

• Task 1 developed a formal process to perform data querying via inexact graph matching
using the belief propagation algorithm.

• Task 2 developed a distributed collaborative querying model using the belief propagation
algorithm. This includes a formal representation of the collaborative data analysis
problem, a set of methodologies for query partitioning and task assignment, the
communication message structure and the collaborative updates required for the
autonomous agents to perform their tasks.

• Task 3 developed a SW prototype of the distributed graph matching framework using the
Java Message Service (JMS) API and the Bulk Synchronous Parallel (BSP) processing
paradigm.

• Task 4 developed a set of algorithms to improve the solution’s scalability and reliability.
This includes adaptive information prioritization based filtering, communication
compression algorithms, and strategies for detection and recovery from agent.

• Task 5 conducted validation experiments using randomly generated graph data as well as
open source research data to assess the sensitivity of system’s search accuracy to the size
and noise in the data, and showcasing benefits and trade-offs of distributed search model
using the various scalability strategies.

The aforementioned tasks are described in detail in the following sections.

Approved for Public Release; Distribution Unlimited.
1

2. INTRODUCTION

2.1 Motivation and Summary of Accomplishments
Amounts of data that need to be collected, examined and shared during Intelligence,
Surveillance, and Reconnaissance (ISR) operations are growing fast due to increasing sensor use.
In order to manage the resulting data deluge, the U.S. intelligence community is moving away
from manual data analysis toward automated processing capabilities, with the focus on two
technologies: Cloud-based distributed processing, and autonomous cooperative data exploitation (Figure
1).

D1

D2

D3

D5

D4

Cloud

(a) Data is collected by distributed sensors

(b) Traditional manual data
analysis creates stove-pipes and

analysts’ overload

Command Center

(c) Cloud solutions require data to
be moved to centralized location

(d) Collaborative solutions achieve
faster analytics and avoid security

problems by preserving data locality

D1 D2 D3 D5D4 D1 D2 D3 D5D4 D1 D2 D3 D5D4

Figure 1: Analysis of data collected by multiple heterogeneous sources (a) is moving away from manual stove-
pined processing (b) to Cloud-based (c) or autonomous collaborative solutions (d)

DSPACE focuses on the problem of data exploitation in denied areas, where the control of
analytical operations and coordination between distributed data access and computing resources,
and even existence of these resources, can be disrupted. Cloud-based technologies are
inappropriate for this domain due to weakness of control over computational units and inability
to move the data to a central warehouse where it could be indexed, partitioned and analyzed in
parallel in a fully controlled environment. Our model provides a solution for autonomous
cooperative exploitation of relational data, which is encountered in a variety of applications
ranging from geospatial analysis to open source mining.
During this one year effort, we developed a model for processing distributed data across multiple
heterogeneous computing resources. Our model exploits the dependencies in the data to provide
solutions to both distributed querying and pattern learning. In distributed querying mode, the
computing resources are assigned subsets of the query based on high-level information about the
data they have access to. This query decomposition is designed to achieve the highest quality of
search and optimal balance of computational load between available resources. The resources

Approved for Public Release; Distribution Unlimited.
2

find local query match estimates and collaborate by exchanging belief messages that efficiently
encode how the agents can influence each other’s estimates.
In distributed pattern learning mode, the computational resources learn partial correlations
between the data they have access to, transfer this knowledge to other agents, and collaboratively
learn the patterns within and between their local data subsets.
Our model achieves better-than-linear computational complexity by using several concepts from
probabilistic data analysis and belief propagation. First, we minimize the subset of the data being
processed at any given time by prioritizing the nodes in the data graph and processing only the
subset of highest-priority nodes. This ensures that we perform the least amounts of irrelevant
analytical computations. Next, we compress the communication messages by residual (a change
from previous value) or absolute value of beliefs, thus minimizing communication between
distributed resources. Finally, the computational resources use local data prioritization to
incrementally process subsets of data and reduce the computation time of every analysis
superstep, resulting in faster production of near-optimal results.

2.2 Background and Functional Requirements
Leading distributed query processing models for sensor networks (Madden et al., 2003; Yao and
Gehrke, 2003) try to acquire as much data as possible from the environment while most of that
data provides little improvement to approximate answer quality. Hence these models generate
the execution costs, in both time and resource utilization, that are orders of magnitude higher
than is appropriate for a reasonably reliable answer (Deshpande et al., 2005). While successfully
transitioned to distributed cloud systems, these models would not be appropriate for a
collaborative analysis domain that has constraints on computation resources and communication
bandwidth.

Recently, distributed sensing and data processing has received significant attention in both
research and development (Bryant et al., 2008; Dahm, 2010) and acquisition programs. Most
existing technologies were developed for raw data processing (e.g., detection of objects in
imagery based on networks of cameras; Ding et al., 2012), sensor placement (Mathew, and
Surana, 2012), or coordinated planning and scheduling of homogeneous agents (Chen, Levy, and
Decker, 2007). These solutions are inadequate for the general collaborative data analysis
problem, since it often involves diverse datasets, heterogeneous computation resources, and may
contain overlapping or complementary data subsets.

In order to address these challenges and satisfy the functional requirements of this Broad Agency
Announcement (BAA) (see Table 2), Aptima developed DSPACE; a system for distributed
sensing and processing within an adaptive collaborative environment. Our collaborative
distributed data analysis solution leverages the belief propagation algorithm to perform graph
mining operations, such as finding inexact matches to queries or model patterns, or learning
frequent consistent patterns in the data (Levchuk, Shabarekh, and Furjanic, 2011; Levchuk,
Roberts, and Freeman, 2012; Levchuk et al., 2013). We exploit the collaborative nature of belief
propagation and probabilistic interpretation of the messages as globally influencing mechanisms
for local analytical computations.

Approved for Public Release; Distribution Unlimited.
3

Table 1: Functional requirements for distributed collaborative data mining

Requirements in
BAA

What it means D-SPACE solution
(Models/Algorithms)

Benefits

“Agents mine knowledge
from their own collected
data”

Efficient local data
search and inference
@ agents

Prioritization-based Filtering:
local data prioritized / filtered
/ iteratively processed

Reduce time of
data analysis

“Agents represent their
findings in a way that can
be comprehended by
interested parties”

Generalizable
situation
representation &
collaboration @
agents

Belief Propagation Model:
local inference / collaborative
influence (belief) messages

Enable knowledge
transfer

“Agents… identify what
information should be
propagated and to whom
(both individual and shared
objectives)”

Agents send only
required/influencing
information; do not
send their experiences

Belief Propagation Model:
defines what message are
communicated and to whom

Obtain optimal
solutions in
distributed manner
and minimize
communication
needs

“…agents to complete
mission objectives in
dynamic and contested
environments where …
lines of communication can
change over time”

Efficient
communication policy
and adaptive belief
update @ agent

Communication
Compression, Asynchronous
Collaboration, & Agent
Failure Recovery: adaptively
compress sent messages,
belief updates recovery using
delay information, agent state
monitoring

Achieve operation
robust to
communication
constraints

The idea of using belief propagation as a model for collaborative data analysis is not completely
new. Previous research in this area developed the basic building blocks for such a system (Crick,
and Pfeffer, 2003; Pfeffer and Tai, 2012; Anker, Dolev, and Hodd, 2008; Chechetka, and
Guestrin, 2010; Rogers et al., 2011). Our solution is different from previous work in three ways.
First, we use graph matching as a process for collaborative querying, as opposed to full data
graph labeling employed in other models. This enables efficient scalability (our algorithms are
linear in the size of the data) while maintaining high accuracy of retrieval when data is noisy and
queries are ambiguous. For example, even most successful heuristic solutions for inferences on
graphs usually require a number of computations of higher-degree polynomials and are capable
of only exact pattern search (Aggarwal, Khan, & Yan, 2011; Brocheler, Pugliese, &
Subrahmanian, 2010; Khan et al., 2011; Rohloff & Schantz, 2010, 2011). Second, we developed
several improvements to collaborative processing. Our derivation of belief updates makes a
unique compact formulation which couples efficiently with communication compression and
data prioritization operations. We show that communication compression using global belief
values works as well or better than the heuristics using belief residuals (Elidan, Mcgraw, and
Koller, 2006; Sutton, and McCallum, 2007; Gonzalez, Low, and Guestrin, 2009), and developed
exact updates for asynchronous message passing to guarantee optimality under communication
delays. Our information prioritization model is equivalent to adaptive partitioning of the data

Approved for Public Release; Distribution Unlimited.
4

graph, but has a different objective of iterative data processing instead of parallel execution, and
thus is different from static graph segmentation and indexing solutions (Brocheler et al., 2010;
Malewicz et al., 2010) as well as dynamic partitioning methods (Yang et al., 2012). Finally,
although not a part of the above requirements we have developed a unique model for distributed
collaborative pattern learning, where the computational resources learn fragments of the patterns
in their individual data subsets and collaboratively assemble those patterns into globally coherent
structures.

2.3 Research Objectives
The developed DSPACE system aims to achieve the following research objectives:

• Objective 1: formalize a process to perform data querying via inexact graph matching
using the belief propagation algorithm.

• Objective 2: develop a distributed collaborative querying model using the belief
propagation algorithm.

• Objective 3: develop algorithms to define optimized agent task assignment and
collaboration policy and establish a collaboration process using a standard peer-to-peer
communication framework.

• Objective 4: develop strategies and algorithms to improve scalability and reliability of the
distributed collaborative process

• Objective 5: develop a distributed collaborative pattern learning model.
• Objective 6: conduct experimental validation of accuracy, scalability and adaptability of

the solution.

Approved for Public Release; Distribution Unlimited.
5

3. METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Querying Using Inexact Graph Matching
Most web search engines provide users the ability to query data using only a set of keywords.
Keywords are both a simple way to specify the information needs, and the input structure that
requires minimal user interfaces and little to no burden on the users. Recently, answering
keyword queries on graph-structured data has emerged as an important research topic (Bhalotia
et al., 2002; He et al., 2007). Best search engines have been using the graph knowledge stores
behind the scenes to disambiguate the queries, improve the retrieval relevancy and categorizing
the search results (Singhal, 2012), and the researchers have been developing approaches to
convert the keyword queries into query graphs (Tran et al., 2009). This change of search
technologies is rational, because people communicate using stories and not keywords. While
construction of graphical queries might be challenging to general users, the expert users can
define complex queries with little guidance, and the solutions to support their needs have
advanced from SQL query language supporting general database querying to SPARQL1 query
language supporting queries over RDF triple stores. Intelligence analysts in particular have the
need to convert their needs and information requirements into multi-attributed query graphs for
both manual analysis task distribution and automated search over relational data (Levchuk and
Pattipati, 2013). In the following sections we describe our model for distributed collaborative
data search, starting with defining the centralized querying problem, and then describing the
algorithms to distribute the query among multiple heterogeneous computational resources.

