
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Brain Behavior Evolution during Learning:

Emergence of

Hierarchical Temporal Memory

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

In this report, we summarize two attempts to ascertain whether structure arises in Hopfield brain models subject to

Hebbian learning. The first attempt uses graph measures to derive numerical scores for networks, and then apply

data mining methods to separate the networks in parameter space. The second attempt uses one- and two-event

chains to relate synapse strength to connection information. Learning methods are applied to brains of different

types to see if changes can be detected. No Hebbian learning method caused tree-like structure to develop.

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

30-08-2013

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

brain model, Hopfield network, Hebbian learning

Donald A. Drew

Rensselaer Polytechnic Institute

Office of Sponsored Research

110 8th Street

Troy, NY 12180 -3522

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-09-1-0481

611102

Form Approved OMB NO. 0704-0188

56793-MA.1

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Donald Drew

518-276-6903

3. DATES COVERED (From - To)

2-Sep-2009

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

- 1-Aug-2013

Brain Behavior Evolution during Learning:

Emergence of

Hierarchical Temporal Memory

Report Title

ABSTRACT

In this report, we summarize two attempts to ascertain whether structure arises in Hopfield brain models subject to Hebbian learning. The

first attempt uses graph measures to derive numerical scores for networks, and then apply data mining methods to separate the networks in

parameter space. The second attempt uses one- and two-event chains to relate synapse strength to connection information. Learning methods

are applied to brains of different types to see if changes can be detected. No Hebbian learning method caused tree-like structure to develop.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of

the project to the date of this printing. List the papers, including journal references, in the

following categories:

Received Paper

TOTAL:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Number of Papers published in peer-reviewed journals:

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Books

Number of Manuscripts:

Received Paper

TOTAL:

Patents Submitted

Patents Awarded

Awards

Graduate Students

DisciplinePERCENT_SUPPORTEDNAME

Oswaldo Sanchez 1.00

Andrew Warner 1.00

 2.00FTE Equivalent:

 2Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Donald A Drew 0.05

 0.05FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

DisciplinePERCENT_SUPPORTEDNAME

Julienne LaChace 0.00 Mathematics

Francis Cheng 0.00 Mathematics

 0.00FTE Equivalent:

 2Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 2.00

 1.00

 1.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 2.00......

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Oswaldo Sanchez

Andrew Warner

 2Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

Brain connections were characterized by a set of weights connecting neurons. A number of graph measures were identified to

characterize the networks. Data mining methods were used to determine how different graphs types could be distinguished. In

addition, two-event chain firing frequency data were generated as a function of connection strength. Hebbian learning methods

were applied to the different types of brains, but no evidence was obtained that indicated that structure emerged from learning.

Indeed, Hebbian learning (and all of its variations) led to networks that are symmetric (and therefore not brain-like) and were

interconnected with a Gaussian distribution of weights.

Technology Transfer

Final Report for ARO

Brain Behavior Evolution during
Learning: Emergence of Hierarchical

Temporal Memory

Donald A. Drew, PI
Department of Mathematical Sciences

Rensselaer Polytechnic Institute,
Troy, NY 12180

Contents

1 Introduction 3
1.1 Hierarchy . 5
1.2 McCulloch and Pitts Model and Hopfield Networks 6
1.3 Graph Theory . 8
1.4 Data Mining . 9

1.4.1 Support Vector Machine Learning 9
1.4.2 Principal Component Analysis 10
1.4.3 Canonical Variate Analysis 10
1.4.4 Parzen Windows . 10

1.5 Event Chains . 12
1.6 Learning Algorithms . 12
1.7 Hebbian Learning . 13
1.8 Goal . 13

2 The Brain 14
2.1 The Neocortex . 14

2.1.1 Cortex Organization . 15
2.1.2 Neuron Type and Interaction 18

3 Brain Model 20
3.1 McCulloch and Pitts Model for Neurons 20

4 Structure 21
4.1 Graph Methods . 23

4.1.1 Graph Types . 23
4.1.2 Graph Measures . 25

4.2 Classification . 31
4.2.1 Data Mining . 31

4.3 Functional methods . 41
4.3.1 Combining Interaction and Structure 42
4.3.2 Extracting Data from Event Chains 43
4.3.3 Simulations and Data . 44

1

4.3.4 One and Two-Event Chains 47
4.3.5 Weight and Event-Chain Correlation 49
4.3.6 Correlating the Data . 51
4.3.7 Behavior and Structure 53

4.4 Weight Model and Prediction . 54
4.4.1 Linear Regression Model 54
4.4.2 Model Flaws and Improvements 54
4.4.3 Numerical Improvement 56
4.4.4 Normal Distribution Modeling 59
4.4.5 Reduction to Observable Data 60

4.5 Predicting Brain Differences without Using Weight Data 62
4.5.1 Hellinger Distance . 63
4.5.2 Detecting Brain Size . 65
4.5.3 Detecting Damaged Neurons 69

5 Learning Algorithms 72

6 Results from Learning Algorithms 75
6.1 Results for Initial Networks . 76

6.1.1 Results from Training . 77
6.1.2 More Interesting Result 78

6.2 Functionality Changes During Learning 80
6.2.1 Comparing Learned Brains to Random Networks 83

7 Conclusion and Future Directions 97
7.1 Summary . 97
7.2 Lessons Learned . 99

Abstract

In this report, we summarize two attempts to ascertain whether struc-
ture arises in Hopfield brain models subject to Hebbian learning. The first
attempt uses graph measures to derive numerical scores for networks, and
then apply data mining methods to separate the networks in parame-
ter space. The second attempt uses one- and two-event chains to relate
synapse strength to connection information. Learning methods are ap-
plied to brains of different types to see if changes can be detected. No
Hebbian learning method caused tree-like structure to develop.

2

1 Introduction

In this report, we summarize two attempts to ascertain whether struc-
ture arises in Hopfield brain models subject to learning. Brains func-
tion through a process whereby neurons “fire” in response to a stimulus,
that firing then induces other neurons to “fire,” resulting in a cascade of
information. The growth and formation of the brain structures is gov-
erned by genetic information and implemented in each organism (includ-
ing humans) in an environment of proteins and enzymes. However, the
equivalent of a schematic or wiring diagram at the level of individual neu-
rons does not exist, and indeed, it is believed that brains are continually
rewiring in the process of learning.

Implementation of the genetic code specifies the types and number
of neurons as well as the general patterns of connections, but leaves the
details of neuronal wiring up to the adaptive processes of development.
It is generally presumed that the acquisition of complex skills, such as
speech, vision and movement, achieved with a little supervision during the
first years of life, is due to adaptive processes of neuronal re-organization
and synapse strengthening and reconnection operating within and upon
the existing processing structures[2].

To say the least, the brain is an extremely complex system, and after
a century of work we have a basic understanding of the complex processes
within a single neuron and the biophysical chemistry of synapses [1, 24,
48, 49]. However, the dynamics of how a functioning network of neurons
lead to memory gain and loss, behavior, consciousness, creativity or any of
the byproducts of the brain, are still poorly understood. To wit, the brain
has about 40 billion neurons each having at least 1,000 but as many as
10,000 synapses, for a total of about 30 trillion synapses. Neurons are the
key component and computational unit of the brain, organized into the
several regions of the brain. The cerebral cortex [4] is the structure in the
brain that plays a key role in memory, attention, perceptual awareness,
thought, language and consciousness. It is pretty well accepted that the
cortex is relatively uniform in appearance and structure [32]. That is, the
area for seeing, the occipital lobe, does not have a drastically different
structure from the region for hearing, the temporal lobe. What differs is
which organ each region connects to; therefore, there should be a common
algorithm for all signals (inputs), independent of any particular function or
sense, and this algorithm should be as simple as possible. This is because
despite its complexity, the brain has to function and react at time scales
less than a second. These limitations on the speed of the chemical and
electrical reactions in the brain suggest that its storage and retrieval must
be as simple and efficient as possible. Desirable models for the brain
should have great speed and possibly parallel structure, be robust, have
plasticity (the ability to change or adapt), deal with complexity, but most
importantly, be as simple as possible.

The brain does not compute the answers to problems; instead, it re-
trieves the answers from memory stored in the neurons. For example the
brain does not compute 2+2, but remembers that it is 4. This is very
similar to how mathematical models called neural networks work. These
networks can learn patterns, store them and then retrieve them. The use

3

of models that borrow some of the procedures from biology, but are not
bogged down by the actual size of the brain, or all the intricate chemical
and physical properties, may shed some light on how we learn. They may
one day help answer the question that drives computational neuroscien-
tists: How can an incomplete description (inputs to our brain), encoded
within neural states, be sufficient to direct the survival and successful
adaptive behavior of a living system [4]?

Many of the computational abilities of the brain, such as learning
and memory retention, are a result of the modification of the efficacy of
the synapse response [20]. Learning is the acquisition of new knowledge
and skills while memory is the storing, retention, and retrieval of what
has been learned. During the learning process, the weights connecting
the neurons are altered; some are strengthened while some are weakened.
The connections between the neurons give the network its structure. As
the weights change, the structure of the network changes.

If we understand what algorithm the brain uses to learn, we would be
able infer things about artificial intelligence, the process of machine learn-
ing. Algorithms that can reproduce the computational properties of the
brain can help us understand how these properties may arise. We would
be able to make models that predict human behavior such as addictions
and reactions to certain inputs, how people learn, or why they learn cer-
tain things quickly and easily, but other learning comes with difficulty, if
at all.

Hawkins and Blakeskee [18] hypothesize that the brain has evolved
many hierarchical structures in order to manage the complexity of ac-
complishing both learning and memory formation. The main goal of this
project is to examine different learning schemes, such as Hebbian learn-
ing, and investigate how they result in a restructuring of the connections
between neurons. We postulate that a brain structure, established early
in the life of the organism, is modified by the way the connections evolve
during learning, causing this hierarchical arrangement to emerge. It is
plausible, then, that the brain arranges the connections between neurons
hierarchically as a result of the way it learns.

First we will further define the concept of hierarchy. Then we will look
at how neuronal states can be modeled by neural networks and how those
network change as they are trained on data. We also define how we will
use graph theory to represent the networks and graph theory measures
to distinguish the networks. We then discuss how we implement various
learning algorithms in the networks, and how changes in hierarchy are
tracked using data mining techniques. We present the issue of using of a
threshold to convert networks to graphs, and how it affects our results.

Complex systems with complex behaviors, like the brain with all its
processes, can emerge from the simple interactions of simpler components
(neurons) [22]. Through the interplay of the relatively simple and homo-
geneous neurons, the brain is able to store and retrieve stable memories,
make categorical generalizations and adapt in novel situations. Emer-
gence of these computational capabilities from the collective behavior of a
large number of simple precessing elements has been modeled by Hopfield,
Carpenter and Grossberg [22, 21, 23, 14].

Hopfield’s brain models used neurons with elementary properties and

4

networks with little structure, nonetheless, computation properties emerged,
allowing the networks to correctly recall memories and resolve ambiguities
with the capacity for some generalization and time ordering of memories
[22]. Carpenter and Grossberg used network dynamics to learn recogni-
tion categories and observed in their network an architecture that self-
organized and self-stabilized, illustrating that “the whole is much greater
than the sum of its parts both in human experience and in self-organizing
model” [14]. They found the emergent properties of parallel network inter-
actions allowed for novel inputs to recall a category by learning invariant
properties of the familiar exemplars of that category.

1.1 Hierarchy

According to Hawkins, in a hierarchical system, some elements are in an
abstract sense “above” and “below” others [18]. There is a concept of
levels and elements are ranked or sorted into levels where information
propagates up or down these levels sequentially. What makes one region
“higher” or “lower” than another is how they connect to one another.
The region with the initial input is considered the lowest level. Data
then propagates up the hierarchy to other regions. There is a flow of
information from the lower neuron to the higher ones. There can also be
lateral connections between neurons on the same level. For example, in
the brain the lowest region in the hierarchy could be the primary sensory
area, called V1, where information from the senses first arrives in the
cortex. V1 then feeds information to other regions such as V2 and V4,
and those regions connect to the top region, IT[18].

Hierarchy is found not only in the brain, but virtually all complex
systems including social networks, power grids, and the Internet. The
universal advantage of such hierarchical forms is that they are efficient
and robust against disruptions that might threaten the goal of the sys-
tem. That so many systems naturally evolve into a hierarchical structure
seems to be more than a coincidence, indicating that for many complex
interactions, a hierarchical system may be optimal [7, 35].

dence, indicating that for many complex interactions, a hierarchical system may
be optimal [6], [34].

Figure 1: Hierarchical Arrangement

Figure 1 shows an example of a hierarchical structure. In this type of struc-
ture, nodes of a higher level have access to more neurons than those from lower
levels. There is a convergence of information in the higher levels. In the brain
the lower neurons might receive visual information from seeing a dog over the
observation period. Each neuron would receive vastly changing signals from in-
dividual receptors on the eye. Neurons higher in the hierarchy would be fed this
data and recognize they are looking at tails, fur, paws, while the neurons above
those would recognize back, head, leg and finally the top one would recognize
dog. This hierarchy allows for something as complex a recognizing a dog to be
possible. Hierarchy is explained further in Section 2.

1.2 McCulloch and Pitts Model and Hopfield Networks

There are several different types of neurons arranged in the spatial network
in a brain. These neurons consists of a cell body, several dendrites, and an
axon, and are classified, at least partly, by geometric structure and complexity.
Communication between neurons occurring at synapses is due to two types of
activity: electrical, most notably due to the action potential, a wave of potential
change that propagates along the dendrites and axons; and chemically, with
release of neurotransmitters and ions at synapses. These processes are complex,
and it is possible that nuances in them may modulate brain activity and memory.

For the purposes of studying the behavior of networks, it is impractical, if
not impossible, to describe these details, and we do not attempt to do so. We
model the brain by a moderately large set of neurons with discrete states (“on”
and “off”, or “firing” and“resting”). We assume that any neuron contributes to
the activation of any other by superposition, subject to a threshold. Learning
is the modification of the interaction weights and the synaptic thresholds. An
event for this brain is a sequence of neural states for discrete times, starting

4

Figure 1.1: Hierarchy

Figure 1.1 shows an example of a hierarchical structure. In this type of
structure, nodes of a higher level have access to more neurons than those
from lower levels. There is a convergence of information in the higher
levels. In the brain the lower neurons might receive visual information
from seeing a dog over the observation period. Each neuron would receive

5

vastly changing signals from individual receptors on the eye. Neurons
higher in the hierarchy would be fed this data and recognize they are
looking at tails, fur, paws, while the neurons above those would recognize
back, head, leg and finally the top one would recognize dog. This hierarchy
allows for something as complex a recognizing a dog to be possible. How
we model hierarchy is explained further in section 4.1.

1.2 McCulloch and Pitts Model and Hopfield Net-
works

There are several different types of neurons arranged in the spatial network
in a brain. These neurons consist of a cell body, several dendrites, and
an axon, and are classified, at least partly, by geometric structure and
complexity. Communication between neurons occurring at synapses is
due to two types of activity: electrical, most notably due to the action
potential, a wave of potential change that propagates along the dendrites
and axons; and chemically, with release of neurotransmitters and ions at
synapses. These processes are complex, and it is possible that nuances
in them may modulate brain activity and memory. For the purposes of
studying the behavior of networks, it is impractical, if not impossible, to
describe these details, and we do not attempt to do so. We model the brain
by a moderately large set of neurons with discrete states (“on” and “off”,
or “firing” and “resting”). We assume that any neuron contributes to the
activation of any other by superposition, subject to a threshold. Learning
is the modification of the interaction weights and the synaptic thresholds.
An event for this brain is a sequence of neural states for discrete times,
starting from a given state, and stimulated by a sequence of input states
to a small fraction of the neurons. During an event, the weights will
change. Learning has the effect of making the neural states resulting from
the same starting state and the same stimulus to be different for a brain
that has undergone some learning process and one which has not.

Donald O. Hebb formulated a theory stating that synaptic plasticity
results from the simultaneous (or immediately successive) activation of
presynaptic and postsynaptic neurons [19]. That is, repeated and persis-
tent stimulation of both neurons increases the strength of their synaptic
connection. As a result, if one is activated, the other is likely to activate
as well. This has come to be described by the rubric “Neurons that fire
together wire together” [19]. Synaptic strengths are also weakened as a
result of their disuse, that is, “If you dont use it you lose it.”

A simple iconic example of Hebbian learning can be seen in the condi-
tioning of Pavlovs dog (Figure 1.2). Suppose the dog has three neurons,
A, B and C, for which the sight of food is enough to excite neuron C,
which in turn excites neuron B and causes salivation. Also suppose that
in the absence of food, sound from a ringing bell excites neuron A but
does not excite neuron B. Then applying simultaneous sight and sound
stimulation causes salivation and may increase a putative connection be-
tween neuron A and B. After repeated simultaneous stimulation the sound
of the bell may induce salivation without the sight of any food. The dog
is now conditioned (hardwired) so that the response to the bell and the

6

from a given state, and stimulated by a sequence of input states to a small
fraction of the neurons. During an event, the weights will change. Learning has
the effect of making the neural states resulting from the same starting state and
the same stimulus to be different for a brain that has undergone some learning
process and one which has not.

A

C

B

Sight Input

Salivation
 signal

Sound Input

Figure 2: Three Neurons Interacting

Donald O. Hebb formulated a theory stating that synaptic plasticity results
from the simultaneous (or immediately successive) activation of presynaptic and
postsynaptic neurons [18]. That is, repeated and persistent stimulation of both
neurons increases the strength of their synaptic connection. As a result, if one is
activated, the other is likely to activate as well. This has come to be described
by the rubric “Neurons that fire together wire together” [18]. Synaptic strengths
are also weakened as a result of their disuse, that is, “If you don’t use it you lose
it.” A simple iconic example of Hebbian learning can be seen in the conditioning
of Pavlov’s dog (Figure 2). Suppose the dog has three neurons, A, B and C, for
which the sight of food is enough to excite neuron C, which in turn excites neuron
B and causes salivation. Also suppose that in the absence of food, sound from
a ringing bell excites neuron A but does not excite neuron B. Then applying
simultaneous sight and sound stimulation causes salivation and may increase
a putative connection between neuron A and B. After repeated simultaneous
stimulation the sound of the bell may induce salivation without the sight of any
food. The dog is now conditioned (hardwired) so that the response to the bell
and the response to the food are closely related [15], [33].

McCulloch and Pitts proposed a simple model of the interactions of neurons
as a response to the stimulus of connecting neurons and whether the stimulus
exceeds a threshold, µj . It is a discrete time neuron network model that assigns

5

Figure 1.2: Three neurons learning

response to the food are closely related [16, 34]. Note that the essence of
this conditioning response is that “neurons” A and B fire together, and
became “connected” in terms of their responses.

McCulloch and Pitts proposed a simple model of the interactions of
neurons as a response to the stimulus of connecting neurons and whether
the stimulus exceeds a threshold, τj . It is a discrete time neuron network
model that assigns to neuron j the states of “on” (sj(t) = 1) or “off”
(sj(t) = 0) depending on the state at the previous time t − 1 and on
inputs to certain “sensory” neurons. That is, the state of neuron j, sj ,
at time t is a function of the states of all the neurons at that connect to
it at time t− 1. We model the behavior of the network by

sj(t) = H

(∑
i

wi,j(t− 1)si(t− 1)− τj

)
, (1.1)

where H is the Heaviside function,

H(x) =

{
1 x ≥ 0,
0 x < 0

(1.2)

and the weight wi,j(t) represents the strengths of the synapse connecting
neuron i to neuron j at time t, and τj is the threshold for neuron j.

In this model, memory is associated with the weight matrix wi.j(t)
and learning is a process by which wi,j(t) changes dependent on previous
wi,j(t− 1) values and previous neuronal states.

wi,j(t) = f(wi,j(t− 1), si(t− 1), sj(t− 1)). (1.3)

The goal of most neural networks is to find the optimal weights so as to
learn patterns, classify or cluster data, make predictions, and correct for

7

missing or corrupt data [39, 42]. The Hopfield network is based on the idea
that memory is associative. We associate names with faces or countries
with locations [17]. Hopfield networks change by Hebbian learning; that
is, if neurons are on at the same time the connection (weight) is strength-
ened. One starts out with a fixed given set of p patterns, (ξ1, ξ2, . . . ξp)
input to our neurons. The Hopfield Network assumes the patterns are the
minimum of the energy function defined by

E(x) =
−1

2
xTWx (1.4)

where W is the connection matrix defined by

W =
1

n

p∑
µ=1

ξµ(ξµ)T (1.5)

Here ξµ is a vector of zeros and ones, and the domain of E are the pos-
sible patterns we can have [4, 20]. Basically the weight matrix that has
“learned” the patterns (ξ1, ξ2, . . . ξp) is the linear combinations of the
outer products of these pattern vectors. It is called the covariance ma-
trix, and is symmetric. We explore learning algorithms in section 5.

1.3 Graph Theory

In order to determine whether learning results in a change of the hierar-
chical structure we must quantify hierarchy. Figure 1.3 shows an example
of a tree and a random network. A tree is clearly hierarchical while a
random network is not.

We use graph theory to represent brain models. A graph, G =<
V,E >, is a set of vertices, V , some pairs of which are connected by links
called edges, E. A graph can be represented by an adjacency matrix,
A, where A(i, j) = 1 represents a connection fromi to j and A(i, j) = 0
otherwise. If the connection between nodes i and j is bidirectional, then
A(i, j) = A(j, i). A weighted graph allows for entries other than just
0 or 1, representing strengths of connection, lengths, capacities or any
relationship we can quantify between i and j [13].

TREE

(a) Tree Graph

RANDOM

(b) Random Graph

Figure 3: Tree vs. Random

1.3 Graph Theory

In order to determine whether learning results in a change of the hierarchical
structure we must quantify hierarchy. Figure 3 shows an example of a tree and
a random network. A tree is clearly hierarchical while a random network is not.

We use graph theory to represent brain models. A graph, G =< V,E >,
is a set of vertices, V , some pairs which are connected by links called edges,
E. A graph can be represented by an adjacency matrix, A, where A(i, j) = 1
represents a connection from i to j and A(i, j) = 0 otherwise. If the connection
between nodes i and j is bidirectional, then A(i, j) = A(j, i). A weighted graph
allows for entries other than just 0 or 1, representing strengths of connection,
lengths, capacities or any relationship we can quantify between i and j [12].
In our case the weight matrix W (t), is an matrix that specifies how strongly
neurons i and j are connected. If we round the values in a weight matrix to either
0 or 1, with the assumption that neurons with sufficiently low weights between
them do not affect each other, we can construct a thresholded graph of the
network. That is, we round low values to 0 and higher values to 1. Therefore,
though there may be a connection between two neurons, if it is too weak we do
not count it.

We use graph theory measures such as expansion [37], [36], eccentricity,
efficiency, [35], clustering coefficient and average minimum path length [44] to
rank graphs in terms of increasing hierarchy. We propose to determine a region
in a low dimensional space of such parameters to quantify hierarchical graphs
in an empirical way. Each dimension is a measure of some aspect of the graph.
We shall generate several known hierarchical and non-hierarchical networks, and
calculate the values of the parameters for each.

