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ABSTRACT 

 

   Multidirectional functionally graded simply supported plates where the grading occurs 

symmetrically in all three coordinate directions exposed to time-dependent pressure pulses is 

considered. Within this context, the classical thin plate theory is adopted (CPT). The grading 

occurs in all three coordinate directions and is based on 3 independent polynomial and power 

law distributions. The equations of motion are derived through the use of Hamilton’s Principle. 

By leveraging both approximate analytical and numerical techniques such as the Guassian-

Quadrature method, The Galerkin-Method, and the 4th Order Runge-Kutta method, the dynamic 

response for various kinds of pressure pulses is presented. In a detailed fashion, the influence of 

the volume fraction indexes, various geometrical and material parameters, and the damping on 

the dynamic response is presented and analyzed. Finally validations are made with specialized 

cases found within the literature. 
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1. Introduction 

   Plate and shell-type structural elements find themselves in all kinds of structures such as 

buildings, automobiles, and aircraft/spacecraft. Their structural design should be based on 

considerations such as temperature, material composition, geometrical attributes, and the types of 

loadings that they will be exposed to, whether static or dynamic. There is an exhaustive literature 

base devoted to the structural response of isotropic, laminated composites, unidirectional and bi-

directional functionally graded plates and shells under various kinds of loadings based on the 

classical plate theories to the most advanced plate and shell theories. Although there remain gaps 

that need to be filled within the present literature base, a new frontier that yet remains to be 

explored and developed is the idea of multi-directional functionally graded plates where the 

material properties vary in all three coordinate directions as opposed to unidirectional or 

bidirectional orientations. This brings to the forefront the idea of spatial tailoring; whereby the 

distribution of the constituent materials in all three coordinate directions can be manipulated to 

achieve an optimal material distribution to achieve an optimum structural design to maintain its 

structural integrity within its operating environment. This concept is analogous to structural 

tailoring for laminated unidirectional composites whereby the ply-angle is manipulated to 

achieve an optimum configuration. 

   Based on a comprehensive literature review, a theoretical base which to build upon is found to 

be nonexistent. A brief synopsis on how to approach and theoretically model multidirectional 

functionally graded plates incorporating thermal effects, with the idea of spatial tailoring, has 

been introduced by [2] and [3]. With this in mind, a basic theoretical foundation of the 
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multidirectional functionally graded plates based on a linear classical thin plate theory under 

various types of dynamic loadings for the case of simply supported plates is developed. Within 

this theoretical foundation are the inclusion of damping effects and the transverse inertia. 

 

 

2. Basic Assumptions and Preliminaries 

   Shown, in Fig. 1, is a pictorial representation of a multidirectional functionally graded plate 

referred to an Orthogonal Cartesian Coordinate System ),,( zyx , where z  is measured positive 

in the upwards direction from the mid-surface of the plate. While, h is the uniform thickness of 

the plate. Let any two constituent materials comprise a functionally graded plate. Then a generic 

property P ),,( zyx  can be expressed in terms of the volume fraction as 

                                           2121 ),,(][),,( PzyxVPPzyxP  . (1) 

Where, 

                                               )()()(),,(1 zVyVxVzyxV czcycx . (2) 

The chosen functional relationships for the volume fractions, ),(),( yVxV cycx  and )( zVcz are 

given in a polynomial and power form as 
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The Signum function is defined as 
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MNN and,, 21 are referred to as the volume fraction indexes providing a measure of the 

variation of the material profile through the structure in all three coordinate directions. It should 

be noted that this chosen grading of the constituent materials throughout the plate expresses a 

symmetric distribution in all three coordinate directions. Also, depending on the 3D grading 

desired, other possible functional relationships for the volume fraction are possible such as in the 

anti-symmetric case. 

   A detailed graphical depiction of each of the three directional volume fractions given as 

function of the volume fraction index and their respective coordinate direction is provided in Fig. 

