
 i

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

WHAT FRIENDS ARE FOR: COLLABORATIVE

INTELLIGENCE ANALYSIS AND SEARCH

by

Christopher J. Wood

June 2014

Thesis Co-Advisors: Nedialko B. Dimitrov

 Moshe Kress

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2014

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

WHAT FRIENDS ARE FOR: COLLABORATIVE INTELLIGENCE ANALYSIS

AND SEARCH

5. FUNDING NUMBERS

6. AUTHOR(S) Christopher J. Wood

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Director of Intelligence, United States Marine Corps

3000 Marine Corps Pentagon

Washington, DC 20350-3000

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U.S. Government. IRB protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Intelligence analysts face a glut of information and limited time to identify which information is relevant. Also, they are unaware of

other analysts with similar intelligence problems, preventing collaboration and often causing intelligence failure. To identify

relevant information, analysts use adopted commercial search engines designed for internet-sized databases containing hyperlinked

web-pages that are not effective on intelligence databases consisting of non-hyperlinked documents.

This thesis outlines a model to fundamentally increase search effectiveness and collaboration by using a social network of

like-minded users based on user biographies and search behavior. After entering a query, the likelihood of returning a relevant

document is increased by leveraging data from other, similar users. The model goes beyond standard search engine design by

presenting similar analysts for collaboration and presenting relevant documents without queries. Our framework is mathematically

grounded in a Markov random field information retrieval model and recent developments in recommender systems. We build and

test a prototype system on datasets from the National Institute of Standards & Technology. The test results combine with

computational sensitivity analyses to show significant improvements over existing search models. The improvements are shown to

be robust to high levels of human error and low similarity between users.

14. SUBJECT TERMS Intelligence Community, information retrieval, recommender systems, search

engines, social networks, user profiling, Lucene, robust design, collaborative systems
15. NUMBER OF

PAGES
117

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

WHAT FRIENDS ARE FOR: COLLABORATIVE INTELLIGENCE ANALYSIS

AND SEARCH

Christopher J. Wood

Captain, United States Marine Corps

B.A., Colorado State University, 2008

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

June 2014

Author: Christopher J. Wood

Approved by: Nedialko B. Dimitrov

Thesis Co-Advisor

Moshe Kress

Thesis Co-Advisor

Robert F. Dell

Chair, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Intelligence analysts face a glut of information and limited time to identify which

information is relevant. Also, they are unaware of other analysts with similar intelligence

problems, preventing collaboration and often causing intelligence failure. To identify

relevant information, analysts use adopted commercial search engines designed for

internet-sized databases containing hyperlinked web-pages that are not effective on

intelligence databases consisting of non-hyperlinked documents.

This thesis outlines a model to fundamentally increase search effectiveness and

collaboration by using a social network of like-minded users based on user biographies

and search behavior. After entering a query, the likelihood of returning a relevant

document is increased by leveraging data from other, similar users. The model goes

beyond standard search engine design by presenting similar analysts for collaboration and

presenting relevant documents without queries. Our framework is mathematically

grounded in a Markov random field information retrieval model and recent developments

in recommender systems. We build and test a prototype system on datasets from the

National Institute of Standards & Technology. The test results combine with

computational sensitivity analyses to show significant improvements over existing search

systems. The improvements are shown to be robust to high levels of human error and low

similarity between users.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

Table of Contents

I. Introduction ..1

I.A. The Problem..1

I.B. The Intelligence Community ..2

I.C. The Intelligence Process ...3

I.D. Intelligence Analysts ..3

I.E. Other Efforts ..5

I.F. Thesis Overview ..7

II. Background on Information Retrieval & Recommender Systems ..9

II.A. Information Retrieval ..9

II.A.1. Boolean Models for Information Retrieval ..11

II.A.2. Vector Space Models for Information Retrieval12

II.A.3. Probabilistic Models for Information Retrieval13

II.A.4. Markov Random Field (MRF) Model for IR14

II.A.5. Example MRF Model For IR ...19

II.A.6. Evaluation of Information Retrieval Systems20

II.B. Recommender Systems ..22

II.B.1. Recommender System Models ...23

II.B.2. Collaborative Filtering Model ..25

II.B.3. RS Model Evaluation..26

II.B.4. Recommender Systems Inclusion into MRF Model for IR26

II.C. Personalized Search ...27

II.D. Social Search ...28

III. The Model: Cairn ...31

III.A. Model Objectives ...31

III.A.1. Model Overview ...32

III.B. User Similarity Model Formulation ...34

III.B.1. User Similarity Model: Sets ..36

III.B.2. User Similarity Model: Functions ...37

III.C. Document Ranking Model Formulation ..38

III.C.1. Document Ranking Model: Sets ...39

III.C.2. Document Ranking Model: Functions ..39

III.D. Integrating Cairn into MRF Model for IR ...40

IV. Data ..43

IV.A. TIPSTER Data ...43

IV.A.1. TIPSTER Documents ...43

IV.A.2. Relevancy Assessments ..45

V. Software ..47

V.A. Software Design ..47

V.B. Profiler ...47

V.C. Explorer ...48

 viii

V.D. Searcher ...50

V.D.1. Lucene™ Open Source Search Framework ...50

V.D.2. Integrating Lucene™ Ranking with Predicted Rating52

V.E. Automated Profile Generation ...53

V.E.1. Similarity ..53

V.E.2. Visibility ...53

V.E.3. False Positive Rate..54

V.E.4. Bot Creator ...54

V.F. Cairn Graphical User Interface ..55

VI. Analysis ...61

VI.A. Analytic Overview ...61

VI.B. Theoretical Analysis ..61

VI.C. Empirical Analysis ...66

VI.C.1. Model Validation; Best & Worst Case ...67

VI.C.2. Parameter Analysis ...68

VI.C.3. Two-Way Parameter Analysis ..77

VI.C.4. Providing Robust Predicted Rating Score Weight81

VII. Conclusions ..85

VII.A. Objective Summary ..85

VII.B. Project Summary ..85

VII.C. Results Summary ..86

VII.D. Necessary Conditions For Cairn Performance ...87

VII.E. Contributions...87

VII.F. Future Work ..88

List of References ..91

Initial Distribution List ..95

 ix

LIST OF FIGURES

Figure 1. Comparison of Current and Solution Search Models.2

Figure 2. Intelligence Community Technology Responses to Stovepiping and

Information Overload ...5

Figure 3. Modeling Query Term Dependence within the MRF model for IR.15

Figure 4. Example Full Dependence MRF Model for IR..19

Figure 5. Neighborhood Modeling Approach; ..25

Figure 6. Cairn near Soberanes Canyon, Big Sur, California ...32

Figure 7. Alice’s User Profile ..35

Figure 8. User Similarity Model Network. ..36

Figure 9. Example characteristic tree. ...37

Figure 10. Document Ranking Model Network. ...39

Figure 11. Example TIPSTER Document Data. ...44

Figure 12. TREC Example Topic. ...45

Figure 13. Example Profile Database ..48

Figure 14. Example Explorer Predicted Rating Document Ranking Output50

Figure 15. Cairn Search Interface ..56

Figure 16. Search Configuration ...57

Figure 17. Search Configuration ...58

Figure 18. Cairn Profile Interface ..59

Figure 19. Retrieval Performance Based on Erroneous Ratings64

Figure 20. Retrieval Performance Based on Erroneous Ratings65

Figure 21. Cairn Effectiveness In Varying Predicted Rating Weight, 69

Figure 22. Showing Cairn Improvements Over Traditional Search Engine &

Recommender Systems Performance ..70

Figure 23. Cairn Effectiveness In Varying Other User Similarity, 71

Figure 24. Cairn Effectiveness In Varying Other User Visibility, 72

Figure 25. Cairn Effectiveness In Varying Other User False Positive Rate, 73

Figure 26. Cairn Effectiveness In Varying Number of Other Similar Users (Bots),

NB, With FPR=0.5. [(Top), (Bottom)]74

Figure 27. CAIRN Effectiveness In Varying Number of Other Similar Users (Bots),

NB, With FPR=0.9. [(Top), (Bottom)]75

Figure 28. Cairn Effectiveness In Varying Number of Bots, , and False

Positive Rate, . ..76

Figure 29. Cairn Effectiveness In Varying Similarity, , and Visibility, 77

Figure 30. Cairn Effectiveness In Varying False Positive Rate, , and Similarity-

Score Weight, ...78

Figure 31. Cairn Effectiveness In Varying Visibility, , and False Positive Rate, ..79

Figure 32. Cairn Effectiveness In Varying Number of Bots, , and False

Positive Rate, . [(Top),
(Bottom)]..80

Figure 33. Robust Design Metamodel Predictions v. Actual Cairn Output82

Figure 34. Loss-Optimized Over Number of Other Users, , and Similarity, ..83

 x

Figure 35. Cairn Search Performance When Using Robust, Near-Optimal 84

Figure 36. Cairn Loss Performance When Using Robust, Near-Optimal 84

 xi

LIST OF TABLES

Table 1. Summary Description of Query Term Dependence Structures15

Table 2. , Vector of Characteristic Properties ...38

Table 3. Profiler Command Line Arguments ..47

Table 4. Explorer Command Line Arguments ...49

Table 5. Lucene™ Scoring Equation Factors (after Hatcher et al., 2009)51

Table 6. Searcher Command Line Arguments ..52

Table 7. Automated Profile Generator Command Line Arguments55

Table 8. Probabilistic Analytic Questions..61

Table 9. Description of Cairn Analytic Parameters ...66

Table 10. Empirical Analytic Questions ..66

Table 11. Baseline Best Case Model Validation Results ...67

Table 12. Baseline Worst Case Model Validation Results ..68

Table 13. Summary Experimental Design NOLH Factor Correlation81

Table 14. Robust Design Metamodels for MOE Mean and Standard Deviation82

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BIM binary independence model

CF collaborative filtering

CBF content based filtering

DRM document ranking model

IC Intelligence community

IR information retrieval

MRF Markov random fields

MAP mean average precision

NOLH nearly orthogonal Latin hypercubes

P@ precision at documents

RS recommender systems

TREC Text REtrieval Conference

USM user similarity model

VSM vector space models

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The U.S. Intelligence Community’s (IC) mission is to “collect and convey essential

information” (Director of National Intelligence, 2013). In order to complete their mission,

intelligence analysts must be able to locate and synthesize disparate pieces of information

into a cohesive assessment. In this thesis, we develop a model we call Cairn that

addresses two common problems in intelligence analysis 1) the ability of an analyst to

find information relevant to their mission and 2) the ability of an analyst to identify other

analysts with knowledge that is relevant to the mission.

Cairn uses information collected about analysts to identify similar users and

improve search performance. The information collected about an analyst is called a user

profile—containing biographical, interest, and behavior information about the user. A

key part of a user profile is an interest profile, specifying the information requirement of

the user. Given user profiles for a group of analysts, Cairn can identify similar analysts

across organizational and departmental boundaries, addressing point 2) above.

To improve search performance, point 1) above, Cairn uses document ratings

from similar analysts to recommend new documents to the analyst who is performing the

search. These recommendations serve as predicted rating document scores that can be

incorporated with modern-day search engine document scores, improving the

performance of the search engine. To illustrate this performance improvement, we

implement and test our model against TIPSTER, a document and query set provided by

the National Institute of Standards and Technology (Harman & Liberman, 1993). We

integrate document scores computed from user similarity with the scores generated by

Lucene™, an open source search engine (Hatcher, Gospodnetic, & McCandless, 2009),

which scores documents for query match. Both theoretical and empirical results show

that Cairn can provide significant improvements to the search results. For example, we

show that an integrated score outperforms both the Lucene™ search engine and a

similarity-based recommendation alone.

 xvi

Our results suggest creating a new search model for intelligence analysts. To

illustrate the existing workflow, imagine a young military intelligence analyst who has

just received an information requirement from her commanding officer. That analyst

would typically then begin searching for any recent reporting or previous analytic work

regarding that requirement. That process involves a database search using several

possible query terms intended to capture facets of the information requirement. After

several hours of searching through mostly irrelevant information, the analyst has

hopefully been able to find a few pieces of relevant information from which to create an

assessment. In our new search model, we propose that the analyst instead creates an

interest profile detailing her information requirement. She will immediately be connected

to other analysts who share a similar information requirement. Further, the analyst can

search using query terms, as before, however, the resulting list of documents not only

measures how well a document matches a query, but also how strongly a document has

been recommended by other analysts. This new work flow enables the analysts to 1) find

relevant information more quickly and 2) collaborate with analysts who share the same

information requirement. Empowered by this model, analysts are able to produce more

timely and well developed intelligence analysis.

The improvements in search performance exhibited by Cairn are possible because

of two key characteristics that are feasible within the Intelligence Community. First, the

model requires extensive user-profiles in order to compute similarity. There are settings

where collecting such information is impractical because of data collection or privacy

limitations. Second, users must share a small set of possible information requirements. In

other words, the interest profile must describe the user’s information requirement. If it is

unlikely that users share information requirements, then it would not be possible to

benefit from the document ratings of other users to improve the current user’s search

results.

 xvii

LIST OF REFERENCES

Director of National Intelligence. (2013). Our mission. Retrieved from

http://www.intelligence.gov/mission/

Harman, D., & Liberman, M. (1993). TIPSTER Complete LDC93T3A. DVD.

Philadelphia, PA: Linguistic Data Consortium.

Hatcher, E., Gospodnetic, O., & McCandless, M. (2009). Lucene in Action . Greenwich,

CT: Manning.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

“Alone we can do so little; together we can do so much.”

-Helen Keller

Above all others, I must recognize my family for their unceasing support and I

dedicate this work to them. In this effort and countless others, my beautiful wife gives me

encouragement, understanding, and unfettered honesty whenever it is most needed. My

children inspire me to do and be better, every day. Thank you is not enough.

There are also a number of people and organizations that I owe a debt of gratitude

towards. My advisors and sponsors provided immense amounts of freedom to develop

this project and their counsel was indispensable. Several organizations gave me ideas,

backing, consultation, and experiences, expecting nothing in return. In coming to the

Naval Postgraduate School and taking on this work, I was a lone individual with no

background in modeling, statistics, or computer science. My concern for a serious

problem in the Intelligence Community turned into a project I am proud to be a part of,

but none of it could have happened without each of these individuals. Thank you.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. Introduction

I.A. THE PROBLEM

Many of the assessments an intelligence analyst must provide will attempt to

accurately predict the future or know an unknowable state of reality. Further, these

assessments are often based on incomplete information gathered from error-prone

sensors. Although United States Intelligence Community (IC) analysts enjoy

comparatively high levels of financial, geographic, technological, and political resources,

the ultimate challenge remains as to how to put together disparate, relevant pieces of data

into a coherent intelligence picture.