Once an appropriate measure of hierarchy has been established, we examine
the behavior of Hopfield networks under a variety of learning algorithms. During
training we study the evolution of the graph in this low dimensional space. We
shall evaluate the propensity of learning algorithms to cause networks to migrate
toward the hierarchical region in this space. This project yields a measure to
study the emergence of hierarchy in brains as well as in other networks and
graphs. It is important to be able to distinguish systems that are hierarchical
from those that are not because it allows us to better understand how their
structures affect their dynamics. We explore graph theory measures in Section

7

Figure 1.3: A Tree Graph and a Random Graph

8

The weight matrix W (t), is an matrix that specifies how strongly neu-
rons i and j are connected. If we round the values in a weight matrix
to either 0 or 1, with the assumption that neurons with sufficiently low
weights between them do not affect each other, we can construct a thresh-
olded graph of the network. That is, we round low values to 0 and higher
values to 1. Therefore, though there may be a connection between two
neurons, if it is too weak we do not count it. In order to use graph theory
tools we need to classify two nodes as connected or not; as a result, we
must map the weight matrix in a matrix of zeros and ones. To do this we
must round the matrices. From a weight matrix, W , define the adjacency
matrix Aτ at the threshold τ by

Aτi,j = H (|wi,j | − τ) , (1.6)

where H is the Heaviside function. The values used for the threshold
affect the results. We investigate this by varying the threshold.

We use graph theory measures such as expansion [38, 37], eccentricity,
efficiency, [36], clustering coefficient and average minimum path length
[45] to rank graphs in terms of increasing hierarchy. We propose to deter-
mine a region in a low dimensional space of such parameters to quantify
hierarchical graphs in an empirical way. Each dimension is a measure of
some aspect of the graph. We shall generate several known hierarchical
and non-hierarchical networks, and calculate the values of the parameters
for each.

Once an appropriate measure of hierarchy has been established, we
examine the behavior of Hopfield networks under a variety of learning
algorithms. During training we study the evolution of the graph in this low
dimensional space. We shall evaluate the propensity of learning algorithms
to cause networks to migrate toward the hierarchical region in this space.
This project yields a measure to study the emergence of hierarchy in
brains as well as in other networks and graphs. It is important to be
able to distinguish systems that are hierarchical from those that are not
because it allows us to better understand how their structures affect their
dynamics. We explore graph theory measures in section 4.1.

1.4 Data Mining

1.4.1 Support Vector Machine Learning

Support Vector Machine learning is a form of supervised learning. We
present the SVM learning mechanism with n inputs and their correspond-
ing desired output. That is we present it with a set of n patterns {xi, yi},
where xi ∈ Rn and yi ∈ {+1,−1}. In order for SVM to successfully
associate input with correct output patterns, the data must belong to ei-
ther one of two groups and be linearly separable. Examples are a patient
either having cancer or not, an email being a scam or not, a computer
crashing or not. SVM is similar to regression in that it fits a line (or a hy-
perplane) to separate the two classes. However, unlike regression, where
the line is trying to interpolate the data, SVM just linearly separates an
n-dimensional space into two parts: one side for one class and the other

9

side for the other class. Figure 1.4 is an example of classifying with SVM
[25].

1.4.2 Principal Component Analysis

Principal Component Analysis (PCA) is a method used in regular statis-
tical analysis which extracts a basis to define a lower dimensional vector
space. The procedure is to find n eigenvectors corresponding to the opti-
mal basis for a n dimensional representation of the vectors with minimal
reconstruction error. The basis of the vector space is changed so as to place
the maximal variance of the data along the eigenvector with the great-
est eigenvalue, the second largest variance along the eigenvector with the
second largest eigenvalue, and so on. Variance is a measure of the spread
of the data set. The virtue of using the eigenvalues is that they rank the
directions of the space in terms of variations along those dimensions, and
this ranking is often related to their importance.

We can use exactly all the decomposed eigenvectors from the covari-
ance matrix and represent all the data in terms of the linear combination
of the eigenvectors. They reorient the data so that it can be more easily
analyzed for feature extraction. Ideally we want to represent the great-
est amount of information with the least amount of memory. With PCA
we could use only the first few eigenvectors because they explain the di-
rections in which the information varies the most, and neglect the last
few eigenvectors since they explain very little. In other words, the basis
projects the data from their original m dimensional space onto a n di-
mensional subspace, with n < m, spanned by these n vectors resulting
in a dimensionality reduction that often retains most of the intrinsic in-
formation of the data. Actually the choice of how many eigenvectors to
keep is problem specific. For example if the vector space data is in R200,
whether or not the problem reduces to R150 or even R20 depends on how
much variance is explained by the eigenvectors with the larger eigenvalues
[4, 12].

1.4.3 Canonical Variate Analysis

Canonical Variate Analysis (CVA) is a method using a basis to define
a lower dimensional vector space that maximizes the distance of data
points in different groups and minimizes distances of data points in the
same group. In instances when the data is not linearly separable, CVA
would a better option than PCA.

1.4.4 Parzen Windows

Given a set of data points all belonging to the same group, we can deter-
mine the probability that a new point belongs to that group. We assume
the data given all belong in one group T , and then construct an under-
lying probability density function, P , that could have given rise to the
data. This can be done by fitting a Gaussian distribution to the data.
We calculate P (x |x ∈ T) by determining the sample mean and standard

10

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

0

1

Support Vectors

(a) SVM

20 30 40 50 60 70 80
70

80

90

100

110

120

130

(b) Regression

Figure 4: Classifying vs. Regression

That is we present it with a set of n patterns {xi, yi}, where xi ∈ Rn and
yi ∈ {+1,−1}. In order for SVM to successfully associate input with correct
output patterns, the data must belong to either one of two groups and be linearly
separable. Examples are a patient either having cancer or not, an email being
a scam or not, a computer crashing or not. SVM is similar to regression in
that it fits a line (or a hyperplane) to separate the two classes. However, unlike
regression, where the line is trying to interpolate the data, SVM just linearly

10

Figure 1.4: Classifying vs. Regression

11

deviation, and substituting them into the distribution

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
(1.7)

or in higher dimensions

f(x) =
1

(2π)
k
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.8)

where Σ is the covariance matrix, |Σ| is its determinant, k is the dimension
of the space, and µ is the vector of means.

When analyzing data that could belong to any one of several differ-
ent sets, the data points in each group determine separate means and
standard deviations, and requires that we fit each of them with its own
distribution. Then given a new point, we can calculate to which group the
point belongs by determining which group assigns the largest probability
to the new point. Parzen windows are used to decide to which group the
nodes belong. We explore data mining to define and quantify hierarchy
in section 4.2.1.

1.5 Event Chains

An event chain is an occurrence of certain events in a given order. Event
chains of length one are just the events themselves. Event chains of length
two are two events that took place in a given order. In the McCulloch-
Pitts model implemented as a Hopfield network, a two-event chains would
occur when one neuron fires one time step after the other.

It is clear that if a string of neurons fire one after the other with about
the same frequency that any one of them fires, that the firing usually
occurs in that sequence. From that, we can infer that the neurons are
connected from neuron to neuron in that string. The neurons may be
connected to other neurons outside the string, but from that firing pattern,
the connectedness of the neurons is evident.

To utilize this idea, we construct brains out of certain reasonable con-
struction rules, and interrogate them for a correlation between the two-
event chain firing frequency and the connection weight wij . This relates
function, namely the firing frequency, to the structure, the connection
weight distribution.

1.6 Learning Algorithms

Neural Networks are a set of processing nodes (elements, units, links,
neurons) with connections between them. Their structure and purpose
vary, but typically they are arranged in levels and the connections changed
by the data with which they are presented [17].

A learning algorithm is a way to change the weights of the matrix
representing connections between neurons. The magnitude of the weights
is equal to the strength of the connection. The weights carry the infor-
mation that has been learned. Changes in the weight of the matrix occur
in response to learning. We allow the activity of the neurons to train the

12

weight matrix. For example, Hebbian learning implies that if two neurons
are repeatedly on at the same time, the connection between them should
increase. Gradually updating weights is analogous to human learning be-
cause synaptic connections are strengthened or weakened while learning
occurs.

Developing an algorithm to model human learning can be guided by
biological plausibility. An important feature of such an algorithm is its
ability to store information in a set of nodes so that the information can be
recalled and altered. Neuroscientists now understand that an increase in
the rate of neurotransmitter released by the presynaptic cell is responsible
for the increase in the strength of the synapse which is interpreted as
learning [3]. Hebbian learning mathematically exploits this relationship,
assuming that neurons that are frequently on at the same time develop
the strongest synapses [17].

1.7 Hebbian Learning

Hebbian learning is any learning that strengthens the connection of neu-
rons that fire simultaneously and weakens those that do not. There are
several ways to change the weight matrix based on the activity of the
neurons.

The Hopfield Network uses a way to choose the weights for the McCulloch-
Pitts model so that memories are content-addressable and insensitive to
small changes [20, 21, 22, 23]. It chooses the weight matrix to be a linear
combination of the patterns ξµi , µ = 1, 2, . . . , p

wi,j =
1

n

p∑
µ=1

ξµi ξ
µ
j , (1.9)

where p is the number of patterns and n is the number of neurons. The
symmetry of the Hopfield network implies that all neurons have the same
effect on other neurons as those neurons have on them. This restricts
the interpretation of the model in biological terms because neuronal con-
nections are not bidirectional. Specifically, neurons are connected from
synapse to dendrite. Thus, the symmetry of the Hopfield model contra-
dicts the assumption of biological plausibility. We consider variations to
Hebbian learning in section 5.

1.8 Goal

We are interested in the idea: Hierarchy can emerge in a system as a result
of how a network learns; a network that changes weights after it is given
an input, extracting patterns from the input. We examine structure in
two quite different ways, (i) using graph measures and data mining, and
(ii) by analysis of structure related to function.

We train networks with Hebbian-like learning algorithms and, as we
do so, trace whether hierarchy changes or not using graph measures, and
how the function changes.

We are interested in the measures of a tree and tree-like structures
because they are hierarchical; so we use the trees as our prototype for hi-
erarchy. We calculate the probability that a given graph is one of several

13

different graph types, in particular a tree. We then take the graph and
alter its structure during training by rewiring it connections. We calcu-
late the probability of the graph being a tree after each training and if
the probability that it is a tree increases, then we say its hierarchy in-
creases. We explore different starting values and different thresholds and
find that threshold is very important. One threshold value might lead
us to conclude the hierarchy is increasing while another might contradict
those results. We also find different training algorithms lead to different
results. We present results in Section 5 and conclusions in Section 7.

The functional approach appears to be useful in determining whether
it is possible to distinguish brains with “different” structures. We text
the method against brains with “damage”, more specifically, we compare
Waxman networks that are connected locally to similar networks with
patches of neurons that do not fire.

2 The Brain

We begin by examining the neuroscience of the brain in order to devise
a strategy to extract the information relevant to the problem. The brain
is an extremely complicated organ comprised of many components, and
that to model the entire brain is cumbersome at best, and unfeasible at
worst. Modeling assumptions become increasingly drastic simplifications
as we try to encompass more realistic complexity of the brain.

2.1 The Neocortex

For the purposes of this research, we are concerned with the activity of
the neocortex. The neocortex is part of the cerebral cortex, the outermost
area of the brain. The cerebral cortex is involved in processing sensory
information, delivering motor commands, and is believed to be involved
with thought, memory, learning and intelligence. Our focus is on modeling
behavior of the neocortex based on the measurable structure and func-
tionality, followed by making inferences about the less tangible concepts
such as thought or intelligence. We will start by discussing the neocortex
as a whole and delve into relevant specifics.

As an example of the substructure of the brain at this order of func-
tionality, the neocortex is a subregion of the cerebral cortex. Furthermore,
we know that the neocortex focuses on sensory information. Each sense
is processed in subregions within the neocortex. These are labeled ac-
cordingly. For example, the areas of the neocortex that handle vision are
the V1, V2, and V4 regions. Each of these regions, for example V1, have
further subregions of V1.

As we see in Figure 2.1 these regions are connected and connect to
even more regions in a hierarchical structure. For example, information
in V1 flows to V2, is processed, then flows to V4 and so on. The lower
regions of the hierarchy handle more basic inputs directly from the senses
and interpret them to the next level of complexity. As we move up the
hierarchy the data passed through by the lower regions is interpreted and

14

Figure 2.1: Areas of the neocortex that handle visual sensory data, labeled V1,
V2, V4 and MT

more complex interpretations are made. The area shown in the figure as
MT is the middle temporal area. As we move up in the hierarchy we
eventually join the senses together to get a more complete interpretation
of what we are seeing, touching, smelling, etc. In conjunction with sight,
suppose we consider touch and hearing (or audition). Each sense would
have its own hierarchy, but eventually join together as seen in Figure 2.2.

In order to develop an operational understanding we examine the com-
position of the neocortex itself. The neocortex, in humans, is a layer
roughly 2mm thick and comprised of special connections organized in six
layers. The six layers are comprised of neurons and vary in both size and
in number of neurons in the layers. For example, layer one is a thinner
layer and tends to consist of the axons of a neuron more than the cell
bodies themselves. Layer two or four however may be thicker and will
undoubtably contain the stoma (cell bodies) of neurons in addition to the
axons and dendrites.

In Figure 2.2(ii) the stoma is represented as a pyramid or star shape.
Regardless of which subregion of the neocortex, there are six layers in
every region. Since there is consistent structure and composition of each
the subregions, the actions in each regions must be the same. This means
that the operations being performed in a region such as V2 are the same
being performed in A4, an auditory region. We’ll investigate this further
as well, but it is important to recognize the implication of this. Recent
research suggests that “rewiring” of visual and auditory inputs can occur
in the brain of a ferret. This research supports the idea that, although
not exact, the behavior in the auditory region A1 is able to mimic the
performance of the visual region V1. In their book “On Intelligence”,
Hawkins and Blakeslee state simply “Cortex is cortex”.

2.1.1 Cortex Organization

We next examine the composition of a region at the neuron level so we
can describe just how the inputs in a region are handled and what occurs
to produce their outputs. Using stains on the cortex shows a structure
that is consistent with the representation in Figure 2.2.

The use of stains enables the examination of the neurons within a
slice of cortex. In Figure 2.3 we can confirm many of the structural issues
addressed already. Notice that there is a clear distinction between layers
on the left and center images with the Nissl-stain. It is widely accepted

15

Figure 2.2: (i) Hierarchy for inputs from senses of Touch, Hearing, and Sight
(ii) Cortical sheet for a given region

that the cortex physically consists of six layers. Note that layer one at the
top of the image contains mostly axons and few neuronal cell bodies. The
Golgi-stained cortex shown in Figure 2.3 reveals an important structure
for neurons in the layers. It is noticeable that the axons from neurons
in lower layers such as layer 4 and 5, tend to extend directly upward
towards layer 1. The pillars that are formed by these axons create neuron
“columns”. The columns in the neocortex are not perfectly straight, but
from a simplistic view, the image in Figure 2.2 seems like an accurate
enough representation.

The exact definition of a column and the effect of the arrangement of
the neocortex into columns is debatable; however, there is an agreement
that these columns do exist. In some literature they are referred to as
cortical minicolumns. The columns are comprised of around 100 neurons
each. A critical point is that the neurons within a given column tend to
be active together. Suppose we examine the V1 region which takes the
sensory input coming to us through our eyes. The input into the cortical
region will be in layer 4 or 5. Beginning at layer 4 or 5, the neurons send

16

Figure 2.3: (i) Nissl-stain on visual cortex (ii) Nissl-stain on motor cortex (iii)
Golgi-stain on cortex

a signal through the layers where the signal eventually leaves layer 1 and
travels up the hierarchy to the V2 region, and so on. This is illustrated
in Figure 2.4.

A model for behavior of the neocortex requires recognition of these
columns as a basis for the model. Referring to Figure 2.4, the neuron
represented by the star in layer 4 will fire in response to the input signal it
receives from other regions of the brain or perhaps a signal generated from
one of the senses. The firing of this neuron will more than likely cause the
neurons in the above layers in the same column, to fire. We could model
this sequence of firings at the neuron level and consider the propagation
of information in the column as separate events, but due to the likelihood
that the column will fire when the star shaped neuron fires, it may be more
detail than is necessary. Instead of looking at whether a large sequence
of individual neurons in an organized sructure (specifically, a column) is
firing or not, we consider whether the column as a whole will “fire” or
not. We offer the interpretation of all methods and results in this report
as firing of neuronal columns instead of individual neurons. However, we
shall call the units that interconnect and fire “neurons” throughout this
report.

The neurons in any given column take input from many other sur-

17

Figure 2.4: Signal traveling through the cortical layers (Hawkins and Blakeslee)

rounding columns. Figure 2.5 shows three distinct columns differentiated
by their shade of brown. We can see from this representation how these
three columns interact with each other. These interactions are an im-
portant since the signal coming into the neocortex travels through this
hierarchy by means of these interactions. For example, it has been shown
that the V1 region of the neocortex takes the input from our eyes and
is able to determine simple attributes such as the orientation of linear
structures.

With conditioning and learning, the brain becomes more adept at
dealing with recognition of stimuli that are similar to previously learned
stimuli. It is clear that the interactions between columns are extremely
important to information processing. This will determine what we see,
hear, taste, etc. We also know that the columns are not indivisible entities,
so we must account for the relation between their components. If we want
to know how columns interact, we must see how their parts interact, and
for that we need to understand how the synapses between neurons behave.

2.1.2 Neuron Type and Interaction

This brain structure, namely, columns which fire in response to stim-
uli from sensory information, or from interactions with other columns,
needs to be modulated with a learning process. There are several types
of neurons which interact with all systems of the body, from regulating
temperature to causing muscle contraction. Not all neurons are the same,
in fact, not even all neurons in the same area of the brain such as the neo-
cortex, behave alike. There are more than 40 types of neurons. Some of
the most important are shown in Figure 2.6. Since we are only concerned
with the neurons within the neocortex, it is clear that only the Projection
and Local interneurons are of interest. The Projection neurons constitute
roughly 80% of all neurons within the cortex and have a pyramidal shape.
These neurons are primarily in layers 3, 5 and 6. The remaining roughly

18

Figure 2.5: Representation of multiple columns through cortical layers

20% of neurons are the Local Interneurons.

Figure 2.6: Neuron models based on function

Local Interneurons are often referred to as stellate neurons due to their
starlike shape, motivating the use of stars to represent them, in Figure 2.2
and Figure 2.4.

If two neurons (Neuron A and Neuron B) have an excitatory connection
from Neuron A to Neuron B, when Neuron A fires, it attempts to make
Neuron B fire. With an inhibitory connection, when Neuron A fires, it
attempts to suppress Neuron B from firing.

Whether a neuron will fire or not then becomes a matter of integrating

19

the effects of the incoming excitatory and inhibitory pulses. Each neuron
has an activation state that is modified by the incoming pulses. Each
neuron fires when its activation state surpasses a certain point. We call
this the threshold of that neuron. It is also worth noting that after a
neuron fires there is a period of time where the neuron is less likely to fire.
This refractory period will not be implemented in the present model.

Given this information we can develop a model of neuronal column
interaction in terms of the integration of individual neurons interacting
within their respective columns.

3 Brain Model

In this section, we derive the model that we use to describe the brain.
The model must act in a manner that simulates, to a reasonable degree
of accuracy, the complex behavior of neural firing and interaction within
the brain.

3.1 McCulloch and Pitts Model for Neurons

We describe neural interaction by the model proposed by McCulloch and
Pitts[57]. This widely accepted simplification reduces a neuron to a state
of being either on (represented by the number ’1’) or off (represented
by the number ’0’). In addition, we assume that neural events occur at
discrete times. The state of neuron i at time t, si(t) changes at discrete
times, (t = 0, 1, 2, ...). This is discussed further in Section 3.1

Next, the interaction between the neurons is measured in terms of
a “weight”. This weight quantifies both the strength of the interaction
between two neurons, and whether that connection is inhibitory or ex-
citatory. We will define the weight from neuron i to neuron j as wi,j .
Since it is not necessary for this interaction to be symmetric, we make a
distinction between wi,j and wj,i.

When neuron i is on, neuron j is receiving an impulse from neuron i
of weight wi,j . If the total impulse from all active neurons connected to
neuron j is large enough, it will cause neuron j to fire (turn on) at the
next instant. We can measure the incoming impulse to neuron j by the
sum ∑

i

wi,jsi(t)

Here

si(t) =

{
1 : if neuron i is on at time t
0 : if neuron i is off at time t

Interpreting McCulloch and Pitts The McCulloch-Pitts model
has been a widely accepted method for neuron to neuron connection,
however in light of the above discussion, neurons in the neocortex are
connected in columns, which are then connected column to columns. This
implies that for interpretation in terms of biological “intelligence”, the
model should focus more on the actions of the columns as a whole rather
than on the individual neurons.

20

We shall interpret the model proposed by McCulloch and Pitts for
neurons, instead for columns. Thus, we shall assume that columns are
either “on” or “off”. In this model the firing of individual neurons within
a column is not modeled; instead, the model assumes that the effects of
the individual neurons in each column results in the column being “on”
or “off”. Thus, we can view the total effect of one column on another col-
umn. Each column has a net excitatory or inhibitory effect on neighboring
columns and each column will require a certain amount of excitatory con-
tribution in order to fire. This describes the same model proposed by
McCulloch and Pitts, just with different base units. Even so, we shall use
the terminology “neuron” throughout this report.

Other Interaction Simplifications The discrete nature of tempo-
ral changes merits more explanation. The totality of activation to a neuron
(and therefore to a neuronal column) from neuronal coulmns currently fir-
ing has a cumulative effect on neuronal column j. On a continuous time
scale it would be impossible for the impulses from two neuronal columns
(say i and k) to reach column j at the exact same time. This means when
column j is analyzing whether or not to fire, it would have to allow for
some length of time α in which to accept impulses. The column would
sum the impulses that were received for that amount of time and then fire
or not fire accordingly. This argument does assume that all the neuronal
columns are in sync (all update at the same time), but still gives credence
to our simplification. We will use a time scale with α = 1.

Now with the sum above, adapted under our new simplifications, we
can make a statement about the condition of neuronal column j at the
next time step

sj(t+ 1) =

{
1 :

∑
i wi,jsi(t)− τj ≥ 0

0 :
∑
i wi,jsi(t)− τj < 0

Here τj is a threshold value that the sum of impulses must surpass in
order for column j to fire. We see by the update rule that the weights
between columns share a role with the threshold values τj . Using matrix
notation and the Heaviside function H(x) we have

S(t+ α) = H

w1,1 w1,2 · · ·

w2,1

. . .

...

S(t)− τ̄

Here §(t) = [s1(t), s2(t), ..., sn(t)] is a vector containing the states of

the columns at time t. The thresholds are also represented in vector
notation τ̄ .

It is important to note that wi,i = 0 since a neuron has neither an
excitatory or inhibitory effect on itself.

4 Structure

Hierarchy is an arrangement of objects with an order where objects are
ranked one above the other. Objects higher up in the chain, though

21

fewer in number, have a greater influence than objects lower in the chain.
Information flows from the lower regions to the higher regions with the
higher objects having the greatest convergence of information. That is, the
higher nodes have more nodes connecting to them than do lower nodes. If
information then propagates back down from a higher region, those nodes
can influence more nodes than those in lower regions. Hierarchy resolves
into a topological organization that is commonly found in several complex
systems. As an organization tool, it detects and measures significant
features intrinsic to networks.

