
19th ICCRTS

Executable Architecture Modeling and Simulation Based on fUML

Topic 5: Modeling and Simulation

Authors: WANG Zhixue, HE Hongyue, WANG Qinglong

POC: WANG Zhixue

PLA University of Science and Technology

 Nanjing, China

E-mail: wzxcx@163.com

Authors’ affiliations:

PLA University of Science and Technology

Abstract:

The DoD Architecture Framework is now popularly used for describing overall

requirements and architectural design of the system-of-systems (SoS). However, it is very hard

to validate and verify the architecture products, as most of them are modeled with informal

constructs. The paper proposes an approach of executable architecture modeling and simulation

by introducing formal UML specification. Firstly, definitions of executable architecture are

provided, upon which both structural and behavioral meta-models of SoS architecture are built

by extending fUML meta models. Then, a simulation language is defined based on Process

Algebras, and the semantics of emergent behavior of SoS is discussed. The executable models of

a SoS architecture are therefore constructed through: (1) modeling the structures and behaviors

of SoS, (2) translating the models into process terms and (3) specifying simulation rules upon the

process terms. Since Process Algebras based executable tools are available over relevant research

institutions, it is not difficult to build a simulation execution environment. Finally, a case study is

used to illustrate the feasibility of the approach.

Keyword: executable architecture; meta model; executable model; algebraic semantics

1. Introduction

Architecture describes the components of system, connectors between these components, rules

which are used to guide the design and evolvement of system. It is a blueprint of system and

bridges the gap between requirements and implements in the design of system-of-systems (SoS).

The quality of architecture can influence the schedule of SoS designment and the quality of SoS.

So in the early development of architecture, using modeling and simulation to analyze and

demonstrate is particularly important [1].

The DoD Architecture Framework is now popularly used for describing overall requirements

and architectural design of SoS[2]. However, it is very hard to validate and verify the

architecture products, as most of them are modeled with informal constructs. These models

cannot be executed before being translated into an formal language, such as Petri Net. And, the

mailto:wzxcx@163.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Executable Architecture Modeling and Simulation Based on fUML

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
PLA University of Science and Technology,Nanjing, China,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 18th International Command & Control Research & Technology Symposium (ICCRTS)
held 16-19 June, 2014 in Alexandria, VA. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

translation might be a pain of system engineers due to their weakness in formal languages. They

would hope that the architectual models they built be automatically translated into executable

ones.

UML is accepted as an Architectural Description Language by architects, and it has become a

standard notation to document the architecture of system [3]. To describe the dynamic behaviors

of system, UML2.0 enriches the behavioral semantics by adding the detailed action semantics

[4]. But these UML models are not executable. Object Management Group proposes the fUML

to enable UML models execution [5]. Accordingly, we propose an approach of executable

architecture modeling and simulation by introducing fUML specification. Firstly, we construct

the meta-models for structural and behavioral models of SoS architecture by extending fUML.

To enable execution, we introduce the concrete syntax and algebra semantics for the SoS

architecture models, and the execution processes can be interpreted as run of algebra derivation.

Finally, we use the process trace to exhibit the emergent behavior of SoS.

The rest of the paper is organized as follows. Section 2 describes the related research. Section

3 introduces the executable architecture. Section 4 describes the formalization of behavioral

model. Section 5 proposes the behavioral analysis for SoS architecture. Section 6 uses a case

study to demonstrate the availability of the theory.

2. Related Work

Architecture verification plays an important role in design of SoS. The current verification

techniques based on model execution can be classified into two categories: executable

architecture modeling and model transformation. The former requires that the architecture be

modeled as executable models or executable rules be defined. The latter implies translation of

the architecture models into executable ones, such as Petri Net, ExtendSim model, DEVS.