3.1.1 Formal definition of data querying as inexact matching problem
Formally, a complex query, also referred to as model, is defined as attributed graph 𝐆𝐌 =
(𝑉𝐌,𝐸𝐌,𝐴𝐌), where 𝑉𝐌 = {1, … ,𝑀} is a set of vertices (representing entities or entity
requirements), 𝐸𝐌 = {(𝑘,𝑚);𝑘,𝑚 ∈ 𝑉𝐌} is a set of edges (representing relations between
entities), and 𝐴𝐌 = �𝑎𝑘𝑚𝐌 � are attributes describing how the entities and their relations may be
observed, i.e. 𝑎𝑘𝑘𝐌 are attributes (e.g., semantic and syntactic descriptors) of entity 𝑘, and 𝑎𝑘𝑚𝐌 are
attributes of the relation (𝑘,𝑚) between entities 𝑘 and 𝑚. The graph 𝐆𝐌 encoded the knowledge
we want to find in the data. Similarly, the knowledge aggregated from multiple sources is
defined using attributed data graph 𝐆𝐃 = (𝑉𝐃,𝐸𝐃,𝐴𝐃), where 𝑉𝐃 = {1, … ,𝑁} (𝑁 ≫ 𝑀) are
entity instances or mentions, 𝐸𝐃 are observed relations between these entities, and 𝐴𝐃 = �𝑎𝑖𝑗𝐃�
define actually observed (extracted from text) attributes of entities 𝑎𝑖𝑖𝐃 and relations 𝑎𝑖𝑗𝐃 . The
mapping from the query (model) graph to the data graph is defined as a 0-1 node-to-node
assignment matrix 𝑆 = ‖𝑠𝑘𝑖‖, where 𝑠𝑘𝑖 = 1 if the node in query 𝑘 is mapped to the entity
mention 𝑖, and 0 otherwise (Figure 2).
We can interpret the query graph as consisting of the questions (model graph’s nodes) with
supported details. The mapping is scored using a conditional posterior probability value
(Levchuk, Roberts, and Freeman, 2012; Levchuk, and Pattipati, 2013):

𝑃(𝑆|𝐃,𝐌) = 𝑒
− 𝑄(𝑆)
𝜂�𝐆𝐌�. (1)

1 http://www.w3.org/TR/rdf-sparql-query/
Approved for Public Release; Distribution Unlimited.

6

http://www.w3.org/TR/rdf-sparql-query/

Here, 𝑄(𝑆) is a quadratic function of the mismatch between the model graph and mapping-
induced subgraph in the data, and the normalization coefficient 𝜂(𝐆𝐌) corresponds to the norm
of the model:

• Mismatch: 𝑄(𝑆) = ∑ 𝑠𝑘𝑖𝐶𝑘𝑖𝑘𝑖�������
𝑛𝑜𝑑𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

+ ∑ 𝑠𝑘𝑖𝑠𝑚𝑗𝐶𝑘𝑚𝑖𝑗𝑘𝑚𝑖𝑗�������������
𝑙𝑖𝑛𝑘 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

 (2)

• Model norm: 𝜂(𝐆𝐌) = ∑ 𝐶𝑘,𝑛𝑢𝑙𝑙𝑘�������
𝑛𝑜𝑑𝑒 𝑛𝑜𝑟𝑚

+ ∑ 𝐶𝑘𝑚,𝑛𝑢𝑙𝑙𝑘𝑚���������
𝑙𝑖𝑛𝑘 𝑛𝑜𝑟𝑚

Here, the linear component corresponds to the mismatches between requested (model) attributes
and observed (data) attributes – of the nodes 𝑘 ∈ 𝑉𝐌 and 𝑖 ∈ 𝑉𝐃, i.e. 𝐶𝑘𝑖~𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ�𝑎𝑖,𝑖𝑫 ,𝑎𝑘,𝑘

𝑴 �,
and the links (𝑘,𝑚) ∈ 𝐸𝐌 and (𝑖, 𝑗) ∈ 𝐸𝐃, i.e. 𝐶𝑘𝑚𝑖𝑗~𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ�𝑎𝑖,𝑗𝑫 ,𝑎𝑘,𝑚

𝑴 �, while 𝐶𝑘,𝑛𝑢𝑙𝑙 and
𝐶𝑘𝑚,𝑛𝑢𝑙𝑙 correspond to the penalties on query nodes and links, e.g. the maximum mismatch or a
mismatch to a node/link with no attributes.

query graph

data graph

(a) Querying is equivalent to finding multiple
subgraphs in data that match closely the query graph (b) A single query match

Query (model graph)

1 2 3

Observations (data graph)

4 5

21

8 9
10

11

6

3

7

𝑠14 = 1 𝑠25 = 1 𝑠36 = 1

𝐌,𝐴𝐌

𝐴𝐃

(c) A mapping output

𝑆 = 𝑠𝑘𝑖 =

𝐆𝐃(𝑋) =

𝑋 = 𝑋 𝑆 = 4,5,6

Figure 2: Illustration of graph matching variables

Responses to the query 𝐆𝐌 are represented as tuple:

〈𝑋,𝐆𝐃(𝑋)〉, (3)

where 𝑋 = 𝑋(𝑆) = �𝑥1, … , 𝑥�𝑉𝐌�� is a vector of the data variables corresponding to the queries
and computed from the mapping matrix 𝑆, i.e. 𝑋 = �𝑥𝑘 ∈ 𝑉𝐃,𝑘 ∈ 𝑉𝐌: 𝑠𝑘𝑥𝑘 = 1�; and 𝐆𝐃(𝑋) =
�𝑉𝐃(𝑋),𝐸𝐃(𝑋),𝐴𝐃(𝑋)� is a subgraph in the data graph induced by 𝑆, i.e. 𝑉𝐃(𝑋) = �𝑥1, … , 𝑥�𝑉𝐌��,
and 𝐸𝐃(𝑆) = {(𝑥𝑘, 𝑥𝑚) ∈ 𝐸𝐃: 𝑘,𝑚 ∈ 𝑉𝐌}. We desire to retrieve responses 〈𝑋,𝐆𝐃(𝑋)〉 which
maximize posterior probability from Eq. (1), or equivalently minimize of quadratic mismatch
function 𝑄(𝑆) in Eq. (2); in other words, we wish to retrieve the subgraphs of the data that match
the query as close as possible.

3.1.2 Solving inexact matching using belief propagation
Due to the factoring of the objective function in Eq. (1), its maximization can be achieved using
a Smoothed Loopy Belief Propagation (SLBP) algorithm (Levchuk, Roberts, and Freeman, 2012;
Levchuk and Pattipati, 2013). We first incrementally update the estimates of marginal
probabilities:

𝑏𝑘(𝑖) = 𝑃(𝒙𝑘 = 𝑖|𝐃,𝐌), (4)

Approved for Public Release; Distribution Unlimited.
7

for which the joint posterior probability in Eq. (1) is maximized. Marginal probability vector
𝑏𝑘 = [𝑏𝑘(𝑖), 𝑖 ∈ 𝑉𝐃] represents a belief about location of query node 𝑘 ∈ 𝑉𝐌 in the observed
dataset.

Original SLBP algorithm obtained the solution to (1) by passing the belief messages in a factor
graph (Levchuk, and Pattipati 2013). The factor graph is constructed based on factorization of
the objective function: it includes the variable nodes and factor nodes (Figure 3). Variable nodes
correspond to query nodes 𝑘 ∈ 𝑉𝐌; those nodes maintain and update messages 𝜇𝑘 = [𝜇𝑘(𝑖), 𝑖 ∈
𝑉𝐃] corresponding to the logarithm of marginal beliefs 𝑏𝑘 (𝜇𝑘(𝑖) = log 𝑏𝑘(𝑖)), and send these
messages to factor nodes. The factor nodes are defined for each link (𝑘,𝑚) ∈ 𝐸𝐌 in the query
corresponding to the relationship between query entities; these nodes maintain and update two
factor messages: forward and backward. Forward messages represent the marginal log-
probabilities of matching model link (𝑚,𝑘) to the data link that ends in node 𝑗, 𝑓(𝑚,𝑘) =
[𝑓(𝑚,𝑘)(𝑗), 𝑗 ∈ 𝑉𝐃]. Forward messages represent an amount of influence that the model node
𝑚 ∈ 𝑉𝐌 exerts on the decision to map model node 𝑘 ∈ 𝑉𝐌 to data node 𝑖 ∈ 𝑉𝐃. Backward
messages represent the marginal log-probabilities of matching model link (𝑚,𝑘) to the data link
that starts in node 𝑗, 𝑟(𝑚,𝑘) = [𝑟(𝑚,𝑘)(𝑗), 𝑗 ∈ 𝑉𝐃]. Backward messages represent an amount of
influence that the model node 𝑘 ∈ 𝑉𝐌 exerts on the decision to map model node 𝑚 ∈ 𝑉𝐌 to data
node 𝑗 ∈ 𝑉𝐃. Essentially, the forward and backward messages can be interpreted as information
influencing the search of one query entity based on the other entities that are linked to it.

(b) Factor graph

(a) Query (model graph)

1

(c) Message passing in BP

𝜇1 𝜇2

2 3

1 2 3(1,2) (2,3)

1 2(1,2)

variable messages

factor messages

𝑟(1,2) 𝑓(1,2)

Variable nodes

Factor nodes

3(2,3)

𝑟(2,3) 𝑓(2,3)

𝜇2 𝜇3

(d) Belief/message update iterations

𝑟(𝑚,𝑘)𝑓(𝑙,𝑚)

m kl

𝜇𝑚

m kl

𝑟(𝑙,𝑚)

m kl

1. Receive
messages

2. Compute
beliefs

3. Generate
& send
messages

𝑓(𝑚,𝑘)

Figure 3: Message passing policy is derived from the structure of the query graph. For the example of query
(a), the factor graph (b) contains five variable nodes and four factor nodes. During message passing, variable

nodes send their messages to factor nodes, and vice versa. In original formulation, the messages are passed
between factor and variable nodes (d)

Formally, the beliefs/messages are updated iteratively in three steps (Figure 3d) using the
following equations:

• Updates at variable nodes (local beliefs):

Approved for Public Release; Distribution Unlimited.
8

𝜇𝑚(𝑖) ∝ −𝐶𝑚𝑖 + ∑ 𝑓(𝑙,𝑚)(𝑖)𝑙: (𝑙,𝑚)∈𝐸𝐌 + ∑ 𝑟(𝑚,𝑙)(𝑖)𝑙: (𝑚,𝑙)∈𝐸𝐌 (5)

• Updates at factor nodes (message generation):

𝑓(𝑚,𝑘)(𝑗) ∝ max𝑖: (𝑖,𝑗)∈𝐸𝐃�−𝐶𝑚𝑘;𝑖𝑗 + 𝜇𝑚(𝑖) − 𝑟(𝑚,𝑘)(𝑖)�, (6)

𝑟(𝑚,𝑘)(𝑗) ∝ max𝒊: (𝑗,𝑖)∈𝐸𝐃�−𝐶𝑚𝑘;𝑗𝑖 + 𝜇𝑘(𝑖) − 𝑓(𝑚,𝑘)(𝑖)�. (7)

According to equations (5-7), in-memory single-machine belief propagation requires a total
number of message updates and memory storage on the order of O(max{|𝑉𝐌|, |𝐸𝐌|} ×
max{|𝑉𝐃|, |𝐸𝐃|}) operations/variables per iteration, while the number of iterations to
convergence is on the order of the length of longest path in model network. Thus, since the size
of the query graph is usually small, the belief propagation algorithm has worst-case linear
complexity in the size of the data graph.

In our model, we perform the “smoothing” of the belief updates using reinforcement learning,
where the messages 𝜇𝑚(𝑖) computed via Eq. (5) at time 𝑡 are used to incrementally update the
smoothed belief estimates �̂�𝑚𝑡 based on message estimates �̂�𝑚𝑡−1 calculated at time 𝑡 − 1:

�̂�𝑚𝑡 = (1 − 𝛼)�̂�𝑚𝑡−1 + 𝛼𝜇𝑚𝑡 (8)
The Eq. (8) attempts to avoid the errors introduced by cycles in the factor graph, which otherwise
would create oscillations in the beliefs 𝜇𝑚(𝑖), and also provides the effective instrumentation for
accounting for message passing delays. This results in using a weighted history of estimates:

�̂�𝑚𝑡 = (1 − 𝛼)𝑡𝜇𝑚0 + 𝛼 ∑ (1 − 𝛼)𝑡−𝜏𝜇𝑚𝜏𝑡
𝜏=1 (9)

When the algorithm terminates at iteration 𝑇, we compute the marginal probabilities in Eq. (4)
from beliefs:

𝑏𝑘(𝑖) ∝ 𝑒𝜇�𝑚𝑇 (𝑖) (10)

3.1.3 Generating query output
The query tuples 〈𝑋,𝐆𝐃(𝑋)〉 are generated using probability values [𝑏𝑘(𝑖)],∀𝑘 ∈ 𝑉𝐌,∀𝑖 ∈ 𝑉𝐃
using several methods, including K-best maximum weight assignment, marginal probability
sampling, conditional sampling, and belief re-evaluation. We describe these methods below.