Knowledge clearly involves hierarchies. One important hierarchical
component is classification. As an example, taxonomic groupings of indi-
vidual organisms in biology sort animals into different groups at varying
levels: Kingdom, Phylum, Class, Order, Family, Genus and Species. In
particular, the beagle dog is classified in the Animalia Kingdom, Chor-
data Phylum, Mammalia Class, Carnivora Order, Canidae Family, Canis
Genus, and Canis Familiaris Species [50]. This classification is based on
DNA similarities or differences among the different organisms [51]. The
top level, Kindgom, would sort plants, animals, and parasites, into dif-
ferent groups while at the lowest level cats and dogs would be sorted in
different species. When we learn, we classify knowledge by using more
rudimentary attributes such as color, size, skin type (fur, scales) and lo-
comotion (biped, quadruped, walk, run) to construct the taxonomy of the
objects of everyday life. For example, when first learning the notion of
animal, a young child might consider chipmunks, tree squirrels and mar-
mots one and the same. But, as this child matures intellectually, they
would learn to distinguish them. Similarly, over time the child would be
able to differentiate bulls from bison, ducks from geese, and beagles from
bichons, despite their sometimes subtle differences.

at the system. We know that graphs like trees are hierarchical, but that random

Figure 5: Hierarchical Arrangement

graphs are not. We quantify what they have in common and what they do
not by calculating different measures on various graph types, then use data
mining tools obtain a measure for increasing and decreasing “hierarchical-ness.”
There are several quantifiable measures of graphs that have been used in graph
theory. First we discuss the different graph types, followed by a description of
the measures.

2.1 Graphs Types

Different Graphs
Tree A connected graph with no simple circuits
Rectangular Nodes in grid (lattice) connect to closest points
Ring Nodes in Ring connect to n closest neighbors
Complete All nodes are connected
Null No nodes connect
Random Nodes connect randomly
Small World Nodes connect with small pathlength, high clustering coeff
Waxman Nodes in grid connect with probability based on distance
Scale Free New Nodes more likely to connect to highly connected nodes

Table 1: A short description of each graph

We consider graphs with n nodes and connections among the nodes. These
graphs can be expressed by the adjacency matrix, A, where the entry A(i, j),
i, j = 1, · · · , n is one if there is a connection from node i to node j.

A(i, j) =

{
1 i connects to j
0 no connection from ito j

14

Figure 4.1: Hierarchical Arrangement

We have an intuitive concept of hierarchy. Figure 4.1 shows a pro-
totype of a hierarchical network. But, in order to distinguish when one
system is less hierarchical than another one, we need to be able to do
more than just “look” at the system. We know that graphs like trees are
hierarchical, but that random graphs are not. In addition, the structure
of brains suggests that not all connection models are appropriate.

Braitenberg [84]claimed that are three types of neurons: Pyramidal
cells, Stellate cells, and Matrinotti cells. These cells have varying prop-
erties, but the stellate cells in particular have a property related to in-

22

terconnections, specifically, they have axons and dendrites that extend
only locally. The pyramidal cells can connect into the white matter which
could in turn transfer an impulse a relatively long distance, spanning sev-
eral columns.

We first quantify brains using the idea of connectedness. We do this by
examining different graph types and discussing what they have in common
and what they do not. To do this, we calculate different measures on
various graph types, then use data mining tools obtain a measure for
increasing and decreasing “hierarchical-ness.” We then examine a more
functionality-based idea of brain structure using the ideas of event chains.
In the present paradigm, event chains are related to the idea of hierarchy
in the following way: Consider the event of a sequence of firing starting
with the top node, followed by any node in the next level, followed by the
firing of a node in the next level, etc. The set of event chains that have as
the firing of the top node as initial event, the firing of any of the nodes in
the next level, etc., functionally describes the behavior of the hierarchical
structure.

There are several quantifiable measures of graphs that have been used
in graph theory. First we discuss the different graph types, followed by a
description of the measures.

4.1 Graph Methods

4.1.1 Graph Types

Graph Type

Tree Connected graph with no simple circuits
Retangular Nodes in lattice(grid) connected to clsoest points
Ring Nodes in Ring connect to n closest neighbors
Complete All nodes connected
Null No nodes connected
Random Nodes connected randomly
Small World Nodes connected with small pathlength, high clustering
Waxman Nodes in grid connected with probability based on distance
Scale Free Nodes more likely to connect to highly connected nodes

Table 6.1 Graph Types

We consider graphs with n nodes and connections among the nodes.
These graphs can be expressed by the adjacency matrix, A.

The first type of graph we consider is the Tree. A tree is a connected
graph with no simple circuits, i.e., a graph that has no closed paths. In
other words, in a tree, there are no paths with the same starting point
and end point. If a path starts at any node, i, and follows a set of edges,
it cannot end up back at node i.

The Rectangular Array (Mesh) and Ring are two other non-random
graphs. In a Rectangular Array the nodes are located at rectangular
lattice points and connected to their neighbors directly to the left, right,
above and below. This concept can be generalized to a three dimensional
rectangular array. In a Ring, the nodes can be arranged in a circle and

23

The first type of graph we consider is the Tree. A tree is a connected graph
with no simple circuits, i.e., a graph that has no closed paths. In other words,
in a tree, there are no paths with the same starting point and end point. If we
start at any node, i, and follow a set of edges, we cannot end up back at that
node i.

The Rectangular Array (Mesh) and Ring are two other non-random graphs.
In a Rectangular Array the nodes are located at rectangular lattice points and
connected to their neighbors directly to the left, right, above and below. This
concept can be generalized to a three dimensional rectangular array. In a Ring,
the nodes can be arranged in a circle and connections exist only between each
node and its k nearest neighbors along the circle. A Complete graph is one in
which all nodes connect to all other nodes, and a Null graph is one where none of
nodes connect to any of the other nodes, including themselves. Small examples
of graphs are illustrated in Figure 6.

TREE

(a) Tree

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

(b) Rectangular (c) Ring (d) Complete

k

k

k
k

k

k

k

k

k
k

k

k

*

*

*
*

*

*

*

*

*
*

*

*

(e) Null

Figure 6: Non-Random Graphs

(a) Random (b) Scale Free (c) Small World (d) Waxman

Figure 7: Random Graphs

Random graphs (ER) were first studied by Erdos and Renyi [5]. They are
generated by taking a fixed number of c edges and using them to connect n

15

Figure 4.2: Graph Types

The first type of graph we consider is the Tree. A tree is a connected graph
with no simple circuits, i.e., a graph that has no closed paths. In other words,
in a tree, there are no paths with the same starting point and end point. If we
start at any node, i, and follow a set of edges, we cannot end up back at that
node i.

The Rectangular Array (Mesh) and Ring are two other non-random graphs.
In a Rectangular Array the nodes are located at rectangular lattice points and
connected to their neighbors directly to the left, right, above and below. This
concept can be generalized to a three dimensional rectangular array. In a Ring,
the nodes can be arranged in a circle and connections exist only between each
node and its k nearest neighbors along the circle. A Complete graph is one in
which all nodes connect to all other nodes, and a Null graph is one where none of
nodes connect to any of the other nodes, including themselves. Small examples
of graphs are illustrated in Figure 6.

TREE

(a) Tree

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

(b) Rectangular (c) Ring (d) Complete

k

k

k
k

k

k

k

k

k
k

k

k

*

*

*
*

*

*

*

*

*
*

*

*

(e) Null

Figure 6: Non-Random Graphs

(a) Random (b) Scale Free (c) Small World (d) Waxman

Figure 7: Random Graphs

Random graphs (ER) were first studied by Erdos and Renyi [5]. They are
generated by taking a fixed number of c edges and using them to connect n

15

Figure 4.3: Graph Types

connections exist only between each node and its k nearest neighbors
along the circle. A Complete graph is one in which all nodes connect to
all other nodes, and a Null graph is one where none of nodes connect to
any of the other nodes, including themselves. Small examples of graphs
are illustrated in Figure 4.2.

Random graphs (ER) were first studied by Erdos and Renyi [6]. They
are generated by taking a fixed number c edges and using them to connect
n nodes. There are a total of n(n1) possible connections. Each possible
connection of i to j has a probability

P (i, j) =
c

n(n− 1)
. (4.1)

One property of ER graphs is a rapidly decaying degree distribution. The
degree of a node i, DEG(i), refers to the number of edges at node i. In
the ER graphs, nodes with high degrees are highly unlikely [8]. There
are several variations on how to generate random networks. Some can be
found in [11, 9].

24

Three other random networks we consider are Small World, Waxman
and Scale Free. Small World networks model the phenomena called “six
degrees of separation,” where any two people in the world are at most six
steps away, and the cliquish nature of people, where the friends of a given
person are likely to be friends with one another. Small World networks
are sparse networks with with small average path length (six steps) and
a high clustering coefficient (high cliquishness). They were introduced by
Watts and Strogatz [45, 6, 44] and have been applied to model website
linking, disease spreading, the well known actor-to-actor linkage, and the
prestigious Erdos number. They are generated by taking a ring, where the
nodes are connected to their k closest neighbors, then randomly deleting
a connection and adding one back randomly between any two nodes that
were not previously connected. This is repeated one node at a time until
a suitable clustering coefficient and path length is obtained [44, 43].

Waxman networks start from a rectangular array structure and con-
nect the nodes based on a probability that depends on distance. In this
network, nodes that are closer together are more likely to be connected.
That is, the probability that node i connects to node j depends on how
far apart they are. An example of a connection probability density is

P (i, j) = α exp

(
d(i, j)

βL

)
(4.2)

where d(i, j) is the distance from i to j, L is the maximum distance in the
graph and α and β are parameters [46, 44].

Scale free networks have recently been used by Barabasi [6, 44] to
model networks that have nodes with extremely high degrees. These super
connected or “super nodes” are found in real world networks, such as the
Internet, the brain, and models for spreading of cancer and HIV [6]. These
networks are robust to random node loss, but quickly become disconnected
if the “super nodes” are removed. To create a scale free network a fixed
connected ER model and is allowed to grow one node at time. Each time
a node, j, is added, we add a fixed constant number, m, of links from
that new node to the existing nodes. The existing nodes receive the new
connection with a probability proportion to their corresponding degree.
With this algorithm, nodes that are already highly connected are more
likely to receive one of the new connections [5]. These networks reflect a
theme described as “the rich get richer.” The probability that the new
node j connects one of its m links to a node i is given by

P (i, j) =
DEG(i)∑
k DEG(k)

=

∑
k A(i, k)∑
i,k A(i, k)

(4.3)

The number of links added, m, could also be allowed to vary by picking m
using a Poisson distribution with mean M . Examples of random graphs
are shown in Figure 4.3.

4.1.2 Graph Measures

Once we have the Adjacency matrix, A(i, j) of a given graph, G, we
calculate different measures [26]. The underlying matrix, Und defines an

25

undirected graph from an arbitrary graph. It is defined as

Und(i, j) =

{
1 A(i, j) = 1 or A(j, i) = 1
0 otherwise.

(4.4)

The underlying matrix symmetrizes the directed graph into an undirected
graph by making a connection from i to j, and j to i, if at least one
connection between the two exists. If the graph, G, is undirected then
A(i, j) = Und(i, j).

The first measure is the Number of Nodes, NV

NV = # of Vertices (Nodes). (4.5)

It refers to the number of vertices, nodes or neurons in the graph, G.
Similarly, we can examine the Number of Edges, NE(i) of each node,

NE(i) =
∑
j

A(i, j) (4.6)

This refers to the number of nodes incident on node i. There can be
an important relationship between NE and NV . For example, trees of
n nodes always have n1 edges. Random Graphs on average have NV ? p
edges, where p is the probability that a connection exists between any two
given nodes. Ring graphs have NVk/2 edges, where k is the number of
edges emanating from a vertex. Small world graphs derived from rings
also have N ? k/2 edges because small world graphs are just rings with
some of their edges redistributed. NE(i) is calculated for every node
i. The distribution of NE can be informative. For a scale free network
the distribution follows a power law distribution. The Average Degree of
Nodes, DEG

DEG =

∑
iNE(i)

NV
=

∑
i,j A(i, j)

NV
. (4.7)

is average degree over all the nodes in the graph. The maximum degree,
MDEG is maximum degree over all the nodes,

MDEG = max
i

(NE(i)). (4.8)

A path in a graph is a sequence of edges that begins at a node of
the graph and concatenates edges of the graph, always connecting pairs
of adjacent nodes. The path length is the number of edges used to get
from node i to node j. If there are multiple paths connecting i and j, we
only use the shortest one. If no path exists we assign the path as being
of length NV + 1. The distance matrix, D(i, j), is a matrix where the
(i, j) entry is the length of the shortest path required to get from node i
to j. The Mean Path length, V D, is a measure of how many steps it takes
to get from one node to another on average. The minimum path length
between all pairs of nodes is calculated and then averaged.

VD =

∑
i,j D(i, j)

NV
. (4.9)

We also calculate the longest and shortest path length over all connected
nodes. This gives two measures, Max Path Length or Diameter, DIA,

DIA = max
i,j

(D(i, j)) (4.10)

26

and Minimal Path Length or Radius

RAD = min
i,j

(D(i, j)) (4.11)

We define the Eccentricity, ECC(i), of node i as the maximum of its finite
distances (not those set to NV + 1) to all other nodes. That is, from each
node i, we calculate the distances to the farthest reachable node,

ECC(i) = max
j

(D(i, j)), (4.12)

then average over all nodes to get the average eccentricity.

MECC =

∑
i ECC(i)

NV
(4.13)

The next measure was introduced by Watts and Strogatz [44] to in-
dicate on average how many connections exist between the immediate
neighbors of a given vertex. For every node i determine the nodes that
i connect to, M(i). Suppose that node i connects to M(i) neighbors.
The number of connections between each of those M(i) neighbors is a
measure of clustering. This quantity is normalized by dividing by the
maximum possible connections between these nodes, M(i)(M(i)1) to get
the clustering coefficient of node i.

Clus(i) =

∑
(k,j)∈ω(i) A(k, j)

M(i)(M(i)− 1)
(4.14)

whereω(i) is the set of the nodes that node i connects to and M(i) =
NE(i). The clustering coefficient is averaged over all nodes to find the
Mean clustering coefficient, MC

MC =

∑
i Clus(i)

NV
. (4.15)

A value of measure equal to one means all the nodes i connect to one
another. For a completely connected graph the measure would have a
value of 1, while for a tree the value would be zero.

The Expansion of a node i, E(i, h) are the nodes that can be reached
from node i in h steps that cannot be reached in fewer steps. Once a
node has been counted at some h′ < h it is no longer counted at distance
h. That is, even though node i could reach node j in h′ or h steps, the
expansion only considers the smaller distance.

EX(i,h) = ||E(i, h)|| (4.16)

is the number of nodes in E(i, h). In a completely connected graph start-
ing from any node all other nodes can be reached in one step. In a rect-
angular mesh with n nodes typically ||EX(i, h)|| ∼ h2/N , while a k-ary
tree or a random graph of average degree k has ||EX(i, h)|| proportional
to kh/N [38]. The magnitude of the expansion is averaged over all nodes
i to arrive at the Average Expansion, MEX, of the graph.

MEX =

∑
i,h EX(i, h)

NV MH
(4.17)

27

where MH is the maximum distance.
The next measure is Clustering Level, CL. The expansion of a node i is

used to calculate how connected nodes are at each height, h. We average
over the maximum height and starting nodes i.

CL(i, h) =

∑
(j,k)∈κA(j, k)

||κ||(||κ|| − 1)
. (4.18)

where κ is the set of nodes in E(i, h), that are distance h from node i and
||κ|| is the number of nodes, EX(i, κ). CL(i, h) calculates the clustering
coefficient [40] at each height of the expansion for every node i and MCL
is the Average clustering level,

MCL =

∑
i,h CL(i, h)

NV MH
. (4.19)

The next measure is Average Feedback, MFK. The expansion E(i, h)
is used to calculate the number of connections from level h to level h− 1
over all possible connections for each give node i.

FB(i,h) =
∑

(j,k)∈θ

A(j, k) (4.20)

where θ is the set of nodes in E(i, h) that connect to nodes in E(i, h− 1).
We average over the distance and all nodes to get the Average In Degree,
MFK,

MFK =

∑
i,h FK(i, h)

NV MH
. (4.21)

The next measure is Average Out Degree, MOD. Using the expansion
EX(i, h) we calculate Outdeg(i, h), the connections from level h to the
next level h+ 1 with respect to node i.

Outdeg(i, h) =
∑

(j,k)∈ψ

A(j, k). (4.22)

The next measure is Average Out Degree, MOD. Using the expansion
EX(i, h) we calculate Outdeg(i, h), the connections from level h to the
next level h+ 1 with respect to node i.

MOD =

∑
i,h Outdeg(i, h)

NV MH
(4.23)

The next measure counts how many Cycles of Order N (such as N3,
cycles of order 3, N4 cycles of order 4, and N5 cycles of order 5). A cycle
of order n is a path whose end node is the same as starting node, with no
other repeated nodes (other than the starting and ending nodes).

The next measure quantifies the Average Centrality, AC, over all nodes

AC =
1

N

N∑
i=1

SC(i), (4.24)

28

where each SC(i) is the centrality of node i, a measure of how impor-
tant node i is in the graph. It is calculated by counting the number of
subgraphs that make up a cycle starting and ending at a given vertex i.

SC(i) =
∑
ij

Ak(i, i)

k!
(4.25)

and Ak(i, i) is the ith diagonal element of the kth power of the adjacency
matrix A, Ak.

The measure Reciprocity, Reci

Reci =

∑
ij A(i, j)A(j, i)

M
(4.26)

where M is the total number of edges, M =
∑
ij A(i, j). The reciprocity

is the fraction of bidirectional edges, which can be normalized as the Edge
Reciprocity,

EdgeReci =
Reci−A

1−A
, (4.27)

where A is the average of the adjacency matrix, A =
(∑

ij A(i, j)
)
/N2

The next measure is the Average Matching Index, AMI, The matching
index is calculated for each edge (i, j), where i is one endpoint and j the
other. It is the number of other matching connections between node i and
node j [8].

AMI =

∑
k 6=i,j A(i, k)A(j, k)∑

k 6=j A(i, k)
∑
k 6=iA(j, k)

(4.28)

A low value of AMI implies the edge plays an important role as a shortcut.
We average over all nodes.

A connected component is a subgraph in which each node can reached
by paths from any other node in its subgraph. A breadth-first search is a
graph search algorithm that begins at the chosen root (starting) node and
examines all of its neighboring nodes constructing paths by adding neigh-
boring nodes, until it reaches all possible nodes. The graph is decomposed
into its connected components, C(i) by the breadth-first algorithm.

Once we find the components we can calculate the Connectivity of the
graph [7, 26].

Con = 1− Vc
N(N−1)

2

, (4.29)

where Vc is the number of pairs of nodes that have no path between them
in the underlying matrix and N(N1)/2, the maximum value for Vc, is
the total number of pairs of nodes that could exist. Suppose there are
r components, where each C(i), i = 1, . . . , r is a component, and each
component has ||C(i)|| nodes. Then

Vc =
∑
i 6=j

||C(i)|| ||C(j)|| (4.30)

Each graph is either completely connected, completely disconnected or
somewhere in between. A connectivity of 1 means that the graph is fully

29

connected, that is, A(i, j) = 1, ∀i, j. A Null network has connectivity
zero.

The next measure is Direction,

D = 1−

[
VD

N(N−1)
2

]
(4.31)

where VD is the number of times a connection between j, and i occurs
given that a connection between i, j exists[7].

VD =
∑
i,j

A(i, j)A(j, i). (4.32)

The next two measures are calculated on the individual components
then summed over all the components [7]. Efficiency is a measure of
path redundancy between nodes. The more paths that exist between two
nodes the less efficient the network becomes. These paths are superfluous.
Extra links only add costs and use of up resources in networks. For a given
component the most efficient graph is a tree. Since a tree of N nodes has
N − 1 edges, VE(i) are the number of edges over N − 1.

Eff = 1−
[∑

i VE(i)

maxVE

]
(4.33)

where
VE(i) = Ni − (||C(i)|| − 1) (4.34)

is the number of connections that exist in component i, and Ni is the
number of edges in component i, and

maxVE =
∑
i

(||C(i)|| − 1)(||C(i)− 2)−Ni (4.35)

is the maximum number of connections that could exist summed over all
the components.

Least Upper Boundedness (LUB) is a measure of the presence of a
unity-of-command. It is a measure of the ratio between the number of
nodes that act as “bosses” (higher nodes) to those that act as “subordi-
nates” (lower nodes). A high value would imply that there are few bosses,
and a low value would imply that there are too many. A LUB (boss) for
any two nodes exists if there is a third node from which there is a path
to each. If the nodes are directly connected, then we can choose the third
node to be one of the two.

LUB = 1−
[

VL
maxVL

]
(4.36)

where VL is the number of pairs of nodes that have no LUB between
them in each component summed over all components and maxVL is the
maximum number of pairs of points that could possibly have no LUB in
each component summed over all components [7].

maxVL =
∑
i

(||C(i)|| − 1)(||C(i)− 2)

2
(4.37)

30

Data Mining Methods
PCA Reduces dimensionality by aligning data along

direction of greatest variance
CVA Reduces dimensionality by transforming data minimizing

distances between points in the same group and
maximizing distances between points in different groups

SVM Sorts data inot one of two groups using a hyperplane
Parzen Windows Finds the probability of a data point belonging

to any given group

Table 1: Data Mining Methods

The next measure is another way to measure Efficiency,

Eff2 =
1

(N + 1)N

∑
i,j

1

D(i, j)
, (4.38)

where D(i, j) is the pathlength from node i to node j. The measure
quantifies the efficiency by equating it to the summation of the reciprocal
of the path lengths. The farther apart nodes are the less efficient the
network is [8]. The Harmonic Mean is the reciprocal of the efficiency,

H =
1

Eff2
. (4.39)

This measure is more appropriate for graphs with more than one con-
nected component [8].

The next measure is the Pearson Correlation Coefficient calculated by

r =

1
M

∑
j>i NE(i)NE(j)A(i, j)−

[
1
M

∑
j>i(NE(i) + NE(j))A(i, j)

]2
1
M

∑
j>i

1
2
(NE(i)2 + NE(j)2)A(i, j)−

[
1
M

∑
j>i(NE(i) + NE(j))A(i, j)

]2
(4.40)

where M is the total number of edges. If r > 0 then nodes of high degree
tend to connect with nodes of high degree, and if r < 0 then nodes of high
degree tend to connect with nodes of low degree [8].

The last measure is the Entropy of the degree distribution

H = −
∑
k

P (k) log(P (k)), (4.41)

where P (k) is the probability that a node has a k edges. This measure
describes the heterogeneity of the network. The more uniform the degree
distribution (i.e. all ks are equally likely) the higher the entropy.

