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1. Introduction

We report here on two of our recent development efforts
for global high-resolution ocean models, undertaken in the
HYbrid Coordinate Ocean Model (HYCOM; Chassignet et
al., 2009). The simulations discussed here are “eddying”
(Hecht and Hasumi, 2008), meaning that they include an
energetic mesoscale eddy field. In one of our efforts (Arbic

30} CLIVAR Exchanges No. 65, Vol. 19, No. 2, July 2014

et al,, 2010, 2012; Timko et al. 2012, 2013; Shriver et al. 2012,
2014; Richman et al., 2012), we have inserted tides into
global eddying simulations. Tidal flows in a high-resolution
global model with realistic rough topography generate
internal tides-internal waves of tidal frequency. Similarly,
geostrophic flows over rough topography generate internal
lee waves (Bell, 1975). It is not yet possible to resolve
internal lee waves in global models, but the impact of internal
lee waves can be parameterised. In the other effort reported
here, we have inserted parameterised topographic lee wave
drag into global eddying simulations that do not include
tides, with a preliminary focus on the resulting model energy
budget (Trossman et al., 2013).

Global simulations of the tides and the atmospherically
forced eddying general circulation have long been done
separately. Global general circulation models began to resolve
mesoscale eddies in the 1990's (e.g., McClean et al., 1997).
Since then eddying models have become increasingly realistic
(e.g., Hecht and Hasumi, 2008). Global modelling of internal
waves is a newer endeavour. In the first global simulations

of internal tides (Arbic et al., 2004; Simmons et al., 2004),
only tidal forcing was employed, and the stratification was
taken to be horizontally uniform. The insertion of tides into
atmospherically forced general circulation models allows for
internal tide propagation in a realistic horizontally varying
stratification, for interactions between internal tides and
eddies, and for the co-existence of tides and near-inertial
waves, another important class of internal waves (e.g.,
Simmons and Alford, 2012). In global high-resolution
models with simultaneous atmospheric and tidal forcing, the
internal wave spectrum is beginning to be resolved, just as
mesoscale eddies began to be resolved in global models two
decades ago. Our simulations with simultaneous tidal and
atmospheric forcing are being used to address a variety of
scientific and operational questions.

The global energy budget has been a topic of great recent
interest, largely because the mixing occurring when energy
is dissipated may exert a strong control on the oceanic
meridional overturning circulation (Munk and Wunsch,
1998). The mechanisms underlying the dissipation of

the eddying oceanic general circulation are still under
investigation. Candidate dissipation mechanisms include the
transfer of energy from geostrophic flows to submesoscale
motions in the upper ocean (e.g., Capet et al., 2008), bottom
boundary layer drag (Sen et al., 2008; Arbic et al., 2009),
and breaking of internal lee waves generated by geostrophic
flows over rough topography (e.g., Naveira-Garabato et al.,
2004). Nikurashin and Ferrari (2011) and Scott et al. (2011)
estimated the globally integrated energy flux of geostrophic
flows into internal lee waves over rough topography, and
found it to be a substantial fraction of the ~1 TW of energy
put by the wind into geostrophic flows (e.g., Wunsch, 1998,
and others). Both the Nikurashin and Ferrari (2011) and
Scott et al. (2011) estimates were “offline”; they utilised
bottom flows from eddying simulations that did not employ
topographic wave drag as they ran. In Trossman et al. (2013)
we inserted inline topographic lee wave drag into eddying
HYCOM simulations, thus ensuring feedbacks between

the model bottom stratification and flow fields and the
topographic internal lee wave drag.