The MITRE Company proposes a method for executable architecture modeling. The business

process models, communication models and campaign simulation environment are connected by

the Runtime Infrastructure of High Level Architecture[6]. Jiang et al. [7] define the concepts and

executable rules for executable architecture and hence make some products of DoD architecture

executable. Wang et al. [8] develop an executable architecture based on SOA. But these

executable models pay much attention to the details of systems and therefore need great efforts.

So, there is an argue about whether the executable architecture is needed.

As most behavioral models of architecture are not executable, they need to be translated into

some executable ones. Petri Net is a popular executable modeling language for SoS behaviors.

Wang et al.[9] use SysML sequence diagram to model the behaviors and translate the models

into Colored Petri Nets (CPN). Staines T.S [10] incorporate fundamental CPN concepts into

UML activity models such that the behavioral models are therefore formalized with executable

sementics. Jiang et al. [11] use Object Petri Nets to formalize the IDEF3 models which describe

system processes. Ge et al[12]. translate the UML models of architecture products into

ExtendSim model. Touraille et al.[13] integrate single platform tools for modeling, simulation,

analysis and collaboration, and then develop SimStudio which is a modeling and simulation

environment based on the Discrete Event Systems Specification (DEVS) formalism. Based on

DEVS, Kara et al.[14] also propose a Simulation Modeling Architecture (SiMA). SiMA supports

hierarchical and modular composition of reusable models. Combining DEVS and MDD,

Cetinkaya et al.[15] develop a MDD framework for modeling and simulation

(MDD4MS).COMPASS (Comprehensive Modeling for Advanced Systems of Systems) project

develops a formal language (COMPASS Modeling Language, CML) for modeling and analyzing

SoS[16]. CML is based on VDM, CSP and Circus. The process algebraic combinators are used

to describe the behavior of SoS. The analysis techniques and prototype tools for UML are still in

the development process.

But a few of the above approaches take into consideration the emergence behavior of SoS.

Our approach translates the behavoral model into the process items of Process Algebras, and use

the process trace to exhibit the emergence behavior of SoS.

3. Executable Architecture

The executable architecture is made up of three parts: the executable model, the execution

mechanism and the execution process. The executable model, the fundation for the executable

architecture, comprises both static and action models. The mechansim describes the execution

principle of dynamic models. The execution process describes the process of model execution.

Executable

Architecture = +Executable

Models

Execution

Principle + Execution

Process

Fig. 1. The Executable Architecture

3.1 Meta Model of SoS Structure

The meta model of SoS structure extends the Class Model of. The system engineers use

structure models to describe the structure of SoS, environment object and windows of simulator.

Structure of SoS

System is a core concept of the structure models. These systems and their relationships make

up of the structure of SoS. To simulate the behaviors of SoS, the relationships can be abstracted

as data flow. Systems are connected with each other through data flow. The output data of one

system is the input data of another. A couple of output and input data makes up of a data flow.

Systems use ports as interface to send and receive data. The data is information produced by

activities. The activities are performed by systems which access data through their port.

Environment Object

There are two kinds of environment object. One is Data, the other is Event. Data can either be

produced in SoS simulation or be given (input) by engineers. They can be input from or output to

the windows of simulator. Event can take place inside or outside of SoS. It is used to trigger

activity and change the execution process of activity. Time is a special event which is

automatically triggered at a time. It is defined by the simulator of SoS. The simulator can

monitor the changes of environment object according to the time. Time can also trigger activity

and change the execution process.

Windows of Simulator

Windows of Simulator are the interfaces with which engineers can observe the changes of the

environment and control the execution process. The simulator privides different windows for

data, event and time. During the simulation, engineers play the role of Organizations. They use

these windows to interact with SoS. They send inputs through the windows to simulator to

control the execution process and receive the output from the windows to observe the SoS

behaviors and their effects.