4.2 Classification

4.2.1 Data Mining

Data mining is the process of extracting interesting, useful and novel in-
formation from data [10]. Machine learning provides methods to mine

31

ER Waxman SmallWorld Null Complete Tree Ring ScaleFree
DEG 0.07127 0.03419 0.06409 0.00000 1.00000 0.00135 0.02670 0.01067
MDEG 0.10414 0.05073 0.25433 0.00000 1.00000 0.00271 0.02670 0.14514
MC 0.07120 0.49799 0.00355 0.00000 1.00000 0.00000 0.71053 0.06128
VD 0.00260 0.00567 0.00482 1.00000 0.00126 0.98974 0.02560 0.00404
MECC 0.00399 0.01033 0.01033 1.00000 0.00126 0.99867 0.05060 0.00564
RAD 0.00266 0.00799 0.00799 1.00000 0.00126 0.00135 0.05060 0.00398
DIA 0.00399 0.01332 0.01332 1.00000 0.00126 0.01215 0.05060 0.00664
Eff2 0.53225 0.28954 0.28954 0.00126 1.00000 0.00492 0.11251 0.34770
H 0.00250 0.00460 0.00460 1.00000 0.00126 0.27417 0.01184 0.00382
MH 0.00400 0.01031 0.00399 0.00000 0.00126 0.01031 0.05067 0.00564
MEX 0.25011 0.11605 0.00533 0.00126 0.50000 0.00135 0.02564 0.19209
MCL 0.05191 0.19819 0.40675 0.00000 0.49937 0.00000 0.45561 0.01828
MFK 0.28617 0.17998 0.00327 0.00000 0.50000 0.87790 0.29487 0.23502
MOD 0.28617 0.15364 0.00483 0.00000 0.50000 0.00000 0.29487 0.23502
N3 0.00036 0.00056 0.21887 0.00000 0.99622 0.00000 0.00048 0.00001
N4 0.00003 0.00001 0.21789 0.00000 0.99496 0.00000 0.00001 0.00000
N5 0.00000 0.00000 0.25433 0.00000 0.99370 0.00000 0.00000 0.00000
Energy 0.00000 0.00000 0.00000 -0.00000 0.00000 0.34657 0.00000 0.00000
Reci 1.00000 0.78463 0.00007 0.00000 1.00000 0.00000 1.00000 1.00000
EdgeReci 1.00000 0.77702 0.00000 -0.00000 1.00000 -0.00135 1.00000 1.00000
Con 1.00000 1.00000 1.00000 0.00000 1.00000 1.00000 1.00000 1.00000
D 0.00000 0.35441 0.35441 1.00000 0.00000 1.00000 0.00000 0.00000
Eff 0.92997 0.96710 0.96710 1.00000 0.00000 1.00000 0.97460 0.99065
LUB 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
R 1.07240 1.03551 0.05340 0.00000 1.99874 1.00270 1.02667 1.02482
NV 750.00000 750.00000 750.00000 793.00000 793.00000 740.00000 750.00000 752.00000

Table 2: Calculated measures for numerous graphs

such data. We use data mining techniques to choose a low-dimensional
subspace made up by combinations of the graph measures to represent the
data. We consider graphs types such ER (random), Small World, Wax-
man, Scale Free, Complete, Ring, Null, and Rectangular. We generate
these graphs with 450 and 750 nodes, and calculate all 28 measures dis-
cussed in 4.1.2. Table 2 shows the measures discussed in 4.1.2 calculated
for different graphs.

We use four different techniques to map a high dimensional measure
space into a low dimensional subspace so inferences can be made as to
where hierarchical graphs live. The four techniques are Principal compo-
nent Analysis (PCA), Canonical Variate Analysis (CVA), Support Vector
Machine (SVM) and Parzen Windows (PW).

Principal Component Analysis (PCA) Suppose X represents
a set of graph measure data, where each row of X represents the data
calculated from each of the m different graphs, and each of the p columns
represents a different measure.

X =

x11 x12 . . . x1p

x21 x22 . . . x2p

.
xm1 xm2 . . . xmp

 , (4.42)

32

8.4777e-001 4.2320e-001 2.1704e-001 1.8229e-001 1.1182e-001 6.5579e-002 5.4536e-002
4.3284e-002 9.6150e-003 9.4873e-003 2.8256e-003 2.3813e-003 2.7228e-004 1.6424e-004
3.0886e-005 1.8647e-005 1.5152e-005 5.6883e-006 3.7396e-006 3.5133e-007 2.2624e-007
5.4453e-008 4.0002e-008 1.5075e-008 9.2445e-009 3.9128e-009 1.5646e-009 7.0329e-017

Table 3: The twenty-eight eigenvalues calculated from data

where xij represents measure j for graph i and [xi1, xi2, . . . , xip] is called
the feature vector for graph i. Principal Component Analysis changes the
basis in the high dimensional space and thereby transforms the data X
to a new set of axes so it can be studied in a lower dimensional space.
The data is realigned so that the greatest variances in the data are in
the directions of the first few eigenvectors of the covariance matrix, COV.
The covariance matrix is calculated using X, by summing up the outer
product of the rows of X. Let COV(i, j) represent the covariance matrix
of the data X

COV =

∑n
i=1(Xi −X)(Xi −X)T

n
, (4.43)

where Xi corresponds to row i of matrix X and X is the mean of all the
data vectors,

Xj =

∑m
i=1 xij

m
(4.44)

Using the PCA algorithms we calculate a new matrix FM from X

FM =

FM11 FM12 . . . FM1r

FM21 FM22 . . . FM2r

.
FMm1 FMm2 . . . FMmr

 , (4.45)

where the rows of FM correspond to the feature data expressed in a lower
dimension(r << p), that is, the column size has decreased and each row
is a new shortened feature vector.

We perform PCA on data from different graph types. This method
does not require previous knowledge about graph types, e.g. which graphs
are trees, which are Waxman graphs, etc. PCA is able to map the dif-
ferent types of graphs based the similarities and differences between their
measures in the lowdimensional space. When the points are plotted, they
appear to be sorted so that each graph lies in a different region. That is
different graphs types are sorted because the measures indicate they are
fundamentally different graphs.

The PCA algorithm does allow the data to be represented in terms
of its full eigenvector decomposition. But, if the data is well represented
by fewer eigenvectors then it is not necessary to use all the eigenvectors.
In order to choose which eigenvalues to keep we examine at the magni-
tude of their corresponding eigenvalues. The eigenvectors with the largest
eigenvalues are more important than the rest.

Evaluating PCA Results We generate ER, Small World, Wax-
man, Tree, Null, Complete graphs and calculate their feature vectors. The

33

EV1 EV2 EV3 EV4 EV5 EV6
DEG 2.3993e-001 2.3464e-001 -3.5604e-002 4.6825e-003 4.7999e-002 1.3882e-002

MDEG 2.3492e-001 2.3552e-001 7.0542e-002 3.0199e-003 3.3737e-002 6.2826e-002
MC 2.0526e-001 -3.4974e-002 -1.3949e-001 1.0444e-001 2.6558e-001 -4.6147e-001
VD -2.0160e-001 2.3260e-001 -2.1563e-001 -1.5464e-001 5.3194e-002 -3.0645e-002

MECC -2.0359e-001 2.1031e-001 -2.5172e-001 -1.3942e-001 1.0988e-001 4.1141e-002
RAD -1.8158e-001 1.9450e-001 -2.2378e-001 3.0747e-001 6.5504e-002 6.4812e-002
DIA -1.8283e-001 1.9523e-001 -2.2132e-001 3.0514e-001 6.4539e-002 6.5024e-002
Eff2 2.4515e-001 1.3462e-001 7.6129e-002 2.8124e-003 -2.9240e-001 9.6493e-002
H -1.9863e-001 2.5850e-001 -1.7242e-001 1.2863e-001 -2.8135e-002 -8.9599e-002

MH -1.3984e-002 -1.6136e-001 -2.7432e-001 1.1470e-001 4.0034e-001 5.1337e-001
MEX 2.3447e-001 1.1959e-001 -8.8395e-002 -6.9403e-003 -3.6694e-001 7.4972e-002
MCL 1.6128e-001 -9.3556e-003 2.6573e-001 1.1499e-001 4.6582e-001 -2.6829e-001
MFK 1.0047e-001 -2.3878e-002 -3.3450e-001 -4.4915e-001 1.0328e-001 1.0371e-001
MOD 2.2120e-001 -1.1412e-001 -3.0180e-001 1.3041e-001 4.2039e-002 1.6751e-001

N3 2.2324e-001 2.5430e-001 4.8883e-002 5.4574e-003 1.2913e-001 2.8143e-002
N4 2.2406e-001 2.5419e-001 4.3366e-002 5.4377e-003 1.3001e-001 3.6365e-002
N5 2.2001e-001 2.5507e-001 7.1865e-002 5.7114e-003 1.3814e-001 4.0420e-002
SC 2.1217e-001 2.2725e-001 -8.3882e-002 7.3346e-003 2.1615e-002 2.6324e-002

Energy -7.7200e-002 7.2156e-002 -1.0149e-001 -5.7658e-001 8.5422e-002 -1.6246e-002
Reci 1.8242e-001 -2.3942e-001 -2.5385e-001 1.3762e-001 -1.0614e-001 -2.1681e-002

EdgeReci 1.8248e-001 -2.3900e-001 -2.5451e-001 1.3810e-001 -1.0490e-001 -2.0136e-002
Matching -1.1200e-002 3.7831e-002 3.3239e-001 6.5190e-003 2.2408e-001 5.3806e-001

Con 1.7802e-001 -2.4985e-001 1.3388e-001 -2.6723e-001 7.1382e-002 1.0986e-001
D -2.0792e-001 2.4888e-001 3.0392e-002 -1.7358e-001 -6.7091e-003 -1.1805e-001
Eff -2.4061e-001 -2.2880e-001 7.8140e-002 -4.3939e-003 -2.7851e-002 1.5935e-002

LUB -9.8188e-017 1.1301e-016 -5.7885e-017 6.2778e-017 5.3169e-016 -4.0335e-017
R 2.4016e-001 -5.3330e-002 -2.6683e-001 -1.4856e-001 -5.9234e-002 -5.7822e-002

NV 1.5874e-002 1.6849e-001 1.0288e-001 4.5268e-002 -3.8692e-001 2.2326e-001

Table 4: The first six eigenvectors

34

data is represented in 28 dimensional space as discussed in Section 4.2.1.
Table 3 shows the first 28 eigenvalues and Table 4 shows the first six cor-
responding eigenvectors. Note that λ1 = 8.5 × 10−1, λ2 = 4.2 × 10−1,
λ3 = 2.17× 10−1, etc. This suggests that the first eigenvector “explains”
about twice as much of the variance as the second, which in turn “ex-
plains” about twice as much as the third, etc. Using the eigenvectors
shown in Table 4 we convert the data set to a lower dimensional space.
Figure 4.4 shows the data projected on each of the first four eigenvectors,
each subfigure showing the effect of using the next eigenvector.

−8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Data projected using PCA on one eigenvector1

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

−3 −2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Data projected using PCA on one eigenvector2

−4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Data projected using PCA on one eigenvector3

−7 −6 −5 −4 −3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Data projected using PCA on one eigenvector4

Figure 8: Data Projected Using PCA On Each of the First four Eigenvectors

2
6

Figure 4.4: Data projected using PCA on each of the first four eigenvectors

The first graph in Figure 4.5 shows that if we project the data along the
first eigenvector we can sort out the points that belong to Null (blue), Tree
(black), Complete (red), ER (magenta) groups but that Rings (yellow),
Waxman (cyan), Scale Free (red loops), and Small World (green) are
intertwined. In Figure 4.5, using the second eigenvector seems to indicate
that we are able to sort out all the groups except for Null (blue) and
Complete (red). Using the third eigenvector allows us to only sort out the
points that belong to the Waxman (cyan) and Small World (green) graphs;
with the third eigenvector the rest of the graphs remain intertwined. Using

35

−8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Data projected using PCA on the first eigenvector

−8 −6 −4 −2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

5

6
Data projected using PCA on the first two eigenvector

−10

−5

0

5

10

−3 −2 −1 0 1 2 3 4 5 6

−5

0

5

10
Data projected using PCA on the first three eigenvector

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 9: Data Projected Using PCA On One, Two, Three Eigenvectors

2
7

Figure 4.5: Data projected using PCA on one, two, and three eigenvectors

the fourth eigenvector the only points not intertwined are those belonging
to Tree, Null, and Ring. Using three eigenvectors appears to be sufficient
for sorting out the data points. Figure 4.5 shows the data projected on the
first eigenvector, the first two eigenvectors and the first three eigenvectors.
From all three images of Figure 4.5 it is clear the data points remain
intertwined unless we at least use three eigenvectors.

Assessing the Validity of PCA In order to assess the validity PCA
as a method for sorting graphs, we generate new graphs of several different
types and use the transformation extracted from the training data to
classify them. Using the transformation extracted from our training data,
we generate new graphs of several different types and test how they are
classified. The new test points are graphed over the original points. We
show two examples. In Figure 4.5(a) the original trees are the solid black
points, the blue rings are the new test trees and the other graphs are all
in magenta. In Figure 4.5(b) the training rings are the yellow points, the
test rings are the cyan circles, and the other graphs are in magenta. The
new feature vectors projected on the first three eigenvectors appear to be

36

well predicted. Specifically, trees are still classified as trees and rings are
still classified as rings.

We also explored the possibility of using fewer measures to do the
analysis of the graphs, in particular, using only the first nine or the first
thirteen measures instead of the full twenty-eight. However, we found that
the graphs were not as well separated . The data remains too clustered to
distinguish some of the groups. Also new points were not as well classified
with fewer measures as they were with all twenty-eight.

Canonical Variate Analysis (CVA) Using PCA does not require
any knowledge of the groups to which the data belong. If, however, we
know which data points correspond to trees, which correspond to random,
which correspond to small world, etc, we can use CVA [10, 28, 30]. CVA
uses information about which class (group/graph type) a data point (fea-
ture vector) belongs to. It maximizes the ratio of the variation of the data
from different groups to the variation of the data from the same group
(inter-class)

φT1 Sinterφ1

φT1 Sintraφ1
(4.46)

where Sinter is the interclass scatter matrix, Sintra is the intraclass scatter
matrix, and φ1 is the first eigenvector of S−1

intraSinter.
Results were also obtained using CVA to project the same data set

as analyzed by PCA. These results are not shown here, but are shown in
with the learning results in subsection 5. While qualitative results appear
to be the same, we note that the individual groups are more clustered
than they were with the PCA algorithm as shown in this section. This
indicates that CVA is somewhat better that PCA.

SVM Sorting or classifying data is a common process in machine in-
telligence. We separate the training data points into one of two classes
(hierarchical or not in our case), and then decide to which class new data
points should be assigned. SVM finds hyperplanes that can separate sets
of points into two classes. In n dimensions, the equation of a hyperplane
is

WTX + β = 0. (4.47)

where W = (w1, . . . , wn)T , X = (x1, . . . , xn) and β ∈ R1. The hyper-
plane divides the data into two of classes, where the points Xξ “above”
the plane are such that WTXξ+β > 0 and those “below” the plane satisfy
WTXξ + β < 0. Training for a SVM involves choosing the values of the
hyperplane parameters W and to achieve the best separation by maxi-
mizing the distance between the hyperplane and both sets of points. This
is equivalent to minimizing ||W ||2 subject to ci(W

TXξ + β) > 0, where
i ranges over the elements in the training set with ci = 1 if the point
corresponds to the points that are “above” the hyperplane and ci = −1
otherwise. To implement this method for determining if a graph is hierar-
chical, the points correspond to graph measures discussed in Section 4.1.2,
along with the value ci = 1 for trees and ci = −1 otherwise. SVM is imple-
mented by generating several trees that are clearly hierarchical and several

37

random networks. The best hyperplane is then calculated to separate the
data in the training set.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

0

1

Support Vectors

Figure 13: Example of SVM Separating Data

−8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30
P(x/A),P(x/B),P(x/C),P(x/D),P(x/E),P(x/F),P(x/G),P(x/H)

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 14: Probability Distributions Over Data in One Dimension

40

Figure 4.6: Examle of SVM separating data

If X is a feature vector for a given graph, then the signed distance
from a point to a plane, d(X) = (WX + β)/||W || is a measure of how
hierarchical a given graph is. We generate several known hierarchical and
non-hierarchical networks, calculate feature vectors for them and deter-
mine the boundary of the region specified by these points. In Figure 4.6 we
show an example of data being sorted by SVM. We will only be concerned
with the distance D(Xv) of a point Xv to this separating hyperplane as
the measure of hierarchy for that point Xv.

SVM therefore has a measure of hierarchy that allows the determina-
tion of how hierarchical a graph is. Specifically the (signed) distance from
the feature vector of the graph to the hyperplane quantifies hierarchy. If
we start with a random network, train the network, and the point repre-
senting it moves closer to the hyperplane or crosses the hyperplane into
the tree region its hierarchy is increasing.

Probability Methods In Figure 4.5 we can see that there is slight
overlap between data points of different classes. For example, some Rings
and Scale Free Graphs are very close. In order to classify data points,
we use probability to group the data. We do this in two, three and four
dimensions. The fourth dimension cannot be easily viewed. We fit a
Gaussian to each of the groups using

f(x) =
1

(2π)
k
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (4.48)

38

where Σ is the covariance matrix, |Σ| is its determinant, k is the dimension
of the space, and µ is the mean. Then given a new point we can assign
it a probability of belonging to any one group. Figure 4.7 shows the
probability distributions over the training data in one dimension.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

0

1

Support Vectors

Figure 13: Example of SVM Separating Data

−8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30
P(x/A),P(x/B),P(x/C),P(x/D),P(x/E),P(x/F),P(x/G),P(x/H)

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 14: Probability Distributions Over Data in One Dimension

40

Figure 4.7: Examle of SVM separating data

Table 5 shows a subset of the training data set and how it is classified
by the Gaussian distribution in one, two, three and four dimension. The
first column is what we believe them to be: Random Graphs are denoted
by 1,Waxman Graphs by 2, Small World by 3, Null Graphs by 4, Com-
plete by 5, Tree by 6, Ring by 7, and Scale Free by 8. The remaining
four columns indicate how they are classified by Gaussian distributions
of one, two, three, four dimensions, respectively. For the most part the
method classifies the points correctly. The last row is the fraction of the
graphs that were correctly classified by the Gaussian distribution. This is
expected, given that the Gaussian distributions were built on these points.
The Gaussians of the third and fourth dimensions did the best job in pre-
dicting the correct group. Therefore, in the remainder of this paper, we
will use a three dimensional probability distribution.

Eight graphs types are used in this analysis: Tree-[A], ER-[B], Wax-
man[C], Complete-[D] and Null graphs- [E], small world [F], Scale Free[G],
Rings[H]. The probability that a given graph has measure x is then cal-
culated, given that it belongs to one of the corresponding groups. These
probabilities are denoted by P (x|A), P (x|B), . . . , P (x|H). The feature
vector data for each of the groups is then fit with their own Gaussian dis-
tributions by calculating the corresponding sample means and standard
deviations. Bayes theorem is used to calculate the probabilities

P (A|x), P (B|x), . . . , P (H|x). (4.49)

These functions express the probability that a graph with feature vector
x belongs to group T , where T = A,B,C,D,E, F,G, or H, respectively.
Bayes Theorem gives

P (T |x) =
P (T ∩ x)

P (x)
=
P (T)P (x|T)

P (x)
(4.50)

39

Should Be Gets Classified 1d 2d 3d 4d
DataPoint 3 3 3 3 3
DataPoint 4 4 4 4 4
DataPoint 4 4 4 4 4
DataPoint 4 4 4 4 4
DataPoint 4 4 4 4 4
DataPoint 2 2 2 2 2
DataPoint 2 2 2 2 2
DataPoint 1 1 1 1 1
DataPoint 7 7 7 7 7
DataPoint 2 2 2 2 2
DataPoint 6 6 6 6 6
DataPoint 4 4 4 4 4
DataPoint 1 1 1 1 1
DataPoint 5 5 5 5 5
DataPoint 8 2 7 8 8
DataPoint 4 4 4 4 4
DataPoint 7 7 7 7 7
DataPoint 5 5 5 5 5
DataPoint 4 4 4 4 4
DataPoint 7 7 7 7 7
DataPoint 4 4 4 4 4
DataPoint 6 6 6 6 6
DataPoint 7 7 7 7 7
DataPoint 3 3 3 3 3
DataPoint 3 3 3 3 3
DataPoint 4 4 4 4 4
DataPoint 3 3 3 3 3
DataPoint 3 3 3 3 3
DataPoint 1 1 1 1 1
DataPoint 4 4 4 4 4

Percent Correct 100 86.66 95.55 100 100

Table 5: Training data classification/Percent correct

40

In order to calculate P (T), the number of graphs that belong to the cor-
responding group is counted and divided by the total number of training
data points that are used. To calculate P (x), count the data points that
fall in a neighborhood around point x. Currently we use an n-dimensional
square as the neighborhood. The probabilities must sum to one. That is,
any graph must belong to one of the groups. All graphs are either com-
plete, Null, or somewhere in between. There are two ways to accomplish
this. One is to add a ninth group, Other [I], and calculate P (I|x) using

P (I|x) = 1−
∑

T=A,B,...,H

P (T |x) (4.51)

The other is to normalize each on each point x, the probabilities P (A|x),
P (B|x), P (C|x), etc, by dividing them all by∑

T=A,B,...,H

P (T |x) (4.52)

at each value of x. We found that neither of these methods gave satisfac-
tory results. Points that were not training data were either not classified
in any group or always in the “other” category. The problem is that points
too far from the centers have effectively a probability of zero. A Gaussian
distribution dies off too fast. Instead we chose to use Parzen windows,
resulting in a method which is better at predicting points farther away
from the center.

Parzen Windows Parzen windows forms the basis of a method that
takes the discrete data points, represents them as Dirac deltas and con-
volves with a Gaussian function [10, 12]. It calculates the discrete distri-
bution choosing the maximum of

P (A|x), P (B|x), . . . , P (H|x) (4.53)

to decide to which group the data point x belongs. This method provides
a way of filling in the empty spaces that the previous method could not.

4.3 Functional methods

Event chains have the potential of being able to reflect the structure.
That is, if two neurons fire in succession with a certain frequency, it seems
logical that the connection strength between them should be proportional
to that frequency. Even at the most basic level we can see how analysis of
event chains can help us analyze the system. A neuron that is connected
to neurons with larger excitatory weights will fire more often and, in
turn, we should see more chains involving that neuron. Some simple data
that could be extracted from this includes the firing rate, the number
of times a neuron is expected to fire over n time steps. This raw data
is important as is comparative data such as neuron i fires m times in n
time steps, and neuron j fires p times in n time steps. These pieces of
data allow us to make assumptions about the structure of the connections
from the behavior of the neurons alone. Dissection and evaluation of

41

neurotransmitters to determine these connections might be be possible,
but could not serve as a diagnostic tool on a living patient. We expect
that neurons are more likely to connect to other neurons that are nearby.

Event chains are sequential actions. In this case, if neuron i fires at
time step n and then neuron j fires at time step n + 1, the “two-event
chain” {i, j} occurs. Note that neurons i and j both produce a “one-event
chain” as well. It is important to note that if we want to use this tool to
give us some sense of which neurons are causing others to fire, we must
only consider those that could possibly be connected. We can use the
connection matrix to see which event chains are meaningful.

We consider connection matrices that have spatial structure. Instead
of randomly placing neurons in a planar region in R2 we will use an upright
square lattice. By doing this, we can define neurons being geometrically
near and have the same effect on each neuron. For the present, we assume
that any neuron is connected to any other neuron within a given distance,
and not connected to neurons farther away than that distance.

Figure 4.8: 64 Points arranged in a square lattice

Consider the lattice shown in Figure 4.8. In order to take advantage
of the nature of stellate cells and local connections, we consider distance
as calculated by the standard Euclidean norm. Neurons will only connect
with other neurons that are less than a given distance away.

Figure 4.9 shows neurons connected based on varying distances. As
the distance r increases the points within Euclidean distance r are shown
in Figure 4.9.

4.3.1 Combining Interaction and Structure

In order to eliminate the sequential firing that would occur if two neurons
are connected to each other, we implement a refactory period. We assume
that a neuron has a period of time after firing where it is incapable or less
likely to fire. This period, called the refractory period, could be thought
of as a “cool down” period. This naturally prevents a situation where
wi,j > τj and wj,i > τi would cause the two neurons to fire on each other
indefinitely if there were no other inhibitory effects present. The assump-

42

Figure 4.9: Distances of length 1,2 and 3 on an 81 point lattice

tion of a refractory period prevents a neuron from immediately feeding
back, but other connection scenarios where the neurons fired in such a
way as to loop back to an earlier firing neuron. These small “loops” of
neurons may result in a self sustaining loop. These loops are not consis-
tent with how the brain is perceived to operate, and we will address their
effect further in Section 4.3.4. To avoid this, we will implement the model
for event chains so that no neuron is allowed to fire more than once during
the propagation of a single stimulus.

