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Abstract: 

The DoD Architecture Framework is now popularly used for describing overall 

requirements and architectural design of the system-of-systems (SoS). However, it is very hard 

to validate and verify the architecture products, as most of them are modeled with informal 

constructs. The paper proposes an approach of executable architecture modeling and simulation 

by introducing formal UML specification. Firstly, definitions of executable architecture are 

provided, upon which both structural and behavioral meta-models of SoS architecture are built 

by extending fUML meta models. Then, a simulation language is defined based on Process 

Algebras, and the semantics of emergent behavior of SoS is discussed. The executable models of 

a SoS architecture are therefore constructed through: (1) modeling the structures and behaviors 

of SoS, (2) translating the models into process terms and (3) specifying simulation rules upon the 

process terms. Since Process Algebras based executable tools are available over relevant research 

institutions, it is not difficult to build a simulation execution environment. Finally, a case study is 

used to illustrate the feasibility of the approach. 
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1. Introduction 

Architecture describes the components of system, connectors between these components, rules 

which are used to guide the design and evolvement of system. It is a blueprint of system and 

bridges the gap between requirements and implements in the design of system-of-systems (SoS). 

The quality of architecture can influence the schedule of SoS designment and the quality of SoS. 

So in the early development of architecture, using modeling and simulation to analyze and 

demonstrate is particularly important [1]. 

The DoD Architecture Framework is now popularly used for describing overall requirements 

and architectural design of SoS[2]. However, it is very hard to validate and verify the 

architecture products, as most of them are modeled with informal constructs. These models 

cannot be executed before being translated into an formal language, such as Petri Net. And, the 
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translation might be a pain of system engineers due to their weakness in formal languages. They 

would hope that the architectual models they built be automatically translated into executable 

ones. 

UML is accepted as an Architectural Description Language by architects, and it has become a 

standard notation to document the architecture of system [3]. To describe the dynamic behaviors 

of system, UML2.0 enriches the behavioral semantics by adding the detailed action semantics 

[4]. But these UML models are not executable. Object Management Group proposes the fUML 

to enable UML models execution [5]. Accordingly, we propose an approach of executable 

architecture modeling and simulation by introducing fUML specification. Firstly, we construct 

the meta-models for structural and behavioral models of SoS architecture by extending fUML. 

To enable execution, we introduce the concrete syntax and algebra semantics for the SoS 

architecture models, and the execution processes can be interpreted as run of algebra derivation. 

Finally, we use the process trace to exhibit the emergent behavior of SoS.  

The rest of the paper is organized as follows. Section 2 describes the related research. Section 

3 introduces the executable architecture. Section 4 describes the formalization of behavioral 

model. Section 5 proposes the behavioral analysis for SoS architecture. Section 6 uses a case 

study to demonstrate the availability of the theory. 

2. Related Work 

Architecture verification plays an important role in design of SoS. The current verification 

techniques based on model execution can be classified into two categories: executable 

architecture modeling and model transformation. The former requires that the architecture be 

modeled as executable models or executable rules be defined. The latter implies translation of 

the architecture models into executable ones, such as Petri Net, ExtendSim model, DEVS.  

The MITRE Company proposes a method for executable architecture modeling. The business 

process models, communication models and campaign simulation environment are connected by 

the Runtime Infrastructure of High Level Architecture[6]. Jiang et al. [7] define the concepts and 

executable rules for executable architecture and hence make some products of DoD architecture 

executable. Wang et al. [8] develop an executable architecture based on SOA. But these 

executable models pay much attention to the details of systems and therefore need great efforts. 

So, there is an argue about whether the executable architecture is needed.  

As most behavioral models of architecture are not executable, they need to be translated into 

some executable ones. Petri Net is a popular executable modeling language for SoS behaviors. 

Wang et al.[9] use SysML sequence diagram to model the behaviors and translate the models 

into Colored Petri Nets (CPN). Staines T.S [10] incorporate fundamental CPN concepts into 

UML activity models such that the behavioral models are therefore formalized with executable 

sementics. Jiang et al. [11] use Object Petri Nets to formalize the IDEF3 models which describe 

system processes. Ge et al[12]. translate the UML models of architecture products into 

ExtendSim model. Touraille et al.[13] integrate single platform tools for modeling, simulation, 

analysis and collaboration, and then develop SimStudio which is a modeling and simulation 

environment based on the Discrete Event Systems Specification (DEVS) formalism. Based on 



DEVS, Kara et al.[14] also propose a Simulation Modeling Architecture (SiMA). SiMA supports 

hierarchical and modular composition of reusable models. Combining DEVS and MDD, 

Cetinkaya et al.[15] develop a MDD framework for modeling and simulation 

(MDD4MS).COMPASS (Comprehensive Modeling for Advanced Systems of Systems) project 

develops a formal language (COMPASS Modeling Language, CML) for modeling and analyzing 

SoS[16]. CML is based on VDM, CSP and Circus. The process algebraic combinators are used 

to describe the behavior of SoS. The analysis techniques and prototype tools for UML are still in 

the development process. 