Organization ExecutableSystem

DataFlow Event

Activity
(from Meta Model of Behavioral Model)...)

triggeredBy

System

0..n0..n

performedBy
Input Output

WindowOfSimulator
(from Executable Sematnics of Model)

0..n0..n

inputs

0..n0..n

outputs

EnvironmentObject
0..n0..n

displays

Time

OperableSystem AutomaticSystem

Capability

Function

Data

0..n

-in

0..n

0..n

-out

0..n

0..n0..n access

0..n
-port

0..n

Efficiency

reflect

Fig. 2. The meta model of SoS structure

3.2 Meta Model of SoS Behaviors

We choose activity diagram to describe the behavior of SoS, because the simulation of SoS

behaviors is processed as sequences of activities. The meta model of behaviors extends the meta

model of Activity Diagram of fUML and is shown in Fig. 3.

The SoS behaviors are modeled with notations, such as Activity, NoActionActivity,

Transition, GuardCondition, Action, Swimlane, Start and End. Action is the fundamental unit.

An activity encapsulates a number of actions and is the execution body of the containing actions.

NoActionActivity is a kind of control activity containing no action. It can be classified into

Decision, Fork and Join. The notations are slightly different from fUML in followings.

(1) Action is the only executable unit. It can be either SysDefAction or UserDefAction.

SysDefAction is the executable units pre-defined by simulator, and UserDefAction is the

user-defined executable units programmed by engineers.

(2) Swimlane is the bridge between Activity and Data. It represents constituent systems that

perform activities and provide the data ports through which activities access and modify

the data as Input or Output.

The semantics of other notations is the same as fUML, except following constraints that

guarantee the model robustness.

(1) There should be a sole pair of Start and End in the behavioral model.

(2) No any notation object except Activity contains an event or action.

(3) Assume the transition that flows to an activity is In-Transition, and the one that flows from

an activity is Out-Transition. Each activity should have only one In-Transition and one

Out-Transition.

(4) Each swimlane should represent one constituent system. There should not be two different

swimlanes which represent a same constituent system.

Decision

SysDefAction UserDefAction

Execution
(from Executable Sematnics of Model)...)

JionFork

NoActionActivity

End

Start

GuardCondition

Action
Event

(from Meta Model of Structure Model)...)

0..10..1

System
(from Meta Model of Structure Model)...)

Swimlane

represents

Data
(from Meta Model of Structure Model)...)0..n

-port
0..n

Transition

1..n

-out

1..n 1..n

-in

1..n

triggeredBy

-in -out

0..10..1

Function
(from Meta Model of Structure Model)...)

Activity 1..n1..nexecutestriggeredBy

0..n0..n

performedBy

0..n0..n

0..n0..naccess

-in

triggeredBy
-out

implement

Fig. 3. The behavioral meta model of SoS

3.3 Executable Semantics of Models

To simulate the SoS, the mechanism and executable semantics must be defined. The structure

models of SoS define the structure of systems and the types of data which are classified as Input

or Output. The behavioral models of SoS define activities to simulate the behaviors of SoS.

During the simulation, the simulator interprets the behavioral models and transform them into an

executable language which will be discussed in Section 4.

The simulator is a multithreading system. It controls the execution of behavioral models. Once

a SoS simulation is started, the simulator runs the SimulationMain and load the behavioral

model. SimulationMain is the main thread of simulation. The simulator, while interpreting the

behavioral model, creates a number of SimulationProcs to execute activities. It receives the

instructions and data from its observation windows, and sends them to the SimulationProcs. If an

activity has been executed, the SimulationProc is killed.

The executable semantics of models is described in Fig. 4. Each activity, including

NoActionActivity, is executed in a SimulationProc. The Start creates a SimulationProc to

execute the first activity. The End creates a SimulationProc to send an event to terminate the

simulation. The Decision creates a Deciding SimulationProc to set the decision result which

affects the conditions of its Out-Transitions and creates a SimulationProc for the subsequent

activity whose In-Transition condition is satisfied. Fork creates a SimulationProc for every

subsequent activity whose In-Transition connects with it. Join creates a Waiting SimulationProc

which waits for all SimulationProcs of the Fork activities being terminated and then creates a

SimulationProc for the activity whose In-Transition connects with Join.