In attempting to counter this, the U.S. IC has grown significantly in recent years,

with the combined Military Intelligence Program and National Intelligence Program

budgets growing from an estimated $44 billion in 2005 (Shane, 2005) to $75.4 billion in

2012 (Waterman, 2012) . This has resulted in a drastic increase in collection platforms

and, consequently, an abundance of collected information. An individual analyst

struggles to cope with this overwhelming amount of information. Critical information

becomes more likely to be missed while unnecessary information needlessly occupies the

analysts time.

Therefore, the three critical aspects of the problem facing intelligence analysts

are: 1) the constrained time available to filter through search results, 2) the difficulty in

discovering and assessing critical information necessary to answer an information need,

and 3) the stovepiping of intelligence analytic expertise. A solution to this problem

requires the right analyst to get the right information at the right time. The buildup of

intelligence collection platforms has provided databases that contain the necessary

information, but finding the relevant data within those databases remains a key

technological problem.

This thesis addresses improvements of the current model of database search used

in the Intelligence Community. Figure 1 provides a depiction of the current Intelligence

Community search model and our proposed improvements. We concentrate on refining

 2

the search engine, currently the single point of intersection for all analysts. Small changes

in the way that analysts interact with the search engine will enable analysts to connect

with other analysts with similar intelligence problems, and those connections can be used

to improve search effectiveness.

Figure 1. Comparison of Current and Solution Search Models.

The search engine is a critical common denominator in all analysts work. Current search

engines produce largely similar results for all users. By integrating a user profile and user

document ratings, our proposed model allows users to connect with other users. These

connections can then be used to generate document recommendations for the current user

which can be integrated into the scored and ranked search results.

I.B. THE INTELLIGENCE COMMUNITY

The United States Intelligence Community is a complex web of 17 agencies

(DNI, 2014) working across nearly all branches and departments of the government. The

fabric of methods and processes that each IC member agency has developed to enable

this support vary significantly, but there is one agreed upon common thread throughout,

the six categories of intelligence operations within the intelligence process. This chapter

 3

introduces this process, then discusses the analysts that make up the heart of the

Intelligence Community, and finally presents the challenges faced by those analysts. Our

research provides one possible solution towards two of these challenges, namely the

difficulty in fostering analyst collaboration across organizations and the inefficiency in

quickly and accurately locating information which is relevant to an analysts information

need.

I.C. THE INTELLIGENCE PROCESS

The foundation for the intelligence process is “…the comparing of information

against a database of knowledge already held and the drawing of conclusions by an

intelligence analyst” (Joint Staff, 2007). The intelligence process consists of six recurrent

and overlapping operations: planning and direction; collection; processing and

exploitation; analysis and production; dissemination and integration; and evaluation and

feedback. Although listed in a semi-temporal order, these operations are not strictly

subsequent to each other or even necessary for the production of intelligence. For

example, many intelligence operations involving a live video feed from an unmanned air

vehicle (UAV) have minimal to no analysis or production before being delivered to a

decision maker. However, this process does describe a general set of activities for

creating, delivering, and assessing intelligence.

I.D. INTELLIGENCE ANALYSTS

We now focus on the intelligence analyst. We present their role within the

intelligence cycle, their analytic responsibilities, and the challenges faced in performing

those responsibilities. Finally, we discuss aspects of those challenges which are uniquely

difficult for a Marine intelligence analyst.

Just as sensors are critical in intelligence collection, intelligence analysts are the

critical component in the fourth operation of the intelligence cycle, analysis and

production. Within this particular operation, the analyst must assimilate multiple

disparate pieces of information in order to produce an “understanding encompass[ing] a

sophisticated knowledge of the threat and the physical, political, economic, and cultural

 4

environment in the area of operations” (United States Marine Corps, 2001). In conducting

this task, the analyst is responsible for acquiring the necessary information, analyzing its

content, synthesizing relevant information into a coherent picture, and using that picture

to assess the current situation and possible situations into the future. The analyst will start

by searching a database for information to answer their intelligence requirement. Once

complete, they then identify relationships among those disparate pieces of information,

bringing those relationships together in a way that generates a hypothesis about the

possible state of events. This hypothesis may then undergo critical analysis in order to be

built into an analytic assessment. If everything has gone well to this point, the analyst

will now be able to develop a final product, typically a report or briefing, which will be

useful to the decision maker or other analysts across the IC.

This thesis works to address analytic problems within the Marine Corps

Intelligence Community. Marine intelligence analysts often face several competing

priorities, which stem from the fact that they are both an intelligence analyst, as well as

United States Marines. In their role as Marines, the analysts must meet individual unit

and organizational responsibilities. In fact, Marine analysts have found that time spent

conducting collateral duties is the most common hurdle in performing their intelligence

responsibilities (Paul et al., 2011). In their role as an intelligence analyst, the Marine also

faces multiple competing intelligence requirements. These requirements often cover a

broad spectrum of topics, leaving the analyst with a finite amount of time to dedicate

towards any single piece of analysis, hindering any attempts to become true “subject

matter experts.”

Within the information retrieval community, an information need is an abstract

description of the information necessary to solve a searchers problem, arising “when an

individual recognizes that his/her current state of knowledge is insufficient to cope with

the task in hand, or to resolve conflicts in a subject area, or to fill a void in some area of

knowledge (Chowdhury, 2004, p. 194).” Expressing an information need as a small set of

critical search terms is naturally difficult, but made more so for the Marine analyst. The

Marine analyst is likely to be younger, less experienced, and less educated than nearly

any other analyst from other service branches or agencies (Department of Defense, 2012).

 5

These factors result in a reduced ability for a junior analyst to accurately define his

information need. Once this information need has been defined and a search has been

initiated, it is now up to the analyst to screen through the results. Quickly and accurately

screening for relevant documents among a set of search results is an essential skill for

every analyst. As an analyst gains experience and expertise, she can more efficiently and

effectively identify critical information and determine the value of that information

towards the information need. Again the young Marine analyst is relatively restricted in

their ability to conduct this task due to their comparative inexperience and lower

education levels.

I.E. OTHER EFFORTS

The problems discussed above are by no means new to the Intelligence

Community. Specifically, stovepiping and lack of collaboration have seen many

evolutions of technology to address these issues, as seen in Figure 2.

Figure 2. Intelligence Community Technology Responses to Stovepiping and

Information Overload

 6

Despite this continued adaptation, these models have not yet found satisfactory

solutions within these two problem spaces. Solutions to stovepiping are presented

through collaborative tools such as e-mail, chat rooms, and community webpages each

still have their own limitations. Namely, each is a collaborative support tool, not a

collaborative exploration tool. An analyst must already be connected to other analysts in

order to use these tools, but the analyst still has no way of finding other analysts who they

share intelligence problems with. Solutions to the information overload problem have

seen three distinct generations of technology solutions. The first technology solution was

the classified internet search engine, known as Intelink, meant to allow for any analyst to

be able to search the classified internet for intelligence. Intelink relies heavily on

Google’s PageRank algorithm, which assumes a structure of hyperlinked documents.

This is remarkably effective over the world wide web, and remarkably ineffective over

intelligence databases which lack such a hyperlink structure. The next generation of

technology incorporated big data analytics, where algorithms and statistical methods

could be applied to a large set of intelligence reports in order to extract previously unseen

information. For example, social network analysi s could be applied to identify a terrorist

network based upon communications intercepted between individuals. Recently the

Intelligence Community has begun to push these algorithms towards complete

automation, removing the human from the analytic loop entirely. However, this type of

automation is only effective within a narrow class of intelligence problems where

patterns are known and established, thus not the silver bullet solution some see it as. This

type of automation may shift the core analytic skill set shift away from creative, critical

analysis towards watch desk alert-monitoring. The popular military technology blog,

c4isrnet.com, penned a recent article focusing on intelligence analytics in the military.

John Edwards succinctly details several of the competing forces at play in the world of

intelligence analytics. According to Edwards:

Algorithms are optimal for forecasting known patterns, while analysts are

vital for considering whole new types of data, use cases, and contexts not

considered in the construction of the algorithms themselves, which is

especially important in a dynamic time-sensitive environment. (Edwards,

2014)

 7

I.F. THESIS OVERVIEW

Chapter II will introduce the information retrieval and recommender systems

research communities. Our work, though inspired by operations research, contains

significant overlap with ongoing efforts in each of these fields. Chapter III will then

present our model for developing a group of similar users, and how that information can

be used to influence search engine results. We introduce the document and query data

used to build and test our model in Chapter IV. Chapter V discusses how our model is

translated into software built upon the Lucene™ open-source search engine. We also

present the graphical user interface developed to support our software. Chapter VI

presents the analytic experiments conducted to evaluate the effectiveness of our

modeling. We first analyze the theoretical approach towards using human ratings in

search. We also conduct model parameter analyses in order to develop a more complete

understanding of how our model influences standard search engine results. A robust

design method shows near-optimal use of the model. Finally, Chapter VII considers our

body of work in whole, summarizing our efforts, results, contributions and future

research.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. Background on Information Retrieval & Recommender Systems

II.A. INFORMATION RETRIEVAL

At its core, information retrieval (IR) is simply the set of methods we use to

access a single piece of information from a collection of information. Basic information

retrieval uses unstructured information (e.g., documents, videos, images, books, or other

forms of data), and structured information contained within a database where the

information is stored in a well-structured way and can be accessed via a lookup index.

The index is a means of storing and accessing information using some common

characteristics among that information, such as a book’s title or date of publication. A

user inputs a term or set of terms, known as a query, in an attempt to retrieve a specific

piece of information located within the database. A user’s query is driven by her

information need, which is the user’s understanding of the type of information needed in

order to resolve her specific problem. An IR system allows a user to find information

relevant to her information need, with varying levels of effectiveness.

Creating an IR system requires solutions to a number of complex problems. First,

the system designer must decide how to store and index the information, if at all. This

involves determining what pieces of information to use as the indices, such as the

information topic, a title, the chronological order of creation, or perhaps every word

contained within. Second, the method used to index must support how a user expects to

search for information. Problems quickly arise if the user is looking for a specific title,

but the information is only indexed chronologically. Third, the designer must then find a

way to support querying of the information. Of course, it is necessary to query the index

itself in order to retrieve documents, but it’s likely that the user will want to retrieve

documents based also on the content of the information. Large, modern databases require

a computer-based system to store the information and look for any documents which

match the query. Finally, the system must also be able to handle query-specific problems.

These include queries which are too specific, too ambiguous, or which use an incorrect

synonym. An IR system attempts to address all of these difficult problems and many

 10

others not presented here such as image retrieval, cross-language information retrieval,

natural language queries, and semantic searching.

These problems have grown in complexity in recent history as the amount of

information available to humans has increased exponentially. As of 2013, over 90% of

the world’s data had been generated in the last two years alone (Dragland, 2013). IR

began in libraries, which, until the age of the internet, served as some of the largest

information databases in the world. In 1876 Melvil Dewey created the Dewey Decimal

Classification, assigning three-digit numerical codes to collection items as they were

added, based off their topic. The three-digit numeral can then be expanded with decimals

to capture sub-topics and other information important to the database. Although relatively

simple to understand and implement, this method quickly proved obsolete due to the fact

that items are only accessible via a single subject. According to this indexing method,

books and articles which crossed topics had to be redundantly located else only one of the

topics will be able to store it. In 1951, Mortimer Taube developed a list of terms, known

as Uniterms, to index a document. Items were then retrieved using a series of punch cards

fed into a machine reader (Taube, 1951). The keyword indexing method spawned the

field of IR as we know it today. Into the 1950s and 60s, the incorporation of machines

and the computer into IR expanded quickly along with the methods used to index,

retrieve, and rank results. The ubiquity of the internet spawned the next era of IR with an

ever-expanding database beyond any collection size previously considered. The problem

now wasn’t that it was too difficult to find information in general, it now became too

difficult to find the precise information the user was looking for. For example, in one

study of more than 20,000 search queries researchers found that, on average, Google

delivered at least one result worth selecting only 48 percent of the time (Towers, 2012).

In other words, in 52 percent of cases, searchers chose to select none of the results

returned . The vast size of the internet required new and innovative methods for

information storage, retrieval, and ranking of results.

The field of IR is populated today with a variety of methods, some public and

some proprietary, each with its own strengths and weaknesses. Ultimately, there is no

single IR system which is optimal for all databases and situations, thus allowing for

 11

separate and distinct modeling approaches in IR. IR systems have traditionally been

divided into three model categories: Boolean, vector space, and probabilistic models.

Since our work depends upon these models, we present them below.

II.A.1. Boolean Models for Information Retrieval

Boolean models operate off the principles of Boolean logic which have three

basic comparison functions; AND, NOT, and OR (Chowdhury, 2004, p. 172). Each

comparison function returns a value of true or false, depending on how the objects being

compared relate to each other through the function chosen. The Boolean retrieval model

requires the user to input a query with the exact combination of terms and Boolean

relationships for which the user wishes to return documents. For example, if a user was

searching for information related to a new North Korean aircraft, they may be required to

develop a query which looked something like the following: north AND (korea OR

korean) AND (aircraft OR airplane OR plane OR jet) . This query requires that the term

north is contained within the document, along with at least one of the terms from both

sets of OR-related terms. A readily identifiable problem with this method is the

requirement for the user to consider all possible terms which could relate to their

information need. In this instance, the query includes four explicitly defined terms just to

access information related to a single topic, that of an aircraft. This is due to the problems

of synonymy and polysemy. Synonymy occurs when multiple words refer to the same

thing, such as in our example when an aircraft could be described as an airplane, plane, or

a jet, depending on the originator of the document. Polysemy occurs when we have a

word with multiple possible meanings, again found in our example with the word plane,

which could also refer to a flat two-dimensional surface. These problems can be

mitigated through a very skillful and knowledgeable user of the IR system, but the

average user will likely fall victim to synonymy, missing out on critical documents.

Conversely, polysemy may take over, thus receiving results much different than what was

intended—perhaps a North Korean student’s geometry textbook for the above example.

The standard Boolean retrieval model also suffers in that the system does not try

and determine which result best suits the users query, only returning a non-ranked list of

 12

documents which match the users query expression. Advanced methods were developed

to accommodate ranked results, but it soon become apparent that other models were

necessary in order to achieve greater retrieval effectiveness.