But a few of the above approaches take into consideration the emergence behavior of SoS. 

Our approach translates the behavoral model into the process items of Process Algebras, and use 

the process trace to exhibit the emergence behavior of SoS. 

3. Executable Architecture 

The executable architecture is made up of three parts: the executable model, the execution 

mechanism and the execution process. The executable model, the fundation for the executable 

architecture, comprises both static and action models. The mechansim describes the execution 

principle of dynamic models. The execution process describes the process of model execution.  

Executable 

Architecture = +Executable 

Models

Execution

Principle + Execution 

Process
 

Fig. 1. The Executable Architecture 

3.1 Meta Model of SoS Structure 

The meta model of SoS structure extends the Class Model of. The system engineers use 

structure models to describe the structure of SoS, environment object and windows of simulator. 

Structure of SoS 

System is a core concept of the structure models. These systems and their relationships make 

up of the structure of SoS. To simulate the behaviors of SoS, the relationships can be abstracted 

as data flow. Systems are connected with each other through data flow. The output data of one 

system is the input data of another. A couple of output and input data makes up of a data flow. 

Systems use ports as interface to send and receive data. The data is information produced by 

activities. The activities are performed by systems which access data through their port. 

Environment Object 

There are two kinds of environment object. One is Data, the other is Event. Data can either be 

produced in SoS simulation or be given (input) by engineers. They can be input from or output to 

the windows of simulator. Event can take place inside or outside of SoS. It is used to trigger 

activity and change the execution process of activity. Time is a special event which is 

automatically triggered at a time. It is defined by the simulator of SoS. The simulator can 

monitor the changes of environment object according to the time. Time can also trigger activity 

and change the execution process.  

Windows of Simulator 



Windows of Simulator are the interfaces with which engineers can observe the changes of the 

environment and control the execution process. The simulator privides different windows for 

data, event and time. During the simulation, engineers play the role of Organizations. They use 

these windows to interact with SoS. They send inputs through the windows to simulator to 

control the execution process and receive the output from the windows to observe the SoS 

behaviors and their effects. 
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Fig. 2. The meta model of SoS structure 

3.2 Meta Model of SoS Behaviors 

We choose activity diagram to describe the behavior of SoS, because the simulation of SoS 

behaviors is processed as sequences of activities. The meta model of behaviors extends the meta 

model of Activity Diagram of fUML and is shown in Fig. 3. 

The SoS behaviors are modeled with notations, such as Activity, NoActionActivity, 

Transition, GuardCondition, Action, Swimlane, Start and End. Action is the fundamental unit. 

An activity encapsulates a number of actions and is the execution body of the containing actions. 

NoActionActivity is a kind of control activity containing no action. It can be classified into 

Decision, Fork and Join. The notations are slightly different from fUML in followings. 

(1) Action is the only executable unit. It can be either SysDefAction or UserDefAction. 

SysDefAction is the executable units pre-defined by simulator, and UserDefAction is the 

user-defined executable units programmed by engineers. 

(2) Swimlane is the bridge between Activity and Data. It represents constituent systems that 

perform activities and provide the data ports through which activities access and modify 

the data as Input or Output. 

The semantics of other notations is the same as fUML, except following constraints that 

guarantee the model robustness. 

(1) There should be a sole pair of Start and End in the behavioral model. 



(2) No any notation object except Activity contains an event or action. 

(3) Assume the transition that flows to an activity is In-Transition, and the one that flows from 

an activity is Out-Transition. Each activity should have only one In-Transition and one 

Out-Transition.  

(4) Each swimlane should represent one constituent system. There should not be two different 

swimlanes which represent a same constituent system.
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Fig. 3. The behavioral meta model of SoS 

3.3 Executable Semantics of Models 

To simulate the SoS, the mechanism and executable semantics must be defined. The structure 

models of SoS define the structure of systems and the types of data which are classified as Input 

or Output. The behavioral models of SoS define activities to simulate the behaviors of SoS. 