Since we assume finite lattices of neurons, it is necessary to consider
how the neurons near the edges are connected. One possibility is that
the neurons near the edges are connected in the form of a tube or a
torus. This idea is a way to simulate larger samples of neurons by creating
a periodic array. However, this creates more of a patchwork model of
the same neuronss with the same weights. It could also be argued that
this violates the locality argument defined by distance since the region
itself is not physically a tube or torus. We assume the lattice does not
support connections on its edges. In other words, we assume that there
is no “wrapping” effect. This prevents loops and also has some structural
significance.

4.3.2 Extracting Data from Event Chains

We can use two event chain data to gather connection information. We
do this by taking advantage of the definition for statistical independence.
Two events A and B are independent if

P (A|B) = P (A)→ P (A|B)

P (A)
= 1

Thus, two events are independent if the probability of an event happen-
ing is the same regardless of whether the other event is happening. If
P (A|B)
P (A)

6= 1, the events are not independent, so the outcome of one event
modifies the outcome of the other.

43

P (A|B)
P (A)

> 1 implies a positive correlation
P (A|B)
P (A)

< 1 implies a negative correlation

We adapt this to two-event chains. Consider two neurons; for example,
suppose neuron i fires fi times and neuron j fires fj times in N time
steps. This could be interpreted as frequencies, so that P ({i}) = fi/N ,
P ({j}) = fj/N . If the two-event chain of j following i occurs f{i,j} times
in the same N time steps, then the two-event chain {i, j} occurs with
frquency P ({i, j}) = f{i,j}/N . We have that

P (A ∩B)

P (A)P (B)
=

P ({i, j})
P ({i})P ({j}) .

If this ratio is greater than 1, then neuron j fires more frequently than
expected if the neurons were independent. This allows us to infer an
excitatory weight or effect from neuron i onto neuron j. It is worth noting
that asymmetry is maintained and the assumptions about wi,j will not
affect wj,i. Since two-event chains preserve order, if P ({i, j}) 6= P ({j, i})
then we could still have wi,j 6= wj,i.

4.3.3 Simulations and Data

The model from Section 3 is used to simulate processes in the cortex, for
different “brains”. A set of weights and thresholds determine a “brain”
that is then interrogated for its behavior. We wish to determine whether
different types of brains behave differently. To do this, we postulate
schemes for determining a set of equivalent brains. For the present work
we generate a large number of “equivalent” brains by using a given connec-
tion scheme, given threshold value (same for all neural columns) and sta-
tistically generated interaction weights. By generating multiple “brains”
from the same scheme we can compare information inherent to the gen-
eral model and not to one specific weight assignment. For each brain, we
find two-event trees by stimulating random neurons. The statistics of the
two-event trees depend on the values of the weights and threshold.

Assigning Preliminary Values We consider the effects of three ma-
jor components: two are network connectivity parameters, namely weights
and thresholds. Two-event trees are triggered by exciting a number of
neurons.

Locality Distance Locality distance will determines how many neu-
rons are connected.This determines what weights and threshold values
lead to reasonable “brain”-like behavior. Locality is the area around a
neuron that we dictate is close enough for connections to be formed. It
depends on the total number of neurons. A large connection distance
with few neurons would cause all neurons in the model to be affected by
the actions of one neuron. When we compute the occurrences of one or
two-event chains in short bursts we are able to simulate a large brain,
that is, one with many neurons. For these runs, the data was recorded for
about 6400 neurons. There is a correlation between number of neurons
and the time needed to run for stable data. The more neurons there are,

44

the longer the simulations must run so that a pulse can propagate through
all the neurons. This propagation of a single pulse from initiation until no
further neurons fire is called a cascade. Imagine if we excite a cascade of
neurons, we can see that the larger the number of neurons, and the further
from the edges the stimulation, the longer each cascade will take. It will
require many cascades to get enough data to obtain reliable statistics. For
example, the case of 6400 neurons, which has 38 times more neurons than
the 169 neuron case. For the larger “brain”, in order to obtain the same
level of accuracy in the statistical data would take 38 times longer.

We discuss the topic of locality, for the 169 neuron case. We have
already stated that we can get an idea for how many neuron are connected
to a certain neuron as πr2 where r is the locality distance. When a
cascade is induced, the number of neurons affected by a given neuron is
an important parameter. In addition, the percent of neurons responding
to all neurons is a parameter of interest.

Active Columns
Dist. Effected Col. 1 2 3 4 5

1 4 2.3669% 4.7052% 6.9741% 9.1890% 11.3512%
2 12 7.1429% 13.7755% 19.9344% 25.6534% 30.9638%
3 28 16.6667% 30.5556% 42.1296% 51.7747% 59.8122%
4 48 28.5714% 48.9796% 63.5569% 73.9692% 81.4066%

Table 6: The Effect of Locality Distance

We see in Table 6 the various scenarios given an active neuronal column
in the case of 169 total neurons. If we are interested in the effect of one
neuron being active, we can see what percentage of all other neurons are
within this distance. For example, with a distance of one, the neurons lo-
cated in the cardinal directions would be affected. That is 4

168
≈ 0.023810

or 2.3810%. However, there is a more useful interpretation of this. We
can also view this percentage as the probability a random neuron would
be affected by this neuron being active. These considerations assume that
edge effects are not important.

Using the cumulative distribution function for the binomial distribu-
tion we can find the probability that a neuron will fire given that a certain
number of neurons are already active. The probability that exactly a neu-
ron fall within the distance of k out of the n active neurons is(

n

k

)
pk(1− p)n−k

Where p is the probability a neuron will activate if one other neuron
is active with a certain distance. By summing over the possibility that
any number of neurons are affecting a random neuron, we have

n∑
k=1

(
n

k

)
pk(1− p)n−k

45

Threshold and Weight Assignment Given a locality distance of
two, a neuron is connected to twelve nearby neurons. Next we define
threshold and weight values. We can start with the simple assumption
that weights are distributed over a range of both positive and negative
values to represent the excitatory and inhibitory values respectively. We
show data for distributions of weights on the interval [−0.2, 0.4], chosen
to have more positive than negative values in the hope to force an overall
excitatory effect.

Figure 4.10: Potential Single Distributions Over the Weight Range

In Figure 4.10 we show two different distributions covering the same
weight span. The simplest case is the uniform distribution where the prob-
ability of assigning any weight to an interaction is the same. The normal
distribution would place a higher likelihood around a certain weight (in
this case 0.1) with a lower probability of assigning a higher or lower weight
value to a connection.

It is physically realistic to assume two separate distributions for excita-
tory and inhibitory connections, since these different connection types are
related to structurally different neurons. Figure 4.11 shows two normal
distributions for positive and negative weights.

We will begin with the uniform distribution, and then modify it to see
the effect of the distribution on the behavior of the model.

To address the issue of a threshold use the idea the mean for a uniform
distribution over [a, b] is µ = a+b

2
. In our case µ = 0.1 so we need the

threshold to be above 0.1, otherwise the model would clearly fire too
easily. Through trial, we were able to determine that a threshold value
of τ = 0.32 was able to maintain a firing rate for the columns that was
neither too frequent or infrequent. Since the expected firing frequency for
three neurons is 0.3 we know it will take roughly 3 or 4 active neurons on
average within the locality distance for a neuron to fire.

46

Figure 4.11: Potential Dual Distributions Over the Weight Range

4.3.4 One and Two-Event Chains

We will begin by retrieving the data from one and two event chains. We
can then plot the weights wi,j against the ratio

R1 =
P ({i, j})

P ({i})P ({j}) (4.54)

where P ({i}) and P ({j}) are the probabilities of firing of neural columns
i and j, respectively, and P ({i, j}) is the probability of the two event
chain, i fires, followed by j firing. From here we can find the relationship
between this ratio and the connection weights. Finally, we can modify the
threshold value or distribution to isolate the effect of those conditions.

For reliable data, we run the simulations and approximate the prob-
abilities in eq. (4.54) by frequencies until any large variability within
the data is eliminated. In Figure 4.12 we can see the output for one-
event chains for a specific model with uniformly distributed weights over
[−0.2, 0.4]. Here the position of the neuron is located by cartesian coor-
dinates. Although these plots are for much larger spaces than we will be
using, these larger plots accentuate some attributes of structural signifi-
cance.

Figure 4.12 demonstrates the effect of the refractory period. As we
discussed in Sec. 4.3.1, we restricted a neuron to firing only once during
a cascade. This simulates a scenario where the refractory period is so
long that no neuron will fire twice under one instance of a stimuli. This
scenario can be see in Figure 4.12(ii). We can see that the firing rates
of neurons under a long refractory period seem to form groups locally.
This “blotting” is consistent with activity within an actual neocortex.
The accompanying image, Figure 4.12(i) implements a refractory period
by increasing the threshold of a neuron after it fires. This eliminates the
chance a neuron will fire continuously. However, to allow the neuron to
fire further along in the cascade, the threshold is lowered with each time
step back to its originally designated level. This leads to a problem of

47

Figure 4.12: Activity in (i) One-Event Chains for 6400 neuron model with
short refractory period (ii) One-Event Chains for 6400 neuron model with long
refractory period

cyclic neuron firing. The easiest way to imagine this is to picture a cycle
of neurons, such that each neuron can cause the next clockwise neuron to
fire. If we were to excite one neuron, the cascade would begin, and by the
time the cascade reached the originally excited neuron, the threshold will
have returned to its original value. This will cause the original neuron to
fire again and so the ring is constantly active. Figure 4.12(i) then becomes
data for multiple loops and it detracts from the meaning of the firing rates
of each neuron. As we increase the length of the refractory period, we
reduce the possibility of these firing cycles repeating. What remains is
the underlying features inherent to the locally defined structure.

Figure 4.13 shows the geometry in that connections are are nearly
diagonal and about 13 units on either side of the diagonal. This banding
structure which results from spatial proximity of neurons which are not
nearby in index. The firing rate can be found by locating the first neuron
in the chain on the x-axis and the second neuron on the y-axis. Since
wi,j = wj,i is not mandated, the firing rate for (x, y) does not necessarily

48

Figure 4.13: Activity in Two-Event Chains for 169 neuron model with long
refractory period

equal that for (y, x).

4.3.5 Weight and Event-Chain Correlation

By comparing wi,j to the ratio P ({i, j})/P ({i})P ({j}) for the frequency
of the two-event chain {i,j}, we can tangibly assess the correlation between
weight value and firing rates.

Figure 4.14 confirms that the ratio from 4.54 increases as the weight
of the connection between the neurons wi,j increases. This is to be ex-
pected, since we saw in Section 4.3.2 that a positive correlation between
two neurons would yield a larger ratio. There are two elements to this
plot that require further attention.

First, we see that there seems to be a discontinuity in the behavior of
the graph at the threshold value τ = 0.32. This is because if wi,j < τ
neuron i requires additional excitatory neurons to be active on j for j to
fire. However, if wi,j ≥ τ , neuron i can excite neuron j by itself. This
may only be negated by the effect of other inhibitory neurons. Although
not unlikely, the numbers used make it twice as likely that another active
neuron will have an excitatory rather than inhibitory connection with j.

Secondly, we see that the growth in the ratio seems to be exponential
as the weight of the connection increases. The assumption is that we can
make a guess on the structure of the interaction by the behavior of the
brain. Since this data will be fit to an approximation based on its behavior
it would be simpler to deal with an easier function than an exponential.

49

Figure 4.14: The Weight and Ratio (4.54) Comparison Data for wi,j ∈
[−0.2, 0.4], τ = 0.32

Taking the natural log of Eq. 4.54 we have

R2 = loge

(
P ({i, j})

P ({i})P ({j})

)
(4.55)

If the dependence in Figure 4.14 is exponential, the ratio R1 can be
modeled by a function of the form

R1(wi,j) = aemwi,j

Here a and m are constants.By modeling ratio 4.55, we would have a
function R2 of the form

R2 = loge (R1(wi,j)) = loge (aemwi,j)

= loge(a) + loge(e
mwi,j) = c1wi,j + c0 (4.56)

Where b is constant and equivalent to loge(a). This allows us to roughly
approximate this function in terms of a best fit line.

Again, we are able to see the impact of the threshold at τ = 0.32.
Attempting to fit one line to the entire set of weight values [−0.2, 0.4]
would be problematic and not represent the behavior of neuron pairs with
weights above or below threshold. Since there is such a large deviation
in the model after the threshold value, the compensation would modify
the best fit line dramatically. This would cause an inaccurate approxima-
tion for weights below the threshold, with considerable errors for negative
weights. It would be in our best interest to model these two sections
separately, for [−0.2, 0.32) and [0.32, 0.4].

Conditionality of the Model There are points being omitted in
the data due to the nature of the model itself. Suppose we revisit the
ratio given by Eq.(4.55)

50

Figure 4.15: The Weight and Ratio (4.55) Comparison Data for wi,j ∈
[−0.2, 0.4], τ = 0.32

R2 = loge

(
P ({i, j})

P ({i})P ({j})

)
. (4.57)

It is possible that P ({i, j}) = 0, P ({i}) 6= 0, and P ({j}) 6= 0. In this
case R2 is not defined.

These points clearly can not be used in the model data itself since
they represent the case where where the ratio R2 is not defined. However,
they represent important information, since these data points are events
where neurons i and j did not fire during a cascade. We can simply
place a conditional argument onto the data. This serves to validate the
data further, eliminating the margin of error created from ignoring these
points. It also serves as another point of comparison between two different
realizations of brains. The number and the distribution of these non-
responding points can be compared as well, to extract further behavior
from the model. It is clear that we will see a higher probability of such
points from connections with lower weighted values. Also note that since
the neural cascade begins with multiple random neurons being activated,
the denominator in Eq.(4.55) is unlikely to be zero.

4.3.6 Correlating the Data

In Figure 4.16 we see the linear approximations for the data properly
separated around the threshold value. The sample data provided comes
from multiple weight matrices under the uniform distribution between
[−0.2, 0.4]. Using multiple weight matrices helps eliminate bias due to a
certain construction of a single weight matrix. Supposing we only sampled
one weight matrix, even randomly distributed, it could have perhaps a

51

Figure 4.16: The Weight and Ratio (4.55) Comparison Data with Linear Ap-
proximations for wi,j ∈ [−0.2, 0.4], τ = 0.32

grouping of larger weights in a certain area. Consequently the best fit line
would approximate more accurately for similar weight matrices with this
grouping and less so for others.

Using multiple samples of weight matrices chosen from a set of equiv-
alent weight matrices helps eliminate partiality to a certain construction
of a single weight matrix. If we only sampled one weight matrix, even
though its weights were randomly distributed, a non-uniform distribution
of weights could have resulted in skewed data, perhaps due to an acciden-
tal a grouping of larger weights in a certain area. Consequently a fit of
the data would approximate more accurately for similar weight matrices
with this particular accidental grouping and less so for others.

Here we determine the constants c0, c1 to find the equation for the
linear approximation p(wi,j) = c1wi,j+c0. Since this is an overdetermined
system, the values found for c0 and c1 are found to minimize the difference,
or residual, between the data and the line. Standard least squares gives

c1 =
n2∑

i,j R2(wi,j)wi,j − (
∑
i,j wi,j)(

∑
i,j R2(wi.j))

n2
∑
i,j w

2
i,j − (

∑
i,j w

2
i,j)

2

c0 =
(
∑
i,j w

2
i,j)(

∑
i,j R2(wi.j))− (

∑
i,j wi,j)(

∑
i,j R2(wi,j)wi,j)

n2(
∑
i,j w

2
i,j)− (

∑
i,j wi,j)

2
. (4.58)

Figure 4.17 shows data and the piecewise linear approximation for
weights drawn from one or two normal distributions, respectively. The

52

Figure 4.17: The Weight and Ratio (4.55) Comparison Data with Linear Ap-
proximations for a) wi,j ∈ [−0.2, 0.4] drawn from two normals, θ = 0.32 b)
wi,j ∈ [−0.2, 0.4] drawn from a single normal, τ = 0.32

linear approximation may likely be less efficient in these cases, but the
concept still holds. Next we describe how to use this data to make an
assessment about structure from behavior.

4.3.7 Behavior and Structure

Figure 4.16 shows the correlation between the behavior witnessed (ratio
R2) and the structure (weights wi,j). However, this data was generated
starting with the weight values. The inverse problem is to find the weight
distribution from two-event frequencies. However, we can use the statis-
tical approach to classify brains, including brain models that have been
subjected to learning.

The most simple and straightforward way to do this is by creating a
linear approximation as we did in Figure 4.16 and then using the equation
of this line as the prediction. We would first solve for the constants c0
and c1 by Eq.(4.58) and generate the approximation R(wi,j) = c1wi,j +c0
from the reference data. Now on a new weight matrix, we retrieve the
R(wi,j) values from the behavior and use it in our reference equation to
approximate the weights wi,j . This does assume uniformity in all brains
such that they are relatively similar and can be generated through a single
reference, but this is unavoidable. Also, since we control the distribution
and connectivity of weights, the variations will be limited.

It is clear that the linear approximation alone could generate adequate
results. As Figure 4.16 shows, there appears to be a distribution of weights
near the linear approximation, and that this distribution is significantly
spread out. To remedy this, we can use the linear approximation value
as the mean, and develop a statistical description for describing wi,j =
F (R2), where F denotes an appropriate distribution. Without further
information, the assumption of a normal distribution seems appropriate.

53

4.4 Weight Model and Prediction

In this section we determine a suitable weight given the observed behavior
between two neurons. We begin with a simple linear regression assuming
homoscedasticity, and refine it as we progress towards a sliding window
with accompanied weighted mean. We are able to improve the model as
we abandon a purely analytical model towards a simulation model.

4.4.1 Linear Regression Model

We have already defined how we would find the best fit line in Sec-
tion 4.3.5. From here we develop the probability distribution for the
weights

fn2(wi,j |R2), β0, β1, σ
2) =

1

(2πσ2)n2/2
exp

[
− 1

2σ2
(wi,j − β0 − β1R2)2

]
.

(4.59)
We can rewrite the best fit line in terms of R2

R2 = c1wi,j + c0 → wi,j =
1

c1
R2 −

c0
c1
. (4.60)

To fit the form of Eq.(4.59) we have approximations for β0 and β1

β̂1 =
1

c1
, β̂0 =

c0
c1
. (4.61)

By putting these approximations back into Eq.(4.59) and maximizing
the results, we can solve for the corresponding variance value

σ̂2 =
1

n2

∑
(wi,j − β̂0 − β̂1R2)2, (4.62)

where the sum is over the appropriate ensemble. In this work, we take
the sum over all connections in the network, and over a selection of brain
models.

The distributions are therefore generated from the simulations in which
we observe both R2(wi,j) and wi,j . From this description we can extract
all the parameters for the distributions above. Once we have obtained
the distributions for a large sample of data, we can use it to derive the
weights in other models. Since we can obtain R2 from behavior alone, we
can use this observed data and the distributions to determine weights in
the new observations.

4.4.2 Model Flaws and Improvements

The brains that we describe in this Section have a statistical distribution
of connection weights. The data produced by cascades on these brains
show scatter around a nearly linear regression.

If we examine Figure 4.15 we notice that although given a weight,
there is a relatively small range of ratio values, the reverse is much more
complex. For example, if we look at the distribution for R2 = 0, we can
see that it is relatively flat. This gives us a sensible approximation for the
connection strength between two neuronal columns, but the variability in

54

this model is very large. This holds true for many other ratios because of
the relatively small slope of the best fit line.

Drawing from a uniform distribution wi,j ∈ [−0.2, 0.4], τ = 0.32, we
can create a model as in Eq.(4.59). Once we establish the parameters, we
generate a new set of weights that remain unknown. We use the observed
behavior along with the model to estimate the unknown weights that were
generated. From this exercise we observed only a 30% increase in accuracy
over randomly guessing the weight. What this means is that given no
information at all, a random weight from the uniform distribution will
be on average 0.2 in magnitude different from the weight we are trying
to estimate. Using the observed data and model, we improve this only
to an average 0.14 in magnitude different between the estimate and the
actual weight value. From this approach, we see that the possibility of
determining the weight of the connection between two neurons, given the
firing rate R2 is difficult due to the spread of the data. The more realistic
hope for this inverse process is to determine the distribution of connection
weights, but even this seems to offer little improvement over selecting
weights from a uniform distribution

We reformulate this question into the following: Can we determine if
brains chosen from a set of brains (for example, all brains of 169 neurons
with locality distance two and with a uniform weight distribution) are
different from brains chosen from some other set? This becomes even
more relevant when we examine the topic of learning.

Before we move on to the improvements for the model, we must discuss
the validity in assuming a normal distribution model for the data. For
least-squares regression we see that a regression line along with a normal
distribution is commonly implemented to represent the spread of data
[86]. To this end we compare our data with sample data from the standard
normal distribution. We create a normal probability plot by taking the
ordered points from our data and plot them against the ordered points
from the standard normal distribution.

Figure 4.18 shows a Rankit plot, here a linear relationship between
the ordered points draw from N(0, 1) and the ordered data points. This
indicates that the data we are using follows a normal distribution. The
data is gathered within a window of consideration where wi,j = 0 and
∆h = 0.1, so there are slight deviations for R(wi,j) values that are fur-
ther from wi,j . However, the linearity remains quite accurate and gives
credibility to our assumption.

We can improve even further on this assumption by using the Kolmogorov-
Smirnov test [87]. We can compare the one-dimensional distribution that
results from our observed R̂(wi,j) values to that of the standard normal.
We will need to standardize our distribution to have mean µ = 0 and
σ = 1. We use the distributions mean, µ̂, and standard deviation σ̂ to
generate a new distribution of points R(wi,j) = (1/σ̂)∗ (R̂(wi,j)− µ̂). The
distributions of this new set of points can now be directly compared to
points generated from the normal distribution N(0, 1).

Figure 4.19 shows the similarity in the cumulative distribution func-
tions for our distribution and that of the normal, N(0, 1). The Kolmogorov-
Smirnov test has the null hypothesis that the vector of sample points,
R(wi,j), has a standard normal distribution. The test rejects the null

55

Figure 4.18: The ordered data points R(wi,j) for −0.05 ≤ wi,j ≤ 0.05 plotted
against ordered data points from N(0, 1)

hypothesis at the 5% significance level. Using the kstest in Matlab allows
us to utilize this test and confirm that the data points used in Figure
4.19 do not reject the null hypothesis and therefore, the variable can be
considered normally distributed with 95% confidence.

4.4.3 Numerical Improvement

It is possible to make improvements to the model by increasing the degrees
in the polynomial used to fit the data. Instead, we examine an approach to
generating a correlation based on a sliding window technique that allows
the determination of a numerical approximation to the regression fit of
the data.