II.A.2. Vector Space Models for Information Retrieval

In order to understand both vector space models and probabilistic models, we

define some common IR terminology. Term frequency is the number of documents a term

 appears within, . Inverse document frequency gives a measure for the uniqueness of

a term within a collection via the equation

, where is the number of

documents in the collection (Manning, Raghavan, & Schütze, 2008, p. 118). A word that

appears often within a collection likely tells us less about the contents of a document

within that collection than a word that appears less often. Consider a collection of

intelligence documents wherein the word ‘weapon’ is compared to the word ‘rifle’. Many

more documents within the collection will likely contain ‘weapon’ (,

) and so instances of ‘weapon’ tell us less about the contents of the

document than if the document contained ‘rifle’. The vocabulary is the set of all terms in

the collection. In IR, it is common to assume that a document is a bag of words, assuming

no order of terms within the document, representing the document as a subset of the

vocabulary. Some IR systems do not make this assumption, for example, the Markov

random fields model for IR, introduced in Section II.A.4. It is often useful to reduce the

vocabulary set through stop words and stemming. Stop words are words that are known to

have little to no value in terms of content or retrieval, such as ‘then’, ‘always’, ‘this’, etc.

Stemming is the shortening or adapting of different forms of the same word into just one

representation of that word, such as the adaption of the words ‘approaches’,

‘approached’, and ‘approaching’ into the word ‘approach’. Non-intuitive stems are also

common, such as ‘production’ and ‘produced’ stemmed into ‘produc’ instead of the

alternative stem of ‘product’, which has a different intended meaning.

Vector space models view documents and queries as vectors of the vocabulary,

with coordinates of the vector indicating the occurrence of a word within that document

or query (Chowdhury, 2004, p. 176). The Boolean model can be replicated by valuing the

 13

document vector entries as binary for whether or not a document contains a given word.

However, the entries can also be valued through their value, giving a method

for scoring a document based on how well it matches a query. The document score can be

computed in a number of different ways by comparing the document vector to the query

vector. For example, one simple way to compute this is through a dot product between

the two vectors, then giving a vector similarity score for the relevance of each document

to the query. The documents can then be presented in descending order, allowing for

ranked retrieval of documents. The vector space model was improved through

developments such as Latent Semantic Indexing (LSI), in which the model utilized

semantic properties of the document in order to reduce the dimensions of the vector

(Chowdhury, 2004, p. 179). This is done by abstracting the vocabulary away from

particular words and instead into latent concepts which the words are intended to

represent. For example, ‘airplane’, ‘jet’, ‘plane’, ‘airliner’, would all be abstracted into a

single concept such as ‘fixed wing air vehicle’.

II.A.3. Probabilistic Models for Information Retrieval

The main approach in this thesis is based on probabilistic models. All

probabilistic models are centered on the Probability Ranking Principle (PRP), which

states:

If a reference retrieval system’s response to each request is a ranking

of the documents in the collection in order of decreasing probability

of relevance to the user who submitted the request, where the probabilities

are estimated as accurately as possible on the basis of whatever

data have been made available to the system for this purpose, the

overall effectiveness of the system to its user will be the best that is

obtainable on the basis of those data. (van Rijsbergen, 1979)

The PRP aims at returning only the most relevant documents, , in a decreasing

order of relevancy probability for a particular query, . The random variable is a

binary-valued, representing the likelihood that a document is relevant to a query;

means that a relevant document has been found and means that a relevant

document has not been found. The probability that a document is relevant for a query

 is then given by . Conversely, we can represent the probability that a

document is not relevant to a query using .

 14

The actual forms of and how those random variables are converted into

probability equations, , are unique to the type of

probabilistic model developed. See (Croft, 1998; Manning et al., 2008; Robertson, 1994)

for some of the most common probabilistic models and their retrieval algorithms. Our

approach is based on a distinctly different probabilistic model, the Markov random fields

model for IR.

II.A.4. Markov Random Field (MRF) Model for IR

II.A.4.a. Graph Structure

MRFs are a method to represent joint probability distributions in an efficient

manner, using a graph structure (Koller & Friedman, 2009). Nodes of the graph represent

random quantities and edges represent dependence among those quantities. The model

takes advantage of the Markov property, which states that a node in an MRF is

independent of any non-connected node, given an observed value for its connected node.

The MRF Model for IR (Metzler, 2007) represents the joint distribution of document

relevancy and a sequence of query terms. Specifically, the random quantities are , a

binary variable indicating the relevancy of the document, , a random quantity indicating

the document itself, and , a sequence of query terms often described

through a single vector-valued random quantity . The joint distribution computes the

total probability of relevancy, in order to return only the

most relevant documents. Within the MRF, node represents a single document, with

the terms contained in the user’s query represented as individual term nodes,

 . For this IR model, the MRF computes which is a

function of and only. Therefore, the number of nodes in the MRF model for IR is

one plus the number of terms in the query. Probability distributions can then be

associated with each clique of nodes. The query term nodes have possible states

described by the database vocabulary . Similarly, the document node has possible states

described by the documents contained within the database. The MRF model includes

edges between the document node and each query node. Maximal cliques are the largest

grouping of nodes where each node has an edge to all other nodes in the group. There are

 15

now three options for modeling dependence between query terms via the connected

edges, as shown in Figure 3. (Metzler, 2007). Section II.A.5 presents a small example to

illustrate these random quantities, but we first build the remaining theoretical framework.

Figure 3. Modeling Query Term Dependence within the MRF model for IR.

(Maximal Cliques) Full Independence (FI) (left) adopts the bag of words assumption in

which term order has no role. Sequential Dependence (SD) (middle) allows for single-

pair ordering of terms, Full Dependence (FD) (right) considers all possible ordered

dependencies.

Table 1. Summary Description of Query Term Dependence Structures

Each option contains particular assumptions about the structure and relationships

of the query terms. These assumptions are formally depicted in Table 1. (Metzler, 2007).

The Full Independence (FI) model assumes that each query term is independent of the

others, given the document node. This option is clearly the simplest in terms of

representation, but may not accurately reflect the dependence of query terms input by the

user. This is contrasted by the Full Dependence (FD) model, in which all query terms (or

as restricted by a window size) are assumed to be dependent. This model may be overly

complex, but it does allow for the most accurate representation of the real world

dependency relationships between query terms. These two extreme models are

Model Name Description of Dependence Formal Description

Full Independence (FI)
Query Terms Independent, Given

Document Node

Sequential Dependence (SD)
Neighboring Query Terms Dependent,

Given Document Node

Full Dependence (FD)
All (n) Query Terms Dependent, Given

Document Node

 16

compromised through the final model, Sequential Dependence (SD). This allows for

dependency between sequential terms in the query, thus representing the assumption that

the strongest dependencies exist between adjacent query terms.

II.A.4.b. MRF Model for IR Probability Functions

With the graph, G, constructed according to which dependency assumptions are

made, we may now direct our attention towards computing the joint probability mass

function (PMF) for the MRF, . This function makes use of query term

nodes Q, document node D, and parameter vector Λ. The vector Λ will be used to control

weighting parameters to be considered in the final probability mass function. The PMF

considers whether a relevant document has been found or not, , across all

possible documents and all possible query terms. However, when we instantiate this

function with a particular document and a particular set of query terms, we are left with a

function for the probability that a document is relevant to a query . For brevity, we

now refer to as . This function can now be considered as a

scoring equation to be evaluated for each document based upon the query terms

contained within that document.

Due to the structure of MRFs, we represent the document relevancy probability

joint distribution as the product of potential functions, defined over the maximal

cliques, , of the graph (Equation 2.1). The scalar may serve to normalize

the joint distribution using the parameter vector .

∏

 (Equation 2.1)

Metzler’s IR model takes a novel approach towards constructing potential

functions using feature functions defined over sub-cliques of the maximal cliques. A

feature function, takes as input a specific clique type, such as a single ‘document-

to-term’ pair or a ‘document-to-term-to-term’ triple. From this input, the feature function

outputs a probability for how likely this document is relevant to the query, based off the

status of the nodes within the clique, . The features are weighted by the parameter, , in

 17

order to control the influence of each feature function. These functions can be defined in

creative and novel ways to also allow for other relevancy algorithms, and this adaptability

is one reason for our use of the MRF model for IR. The process of defining the MRF

model for IR potential functions, , with multiple possible feature functions, , is

defined in (Metzler, 2007). The first step is to group each clique, in the graph, ,

according to the types and relationships of the nodes it contains. Once categorized, clique

type-specific feature functions, and weights, , will be assigned to each clique.

The cliques are then grouped into their parent maximal cliques, , conditional on the

term-dependency structure selected. The maximal cliques are dependent on the structure

(FI, SD, FD). For the FI model, the cliques are defined by the set { }, where

contains only the document node, contains only single query nodes, and contains

single document-query term nodes. The set of cliques within the SD model contains

ordered query term nodes, , and ordered document-query term nodes, . The FD

model cliques contain unordered query term nodes, , and unordered document-query

term nodes, . This allows removing the bag of words assumption made for other

common probabilistic models. Finally, for each maximal clique, the potential function is

defined as:

 (∑

)

 (Equation 2.2)

where
 denotes the set of cliques within the maximal clique

By defining the potential functions as exponential functions, we now represent the

joint distribution (Equation 2.1) as the sum of feature functions defined over sub-cliques

within each maximal clique (Equation 2.3).

 18

 (Line1)

(Line2)

 (Line3)

 ∑

∑

∑

 ∑

∑

 ∑

 ∑

We then end with a rank-equivalent function for document relevancy scoring

(Equation 2.4).

 ∑

∑

∑

∑

∑

 ∑

 ∑

This final ranking function is a “simple weighted linear combination of feature

functions that can be computed efficiently for reasonable graphs” (Metzler, 2007). Each

line is intuitively defined. Line 1 captures the relationships between query terms and the

documents in our database (e.g., the “representativeness” of the document by the query

term(s)). Line 2 provides a measure for evaluating the importance of the query terms

within the overall collection and how compatible query terms are together. Line 3 gives a

means to evaluate the prior relevance of a document, in the face of no other known

information. This can be interpreted as document bias, which can exist for any of several

rank

(Equation2.4)

(Equation 2.3)

Document + Query Dependent

Query Dependent

Document Dependent Document + Query Independent

 19

reasons, depending on the type of documents and context with which the IR system is

implemented. The allowance of this explicit a priori document relevance is another

foundational reason for our use of the MRF model for IR. Our work extends the basic

model using prior document relevance based off similar users who have rated a particular

document as relevant.

II.A.5. Example MRF Model For IR

This small example illustrates some features of the MRF model for IR. We

consider two documents, and a set of query terms from an earlier example,

 . The documents each contain a set of ordered terms,

containing , and containing .

We consider the MRF Model for IR Full Dependence (FD) model, given in Figure 4.

Figure 4. Example Full Dependence MRF Model for IR

Our example then contains the following query-document cliques:

 {

} ,

 {

}

 {

}

For each type of query-document clique , this example assumes three equally

weighted, binary-valued, feature functions, {

 }, that evaluate the

relevance of document with respect to the query term nodes . The first feature

function,
 , evaluates single term document relevancy, one if the document

 20

contains the term, zero if not. The second feature function,
 , evaluates sequential

term relevancy, one if the document contains the precise sequence of terms, zero if not.

The third feature function,
 , evaluates unordered term relevancy, one if the

document contains all terms, zero if not. For instance,
 is one, but

 is zero since does not contain the term . Given this

set of cliques, the final ranking function for each document and set of query terms

 is:

 ∑

∑

∑

[

 (

)

 (

)

 (
)]

Evaluating each document across query terms and cliques, we find the following

results where has higher non-normalized probability ranking:

 [

]

 [

]

II.A.6. Evaluation of Information Retrieval Systems

In Section I.D we presented how difficult it can be for a user to express their

information need in a small set of query terms. Similarly, evaluating how well the

returning documents match that user’s information need is also inherently subjective.

However, standardized methods of evaluation were required to be developed in order to

attempt to remove the subjectivity and be able to identify improvements between IR

systems. Additionally, test collections of documents were needed to support these

rank

rank

rank

 21

evaluation methods. Manning, et.al, discusses three critical elements of a retrieval system

test collection (Manning, Raghavan, & Schütze, 2008):

1. A document collection

2. A test suite of information needs, expressible as queries

3. A set of relevance judgments, standardly a binary assessment of either

relevant or nonrelevant for each query-document pair.

Chapter IV presents the data set containing the test collection used for our model

evaluation. In addition to the test collection, an IR system must use measures of

effectiveness for system evaluation. Precision is the proportion of returned relevant

documents across all the returned documents.

[MOE 1:Precision]

This contrasts with recall, which is the proportion of returned relevant documents

across all relevant documents contained in the collection.

[MOE 2:Recall]

Precision is a measure of how efficient the system is, whereas recall is a measure

of how effective the system is. An ideal IR system would handle both MOEs

appropriately, but often an increase in one results in a decrease in the other. For example,

we can return every single document in the collection as a result of a query, thus giving

perfect recall but very poor precision. Alternatively, we could return only the single top-

ranked document for a particular query. This document would likely be relevant, and our

precision would be perfect, but we would also have very poor recall in missing all the

other relevant documents in the collection. Chapter VI will address the ideas of false

positives (FP), a document which has been claimed relevant which actually isn’t, and

false negatives (FN), a document which has been assessed non-relevant which actually is

relevant. Precision and recall, while valuable, are often too simplified when used for

evaluating modern, ranked retrieval systems. Therefore, we elect to use more advanced

measures which are popular within the IR and recommender systems (RS) communities.

 22

We first consider Precision At k (P@k). P@k considers a recall level represented

as particular top-ranked number of results, , and then finds the precision within that

subset of returned documents, . For instance, if the user was only to look at the top ten

results which contained only three relevant documents, then . Since most

users of IR systems only look at the first page of results, this measure has been shown to

be correlated with user satisfaction of an IR system (Al-Maskari, Sanderson, & Clough,

2007). For this reason we use P@10 for our evaluation. However, P@k requires setting

the allowable recall level, which can skew the evaluation of a system which may have

good precision at higher-than-normal recall levels.

[MOE 3: Precision at k Documents]

In light of this weakness, a related but more aggregated measure emerged

(Manning, Raghavan, & Schütze, 2008, p. 158). Mean Average Precision (MAP)

provides a single score which represents a value across multiple levels of recall, or ’s.

MAP is commonly used in TREC evaluations, and we adopt it within our evaluation.

MAP considers a set of individual queries, , the corresponding set of truly relevant

documents for that query
 , and the set of the top ranked results, , for

that query. The precision is then averaged over all the queries, normalized for the number

of queries.