K-best maximum weight assignment
We approximate the total probability of matching as the product of marginal probabilities:

Pr(𝑋) ~∏ 𝑏𝑚(𝑥𝑚)𝑚∈𝑉𝐌 (11)

Then the matching can be found as a linear assignment that maximizes the total reward
∑ �̂�𝑚𝑇 (𝑥𝑚).𝑘∈𝑉𝐌 To minimize the complexity of solution to assignment problem, we filter the
dataset by finding the subset of feasible data points:

𝑉�𝐃 = {𝑖 ∈ 𝑉𝐃: max𝑘 𝑏𝑘(𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (12)
We then solve a 0-1 assignment problem:

max∑ ∑ �̂�𝑚𝑇 (𝑖)𝑠𝑘𝑖𝑖∈𝑉�𝐃𝑚∈𝑉𝐌 (13)

𝑠. 𝑡. �
∑ 𝑠𝑚𝑖𝑖∈𝑉𝐃 = 1
𝑠𝑚𝑖 ∈ {0,1}

Approved for Public Release; Distribution Unlimited.
9

The set of 𝐾 ranked “best” solutions to (13) can be obtained using Murty’s algorithm (Murty,
1968), which has a computational complexity of 𝑂 �𝐾�𝑉�𝐃�

3
� (Pascoal, Captivo, and Clímaco,

2003). Since the set �𝑉�𝐃� is usually very small, this computational complexity is tractable even
for large datasets. The resulting mappings 𝑋 are then re-ordered using the mismatch cost
𝑄(𝑋) = ∑ 𝐶𝑘𝑥𝑘𝑘∈𝑉𝐌 + ∑ 𝐶𝑘,𝑚;𝑥𝑘,𝑥𝑚(𝑘,𝑚)∈𝐸𝐌 .

The K-best assignment above may result in the solutions that are far away from optimal, when
there are multiple data subgraphs close to the query graph, or subgraph permutations with the
same mismatch cost (often the case for homogeneous and/or symmetrical data/query). To avoid
this issue, the sampling methods described below can produce improved set of mappings.

Marginal probability sampling

In this method, we generate the mapping 𝑋 = �𝑥1, 𝑥2, … , 𝑥�𝑉𝐌�� using binomial distribution,
where for each 𝑘 ∈ 𝑉𝐌 we generate the value 𝑥𝑘 ∈ 𝑉𝐃 by drawing samples with probabilities
𝑝𝑖 = Pr(𝑥𝑘 = 𝑖) = 𝑏𝑘(𝑖). We then compute a cost of the resulting matching 𝑄(𝑋), and select the
set of mappings 𝑋 that have the smallest score.

Conditional sampling
To derive this method, we draw inspiration from collapsed Gibbs sampling. First, we rewrite the
mismatch of mapping 𝑋 as:

𝑄(𝑋) = ∑ ∑ 𝐶𝑘𝑖𝑠𝑘𝑖𝑖∈𝑉𝐃𝑘∈𝑉𝐌 + ∑ ∑ 𝐶𝑘,𝑚;𝑖𝑗𝑠𝑘𝑖𝑠𝑚𝑗(𝑖,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌 (14)

where 𝑠𝑘𝑖 = � 1, 𝑥𝑘 = 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. Accordingly, if a subset of the mapping variables 𝑋𝐾−1 =

{𝑥1, 𝑥2, … , 𝑥𝐾−1} is known (𝐾 ≤ 𝑁), we can find the expected value of the conditional mismatch
as

𝐸�𝑄(𝑋|𝑋𝐾−1)� = 𝐸𝑝�𝑋|𝑋𝐾−1��𝑄(𝑋)�~∑ 𝐶𝑘𝑥𝑘
𝐾−1
𝑘=1 + ∑ ∑ 𝐶𝑘𝑖𝑏𝑘(𝑖)𝑖∈𝑉D

𝑁
𝑘=𝐾

+∑ ∑ 𝐶𝑘,𝑚;𝑥𝑘,𝑗𝑏𝑚(𝑗)𝑗:(𝑥𝑘,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘<𝐾,𝑚≥𝐾

+ ∑ ∑ 𝐶𝑘,𝑚;𝑖,𝑥𝑘𝑏𝑘(𝑖)𝑖:(𝑖,𝑥𝑚)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘≥𝐾,𝑚<𝐾

 (15)

+∑ ∑ 𝐶𝑘,𝑚;𝑥𝑘,𝑥𝑚(𝑖,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘<𝐾,𝑚<𝐾

+ ∑ ∑ 𝐶𝑘,𝑚;𝑖𝑗𝑏𝑘(𝑖)𝑏𝑚(𝑗)(𝑖,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘≥𝐾,𝑚≥𝐾

Moreover, we observe that conditioning on specific value 𝑥𝐾 = 𝑖 yields:

𝐸�𝑄(𝑋|𝑋𝐾−1, 𝑥𝐾 = 𝑖)�~∑ 𝐶𝑘𝑥𝑘
𝐾−1
𝑘=1 + ∑ ∑ 𝐶𝑘𝑖𝑏𝑘(𝑗)𝑗∈𝑉𝐃

𝑁
𝑘=𝐾

+∑ 𝐶𝑘,𝐾;𝑥𝑘,𝑖𝑘<𝐾:(𝑘,𝐾)∈𝐸𝐌 + ∑ ∑ 𝐶𝑘,𝑚;𝑥𝑘,𝑗𝑏𝑚(𝑗)𝑗:(𝑥𝑘,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘<𝐾,𝑚>𝐾

+∑ ∑ 𝐶𝑘,𝑚;𝑖,𝑥𝑘𝑏𝑘(𝑖)𝑖:(𝑖,𝑥𝑚)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘>𝐾,𝑚<𝐾

+ ∑ 𝐶𝐾,𝑚;𝑖,𝑥𝑘𝑚<𝐾:(𝐾,𝑚)∈𝐸𝐌 (16)

+∑ ∑ 𝐶𝑘,𝑚;𝑥𝑘,𝑥𝑚(𝑖,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘<𝐾,𝑚<𝐾

+ ∑ ∑ 𝐶𝑘,𝑚;𝑖𝑗𝑏𝑘(𝑖)𝑏𝑚(𝑗)(𝑖,𝑗)∈𝐸𝐃(𝑘,𝑚)∈𝐸𝐌:
𝑘>𝐾,𝑚>𝐾

+∑ ∑ 𝐶𝐾,𝑚;𝑖𝑗𝑏𝑚(𝑗)𝑗:(𝑖,𝑗)∈𝐸𝐃𝑚>𝐾:(𝐾,𝑚)∈𝐸𝐌 + ∑ ∑ 𝐶𝑘,𝐾;𝑗𝑖𝑏𝑘(𝑗)𝑗:(𝑗,𝑖)∈𝐸𝐃𝑘>𝐾:(𝑘,𝐾)∈𝐸𝐌

Hence, we can compute a conditional sampling probability for variable as follows:

Approved for Public Release; Distribution Unlimited.
10

𝑝𝑖𝐾 = Pr(𝑥𝐾 = 𝑖|𝑋𝐾−1) ∝𝑒𝐸�𝑄�𝑋|𝑋𝐾−1,𝑥𝐾=𝑖��

~ exp�
∑ 𝐶𝑘,𝐾;𝑥𝑘,𝑖𝑘<𝐾:(𝑘,𝐾)∈𝐸𝐌 + ∑ 𝐶𝐾,𝑚;𝑖,𝑥𝑘𝑚<𝐾:(𝐾,𝑚)∈𝐸𝐌

+∑ ∑ 𝐶𝑘,𝐾;𝑗𝑖𝑏𝑘(𝑗)𝑗:(𝑗,𝑖)∈𝐸𝐃𝑘>𝐾:(𝑘,𝐾)∈𝐸𝐌 + ∑ ∑ 𝐶𝐾,𝑚;𝑖𝑗𝑏𝑚(𝑗)𝑗:(𝑖,𝑗)∈𝐸𝐃𝑚>𝐾:(𝐾,𝑚)∈𝐸𝐌
� (17)

Then, the for each 𝐾 ∈ 𝑉𝐌 we generate the value 𝑥𝐾 ∈ 𝑉𝐃 by drawing samples with probabilities
𝑝𝑖𝐾 computed in Eq. (17).

Belief re-evaluation
The sampling methods described above incorrectly use the global marginal posterior values in
the place of local marginal. That is, the posterior probabilities must be re-evaluated during the
mapping generation to obtain accurate estimates of 𝑏𝐾(𝑖|𝑋𝐾−1) = Pr(𝑥𝐾 = 𝑖|𝑋𝐾−1,𝐃,𝐌).

We can achieve this by “continuing” belief propagation algorithm’s iterations over a small subset
of data points 𝑉�𝐃 found as in Eq. (12) by thresholding the marginal posterior probabilities. The
updates will be substituting the mismatch values in Equations (4)-(6) as follows:

• If we map 𝑚 ∈ 𝑉𝐌 to data 𝑖 ∈ 𝑉𝐃, i.e. 𝑥𝑚 = 𝑖, then 𝐶𝑚𝑗𝑛𝑒𝑤 ← �
0, 𝑖𝑓 𝑚 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑖
∞, 𝑖𝑓 𝑚 = 𝑘 𝑜𝑟 𝑗 = 𝑖
𝐶𝑚𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Conducting 1-3 iterations of belief propagation will result in corrections to the 𝑏𝑘(𝑖) values,
which can be used in multinomial-based sampling to generate the remaining mapping values.

3.2 Distributed Collaborative Querying Model
Now that we have defined and formalize a procedure for data querying using inexact graph
matching we proceed to develop a mechanism that enables querying in a distributed yet
collaborative fashion. In the following sections we will provide an overview of the distributed
pattern matching problem and our proposed solution, which includes a formal approach to task
assignment for the various processing units (agents) and the distributed collaborative formulation
of the belief propagation algorithm.

3.2.1 Problem Formulation
We assume that the data graph 𝐆𝐃 is partitioned into subgraphs 𝐆𝐃(𝑢) such that

𝐆𝐃 = ⋃ 𝐆𝐃(𝑢) 𝑢∈𝑈 , (18)

Data Accessibility Results

Query 1

Query 2

𝐆𝐃 1

𝐆𝐃 2

𝐆𝐃 3

Figure 4: Data accessibility and query results across partitions

Approved for Public Release; Distribution Unlimited.
11

where 𝑈 is a set of distributed data stores with corresponding computational units, or agents 𝑢.
Specifically, we define the data graph partition based on the partition of the set of data nodes 𝑉𝐃
into subsets 𝑉𝐃(𝑢), where 𝑉𝐃 = ⋃ 𝑉𝐃(𝑢) 𝑢∈𝑈 , while the subsets 𝑉𝐃(𝑢) may overlap and the results
to queries could be present across overlapping data subsets (Figure 4). Also, we assume that each
data subgraphs 𝐆𝐃(𝑢) = �𝑉𝐃(𝑢),𝐸𝐃(𝑢),𝐴𝐃(𝑢)� contains all the links associated with its nodes, i.e.
𝐸𝐃(𝑢) = �(𝑖, 𝑗) ∈ 𝐸𝐃: 𝑖 ∈ 𝑉𝐃(𝑢)⋀𝑗 ∈ 𝑉𝐃(𝑢)�, and the attributes 𝐴𝐃(𝑢) contain a subset of
attributes in 𝐴𝐃 for corresponding nodes and links, that is 𝐴𝐃(𝑢) = �𝑎𝑖𝑗

𝐃(𝑢)[𝑘],𝑘 ∈ 𝐾(𝑢)�. For
example, the data may be segmented geographically (e.g. when the nodes are areas or tracks), in
which case node subsets are non-overlapping: 𝑉𝐃(𝑢) ∩ 𝑉𝐃(𝑣) = ∅ for 𝑢 ≠ 𝑣. Or the data may be
collected over the same areas or entities but by different sensors (e.g., GMTI captures the motion
of the objects, while LIDAR captures the characteristics of their 3D shapes), in which case the
attribute subsets are non-overlapping: 𝐴𝐃(𝑢) ∩ 𝐴𝐃(𝑣) = ∅ for 𝑢 ≠ 𝑣.