During the simulation, the simulator interprets the behavioral models and transform them into an 

executable language which will be discussed in Section 4. 

The simulator is a multithreading system. It controls the execution of behavioral models. Once 

a SoS simulation is started, the simulator runs the SimulationMain and load the behavioral 

model. SimulationMain is the main thread of simulation. The simulator, while interpreting the 

behavioral model, creates a number of SimulationProcs to execute activities. It receives the 

instructions and data from its observation windows, and sends them to the SimulationProcs. If an 

activity has been executed, the SimulationProc is killed. 

The executable semantics of models is described in Fig. 4. Each activity, including 

NoActionActivity, is executed in a SimulationProc. The Start creates a SimulationProc to 

execute the first activity. The End creates a SimulationProc to send an event to terminate the 

simulation. The Decision creates a Deciding SimulationProc to set the decision result which 

affects the conditions of its Out-Transitions and creates a SimulationProc for the subsequent 

activity whose In-Transition condition is satisfied. Fork creates a SimulationProc for every 



subsequent activity whose In-Transition connects with it. Join creates a Waiting SimulationProc 

which waits for all SimulationProcs of the Fork activities being terminated and then creates a 

SimulationProc for the activity whose In-Transition connects with Join. 
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4. Formalization of Behavioral Model 

Formalization is fundamental for the models to be executable. This section will focus on 

building the concrete syntax, algebra semantics and executable rules for the executable 

behavioral model (EBM) of SoS. 

4.1 Concrete Syntax 
Since activities are performed by systems, each of them should belong to an operator which is 

visually presented as a swimlane. Actions are encapsulated in the activities. The 

NoActionActivity and Transition control the execution sequence of activities. The Input and 

Output supply the information for execution of activities. The concrete syntax of EBM is 

thereafter defined with Backus-Naur Form (BNF), and is shown in table 1 where the terminators 

are highlighted in bold font.  

Table 1 The concrete syntax of EBM 

<activity model> ::= activitymodel <model name>;<operator list>;<control list> end 

activitymodel 

<operator list> ::= <operator><operator list>|<> 

<operator > ::= operator <operator name><activity list> end operator 

<activity list> ::= <activity><activity list>|<> 

<activity> ::= {<input>}<action>{<output>} 

<input> ::= in <messageId> from <operator name> 

<output> ::= out <messageId> to <operator name> 



<action> ::= action <action name>{<precondition>}{<guard condition>}{<post condition>} 

end action 

<precondition> ::= pre <condition> 

<guard condition> ::= guard<condition> 

<post condition>::= post<condition> 

<condition> ::= <expr> 

<control list> ::= <control><control list>|<> 

<control> ::= <fork>|<join>|<decision>|<transition> 

<transition> ::= transition <source>{<condition>}<target> end transition 

<fork>::= fork <source><target list> end fork 

<join> ::= join<source list><target> end join 

<decision> ::= decision <source><condition><target><target> end decision 

<source list> ::= <source><source list>|<> 

<target list> ::= <target><target list>|<> 

<source> ::= source <operator name><action name> end source 

<target> ::= target <operator name><action name> end target 

 

4.2 Algebra Semantics 

The execution of the EBM can be abstracted as running processes. Every activity or its 

containing action may take a process. An activity, when being performed by a system on the 

Input or Output data objects, would initiate one process for each containing action which is 

considered to be operated by the system. Therefore, an atomic process can be abstracted as a pair 

of operator and action. To formalize the EBM, we define an Algebras Process based language, 

the executable activity algebras (EAA), to explain the process semantics. 

Definition 1. Assume O is the set of operators (or systems) and o O ; A is the set of actions 

and a A ; P denotes the process. The syntax of EAA can be thereafter defined with BNF as 

follows: 

1 2 1 2

1 2 1 2

:: 0 | ( , ). | ; | | [ expr ] |

|| | ||

c

P

P o a P P P P P P

P P P P

   
, where: 

 0(Empty): 0 is an empty process; 

 ( , ).o a P (Prefix): P becomes active when a has been executed by o; 

 
1 2
;P P (Sequence): P2 becomes active when P1 has been executed; 

 
1 2c

P P (Choice): if c is true then P1 becomes active; otherwise, P2 becomes active; 

 [ expr>]P (Condition): if <expr> is true then P becomes active; otherwise, P is suspended; 

 
1 2||P P (Fork): P1 and P2 are executed concurrently; 



 
1 2

||
P

P P (Join): P becomes active when the two concurrent processes P1 and P2 have all 

finished their execution. 