∑

∑

[MOE 4: Mean Average Precision]

II.B. RECOMMENDER SYSTEMS

Our work intersects between IR and the field of recommender systems (RS), in

which a user is recommended certain items contained within the system. These

recommendations are formed from a profile of the user’s preferences for items. Despite

overlap between IR and RS, recommender systems differ from information retrieval

systems in one distinct way. An IR system requires the user to input a query, and from

that query the system scours the database to generate an ordered ranking of relevant

 23

items. A recommender system instead collects information about the user, explicitly or

implicitly, and then generates a potentially ranked set of relevant items from that user-

specific information. However, the ultimate goal for both systems is to find relevant

items for the user. If a prototypical example of an IR system is the Google search engine,

two prototypical examples of recommender systems are Amazon’s product

recommendation system and the music service Pandora music recommendation system.

Due to their relatively recent emergence in the mid-1990s, recommender systems serve as

a fertile ground for exploring their application within the information retrieval realm

(Ricci, Rokach, Shapira, & Kantor, 2011).

Many new concepts within the RS community are quickly being absorbed into the

IR community and equally, several of the proven IR methodologies have provided

foundational knowledge for the RS community. The graying between these two

communities is where our work hopes to contribute, and in doing so we hope to also

benefit the Intelligence Community. Chapter 18 of the Recommender Systems Handbook

(Ricci et al., 2011) unknowingly provides an excellent definition for the challenge of any

modern intelligence analysis tool, “The … convergence of recommender systems and

search systems (IR)… would result in highly satisfied users receiving the right

information at the right time.”

II.B.1. Recommender System Models

There are two distinct approaches towards recommender systems; Collaborative

Filtering (CF) and Content-Based Filtering (CBF). CF compares a particular user’s

preference to other similar users, then recommends items based off the items that similar

users found relevant (Koren & Bell, 2011). Amazon recommendations work in this exact

way, by telling you what other users bought, based off the fact that you and another

user(s) bought a certain item. While CF puts the focus on system users, CBF instead

focuses on the items within the system. CBF recommends items which are

characteristically similar to an item that the user has an identified preference for. Pandora

music recommendations occur in this way, basing song recommendations on the

 24

characteristics of the music that the user prefers, as defined by an example song, artist, or

album. Our work falls in line with traditional CF, due to the advantage that CF requires

no knowledge of the items within the system.

Recommender systems rely on at least one of two types of feedback in order to

capture user preferences. Implicit feedback uses user behavior information in order to

infer a user’s preference for certain items within the system. Explicit feedback, also

known as a rating, requires direct user interaction to the system so that the system knows

with certainty what the user’s preference is. Users are then represented with a user model,

which could contain many types of user-specific information. CF recommender system

user models commonly contain a vector of the user’s preference for items, as discovered

through that users feedback. This vector contains all possible items as elements, with the

values capturing the strength of a user’s preference for that item. Regardless of how the

user model is defined, the system must now find a way to recommend new, previously

unseen items

There are many approaches towards generating an item recommendation. One of

the simplest and earliest is through the neighborhood approach, where a similarity

neighborhood is built containing users of the system who are similar to the current user.

Predicted item ratings are based on the previous ratings of other similar users, weighted

by the strength of the similarity between the current user and the other user who rated that

item. Figure 5 depicts such a neighborhood. Edges are colored by the type of weight

placed on them. Line thickness indicates higher or lower weight values upon the edge.

Ultimately, the most relevant document for either model will be that has the greatest sum

of weighted neighbored edges.

 25

 User Similarity

 Predicted Ratings Previous Ratings

Figure 5. Neighborhood Modeling Approach;

Line thickness indicates user preference; The black document has a higher predicted

rating for the user due to the higher ratings provided by other users.

II.B.2. Collaborative Filtering Model

In presenting formal CF modeling, we adopt the annotation provided in (Ricci et

al., 2011). We have a set of explicit feedback ratings provided by users,

 of the system containing items, . The

rating defines the preference of user to item . Rating may take on any range of

values, but for simplicity we assume to be valued between [0,1]. We then want to

provide predicted relevancy values between a user and nonrated items, denoted ̂ . The

set contains all items which a user has previously rated. Similarly,

the set contains the ratings, or lack thereof, of item by all the users of

the system.

The nearest neighbor approach calculates an item’s predicted rating from the

previous ratings of the most similar users, or the set . The users

contained within are drawn from those users with the highest similarity over all of the

system users, as calculated from some similarity measurement, ́ . This

measurement must take each user’s user model as input, and output a value for how

similar the two users are. If, as described above, the user model is simply a vector

representation of the users preferences, then the similarity measure could then be some

type of vector angularity measurement. Regardless of how similarity is computed, once

 26

the set has been built, a predicted rating for item can be calculated. To do this, the

users average baseline ratings, ̅ is added to the average rating provided by the

similar users. This predicted rating is regularized for both user similarity in ́

and user rating bias in ́ ̅ ́ .

 ̂ ̅

∑ ́ ́

 ∑ ́ ̅ ́

 ́

 ́

 (Equation 2.7)

(Ricci et al., 2011, p. 163)

Recall that alternative similarity measures are also possible, allowing for

similarity measurements unique to the application at hand. In Chapter III we propose just

such an application-specific similarity measurement which uses both the users previous

search behaviors and the users characteristic profile in order to generate inter-user

similarity.

II.B.3. RS Model Evaluation

Evaluation of the effectiveness of recommendation systems are notoriously

difficult due to the focus on modeling a specific user’s latent preferences, something

which can only be known, often subconsciously, to the user herself. Traditional IR

evaluation measures such as precision, recall, and Mean Average Precision (MAP), will

likely not provide a holistic evaluation of just how effective the final recommendation

system is. Therefore, user-centric metrics are recommended such as recommendation list

similarity, recommendation serendipity, and the subjective matching of user needs and

expectations (Ricci et al., 2011). For the introductory purposes of our work, we do not

consider these user-specific effectiveness measures, instead leaving this area open for

future work.

II.B.4. Recommender Systems Inclusion into MRF Model for IR

Our approach in using recommender systems is to utilize the recommendations as

a critical component of our information retrieval model. We are not trying to just

recommend items to a user, as in traditional RS. Rather, we use the strength of document

recommendations to increase the probability of relevancy for that document, given a

 27

particular user and their query. If a user queries a database for information, the returned

information should be guided largely by three pieces of evidence. The first is the most

obvious, the relationship between the query and the documents within the database, as

provided in traditional IR systems. The second is the preferences of the subset of users

which are similar to our particular user, as in collaborative filtering recommender

systems. These preferences can be generated explicitly, i.e., a similar user identifies

particular documents as relevant to them and their information requirement, therefore

those documents will likely be relevant for other similar users. Alternatively, preferences

can be generated implicitly (i.e., a user clicks on a particular document and views it for a

long period of time), thus we infer that the document is relevant to them. The third is the

comparative contextual metadata attached to the documents, such as the date and location

of the report, the summary content contained in the report, etc., as in content-based

filtering recommender systems. We use the MRF model for IR because each of these

pieces of evidence can be viewed as distinct feature functions to be evaluated for each

document in determining that documents probability of relevancy. Further, we can weight

each component in order to develop a personally optimal information retrieval system

based on the type of the users information need. For example, if the user wishes to

receive query-independent content recommendations, we would merely set the query

feature function weights to zero. Alternatively, if the user wishes to receive standard

results ranking documents based on the query terms, we then set both the contextual

information and the user similarity weights to zero, thus giving us a traditional IR system

model. The form of these RS-derived feature functions will be discussed in detail in the

following chapter.

II.C. PERSONALIZED SEARCH

The fields of information retrieval and recommender systems have both made

progress in the area of personalized search, and our work hopes to contribute to this

intersection. Generally, documents are re-ranked after a query, based on information

which is unique to that user. This information stems from some form of context

surrounding the user, the query, or both. The recommender systems community is, by

definition, a form of personalized search. Recommendations are provided to the user

 28

based off their connection to other users, as in collaborative filtering, or their connection

to the items in the database, as in content based filtering. However, personalized search is

a relatively new addition to the information retrieval community, with two distinct areas

of active research. The first is user profiling, where a profile is constructed based on the

users’ interests. This profile is then considered when ranking documents, alongside the

users query (Hawalah & Fasli, 2011) (Sieg, Mobasher, & Burke, 2007). The second line

of research concerns contextual information surrounding the user and the query. This

contextual information usually came from either previous user queries or from previous

user browsing behavior. Regardless, all of the current IR approaches known to the

authors only allow for personalized search to affect the search through query expansion

or re-ranking the documents after a standard query search has been performed. We

propose conducting personalized search within the initial document relevancy calculation

utilizing the MRF model for IR. Two distinct advantages come from this method. By

setting the query-dependent weights within the model to zero, we can provide a query-

independent document relevancy based only on the user’s profile. Additionally, we have

a computationally compact method of calculating relevancy, as the inclusion of user

profile information entails only the addition of a small document prior function to the

existing retrieval model.

II.D. SOCIAL SEARCH

Our work is also similar to the social search field. Social search extends the

research of collaborative search, in which a team of users collaborate in their searching

effort in an attempt to resolve a common information need (Morris, 2013). Previous work

has required that distinct communities of like-minded users will be generated, with new

users attaching themselves to one such community (Briggs & Smyth, 2008). Social

search instead focuses on implicit methods for creating personalized search results using

a network of collaborators. The contributions of these collaborators can be either

explicitly or implicitly defined. Privacy concerns in the commercial sector have shied

away from conducting direct user-to-user comparisons and data collection in order to

 29

generate these networks. However, it is precisely these connections which we wish to

model and capture within the Intelligence Community. Additionally, these connections

will inform the personalized search results for the current user of the system.

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

III. The Model: Cairn

III.A. MODEL OBJECTIVES

Our project has two objectives designed to address the deficiencies noted in

Section I.A. First, we want to connect analysts with similar interests, behaviors, and

intelligence requirements. Second, in finding this network of similar analysts, we want to

support better information searching. Our model leverages the prior document ratings

given by those users similar to the current user in order to more effectively deliver

documents to the current user. Accomplishing these objectives serves to increase the

capability of each analyst within the IC. Analysts with limited expertise will be able to

benefit from the ratings and implicit recommendations provided by the community of

other, more experienced analysts. Recommendations are built using the previous ratings

of other analysts. Analysts with greater expertise may not want to be influenced by

recommendations of less experienced analysts, but they are able to explore a network of

analysts with similar interests and behaviors. This allows them to expand their analytic

scope and develop collaborative analytic products beyond the normal intra-organizational

and topic-specific boundaries.

We have labeled our project Cairn. Existing since the prehistoric era, a cairn is a

stack of rocks which serve as a marker in order to identify a piece of territory. In the

modern era, they are commonly used by hikers in order to locate hard to find trails. The

stack continues to grow in size when passer-by hikers contribute a rock to the pile. We

adopt this concept as a thought model to inspire the essence of what our work intends to

accomplish. That is, each analyst is contributing to the greater knowledge of the

community of other analysts as they all attempt to fulfill their information requirements.

As with all proper military projects, we develop a concept-capturing acronym to

accompany this name, Collaborative Analyst Intelligence Recommendation Network.

 32

Figure 6. Cairn near Soberanes Canyon, Big Sur, California

III.A.1. Model Overview

In this section, we provide an English language overview of the benefits and

methods employed in Cairn. Specifically, we break down our English language overview

into four pieces: 1a) the benefit of identifying similar users, 1b) the method of identifying

similar users, 2a) the benefit of user similarity in document search, 2b) the method of

incorporating user similarity in document search. We conclude with some remarks on the

general applicability of our method.

If a model can identify analysts with similar interests, it would provide increased

cross-organizational analytic rigor beyond the current stovepipe-restricted capabilities.

For example, a Marine Corps analyst could connect with Army analysts to help analyze a

particular weapons system. Currently, collaboration is only conducted within an analyst’s

existing social circle—and it is difficult to discover new experts. An automated model

that can deliver a ranked list of similar analysts would directly address this limitation.

Cairn can provide such a list, and moreover, it can provide the list based on a user-

specified similarity criteria. Because a user can select the similarity criteria, she has more

control over and trust in the result of the model.

 33

To compute user similarity, Cairn employs a User Similarity Model based on user

profiles. These profiles digitally define the user, containing all available information

about the user, her interests, and her behavior when using the search model. Similar

profiles have been used in the recommender systems community, in order “to type

oneself [and their problems] into being.” (Sunden, 2003, p. 3). Given a database of users’

profiles, our model finds the set of users that have profiles most similar to the current

user’s profile. This concept of ‘most similar’ can be constrained, or scoped, by a portion

of the profile so that a user may find other users who only share that respective profile

portion. For example, a user could scope similarity to only find other users who are in the

same or similar organizations or have only typed in similar queries to her own.

Informing document search using a network of similar users provides multiple

benefits. One benefit is the ability to provide personalized content recommendations to

the current user derived from the content contained within similar user profiles. For

example, the model could recommend queries, documents, topics of interest, regional

areas of interest etc. This can be combined with the similarity scoping mechanism to

answer powerful questions such as, “What are the most popular queries among analysts

with similar areas of expertise?,” or “What documents are recommended by other similar

users within my unit or units similar to mine?.” A second potential benefit is that a search

model based on both a query and user similarity could provide better search results than

one based on a query alone.

Cairn incorporates user similarity in document search by creating a predicted

rating score for each document and each user. The predicted rating score is calculated

based on the frequency of the content within similar user profiles. One part of a user

profile are historical document ratings for that user—documents that the user has labeled

as relevant. These relevancy rankings are used to generate predicted ratings for

documents that the current user has never seen. The predicted rating score can be

combined with the score generated by a query-driven search model so that results are

ranked not only by how well the documents match the query, but also by how strongly a

document is rated by similar users. We term our method of generating predicted rating

scores as the document-ranking model.

 34

III.B. USER SIMILARITY MODEL FORMULATION

The user-similarity model (USM) develops a network of users to be used for

collaboration and to support the document-ranking model (DRM). The USM defines

three distinct portions of a user profile; biographical information, interests and

behaviors. A user’s biographical information remains stable, such as her name, contact

information, and organizations she belongs to. We combine a set of interests and

associated behaviors into an interest profile. A user will only have one user profile that

may contain multiple interest profiles, one for each unique intelligence requirement. An

interest profile contains information specifying a specific requirement, and the associated

search behavior—for example queries, relevant documents etc.

An intelligence requirement can be specified by a group of interests. Although the

list of possible interests could be quite large, we organize it using two basic

characteristics:

 Topics of interest: General interest areas for the intelligence requirement,

for example weapons systems, groups, or individuals

 Locations of interest: Geographic locations related to the intelligence

requirement, for example cities, countries, or geographic coordinates

Search behaviors are associated with a specific intelligence requirement. As the

user interacts with the search model to answer her intelligence requirement, she will

generate queries, viewed documents, and rated documents. There is a large set of

behavior data that could be collected. We consider the following subset:

 Previous queries

 Previously viewed documents

 Previously relevant-rated documents

Figure 7 shows a hypothetical user profile of Alice. Alice’s profile is separated

into her biographical information and two interest profiles. The first interest profile

describes an existing intelligence requirement focused on IEDs located in Sangin District,

Helmand Province, Afghanistan. The second interest profile describes a new intelligence

requirement focused on the status of the current opium harvest. Notice that her existing

interest profile contains previous queries, viewed documents, and relevant rated

documents, whereas her new interest profile does not.