Distributed graph matching model, as described below, converts the query graph 𝐆𝐌 into the
tasks to assign to computation units 𝑢 ∈ 𝑈.

3.2.2 Defining tasks for computation units by restructuring the factor graph
To define the local tasks for computational units 𝑢 ∈ 𝑈, we make the factor graph such as in
Figure 5a more compact by splitting each factor node (𝑘,𝑚) into two factors (Figure 5b) that
compute forward and backward messages. This allows us to define the query assignment task
graph for queries of any structure (Figure 4c shows an example of the task graph for example
query in Figure 3a). A task, denoted as Τ𝑚(𝑖, 𝑗), is defined by aggregating the computations of:

• map-log messages 𝜇𝑚(𝑖) from Eq. 5;
• messages from forward factors of all outgoing links �𝑓(𝑚,𝑘)(𝑗)|∀𝑘: (𝑚,𝑘) ∈ 𝐸𝐌� from

Eq. (6); and
• messages from backward factors of all incoming links �𝑟(𝑘,𝑚)(𝑗)|∀𝑘: (𝑘,𝑚) ∈ 𝐸𝐌� from

Eq. (7).

1 2f(1,2)

messages to send
𝑓(1,2)

r(1,2)

Task 1 Task 2

𝑟(1,2)

3

𝑓(2,3)

Task 3

𝑟(2,3)

r(2,3)f(2,3)

(a) Original factor graph

𝜇1 𝜇2

1 2(1,2)

variable messages

factor messages

𝑟(1,2) 𝑓(1,2)

(b) Modified factor graph

𝜇1 𝜇2
1 2f(1,2)

messages to send

𝑓(1,2)

r(1,2)

𝑟(1,2)

(c) Query assignment task graph for example in Figure 3a

Figure 5: Design of the tasks for distributed computational units

Approved for Public Release; Distribution Unlimited.
12

Each task Τ𝑚(𝑖, 𝑗) is assigned to one or more computational units, although in most settings an
assignment is made to a single unit.

3.2.3 The case of complete data access
In some situations the computational units 𝑢 ∈ 𝑈 may have access to the same data, i.e. 𝐆𝐃(𝑢) =
𝐆𝐃. In this case, we define and assign the tasks 𝚻𝑚 = {Τ𝑚(𝑖, 𝑗), 𝑖 ∈ 𝑉𝐃, 𝑗 ∈ 𝑉𝐃} to compute all
the mapping and forward-backward messages. Each such task 𝚻𝑚 corresponds to a single node
𝑚 ∈ 𝑉𝐌 in the query graph. The assignment of tasks can then be conducted based on the
capabilities of computational units. This assignment is equivalent to partitioning (or cutting) the
query graph into subgraphs, and trading-off the size of the subgraphs and the amount of
corresponding communication, which is in the order of number of links separated by
corresponding graph cuts (Levchuk, and Pattipati, 2013; Figure 6).

(a) Example query graph

(b) Good query partitioning: balanced
workload and low communication

(c) Bad query partitioning: imbalanced
workload and high communication

3 4

5

6

7
8

1

2

9

3 4

5

6

7
8

1

2

9

3 4

5

6

7
8

1

2

9

𝑢1

𝑢2

𝑢3

3 3 3

1 1 1

u1 u2 u3

workload communication

4
3

2
3 3

2

u1 u2 u3

workload communication

𝑢1

𝑢2

𝑢3

Figure 6: Examples of query partitioning for distributed assignment

3.2.4 Collaborative distributed belief propagation
Let’s assume that computational units 𝑢 ∈ 𝑈 have access to data nodes 𝑉𝐃(𝑢) ⊆ 𝑉𝐃 and are
assigned to process query nodes 𝑉𝐌(𝑢) ⊆ 𝑉𝐌. We make two notations (Figure 7):

• 𝑉�⃗ 𝐃(𝑢) is the subsets of data nodes connected with forward links from nodes 𝑉𝐃(𝑢), i.e.
𝑉�⃗ 𝐃(𝑢) = �𝑗 ∈ 𝑉𝐃:∃𝑖 ∈ 𝑉𝐃(𝑢)⋀(𝑖, 𝑗) ∈ 𝐸𝐃�

• �⃖��𝐃(𝑢) is the subsets of data nodes connected with backward links to nodes 𝑉𝐃(𝑢), i.e.
�⃖��𝐃(𝑢) = �𝑖 ∈ 𝑉𝐃:∃𝑗 ∈ 𝑉𝐃(𝑢)⋀(𝑖, 𝑗) ∈ 𝐸𝐃�

Approved for Public Release; Distribution Unlimited.
13

3 4

5

6

7
8

1

2

9

𝑉𝐃 𝑢 = 4,5,6

𝑉𝐃 𝑢 = 𝟕

𝑉𝐃 𝑢 = 3

Figure 7: Example of subsets of nodes connected to and from data nodes accessed by the computational unit

Then we can write the steps to execute belief propagation in distributed manner:

• Step 1 – Initialization: each computational unit 𝑢 ∈ 𝑈 initializes the beliefs and
messages:

o ∀𝑚 ∈ 𝑉𝐌(𝑢), uniformly initialize beliefs �̂�𝑚0 = {�̂�𝑚0 (𝑖),∀𝑖 ∈ 𝑉𝐃(𝑢)}

o ∀𝑚 ∈ 𝑉𝐌(𝑢), uniformly initialize external messages:

 ∀𝑙: (𝑚, 𝑙) ∈ 𝐸𝐌 uniformly initialize forward message 𝑓(𝑚,𝑙)
0 =

�𝑓(𝑚,𝑙)
0 (𝑗), 𝑗 ∈ 𝑉�⃗ 𝐃(𝑢)�, where 𝑓(𝑚,𝑙)

0 (𝑗) = − ln�𝑉�⃗ 𝐃(𝑢)�

 ∀𝑙: (𝑙,𝑚) ∈ 𝐸𝐌 uniformly initialize backward message 𝑟(𝑙,𝑚)
0 =

�𝑟(𝑙,𝑚)
0 (𝑖), 𝑖 ∈ �⃖��𝐃(𝑢)�, where 𝑟(𝑙,𝑚)

0 (𝑗) = − ln��⃖��𝐃(𝑢)�

• Step 2 – Belief update: each computational unit 𝑢 ∈ 𝑈 updates beliefs �̂�𝑚𝑡 based on its
internally computed messages and messages received from other agents, as described in
Eq. 5

• Step 3 – External message generation: each computational unit 𝑢 ∈ 𝑈 computes the
messages 𝑓(𝑚,𝑙)

𝑡+1 , 𝑟(𝑙,𝑚)
𝑡+1 based on belief messages �̂�𝑚𝑡 and external messages received from

other units 𝑓(𝑚,𝑙)
𝑡 , 𝑟(𝑙,𝑚)

𝑡 , as described in Eq. (6-7).

• Step 4 – Communication: each computational unit 𝑢 ∈ 𝑈 makes decisions to
communicate the message or not. It can communicate to agent 𝑣 ∈ 𝑈 the following
messages:

o Forward messages: �𝑓(𝑚,𝑙)
𝑡+1 (𝑗),∀𝑙 ∈ 𝑉𝐃(𝑣),∀𝑗 ∈ 𝑉�⃗ 𝐃(𝑢) ∩ 𝑉𝐃(𝑣)�, (19)

o Backward messages: �𝑟(𝑙,𝑚)
𝑡+1 (𝑖),∀𝑙 ∈ 𝑉𝐃(𝑣),∀𝑖 ∈ �⃖��𝐃(𝑢) ∩ 𝑉𝐃(𝑣)�, (20)

The units iterate steps 2-4 until maximum number of iterations is reached or the convergence
criteria are met. These four steps define a collaborative distributed data analysis because the
units influence each other belief computations using communicated forward and backward
messages. These messages encode the influence that one unit tries to exert on the beliefs of
another unit.

After the belief propagation process is completed at some time 𝑇, the units send their beliefs �̂�𝑚𝑇
to a unit responsible for generating a final solution. It proceeds by combining received messages,

Approved for Public Release; Distribution Unlimited.
14

computing marginal mapping probabilities using Eq. (10), and generating query outputs as
described in Section 3.1.3.

3.3 Scalability Improvements to Collaborative Query Model
Complexity of collaborative querying using inexact graph matching can be further reduced by
limiting local computations and reducing communication requirements. Number of local
computations can be reduced at every iteration if the computational units process a subset of
accessible data nodes. Communication requirements can be reduced by compressing the number
of forward/backward messages. We provide the details of these improvements in the following
sections.

3.3.1 Data Prioritization
The computational complexity of the original distributed belief propagation algorithm, computed
as the number of summation and maximization operations, for both belief updates and message
generation, per each model node and link, is equal to 𝑂�max (�𝑉𝐃(𝑢)�, �𝐸𝐃(𝑢)�)�. While this
means complexity is linear in the size of the data, many of the computations are unnecessary
since the number of relevant nodes is small. We can reduce this complexity by orders of
magnitude if we sort the data nodes using a priority measure and select a subset of nodes 𝑉𝐃(𝑢,𝑡)
with highest priorities. We define a priority of data node 𝑖 ∈ 𝑉𝐃(𝑢) using normalized belief
estimates maximized over model nodes:

𝜌(𝑡)(𝑖) = max𝑚 𝜇𝑚
(𝑡)(𝑖) (21)

The notation 𝜇𝑚
(𝑡) represents the normalized belief estimates:

𝜇𝑚
(𝑡)(𝑖) = �̂�𝑚𝑡 (𝑖) − log∑ 𝑒𝜇�𝑚𝑡 (𝑖)

𝑖 (22)

These messages are initialized together with belief messages: 𝜇𝑚
(0)(𝑖) = −𝐶𝑚𝑖 − log∑ 𝑒−𝐶𝑚𝑖𝑖

(we change initialization from uniform to incorporating the mismatch values), and accordingly
priorities are initialized as 𝜌(0)(𝑖) = max𝑚{−𝐶𝑚𝑖 − log∑ 𝑒−𝐶𝑚𝑖𝑖 }. Normalization is essential for
correct updates. The higher the priority 𝜌(𝑡)(𝑖) is, the more probable at time 𝑡 it is that the data
node 𝑖 matches at least one of the query nodes asigned to the agent.

After data node priorities are initialized, we select the subset of nodes with highest priorities
𝑉𝐃(𝑢,𝑡) and construct the heap to store the priorities of remaining nodes 𝑉𝐃(𝑢)\𝑉𝐃(𝑢,𝑡) . At every
iteration, as the new marginal posterior probability is computed �̂�𝑚𝑡+1(𝑖) for node 𝑖 ∈ 𝑉𝐃(𝑢,𝑡), we
update the priority 𝜌(𝑡+1)(𝑖) according to Eq. (21) and compare with the root (best value) of the
heap. If the updated priority is smaller, the node 𝑖 ∈ 𝑉𝐃(𝑢,𝑡) is removed from 𝑉𝐃(𝑢,𝑡) and its value
𝜌(𝑡+1)(𝑖) added to a heap, while the root of the heap 𝑗 is added to the “relevant node set” 𝑉𝐃(𝑢,𝑡).
We can formally write the update of the relevant set as:

𝑉𝐃(𝑢,𝑡)[0] = 𝑉𝐃(𝑢,𝑡)

𝑉𝐃(𝑢,𝑡)[𝑘 + 1] = �
�𝑉𝐃(𝑢,𝑡)[𝑘]\𝑖𝑘� ∪ 𝑗𝑘, 𝑖𝑓 𝜌(𝑡)(𝑖𝑘) < 𝜌(𝑡)(𝑗𝑘)

𝑉𝐃(𝑢,𝑡)[𝑘], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(23)

𝑉𝐃(𝑢,𝑡+1) = 𝑉𝐃(𝑢,𝑡)[|𝐃(𝑢, 𝑡)|]

Approved for Public Release; Distribution Unlimited.
15

where 𝑗𝑘 is a root of the heap structure for nodes �𝑗 ∈ 𝑉𝐃(𝑢)\𝑉𝐃(𝑢,𝑡)[𝑘]�. Even considering added
computational complexity of heap updates, the reduction from processing set 𝑉𝐃(𝑢) to a subset of
nodes 𝑉𝐃(𝑢,𝑡) provides equivalent reduction in computational complexity of updates in equations
(5-7).