Execution

Jion
(from Meta Model of Behavioral Model)...)

Action
(from Meta Model of Behavioral Model)...)

Data
(from Meta Model of Structure Model)...)

Waiting

instantiates

Activity
(from Meta Model of Behavioral Model)...)

1..n1..n

executes

0..n0..n

access

Start
(from Meta Model of Behavioral Model)...)

Fork
(from Meta Model of Behavioral Model)...)

WindowOfSimulator

SimulationMain

acceptsDataFrom

End
(from Meta Model of Behavioral Model)...)

SimulationProc
instantiates

1..n1..n

instantiates

1..n1..n
instantiates

instantiates

instantiates

Decision
(from Meta Model of Behavioral Model)...)

Deciding

instantiates

instantiates

Fig. 4. The executable semantics of SoSEM

4. Formalization of Behavioral Model

Formalization is fundamental for the models to be executable. This section will focus on

building the concrete syntax, algebra semantics and executable rules for the executable

behavioral model (EBM) of SoS.

4.1 Concrete Syntax
Since activities are performed by systems, each of them should belong to an operator which is

visually presented as a swimlane. Actions are encapsulated in the activities. The

NoActionActivity and Transition control the execution sequence of activities. The Input and

Output supply the information for execution of activities. The concrete syntax of EBM is

thereafter defined with Backus-Naur Form (BNF), and is shown in table 1 where the terminators

are highlighted in bold font.

Table 1 The concrete syntax of EBM

<activity model> ::= activitymodel <model name>;<operator list>;<control list> end

activitymodel

<operator list> ::= <operator><operator list>|<>

<operator > ::= operator <operator name><activity list> end operator

<activity list> ::= <activity><activity list>|<>

<activity> ::= {<input>}<action>{<output>}

<input> ::= in <messageId> from <operator name>

<output> ::= out <messageId> to <operator name>

<action> ::= action <action name>{<precondition>}{<guard condition>}{<post condition>}

end action

<precondition> ::= pre <condition>

<guard condition> ::= guard<condition>

<post condition>::= post<condition>

<condition> ::= <expr>

<control list> ::= <control><control list>|<>

<control> ::= <fork>|<join>|<decision>|<transition>

<transition> ::= transition <source>{<condition>}<target> end transition

<fork>::= fork <source><target list> end fork

<join> ::= join<source list><target> end join

<decision> ::= decision <source><condition><target><target> end decision

<source list> ::= <source><source list>|<>

<target list> ::= <target><target list>|<>

<source> ::= source <operator name><action name> end source

<target> ::= target <operator name><action name> end target

4.2 Algebra Semantics

The execution of the EBM can be abstracted as running processes. Every activity or its

containing action may take a process. An activity, when being performed by a system on the

Input or Output data objects, would initiate one process for each containing action which is

considered to be operated by the system. Therefore, an atomic process can be abstracted as a pair

of operator and action. To formalize the EBM, we define an Algebras Process based language,

the executable activity algebras (EAA), to explain the process semantics.

Definition 1. Assume O is the set of operators (or systems) and o O ; A is the set of actions

and a A ; P denotes the process. The syntax of EAA can be thereafter defined with BNF as

follows:

1 2 1 2

1 2 1 2

:: 0 | (,). | ; | | [expr] |

|| | ||

c

P

P o a P P P P P P

P P P P

   
, where:

 0(Empty): 0 is an empty process;

 (,).o a P (Prefix): P becomes active when a has been executed by o;


1 2
;P P (Sequence): P2 becomes active when P1 has been executed;


1 2c

P P (Choice): if c is true then P1 becomes active; otherwise, P2 becomes active;

 [expr>]P (Condition): if <expr> is true then P becomes active; otherwise, P is suspended;


1 2||P P (Fork): P1 and P2 are executed concurrently;


1 2

||
P

P P (Join): P becomes active when the two concurrent processes P1 and P2 have all

finished their execution.