 35

Name: Alice

Contact Information: alice@site.com

Organization: USMC – II Marine Expeditionary Force – 2d Marine Aircraft

Wing

Interest Profile 1:

 Topics of Interest: Ground Threats – Explosive Munitions –

Improvised Explosive Devices

 Locations of Interest: CENTCOM – Afghanistan – Helmand

Province – Sangin District

 Previous Queries: “RCIED”, “VBIED”, “PPIED”,…

 Previously Viewed Documents: “Report 1”, “Report 4”, …

 Previously Relevant-Rated Documents: “Report 4”

 Interest Profile 2:
 Topics of Interest: Economic–Drug Trade–Opium

 Locations of Interest: CENTCOM – Afghanistan – Helmand

Province – Sangin District

 Previous Queries: None

 Previously Viewed Documents: None

 Previously Relevant-Rated Documents: None

Figure 7. Alice’s User Profile

Given a model containing a set of profiles for users and their intelligence

requirements, we now calculate user-to-user similarity. Figure 8 presents an example

network of users which we utilize throughout our model formulation. Alice is the current

user of the model. Alice’s current interest profile describes her IED-focused intelligence

requirement. Based on this information, Alice is similar to only three other users: John,

Ruth, and Sally. Alice’s interest profile is highly similar to both Sally and John, whereas

Ruth and Alice have interest profiles which are only marginally similar. In the next

section we formally define how to compute this user similarity

 36

Bob Alice John

 Ruth Sally

Figure 8. User Similarity Model Network.

Edge type indicates the strength of the recommendation provided by the other

users for the current user (Alice).

III.B.1. User Similarity Model: Sets

 Set of users, these are all the analysts using the model

(Bob, Alice, John, Ruth, Sally in Figure 8)

 Set of user characteristics, each is a binary-valued property

about the analyst and their intelligence requirement. The set

of possible characteristics is defined by the model designer

and completely describes the biographical information and

interest profile of a user. The model designer controls the

level of resolution for possible user organizations, topics of

interest, and locations of interest. We call a characteristic

that is true of the current user as an active characteristic.

 Tree of characteristics, where each characteristic is a leaf

node in the tree. We organize the characteristics in

hierarchically (See Figure 9. . Each internal node (a node

with children), represents a group of characteristics. For

example, the Department of Defense (DoD) group includes

different organizations within the DoD. Alice is a member

of the 2d Marine Air Wing, USMC, and sets the

corresponding characteristic within the tree. In Figure 9,

Alice’s active characteristics are highlighted in green. The

figure is a small example, in practice, can be significantly

larger. Alice need only set a few of the characteristics in T,

those that describe her.

 The set of internal nodes of , each specifying a group of

characteristics. In the example, the set is defined by the

 Low Similarity

High Similarity

 37

following internal nodes:

Figure 9. Example characteristic tree.

The user characteristics are leaves of the tree. Internal nodes represent groupings of

characteristics. Alice’s characteristics, using her IED-focused interest profile, are the leaf

nodes highlighted in green.

III.B.2. User Similarity Model: Functions

 A binary-valued vector for a particular user and a

characteristic grouping (a subtree of). Each entry

in the vector depicts whether or not a characteristic, a leaf

node of the subtree rooted at is active for the user. Figure

10 provides an example for .

 For two users, , and a grouping ,

 () takes as input the users group

characteristic vectors, , and returns a value

Root

Organization

Department
of Defense

USAF USN USMC

II MEF

2d MAW

Topics of
Interest

Ground
Threats

Explosive
Munitions

Improvised
Explosive
Devices

Anti-Tank
Mines

Locations of
Interest

CENTCOM

Afghanistan

Helmand

Sangin

Marjeh

 Alice’s User Profile

Contained

Not Contained

 38

within , specifying how similar the two users are with

respect to the grouping . One way this could be defined is

using Jaccard’s similarity coefficient (Jaccard, 1912).

 For two users, , , takes a weighted

average of the group similarities to determine the overall

similarity between the two users.

∑

∑
, where are real number

constants determined empirically.

Leaf Node/Characteristic .

Org – DoD – USAF 0

Org – DoD – USN 0

Org – DoD – USMC 1

Org – DoD – USMC – IIMEF 1

Org – DoD – USMC – IIMEF – 2dMAW 1

Topics – Ground Threats 1

Topics – Ground Threats – Explosive Munitions 1

Topics – Ground Threats – Explosive Munitions – AntiTank Mines 0

Topics – Ground Threats – Explosive Munitions – Improvised

Explosive Devices
1

Locations – CENTCOM – Afghanistan 1

Locations – CENTCOM – Afghanistan – Helmand 1

Locations – CENTCOM – Afghanistan – Helmand – Sangin 1

Locations – CENTCOM – Afghanistan – Helmand –Marjeh 0

Table 2. , Vector of Characteristic Properties

III.C. DOCUMENT RANKING MODEL FORMULATION

The DRM uses the previously rated documents contained within the interest

profiles of similar users. A predicted document rating is provided for the current user

based upon three items: the degree of similarity between users, the previous document

ratings provided by similar users, and the quality of a similar user. The quality of a user

measures the level of trust a user should have for another user’s document rating. The

ratings of high quality users have greater impact on recommendations than the ratings of

 39

low quality users. The weight of a user is determined from analytic endorsements.

Analysts endorse other analysts for interest characteristics. An analyst that has been

endorsed many times for an interest is a high quality user for that topic.

Cairn computes a predicted rating as a sum over a network of similar users. A

document receives a predicted rating if the current user has not provided a rating, and if it

has been rated within the network of similar users. Figure 10 shows two predicted

document rating scores for Alice, based off the ratings provided by John and Ruth. Notice

that John’s document rating is considered above Ruths. This is because of two reasons:

Alice is more similar to John, and John has been endorsed and is thus deemed to have

higher quality ratings than Ruth. Though we focus on predicted document ratings, similar

methods can recommend other information contained in the user profile such as queries,

locations of interest, and topics of interest. In the following section, we describe how

Cairn computes these predicted document ratings.

Ruth Alice John

Doc1 Doc2 Doc3

Figure 10. Document Ranking Model Network.

Edge thickness indicates strength of user similarity and predicted document rating. Alice

is similar to both Ruth and John, but Doc 3 has a higher predicted rating than Doc 1 due

to Alice’s higher similarity to John.

III.C.1. Document Ranking Model: Sets

 ̅ Set of documents.

III.C.2. Document Ranking Model: Functions

 A real-number valued measure of the quality of user

 with respect to shared interests with user We define

a special subtree , which consists only of

User Similarity

Relevancy Rating

Endorsed Rating

Predicted Relevancy

 40

user interests. Let be a list of leaf nodes for the

grouping. Each user can endorse other users for expertise in

one of the characteristics in . For the user , is a

vector of integers of the same length as .

However, each entry is now integer valued, representing

the number of external endorsements received for a

particular interest area. We define as

 , the number of endorsements has

for interests. Figure 10 shows that John’s document

rating is weighted above Ruth’s for two reasons. John is

more similar to Alice and John has been endorsed.

 Describes the previous relevancy rating on a document

 ̅, as provided by a user . These are binary-

valued, .
 ̂ Provides a predicted document rating for user on

document Document scores are normalized to integrate

with the MRF Model for IR, given by

 ̅

 ∑

We compute the predicted document rating as

∑

III.D. INTEGRATING CAIRN INTO MRF MODEL FOR IR

Section II.A.4.b introduced the document ranking function—Equation 2.4, shown again

below for reference—for an MRF Model for IR. Recall that line 1 captures relevancy

between a document and query terms ; line 2 captures relevancy from query terms

alone; and line 3 captures prior relevancy from a document. The predicted document

scores from Cairn can be integrated into line 3.

 41

 (Line1)

(Line2)

 (Line3)

 (Line1)

(Line2)

 (Line3)

 ∑

∑

∑

 ∑

∑

 ∑

 ∑

The predicted rating , ̂ , is a relevancy score for a particular document,

given the current user. This serves as a document prior bias on the relevancy of a

document, . Integrating the predicted rating into line 3 produces a new document

ranking function dependent on the set of query terms, , and the current user, . We

weight the predicted rating score with a constant , determined empirically.

 ∑

∑

∑

 ∑

∑

 ∑

 ̂

This document ranking function maintains all the flexibility offered by the MRF

Model for IR. We can incorporate most modern query-matched score algorithms, and

integrate predicted ratings generated from the Document Ranking Model. A query-

matched score is a value between 0 and 1 returned by a search engine model that

measures the relevancy of a document for a particular set of query terms—in other words,

lines 1 and 2 above. Given this modeling structure, we can now test Cairn using a

rank

(Equation 2.4)

rank

(Equation 3.1)

 42

particular query-matching algorithm, a set of users, and a set of document ratings.

Chapter 4 discusses the data used for our model evaluation, while Chapter 5 presents the

software built to implement our modeling.

 43

IV. Data

IV.A. TIPSTER DATA

We use the TIPSTER dataset, provided by the National Institute of Standards and

Technology (NIST) (Harman & Liberman, 1993). This dataset was originally compiled in

1993 and still serves as a popular benchmark for testing and evaluating IR systems in the

annual Text REtrieval Conference (TREC). The Defense Advanced Research & Projects

Agency (DARPA) created TIPSTER in order to further the development of textual

analysis and document retrieval (Voorhees & Harman, 1999). TIPSTER contains both

government documents and news articles from sources such as the Federal Register, the

Congressional Record, the Department of Energy, the Wall Street Journal, the Associated

Press, and the Financial Times. Additionally, TREC has generated test queries and

associated documents relevant to each query.

IV.A.1. TIPSTER Documents

Each document is formatted similarly using XML-like fields. Each field contains

pieces of information pertaining to that document such as headlines, authors, bylines,

topic codes, story dates, etc. These fields are not always consistent across news sources

or even within a single source. However, there are two information fields common to all

sources that 1) uniquely identify particular documents (<DOCNO>) and, 2) collect the

document text (<TEXT>). Two example documents are presented in Figure 11.

 44

<DOC>

<DOCNO> WSJ870924-0053 </DOCNO>

<HL>

Service Tax Cited</HL>

<DD> 09/24/87</DD>

<SO> WALL STREET JOURNAL (J)</SO>

<IN> BOND MARKET NEWS (BON) </IN>

<DATELINE> NEW YORK </DATELINE>

<TEXT>

 Standard & Poor's Corp. said it placed the state

of Florida's double-A-rated debt on its CreditWatch list "with

negative implications.” S&P cited uncertainty over the fate of

the state's new tax on services. S&P said the move involves

$4 billion of debt as well as $260 ….

</TEXT>

</DOC>

<DOC>

<DOCNO> AP900101-0113 </DOCNO>

<FILEID>AP-NR-01-01-90 2049EDT</FILEID>

<FIRST>r i AM-BRF--Cuba-Castro 01-01

0167</FIRST>

<SECOND>AM-BRF--Cuba-

Castro,0171</SECOND>

<HEAD>Castro Says Cuba Will Remain

Socialist</HEAD>

<DATELINE>MEXICO CITY (AP)

</DATELINE>

<TEXT>

 Fidel Castro said Monday that nothing would

divert Cuba from socialism, indicating his government would

not be swayed by the reforms sweeping Eastern Europe, the

Cuban news agency Prensa Latina said. ``I am sure that we

have all the political and moral factors to confront any type

of problem and that nothing and no one will make our nation

backtrack on the road of socialism,'' the official news agency

quoted Castro as saying. The Cuban president spoke …

</TEXT>

</DOC>

Figure 11. Example TIPSTER Document Data.

Left; Wall Street Journal, Right; Associated Press Newswire. The two fields used in our

analysis are highlighted in bold.

In order for this dataset to be used for testing and evaluating, the documents must

be accompanied by sets of queries and related relevant documents. TREC provides test

queries on an annual basis, generating over 400 test queries to date. TREC also supports

research in information filtering, crowdsourcing, context suggestion, temporal

summarization, and many others (Text REtrieval Conference Web Site). Therefore,

 45

TREC creates topics, containing information beyond a simple query. Figure 12 provides

one such topic description, from which we use the <title> field in order to generate queries

used in our analysis.

<top>

<head> Tipster Topic Description

<num> Number: 051

<dom> Domain: International Economics

<title> Topic: Airbus Subsidies

<desc> Description:

Document will discuss government assistance to Airbus Industrie, or mention atrade dispute between Airbus

and a U.S. aircraft producer over the issue of subsidies.

<smry> Summary: Document will discuss government assistance to Airbus Industrie, or mention a trade dispute

between Airbus and a U.S. aircraft producer over the issue of subsidies.

<narr> Narrative: A relevant document will cite or discuss assistance to Airbus Industrie by the

French, German, British or Spanish government(s), or will discuss a trade dispute between Airbus or the

European governments and a U.S. aircraft producer, most likely Boeing Co. or McDonnell Douglas Corp., or

the U.S. government, over federal subsidies to Airbus.

<con> Concept(s):

1. Airbus Industries

2. European aircraft consortium, Messerschmitt-Boelkow-Blohm GmbH, British

 Aerospace PLC, Aerospatiale, Construcciones Aeronauticas S.A.

3. federal subsidies, government assistance, aid, loan, financing

4. trade dispute, trade controversy, trade tension

5. General Agreement on Tariffs and Trade (GATT) aircraft code

6. Trade Policy Review Group (TPRG)

7. complaint, objection

8. retaliation, anti-dumping duty petition, countervailing duty petition,

 sanctions

<fac> Factor(s):

<def> Definition(s):

</top>

Figure 12. TREC Example Topic.

We use the <title> field as a query for the topic.

IV.A.2. Relevancy Assessments

Each TREC-provided topic is accompanied by the set of documents that are

deemed as relevant for that query. These judgments are provided from a group of

assessors who view approximately 1500-2000 documents per topic. The relevancy

assessments are aggregated into a single file which lists the relevant documents for a

topic.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

V. Software

V.A. SOFTWARE DESIGN

We develop software which implements the modeling presented in Chapter III. In

addition to implementing the model, the software supports analysis of search

performance. The program is written in Java and Python and executes in both Windows

and *nix systems. We also present a prototype graphical user interface (GUI) as a

demonstration of a possible real world user-to-computer interaction. The remaining

chapter describes the set of executables that implement the software model.