3.3.2 Communication Compression
The number of values in communicated forward and backward messages from Eq. (19-20) are
equal in the original formulation to �𝑉�⃗ 𝐃(𝑢)� and ��⃖��𝐃(𝑢)�, respectively, can be large, especially
when all computational units have access to the same data. However, not all of these messages
are relevant. For example, Figure 8 shows how values of forward belief messages change over
time: the support of relevant values is gradually reducing. Accordingly, we first use a simple
filtering by communicating only a subset of forward/backward messages with largest values. The
messages that are not received are replaced with low bound values. Second, we reduced the
number of communicated messages by quantizing the message value vector. Quantization uses
the hierarchical clustering of the data nodes (Figure 9b) and makes the decision to send a single
value for the group of nodes from a cluster, or all individual values. These decisions are
generated in a bottom-up manner using the metric of entropy at the cluster level (Figure 9c).
Using the definition of belief messages, for a cluster 𝑐 and a set of data nodes in this cluster 𝑉𝑐𝐃,
we compute the entropy for forward and backward messages as 𝐸(𝑚,𝑘)

𝑓 = −∑ 𝑓(𝑚,𝑘)
𝑡 (𝑗) ∙𝑗∈𝑉𝑐𝐃

𝑒𝑓(𝑚,𝑘)
𝑡 (𝑗) and 𝐸(𝑚,𝑘)

𝑟 = −∑ 𝑟(𝑚,𝑘)
𝑡 (𝑗) ∙ 𝑒𝑟(𝑚,𝑘)

𝑡 (𝑗)
𝑗∈𝑉𝑐𝐃 , respectively. Consequently, a compressed

vector represents a quantization of the belief message.
Iteration1

support

Iteration3

Iteration7

Iteration5

Iteration9

Figure 8: Example of changes in the values of forward messages over iterations

3.3.3 Complexity Reduction Using Question-Answer Process
One of the challenges in collaborative data querying is the need for computational resources to
communicate significant amounts of information to each other. While this information can be
filtered and compressed, there will still be a significant amount of irrelevant information that one
unit may send to another. To avoid this problem, as well as allow units to better discriminate
seemingly equivalent entities/nodes in their local data, units can employ a question-answer
process that will allow them to request information of interest rather than push this information
to other units. Figure 10 shows an example of this process in the case of a single model node
assigned to each of two units. Each unit has computed a current estimate of node-to-node
associations between model and data graphs. Then the sets of high-scoring mappings will be
limited, e.g., data nodes {2,5} and {5,8} for agents 𝑢 and 𝑣 respectively (dotted red arrows in
Figure 10). Then, instead of communicating all computed forward/backward messages, each
agent asks a question about their own nodes of interest, and will receive only the messages
corresponding to these nodes. This will result in significant reduction in amount of
communication between the agents (4x reduction in the example depicted in Figure 10, where
the communication over dashed directions is not needed).

Approved for Public Release; Distribution Unlimited.
16

(a) Example data and query graphs

3 4

5

6

7

8

1

2

10

9

(c) Original and compressed forward 𝑓 1,2 and backward 𝑟 1,2
message values

3 4 5 6 7 81 2 109

c1 c2 c3 c4

c5 c6

c7

data graph

query
graph 1

2

4

3 1 2 3 4 5 6 7 8 9 10
forward -10 -10 -5 -5 -1 -1 -1 -1 -1 -1
backward -5 -5 -5 -1 -10 -10 -1 -10 -10 -10

1->2

link type
Data Nodes

-5 -5 -1 -1 -1 -1-10 -10 -1-1

c1 c2 c3 c4

c6 -1
-5-10

Compressed forward 𝑓1,2 msg

-5 -1 -10-10 -1 -10-5 -5 -10-10

c1 c4
-10-5

Compressed backward 𝑟 1,2 msg

Compression
ratio = 3/10

Compression
ratio = 7/10

send this
value

original values
have duplicates

send

Figure 9: Example of belief message compression

Agent 𝑢
Controlled model/query

 1 2

4 3

5

1

2

Agent 𝑣

Accessed data

6

8 10

11

12

13

9

Controlled model/query

Accessed data

7

14

𝑓 1,2
𝑢→𝑣 𝑛 𝑗

𝜇1
𝑢 𝑛 𝑖

Agent
Collaboration

𝑟 1,2
𝑣→𝑢 𝑛 𝑖

𝜇2
𝑣 𝑛 𝑗

𝑎22
𝑫(𝑢)

𝑎55
𝑫(𝑢)

𝑎88
𝑫(𝒗)

𝑎55
𝑫(𝒗)5

𝑟 1,2
𝑣→𝑢 𝑛 6

𝑓 1,2
𝑢→𝑣 𝑛 5

𝑟 1,2
𝑣→𝑢 𝑛 1

𝑓 1,2
𝑢→𝑣 𝑛 12

𝑟 1,2
𝑣→𝑢 𝑛 2

𝑓 1,2
𝑢→𝑣 𝑛 8

𝑟 1,2
𝑣→𝑢 𝑛 5

𝑓 1,2
𝑢→𝑣 𝑛 9

Messages filtered by
Q-A process

Only these messages need to
be communicated

Figure 10: Question-answer process can reduce number of communicated belief messages

3.4 Collaborative Pattern Learning
Oftentimes structured queries may be weakly designed due to the lack of understanding of
phenomena present in the dataset. Also, users may be interested in finding normal (frequent) and

Approved for Public Release; Distribution Unlimited.
17

abnormal patterns occurring in the dataset under investigation. This can be achieved by
distributed collaborative pattern learning.

3.4.1 Types of Learning
Depending on what observed data is accessible by which computational units, we can distinguish
two classes of learning: compositional learning, and unified learning (Figure 11). In
compositional learning the units locally learn frequent patterns of node connections in the data
they have access to, and then combine these patterns into higher-level “composite” patterns
constructed by stitching learned pattern graphlets (Figure 11a). In unified learning, units may
learn the patterns of the same type, and then fuse these together to come up with more general
frequent graphs (Figure 11b). In this work, we focused on compositional learning, since in many
of the problems we encounter, computational units have access to distinct sensor modalities.
Accordingly, using a compositional approach to pattern learning would be more appropriate due
to existence of different connections across diverse sensor modalities.

(a) Compositional pattern learning (b) Unified pattern learning

Full Data Graph, with
pattern candidates

outlined
(unknown in advance)

Partition of data
graph to agents

Unit 1 Unit 2

Learned
local

Patterns

Unified Patterns

Unit 1 Unit 2

Composite Pattern

Figure 11: Different types of pattern learning

3.4.2 Learning Patterns from Graph Instances
In previous work, we developed a model for learning frequent graph patterns in the relational
data (Levchuk, Roberts, and Freeman, 2012). Our pattern learning algorithm was based on
segmenting the graph into the subgraphs based on topological matching. The training corpus was
created by clustering these subgraphs based on the attributed graph similarity, creating the
“instances” from which the pattern is learned using a variant of expectation maximization (EM)
algorithm (Dempster, Laird, and Rubin, 1977) that performs iterative update of model-to-data
mappings and model’s attributes. For this work, we modified the learning algorithm to avoid

Approved for Public Release; Distribution Unlimited.
18

computing exact mappings at every iteration, and develop a distributed version of the learning
model.

Formally, the attributes of the frequent graph pattern 𝐴𝐌 = �𝑎𝑘𝑛𝐌 � are learned from a set of 𝑇
observations of subgraphs 𝐆𝐃(𝑡) = �𝑉𝐃(𝑡),𝐸𝐃(𝑡),𝐴𝐃(𝑡)�, 𝑡 = 1, … ,𝑇 with attributes 𝐴𝐃(𝑡) =
�𝑎𝑖𝑗𝐃(𝑡)�, which we call a learning corpus. We estimate the attributes of the pattern 𝐌 that most
likely generated such data by maximizing posterior probability of the pattern given its observed
instances (in the equations below we use notations of attributes 𝐴, instead of graphs 𝐆, for both
model and data under the probability functions without loss of generality and for clarity of the
expositions):

𝐴𝐌 = arg max𝐴 𝑃(𝐴|𝐴𝐃(𝑡), 𝑡 = 1, … ,𝑇). (24)

We use a variant of the EM algorithm that treats mappings as unobserved variables and
iteratively updates pattern attribute parameters. We modified EM from working with the
likelihood function to using a posterior distribution. This was dictated by the need to avoid
dealing with the large number of components of the objective function in the expectation step.
The algorithm proceeds in two iterative steps:

• In the expectation step, also called mapping updating step, we find components of the
distribution 𝑝𝑡 = 𝑃�𝑆𝑡 |𝐴𝑛𝐌,𝐴𝐃(𝑡)�, so that the expected value of log-posterior function

can be calculated: 𝑄(𝐴|𝐴𝑛𝐌) = 𝐸𝑆𝑡|𝐴𝐷(𝑡),𝐴𝑛𝐌 �log 𝑃�𝐴, 𝑆𝑡�𝐴𝐃(𝑡)��.

• In the maximization step, also referred to as parameter updating step, we compute new
graph pattern attributes 𝐴𝑛+1𝐌 = �𝑎𝑘𝑚

𝐌(𝑛+1)� to maximize conditional expected log
posterior 𝐴𝑛+1𝐌 = arg max𝑄(𝐴|𝐴𝑛𝐌).

The expectation step is equivalent to conducting iterations via Eq. (5)-(7), to obtain estimates of
node and link probabilities, i.e., beliefs and forward-backward messages values
𝜇𝑘

(𝑛,𝑡)(𝑖), 𝑟(𝑘,𝑚)
(𝑛,𝑡) (𝑖),𝑓(𝑘,𝑚)

(𝑛,𝑡) (𝑗), for mapping at step 𝑛 a model graph with current attributes 𝐴𝑛𝐌 =

�𝑎𝑘𝑚
𝐌(𝑛)� to the data graph with attributes 𝐴𝐃(𝑡):

𝜇𝑚
(𝑛,𝑡)(𝑖) ∝ −�𝑎𝑚𝑚

𝐌(𝑛) − 𝑎𝑖𝑖
𝐃(𝑡)� + ∑ 𝑓(𝑙,𝑚)

(𝑛,𝑡)(𝑖)𝑙: (𝑙,𝑚)∈𝐸𝐌 + ∑ 𝑟(𝑚,𝑙)
(𝑛,𝑡)(𝑖)𝑙: (𝑚,𝑙)∈𝐸𝐌 (25)

𝑓(𝑚,𝑘)
(𝑛,𝑡) (𝑗) ∝ max𝑖: (𝑖,𝑗)∈𝐸𝐃 �−�𝑎𝑚𝑘

𝐌(𝑛) − 𝑎𝑖𝑗
𝐃(𝑡)� + 𝜇𝑚

(𝑛,𝑡)(𝑖) − 𝑟(𝑚,𝑘)
(𝑛,𝑡) (𝑖)� (26)

𝑟(𝑚,𝑘)
(𝑛,𝑡) (𝑗) ∝ max𝑖: (𝑗,𝑖)∈𝐸𝐃 �−�𝑎𝑚𝑘

𝐌(𝑛) − 𝑎𝑗𝑖
𝐃(𝑡)� + 𝜇𝑚

(𝑛,𝑡)(𝑖) − 𝑓(𝑚,𝑘)
(𝑛,𝑡) (𝑖)� (27)