The EAA provides a domain of process algebras semantics for the EBM, or the process

algebras semantics of EBM is an instance of EAA. Accordingly, we can translate the models of

EBM into terms of EAA by building mappings between the syntax of EBM and EAA.

Followings introduce functions for mappings of the main productions of the concrete syntax.

Assume the simulator interprets EBM by bottom-up compilation, and if the <string> is a

non-terminator of the concrete syntax of EBM, then the function H(<string>) gives the set of all

possible terminators from which the non-terminator <string> can be deduced.

Definition 2. The semantic functions for mapping of source or target are defined as：

() ((), ())

() ((), ())

ac

ac

S source H operator name H action name

S target H operator name H action name

      

      

Definition 3. The semantic functions for mapping of target list are defined as：

1

1

() () || (),

,

2

2

ac acS target list S target S target

target target target list

      

     

Definition 4. The semantic functions for mapping of fork are defined as：

() (); (),

,

fo acS fork S source S target list

source target list fork

      

    

Definition 5. The semantic function for mapping of join is defined as：

1

1

()() () || (),

, , ,

2

2

acjo ac S target acS join S source S source

source source source list source list target join

       

          

Definition 6. The semantics function for mapping of decision is defined as：

1 ()
() (); () ()

H condition 2de ac ac acS decision S source S target S target
 

         

Definition 7. The semantics function for mapping of transition is defined as：

1

2

() ();[()] (),

or () (); ()

tr ac ac

tr ac ac

S transition S source H condition S target condition

S transition S source S target

          

      

Definition 8. The semantic function for mapping of operators is defined as：

() {((), ())

| , }

opS operator H operator name H action name

action activity list activity list operator

      

      

Basing on above functions, we provide the algorithm of transforming the model of EBM into

the process terms of EAA.

Input: the whole deduction stack of EBM model

Output: the set of process terms of EAA P

Procedure

 Step 1: create an empty set P to express the algebra model of EBM;

Step 2: for every <operator> of <operator list>, invoke the semantic function Sop() to

generate the atomic processes, (H(<operator name>，H(<action name>)), and add them to

the set P.

Step 3: for every <transition> in the <control list>, invoke Str1(), if <condition> =null, or

Str2() to generate complex process terms and add them to the set P.

Step 4: for every <fork> in the <control list>, invoke Sfo() to generate complex process terms

and add them to the set P.

Step 5: for every <join> in the <control list>, invoke Sjo() to generate complex process terms

and add them to the set P.

Step 6: for every <decision> in the <control list>, invoke Sde() to generate complex process

terms and add them to the set P.

Step 7: output the set of process terms P.

4.3 Executable Rules

The simulation of SoS behaviors is driven by a set of derivation rules applied for evolution of

process algebra. To support the evolution, we define the rule set as follows.

Prefix Rule

(,)

(,)

1:
(,) 0

2 :
(,).

o a

o a

Action
o a

Action
o a P P







Rule Action-1 shows that process 0 will become active when the process (o,a) is active and a

has been executed by o. Rule Action-2 shows that process P will become active when the process

(o,a).P is active and a has been executed by o. denotes that precondition of the rules is

always true.

Sequence Rule

(,) '

1 1

(,) '

1 2 1 2

:
; ;

o a

o a

P P
Sequence

P P P P





Rule Sequence shows that if the process '

1P can be activated by the process 1P when a has

been executed by o, the process 1 2;P P will activate the process '

1 2;P P when o has executed a.

Choice Rule

1 2 1

c

1 2 2

(,) '

1 1

(,) '

1 2 1

(,) '

2 2

(,) '

1 2 2

Choice-1:

Choice-2:

Choice-3:

Choice-4:

c

c

c

o a

o a

c

o a

o a

c

P P P

P P P

P P

P P P

P P

P P P



 

 



 



 

Rule Choice-1 shows that if condition c is true,
1 2cP P activates

1P . Rule Choice-2 shows

that if condition c is false,
1 2cP P activates

2P . Rule Choice-3 shows that if
1P activates '

1P

when a has been executed by o,
1 cP P activates '

1P when a has been executed by o. Rule

Choice-4 shows that if
2P activates `

2P when a has been executed by o,
1 2cP P activates `

2P

when a has been executed by o.