V.B. PROFILER

The Profiler executable manages user profiles. It is used to create a new profile

database, add a new profile, modify an existing profile, or delete a profile. The profiles

within the profile database are encoded in XML format, as seen in Figure 13. Profiler is

written in both Java and Python and is dependent upon the Python package ElementTree,

an XML file handler. The command line arguments for Profiler are presented in Table 3,

along with a description of their meaning and an example usage.

CLI

Argument
Description Example

-I File Path to User Profile Database (New or Existing) -I “/system/usr/profiles.xml”

-U New User Name -U “Alice”

-N Binary, Is This a new profile database? -N

-A Binary, Are we adding a new profile to the database? -A

-C New User Contact Information -C “alice@site.com”

-O New User Organization(s) -O “USMC,IIMEF,2dMAW”

-G New User Geographic Area of Interest(s)
-G

“CENTCOM,Afghanistan,Helmand,Sangin”

-T New User Topics of Interest(s)
-T “Explosive Munitions,Improvised

Explosive Devices”

-Q New User Previous Queries -Q “RCIED,” “VBIED,” “PPIED”

-V New User Viewed Document(s) -V “report 1,report 4,report 5”

-R New User Relevant-Rated Document(s) -R “report 4”

Table 3. Profiler Command Line Arguments

 48

<userProfileSet>

<userProfile>Alice

<contact>alice@site.com</contact>

<character>

<org>

<unit1>USMC</unit1>

<unit2>IIMEF</unit2>

<unit3>2dMAW</unit3>

</org>

<geo>

<geo1>CENTCOM</geo1>

<geo2>Afghanistan</geo2>

<geo3>Helmand </geo3

<geo4>Sangin </geo4>

</geo>

<topic>

<topic1>Explosive Munitions </topic1>

<topic2>Improvised Explosive Devices </topic2>

</topic>

</character>

<behavior>

<query>

<query1>RCIED</query1>

<query2>VBIED </query2>

<query3>PPIED</query3>

</query>

<viewed>

<viewed1>report1</viewed1>

<viewed2>report4</viewed2>

<viewed3>report5 </viewed3>

</viewed>

<rel>

<rel1>report4</rel1>

</rel>

</behavior>

</userProfile>

</userProfileSet>

Figure 13. Example Profile Database

V.C. EXPLORER

The Explorer executable finds and scores similar users and then provides a ranked

list of predicted document ratings for the current user. The first portion of this process is

a Similarity Calculator. This compares the current user’s interest profile to all other

interest profiles, where the type of similarity can be controlled through a command line

argument. The second portion of the process is a Content Finder, where similar user

profiles are scanned for rated documents. The current implementation of our software

only provides predicted ratings, however it would be simple to provide recommendations

on other content such as queries, topics of interest, or similar organizations. The third and

final portion is the Predicted Rating Document Ranking, which develops a ranked list of

 49

predicted rating scores using ratings from database user profiles. Table 4 lists the

command line arguments for Explorer. The remainder of the section describes each of the

three processes executed within Explorer.

CLI

Argument
Description

-U Current User ID

-I File path to existing user profile database

-ALL [Default] Binary, Use entire profile to find similarity

-ORG Binary, Use organizations to find similarity

-CHAR Binary, Use topics & geography of interest to find similarity

-TOP Binary, use topics of interest to find similarity

-GEO Binary, Use geographic areas of interest to find similarity

-BEH Binary, Use all search behavior to find similarity

-QUERY Binary, Use previous queries to find similarity

-VIEWED Binary, Use viewed documents to find similarity

-REL Binary, Use relevant-rated documents to find similarity

-OS File path to output predicted ratingss

Table 4. Explorer Command Line Arguments

The Similarity Calculator first builds a vector representation of leaf nodes from

each user’s tree of characteristics. This vector contains only characteristics within the

selected similarity scope. User similarity is computed using vector dot product. Once

complete, we have a similarity score between the current user and every other user of the

model.

The Content Finder iterates over the list of similar users and extracts documents

ranked as relevant by any similar user.

The Predicted Rating Document Ranking generates a predicted rating for each

document extracted by the Content Finder. Figure 14 displays an example output at the

completion of Explorer.

 50

wsj880907-0111,1.0

wsj880112-0102,0.78

ap880322-0296,0.5

wsj910201-0041,0.48

wsj910610-0019,0.32

wsj911105-0088,0.3

wsj880323-0065,0.21

wsj870512-0048,0.16

ap880704-0023,0.15

wsj880321-0045,0.08

wsj920121-0016,0.02

wsj871130-0005,0.02

Figure 14. Example Explorer Predicted Rating Document Ranking Output

V.D. SEARCHER

The Searcher executable integrates a query-match score from an existing search

engine model and a predicted rating score from the DRM, returning a ranked list of

documents. The Searcher acts similar to traditional search engines, however it also

integrates the database of users and user similarity computations. Searcher employs

Apache’s popular Lucene™ open source search engine framework. It has been widely

used in applications ranging from Wikipedia to Netflix to Twitter (Lucene, 2013).

Lucene™ allows us to index very large collections of documents, query them, and

receive a query-matched score for each document. Table 6 describes the command line

arguments for Searcher.

V.D.1. Lucene™ Open Source Search Framework

Lucene™ is a Java-based library of open source software for implementing search

engine functionality. Combined with Solr, the web server-based Lucene™

implementation, it is currently the most popular and widely distributed search library,

becoming accepted throughout many of the most popular websites and desktop search

solutions (Lucene, 2013). One advantage of Lucene™ is its ability to take a large

collection of documents and rapidly create a distributed index. In the case of this

research, we use Lucene™ to index and search a collection of 750,000 documents on a

modern laptop (Windows 8.1 x64, i7 3517U 2.4 GHz, 8GB RAM). Another unique

advantage to Lucene™ is the ability to implement multiple popular IR algorithms.

 51

Finally, Lucene’s™ open source code can be manipulated to support many types of

extensions. Before we integrate Lucene™ into Cairn, there are several steps which need

to be accomplished.

The first step in using Lucene™ is to ingest the TIPSTER document dataset. For

our purposes, we store three pieces of information for each document: the document

name, the <DOCNO> TIPSTER data field, the document text, the <TEXT> TIPSTER data

field, and the predicted rating provided by the Explorer package. Before we can search

for documents, we have to choose a document ranking function for Lucene™.

Although it is not integral to our modeling, it is useful to understand how

Lucene™ calculates document relevancy from a particular query. We use the default

Lucene™ scoring model, which is a combination of vector-space models and Boolean

models, shown in Equation 5.1. This score equation is calculated for each document, ,

which matches each term, , contained in the query, . We quote the parameter

definitions for the scoring equation from (Hatcher, Gospodnetic, & McCandless, 2009)

 ∑

(Equation 5.1)

Parameter Description

 Term frequency factor for the term, , in the document, , i.e., how many times the

term to occurs in the document.

 Inverse document frequency factor of the term: A measure of how “unique” the term is.

Very common terms have a low ; very rare terms have a high .

 Field & Document boost, as set during indexing. This can be used to statically boost

certain index fields and documents over others.

 Normalization value of a field, given the number of terms within the field. This value is

computed during indexing and stored in the index norms. Shorter fields (fewer tokens)

get a bigger boost from this factor.

 Coordination factor, based on the number of query terms the document contains. The

coordination factor gives an “AND”-like boost to documents that contain more of the

search terms than other documents.

 Normalization value for a query, given the sum of the squared weights of each of the

query terms.

Table 5. Lucene™ Scoring Equation Factors (after Hatcher et al., 2009)

 52

For this scoring equation to integrate with our weighted predicted rating score, we

must normalize it to a [0,1] scale. This is done by finding the maximum document score

for the query, then dividing each lower document score by

this value, given in Equation 5.2.

(Equation 5.2)

V.D.2. Integrating Lucene™ Ranking with Predicted Rating

In order to integrate our predicted rating document score, we provide Lucene™

with a set of predicted rating scores based on the current user’s interest profile. In

addition, we select the weighting factor . Recall that determines the balance

between the predicted rating score and the Lucene™-provided query-matched score. The

final document score is drawn from equation 5.3. A weight of 0.0 places no importance

on the predicted rating score, representing a standard query-based search engine. A

weight of 1.0 uses only the predicted rating score, independent of any query-matching

information.

(Equation 5.3)

CLI

Argument
Description

Example

-IL File path to index location (New or existing) -IL “/system/data/documents/index”

-IF File path to documents location -IF “/system/data/documents/”

-M
Binary, Multiple documents per file? (Or single document

per file without argument)

-M

-O Binary, Overwrite existing index, if one exists? -O

-IU File path to predicted rating document scoring results -IU “/system/data/similarity_scores.txt”

-U Binary, Updating index with new predicted rating scores? -U

-SW Predicted rating score weight, to be used in final

scoring equation

-SW 0.5

-N Number of results to return per query -N 100

-Q For automated querying, the query to be passed -Q “web 2.0”

-T For record keeping, the topic number of the query passed -T 51

Table 6. Searcher Command Line Arguments

 53

V.E. AUTOMATED PROFILE GENERATION

To test Cairn, we need to generate a database of user profiles, and their prior

interaction with the search model. We term these generated users bots. Just like real

users, bots have certain biographical information, interests, and behaviors. The

information contained in these profiles is controlled through parameters in our software.

The bot similarity controls how much of the characteristic information in the bot’s profile

is shared with the current user of the model. We use the test queries from the TIPSTER

dataset for intelligence requirements. A bot draws its relevant-rated documents from the

set of actually relevant documents for that test query. We term the number of rated

documents in the bot’s profile as the visibility of the bot. To test Cairn, we run many

queries and corresponding bot parameterizations, producing confidence intervals for the

results. We discuss each of the bot parameters in detail below, before describing the

software to generate bots.

V.E.1. Similarity

We use the letter to denote the similarity value. A similarity of 1.0 will create

another bot whose profile is a perfect replica of the current user profile. A bot profile

with a similarity of 0.0 will share no profile properties with the current user. For

similarities between 0.0 and 1.0, we randomly draw an fraction of the current user’s

profile. For instance, creating two bots with similarity 0.5 using a current user profile

which contains ten properties means creating two bot profiles each containing five

randomly drawn properties from the current user’s properties. Although the specific

elements of similarity will be different between the two bots, the overall similarity score

will be the same.

V.E.2. Visibility

We use the letter to denote the visibility value, the number of rated documents

within the bot profile. The set of truly relevant documents is test query-specific, as

provided by the TIPSTER dataset. A visibility of 1.0 creates a bot that rates at most the

exact number of documents truly relevant for that test query. Conversely, a visibility of

 54

0.0 results in a bot without document ratings. For visibility between 0 and 1, we set the

number of rated documents as the fraction of the number of truly relevant documents.

V.E.3. False Positive Rate

Visibility only defines the number of rated documents in the bot profile. Some of

the documents rated as relevant by the bot may be truly relevant, and others may not be

truly relevant. The number of relevant vice non-relevant documents in the bot profile

depends on the false positive rate (FPR) parameter. The FPR dictates the percentage of

non-relevant documents rated as relevant by the bot. An FPR of 0.0 will cause perfect

ratings, that is, each document rated relevant is truly relevant for that test query. An FPR

1.0 cases each document rated relevant to be truly non-relevant. The specific documents

to be rated are drawn randomly from the sets of truly relevant and non-relevant

documents. For example, if we create two bots each with visibility of 100 documents,

each with , then each bot’s profile will rate 100 documents as relevant, with

30 of those being truly relevant and 70 being truly nonrelevant.

V.E.4. Bot Creator

The Bot Creator establishes a new profile database, and creates the necessary bot

user profiles—a test query-specific profile database. Table 7 describes the command line

arguments for Bot Creator.

 55

CLI

Argument
Description

Example

-IP
File path to input profile database (to extract current user

profile information)
-IP “/system/data/profiles.xml”

-IT File path to data topics file -IT “/system/data/topics.txt”

-U Current user name -U “john doe”

-T Current topic ID -T 51

-N Number of bots to be created -N 50

-S Bot similarity level -S 0.2

-SD Bot similarity distribution (unused for now) -SD unif:0.1:0.5

-V Bot visibility level -V 0.7

-FP Bot false positive rate -FP 0.2

-VD Bot visibility distribution (unused for now) -VD tri:0.0:1.0:0.5

-OP File path to output bot profile database -OP “/system/data/bot_profiles.xml”

Table 7. Automated Profile Generator Command Line Arguments

V.F. CAIRN GRAPHICAL USER INTERFACE

We worked with programmers from the NPS MOVES institute to develop a

prototype user interface for Cairn. The interface strives to achieve three objectives: quick

access to information, simple software interaction, and methodology transparency.

Figures 15-19 depict the interface designs, divided into two interface windows: Search &

Profile. These two windows hold three sections: Content Results, Search Configuration,

and Profile Configuration. We now detail each of these sections. References to the

appropriate interface figure follow each description.

 56

Figure 15. Cairn Search Interface

1. The Content Results section presents all information that Cairn can provide.

Aside from standard document results, the user also receives a similar user network,

recommended queries, and common regions of interest. These recommendations are

based on the similarities computed with other users in the model, as specified by the

search configuration. (Figure 15)

2. The Search Configuration section allows the user to control his search

experience. The user is permitted to input query terms and receive standard query-

matched results, or he may use the modeling extensions we offer in Cairn (Figure 15).

 57

Figure 16. Search Configuration

A. The Interest Profile Selection field selects the user’s current interest profile.

The interest profile selected by the user reflects the type of information the user is

currently searching for. Recall that user search behaviors are attached to specific interest

profiles in order to associate documents with intelligence requirements. (Figure 17)

(Figure 16)

B. The Similarity Type Selection field selects the method used to calculate

similarity between users. This allows the user to have a high amount of control and trust

in how the network of similar users is built. For example, the user may want to view

popular documents and queries within his organization or organizations similar to his

own. Alternatively, an analyst may instead wish to see the relevant-rated documents

using only analysts who are focused on the same intelligence topics as he is (Figures 17

and 16).