To complete maximization step, for the case of Gaussian error of attribute generation, we
simplify log-posterior probability computation:

log𝑃�𝐴, 𝑆𝑡�𝐴𝐃(𝑡)�~∑ �𝑎𝑘𝑘 − 𝑎𝑖𝑖
𝐃(𝑡)�𝑠𝑘𝑖𝑘∈𝑉𝐌,𝑖∈𝑉𝐃(𝑡) + ∑ �𝑎𝑘𝑚 − 𝑎𝑖𝑗

𝐃(𝑡)�𝑠𝑘𝑖𝑠𝑚𝑗(𝑘,𝑚)∈𝐸𝐌,𝑖,𝑗∈𝑉𝐃(𝑡)

Next, the expected value of the sum is equal to the sum of expected values of components, hence
we obtain:

𝑄(𝐴|𝐴𝑛𝐌) = 𝐸𝑆𝑡|𝐴𝐷(𝑡),𝐴𝑛𝐌 �log 𝑃�𝐴, 𝑆𝑡�𝐴𝐃(𝑡)��

Approved for Public Release; Distribution Unlimited.
19

~ � �𝑎𝑘𝑘 − 𝑎𝑖𝑖
𝐃(𝑡)�Pr�𝑠𝑘𝑖 = 1�𝐴𝐌,𝐴𝐃(𝑡)�

𝑘∈𝑉𝐌,𝑖∈𝑉𝐃(𝑡)

+ � �𝑎𝑘𝑚 − 𝑎𝑖𝑗
𝐃(𝑡)�Pr�𝑠𝑘𝑖𝑠𝑚𝑗 = 1�𝐴𝐌,𝐴𝐃(𝑡)�

(𝑘,𝑚)∈𝐸𝐌,𝑖,𝑗∈𝑉𝐃(𝑡)

= � �𝑎𝑘𝑘 − 𝑎𝑖𝑖
𝐃(𝑡)�𝑒𝜇𝑘

(𝑛,𝑡)(𝑖)

𝑘∈𝑉𝐌,𝑖∈𝑉𝐃(𝑡)

+ � �𝑎𝑘𝑚 − 𝑎𝑖𝑗
𝐃(𝑡)�𝑒𝑟(𝑘,𝑚)

(𝑛,𝑡) (𝑖)+𝑓(𝑘,𝑚)
(𝑛,𝑡) (𝑗)

(𝑘,𝑚)∈𝐸𝐌,(𝑖,𝑗)∈𝐸𝐃(𝑡)

Then, the maximization step results in weighted averaging over mapped attributes of nodes and
links:

• Node attributes update: 𝑎𝑘𝑘
𝐌(𝑛+1) = ∑ ∑ 𝑎𝑖𝑖

𝐃(𝑡) ∙ 𝑒𝜇𝑘
(𝑛,𝑡)(𝑖)

𝑖∈𝑉𝐃(𝑡)𝑡 ; (28)

• Link attributes update: 𝑎𝑘𝑚
𝐌(𝑛+1) = ∑ ∑ 𝑎𝑖𝑗

𝐃(𝑡) ∙ 𝑒𝑟(𝑘,𝑚)
(𝑛,𝑡) (𝑖)+𝑓(𝑘,𝑚)

(𝑛,𝑡) (𝑗)
(𝑖,𝑗)∈𝐸𝐃(𝑡)𝑡 (29)

Instead of computing the exact estimates in the expectation step, we only need their approximate
values; given the incremental changes to the learned pattern, this assumption is warranted.
Hence, we conduct few (2 to 3) iterations of the SLBP algorithm to obtain values
𝜇𝑘

(𝑛,𝑡)(𝑖), 𝑟(𝑘,𝑚)
(𝑛,𝑡) (𝑖),𝑓(𝑘,𝑚)

(𝑛,𝑡) (𝑗) initialized with previous values 𝜇𝑘
(𝑛−1,𝑡)(𝑖), 𝑟(𝑘,𝑚)

(𝑛−1,𝑡)(𝑖) and
𝑓(𝑘,𝑚)

(𝑛−1,𝑡)(𝑗). Thus, the complexity of attributed graph learning remains similar to the original
SLBP, with only the increase in the number of iterations and introduction of the computations
from equations (28),(29), which are of similar complexity as SLBP iterations. However, this
increase may be significant when the initial estimate of the model graph and/or model-data
mapping variables are inaccurate.

It was shown in (Yedida, Freeman, and Weiss, 2004) that the belief propagation (BP) algorithm
minimizes the “free energy” function, which is the difference between the mismatch between
mapped attributes of model and data graphs, and the entropy of the marginal mapping
distribution. This means that the BP algorithm tries to trade-off finding multiple matches to the
model graph in the data, and assuring these are “good” matches. This is exactly the property we
desire in learning the graph patterns from data. For the case of “mega-example” training data,
i.e., a single large data graph without segmentation into “graph instances”, the equations above
will still hold if the symbol notation 𝑡 is dropped. Accordingly, without loss of generality, we
remove this notation in the following section.

3.4.3 Collaborative Distributed Learning Model
The learning algorithm described in the previous section represents centralized pattern learning
that can be executed by a single unit that has access to all nodes, links, and attributes of the data
graph. We extended this algorithm to a distributed case, where the unit 𝑢 with access to data
subgraph 𝐆𝐃(𝑢) ⊆ 𝐆𝐃 is maintaining and updating beliefs 𝜇𝑘

𝑢(𝑛)(𝑖), 𝑟(𝑘,𝑚)
𝑢(𝑛) (𝑖),𝑓(𝑘,𝑚)

𝑢(𝑛) (𝑗). In the M-
step, the following updates are executed by unit 𝑢:

• Update model attributes for nodes 𝑘 ∈ 𝑉𝐌(𝑢) assigned to unit 𝑢:

𝑎𝑘𝑘
𝐌(𝑢) = ∑ 𝑎𝑖𝑖𝐃 ∙ 𝑒𝜇𝑘

𝑢(𝑛)(𝑖)
𝑖∈𝑉𝐃(𝑢)

Approved for Public Release; Distribution Unlimited.
20

• Update model attributes for links (𝑘,𝑚) ∈ 𝐸𝐌(𝑢) between model nodes assigned to 𝑢:

𝑎𝑘𝑚
𝐌(𝑢) = ∑ 𝑎𝑖𝑗

𝐃(𝑢) ∙ 𝑒𝑟(𝑘,𝑚)
𝑢(𝑛) (𝑖)+𝑓(𝑘,𝑚)

𝑢(𝑛) (𝑗)
(𝑖,𝑗)∈𝐸𝐃(𝑢)

• Update model attributes for links (𝑘,𝑚) ∈ 𝐸𝐌(𝑢,𝑣) between model nodes outgoing from
agent 𝑢 to agent 𝑣:

𝑎𝑘𝑚
𝐌(𝑢,𝑣) = ∑ 𝑎𝑖𝑗

𝐃(𝑢,𝑣) ∙ 𝑒
𝑟(𝑘,𝑚)
𝑣→𝑢(𝑛)(𝑖)�������

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑢𝑛𝑖𝑡 𝑣

+ 𝑓(𝑘,𝑚)
𝑢→𝑣(𝑛)(𝑗)���������

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑎𝑡 𝑢𝑛𝑖𝑡 𝑢(𝑖,𝑗)∈𝐸𝐃:
𝑖∈𝑉𝐃(𝑢),𝑗∈𝑉𝐃(𝑣)

In addition, the unit 𝑢 will send unit 𝑣 learned attributes 𝑎𝑘𝑚
𝐌(𝑢,𝑣) of the link (𝑘,𝑚) ∈ 𝐸𝐌(𝑢,𝑣)

between model nodes 𝑘 ∈ 𝑉𝐌(𝑢) and 𝑚 ∈ 𝑉𝐌(𝑣) that originated in 𝑢. Schematically, the set of
variables to perform pattern learning is depicted in the example in Figure 12. As we can see,
pattern learning differs from pattern matching by the need to update model graph attributes
(which are fixed in the matching process) based on the same beliefs and messages computed and
communicated in collaborative matching.

Collaboratively learned model graph

 1 2 3
 4

Computational unit 𝑢
Controlled model

 1 2 3 4

4 3

5

1

2

Computational unit 𝑣

Assigned data

6

8 10

11

12

13

9

Controlled model

Assigned data

7

14

𝑓1,2
𝑢 𝑛 𝑗

𝜇1
𝑢 𝑛 𝑖

𝑓 2,3
𝑢→𝑣 𝑛 𝑗

𝑟 1,2
𝑢 𝑛 𝑖

𝜇2
𝑢 𝑛 𝑖

Collaboration

𝑓1,2
𝑣 𝑛 𝑗

𝜇4
𝑣 𝑛 𝑖

𝑟 3,4
𝑣 𝑛 𝑖

𝑟 2,3
𝑣→𝑢 𝑛 𝑖

𝜇3
𝑣 𝑛 𝑖

𝑎11
𝐌(𝑢) 𝑎22

𝐌(𝑢) 𝑎33𝑘
𝐌(𝑣) 𝑎44

𝐌(𝑣)

𝑎12
𝐌(𝑢) 𝑎23

𝐌(𝑢,𝑣) 𝑎34
𝐌(𝑣)𝑎23

𝐌(𝑢,𝑣)

matching

learning

Matching
variables

Matching
variables

Learning
variables

Learning
variables

𝑎22
𝑫(𝑢)

𝑎55
𝑫(𝑢)

𝑎88
𝑫(𝒗)

𝑎99
𝑫(𝒗)

𝑎28
𝑫(𝑢,𝒗)

𝑎59
𝑫(𝑢,𝒗)

Figure 12: Example of variables and communications in distributed pattern learning algorithm

The only additional communication needed in the pattern learning model is that of attributes of
the model links among model graph nodes controlled and learned by different computational
resources. But this communication can be avoided if the receiving agent 𝑣 computes the attribute
as follows:

Approved for Public Release; Distribution Unlimited.
21

𝑎𝑘𝑚
𝐌(𝑢,𝑣) = ∑ 𝑎𝑖𝑗

𝐃(𝑢,𝑣) ∙ 𝑒
𝑟(𝑘,𝑚)
𝑣→𝑢(𝑛)(𝑖)�������

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑢𝑛𝑖𝑡 𝑣

+ 𝑓(𝑘,𝑚)
𝑢→𝑣(𝑛)(𝑗)���������

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑢𝑛𝑖𝑡 𝑢
𝑖∈𝑉𝐃(𝑢),𝑗∈𝑉𝐃(𝑣)

While this alternative insignificantly increases the computations performed at agent nodes, and
creates situation of duplicate attributes (model links between agents), it will reduce
communication between agents. Note, however, that the total run time, and consequently amount
of communicated information between the agents, is higher in pattern learning applications due
to larger number of iterations needed for convergence.

3.4.4 Learning Frequent Patterns
Learning multiple frequent subgraph patterns in the data may occur naturally: the final model
graph learned collaboratively by a group of units will include multiple disconnected components.
Each component could be declared a pattern and reported to the users. In general, this is not
guaranteed by the model described above. Figure 13a depicts an example where the same “local”
pattern at one unit is connected differently to another unit. Learning one unified pattern will
result in ambiguity of the actual structure. Instead, we need to enable agents to generate multiple
hypotheses of connections between substructures learned at different agents. This can be done by
collapsing the pattern instances learned locally by each unit into a single node, and then
performing information propagation of pattern labels among the units. This will create a “multi-
stage” learning process, where the computational units first learn the subgraphs in their local
data, aggregate their instances, and then learn the higher-level “compositional” patterns of
connections between such structures (Figure 13b).

One of the crucial steps in both centralized and distributed pattern learning is the initialization.
During this step the computational units must decide about the following:

(a) How many model nodes are possible for them to control?

(b) What are feasible links between these nodes?

(c) How to initialize node and link attributes?