Condition Rule

[]

[]

1:
[]

2 :
[] 0

x y

x y

Condition
x y P P

Condition
x y P






 


 

Rule Condition-1 shows that if the condition [x=y] is true, [x=y]P activates P. Rule

Condition-2 shows that if the condition [x=y] is false, [x=y]P activates 0. denotes that

precondition of the rules is always true.

Fork Rule

2 2

1 1

(,) '

1 1

(,) '

1 2 1 2

(,) '

2 2

(,) '

1 2 1 2

1:
0 ||

- 2:
|| 0

- 3 :
|| ||

- 4 :
|| ||

o a

o a

o a

o a

Fork -
P P

Fork
P P

P P
Fork

P P P P

P P
Fork

P P P P













Rule Fork-1 shows that
2

|| P0 activates P2. Rule Fork-2 shows that
1

P || 0 activates P1. Rule

Fork-3 shows that if P1 activates `

1P when o has executed a, 1 2||P P activates '

1 2||P P when o has

executed a. Rule Fork-4 shows that if P2 activates `

2P when o has executed a, 1 2||P P activates

`

1 2||P P when o has executed a.

Join Rule

2 2

1 1

(,) '

1 1

(,) '

1 2 1 2

(,) '

2 2

(,) '

1 2 1 2

-1:
0 || ;

- 2 :
|| 0 ;

- 3 :
|| ||

- 4 :
|| ||

P

P

o a

o a

P P

o a

o a

P P

Join
P P P

Join
P P P

P P
Join

P P P P

P P
Join

P P P P













Rule Join-1 shows that
20 ||P P activates

2 ;P P . Rule Join-2 shows that
1 || 0PP activates

1;P P .Rule Join-3 shows that if P1 activates `

1P when o has executed a,
1 2||PP P activates '

1 2||PP P

when o has executed a. Rule Join-4 shows that if P2 activates `

2P when o has executed a,

1 2||PP P activates `

1 2||PP P when o has executed a.

Evolution between process terms can be described with Trace. A process term p can evolve,

subjected to change of active label (o,a), into a different term which is called successor of p and

defined as Succ(p) = { 'p | (,) '(,) : o ao a p p  }. If a term p evolve into another term 'p , there must

be a sequence of active labels 1 1 2 2(,) (,)(,) (,)(0)n no a o a o a o a n  which result in

1 1 2 2 (,)(,) (,) '

1
n no ao a o a

p p p   , and (,)o a is the trace of term p evolving into term 'p . The trace

is used to describe the execution sequence of executable units of the behavior model.

6. A Case Study

In this section, we give a simple example of threat air defense system (TADS) to demonstrate

the availability of our theory. The executable model of TADS is built using the meta models in

section 3. Due to limited pages, we provide only a fragment of the behavioral model and its

algebra semantics.

There are four operators of TADS: Radar Battalion (RB), Threat Command Center(TCC),

Missile Battalion(MB) and Anti-air Gun Battalion(AGB). The missile interception is simulated in

following way. Once the RB has found an air target, the information will be sent to the TCC in

time. The TCC will then make a threat assessment on it and decide whether they have to

intercept it and who shall undertake the task. When MB or AGB have accepted the interception

order and the target information, they will act on the target, and at the same time collect the data

of interception effect and send them back to TCC. The TCC will make an assessment again to

decide whether it is a successful interception or they have to arrange another interception. The

model is illustrated in Fig. 6. The formal descriptions of the executable model, according to

concrete syntax of EBM discussed in Section 4.1, are shown in Table 2.