The EAA provides a domain of process algebras semantics for the EBM, or the process 

algebras semantics of EBM is an instance of EAA. Accordingly, we can translate the models of 

EBM into terms of EAA by building mappings between the syntax of EBM and EAA.  

Followings introduce functions for mappings of the main productions of the concrete syntax. 

Assume the simulator interprets EBM by bottom-up compilation, and if the <string> is a 

non-terminator of the concrete syntax of EBM, then the function H(<string>) gives the set of all 

possible terminators from which the non-terminator <string> can be deduced. 

Definition 2. The semantic functions for mapping of source or target are defined as： 

( ) ( ( ), ( ))

( ) ( ( ), ( ))

ac

ac

S source H operator name H action name

S target H operator name H action name

      

      
 

Definition 3. The semantic functions for mapping of target list are defined as： 

1

1

( ) ( ) || ( ),

,

2

2

ac acS target list S target S target

target target target list

      

     
 

Definition 4. The semantic functions for mapping of fork are defined as： 

( ) ( ); ( ),

,

fo acS fork S source S target list

source target list fork

      

    
 

Definition 5. The semantic function for mapping of join is defined as： 

1

1

( )( ) ( ) || ( ),

, , ,

2

2

acjo ac S target acS join S source S source

source source source list source list target join

       

          
 

Definition 6. The semantics function for mapping of decision is defined as： 

1 ( )
( ) ( ); ( ) ( )

H condition 2de ac ac acS decision S source S target S target
 

           

Definition 7. The semantics function for mapping of transition is defined as： 

1

2

( ) ( );[ ( )] ( ),

or ( ) ( ); ( )

tr ac ac

tr ac ac

S transition S source H condition S target condition

S transition S source S target

          

      
 

Definition 8. The semantic function for mapping of operators is defined as： 

( ) {( ( ), ( ))

|  ,  }

opS operator H operator name H action name

action activity list activity list operator

      

      
 

Basing on above functions, we provide the algorithm of transforming the model of EBM into 

the process terms of EAA.  

Input: the whole deduction stack of EBM model  

Output: the set of process terms of EAA P 



Procedure 

 Step 1: create an empty set P to express the algebra model of EBM; 

Step 2: for every <operator> of <operator list>, invoke the semantic function Sop() to 

generate the atomic processes, (H(<operator name>，H(<action name>)), and add them to 

the set P. 

Step 3: for every <transition> in the <control list>, invoke Str1(), if <condition> =null, or 

Str2() to generate complex process terms and add them to the set P. 

Step 4: for every <fork> in the <control list>, invoke Sfo() to generate complex process terms 

and add them to the set P. 

Step 5: for every <join> in the <control list>, invoke Sjo() to generate complex process terms 

and add them to the set P. 

Step 6: for every <decision> in the <control list>, invoke Sde() to generate complex process 

terms and add them to the set P. 

Step 7: output the set of process terms P. 

4.3 Executable Rules 

The simulation of SoS behaviors is driven by a set of derivation rules applied for evolution of 

process algebra. To support the evolution, we define the rule set as follows. 

Prefix Rule 

( , )

( , )

1:
( , ) 0

2 :
( , ).

o a

o a

Action
o a

Action
o a P P







 

Rule Action-1 shows that process 0 will become active when the process (o,a) is active and a 

has been executed by o. Rule Action-2 shows that process P will become active when the process 

(o,a).P is active and a has been executed by o.  denotes that precondition of the rules is 

always true. 

Sequence Rule 

( , ) '

1 1

( , ) '

1 2 1 2

:
; ;

o a

o a

P P
Sequence

P P P P




 

Rule Sequence shows that if the process '

1P  can be activated by the process 1P when a has 

been executed by o, the process 1 2;P P  will activate the process '

1 2;P P  when o has executed a. 