Unit 1 Unit 2

(a) Phase 1: Learn local patterns,
aggregated instances

Unit 1 Unit 2

(c) Phase 2: Find consistent
compositions

Unit 1 Unit 2 Global Patterns

= ==
Local

Patterns

(b) Convert learned instances
into nodes

Conversion
Rules

Figure 13: Learning patterns in distributed manner

To solve these problems, we proceed in the following steps. First, we generate summary
attributes at a node that describe the neighborhood of the node. Second, we aggregate the nodes
into groups using standard clustering or classification algorithms (such as mixture of Gaussians)
over summary attributes. Next, we aggregate the nodes in the same class (or cluster), and extract

Approved for Public Release; Distribution Unlimited.
22

frequent topological subgraphs that are then used to initialize multiple patterns and their
corresponding attributes and node-to-node matching probabilities.

3.5 Software Implementation
3.5.1 Software architecture
We started implementation of DSPACE solution by developing a modular architecture, the main
components of which are shown in Figure 14:

• User interface will allow defining the queries and displaying the results
• Query processor segments the query and assigns the analysis tasks to agents
• BSP controller synchronizes the agent’s operations by calling the “supersteps” and

generating the final analysis results
• Processing units are individual agents with access to segments of the data, who execute

belief estimation computations and collaborate by generating, sending, and incorporating
belief messages

• Messaging system supports delivery of the messages between the agents in any
environment

Figure 14: SW architecture of DSPACE system

We conducted the tests of several messaging frameworks, and concluding that Java Messaging
Service ActiveMQ implementation together with Protocol Buffers provide the functionality
needed for collaborative data analysis. Protocol Buffers are a way of encoding structured data in
an efficient yet extensible format. Google uses Protocol Buffers for almost all of its internal RPC
protocols and file formats.

Each of the main components contained a set of sub-components, depicted in Figure 15 and
described in more detail in the following sections.

Approved for Public Release; Distribution Unlimited.
23

(a) User Interface (UI) (b) Query Processor (QP) (c) BSP Controller (BSP) (d) Processing Unit (PU)
Figure 15: Subcomponents of the DSPACE system

3.5.2 Query processor
This component executes the following functions:

• Analyze the query
• Partition the query into the subsets of the EEIs assigned to different processing units (PU)

using information about PU’s capabilities and accessible data
• Aggregate the results from multiple PUs
• Create a response output and return results to users

The query processor (QP) sends the query partition information and infrastructure and algorithm
parameters to the BSP Controller. QP will receive the responses from PUs in the form of belief
(probability) messages for the query partitions assigned to PUs.

3.5.3 BSP controller
This component performs the following functions:

• Maintain directory of available processing units and the query parts they can process
• Send assignment of query partitions to the PUs
• Synchronize the distributed data analysis by sending and receive control messages, which

include the start and status of the “supersteps”
• Receive computation metrics such as computation time and workload.
• Receive the query results from PUs
• Send all query results to query processor

3.5.4 Processing unit
Processing unit (PU) implements the “agents” – the distributed computation resources that have
data access and autonomously collaborate by sending belief messages. PUs implement the
following functions:

• Initialize for task
o Compute mismatch(s)
o Initialize beliefs

• Loop for super step
o Update beliefs
o Generate external messages (/w optimization)
o Send messages
o Vote done on super step (pause for coordination)

Approved for Public Release; Distribution Unlimited.
24

o Check for done from controller (if done, exit loop)
o Receive messages for next super step
o Search (identify relevant nodes)

• Return results
o Send results back to controller
o Send the state of the agent back to controller

The PUs maintain the knowledge of agent organization – i.e., a directory of what other
processing units are available, what data they have access to, which ones are connected, and
what dependencies are between them. The PUs implement the distributed data analysis algorithm
based on Belief Propagation for graph matching. It also includes message optimization (using
filtering and compression methods), and the components to compute the metrics of performance
(accuracy of results) and process (time and workload logging).

3.5.5 Performance and system metrics
All of the components of DSPACE have the ability to post metrics data to the metrics controller
and into the metrics database. When the DSPACE system is processing queries in test mode, it
is collecting metrics data using the following steps:
• the DSPACE component calls the logger with an event type and a message. Examples of

event types are Query_Submitted, Query_Returned, QueryPartitioner_Started,
QueryPartitioner_Completed).

• the logger gets the log request and adds some context information, such as where the log
message is coming from, the time of the log message and other identifying information such
as the query id that is being processed.

• If the log message is remotely distributed from the metrics controller, the message is sent to
the messaging system which transports the message to the metrics controller. The message
passing is done using the same message passing system that is used by the query processor to
transport messages between processing units and the other controllers (ActiveMQ).

• the metrics controller receives a log message (either from a local component or a remote
component) and commits it to the metrics database.

At any time, a user can query the metrics data and generate charts of DSPACE performance.
The metrics collection components are extensible and additional test and experiment metrics can
be collected and stored in the metrics database. Currently, timing data is being collected for
query runs of different data and model sizes. Communication size metrics are also being
collected. The types of charts that can be generated are also extensible, currently charts of query
execution times for different data and model sizes have been implemented (these can be re-run at
any time with new or additional run data to generate new charts) and charts of communication
times have been implemented.

3.5.6 User interfaces
We started implementation of DSPACE’s user interfaces (UIs) by identifying the list of actions
that users must be allowed to perform with the tool, including:

• Input the query/pattern by selecting a file containing the corresponding pattern, and
designing the pattern in a graphical form

Approved for Public Release; Distribution Unlimited.
25

• Select the data
• Generate the data for experiments (randomly, or from a given dataset)
• Configure the research parameters (define parameters such as the number of agents,

configure the analysis algorithms, specify the experiments to be conducted, etc.)
• Show progress of the query (in terms of the time remaining, interactions between

distributed collaborating resources, and intermediate results statistics)
• Display intermediate algorithm state (belief-based heatmap over data network)
• Display the results
• Collect status and analysis metrics

Accordingly, DSPACE’s UIs included the following GUI elements:
• Dataset and Query graph editing
• Start/stop buttons
• Progress status displays
• Query results display
• Measures display

The interface components for user’s interaction with DSPACE system were designed using web
services. We implemented three user interfaces:

(1) Engineering interface for the scalability experiments. This is a web-based interface that
used cytoscape.js (a Javascript version of the tool so it can run in a browser) to visualize
the network (graph) data and included the set of parameters that the experiment designer
may change (Figure 16)

(2) Triple-store data connection interface for experiments with Lehigh University
Benchmark (LUBM) dataset (Figure 17)

(3) The metrics interface to visualize performance of the system. The metrics user interface
is web based similar to the query test interface (Figure 18).

Figure 18 shows two different graphs of query execution times for a variety of data and model
sizes (this information was not collected under controlled conditions, therefore, although it is
actual DSPACE performance data, it does not reflect meaningful performance results of
DSPACE). The graphs are generated from data extracted from the metrics database and
visualized using the Google Chart library in the browser. The top bubble chart shows the size of
the data set (number of nodes) along the x-axis and the size (number of nodes) in the query along
the y-axis. The size of the bubble indicates the execution time to search for a pattern of the
model size in a data set of the data size. The color of the bubble, from red, a shorter time, to blue
a longer time is also indicated. The second chart shows similar results with each colored line
representing a different model size (number of nodes in the query). Note in this graph, if there
was no data for that data/model size, the result is shows as zero (such as for a data set size of
2000, query execution time is only shown for a 3 node model query). In this chart, all of the runs
with the same data set size and model size are averaged together to determine the value to
display for that data and model size line point

These user interfaces communicate with the query controller components via websockets, which
allows 2-way communication needed for sending the query and receiving a response (Figure 19).

Approved for Public Release; Distribution Unlimited.
26

Manual query
design window

Data graph
display

Ground truth and
TP/FP/TN labels

Log window

Experiment
parameters
definition

Query accuracy
summary

Figure 16: Engineering interface for experiments with synthetic data

Configuration

Root window
Query

Results

Figure 17: Interface for connecting with LUBM triple store

Approved for Public Release; Distribution Unlimited.
27

Figure 18: Metrics interfaces

Figure 19: Interactions between user interfaces, controller components, and the agents

Approved for Public Release; Distribution Unlimited.
28

4. RESULTS AND DISCUSSION
We conducted experiments with synthetic data, both randomly generated one and the LUBM
benchmarking data that was designed as realistic triple-store datasets.

4.1 Experiments with randomly generated data
In the first set of experiments, we used randomly generated query and data graphs to validate
three hypotheses. First, we showed that computational complexity of our querying solution is
linear in the size of the data, and that our solution is robust to data noise. Second, we showed that
distributed solution produces comparable accuracy to the centralized graph matching, while
providing further computational improvements on distributed peer-to-peer networks. Finally, we
showed that scalability improvements using prioritization and belief message compression do
provide reduction in the local computations by units and communication among them.

To achieve these goals, we used the synthetic graph generator jgrapht2. We generated a set of
queries, their instances, and the data graph. Then the instances, - the true matches to the query
that we want the algorithm to retrieve, - were embedded in the data graph, and the noise added to
the values (Figure 20). Using synthetic graph data allowed us to vary the size of the queries and
data graphs, number of true query matches in data, the amount of noise in attributes, graph
density and attribute value range, etc. Availability of ground truth allowed scoring the accuracy
of our solution.

(a) Queries

(c) Ground Truth(b) Instances

+ irrelevant
data cleaned

(d) Data

match

(e) Inferences

Compare

Performance Measures

+noise

Figure 20: Experimental setup

4.1.1 Solution scalability
We assessed our algorithm using the metrics of computational run-time (in seconds) for several
stages of the algorithm, including:

• Map-log update: this is the time to update belief messages 𝜇𝑘(𝑖) in Eq. (5)
• Message generation: this is the time to generate forward and backward messages

𝑓(𝑚,𝑘)(𝑗) and 𝑟(𝑚,𝑘)(𝑖) in Eq. (6)-(7)

To evaluate impact of the communication independent of the actual network, we computed the
communication workload as number of external message values that were generated and
needed to be communicated between the computational units. Finally, we computed efficiency
scores including recall, precision, and f-score.

2 www.jgrapht.org
Approved for Public Release; Distribution Unlimited.

29

http://www.jgrapht.org/

(a) Information prioritization (10%) provides order
of magnitude improvement in run time

(b) Retrieval accuracy is comparable for different
sizes of the data graph

Figure 21: Results of scalability experiments: algorithm run time is linear with size of data

Figure 21 shows that our matching-based data querying solution has run-time complexity linear
with the size of the data. The information prioritization (Figure 15 shows results for 10% of data
nodes actively processed at every iteration) provides order of magnitude improvement in the run
time, computed as the sum of belief message updates from Eq. (5)-(7) in the centralized case
(Figure 21a), at the expense of some reduction in the retrieval accuracy (measured by F-score;
Figure 21b).

(a) Effect of information prioritization on
centralized implementation. # data nodes = 100K

(b) Effect of information prioritization on
distributed implementation ran on a single

machine with minimal communication delays

(d) Accuracy of centralized and distributed
implementations is similar for different levels

of information prioritization

(c) Information prioritization also decreases
the number of communicated messages

Figure 22: Improvements in scalability can be achieved by using information prioritization model which

reduces the amount of data actively processed at each iteration

Approved for Public Release; Distribution Unlimited.
30

The performance of the algorithm can be tuned, trading-off the accuracy with computational
complexity. An order of magnitude reduction in update time can be achieved if the number of
“relevant” nodes processed at the computational units is 10% of the total number of data nodes
(Figure 22a), while further reduction in the size of actively processed data nodes provides only
marginal reduction in computation time. Decentralized implementation had a run-time on the
same total computational resources slightly better than centralized implementation (Figure 22b),
which was due to minimal communication delays. However, the information prioritization
drastically reduces the number of messages that must be communicated between the units
(Figure 22c), hence the distributed implementation promises to have linear-scale improvement
(in terms of the number of compute units). The accuracy of distributed implementation was
comparable to centralized implementation (Figure 22d) when the attributes did not contain any
noise, which is essentially a case on attributed graph isomorphism and is the type of solution
provided by standard querying engines such as SPARQL.