To construct the numerical model, we first define the number of divi-
sions and width of the window of consideration. To define a value R2(wi,j)
for a set of weights, consider data in a narrow window around the value
wi,j . We can see in Figure 4.20 that we can use n subdivisions in the
weight axis, with each window having width ∆h. Note that if ∆h is too
small, most windows will not contain enough points for a statistical anal-
ysis. On the other hand, if ∆h is too large, trends in the data will be lost
or skewed. Here the mean of the ratio is calculated numerically with the
window of consideration defined between wi,j − ∆h

2
and wi,j + ∆h

2
. Points

within the window affect the mean, assigned to the center of the interval,
based on their distance in weight value to the mean weight. If we look,

56

Figure 4.19: The normalized data points R(wi,j) for −0.12 ≤ wi,j ≤ −0.1
compared by their cdf against data points from N(0, 1)

for example, at the sample point A in Figure 4.20, we see that it is within
the window of consideration. However, since this point is rather far away
from the mean weight value, it is weighted accordingly and therefore will
impact the calculated ratio mean less than a point that is closer to the
mean weight. The factor by which the point is considered in the mean
ratio calculation is defined by a linear relationship with respect to dis-
tance. A point that is halfway between the wi,j being considered and the
outer window of consideration, will have half the weight of a point with a
weight value wi,j . Choosing n = 1000, and a ∆h = 0.1, we can create a
model much like we did previously.

Figure 4.21 shows the result of this process for 30 brains with uni-
form distributions, each interrogated 10,000 times. The averages for each
brain over the windows is shown in red and green, representing the new
mean regression below and above the threshold respectively. Also shown
is an average over all 30 realizations represented in blue and yellow. Here
we see the improvement over the modeling used in Figure 4.16. We see
that a best fit line overestimates for lower weight values and underesti-
mates at higher weight values. In determining weights, we see how this
improvement alone warrants the change from a more analytical model to
the numerical one. At this point we could reevaluate the use of the natu-

57

Figure 4.20: The Weighted Mean for a Given wi,j with Sample Point A within
the Window of Consideration

ral log in the definition for the y-axis, seen in Eq.(4.55). However, there
are advantages to this formulation even though the resultant graph is not
truly linear. We see R2(wi,j) = 0 has the interpretation of having a two-
event chain occurrence that follows logically from the conditions of the
one-event chains and independence. This allows for a quick assessment of
positive or negative correlation between two neurons. Since this should
occur when the weight between two neurons is zero, we can assess any
change in the model from containing (0, 0) and the implications of this.

Likewise, we can numerically calculate the standard deviation using
the weighted means. This is done in the same manner as described above
through the definition for variance.

σ =
√
E[X2]− µ2 =

√
E[X2]− E[X]2. (4.63)

So we can find the standard deviation numerically through calculating
the weighted expected values numerically as we did above. Since the focus
is no longer on extracting the weight values, the variance and standard
deviation are calculated in a window around each value of wi,j , not the
linear regression line R2(wi,j) as previously. Since our aim is now to
compare two brains, the variability of behavior given the weight becomes
a more tangible point of comparison.

58

Figure 4.21: The Weight and Ratio (4.55) Comparison Data with Numerical
Approximation for wi,j ∈ [−0.2, 0.4], τ = 0.32

4.4.4 Normal Distribution Modeling

We have seen up to this point the behavior of a network of neural connec-
tions when they are drawn uniformly from wi,j ∈ [−0.2, 0.4] with thresh-
old τ = 0.32. Appealing to the biology of neurotransmitter released at
synapses, it seems sensible that the strengths of the connections obey a
standard normal distribution. This assumption will help address three is-
sues that are potentially problematic with the uniform distribution. First,
there is no biological reason to assume all weights are equally likely. It is
logical to assume the connections that are extremely strong are less likely.
To implement a uniform distribution, there must be a set of bounds, and
this creates points where the behavior around them is also not biologically
justifiable. Finally, clustering is not as dominant an issue. A few strong
positive connections within a vicinity of a brain can more easily have their
impact negated by a few strong negative connections.

A normal distribution of weights removes the drawbacks due to a uni-
form distribution, and can be used unbounded to eliminate the impossi-
bility of certain weights being assigned. The largest impact is in regards
to the clustering. The impact of a few large weights becomes greater if
the surrounding weights are drawn, for example, from a mean zero normal
with small variance.

To do meaningful analysis on normally distributed weights, we create a
normal distribution similar to the uniform distributions used above. Since
the relationship of the weights to the threshold can be crucial to obtaining
meaningful cascades, that is, cascades that are neither too short or too
long, this gives us a good starting point and allows us to identify any
visible changes from changes in the weight distribution. We see for a
normal of mean µ = 0 and σ = 0.2 the behavioral plot is similar to Figure

59

4.21 for the uniformly distributed weights.

Figure 4.22: The Normal Weight Distribution for wi,j ∈ [−0.2, 0.4], τ = 0.32
with µ = 0 and σ = 0.2

The aqua and blue lines represent the mean data below the threshold
and the green and yellow lines represent the mean above the threshold.
Magenta and red lines are used to indicate the variance. The general
shape of the graph is similar, with minor differences that we will discuss
in Section 4.5.1.

Both the uniform and normal distributions have one last noteworthy is-
sue, namely symmetry. The normal distribution will be symmetric around
the mean. Just as the uniform distribution restricted us with regards to
the proportion of negative and positive connections, this symmetry in-
herent in the normal does the same. For this we propose the possibility
of using two distributions, one for the inhibitory connections and one for
the excitatory connections. Using the normal distribution for both would
allow us to generate them simply, but provide a bit more customization.

4.4.5 Reduction to Observable Data

Before we implement the statistical data, we must address a glaring detail.
The data being analyzed in Figure 4.21 contains both the observable data
and the weight value between two neurons. We have already abandoned
the idea of extracting the weight data from the observable firing frequency
data, but we must determine whether or not we gain any addition infor-
mation by examining behavior independently from the weights. In other
words, data describing the frequency at which two neurons fire together
with respect to the individual firing rates is of little use if we know the
connectivity between them. The importance of firing frequency results
comes from the fact that the connectivity cannot be determined by the

60

Figure 4.23: The Weight and Ratio (4.55) Comparison Data with Numeri-
cal Approximation for Normally Distributed µ = 0 σ = 0.2 weights wi,j ∈
[−0.2, 0.4], τ = 0.32

weight alone. A connection with a negative weight may still fire frequently
due to being in proximity to a positive weight of larger magnitude. This
is one of the reasons for the variability in the data. A uniform distribu-
tion allows for equal likelihood of all weights within the range considered,
but this would not be true in the case of weights drawn from a normal
distribution, or potentially from two normals. Suppose we took N(0, 1)
to generate the weights, then a value such as wi,j = −2.5 could have a
significant effect. Such a weight is unlikely in the distribution and it would
also be extremely unlikely to have a positive weight of equal or greater
magnitude to combat its effect. There is also the complexity of having
to adjust the locality distance or the threshold. Information gained with
observed behavior can therefore add to our understanding of the brain
model more than looking only at weight values.

Even though we are able to extract useful information from the fre-
quency versus weight data, we also consider the information that can be
extracted by analyzing behavior (i.e., firing frequency) data alone. This
can be analyzed by projecting the data onto the y-axis. Projection will
give us a distribution over R2 that can be compared using several models.
Since we have a monotone plot, any variability that would be apparent in
the firing frequency versus weight plot is also apparent in the projection.
For example, changing the threshold will cause the “jump” at that value
in the plot to occur at a different position. This is obvious in a plot such as
Figure 4.21, where we can infer that the projection on the firing frequency
axis will also include a cluster of values with higher ratio values.

61

4.5 Predicting Brain Differences without Using
Weight Data

Using the numerical results developed in Section 4.3.4, we can address
the comparison of the two event data generated by two different brain
models. We can vary values such as the weight distribution, connectivity,
and threshold to determine their impact on the behavior of the model.
The Kolmogorov Smirnov test allows us to evaluate whether a set of data
is likely to have been generated from a given distribution. This test shows
whether a data set was likely drawn from a normal distribution. Unfor-
tunately, there is no numerical value to quantify the “goodness of fit” for
the data to the distribution. However, at a higher level we can observe
data as falling within a “class”. Furthermore, the Kolmogorov-Smirnov
test also allows us to directly compare two sets of data.

Since we invoke the use of a normally distributed model, it is first
necessary to discuss ways to compare two normal distributions. Once this
is determined, we can compare the data from varying models. We can
attempt to determine the conditions on a weight matrix given its observ-
able data and weight values. Finally we can try make this determination
without access to the weight values, using only the projection data.

Using a sliding window, we create a set number of bins over the range
of weights and represent the bins behavioral data by means of a normal
distribution with a given mean and standard deviation. We compare mod-
els by creating these same bins over the weight range and compare the
normal distributions that define the behavioral data using the Hellinger
distance. The Hellinger distance computes the difference between the two
distributions and returns a value between zero and one for each bin. View-
ing the data bin by bin allowed us to see which weight values were more
prone to show behavioral changes when models were modified. Alterna-
tively we used a Riemann sum over all the Hellinger distances for each
bin to give one value summarizing the difference between the models.

Earlier in Section 4.4, we attempted to determine the weight value wi,j
for a connection from neuron i to neuron j, given its behavior as deter-
mined by its frequency ratio value R2(wi,j). The distribution of weights
for various brain models all had significant variability in the weights, given
a value of the two-event frequency. Also, there is not a large discrepancy
between the ratio values of different weights. These two combined factors
made it far too difficult to determine an accurate weight value given only
the behavioral ratio value. The difficulty is fundamental, since it is rela-
tively straightforward to interrogate the brain and retrieve the behavioral
data, but behavioral data can result from different connections with dif-
ferent weights. Moreover, extracting data on physical weight values would
require an invasive technique (such as examining synapses) and therefore,
the data is less obtainable. For these reasons, we discuss how to make
useful observations based on behavioral data only. To this end, we at-
tempt to remove the knowledge of the weight component that is required
in the previous plots.

62

4.5.1 Hellinger Distance

The Hellinger distance compares the similarity between two probability
distributions with respect to a third probability measure. Formally the
definition of the Hellinger distance between probability measures X and
Y is

H2(X,Y) =
1

2

∫ (√
dX

dλ
−
√
dY

dλ

)2

dλ. (4.64)

Here X and Y are probability measures with respect to the probability
measure λ. We can define this in terms of probability theory by defining
λ as the Lebesgue measure. dX

dλ
and dY

dλ
are now probability distributions.

We can define Pn(wni,j) and Qn(wni,j) as the probability distributions
at the nth subdivision in the weight axis where wni,j is the center of a bin
as in Figure 4.20. The formulas are simplified if we can treat both of these
probability distributions as normal distributions, in that case we define
Pn(wni,j) ∼ N(µ1,n, σ

2
1,n) and Qn(wni,j) ∼ N(µ2,n, σ

2
2,n)[95]. Each mean

and standard deviation is denoted by its corresponding distribution and
nth subdivision. The final squared Hellinger distance for the two normals
P ∼ N(µ1, σ

2
1) and Q ∼ N(µ2, σ

2
2)

H2(Pn, Qn) = 1−
√

2σ1,nσ2,n

σ2
1,n + σ2

2,n

e
− 1

4

(µ1,n−µ2,n)2

σ21,n+σ22,n . (4.65)

Similar to the use of the Kolmogorov-Smirnov test used in Section
4.4.2, we can verify that for a subdivision of weights, the corresponding
R(wi,j) values in this subdivision are normally distributed. This allows us
to analyze the difference between two weight vs. ratio plots by comparing
them for each subdivision.

Figure 4.24: Two Weight vs. Ratio plots generated from uniform weights

The plots being compared in Figure 4.24 are quite similar. For both
plots, the weights were generated from a uniform distribution and as we
can see the differences between the two resultant weight vs. ratio plots
are very small. For all 500 weight subdivisions, we compare the normally
distributed ratio values for two plots using the Hellinger distance.

63

Figure 4.25: The Hellinger comparison of two Weight vs. Ratio plots generated
from uniform weights

For each data point in Figure 4.25 we see the Hellinger distance be-
tween the weight subdivisions for the two plots in Figure 4.24. We see
that the largest discrepancy occurs for the lower weight values. This is to
be expected since neuronal firing that involves low weighted connections
is less common and is largely a product of a statistical anomaly. This can
also be argued to a lesser degree for the largest of the weights. In order
for a neuron to fire if it has connecting weights substantially below the
threshold it must be stimulated by the other connections around it. We
can also use this data to create a single value to determine the “closeness”
of two weight vs. ratio plots. The idea is to use the mean value theorem
from calculus showing that the integral of a function is the mean value of
the function, times the length of the interval. By taking the area under
the Hellinger values H(wi,j), we get a single value to represent the overall
distance between the two. Due to the nature of the data, numerical inte-
gration by means of the trapezoidal rule accomplishes the desired result.
For example, with 500 subdivisions and wi,j ∈ [−0.2, 0.4] we have

∫ 0.4

−0.2

H(wi,j) ≈
0.3

500

500∑
k=1

H(−0.2+k
0.6

500
)+H(−0.2+(k−1)

0.6

500
). (4.66)

The entire plot in Figure 4.25 falls below a Hellinger distance of 0.016.
Since the Hellinger distance between the two is small, we conclude that
the ensemble average of the brains compared are very similar. Indeed,
the Hellinger distance in this case sets a threshold below which brains

64

are indistinguishable from those with uniformly distributed weights with
locality 2.

Next, we compare the weight vs. ratio plots generated from uniform
weights against those from normally distributed weights. Figure 4.25
shows weights generated by a normal with mean µ = 0 and standard
deviation σ = 0.2. Again, with this data we see that the lower weight
values take on a larger range of ratios. We also see that since our distri-
bution is less likely to generate lower weight values, there are fewer data
points, leading to an even greater disparity in the mean ratio values for
these subdivisions.

Figure 4.26: Weight vs. Ratio plot generated from normally distributed weights
with µ = 0, σ = 0.2

Even though we observe that Figure 4.26 is different from those in Fig-
ure 4.24 just by inspection, application of the Hellinger distance (see Fig-
ure 4.27) shows by how much.We can see that the difference in Hellinger
distance is sufficiently large that brains generated with a uniformly dis-
tributed weights and normally distributed weights can be distinguished.

Quantitatively, the Hellinger distance between the brains compared
in Figure 4.24 is 0.00064801, we see that the Hellinger distance between
uniformly distributed and normally distributed is 0.05109837. This should
be expected since these two plots are fundamentally different. The effect
of the threshold, θ = 0.32 becomes noticeable as well. Since these brains
are fundamental in how we interpret our event-chain data, a means of
comparison between such plots is extremely useful.

4.5.2 Detecting Brain Size

We use the Hellinger distance to see the effect of increasing the number of
neurons being considered. For many simulations on the brain models, we
used 169 neurons to define the weight matrix. By increasing the number
of neurons in the model, we reduce the relative importance of boundary
neurons. These boundary neurons have fewer connections and so there is

65

Figure 4.27: Hellinger distance between a plot generated from normal weights
with µ = 0, σ = 0.2 and a plot generated from uniformly distributed weights

potential for the data to be skewed. To evaluate this effect, we compare
different brain models of varying amounts of neurons using the Hellinger
distance.

Figure 4.28(a) shows the effect of reducing the number of neurons in
the weight matrix. Likewise Figure 4.28(b) shows the effect of increasing
the number of neurons and therefore reducing the impact of the boundary.
In both cases the effect is minimal, and within the range of reasonable ran-
domness in the interrogation process. Both values for the mean Hellinger
distance are less than observed when comparing the two identical brain
models in Figure 4.25. We can conclude that the effect of moving from n2

neurons to (n±1)2 neurons is almost negligible for values of n around 13.
We can increase the number of neurons further to see how much influence
the boundary effect has.

Figure 4.29 shows two cases with a larger difference in the number of
neurons. Figure 4.29(b) is for the 100 and 400 neuron cases, which are
the smallest and largest samples considered during simulations. Figure
4.29(a) quantifies the difference between the 169 neuron case that is more
commonly used throughout the thesis, and the 400 neuron case. The
difference is 10 to 40 times larger than what we saw when only considering
a step from n2 to (n + 1)2, depending on the value of n we consider.
However, most importantly, the Hellinger distance is still considerably less
than the one seen in Figure 4.27, comparing a weight matrix of uniformly
distributed weights to a matrix of normally distributed weights. We notice
that the weight values that differ the most are larger in magnitude. When

66

Figure 4.28: (a) Hellinger distance comparing a 144 neuron brain model to a
169 neuron model. Both weight matrices are generated using a uniform dis-
tribution.(b) Hellinger distance comparing a 169 neuron brain model to a 196
neuron model. Both weight matrices are generated using a uniform distribution

computing the interaction, the sum of connected neurons will be impacted
more by these neurons. This means that larger positive weights will have
more unique impacts, as we saw in the learned models. Since we only
consider cases where the two-event chain data is available, the negative
weights with larger magnitude are rarer and have more variability. Both
of these factors are why we see these larger differences. It is also important
to have an understanding of the comparison beyond simply the number
of neurons.

Table 7: A comparison of connections and the influence of boundaries given the
number of neurons under consideration

Table 7 gives pertinence to the effect of increasing the number of neu-
rons used in the weight matrix. The 400 neuron case has roughly 2.5
times as many connections than the 169 neuron case that is primarily
used throughout the thesis. Yet even with such a large relative increase
in the number of columns, we see a fairly minor difference in the data
produced. In the 169 neuron case, without interference from a boundary,
each neuron would connect to twelve other neurons given a connection
distance of size two. When we introduce the boundary 12.62% of those
connections are not viable. In the 400 neuron case this is reduced to 8.25%
and yet we see a small difference in the behavior when compared using
the Hellinger distance.

From Figure 4.29(b) and Table 7 we can conclude further behavior

67

Figure 4.29: (a) Hellinger distance comparing a 169 neuron brain model to a
400 neuron model. Both weight matrices are generated using a uniform dis-
tribution.(b) Hellinger distance comparing a 100 neuron brain model to a 400
neuron model. Both weight matrices are generated using a uniform distribution

resulting from the increase in the number of neurons. The number of
connections that are not viable due to the boundary increases from 16.33%
to 8.25% when the number of neurons is increased from 100 to 400. This
is twice the change we see from the 169 and 400 case, however the mean
Hellinger distance is 0.014289. We see from the data that as we increase
the number of neurons, we are lowering the fraction of neurons that are
affected by the boundary, and changing the behavior by less each time.
We conclude that any gain in accuracy within the model comes from an
increase in the number of connections we use, and even then would most
likely have relatively similar results to a model with fewer neurons.

Figure 4.30: The Trapezoidal Sum over the Hellinger distances comparing a
uniformly distributed brain model of 169 neurons to that of models with varying
neurons

One last point to be made is that we are looking at unlearned models

68

for comparison. As we see in Table 7, given n current neurons, there are
24
√
n − 8 new connections by increasing n to the next perfect square.

However, the learned model does not restrict connections to a locality
distance of two. Table 7 shows a much more rapid increase in the number
of viable connections if we do not have this restriction. If we increase
the model to limit the effect of the boundaries, we must be able to evalu-
ate a considerably larger number of new connections when implementing
learning. Revisiting the comparison of a 169 neuron model to the 400 neu-
ron model, we see the learned model would potentially have over 130, 000
more connections, or over five and a half times as many. With these con-
siderations, we postulate that the improvements gained by increasing the
size of the model slightly does not show much change, and a sufficiently
large size increase to make an impact in the data worth considering would
incur massive increases in storage and run times. Figure 4.30 verifies this
assumption for the model containing 169 neurons. Almost any model is
limited by computer resources and even so, will not be close to any real-
istic biological brain size [96]. As an example, in the eye of a rodent, the
external plexiform layer there are on the order of 109 synapses [97]. The
present model with full connectivity would only contain around 28,500
connections and increasing the model size to match that of the human V1
region in the neocortex would take an astonishing increase in computer
resources.

4.5.3 Detecting Damaged Neurons

In the previous subsection, we focused on the boundary effect and how not
having connectivity would alter the results. We claim that a finite array
of neurons could be embedded in an array of inactive neurons without
any change in behavior. For example, if our 169 neurons was laid inside
a square annulus of unresponsive neurons, the results would remain the
same. It therefore seems appropriate to address the impact of damage
on the behavior of the model by considering regions of inactive neurons
interior to the brain.

When submitting the model to damage, we simply remove any con-
nectivity or weight associated with a certain subset of neurons. This way,
it contributes neither an inhibitory or excitatory effect. It is important
that we also design a damage scenario that is not a reformulation of the
previous problem with increased or decreased numbers of neurons.

We consider a damaged brain constructed by severing a single hori-
zontal line of neurons through the middle of the square lattice. Since we
damage only a single row and the connectivity allows for distance two, we
still have partial connectivity between the two regions.

Figure 4.31 shows the connectivity for the neurons for this amount of
damage. Since the locality distance is two, had the damage been applied
to two adjacent center rows, the analysis would have been similar to that of
a smaller rectangular lattice without damage. Thus, the damage shown in
Figure 4.31 can only be classified as damage and not simply a restructuring
of the boundaries.

In this case, there are 156 active neurons, and therefore the potential
for 1872 connections. Given the boundary connections and the damage,

69

Figure 4.31: Representation of connectivity of 169 neurons given a row of dam-
aged neurons. The value listed is the number of connections active for a neuron
in that position

there are only 1526 active connections. We have 18.48% of potential
connections lost to these two conditions. In comparison, a case with no
damage and 81 neurons has 18.00% of potential connections lost due to
the boundary conditions alone. However the average Hellinger distance
between our damaged model and the 169 neuron undamaged model is
only 0.00118332. Examination of Figure 4.30 shows that the 81 neuron
case has mean Hellinger distance of 0.02015034. Therefore the effect of
the damage on the model is far less drastic than reducing the number of
neurons considered.

Figure 4.32: Representation of connectivity of 169 neurons given a five by five
grid of damaged neurons. The value listed is the number of connections active
for a neuron in that position

In Figure 4.32 we propose another damage scenario. Again, we avoid
a case where the damage mimics boundary condition problems that were
already addressed. Here the active neurons form a square annulus around

70

a five by five damaged area at the center of our 169 neuron square lat-
tice. The damage to the grid reduces the number of active neurons to
144, and the unrestricted number of connections to 1728. The number
of connections in Figure 4.32 is 1376, leading to 20.37% of connections
being lost due to the effect of the boundary and damage. Applying the
same Hellinger distance metric to this model in comparison to the un-
damaged 169 neuron case, we find the MHD (mean Hellinger distance)
is 0.00128543. Since there are more connections lost due to this damage
than with a single row of damage neurons, it is not surprising that we
have a slightly higher trapezoidal sum. We note that this number is still
substantially less than if the loss of connections came purely from the
boundary.

The ability for the model to handle damaged connections has been
found to occur even in models that have learned and retained their abil-
ity of associative memory. David MacKay writes, “The network can be
severely damaged and still work fine as an associative memory. If we take
the 300 weights of the networks... and randomly set 50 or 100 of them to
zero, we still find that the desired memories are attracting stable states.”
[98] Although we do not address it in this thesis, learning and memories
are inextricably intertwined and explaining how learning occurs would
also make a statement about the way memories are formed [99].

What we have found is that the effect of lowering the connectivity
depends on the impediment. The behavior of the interaction of neurons
is based on propagating a flow of impulse. What we can see from the
examples is that decreasing the number of neurons we consider and in-
creasing boundary effects impedes this flow more than for the damaged
cases. We note that although there are more damaged neurons and less
connectivity for the brains used to generate Figure 4.32 than in Figure
4.31, they differ from the undamaged model by nearly identical amounts.
This suggests a new variable representing the interruption of flow on a
cascade of impulses. By comparing models with similar percentages of
lost connections, as we have above, we can compare the relative impacts
of the impediments themselves.