Choice Rule 



1 2 1

c

1 2 2

( , ) '

1 1

( , ) '

1 2 1

( , ) '

2 2

( , ) '

1 2 2

Choice-1:

Choice-2:

Choice-3:

Choice-4:

c

c

c

o a

o a

c

o a

o a

c

P P P

P P P

P P

P P P

P P

P P P



 

 



 



 

 

Rule Choice-1 shows that if condition c is true, 
1 2cP P  activates 

1P . Rule Choice-2 shows 

that if condition c is false, 
1 2cP P  activates 

2P . Rule Choice-3 shows that if 
1P activates '

1P  

when a has been executed by o, 
1 cP P  activates '

1P  when a has been executed by o. Rule 

Choice-4 shows  that if 
2P activates `

2P  when a has been executed by o, 
1 2cP P  activates `

2P  

when a has been executed by o.  

Condition Rule 

[ ]

[ ]

1:
[ ]

2 :
[ ] 0

x y

x y

Condition
x y P P

Condition
x y P






 


 

 

Rule Condition-1 shows that if the condition [x=y] is true, [x=y]P activates P. Rule 

Condition-2 shows that if the condition [x=y] is false, [x=y]P activates 0.  denotes that 

precondition of the rules is always true. 

Fork Rule 

2 2

1 1

( , ) '

1 1

( , ) '

1 2 1 2

( , ) '

2 2

( , ) '

1 2 1 2

1:
0 ||

- 2:
|| 0

- 3 :
|| ||

- 4 :
|| ||

o a

o a

o a

o a

Fork -
P P

Fork
P P

P P
Fork

P P P P

P P
Fork

P P P P













 

Rule Fork-1 shows that 
2

|| P0 activates P2. Rule Fork-2 shows that 
1

P || 0 activates P1. Rule 

Fork-3 shows that if P1 activates `

1P  when o has executed a, 1 2||P P  activates '

1 2||P P  when o has 

executed a. Rule Fork-4 shows that if P2 activates `

2P  when o has executed a, 1 2||P P  activates 

`

1 2||P P  when o has executed a. 



Join Rule 

2 2

1 1

( , ) '

1 1

( , ) '

1 2 1 2

( , ) '

2 2

( , ) '

1 2 1 2

-1:
0 || ;

- 2 :
|| 0 ;

- 3 :
|| ||

- 4 :
|| ||

P

P

o a

o a

P P

o a

o a

P P

Join
P P P

Join
P P P

P P
Join

P P P P

P P
Join

P P P P













 

Rule Join-1 shows that 
20 ||P P  activates 

2 ;P P . Rule Join-2 shows that 
1 || 0PP  activates 

1;P P .Rule Join-3 shows that if P1 activates `

1P  when o has executed a, 
1 2||PP P  activates '

1 2||PP P  

when o has executed a. Rule Join-4 shows that if P2 activates `

2P  when o has executed a, 

1 2||PP P  activates `

1 2||PP P  when o has executed a. 

Evolution between process terms can be described with Trace. A process term p can evolve, 

subjected to change of active label (o,a), into a different term which is called successor of p and 

defined as Succ(p) = { 'p | ( , ) '( , ) : o ao a p p  }. If a term p evolve into another term 'p , there must 

be a sequence of active labels 1 1 2 2( , ) ( , )( , ) ( , )( 0)n no a o a o a o a n   which result in 

1 1 2 2 ( , )( , ) ( , ) '

1
n no ao a o a

p p p   , and ( , )o a is the trace of term p evolving into term 'p . The trace 

is used to describe the execution sequence of executable units of the behavior model.  

6. A Case Study 

In this section, we give a simple example of threat air defense system (TADS) to demonstrate 

the availability of our theory. The executable model of TADS is built using the meta models in 

section 3. Due to limited pages, we provide only a fragment of the behavioral model and its 

algebra semantics. 

There are four operators of TADS: Radar Battalion (RB), Threat Command Center(TCC), 

Missile Battalion(MB) and Anti-air Gun Battalion(AGB). The missile interception is simulated in 

following way. Once the RB has found an air target, the information will be sent to the TCC in 

time. The TCC will then make a threat assessment on it and decide whether they have to 

intercept it and who shall undertake the task. When MB or AGB have accepted the interception 

order and the target information, they will act on the target, and at the same time collect the data 

of interception effect and send them back to TCC. The TCC will make an assessment again to 

decide whether it is a successful interception or they have to arrange another interception. The 

model is illustrated in Fig. 6. The formal descriptions of the executable model, according to 



concrete syntax of EBM discussed in Section 4.1, are shown in Table 2.