(2)-(4) below. Looking at Fig. (2), which displays the volume fraction as a function of the 

distance along the plate in the x-direction for various magnitudes of the volume fraction indexes 

1N , it is apparent that as 01 N , the volume fraction measure, 1)( xVcx . As 1N or 

becomes much larger than zero, 0)( xVcx ; While other volume fraction indexes produce 

volume fractions falling between these two extremes. The same exact behavior is seen in Fig. (3) 

where the volume fraction is presented as a function of the distance along the plate in the y-

coordinate direction for various volume fraction indexes, 2N . In Fig. (4), The volume fraction as 
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a function of the through-the-thickness coordinate in the z-coordinate direction for various 

volume fraction indexes is depicted. When M=0, the volume fraction, 1)( zVcz ; While 

0)( zVcz as M or becomes very large. All other volume fraction index values for M, give 

volume fractions in between the two extremes.  

   With this information in hand, Table 1. below, gives a summary for the possible types of 

functional grading, depending on the measure of the volume fraction index.  

   The chosen constituent materials for this paper are ceramic and metal. This leads to the 

expression of the material properties given by 

                       ],[),,(],[)],,(),,,([ 1 mmcmcm EzyxVEzyxzyxE    (5) 

Where, 

                                            mccmmccm ρρρEEE  , . (6) 

The variation of Poisson’s ratio, ),,( zyx , is approximated as being constant throughout the 

material grading of the structure.  

3. The strain-Displacement Relationships 

For the classical plate theory, the strain-displacement relationships are provided as [6] (7) 
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0 zzyzxz eγγ  (8d) 

Where,  000 ,, wυu  are 2-D displacement quantities of the mid-surface of the plate. 

 

4. Constitutive Equations 

The constitutive equations for a point-wise isotropic material for plane stress are given by 
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Where the material stiffnesses, ),,( zyxQ ij , (i, j=1,2,6) are given by 
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5. Equations of Motion 

Adopting an energy approach, the equations of motion are derived through the use of Hamilton’s 

Principle which is expressed as 

 

                                                      
1

0

0)(
t

t
dtVUTJ   (11) 

 

Where 10 , tt are two arbitrary instants in time. U denotes the strain energy, V denotes the work, 

and T denotes the kinetic energy of the structure, while δ is the variational operator. Without 
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explicitly providing the individual energy terms they are assumed into the energy functional 

where the energy functional is expressed as 
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Ω denotes the mid-surface area of the plate, tP
 
is the distributed force at the top surface, and 

),( yx  is the damping coefficient per unit area of the plate.  

   Considering Eqs. (8a-d), (9), and (12), and carrying out the integration throughout the 

thickness, integrating by parts where ever feasible, and taking into consideration the arbitrary 

and independent character of variations results in three equations of motion along with the 

associated boundary conditions in terms of displacements. The equations of motion are 

determined as 
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   As a result of the decoupling of the first two equations of motion which are in terms of the in-

plane displacements, the third equation of motion in terms of the transverse displacements 

becomes the governing equation of motion. The reduced governing system of equations along 

with the associated boundary conditions becomes  
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 For simply supported boundary conditions, the boundary constraints are expressed as 
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The global stiffness quantities appearing within the equations of motion are defined as 
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   For the case of symmetric grading in all three coordinate directions, 0][ ijB . With the use of  

Eqs. (5) and (10), and carrying out the indicated integration within Eq. (19), the global stiffness 

quantities can be expressed as  
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6. Solution Methodology 

   As part of the solution process of Eq. (16), the Galerkin Method is leveraged which requires 

that both the essential (kinematic) and natural boundary conditions be fulfilled. To achieve this 
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requirement, the transverse displacement,  and),(0 yxw the transverse pressure, ),,( zyxPt are 

both expressed in terms of a Navier-type expression given as 

                                                 )sin()sin()(),,( yxtWtyxw nm   (22) 

Where 21 , LnLm nm   and (m ,n) are the number of sine half-waves in the 

corresponding directions; While,  

                                                  )sin()sin()(),,( yxtPtyxP nmmnt   (23) 
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with )(),,( tPtyxP tt  , and integrating gives 