The HYCOM simulations shown here are forced by output
from the Navy Operational Global Atmospheric Prediction
System (NOGAPS); going forward the simulations will be
forced by the Navy Global Environmental Model (NAVGEM).
The simulations shown here are run on a combination
Mercator and tripolar grid with an equatorial grid resolution
of 0.08° (8.9 km) and are coupled to a sea ice model at high



latitudes. Global HYCOM simulations at 0.04° (4.5 km) have
also been performed, but are not discussed here (see article
by Chassignet et al. 2014, this issue). The model reproduces
the general circulation of the global ocean, the strength and
variability of the western boundary currents, such as the Gulf
Stream and Kuroshio, and the mesoscale eddies generated
by instabilities of the major currents (Thoppil et al., 2011).

2. Insertion of tides into eddying simulations

In our HYCOM simulations forced by both atmospheric
fields and tides (Arbic et al., 2010, 2012), we include the
four largest semidiurnal tidal constituents (M2, S2, N2,

and K2) and the four largest diurnal tidal constituents (K1,
01, P1, and Q1). We use the parameterised topographic
internal wave drag scheme of Garner (2005), modified to
limit the maximum decay rates to (9 hours)!. The wave
drag parameterisation represents the drag resulting from
the generation and subsequent breaking of unresolved
small-vertical scale internal waves by tidal flow over rough
topography. Because the wave drags acting on tidal versus
non-tidal motions have different strengths (Bell, 1975), tidal
and non-tidal bottom flows are separated using a 25-hour
running boxcar filter. Presently, the scalar approximation
(Ray, 1998) is used for the self-attraction and loading term
(Hendershott, 1972).

Barotropic tidal sea surface elevations in HYCOM have been
compared to measurements made from tide gauges (Shum
et al., 1997) and state-of-the-art data-assimilative barotropic
tide models (Egbert et al., 1994). In Shriver et al. (2012) we
also compared the modelled internal tide perturbation to
sea surface height (SSH) - computed from a spatial high-
pass of the total amplitude of tidal SSH - to internal tide
perturbations computed from along-track satellite altimeter
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Figure 1. The internal tide amplitude of the principal lunar
semidiurnal constituent M2 from the (a) altimetric-based

and (b) HYCOM tidal analyses. The five subregions denoted
by black boxes in (b) are used to compute area-averaged
amplitudes in Shriver et al. (2012). From Shriver et al. (2012).

data (Ray and Byrne, 2010). Figure 1 shows global maps

of the M2 internal tide amplitude in HYCOM versus along-
track altimeter data. The hotspots around locations such
as Hawai'i, the Aleutian Islands, the Tuamotu Archipelago
in the tropical central South Pacific, and Madagascar match
up reasonably well in the two maps. Furthermore, the root-
mean-square (rms) perturbation magnitudes over the five
hotspot regions delineated by boxes in the bottom panel of
Figure 1 agree with the altimeter rms values to within about
20%. Comparisons of tidal currents, and their vertical
structure, in HYCOM versus historical moored observations
were made in Timko et al. (2012; 2013).

We have used the HYCOM tidal simulations to distinguish
between tidal and non-tidal contributions to the wavenumber
spectrum of SSH (Richman et al., 2012). The slope of the
wavenumber spectrum is of great theoretical interest, as

it contains clues about the dominant dynamics of low-
frequency flows (e.g., LeTraon et al., 2008; Xu and Fu, 2011).
Because of the 10-day repeat track time, current state-of-
the-art TOPEX/JASON satellite altimeters alias tides into
longer periods (Parke et al., 1987). In contrast, because our
model output is written at hourly intervals, we can easily
separate low- from high-frequency signals in HYCOM. In
regions such as the Kuroshio, where low-frequency motions
are more energetic than tidal motions, the wavenumber
spectrum of SSH is dominated by low-frequency motions.
However, in regions where internal tides are energetic, for
instance near Hawai'i, high-frequency motions dominate
the high-wavenumber end of the wavenumber spectrum.
The results of Richman et al. (2012) imply that internal tides
will have to be accurately removed from data taken by the
planned high-resolution wide-swath satellite altimeter (Fu

et al., 2012) before low-frequency oceanic motions can be
investigated. The accuracy with which internal tides can

be removed from altimeter signals depends on the degree
of non-stationarity of the internal tides. Internal tide non-
stationarity in HYCOM is investigated in Shriver et al. (2014).