 

DetectTarget

<<Activi ty>>

AssessThreat

<<Activi ty>>FindAirTarget

CollectDataOfEffect

<<Activi ty>>

Intercept

<<Activi ty>>

 

CollectDataOfEffect

<<Activi ty>>

 Intercept

<<Activi ty>>

Nothing

InterceptSuccessfully

OrderMissile

OrderAnti-airGun

Anti-air Gun BattalionMissile BattalionThreat Command CenterRadar Battalion

 

Fig. 6. The behavioral model of TADS 



 

Table 2 The formal descriptions of the TADS behavioral model 

activitymodel MissileIntercept; 

 operator RB 

  action DetectTarget end action 

 end operator 

 operator TCC 

  action AssessThreat end action 

 end operator 

 operator MB 

  action Intercept end action 

  action CollectDataOfEffect end action 

 end operator 

operator AGB 

  action Intercept end action 

  action CollectDataOfEffect end action 

 end operator 

 decision 

  source RB DetectTarget end source 

  FindAirTarget 

  target TCC AssessThreat end target 

  target Over end target 

 end decision 

decision 

  source TCC AssessThreat end source 

  OrderMissile 

  target MB Intercept end target 

  target Over end target 

 end decision 

 decision 

  source TCC AssessThreat end source 

  OrderAnti-airGun 

  target AGB Intercept end target 

  target Over end target 

 end decision 

 transition 

  source MB CollectDataOfEffect end source 

  target TCC AssessThreat end target 

 end transition 

 transition 

  source AGB CollectDataOfEffect end source 

  target TCC AssessThreat end target 



 end transition 

 transition 

  source MB Intercept end source 

  target MB CollectDataOfEffect end target 

 end transition 

 transition 

  source AGB Intercept end source 

  target AGB CollectDataOfEffect end target 

 end transition 

end activitymodel 

Applying the transformation algorithm in Section 4.2, the EAA process terms of TADS activity 

model can be automatically generated and is listed as follows. 

P1 = (RB, DetectTarget).P2 

P2 = P3 +FindAriTarget 0 

P3 = (TCC, AssessThreat).P4 

P4 = P5 +OrderMissile P6 

P6 = P7 +OrderAnti-airGun 0 

P5 = (MB, Intercept).P8 

P8 = (MB, CollectDataOfEffect).P3 

P7 = (AGB, Intercept).P9 

P9 = (AGB, CollectDataOfEffect).P3 

The set of label is A= {(RB, DetectTarget), FindAirTarget, Nothing, (TCC, AssessThreat), 

OrderMissile, (MB, Intercept), (MB, CollectDataOfEffect), InterceptSuccessfully, 

OrderAnti-airGun, (AGB, Intercept), (AGB, CollectDataOfEffect)}. 

To verify the activity model, let us check two label sets. 

L1 = ((RB, DetectTarget), FindAirTarget, (TCC, AssessThreat), OrderMissile, (MB, Intercept), 

(MB, CollectDataOfEffect), InterceptSuccessfully). 

L2 = ((RB, DetectTarget), FindAirTarget, (TCC, AssessThreat), OrderAnti-airGun, (AGB, 

Intercept), (AGB, CollectDataOfEffect), InterceptSuccessfully). 

For L1, we can observe the evolution trace of (P1, P2, P3, P4, P5, P8, P3,0). And for L2, we can 

observe the evolution trace of (P1, P2, P3, P4, P6, P7, P9, P3,0). The two traces are all valid, for 

they all end by 0 which means the End of activity model. The above process traces show that the 

air target is intercepted by either MB or AGB.  

7. Conclusions 

The behavioral models of SoS architecture are usually built with UML activity diagram. Due 

to poor formalization of UML, these models are not executable, which brings inconveniency 

during evaluation of SoS architecture. The paper suggests a new approach of executable 

modeling and simulation. The main contributions are summarized as follows: 

(1) The meta models for both structures and behaviors of SoS are presented by extending 

fUML meta models. With these meta models, the engineers may accurately describe SoS 



architecture and build UML models. 

(2) The concrete syntax and algebra semantics of executable models are discussed in details. 

And a number of semantic functions are introduced for mapping of the syntax descriptions 

of behavioral models into items of executable activity algebras. 

(3) Executable rules are defined. With these rules, the process terms which simulate the 

behaviors of SoS can evolve as process traces, which make model analysis and validation 

easier.  

However, our work is just in beginning. We are challenged by dealing with existing products 

of behavioral models, some of them being built in other paradigms such as UML sequence 

diagram and IDEF 3. The future research will be on extending the meta models to make our 

approach to be compatible with other modeling paradigms.  
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