DetectTarget

<<Activi ty>>

AssessThreat

<<Activi ty>>FindAirTarget

CollectDataOfEffect

<<Activi ty>>

Intercept

<<Activi ty>>

CollectDataOfEffect

<<Activi ty>>

 Intercept

<<Activi ty>>

Nothing

InterceptSuccessfully

OrderMissile

OrderAnti-airGun

Anti-air Gun BattalionMissile BattalionThreat Command CenterRadar Battalion

Fig. 6. The behavioral model of TADS

Table 2 The formal descriptions of the TADS behavioral model

activitymodel MissileIntercept;

 operator RB

 action DetectTarget end action

 end operator

 operator TCC

 action AssessThreat end action

 end operator

 operator MB

 action Intercept end action

 action CollectDataOfEffect end action

 end operator

operator AGB

 action Intercept end action

 action CollectDataOfEffect end action

 end operator

 decision

 source RB DetectTarget end source

 FindAirTarget

 target TCC AssessThreat end target

 target Over end target

 end decision

decision

 source TCC AssessThreat end source

 OrderMissile

 target MB Intercept end target

 target Over end target

 end decision

 decision

 source TCC AssessThreat end source

 OrderAnti-airGun

 target AGB Intercept end target

 target Over end target

 end decision

 transition

 source MB CollectDataOfEffect end source

 target TCC AssessThreat end target

 end transition

 transition

 source AGB CollectDataOfEffect end source

 target TCC AssessThreat end target

 end transition

 transition

 source MB Intercept end source

 target MB CollectDataOfEffect end target

 end transition

 transition

 source AGB Intercept end source

 target AGB CollectDataOfEffect end target

 end transition

end activitymodel

Applying the transformation algorithm in Section 4.2, the EAA process terms of TADS activity

model can be automatically generated and is listed as follows.

P1 = (RB, DetectTarget).P2

P2 = P3 +FindAriTarget 0

P3 = (TCC, AssessThreat).P4

P4 = P5 +OrderMissile P6

P6 = P7 +OrderAnti-airGun 0

P5 = (MB, Intercept).P8

P8 = (MB, CollectDataOfEffect).P3

P7 = (AGB, Intercept).P9

P9 = (AGB, CollectDataOfEffect).P3

The set of label is A= {(RB, DetectTarget), FindAirTarget, Nothing, (TCC, AssessThreat),

OrderMissile, (MB, Intercept), (MB, CollectDataOfEffect), InterceptSuccessfully,

OrderAnti-airGun, (AGB, Intercept), (AGB, CollectDataOfEffect)}.

To verify the activity model, let us check two label sets.

L1 = ((RB, DetectTarget), FindAirTarget, (TCC, AssessThreat), OrderMissile, (MB, Intercept),

(MB, CollectDataOfEffect), InterceptSuccessfully).

L2 = ((RB, DetectTarget), FindAirTarget, (TCC, AssessThreat), OrderAnti-airGun, (AGB,

Intercept), (AGB, CollectDataOfEffect), InterceptSuccessfully).

For L1, we can observe the evolution trace of (P1, P2, P3, P4, P5, P8, P3,0). And for L2, we can

observe the evolution trace of (P1, P2, P3, P4, P6, P7, P9, P3,0). The two traces are all valid, for

they all end by 0 which means the End of activity model. The above process traces show that the

air target is intercepted by either MB or AGB.

7. Conclusions

The behavioral models of SoS architecture are usually built with UML activity diagram. Due

to poor formalization of UML, these models are not executable, which brings inconveniency

during evaluation of SoS architecture. The paper suggests a new approach of executable

modeling and simulation. The main contributions are summarized as follows:

(1) The meta models for both structures and behaviors of SoS are presented by extending

fUML meta models. With these meta models, the engineers may accurately describe SoS

architecture and build UML models.

(2) The concrete syntax and algebra semantics of executable models are discussed in details.

And a number of semantic functions are introduced for mapping of the syntax descriptions

of behavioral models into items of executable activity algebras.