4.1.2 Solution sensitivity to noise
Figure 23 shows how the accuracy of our algorithm is affected by the noise in the data. While the
baseline algorithm is robust to noise, the performance of the algorithms with scalability
configurations (“information prioritization” or “communication compression”) degrades as the
range of error in attribute values is increasing. In particular, the degradation is more pronounced
in the distributed case, since the local decisions by computational units of which data nodes are
more relevant and which forward/backward messages must be communicated are becoming less
accurate globally with increase in data noise.

(a) Results of retrieval with data that contains 1 true match to a query

(b) Results of retrieval with data that contains 10 true matches to a query

Baseline Information Prioritization Communication Compression

Baseline Information Prioritization Communication Compression

Figure 23: Results of noise sensitivity experiments

4.2 Experiments with LUBM data
LUBM is an artificial data generator of graph data that represents entities and interactions of
universities, staff, students, classes, publishing (Figure 24). LUBM graph is fully connected,

Approved for Public Release; Distribution Unlimited.
31

containing the knowledge fragments that describe the relations of and interactions between
entities (Figure 25).

Figure 24: Example statistic of a single-university LUBM data subset

Figure 25: Knowledge fragments are subgraphs in LUBM data graph

Approved for Public Release; Distribution Unlimited.
32

We used DSPACE to analyze the frequency of knowledge patterns in LUBM data. We extracted
the knowledge subgraphs by selecting key nodes and the 1-2 hop neighborhood around them,
treated these fragments as queries, and then tried to find other knowledge fragments that matched
the query. Some of the knowledge patterns occurred frequently in the data, while others do not
(Figure 26). Several examples of these queries and the matches are depicted in Figures 27-29.

Figure 26: Knowledge fragments are subgraphs in LUBM data graph

Figure 27: Examples of queries and matches in LUBM data – Publication pattern

Approved for Public Release; Distribution Unlimited.
33

Figure 28: Examples of queries and matches in LUBM data – Student-adviser pattern

Figure 29: Examples of queries and matches in LUBM data – Student attendance pattern

Approved for Public Release; Distribution Unlimited.
34

5. CONCLUSION
In this project we developed a DSPACE system for performing distributed queries against large-scale
relational (graph) datasets which cannot employ Cloud distributed file sharing and processing systems.
The solution to this problem is an autonomous peer-to-peer network of computing units that can perform
data exploration tasks, such as retrieving information based on complex ambiguous queries, or discovery
of frequent graph patterns in the data. We implemented a data exploitation model as a distributed
collaborative inexact graph matching, which defines a collaborative data processing policy of local
computations at and communication between processing units. We showed that baseline distributed
implementation has the same accuracy as the centralized solution. Both centralized and distributed
algorithms can achieve improvement in scalability using priority-based filtering and message
compression techniques, at the expense of some degradation in the retrieval accuracy.

Our current research is focused on improvements to the distributed collaborative graph analysis
algorithms, including distributed graph pattern learning, adaptive prioritization and filtering, and graph
indexing, to provide further scalability and accuracy improvements.

Approved for Public Release; Distribution Unlimited.
35

6. REFERENCES
Aggarwal, C., Khan, A., Yan, X. (2011) On Flow Authority Discovery in Social Networks.

SIAM Conference on Data Mining (SDM), pp, 522–533.
Anker, T., D. Dolev, and B. Hodd (2008) Belief Propagation in Wireless Sensor Networks - A

Practical Approach, Proceedings of the 3rd International Conference on Wireless
Algorithms, Systems, and Applications, 466 – 479.

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., & Sudarshan, S. (2002). Keyword
searching and browsing in databases using BANKS. In Data Engineering, 2002.
Proceedings. 18th International Conference on (pp. 431-440). IEEE.

Brocheler, M., A. Pugliese, V. P. Bucci, and V. S. Subrahmanian (2010) COSI: Cloud oriented
subgraph identification in massive social networks, ASONAM, pp. 248-255.

Bryant, M., Johnson, P., Kent, B. M., Nowak, M., & Rogers, S. (2008). Layered sensing: its
definition, attributes, and guiding principles for afrl strategic technology development.
Wright-Patterson Air Force Base, Ohio: Sensors Directorate, Air Force Research
Laboratory.

Chechetka, A., and C. Guestrin (2010) Focused Belief Propagation for Query-Specific Inference.
In Artificial Intelligence and Statistics (AISTATS).

Chen, W., Levy, R., & Decker, K. (2007) An Integrated Multi-Agent Coordination Including
Planning, Scheduling, and Task Execution. Proceedings of the Workshop of
Coordinating Agent's Planning and Scheduling (CAPS) at the Sixth AAMAS, Hawaii,
USA.

Crick, C., A. Pfeffer (2003) Loopy Belief Propagation as a Basis for Communication in Sensor
Networks, UAI, pp. 159-166.

Dahm, W. (2010, 15 May). Technology Horizons: A Vision for Air Force Science and
Technology During 2010-2030. Vol. 1, AF/ST-TR-10-01-PR.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal statistical Society, 39(1), 1-38.

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J. & Hong, W. (2005). Model-based
Approximate Querying in Sensor Networks. International Journal on Very Large Data
Bases (VLDB), 14(4), 417-443.

Ding, C., Song, B., Morye, A., Farrell, J. A., & Roy-Chowdhury, A. K. (2012). Collaborative
sensing in a distributed PTZ camera network. Image Processing, IEEE Transactions on,
21(7), 3282-3295.

Elidan, G., I. Mcgraw, and D. Koller (2006) Residual belief propagation: Informed scheduling
for asynchronous message passing, Proceedings of the Twenty-second Conference on
Uncertainty in AI (UAI), Boston, MA.

Gonzalez, J., Low, Y., and Guestrin C. (2009) Residual Splash for Optimally Parallelizing Belief
Propagation. In Artificial Intelligence and Statistics (AISTATS).

He, H., Wang, H., Yang, J., and Yu, P. S. (2007, June). BLINKS: ranked keyword searches on
graphs. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data (pp. 305-316). ACM.

Khan, A., N. Li, Z. Guan, X. Yan, S. Chakraborty, and S. Tao (2011, June) Neighborhood Based
Fast Graph Search in Large Networks, SIGMOD'11.

Levchuk, G., & Pattipati, K. (2013). Design of Distributed Command and Control for
Collaborative Situation Assessment, Proceedings of ICCRTS 2013.

Approved for Public Release; Distribution Unlimited.
36

Levchuk, G., J. Roberts, and J. Freeman (2012) Learning and Detecting Patterns in Multi-
Attributed Network Data, AAAI Fall Symposium on Social Networks and Social
Contagion.

Levchuk, G., C. Shabarekh, and C. Furjanic (2011) Wide-threat Detection: Recognition of
Adversarial Missions and Activity Patterns in Empire Challenge 2009, Proceedings of
SPIE Defense and Security Symposium, Orlando, FL.

Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2003, June). The design of an
acquisitional query processor for sensor networks. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data (pp. 491-502). ACM.

Malewicz, G., M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski (2010)
Pregel: a system for large-scale graph processing, In SIGMOD, pages 135-146.

Mathew, G., Surana, A., & Mezic, I. (2010). Uniform Coverage Control of Mobile Sensor
Networks for Dynamic Target Detection. In Proceedings of the 49th IEEE Conference
on Decision and Control, Atlanta, 2010.

Pfeffer, A., T. Tai (2012) Asynchronous Dynamic Bayesian Networks, CoRR, abs/1207.1398.
Rohloff, K., & Schantz, R. E. (2010, October). High-performance, massively scalable distributed

systems using the MapReduce software framework: the SHARD triple-store. In
Programming Support Innovations for Emerging Distributed Applications (p. 4). ACM.

Rohloff, K., & Schantz, R. E. (2011, June). Clause-iteration with MapReduce to scalably query
datagraphs in the SHARD graph-store. In Proceedings of the fourth international
workshop on Data-intensive distributed computing (pp. 35-44). ACM.

Singhal, A. (May 16, 2012). Introducing the Knowledge Graph: Things, Not Strings. Official
Blog (of Google). Retrieved April, 2014

Sutton, C., and A. McCallum (2007) Improved Dynamic Schedules for Belief Propagation,
Conference on Uncertainty in Artificial Intelligence (UAI)

Tran, T., Wang, H., Rudolph, S., & Cimiano, P. (2009, March). Top-k exploration of query
candidates for efficient keyword search on graph-shaped (rdf) data. In Data Engineering,
2009. ICDE'09. IEEE 25th International Conference on (pp. 405-416). IEEE.

Wu, Y., Yang, S., Srivatsa, M., Iyengar, A., & Yan, X. (2013). Summarizing answer graphs
induced by keyword queries. Proceedings of the VLDB Endowment, 6(14), 1774-1785.

Yang, S., Yan, X., Zong, B., & Khan, A. (2012, May). Towards effective partition management
for large graphs. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (pp. 517-528). ACM.

Yao, Y. & Gehrke, J. (2003) Query processing in sensor networks. Conference on Innovative
Data Systems Research (CIDR).

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000, December). Generalized belief propagation.
In NIPS (Vol. 13, pp. 689-695).

Zhang, L., Tran, T., & Rettinger, A. (2013). Probabilistic query rewriting for efficient and
effective keyword search on graph data. Proceedings of the VLDB Endowment, 6(14),
1642-1653.

Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate
decentralised coordination via the max-sum algorithm. Artificial Intelligence, 175(2),
730-759.

Approved for Public Release; Distribution Unlimited.
37

LIST OF ACRONYMS
ACRONYM DESCRIPTION
AFRL

SW

JMS

API

BSP

ISR

BAA

SQL

SPARQL

RDF

BP

SLBP

LIDAR

GMTI

EM

DSPACE

Air Force Research Laboratory

Software

Java Message Service

Application Programming Interface

Bulk Synchronous Parallel

Intelligence Surveillance and Reconnaissance

Broad Agency Announcement

Structured Query Language

SPARQL Protocol and RDF Query Language

Resource Description Framework

Belief Propagation

Smoothed Loopy Belief Propagation

Light Detection And Ranging

Ground Moving Target Indicator

Expectation Maximization

Distributed Sensing and Processing Adaptive Collaborative
Environment

LUBM Lehigh University Benchmarking

Approved for Public Release; Distribution Unlimited.
38

	1. Summary
	2. Introduction
	2.1 Motivation and Summary of Accomplishments
	2.2 Background and Functional Requirements
	2.3 Research Objectives

	3. Methods, Assumptions, and Procedures
	3.1 Querying Using Inexact Graph Matching
	3.1.1 Formal definition of data querying as inexact matching problem
	3.1.2 Solving inexact matching using belief propagation
	3.1.3 Generating query output
	K-best maximum weight assignment
	Marginal probability sampling
	Conditional sampling
	Belief re-evaluation

	3.2 Distributed Collaborative Querying Model
	3.2.1 Problem Formulation
	3.2.2 Defining tasks for computation units by restructuring the factor graph
	3.2.3 The case of complete data access
	3.2.4 Collaborative distributed belief propagation

	3.3 Scalability Improvements to Collaborative Query Model
	3.3.1 Data Prioritization
	3.3.2 Communication Compression
	3.3.3 Complexity Reduction Using Question-Answer Process

	3.4 Collaborative Pattern Learning
	3.4.1 Types of Learning
	3.4.2 Learning Patterns from Graph Instances
	3.4.3 Collaborative Distributed Learning Model
	3.4.4 Learning Frequent Patterns

	3.5 Software Implementation
	3.5.1 Software architecture
	3.5.2 Query processor
	3.5.3 BSP controller
	3.5.4 Processing unit
	3.5.5 Performance and system metrics
	3.5.6 User interfaces

	4. Results and Discussion
	4.1 Experiments with randomly generated data
	4.1.1 Solution scalability
	4.1.2 Solution sensitivity to noise

	4.2 Experiments with LUBM data

	5. Conclusion
	6. References
	List of acronyms