71

5 Learning Algorithms

Hebbian Incrementally changes weight if nodes are on simultaneously
Anti-Hebbian Weights decrease if neurons fire together
Oja Allows network to forget patterns it does not see very often
Asymptotic Incorporates an Asymptotic limit
Bilinear Weights increase on product of activity and decreases only if one fires
Covariance Decreases the weight if one neuron is on but not the other not
Rate Increases weights like Hebbian except it also constantly
Depressed Like Hebbian but always reduces the weight

Table 8: A summary description of each learning algorithm

In this Section, we consider learning models applied to Hopfield net-
works, and how they affect the graph structure. In this paradigm, the net-
work is represented by weights wij represents the strength of the synaptic
connection from neuron i to neuron j. Learning consists of modifying the
weight matrix so that some connections are strengthened and some are
weakened. We shall assume that all learning algorithms can be written as
a increment to the weights. That is, we assume that learning algorithms
have the form

wij(t+ 1) = wij(t) + L(t). (5.1)

Networks can be unsupervised or supervised. Unsupervised networks
take unlabeled data and discover patterns, features, regularities, correla-
tions, or categories intrinsic to the data. They also discard redundancy
in the information by lowering the energy of the system. Unsupervised
networks include Hopfield networks and competitive learning networks [4].
Supervised networks are directly manipulated so that they learn the data.
As they do so there is a quantitative measure of error that determines
how to change the connection weights so as to learn the data. Supervised
networks are given data in the form of input and targets, the targets being
the desired response of the neural network to the input [29].

It is difficult to program a computer to learn how to drive a car or dis-
tinguish the difference between a dog and cat, so we turn to how humans
learn for inspiration. We are capable of learning from data: Extracting
patterns, categorizing into groups and discriminating between two or sev-
eral similar items. For example a four year old could tell that a maple tree
is a tree, even if all she might have seen are oak trees in her life. Trying to
get a computer to do that or to perform handwriting recognition or drive
a car or fly a plane on autopilot would require thousands of different “if”,
“else”, “then” statements; and even then the program might not be able
to cope with a novel environment. Instead of trying to teach the program,
we let it learn from experience. We present it with data and have it find
similarities in the data. For example, we show the program pictures of
different kinds of trees and pictures that are not; then given a new picture
it should be able to tell you whether it is a tree. After more learning the
program could even learn to discriminate between different types of trees.

The mathematical background of why different learning algorithms can

72

learn on given input and then generalize on new data is extensive and well
developed by Vapnik and Chervonenkis [41] based on the assumption that
the given data (known values) is randomly selected so a model built from
the data would be valid outside the data. Similar to polling, assumptions
can be made about the entire population using a smaller sample size as a
reference. It is with these assumptions that we use Support Vector Ma-
chine learning (SVM), Principal Component Analysis (PCA), Canonical
Variate Analysis (CVA) and Parzen Windows (PW) to classify data to
recognize hierarchy in networks.

We study unsupervised learning. The learning algorithm can depend
on a specified set of patterns to be learned, ξµ and the neuronal state,
wij(t), i.e.,

L(t) = L(ξµ, wij(t)). (5.2)

For unsupervised learning, the learning alorithm does not depend on t
explicitly, as would be the case when a supervisor is changing the learning
rule. For the hierarchy analysis of Section 6, we must convert the weight
matrix to an adjacency matrix. That is, we convert a brain model to a
graph. To do this, we need to know whether or not a connection exists.
We use a fixed threshold,τ , to convert the weights to connections. The
adjacency matrix corresponding to threshold, τ , becomes

Aτ (i, j) =

{
1, |wij | > τ,
0, otherwise,

(5.3)

where Aτ (i, j) is the adjacency matrix at threshold τ . Thus, we only
consider a link to exist if the weight is sufficiently large, that is, if the
absolute value of the weight is greater than a given threshold, τ . Thus
the adjacency matrix for a given network depends on the threshold chosen.

We examine the evolution of graph measures as discussed in Section4.1.2
as the networks are trained to learn patterns. Specifically, we examine the
changes in the graph measures as the weights change in response to learn-
ing patterns.

Hebbian learning is any learning algorithm that strengthens the con-
nection of neurons that are on simultaneously and weakens those that are
not, much like the potentiation and depression of neurons during mem-
ory formation. There are several ways to change the synaptic strengths
between neurons, represented by a weight matrix, based on the activity
of the neurons. A network of N nodes is trained on a set of p N -length
binary vector patterns ξµi , where µ = 1, 2, . . . , p and i = 1, . . . , N . Each
entry of ξµi is either a 0 or a 1. The Hamming distance is defined to be the
number of elements by which two vectors differ. The Hamming distance
between two vectors ξji and ξki is calculated by∑

i

ξji (1− ξ
j
i) + (1− ξki)ξji . (5.4)

We restrict that each training pattern have at least a Hamming distance
of N/2 to the other patterns. We also do not train with too many patterns
to guarantee that the network is not over trained, a condition in which a
network can no longer learn. We follow the rule of thumb that restricts

73

the number of patterns that a Hebbian network can learn to be 0.138
N [20].

The Hopfield Network couples many McCulloch-Pitts neurons. It
arises from a desire that memories be content-addressable and insensitive
to small change [20]. The most fundamental implementation of Hebbian
learning automatically chooses the weight matrix to be a linear combina-
tion of the learned patterns.

wHebb
ij =

1

n

p∑
µ=1

ξµi ξ
µ
j (5.5)

The symmetry of the Hopfield network implies that all neurons have the
same effect on other neurons as those neurons have on them. This may be
the biggest flaw in the model because neuronal connections are not bidi-
rectional. Specifically, neurons are connected from synapse to dendrite.
Thus, the symmetry of the Hopfield model contradicts the assumption of
biological plausibility. Nonetheless, due to the ubiquity of the Hebbian
learning algorithm, it is included in the consideration of the emergence of
hierarchy.

There are variations to Hebbian learning on the Hopfield network. For
example we each weight, wij , can be incrementally changed in order to
learn new patterns.

LHebb = ηξµi ξ
µ
j (5.6)

where η is the acquisition rate. A synapse weight between two neurons is
increased if two neurons are on at the same time. The acquisition rate is
usually taken to be small, so a single presentation changes the weights only
slightly. In order to really learn a pattern, the pattern must be presented
several times, if η is small enough.

The Anti-Hebbian algorithm incrementally decreases the weight from
i to j if node i and node j are on simultaneously.

L∼Hebb = −λξµi ξ
µ
j (5.7)

The above formulas only allow for synapses to get stronger in magnitude.
The Hebbian algorithm could cause the weights to go off to positive in-
finity and the Anti-Hebbian algorithm could cause the weights to go off
to negative infinity. This forces the weight strengths to approach infinity
over time. This is addressed in a variation of Hebbian learning called the
covariance learning rule, which allows for weights to be weakened:

Lcov = η(ξµi − xi)(ξ
µ
j − xj) (5.8)

where xi =
∑p
i=1 ξ

µ
i /p. The covariance rule decreases the weight if one

neuron is on but not the other not. Thus if the neurons are not firing
together, their weight strength decreases. A flaw of this algorithm is that
the weight strength goes up if both are off at the same time. This algo-
rithm above still has the problem that the weight strength might approach
infinity. In a more realistic algorithm, the weights have to decrease so that
none of them will overpower the rest The brain has mechanisms that nat-
urally decrease weights corresponding to unused synapses throughout the
brain, so that no individual synapse is much stronger than the rest. One

74

solution for this problem is to use normalization. This can be done by
setting an upper bound on the maximum value of wij and not allowing
any of the weights go over that predetermined maximum value.

wij(t+ 1) = min(wij(t) + L, 1) (5.9)

if wij(t) > 0, and

wij(t+ 1) = max(wij(t) + L,−1) (5.10)

if wij(t) < 0.
However, over time, some or all of the weights may still approach the

maximum value resulting in the algorithm effectively no longer learning.
Two other ways to normalize include using multiplicative or subtractive
scaling. We will not consider these alternatives. Instead we will stop
training early so that we do not exceed reasonable weight values [20].

Another learning algorithm is Oja’s rule [20, 47, 33] which allows the
network to forget things it does not see very often.

LOja = λξµi (ξµj − wij(t)) (5.11)

The weights between two nodes are lowered when one of them, say j, is on
but the other one, say i, is not. The Oja algorithm allows the weights to
decrease but if they do, the reduction is slowed as the weight gets smaller.
If neuron j is on but neuron i is not, then LOja is negative.

In the Rate algorithm, weights at time t, wij(t) equal the change in
weight LOja of the Oja algorithm

wij(t+ 1) = LOja(t). (5.12)

The Bilinear algorithm increases the weight if both neurons are on at
the same time, but decreases if only one of them fires,

Lbil(t) = λξµi ξ
µ
j − ηξ

µ
i − αξ

µ
j . (5.13)

Constant Depression is an algorithm that increases the weight in the
same way the Hebbian algorithm

LCD = ηξµi ξ
µ
j − λwij(t). (5.14)

We also train using different initial networks to learn the patterns.
Each network is represented by a vector with the different measures in each
entry of the vector. The different networks are ER (random), Waxman,
Small world, Ring, and Rectangular. We train with networks of size 450
and 750. Results can be found in Section 6.

6 Results from Learning Algorithms

In this Section we present the results of the study of the emergence of
hierarchy in Hopfield networks. We present the graph types and sizes we
use, then we show the feature vectors from the graphs after they have
been transformed by Principal Component Analysis (PCA) and Canon-
ical Variate Analysis (CVA). Then using the transformed data we show

75

how Support Vector Machine (SVM) and Parzen Windows (PW) classify
the data. After that we discuss each of the seven different training al-
gorithms, followed by comparisons between results using thresholds for
converting networks to graphs, and interesting results. We present exam-
ples of training that seem to increase the hierarchy and those that do not.
We compare how SVM and Parzen windows agree or disagree about the
classification of graphs on a case by case basis.

6.1 Results for Initial Networks

We created ER graphs,Waxman graphs, Small world graphs, Null graphs,
Complete graphs, Trees graphs, Rings graphs, and Scale Free graph at 450
and 750 neurons. The ER, Waxman, and Small World graphs were gener-
ated from three different expected average degree distributions. Different
m-ary Trees were generated using different heights. Figure 4.6 shows the
data projected onto the first three eigenvectors by PCA for 450 neurons
and Figure 19 shows the data projected by PCA for 750 neurons.

−10 −5 0 5 10 15

−10
−5

0
5

−4

−2

0

2

4

6

8

Data projected using PCA on the first three eigenvector

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 18: Data of size 450 projected with PCA

5 Results

In this Section we present the results of the study of the emergence of hierar-
chy in Hopfield networks. We present the graph types and sizes we use, then we
show the feature vectors from the graphs after they have been transformed by
Principal Component Analysis (PCA) and Canonical Variate Analysis (CVA).
Then using the transformed data we show how Support Vector Machine (SVM)
and Parzen Windows (PW) classify the data. After that we discuss each of the
seven different training algorithms, followed by comparisons between results us-
ing thresholds for converting networks to graphs, and interesting results. We
present examples of training that seem to increase the hierarchy and those that
do not. We compare how SVM and Parzen windows agree or disagree about the
classification of graphs on a case by case basis.

44

Figure 6.1: Data of size 450 projected with PCA

In Figures 6.1 and 6.2 the ER graphs are represented by the magenta
points, the Waxman graphs by the cyan points, the Small World graphs by
the green points, the Trees graphs by the black points, the Null graphs by
the blue points, the Complete graphs by the red points, the Ring graphs
by the yellow points and the Scale Free graphs by the red circles. We can
see that the types of graphs are well separated by using PCA with the set
of graph measures adapted.

Figure 6.3 shows the data projected onto the first three eigenvectors
by CVA for 450 neurons and Figure 6.4 shows the data projected by CVA
space for 750 neurons. The types of graphs are better separated by CVA

76

−10

−5

0

5

10

−3 −2 −1 0 1 2 3 4 5 6

−10

0

10

Data projected using PCA on the first three eigenvector

ER

Waxman

SmallWorld

Null

Complete

Figure 19: Data of size 750 projected with PCA

45

Figure 6.2: Data of size 750 projected with PCA

than by PCA.
In order to use the SVM algorithm we only consider Tree graphs and

Random graphs. Figure 22 shows the data from the Trees and Random
Graphs transformed by PCA then separated by SVM. If the data trans-
formed by CVA had been used instead and then separated by SVM a
similar graph would have resulted.

−2−10
−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.8

−0.6

−0.4

−0.2

0
Training and Testing Data using CVA projected the first three eigenvector

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 20: Data of size 450 projected with CVA

46

Figure 6.3: Data of size 450 projected with CVA

6.1.1 Results from Training

Next the networks are trained, using the original Hebbian algorithm. The
initial point is the feature vector of a Ring graph. The graph is trained for
53 iterations. In Figure 6.6 we can see how the points are classified by the

77

−2−10
−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.8

−0.6

−0.4

−0.2

0
Training and Testing Data using CVA projected the first three eigenvector

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 20: Data of size 450 projected with CVA

46

Figure 6.4: Data of size 750 projected with CVA

Parzen windows (PW) as the networks are trained for the 53 iterations.
For the Hebbian algorithm applied to a random network, the brain model
does not get more hierarchical as learning occurs. The graph is assigned
to the group corresponding to the maximum of the probabilities after each
learning step. The probabilities of a graph being a tree (cyan line) or not
(magenta line) at each iteration of the training are shown in Figure 6.7.
There is basically no change in the lines for any of the thresholds.

We calculate the distance of the Hebbian points to the hyperplane sep-
arating the graph types as they learn. Figure 6.8(a) shows the distances
from the hyperplane for the PCA data after each training. Figure 6.8(b)
shows the distance from the hyperplane for the CVA data after each train-
ing. A negative distance implies that the data point lies on the side of the
random graphs. Before the network is trained the point is closer to the
hyperplane, i.e, it is less random, but not a tree. After the first training
it becomes more random but does not change after that.

6.1.2 More Interesting Result

In the Previous section an increase in hierarchy as a result of Hebbian
learning was not observed. These results are similar for other learning
algorithms; in particular, neither the Anti-Hebbian algorithm nor the Oja
algorithm showed an increase in hierarchy. This was supported by the
PCA and CVA data using both PW and SVM. We do not present that
data. Instead we present data where changes were observed.

Using the Bilinear algorithm led to interesting behavior. Figure 6.9
shows that the evolution of different probability distributions during learn-
ing as a function of the threshold value used to convert the network to
graphs. For low threshold values, the probability that the graphs become

78

−6 −5 −4 −3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

0

1

Support Vectors

Figure 22: PCA Data Separated by SVM

49

Figure 6.5: PCA data separated by SVM

complete are higher. However as the threshold increases the probability
that the graph becomes more tree-like increases. Of particular interest
are the behaviors for threshold values of 0.8 and 0.9. The results are
supported by the CVA data shown in Figure 6.10 and by the Tree or Not
distributions in Figure 6.11. The SVM distances for these two thresholds
are shown in Figures 29(a) and 29(b). We point out that the value of the
threshold parameter played a major role in deciding whether a graph was
becoming more hierarchical. For example if a threshold value of 0 or 1
were used, no change would have been observed. With a threshold of 0
the method results in a Complete graph and with a threshold of 1 the
method produces a Null graph. We also trained with the Bilinear algo-
rithm for 30 more iterations to obtain the results in Figure 6.13. Each
training number represents 10 training iterations. We see that eventu-
ally more training would lead to a decrease in the probability of being a
tree for the threshold values of 0.8 and 0.9 but would also decrease the
probability of remaining Complete graphs for the lower threshold values.
Next we studied the Depressed algorithm. Similar to the results of the
Bilinear algorithm, an increase in hierarchy was achieved. In Figure 6.14
and Figure 6.15 we can see that the probability that the network is similar

79

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

ScaleFree

Figure 23: Probability Distributions for Hebbian Algorithm with PCA DATA

5
0

Figure 6.6: Probability distributions for Hebbian algorithm with PCA data

to a tree increases. The analysis for this graph was also strongly influ-
enced by the threshold value. , In particular in Figures 6.16(a), (b), (c)
with threshold values of 0.5, 0.7, and 0.9, respectively, increasing thresh-
old values led to increasing probabilities of being a tree using the SVM
algorithm. Another interesting example was the graph trained on the
Rate algorithm in Figure 6.17 where the probability that the graph was
a tree increases at first but then oscillated back and forth. Figure 6.18
shows that SVM supports the same result where the distance from the
hyperplane goes up and down. Finally, using the Covariance algorithm
the graphs were becoming complete graphs as shown in Figure 6.19 for
every threshold value.

6.2 Functionality Changes During Learning

In this section we apply the approach of using two-event chains to describe
changes in learned brains. We interrogate a set of brains that start from
a rectangular array of neurons connected with various connection rules to

80

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y
not tree

Tree

Figure 24: Tree or Not a Tree

5
1

Figure 6.7: Tree or not a tree

a distance 2. We then train these brains using Sanger’s rule for a fairly
large number of iterations. In Section 4.4.2 we argued that an unlearned
brain had normally distributed behavior ratios over a small set of weight
values. After we subject the model to learning, we confirm that a learned
model also has this normally distributed behavior.

Figure 6.22 shows histograms of two-event frequency ratios for two very
different brains, one the initial weight matrix with connection distance two
and a uniform distribution of weights, and the other after learning using
Sanger’s rule for 7000 learning steps. Both histograms have the same
number of points allowing for easier comparison. Here we see that there
is a clear distinction between the two. It becomes apparent that we are
able to distinguish a learned brain model from an unlearned one using the
distribution of two-event frequency ratios.

We can use the Hellinger distance to compare a learned plot like Figure
6.21(b) to an unlearned plot.

As we see in Figure 6.23 there is considerable difference between the
learned model and the unlearned model. If we compare this to the Hellinger

81

0 10 20 30 40 50 60
−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

Iterations

D
is

ta
nc

e
fro

m
 h

yp
er

pl
an

e

(a) PCA data Distance from Hyperplane (-) Random, (+) Tree

0 10 20 30 40 50 60
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Iterations

D
is

ta
nc

e
fro

m
 h

yp
er

pl
an

e

(b) CVA data Distance from Hyperplane (-) Random, (+) Tree

Figure 25: Distances from Hyperplane Using SVM for the Hebbian
Algorithm

52

Figure 6.8: Distances from hyperplane using SVM for the Hebbian algorithm

plots in Figure 4.25 and Figure 4.26, we see an appreciable difference.
Again, there is a larger difference towards the higher values. There are
two reasons for this, first we notice for the distribution of weights in a
learned model as seen in the red curve in Figure 6.22, there are fewer
weight values in this higher range. This means that the data will be
less accurate and fluctuate more. Second, since there is less variation the
behavior for each weight value, the range of behaviors has increased. Com-

82

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y
ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 26: Probability Distributions for Bilinear Algorithm with PCA Data

5
4

Figure 6.9: Probability distributions for bilinear algorithm with PCA data

paring Figure 6.21 to Figure 4.21 shows the larger ratio value for larger
weights. Since the variance in the learned plot is also small, the possible
ratio values for a large weight in the learned case will be considerably
different from those in the unlearned case.

6.2.1 Comparing Learned Brains to Random Networks

Figure 6.24 shows the result of taking a locally connected brain with a us-
ing this method in estimating the weight values of a learned model. This
figure shows a distribution of the magnitude difference between the two
weights. The estimated weight values differ, on average, by 0.0436 from
the actual weight values. Figure 6.21 shows the distribution of weight
values in a learned brain model. In the learned brain model, new con-
nections are formed and we see from Figure 6.21 that the magnitude of
the weight values in the learned model are smaller on average than those
in our unlearned uniformly distributed case. Even though this procedure
makes it easier to generate a weight value from a two-event frequency

83

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 20 40

0

0.2

0.4

0.6

0.8

1

Training Number

P
R

O
B

A
B

IL
IT

Y

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 27: Probability Distributions for Bilinear Algorithm with CVA Data

5
5

Figure 6.10: Probability distributions for bilinear algorithm with CVA data

value, there is now a smaller range in which most learned weight values
exist. This means that although the model is better suited for generating
weight values from frequency values, the new weight distribution does not
seem to be a correct model. Therefore, we still find that this approach in
approximating weights on behavior alone can not be done effectively by
these means. In addition to this, we are only able to make estimations
on weight values when there is behavioral information available. In many
cases, for smaller weight values, there are no two event-chain results. In
our learned model, 48.33% of the connections did not have an associated
behavior. Longer run times would reduce this by a small amount, but
when coupled with the mediocre inferences our model can make with the
data we do have, it is not worth pursuing.

The convergence of the learned brain weight matrices prompted us to
examine the learning algorithms. All of the algorithms used herein (all
unsupervised learning algorithms with patterns chosen at random) led to

84

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y
not tree

Tree

Figure 28: Tree or Not for Bilinear Algorithm

5
6

Figure 6.11: Tree or not for bilinear algorithm

learned weight matrices of the form

wHebb
ij =

p∑
µ=1

λµξ̃µi ξ̃
µ
j (6.1)

where ξ̃µ, µ = 1, . . . , p are normalized pattern vectors, which turn out
to be eigenvectors of the converged weight matrix, with eigenvalue λµ.
While that is a “structure” for the weight matrices, it is not hierarchical.

85

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

iterations

D
is

ta
nc

e
fro

m
 h

yp
er

pl
an

e

(a) Threshold Value of 0.8

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

iterations

D
is

ta
nc

e
fro

m
 h

yp
er

pl
an

e

(b) Threshold Value of 0.9

Figure 29: Distances from Hyperplane Using SVM for the Bilinear
Algorithm

57

Figure 6.12: Distance from hyperplane using SVM for the bilinear algorithm

86

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 5

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 30: Bilinear Trained Longer

5
8

Figure 6.13: Bilinear algorithm trained longer

87

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 31: Probability Distributions for Depressed Algorithm

5
9

Figure 6.14: Probability distributions for depressed algorithm

88

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 32: Tree or Not for Depressed

6
0

Figure 6.15: Tree or not for depressed algorithm

89

0 10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

iterations

Dis
tan

ce
 fro

m
hy

pe
rpl

an
e

(a) Threshold Value of .5

0 10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

iterations

Dis
tan

ce
 fro

m
hy

pe
rpl

an
e

(b) Threshold Value of .7

0 10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

iterations

Dis
tan

ce
 fro

m
hy

pe
rpl

an
e

(c) Threshold Value of .9

Figure 33: Distances from Hyperplane Using SVM for the Depressed
Algorithm

61

Figure 6.16: Distances from hyperplane using SVM for the for depressed algo-
rithm

90

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 50

0

0.5

1

Training Number
P

R
O

B
A

B
IL

IT
Y

τ =0.3

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y
τ =0.7

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 50

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 34: Probability Distributions for Rate Algorithm
6
2

Figure 6.17: Probability distributions for rate algorithm

91

0 10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

iterations

D
is

ta
n
ce

 f
ro

m
 h

yp
e
rp

la
n
e

Figure 35: Distances from Hyperplane Using SVM for the Threshold Value of .1 for Rate Algorithm
6
3

Figure 6.18: Distances from hyperplane using SVM for the threshold value of
0.1 for the rate algorithm

92

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.1

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.2

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.3

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.4

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.5

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.6

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.7

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.8

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =0.9

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

τ =1

0 5 10

0

0.5

1

Training Number

P
R

O
B

A
B

IL
IT

Y

ER

Waxman

SmallWorld

Null

Complete

Tree

Ring

Figure 36: Probability Distributions for Covariance

6
4

Figure 6.19: Probability distributions for covariance algorithm

Figure 6.20: (a) The comparison plot for weights distributed uniformly over
[−0.2, 0.4] with no learning. (b) The comparison plot for weights after learning
by Sanger’s rule for 1000 time steps

93

(a)

(b)

Figure 6.21: (a) The comparison plot for weights after learning by Sanger’s rule
for 3000 times steps. (b) The comparison plot for weights after learning by
Sanger’s rule for 7000 time steps

94

Figure 6.22: The behavior only histogram plot for learned and unlearned brain
models. The red plot is generated by learned ratio values, and the blue plot is
generate by unlearned ratio values

Figure 6.23: Hellinger distance comparing an unlearned 169 neuron brain model,
to a 169 neuron learned model

95

Figure 6.24: The histogram of differences between the estimated weight values
of a learned brain model and the actual weight values

96

7 Conclusion and Future Directions

7.1 Summary

The purpose of this work was to determine if structures (including hi-
erarchy) emerged from the use of Hebbian-like learning algorithms on a
Hopfield network. This would imply that the brain may arrange connec-
tions between its neurons hierarchically as a result of how it learns. That
is, the information encoded in the synapses is arranged hierarchically, as
a result of how they learn. Typically networks that are used to model the
brain assume a hierarchical structure from the onset and are trained with
the nodes in hierarchy [15].