                                                       2
)(16)( mntPtP tmn   (25) 

Where, )(tPt  is the desired transverse pressure. With these expressions in hand and applying the 

Galerkin Method to Eqs (16), utilizing Eqs. (22), (23), and (25), gives 
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Where )(tW mn  is the amplitude of deflection, mnI  is the plate inertia, mnC is the overall 

damping coefficient of the plate, and mnK is the overall stiffness of the plate all of which are 

given as 
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Within the above expressions, 

)cos( 1Lxmcmx  ,     )sin( 1Lxms mx   (30a,b) 

)cos( 2Lyncny  ,     )sin( 2Lynsny   (31a,b) 

Normalizing Eq. (26) results in, 
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where mnmnmn IK is the natural frequency of the plate, mnmnmnmn IC 2 is the 

overall normalized damping coefficient, and mntmn ImntPtP
4

)(16)(
~

 is the normalized 

transverse pressure. 

7. Transverse Pressure Loadings 
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  In a dynamic world, structures can experience many different types of external excitations from 

a variety of causes or sources. Whether constant or time-varying they are the driving force for 

their dynamic motion. In the supersonic and hypersonic world, aircraft can experience various 

types of pressure waves which can appear as violent/hostile disturbances which can materialize 

from a variety of environmental conditions. Sonic boom is one such example which occurs 

during the transition from subsonic speeds to supersonic speeds. Also, ground combat vehicles 

can experience various types of external excitations from explosives, gun fire, and 

electromagnetic pulses, etc. This generates the need to understand these types of excitations and 

their effect from a structural response standpoint for design purposes. Some of the more common 

transverse pressure pulses are presented below. 

   The sonic boom over pressure which commonly materializes from exceeding the speed of 

sound is expressed mathematically as [5] 

 













p

pp

t
rttandt

rttttP
tP

0for0

0for1
)(

0
 (33) 

Where 0P denotes the peak reflected pressure above ambient, pt denotes the positive time 

duration, from the time of impact, and r denotes the shock pulse length factor. The expression for 

the sonic boom can be expressed functionally in contrast to a piecewise formulation as 

   )()(1)( 0 ppt rttHtHttPtP   (34) 

Where )(tH denotes the Heaviside Step Function. This implies that the normalized pressure 

)(
~

tPmn  becomes 
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   )()(1
16

)(
~

2

0
pp

mn

mn rttHtHtt

Imn

P
tP 


 (35) 

   As special cases of the sonic boom, when 1r , the waveform degenerates into a triangular 

pulse. When r = 2, The sonic boom waveform becomes symmetric. When 2r  a non-

symmetric N-Pulse shape waveform is produced. Finally, when  ptr and1  a step pulse is 

realized. For the case of  the step pulse, the normalized pressure )(
~

tPmn is expressed as 

0for   
16

)(
~

2

0
 t

Imn

P
tP

mn

mn


 (36) 

As an additional case, a rectangular pulse can be formulated as 

 )()(
16

)(
~

2

0
p

mn

mn ttHtH

Imn

P
tP 


. (37) 

Also under consideration, is a air blast wave traveling tangentially/parallel to the plate which is 

given as  

)()( 1
)(

0
1 xctHePtP

xct
t 

  (38) 

The normalized pressure )(
~

tPmn then becomes 

 )(
16

)(
~

1
)(

2

0 1 xctHe

Imn

P
tP

xct

mn

mn 



 (39) 

Where c is the wave speed within the surrounding medium which in this is air; while   is a blast 

decay parameter. Finally a sine pulse is considered which is expressed mathematically as 













p

pp

t
tt

ttttP
tP

for0

0for),sin(
)(

0 
 (40) 
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Functionally it is expressed as 

 )()()sin()( 0 ppt ttHtHttPtP    (41) 