 58

Figure 17. Search Configuration

C. Query Term Input takes in a user’s query so that Cairn may return document

results. The results are a function of: 1) how well a document matches the query and 2),

the ratings on that document provided by other similar users. (Figure 17)

D. Content Results Selection allows a user to select the information displayed in

the Content Results pane. (Figure 17)

E. Search-Profile Switch toggles the active window between the Search

interface window and the Profile interface window (Figures 17 and 18)

 59

Figure 18. Cairn Profile Interface

F. Biographical Information Input allows a user to enter information into the

biographical portion of his user profile. (Figure 18)

G. Interests Input allows a user to input topics of interest and locations of

interest. We consider topics and locations as hierarchically-organized data which could

be selected via nested drop-down menus. Other methods could also be used for interest

data input. (Figure 18)

H. Behavior Input allows a user to view and edit their previous search behavior.

We allow a user to remove previous queries or documents they previously rated as

relevant. (Figure 18)

I. Interest Profile Selection determines which interest profile information is

active in Sections G and H. When a new profile is created, these sections will contain no

information. However, if an existing profile is selected, these sections will reflect the

associated user interests and search behavior information. A user may maintain multiple

interest profiles, but only one interest profile is active at any time. (Figure 18)

 60

The interface above does not incorporate endorsements. Endorsements are not

strictly required by Cairn, because we can assume that all users have received one

endorsement for all interest characteristics. However, additional workflows can be added

to the above interface, to allow for users to endorse others. Moreover, the interface above

is just one possible method to interact with the Cairn model.

 61

VI. Analysis

VI.A. ANALYTIC OVERVIEW

We analyze the user-similarity based search model in two ways: analytically and

empirically. The analytical results show that, in expectation, truly relevant document

ratings are higher than truly nonrelevent documents even at high false positive rates. In

practice, this expected result can be achieved either through having many users in the

model, or having a few users concentrate their ratings on relevant documents.

Empirically, tests on the TIPSTER dataset show that Cairn outperforms standard

search engines. Moreover, an integrated score outperforms both a query-matched score

and a predicted rating score individually. This demonstrates the power of incorporating

information retrieval approaches with recommender systems approaches. Our

experiments show that Precision @ 10 improves even for small numbers of ratings and

large error rates. Mean Average Precision also improves in these conditions, but not as

much as Precision @ 10. The empirical results mirror the theoretical analysis, which

states that more user ratings can accommodate nearly all error rates. Empirically, only a

small number of similar users, less than ten, can double or even triple search

performance. Finally, we use a robust design to pick a near-optimal weighting, .

VI.B. THEORETICAL ANALYSIS

Our theoretical analysis is driven by the questions provided in Table 8.

Question 1. Is the expected ranking of a relevant document higher than the ranking of a nonrelevant

document, given that ratings are error-prone?

Question 2. How many users are needed to achieve a particular performance level for a specific corpus

of documents?

Table 8. Probabilistic Analytic Questions

For the purpose of our theoretical analysis, we focus solely on ratings and ignore

queries. We consider users of the model who each rate documents as relevant. Let a

false positive rate, describe split between false positive ratings, , and true positive

 62

ratings . Let be as the fraction of truly relevant documents in a document

corpus of size . The number of relevant documents is and the number of nonrelevant

documents is .

In order to answer question 1, we find the expected rating of a relevant document

and a nonrelevant document. The expected rating for a relevant document is described by

Equation 6.1. Each of the users rates relevant documents at random from the

corpus. The expected rating of a specific relevant document is the expected number of

ratings the document receives over all the users. Alternatively, the expected rating for a

nonrelevant document is provided in Equation 6.2.

(Equation 6.1)

(Equation 6.2)

We now explore the points at which the expected rating for a relevant document is

greater than the expected rating of a nonrelevant document. It is at these points where the

recommendations are useful. We compute this inequality in Equation 6.3 and 6.4

(Equation 6.3)

(Equation 6.4)

Equation 6.4 shows that, in expectation, a relevant document has a higher rating

than a nonrelevant document if the false positive rate is less than the fraction of

nonrelevant documents in the corpus. In most real-world settings is very close to

 63

one because most documents are nonrelevant, meaning that high false positive rates still

yield useful rankings in expectation. To illustrate this, we apply the equations to the

TIPSTER dataset.

Among test queries 151 to 200, the average number of relevant documents, ̅̅ ̅, is

 , with a corpus size . At these values, the inequality holds true for all

false positive rates up to 0.9998. That is, as long as users can rate documents with an

average false positive rate lower than 99.98%, we can expect higher ratings for relevant

documents than nonrelevant documents. This conclusion gives confidence in our use of

error-prone ratings in order to asses document relevancy.

At least two critiques to the above theoretical analysis exist. First, the results are

in expectation—results that may not be reached without an infinite amount of users.

Second, not all nonrelevant documents are created equal. There are some nonrelevant

documents that are more susceptible to being rated as relevant by a user. These deceiver

documents might draw a large fraction of the ratings on nonrelevant documents. User

ratings are only effective, if they concentrate more on relevant documents than

nonrelevant ones. We develop a simple simulation model in order to address these

critiques.

We consider relevant documents and deceiver documents where . The

proportion of relevant documents, or the signal to noise ratio, is given as
⁄ . We

simulate users who rate documents from the set consisting of both relevant and

deceiver documents. The users are able to rate a relevant document as relevant with

probability , however, they erroneously rate a nonrelevant deceiver document as relevant

with probability . Document ratings are simulated with each user randomly selecting

either a relevant or deceiver document, and then providing a rating determined by or .

We apply this simulation for an increasing number of users, shown in Figure 19.

 64

Figure 19. Retrieval Performance Based on Erroneous Ratings

Increasing numbers of users increases performance, despite a high false positive rate.

Note that as the number of users increases, we converge to our analytic conclusion above,

that all relevant documents will receive higher ratings than nonrelevant documents.

30 simulation replications provide 95% confidence intervals.

We consider a relatively small set of relevant documents, , hidden among a

much larger set of deceiver documents, . Users rate truly relevant documents

with probability The results in Figure 19 show that increasing the number of

users increases performance despite a reasonably high false positive rate. However, the

number of users required to achieve increased performance is formidable. The document

ratings are used to improve performance by converging ratings on the comparatively

small set of relevant documents. The number of ratings can be increased by using more

users or more ratings per user. Forcing more ratings may be impractical in many

applications, but there are other options available to improve performance. Reducing the

number of deceiver documents that are eligible to be rated reduces the potential for error

and allows a lower number of users to still converge ratings on the set of relevant

documents. This approach is tested by halving the number of deceiver documents,

 65

increasing the signal to noise ratio from to . This small change significantly

reduces the number of users required to achieve equivalent levels of search performance,

as seen in Figure 20.

Figure 20. Retrieval Performance Based on Erroneous Ratings

Reducing number of deceiver documents increases performance, demonstrating the value

of integrating a search model with a rating-based model

We conclude that in order to compensate for erroneous ratings, a recommender

system can either increase the number of overall ratings or increase the probability that

the user will be rating a document which is relevant. Our model uses the latter by relying

on query-matched document scores to increase the probability that a document is relevant

before it has been delivered to the user for rating. This integration is crucial for

improving search performance when using a small number of human ratings. Our

collaborative model is not guaranteed to find a large network of similar users and

corresponding ratings, therefore this conclusion lends strong support to our modeling

approach.

 66

VI.C. EMPIRICAL ANALYSIS

We test Cairn across five different input parameters, presented in Table 9.

Combined with the TIPSTER data, these parameters control the users and ratings of the

system, thus simulating real-world use of the model. We test over TIPSTER topics 151

through 200, with 95percent confidence intervals provided after each test. Our analysis is

driven by the six questions shown in Table 10.

Title Description Example

Number of Bots (NB) Defines the number of other users

(bots) of the model.

{1, 10, 100, 500}

Similarity (S) Defines the similarity of the current

user to other users of the model

(bots).

{0.0, 0.5, 1.0}

Visibility (V) Defines the visibility of the other user

(bot). Bot rating accuracy. This is the

proportion of relevant documents

rated out of the number of truly

relevant documents for a particular

query.

{0.0, 0.5, 1.0}

False Positive Rate (FPR) Defines the false positive rate of the

other user (bot). Bot rating precision.

This is the proportion of falsely

identifying relevant documents when

they are actually nonrelevant..

{0.0, 0.5, 1.0}

Similarity-Ranked Score Weight

()

Defines the weight given to the score

generated by our predicted rating

model. When , the

documents are scored using only the

score generated by Lucene™,

indicating how well a document

matches a query. When , the

documents are scored using only our

user predicted rating model. For

values between 0 and 1, see Section

V.D.2

{0.0, 0.5, 1.0}

Table 9. Description of Cairn Analytic Parameters

Question 3. How does the model perform under best & worst case conditions?

Question 4. How do individual parameters affect search performance?

Question 5. How do interactions between parameters affect performance?

Question 6. Can we determine a near-optimal value for , under error and randomness?

Table 10. Empirical Analytic Questions

 67

VI.C.1. Model Validation; Best & Worst Case

In the best case scenario, there is one model bot, . The bot is perfectly

similar to the current user, , with perfect rating skill, .

Setting uses only the prior ratings provided by the perfect bot, thus the model

performs perfectly.

Table 11 presents a baseline comparison of Cairn using three different

values. The first column, , is the standard Lucene™ model performance. The

second column uses only the predicted rating scores, where . The third model

equally divides query-matched scores with predicted rating scores.

Lucene™ Search Performance

()

Predicted rating

Performance

 ()

Mixed Score Performance

()

MAP 0.09334 (0.0677, 0.1189) 1.0 (1.0, 1.0) 0.9974 (0.9954, 0.9995)

P@10 0.2500 (0.1939, 0.3061) 1.0 (1.0, 1.0) 0.9980 (0.9941, 1.0)

Table 11. Baseline Best Case Model Validation Results

95% confidence intervals given in parentheses. At , Cairn performs on par

with other query-matched search models. At , Cairn performs perfectly. At

 , Cairn still exhibits near-perfect results.

We see that the base Lucene™, when , performs on par with modern

IR systems (Buttcher, Clarke, & Cormack, 2010). Results are perfect when using perfect

bot ratings, when . Although this validates that our model is working

correctly, these results are not representative of expected real world performance.

Integrating the two scores using still provides near perfect performance.

We consider a worst case scenario with one other user of the model, , who

is perfectly similar to the current user, , and he again has perfect visibility over

which documents are relevant for a particular query, . However, this user is now

entirely nefarious, rating every nonrelevant document as relevant, . Table 12

provides a summary of the results. We see that when Cairn again produces

the same standard search engine performance. However, for , Cairn provides

no performance benefit with MOEs near zero. As with the perfect performance seen

above, this validates expected model behavior.

 68

Lucene™ Search Performance

()

Predicted rating

Performance

 ()

Mixed Score Performance

()

MAP 0.09334 (0.0677, 0.1189) 0.0011 (0.0003, 0.0019) 0.0449 (0.0338, 0.0559)

P@10 0.2500 (0.1939, 0.3061) 0.0140 (0.0043, 0.0237) 0.0280 (0.0154, 0.0405)

Table 12. Baseline Worst Case Model Validation Results

Contrasted with the Table 11 results, at we no performance benefit

whatsoever in the search model. This is because Cairn is relying entirely on the erroneous

ratings of the single other user.

VI.C.2. Parameter Analysis

With our model validated under extremes, we wish to consider a range of more

realistic parameterizations. This section varies a single parameter at a time in order to

draw insight into how Cairn operates.

 69

Varying : The parameter is varied first, shown in Figure 21. The left

axis and blue lines reference MAP results, while the right axis and red lines reference

P@10 results. See Section II.A.6 for a more detailed description of these MOEs. The

legend shows the assumed values for the other model parameters. We again provide

upper and lower 95% confidence intervals.

Figure 21. Cairn Effectiveness In Varying Predicted Rating Weight,

Increasing increases performance under the perfect bot assumption. Near perfect

performance is achieved even for lower values.

Let us consider a more realistic parameterization. Figure 22 shows P@10 where

 , and , and we vary . We consider and

indicated by the red and blue lines respectively. For at zero, we use only query-

matched scores. For at one, we use only predicted rating scores. Cairn, by

integrating both scores, outperforms either score independently. Also, there is a wide

range of options for selecting in order to achieve near-optimal performance at these

settings, . This is important in later analysis to find a robust to

many parameter scenarios.

 70

Figure 22. Showing Cairn Improvements Over Traditional Search Engine &

Recommender Systems Performance

The predicted rating weight is used to integrate query-matched scores and predicted

rating scores, able to improve over either score independently.

 71

Varying : Let and let us vary the bot similary, . Figure 23

demonstrates model effectiveness as the bot becomes increasingly similar to the current

user. The predicted rating score is normalized across other user ratings, so performance

increases immediately once the single bot becomes similar to the current user.

Figure 23. Cairn Effectiveness In Varying Other User Similarity,

Increasing bot similarity for a perfect bot increases model performance.

 72

Varying : The visibility, , determines how many documents the bot rates.

Figure 24 shows performance increases as visibility increases. Model performance is

limited by the number of documents that the bot rates. If it is less than 10 documents, for

example, P@10 cannot benefit from ratings on all 10 of the returned documents. Thus,

even having a user with high similarity, who ranks few documents does not increase

model performance.

Figure 24. Cairn Effectiveness In Varying Other User Visibility,

Increasing visibility increases model performance, particularly for P@10.

 73

Varying : Let us now vary the false positive rate, , of the other bot.

Recall that the FPR is the proportion of the bot’s relevant-rated documents which are in

fact truly nonrelevant. Figure 25 shows decreases in model performance as

increases. Surprisingly, even at 80% FPR, Cairn outperforms the Lucene™ baseline. At

higher , performance actually goes below default query-matched performance. Later

analysis explores overcoming high FPR with more users or by reducing

Figure 25. Cairn Effectiveness In Varying Other User False Positive Rate,

Increasing false positive rates decrease model performance when using ratings from one

other user. Surprisingly, even at 80% false positive rate, Cairn outperforms the Lucene™

baseline.

 74

Varying : We next consider varying the number of other bots, . We set the

bot parameters to: similarity of 0.5, visibility of 0.5, and a false positive rate of 0.5. Let

 . Figure 26 presents NB from zero to 10 and from zero to 200 and

demonstrates that increased numbers of other users provides increased performance.

Under these settings, two bots are sufficient to outperform the Lucene™ baseline. This

conclusion is a key strength found in our modeling approach, alleviating us of the

requirement to gather very large numbers of user ratings.

Figure 26. Cairn Effectiveness In Varying Number of Other Similar Users

(Bots), NB, With FPR=0.5. [(Top),
(Bottom)]

At , increasing number of other users overcomes high false positive rates.

 75

For comparison, Figure 27 increases the to 0.9 and maintains the other

scenario parameters. Even at this high false positive rate, Cairn still achieves significant

gains over the search engine baselines. Cairn outperforms the Lucene™ baselines at

about 10 users.

Figure 27. CAIRN Effectiveness In Varying Number of Other Similar Users

(Bots), NB, With FPR=0.9. [(Top),
(Bottom)]

At , increasing number of other users overcomes high false positive rates.