This work started with the idea of determining if hierarchy emerged
due to learning in brain models. The paradigm brain for this work was
the Hopfield network, which learns by changing the weights of synap-
tic connections between neurons. The goal of the neuron is to respond
appropriately to the combination of the two inputs (inhibitory and exci-
tatory). Graph measures were defined to quantify hierarchy. Two event
chains were also used to characterize brain models in terms of their actual
function.

In order to describy hierarchy in networks, we first studied graphs.
We took several graph types, including Small World, Waxman and Tree
graphs, and calculated various measures on each graph using their adja-
cency matrices. Each graph was then represented by an n-dimensional
data point, i.e, a feature vector, where each dimension was a different
measure calculated for the graph. Using Principal Component Analysis
(PCA) and Canonical Variate Analysis (CVA) transformed the high di-
mensional data onto a lower-dimensional space. Using this transformed
data the probability, P (T |X) was calculated. This quantity is the proba-
bility of belonging to any of the graph types, say T , given any point, X,
in that lower dimensional space. The brain model starts from a weight
matrix with entries other than 0 or 1. However, to calculate the graph
types the weight matrix must be transformed into an adjacency matrix,
with the entries of 0 and 1. This is accomplished as a function of thresh-
old τ . Any weight exceeding the threshold is considered a connection.
Specifically, we used

Aτ (i, j) = H(|wi,j − τ), (7.1)

to generate the adjacency matrix from the weight matrix.
After the graph measures were evaluated using PCA and CVA meth-

ods, a measure of hierarchy was determined by using trees as the proto-
type of hierarchy. The differences in the algorithms, though sometimes
subtle, lead to very different results. The algorithms change the connec-
tion weights based on the interaction of any two neurons; the essence
of the algorithms being whether both neurons are on, both neurons are
off, or just one neuron is on. Different learning algorithms are examined
and each react differently to the same input and the same initial weight
matrix.

We did not assume a priori that the network had a hierarchical struc-
ture. The emergent structure was governed by a strengthening and weak-

97

ening of synaptic weights based on repeated exposure to a set of patterns
to be learned. Most of the algorithms did not lead to an increase in hi-
erarchy. However, an increase in hierarchy was observed in the Bilinear
and Depressed Algorithms, and to a lesser extent in the Rate algorithm.
These observations were dependent on the range of threshold values used.
In fact, as the threshold value was increased, an increase in hierarchy was
observed, supported by PW and SVM for both PCA and CVA data sets.
This was somewhat expected because increasing the threshold effectively
removes a number of weaker links from a graph altering the structure.
However the increase in hierarchy was not just a result of having fewer
links, or else the results of other algorithms would have also shown an
increase in hierarchy. The increase in hierarchy was due to changes in the
way the connections between neurons were evolving during learning.

For the functional work, The event chain data evaluates the behavior
of a neuron using a method similar to frequency analysis. We used the
information gathered from two-event chains and one-event chains to re-
late the behavior to the strength of the connection between two neurons.
The data showed a correlation between connection weight values between
pairs of neuronal columns and the frequency of the two-event chain of the
sequential firing of that pair of neuronal columns.

We attempted to use the behavioral data alone to recreate the weight
matrix. In the unlearned model we concluded that the distribution of
weight values the corresponding behavior has too large a variance to ac-
curately approximated the weights. For the learned model we found the
learning process changed the distribution of the weights to be primarily
a normal distribution, but not localized, as we believe that brain models
should be.

To extract information from the firing frequency versus connection
weight data from various brain models, we used the Hellinger distance
between two probability density distributions as a metric. Noting that
Hellinger distance is easy to calculate for two normal distributions, we
used the Kolmogorov-Smirnov test to confirm that for a small range of
weight values the corresponding behavioral data could be represented as
a normal distribution with mean and standard deviation which varies
with connection weight. We found that brain behavior led to normally
distributed firing frequency ratios for all brain models studied, this re-
gardless of the distribution of the weights or whether or not the brain
model has undergone a learning process.

From these two tools alone we quantified the behavioral difference
between models of varying sizes. We determined the effect of increasing
or decreasing the number of neuronal columns under consideration. This
gave us an understanding of the relation between increasing the model
size and behavior. Under similar methodology, we determined the impact
of damaged neuronal columns on behavior and how this relates to the
boundary effects seen when changing our model size.

By comparing two models that are identical we set a baseline differ-
ence that can be attributed to randomness and sampling errors. From
this point we changed various properties of the model and measured any
significant changes. We found that we could see considerable differences
when we used a normally distributed set of weights that favored weights

98

with smaller magnitudes.
Finally we implemented multiple learning algorithms and determined

the most suitable to analyze further. Beginning with a fairly simple Heb-
bian or Anti-Hebbian learning algorithm, we determined that the weights
in the model evolve to extremely large magnitudes. We implemented
Sanger’s learning algorithm on the weight matrices and let the connection
distance and weights be changed based entirely on the algorithm. This
was done in steps to allow for analysis of the learning progression. The
new connections and their corresponding strengths were then run through
the same Kolmogorov Smirnov test to ensure it could be compared fairly
with our unlearned models.

The distinct behavior of the learned model allowed us to use only
behavioral data to distinguish it from an unlearned model. Using the
Kolmogorov Smirnov test we were able to confirm that, on behavior alone,
we can distinguish a learned brain from an unlearned brain. The only
shortcoming to this method is that the result tells us whether or not they
are similar within a margin of error, but not a quantifiable difference like
with the Hellinger distance.

By examining the distribution of weights in the learned brain model we
reproduced the learned model using weights drawn at random from the
same distribution. We could confirm that behavior remained the same
and that behavior is determined almost entirely by these two parameters.

7.2 Lessons Learned

After studying the functional method, we concluded that all Hebbian-like
learning methods led to brains that were not structured. Hierarchy did
not emerge from Hebbian learning. The apparent reason for this is that
Hebbian learning methods lead to networks with a symmetric connection
weight matrix. This is non-biological, and apparently, precludes struc-
tures that “flow” from lower to higher (or vice versa). The issue is not
strengthening connections that were used more frequently; instead, it ap-
peares to be that the methods imposed patterns, ξµ, µ = 1, . . . , p, and the
patterns force the symmetry of the weight matrix. The different methods
merely alter the rate of approach to the symmetric matrix, or keep it from
growing large.

We have concluded that a brain model must have a fixed set of input
neurons and a fixed set of output neurons, and that the learning pro-
ceeds from applying an input pattern to the input neurons, comparing
the output from the output neurons over several time steps, and changing
the weights used to “reward” or “punish” for degree of correctness in the
output. This is, in essence, a supervised learning method. It requires a
“parent” to decide if the output answer was better or worse.

In a corrollary to this idea, the PCA idea of expanding a matrix in
its eigenvectors might be replaced by expanding a matrix in terms of its
trees, since trees are a fundamental unit in hierarchy.

99

References

[1] Hillel Adesnik, Guangnan Li Matthew J. During, Samuel J. Pleasure,
and Roger A. Nicoll. NMDA receptors inhibit synapse unsilencing
during brain development. Proc Natl Acad Sci U S A 105:5597-5602.
2008.

[2] Veronica A. Alvarez and Bernardo L. Sabatini, Anatomical and Phys-
iological Plasticity of Dendritic Spines, Annual Review of Neuro-
science, Vol. 30: 79-97

[3] Bear, Mark F., Connors, Barry W. Paradiso, Michael A. Neuroscience
Exploring the Brain. LippincottWilliams & Wilkins. 2001.

[4] Ballard, Dana H. An Introduction to Natural Computation. Cam-
bridge: The MIT Press. 1997.

[5] Albert-Laszlo Barabasi and Reka Albert. Emergence of Scaling in
Random Networks. Science Vol 286 15. October 1999

[6] Barabasi, Albert-Laszlo. Linked: How Everything Is Connected to
Everything Else and What It Means. Reissue ed. New York: Plume.
2003.

[7] Kathleen M. Carley, Michael J. Prietula, eds. Computational organi-
zation theory. Hillsdale, N.J. : Lawrence Erlbaum Associates. 1994.

[8] L. da Fontoura Costa, Rodrigues, F. A.; Travieso, G.; Boas, P. R.
Villas. “Characterization of complex networks: A survey of measure-
ments” Advances in Physics 56.1 (2007). 02 Jul. 2010

[9] L. da Fontoura Costa, G. Traviesoa, and C.A. Ruggiero. Complex
grid computing. Instituto de Fisica de Sao Carlos, Universidade de
Sao Paulo, Caixa Postal 369, 13560-970, Sao Carlos, SP, Brazil

[10] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Clas-
sification. New York: Wiley-Interscience. 2000.

[11] P. Erdos and A. Renyi. On the evolution of random graphs. Publ.
Math. Inst. Hungar. Acad. Sci. 5 17. 1960.

[12] Fukunaga, Keinosuke. Introduction to Statistical Pattern Recogni-
tion, Second Edition (Computer Science and Scientific Computing
Series). Toronto: Academic Press. 1990.

[13] Golumbic, Martin Charles. Algorithmic Graph Theory and Perfect
Graphs. Academic Press. 2004.

[14] Gail A Carpenter, Stephen Grossberg. A massively parallel architec-
ture for a self-organizing neural pattern recognition machine, Com-
puter Vision, Graphics, and Image Processing, v.37 n.1, p.54-115,
Jan. 1987.

[15] J. Hawkins & D. George. Hierarchical Temporal Memory: Con-
cepts, Theory, and Terminology, http://www.numenta.com/htm-
overview/education/Num enta HTM Concepts.pdf, Numenta Inc.
Date Last Accessed, 08/25/2010. 67

[16] Freeman, James. Simulating Neural Networks with Mathematica.
Reading, MA: Addison-Wesley Publishing Company. 1994.

100

[17] Freeman, James and David Skapura. Neural Networks: Algorithms,
Application and Programming Techniques. Reading, MA: Addison-
Wesley Publishing Company. 1991.

[18] Hawkins, Jeff and Sandra Blakeslee. On Intelligence. New York :
Times Books. 2004.

[19] Hebb, D. The organization of behavior : a neuropsychological theory.
Mahwah, N.J. : L. Erlbaum Associates. 2002.

[20] Hertz, John, et al. Introduction to the Theory of Neural Computa-
tion. Westview Press. 1991.

[21] Hopfield, J.J and Tank, D. W. Neural computation of decisions in
optimization problems. Biological Cybernetics 55, 141-146. 1985

[22] Hopfield, J.J. Neural networks and physical systems with emergent
collective computational properties. Proc. Nat. Acad. Sci. (USA) 79,
2554-2558. 1982.

[23] Hopfield, J.J. Neurons with graded response have collective compu-
tational properties like those of two-state neurons. Proc. Nat. Acad.
Sci. (USA) 81, 3088-3092. 1984.

[24] E. Kandel & J.H. Schwartz. Molecular biology of learning: modu-
lation of transmitter release, Science, Vol 218, Issue 4571, 433-443.
1982.

[25] Kecman, Vojislav. Learning and Soft Computing: Support Vec-
tor Machines, Neural Networks, and Fuzzy Logic Models (Complex
Adaptive Systems). London: The Mit Press. 2001.

[26] Kolaczyk, Eric D.. Statistical Analysis of Network Data: Methods
and Models (Springer Series in Statistics). New York: Springer. 2009
.

[27] Koza, John R, On the Programming of Computer by Means of Nat-
ural Selection. MIT Press. 1998.

[28] Johnson, Richard A., and Dean W. Wichern. Applied Multivariate
Statistical Analysis. Alexandria, VA: Prentice Hall. 2007.

[29] MacKay, David. Information Theory, Inference, and Learning Algo-
rithms. Cambridge, UK. Cambridge University Press. 2003.

[30] Mclachlan, Geoffrey J.. Discriminant Analysis and Statistical Pattern
Recognition (Wiley Series in Probability and Statistics). New Ed ed.
New York: Wiley-Interscience. 2004. 68

[31] Mountcastle, Vernon. Perceptual Neuroscience: The Cerebral Cor-
tex. Cambridge: Harvard University Press. 1998.

[32] Mountcastle, Vernon B. An Organizing Principle for Cerebral Func-
tion: The Unit Model and the Distributed System. Cambridge: MA.
MIT Press. 1978.

[33] Oja Erkki. Simplified neuron model as a principal component ana-
lyzer. Journal of Mathematical Biology (3): 267-273. 1982.

[34] Pierce W.D. &,. Cheney, C.D. Behavior analysis and learning,
Lawrence Erlbaum Associates. 2004.

101

[35] Simon, Herbert A. The sciences of the artificial. Cambridge, Mass. :
MIT Press. 1981.

[36] O. Sporns, Graph theory methods for the analysis of neural connec-
tivity patterns In: R. Kotter, Editors, Neuroscience Databases. A
Practical Guide, Kluwer, pp. 171-186. 2002.

[37] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W.
Willinger, Network topology generators: degree-based vs. structural,
Proc. ACM SIGCOMM, pp. 147 - 160. 2002.

[38] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Will-
inger, On characterizing network hierarchy, Technical Report 03-782,
Computer Science Department, University of Southern California.
2001.

[39] Baker, Tanya I., Marc Benayoun, Adam Seth Dickey, Nicho Hat-
sopoulos, Michael Lusignan, and Pascal Wallisch. Matlab for Neu-
roscientists: An Introduction to Scientific Computing in Matlab.
Toronto: Academic Press. 2008.

[40] A. Tsonis, K. Swanson, and G.Wang. Estimating the clustering coef-
ficient in scale-free networks on lattices with local spatial correlation
structure. Physica A: statistical mechanics and its applications, vol.
387, pp. 5287- 5294. 2008.

[41] Vladimir N. Vapnik, The Nature of Statistical Learning Theory.
Springer. 1995.

[42] Vogels TP, Rajan K, Abbott LF. Neural networks dynamics. Annu
Rev Neurosci 28: 357-376. 2005.

[43] Watts D.J. & Strogatz, S. H. Collective dynamics of small-world net-
works, Nature 393 (6684); 409-10. 1999.

[44] Watts, Duncan J. Six Degrees: The Science of a Connected Age. New
York: W. W. Norton & Company. 2004. 69

[45] Watts, Duncan. Small Worlds. Princeton, NJ: Princeton University
Press. 1999.

[46] B.M.Waxman Routing of multipoint connections. IEEE J. Select.
Areas Commun. 6(9), 1617-1622. 1988

[47] Y. Munakata and J. Pfaffly, Hebbian learning and development, Dev.
Sci. 7, pp. 141-148. 2004.

[48] Yuste, R. & Denk, W. Dendritic Spines as Basic Functional Units of
Nueronal Integration, Nature, 375, 682-4. 1995.

[49] Yuste, R & Bonhoeffer, T., Morphological Changes in Dendritic
Spines Associated with Long-Term Synaptic Plasticity, Annual Re-
view of Neuroscience Vol. 24; 1071-1089. March, 2001.

[50] “Happiness is taxonomy: four structures for Snoopy - page
8. http://findarticles.com/p/articles/mi m0FWE/is 3 7/ai
99011617/pg 8/. Date Last Accessed, 08/25/2010.

[51] Biological classification -Wikipedia, the free encyclopedia.Wikipedia,
the free encyclopedia. http://en.wikipedia.org/wiki/Biological classi-
fication. Date Last Accessed, 08/25/2010.

102

[52] E. Kandel et al., Principles of Neural Science, 4th ed. New York:
McGraw-Hill Medical, 2000, pp. 28, 325-326, 458, 549, 1247-1254.

[53] S. Blakeslee and J. Hawkins, On Intelligence. New York, NY: St.
Martin’s Griffin, 2005, pp. 40-142.

[54] J. Hertz et al., Introduction to the Theory of Neural Computation.
Boulder: Westview Press, 1991, pp. 3, 200-327.

[55] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedfoward neural network,” Neural Networks, vol. 2, pp. 459-473,
1989.

[56] A. V. Rangan et al., “Quantifying neuronal network dynamics
through coarse-grained event trees,” PNAS, pp. 10990-10995, August
2008.

[57] McCulloch, W. and Pitts, W., A logical calculus of the ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics, 7:115
- 133, (1943).

[58] J. Hawkins, “Learn like a human: Why can’t a computer be more
like a brain?,” IEEE Spectr., pp. 22, April 2007.

[59] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical pro-
cessing in the primate cerebral cortex,” Cerebral Cortex, pp. 2, 1991.

[60] O. Sanchez, “Emergence of hierarchy in networks,” Ph.D. disserta-
tion, Dept. Math., Rensselaer Polytechnic Inst., Troy, NY, 2010.

[61] G. M. Shepherd, “The neuron doctrine: A revision of functional con-
cepts,” Yale J. Biology and Medicine, vol. 45(6), pp. 589, 1972.

[62] M. P. Young, “The organization of neural systems in the primate
cerebral cortex,” Proc. Roy. Soc. London, Ser. B, pp. 17-18, 1993.

[63] J. R. Newton and M. Sur, “Rewiring cortex: Functional plasticity
of the auditory cortex during development,” Plasticity and Signal
Representation in the Auditory Syst.. Brooklyn, NY: Springer, 2005,
pp. 127-137.

[64] S. Ramon y Cajal, Comparative Study of the Sensory Areas of the
Human Cortex. Charleston, SC: BiblioLife, 2010, pp. 1-80.

[65] C. Johansson and A. Lansner, “Towards cortex sized artificial neural
systems,” Neural Networks, vol. 20(1), pp. 4, 2007.

[66] M. Abeles, Corticonics Neural Circuits of the Cerebral Cortex. New
York, NY: Cambridge University Press, 1991, pp. 9.

[67] M. Penrose, Random Geometric Graphs. New York, NY: Oxford Uni-
versity Press, 2003, pp. 2-3.

[68] S. Song et al., “Competitive hebbian learning through spike-timing-
dependent synaptic plasticity,” Nature America Inc., pp. 919-926,
2000.

[69] N. Pathak et al., “A generalized linear threshold model for multiple
cascades,” IEEE Int. Conf. on Data Mining, pp. 965-970, 2010.

[70] G. G. Blasdel, “Orientation selectivity, preference, and continuity in
monkey striate cortex,” J. Neuroscience, pp. 3139-3161, 1992.

103

[71] D. J. Amit, Modeling Brain Function The World of Attractor Neural
Networks. New York, NY: Cambridge University Press, 1989, pp. 15.

[72] R.F. Thompson and W.A. Spencer, “Habituation: A model phe-
nomenon for the study of neuronal substrates of behaviour,” Psycho-
logical Review, vol. 73(1), pp. 16-43, 1996.

[73] V. Garcia-Hoz, “Signalization and stimulus-substitution in Pavlov’s
theory of condition,” Spanish J. Psychology, vol. 6, pp. 168-176, 2003.

[74] H. Adesnik et al., “NMDA receptors inhibit synapse unsilencing dur-
ing brain development,” PNAS, vol. 105(14), pp. 5599, 2008.

[75] G. Piccinini, “The first computational theory of mind and brain: A
close look at McCulloch and Pitt’s “Logical calculus of ideas imma-
nent in nervous activity”,” Synthese, vol. 141(2), pp. 188, 2004.

[76] S. Hayman, “The McCulloch-Pitts model,” Neural Networks, vol. 6,
pp. 4438-4439, 1999.

[77] L. da F. Costa et al., “Characterization of complex networks: A
survey of measurements,” Advances in Physics, vol. 56(1), pp. 167-
242, 2007.

[78] W. Gerstner and W. M. Kistler, “Mathematical formulations of heb-
bian learning,” Biological Cybernetics, pp. 2, 2002.

[79] D. Marr, “A Theory for Cerebral Neocortex,” Proc. Roy. Soc. Lon-
don, Ser. B, Biological Sci., vol. 176, pp.197, 1970.

[80] T. P. Vogels et al., “Neural network dynamics,” Annu. Review Neu-
roscience, pp. 357-376, 2005.

[81] J.J. Hopfield, “ ‘Neural’ computation of decisions in optimization
problems,” Biological Cybernetics, pp. 143, 1985.

[82] A. Scott, Neuroscience A Mathematical Primer. New York, NY:
Springer-Verlag, 2002, pp. 41-42.

[83] J.J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” in Proc. Natl. Academy Sci., vol.
79, pp. 2554-2558, 1982.

[84] V. Braitenberg, On the Texture of Brains: An Introduction to Neu-
roanatomy for the Cybernetically Minded. Berlin, Germany: Springer-
Verlag, 1977, pp. 1-127.

[85] L. N. Trefethen and D. Bau III, Numerical Linear Algebra. Philadel-
phia, PA: SIAM, 1997.

[86] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers
with Personal Computer Applications. New York, NY: McGraw Hill,
1985, pp. 289-294.

[87] F. J. Massey Jr., “The Kolmogorov-Smirnov test for goodness of fit,”
J. American Stat. Assoc., vol. 46, pp. 68-78, 1951.

[88] L. R. Squire and E. R. Kandel, Memory: From Mind to Molecules.
New York, NY: Henry Holt and Company, LLC, 1999, pp. 34-37.

[89] P. Dayan and N. D. Daw, “Decision theory, reinforcement learning,
and the brain,” Cognitive, Affective, & Behavioral Neuroscience, pp.
429-453, 2008.

104

[90] A. M. Hermundstad, “Learning, memory, and the role of neural net-
work architecture,” PLoS Computational Biology, vol.7, pp. 2, 2011.

[91] Y. Munakata and J. Pfaffly, “Hebbian learning and development,”
Develop. Sci., pp. 141-148, 2004.

[92] E. Oja, “A simplified neuron model as a principal component ana-
lyzer,” J. Math. Biology, pp. 267-273, 1982.

[93] Y. P. Shimansky, “Biologically plausible learning in neural networks:
A lesson from bacterial chemotaxis,” Biological Cybernetics, pp. 380,
2009.

[94] W. H. Calvin, How Brains Think. New York, NY: Basic Books, 1996,
pp. 59.

[95] E. Torgersen, Comparison of Statistical Experiments. New York, NY:
Cambridge University Press, 1991, pp. 411.

[96] J. Feng, Computational Neuroscience A Comprehensive Approach.
Boca Raton, Florida: Chapman & Hall/CRC, 2004, pp. 293.

[97] S. Pomeroy et al., “Postnatal construction of neural circuitry in the
mouse olfactory bulb,” J. Neuroscience, pp. 1964, 1990.

[98] D. J. C. MacKay, Information Theory, Inference, and Learning Algo-
rithms. New York, NY: Cambridge University Press, 2003, pp. 510.

[99] J. E. LeDoux, Synaptic Self: How Our Brains Become Who We Are.
New York, NY: Penguin Books, 2002, pp. 1799.

105