Where the normalized pressure becomes 

 )()()sin(
16

)(
~

2

0
pp

mn

mn ttHtHtt

Imn

P
tP  


 (42) 

8. Results and Discussion 

   To validate the present theory, validations are made by simplifying the governing response 

equation (Eq. 26) for the case of an isotropic plate based on the linear classical plate theory 

(CPT) for thin plates. Both the deflection-time response and the natural frequency response are 

validated. The deflection-time response for the linear CPT is compared with Akay[1] who 

presents results for both the linear and nonlinear cases for a constant uniform loading. The 

natural frequencies for the first ten modes are compared against the exact values provided by 

Ramu and Mohanty [4] for the linear CPT.  

8.1 Validation of the deflection-time response 

   As an aside, for the case of a uniform loading the transverse pressure is expressed as 

                                                                 )sin()sin( 210 LyLxPP  . (43) 

In this case, Eq. (26) becomes, 

                                            
2

2104
)()()(



LLP
tWKtWCtWI mnmnmnmnmnmn   ; (44) 

While for the case of a isotropic plate,  
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)1(12

),(
2

3

11



Eh

DyxD ,  (45) 

0
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2

11
2

11
2

2

11
2

1111


























y

yxD

yx

yxD

x

yxD

y

yxD

x

yxD
  (46) 

 
4

21

2
22

LLD
K

nm
mn

 
 , 

4

21LhL
I mn


 , 0mnC (No damping assumed). (47a-c) 

Dividing through by mnI  gives 

                                                                      PtWtW mnmnmn

~
)()(

2
  , (48) 

 

Where   hD nmmn 
2

22
  and hPP 

2
016

~
 . Applying the Runge-Kutta method 

Gives the deflection-time response which is shown below in Fig. 5 as a validation comparing 

Akay [1] with the present simplified isotropic case. The properties utilized for this validation are 

given as, 

mLL 25.021  , mh 05.0  

GPaE 1.206 , 
3

/7848 mkg , 25.0  

MPaP 981.00   

   By observation, it can be seen that very good agreement exists between Akay[1], who applied a 

finite element technique, and the present result, based on the Runge-Kutta technique. Any 

differences are due to the approximations made within the two different numerical approaches. 

8.2 Validation of the Natural frequency 
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   To further substantiate the validation, comparisons are made with Ramu and Mohanty [4] 

where the first ten natural frequency modes for a thin rectangular plate based on the linear CPT 

with simply supported plates for various plate thicknesses are presented. These comparisons are 

listed below in table 2. The geometrical and material properties associated with this data is given 

as 

mL 6.01  , mL 4.02   

GPaE 70 , 
3

/2700 mkg , 3.0  

   Very good agreement is apparent for all ten modes for the first two plate thicknesses 

(0.00625m and 0.0125m). As the plate thickness becomes larger, while at the higher frequency 

modes, the marginal difference becomes larger. This is explained by the fact that the present 

theory for thin plates is less accurate for thicker plates. Although the differences remain small, 

the accurate prediction of the natural frequencies requires some of the elements of the thicker 

plate theory such as the inclusion of the transverse shear strain, normal strain, and the rotational 

strains.  

8.3 Results for the Present Theory 

   The present theoretical results are provided for a variety of different types of pressure pulses 

which include a sonic-boom, a triangular pulse, a rectangular pulse, a step pulse, a sine pulse, 

and a traveling tangential shock wave. The effect of these pulse forms on the deflection-time 

response and the effect of varying the volume fraction indexes is presented and analyzed to 

evaluate how all of these effects interplay on the structural response. The material and 

geometrical properties adopted for the theoretical results are  
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mhmLL 009525.0,25.021   

Ti-6Al-4V:      3
/4429,298.0,

9
107.105 mkgPaE    

Aluminum Oxide:  3
/3750,260.0,

9
102.320 mkgPaE   . 