(3) Executable rules are defined. With these rules, the process terms which simulate the

behaviors of SoS can evolve as process traces, which make model analysis and validation

easier.

However, our work is just in beginning. We are challenged by dealing with existing products

of behavioral models, some of them being built in other paradigms such as UML sequence

diagram and IDEF 3. The future research will be on extending the meta models to make our

approach to be compatible with other modeling paradigms.

References

[1] Ender T, Leurck R F, Weaver B, et al. System-of-systems analysis of ballistic missile

defense architecture effectiveness through surrogate modeling and simulation[J]. IEEE

Systems Journal, 2010,4(2):156-166.

[2] DoD Architecture Framework Working Group. DoD Architecture Framework 2.0[R]. The

United States Department of Defense, 2009.

[3] Pandey R. K. . Architecture Description Languages(ADLs) vs UML: A Review[J]. ACM

SIGSOFT software Engineering Notes,2010,35(3)

[4] Group Object Management. UML 2.0 Superstructure Specification[EB/OL].

http://www.omg.org/spec/UML/2.0/superstructure/ PDF/, 2005.

[5] Group Object Management. Semantics of a Foundational Subset for Executable UML

Models (fUML) 1.0[EB/OL]. http://www.omg.org/spec/fUML/1.0/PDF/,2011.

[6] Thomas J. Pawlowski III, Paul C. Barr, Steven J. Ring, et al. Executable Architecture

Methodology for Analysis, FY04 Final Report [R]. MITRE, September, 2004

[7] Jiang Jun. Research on Executable Architecture and the Executable Method of DoDAF[D].

Hunnan: Dissertation of National University of Defense Technology. 2008, 9.

[8] Wang Lei, LUO Xue-shan and LUO Ai-min. Research on C4ISR Executable Architecture

Based on SOA [J]. Fire Control & Command Control, 2012,37(1):52-56.

[9] Wang Renzhong and Dagli C H. An executable system architecture approach to discrete

events system modeling using SysML in conjunction with colored Petri net[C]. 2nd Annual

IEEE International Systems Conference, 2008:1-8.

[10] Staines T S. Intuitive mapping of UML2 activity diagrams into fundamental modeling

concepts Petri net diagrams and colored Petri nets[C]. 15th Annual IEEE International

Conference and Workshop on the Engineering of Computer Based Systems, 2008,191-200.

[11] Jiang Jun, Bai Xiaoli, Luo Xueshan, et al. Study on the method of transforming IDEF3

process model to object Petri-net model[J]. Systems Engineering and Electronics

,2008,30(12):2434-2438

[12] Bingfeng Ge, Keith W.Hipel, Kewei Yang et.al. A Data-Centric Capability-Focused

Approach for System-of-Systems Architecture Modeling and Analysis. Systems Engineering

Vol. 16, No. 3, 2013,pp:363-377

[13] Luc Touraille, Manmadou K. Traore and David R.C. Hill. “A Model-Driven Software

Environment for Modeling Simulation and Analysis of Complex Systems”, Proc. of the 2011

Symposium on Theory of Modeling & Simulation : DEVS Integrative M&S Symposium,

2011,pp: 229-237.

[14] Ahmet Kara, Fatih Deniz, Doruk Bozagac et al. “Simulation Modeling Architecture(SiMA)

A DEVS based Modeling and Simulation Framework”. Proc. of the 2009 Summer Computer

Simulation Conference, 2009,pp: 315-321.

[15] Deniz Cetinkaya, Alexander Verbraeck and Mamadou D.Seek. MDD4MS: “A Model Driven

Development Framework for Modeling and Simulation”, Proc. of the 2011 Summer

Computer Simulation Conference, 2011, pp: 113-121.

[16] Jim Woodcock and Alvaro Miyazawa. CML Definition 2. Public Document. Deliverable

Number: D23.3-1, COMPASS Project, University of York,March, 2013.