3. Insertion of topographic wave drag into
eddying simulations

In Trossman et al. (2013) we again use the topographic
wave drag parameterisation of Garner (2005), this time
applied to low-frequency motions. The Trossman et al.
(2013) simulations did not include tides. For simplicity, we
refer to the Garner (2005) scheme here as a “wave drag”
scheme even though it includes effects of topographic
blocking, which yields low-level turbulence, as well as lee
wave production and breaking. Maps of energy dissipation
by quadratic bottom drag and by the parameterised
topographic lee wave drag, both averaged over one year,
are shown in Figure 2. As in the “offline” estimates of
Nikurashin and Ferrari (2011) and Scott et al. (2011), as
well as the offline estimates done in Trossman et al. (2013),
the inline estimates shown in the bottom panel of Figure 2
indicate substantial lee wave drag dissipation in the Southern
Ocean. The globally integrated internal lee wave drag
dissipation in the inline Trossman et al. (2013) estimates

is 0.4 TW, comparable to that seen in the offline estimates
of Nikurashin and Ferrari (2011), Scott et al. (2011), and
Trossman et al. (2013). However, as anticipated, there is
indeed a strong feedback between the internal lee wave
drag and the model flows. Adding wave drag to HYCOM
substantially changes the modelled near-bottom eddy kinetic
energy and stratification fields (Trossman et al., 2013).
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Figure 2. LoglO of the bottom and wave drag terms in the
energy budget of 1/12 eddying HYCOM simulation with , where
each drag term has units [W m-2]: (a) quadratic bottom
boundary layer drag and (c) parameterised internal lee wave
drag. Adapted from Trossman et al. (2013).

4. Ongoing and planned work

In ongoing and planned work with the HYCOM tide
simulations, we are comparing the SSH frequency spectra
in HYCOM versus tide gauges, as a measure of the accuracy
of the partition of modelled low- versus high-frequency
energy (Savage et al., paper in revision). We are estimating
tidal aliasing errors in altimetrically-derived low-frequency
wavenumber spectra and spectral fluxes (Savage et al.,
paper in preparation). We are also comparing the kinetic
energy frequency spectra in HYCOM versus moored current
meter records (Muller et al., paper in preparation). We

are comparing both low- and high-frequency temperature
variances (which are related to available potential energies)
to temperature variances in moored historical records
(Luecke et al. and Bassette et al., respective papers in
preparation). To further elucidate the energetics of internal
tides, we are preparing global maps of the baroclinic tidal
energy fluxes and barotropic-to-baroclinic tidal energy
conversions (Ansong et al. and Buijsman et al., papers

in preparation). The latter work is part of the National
Science Foundation-funded Climate Process Team project
“Collaborative Research: Representing internal-wave driven
mixing in global ocean models”, which focuses on improving
estimates of internal-wave mediated mixing in the ocean,
and is led by Professor Jennifer MacKinnon of the Scripps
Institution of Oceanography. Finally, our long-term goals
for the HYCOM tides work include improvement of tidal
accuracy through the inclusion of data assimilation and
better estimates of the self-attraction and loading term, and
usage of the global HYCOM tidal solution to force regional
and coastal models at their open-water boundaries.
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In ongoing and planned work on parameterised topographic
lee wave drag, we will investigate whether the inclusion of
wave drag into eddying models improves the comparison

of the models with observations. We will also compare the
dissipation predictions of the Garner (2005) and Bell (1975)
schemes with dissipation inferred from microstructure
observations. Finally, we will investigate the impact of a
more complete parameterisation of the vertical deposition
of internal lee wave drag on the energetics and abyssal
circulation in eddying models. These projects are all led by
co-author Trossman (papers in preparation).
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