   In Fig. 6, The deflection-time response due to a sonic boom is presented for three gradient 

measures according to the volume fraction indexes. The case for metal can be seen to produce 

the highest deflections with the lowest frequency of oscillation. As the gradient distribution 

becomes more refined, the peak deflection values are lower than its isotropic metal counterpart 

coupled with higher oscillation frequencies. 

   A traveling shock wave parallel to the plate and its effect on the deflection-time response is 

provided in Fig. 7. There exist very high central deformations for metal coupled with lower 

frequencies in contrast to ceramic with low deformation and higher frequencies. Between the two 

extremes lies the structural performance for the multidirectional case. Clearly if the desired effect 

is to leverage the benefits of a both material properties of the constituent materials, then 

multidirectional materials offer a great advantage over isotropic materials while offering the 

strength close to ceramic. Another observation in Fig. 7 reveals that the intensity of the 

shockwave decays much quicker for both ceramic as well as for the multidirectional case. 

     In Fig. 8, the effect of a degenerated sonic boom into a triangular pulse in contrast to the 

symmetric sonic boom appears to be less violent and decays much faster. Also it should be noted 

that a comparison between multidirectional grading and a symmetric unidirectional grading can 

be made. The case ]05.0,1[ 21  NNM  is very close to a symmetric unidirectional 

functional grading which occurs when the volume fraction indexes take on the values
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]0,1[ 21  NNM . This obviously reveals that a symmetric unidirectional functional grading 

performs better from a dynamic response standpoint than its multidirectional counterpart.  

   In Figs. (9)-(11), the effect a step pulse, a sine pulse, and a rectangular pulse are depicted. The 

same kind of competing behavior is observed between metal, ceramic, and multidirectional 

functional-type grading. Fig. 12 provides a comparison between sonic boom loadings for various 

magnitudes of the shock pulse factor. When the shock pulse factor, r=1, a triangular pulse 

presents itself, when r=2, a typical sonic boom-type loading is present, and when r=3, a 

nonsymmetrical sonic boom type loading develops. Comparisons between the three types gives 

in increasing order of shock pulse factor magnitude the order of most hostile response. The least 

damaging is the triangular pulse with the most violent response coming from the unsymmetrical 

sonic boom. 

Conclusions 

The dynamic response of multidirectional simply supported plates has been addressed through 

the application of several pressure pulses. Several validations have been made for the isotropic 

case. The implications of the volume fraction index on the material grading have been presented. 

Also, various types of pressure pulses and their effects on the deflection-time response of a thin 

rectangular plate based on the linear strain theory have been provided graphically and discussed. 

A combination of semi-analytical and numerical procedures were adopted to arrive at the 

governing response such as the Galerkin method, The Gaussian-Quadrature method for 

numerical integration, and the Rung-Kutta method to solve the governing response equation for 

the dynamic response. 
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   It was revealed that multidirectional functionally graded plates provide better performance than 

their isotropic counterpart but decreased performance when compared with symmetric 

unidirectional functionally graded plates. It is hoped that this instrumental base in which to build 

upon will be realized in the development of more advanced theories. 
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Figure Captions 

 

 
Fig 1.  A pictorial representation of a simply supported multidirectional functionally graded plate 

exposed to a spherical blast above the plate. 

 

Fig 2.  The volume fraction as a function of the distance along the plate in the x-direction for 

various magnitudes of the volume fraction indexes 1N , 

 

Fig 3.  The volume fraction as a function of the distance along the plate in the y-direction for 

various magnitudes of the volume fraction indexes 2N . 

 

Fig 4.  The volume fraction as a function of the through-the-thickness z-coordinate direction for 

various volume fraction indexes 

 

Fig 5.  Validation of the amplitude of center deflection as a function of time for an isotropic 

plate. 

 

Fig 6.  Amplitude of center deflection as a function of time due to a sonic boom for a   

multidirectional functionally graded plate with varying degrees of the volume fraction indexes (

05.0,15.0,2,005.0,0 110  MPaPrtt pa ) 

 

Fig 7.  Amplitude of center deflection as a function of time due to a traveling tangential 

shockwave for a multidirectional functionally graded plate with varying degrees of the volume 

fraction indexes ( 05.0,15.0,/100,5.0 110  MPaPsmc ) 

 

Fig 8.  Amplitude of center deflection as a function of time due to a triangular blast for a 

multidirectional functionally graded plate with varying degrees of the volume fraction indexes (

05.0,15.0,1,005.0,0 110  MPaPrtt pa ) 

 

Fig 9.  Amplitude of center deflection as a function of time due to a step pulse for a 

multidirectional functionally graded plate with varying degrees of the volume fraction indexes (

05.0,15.0,1,,0 110  MPaPrtt pa ) 

 

Fig 10. Amplitude of center deflection as a function of time due to a sine pulse for a 

multidirectional functionally graded plate with varying degrees of the volume fraction indexes (

05.0,15.0,005.0 110  MPaPt p ) 
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Fig 11.  Amplitude of center deflection as a function of time due to a rectangular pulse for a 

multidirectional functionally graded plate with varying degrees of the volume fraction indexes (

05.0,15.0,005.0 110  MPaPt p ) 

 

Fig. 12.  Amplitude of center deflection as a function of time due to a sonic boom with varying 

degrees of the shock pulse factor r for a multidirectional functionally graded plate 

)05.0,15.0,005.0,0( 110  MPaPtt pa  
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Tables 

 

Table 1. The effect of the volume fraction indexes on the grading-type. 

 

 

 

 

 

Grading-Type 
1N  2N  M  Volume Fraction, 1V  

Isotropic Metal, 2P  0 ( 31 N ) 0 ( 32 N  )  20M  0 

Isotropic Ceramic, 1P  0 0 0 1 

Unidirectional Symmetric 0 0 1 )(11 zVV   

Bi-Directional (x-y Plane) 30 1  N  30 2  N  0 ),(11 yxVV   

Bi-Directional (x-z Plane) 30 1  N  0 200  M  ),(11 zxVV   

Bi-Directional (y-z Plane) 0 30 2  N  200  M  ),(11 zyVV   

Multi-Directional 30 1  N  30 2  N  200  M  ),,(11 zyxVV   

 

 



UNCLASSIFIED: Distribution Statement A. Approved for public release. 

 

 

UNCLASSIFIED: Distribution Statement A. Approved for public release. 
 

Page 24 of 36 

 

 
 

T able 2.   C om parison of the natural frequency  (H z) for a sim ply supported  thin Isotropic 

plate.                    

 

 Plate Thickness 

0.00625m  

Plate Thickness 

0.0125m  

Plate Thickness 

0.025m  

Plate Thickness 

0.05m  

M ode Present Exact[4] Present Exact[4] Present Exact[4] Present Exact[4] 

m =1,n=1  136.4 136.5 272.8 273.1 545.7 546.2 1091.4 1092.5 

m =2,n=1  262.4 262.6 524.7 525.2 1049.4 1050.4 2098.9 2100.9 

m =1,n=2  419.8 420.1 839.5 840.3 1679.1 1680.7 3358.2 3361.5 

m =3,n=1  472.2 472.7 944.5 945.4 1889.0 1890.8 3777.9 3781.7 

m =2,n=2  545.7 546.2 1091.4 1092.5 2182.8 2185.0 4365.6 4370.1 

m =3,n=2  755.6 756.35 1511.2 1512.7 3022.3 3025.4 6044.7 6050.8 

m =4,n=1  766.1 766.85 1532.2 1533.7 3064.3 3067.4 6128.7 6134.8 

m =1,n=3  892.0 892.9 1784.0 1785.8 3568.1 3571.6 7136.1 7143.3 

m =2,n=3  1017.9 1018.9 2035.9 2037.9 4071.8 4075.9 8143.6 8151.82 

m =4,n=2  1049.4 1050.4 2098.9 2100.9 4197.7 4201.9 8395.4 8403.9 
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Figures (In numerical Order) 
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