 76

We consider the relationship between the number of bots, , and false positive

rate, . Figure 28 shows the effect of increasing at three particular false positive

rates. The number of bots quickly improves performance, even for high .

Performance at lower false positive rates can be accommodated by a lower number of

bots.

Figure 28. Cairn Effectiveness In Varying Number of Bots, , and

False Positive Rate, .

More users can overcome higher false positive rates, still offering significant

improvements over standard query-matched search engines.

 77

VI.C.3. Two-Way Parameter Analysis

The previous section varied a single parameter while keeping all other parameters

fixed. A possible critique of that analysis is that we picked specific parameter values. To

address this, in this section, we vary two parameters simultaneously. The results of these

graphs are the same as those in the previous section. Unless otherwise stated, default

values of the parameters that are not currently being tested are set at the following values:

 .

The relationship between user similarity and visibility is examined in Figure 29.

As long as similarity is positive, for one bot, it has no effect on the MOEs because

predicted rating scores are normalized. As we increase visibility, P@10 improves faster

than MAP. MAP requires higher accuracy across all relevant documents, whereas P@10

only requires accuracy within the top 10 documents.

Figure 29. Cairn Effectiveness In Varying Similarity, , and Visibility,

For one bot, as long as similarity is positive, it has no effect on the MOEs because

predicted rating scores are normalized. Increases visibility increase performance..

Lucene Baseline

 Lucene Baseline

 78

Figure 30 varies the bot false positive rate, , and predicted rating score

weight, . With a predicted rating weight near one, search performance is highly

dependent on the false positive rate. In fact, at high s near 1.0, predicted ratings do

worse than the Lucene™ baseline. However, at nearly all s lower than 1.0, the

predicted-rating scores do better than the Lucene™ baseline.

Figure 30. Cairn Effectiveness In Varying False Positive Rate, , and

Similarity-Score Weight,

Cairn offers improved performance for nearly all false positive rates and values.

Performance is reduced only at high false positive rates, but can be mitigated using a

lower weight.

Lucene Baseline

Lucene Baseline

 79

We next consider the relationship between visibility, , and , shown in

Figure 31. High and low results in performance at or below baseline Lucene™.

This poor performance can be addressed by increasing the number of bots.

Figure 31. Cairn Effectiveness In Varying Visibility, , and False Positive Rate,

MAP scores are more sensitive to visibility and false positive rates than P@10. However,

both are improved over standard search performance for nearly all .

Lucene Baseline

Lucene Baseline

 80

Figure 32 varies from zero to 10 across all values. These figures provide

strong support that Cairn can offer significantly improved search performance in a real-

world application where there are few similar users with potentially high error rates.

Figure 32. Cairn Effectiveness In Varying Number of Bots, , and

False Positive Rate, . [(Top),
 (Bottom)]

Even for small numbers of users, false positive rates can be quickly overcome to offer

significant improvements in search performance. Very large numbers of similar users

offer more robust improvements.

Lucene Baseline

Lucene Baseline

 81

VI.C.4. Providing Robust Predicted Rating Score Weight

Our analysis parameterized the network of similar users by , , , and . In

a real-world environment, and are uncontrollable factors in the environment,

describing the number of documents users rate and the error in those ratings. The

parameters and are also uncontrollable, but can be known with certainty by Cairn.

Cairn controls only a single model parameter, the predicted rating score weight, . In

a real-world application of Cairn, can be a function of and . Further, the

value chosen should be robust to the unknown model parameters. A good value of

depends on knowledge of and For the analysis below, we assume the model

designer only knows that these factors are uniformly distributed between . However,

this analysis can be re-run if more accurate knowledge on these factors is known. The

main purpose of this section is to outline a method for computing a good value for

We worked with the NPS SEED Center (http://harvest.nps.edu) to use robust

design techniques to determine the value (Sanchez, 2000). In the terminology of

robust design, the factors, , , and , are classified as decision factors. Similarly, in

robust design terminology and are classified as noise factors. We assume

and to be uniformly distributed over the interval . The experimental design is

created using a crossed nearly-orthogonal Latin hypercube. Over our five parameters, this

results in an 873 point design. Table 13 contains the resulting correlation values between

the design factors.

Factor

 1.000 0.002 0.000 0.000 0.006

 0.002 1.000 -0.001 0.000 0.000

 0.000 -0.001 1.000 0.000 0.000

 0.000 0.000 0.000 1.000 0.000

 0.006 0.000 0.000 0.000 1.000

Table 13. Summary Experimental Design NOLH Factor Correlation

Results are aggregated across the noise factors and , leaving 279

observations where we compute a mean and standard deviation for each MOE, ̅̅ ̅̅ ̅̅ ̅,

 82

 ,. ̅̅ ̅̅ ̅̅ ̅̅ , . We use the resulting data points for, , , and to fit cross-

validated Generalized Additive Models (GAMs) for the mean and standard deviation of

MAP and P@10. We save 20% of the data points for a final test, and we use 10-fold

cross-validation on the remaining 80% to select a well-fitting model. For each response,

cross-validation selects a GAM with nine to eleven degrees of freedom. The resulting

models achieve suitable fit on the 20% out-of-sample test data set, as seen in Table 14.

The fidelity provided by our nearly orthogonal latin hypercube design and the resulting

metamodel is seen in Figure 33 comparing our GAM predictions to actual CAIRN output.

Model Response

 ̅̅ ̅̅ ̅̅ ̅ 0.0489 96.2 0.0322 97.6

 0.0349 93.0 0.0212 97.6

 ̅̅ ̅̅ ̅̅ ̅̅ 0.0290 94.2 0.0148 98.92

 0.0314 96.2 0.0225 98.3

Table 14. Robust Design Metamodels for MOE Mean and Standard Deviation

Figure 33. Robust Design Metamodel Predictions v. Actual Cairn Output

This shows that the robust design metamodel fits well at different parameterizations of

our implemented software.

 83

We define loss functions, and , computing the difference between the

predicted map MAP and P@10 from a perfect goal of 1.0 as shown in Equation 6.6. We

aim to minimize these loss functions.

 ̅̅ ̅̅ ̅
 , ̅̅ ̅̅ ̅̅

(Equation 6.6)

We use gridded search with 100 points between zero and one to find a good value

for at each combination of and . The loss-optimized weights over and

 are provided in Figure 34. The chosen is largely dependent on which MOE is

desired. For the majority of configurations of and , MAP performance is near-

optimal at a relatively high . Thus Cairn prioritizes the predicted rating score

over the query matched score when the objective is MAP. P@10 performance instead

sets the near-optimal to 0.4. Opposite to MAP, Cairn now weighs the query-

matched document score over the predicted rating score.

Figure 34. Loss-Optimized Over Number of Other Users, , and

Similarity,

Robust, near-optimal weights are provided. Optimizing results in higher

than optimizing .

We use the predictive MAP and P@10 models and the computed values of

 to predict Cairn performance. Figure 35 and Figure 36 show mean performance and

 84

the loss objective for each MOE. When no other similar users are found, or when

 , Cairn performance is precisely at the default Lucene™ baseline and loss is at its

worst. However, both mean and loss performance increase as a similarity network is

built.

Figure 35. Cairn Search Performance When Using Robust, Near-Optimal

Performance gains are seen even for small numbers of similar users. When no similar

users are present, Cairn performs at standard Lucene™ performance.

Figure 36. Cairn Loss Performance When Using Robust, Near-Optimal

More similar users or increased similarity between users decreases expected loss.

Lucene Baseline

 Lucene Baseline

 85

VII. Conclusions

VII.A. OBJECTIVE SUMMARY

Our work endeavors to improve information search in the Intelligence

Community. In doing so, we strive to enable collaboration between intelligence analysts

with similar intelligence problems.

VII.B. PROJECT SUMMARY

Modeling approach: The collaborative user similarity model (USM) represents a

user through their user profile. This user profile contains biographical information about

the user, in addition to multiple possible interest profiles. These interest profiles hold

information about the users interests and searching behavior regarding a particular

intelligence problem. Once user profiles are created, the USM calculates similarity to

other model users, based upon the type of similarity designated by the current user, such

as ‘Previous Queries’, ‘Shared Regions of Interest’, or ‘Similar Organizations’. This

network of similar users integrates with the Document Ranking Model (DRM). The

DRM uses the previous document ratings of the similar users in order to develop a

predicted document rating for the current user.

We integrate the DRM with a Markov Random Fields model for IR. The

predicted rating scores act as document prior relevancy probabilities. This allows the

predicted rating scores to be mixed with modern-day search engines that provide a query

matched score.

Data and software approach: Our software builds upon Lucene™. We

implement the collaborative model and predicted document relevancy scores. These

scores are brought into Lucene™ for indexing, searching, and scoring, to be integrated

with traditional query-matching. Finally, we develop a prototype graphical user interface

to provide one option as to how this new approach towards collaboration and search may

be developed into an application.

 86

We use documents and test queries provided by the National Institute of

Standards and Technology. The dataset is commonly known as TIPSTER, and consists of

over 700,000 articles from the Wall Street Journal, Associated Press, the Federal

Register, and others. The test queries are accompanied by a list of relevant articles. We

generate users, or bots, in order to test the model. The behavior of the bots and their

relationship to the current user of the model is controlled by four input parameters:

number of bots, similarity of the bots to the current user, truly relevant document

visibility, and the percentage of false positive ratings. We also create a fifth input

parameter, the weight given to the predicted rating score vice the query-matched score.

We assess performance using Mean Average Precision (MAP) and Precision at 10

Documents (P@10).

Analysis approach: To analyze the model, we derive theoretical results to assess

the accuracy of using document ratings provided by humans that are prone to error. We

also conduct an empirical analysis of the software under a variety of parameter settings.

We finish by using robust design techniques to compute a reasonable weight for the

predicted rating score.

VII.C. RESULTS SUMMARY

More ratings on relevant documents deliver better performance. By reducing

the number of deceiver documents presented to the user, Cairn can use a small number of

ratings to improve search performance. Also, increasing the number of user ratings can

overcome large false positive rating rates.

Integrated scoring outperforms other search methods. We show that

integrating a query-matched score and predicted rating score provides a effective scoring

solution than either can individually.

Performance gains can be seen with small numbers of users. Search

performance can be improved by using a small network of similar users who each have

high error rates. Cairn improves Precision @ 10 more dramatically than Mean Average

Precision, but both continue to improve as the number of ratings in the model grows.

 87

Robust methods for determining values for . Robust design techniques

allow setting a model-determined value for the predicted-rating document score weight,

 . This method can be re-run using knowledge of a specific model, if required.

VII.D. NECESSARY CONDITIONS FOR CAIRN PERFORMANCE

Several key characteristics of the Intelligence Community enable Cairn

performance in that setting, whereas it may not work well in other settings. First, in an

intelligence setting, the search model is allowed to collect essentially unlimited amounts

of data on the user; enabling the use of user-profiles to improve search. Second,

intelligence queries can be categorized in a relatively small finite set of information

needs—the interest profile tree. Without this finite set of information needs, it would not

be possible to distinctly group users searching for the same need. Third, the model

performs well by maintaining ratings of documents. This would require a user to identify

documents relevant to their information need. It may be possible to implicitly compute

relevance, such as relevancy scored by time spent viewing a document, however these

implicit ratings may reduce performance.

VII.E. CONTRIBUTIONS

Our work adds to recent developments in both the information retrieval and

recommender systems communities. We discuss a number of contributions to those

communities and also to the Intelligence Community.

Personalized search with user interest profiles. Personalized search has

provided noticeable improvements in search performance (Sieg et al., 2007). These works

use profiles implicitly created from the user’s search behaviors; either the previous

queries or the viewed documents. Due to the unique considerations in the Intelligence

Community application, we can require explicit interest profiles containing information

about the analyst’s intelligence requirement. This introduces a new way of building user

profiles and providing personalized search.

Fostering user collaboration through search. Social search applications

improve search performance by using a social network of similar users and providing

 88

recommendations based on information within the network. In our application, this

network is a group of analysts with shared interests: they may be in the same or similar

organizations, they may frequently type the same query and view the same documents, or

they may share the same or similar intelligence requirements. Regardless, in the hands of

an analyst, this network is powerful information which could improve information

sharing and collaboration within the Intelligence Community.

Networks built with user-defined similarity. Other personalized search

applications implicitly calculate similarity to other users. Unlike these applications, we

put the similarity control into the hands of the user. For example, an analyst may want to

see document recommendations from other users within her own analytic organization.

Given a new intelligence requirement, the analyst may discover a network of analysts

who share that intelligence requirement. Given an existing intelligence requirement, the

analyst can view popular queries used by other users. Each of these situations demands

different similarity scopes to be defined by the analyst.

Bringing modern search technology to the Intelligence Community. The

Intelligence Community suffers from critical shortfalls that result in needless intelligence

failures. Lack of collaboration and information overload are two leading contributions to

these failures. Current technological thrusts in the Intelligence Community focus around

advanced data processing algorithms that identify patterns and anomalies within a trove

of collected information. However, analysts use a relatively archaic search system

without awareness of other analysts who are searching for the same information. Our

work allows analysts searching for the same information to discover each other and

benefit from each other’s searches.

VII.F. FUTURE WORK

Our work outlines a method of improving search, however a number of future

research directions are left open.

Exploring other query-matching algorithms. We implemented our model into

Lucene™ using the default document query-match score. This score is an extension of

vector space models, and sufficiently suited our requirements. However, Lucene™ has

 89

also been developed to support other scoring algorithms, and it is also extendable to

support many other search algorithms. There is potential for significant performance

improvements to both Lucene™ and Cairn by implementing better query-matched score

algorithms.

Integrating content-based filtering models. The CBF approach towards

recommender systems compares the content of items, documents in our case, in order to

develop recommendations for the current user from the items which the user has already

shown a preference for. This is proven to perform well, but with the requirement that the

item’s content has been aggregated, analyzed, and is suitable for comparison to other

item content. Integrating CBF models to compute predicted rating scores could

potentially result in performance improvements. Further, the content within the set of

documents a user has rated as relevant could be used to extend the user profiles we have

already generated.

Different user similarity algorithms. Our User Similarity Model (USM) used a

vector of user characteristics to define a particular user. While the model allows for many

similarity functions, in our testing we specifically used the Jaccard similarity measure.

There are many other methods to compute similarity. We suggest testing of these

alternative methods in order to determine if other similarity algorithms would perform

better. Similarity algorithms could be dependent on the subtree type, for example saying

that users in near-by geographical regions are similar.

Implementation of user quality model. Our modeling introduced and supported

the concept of user quality weighting based on endorsements. The software we

implemented and tested did not implement endorsements. This feature would be a critical

component of a real-world application of our model.

Increased exploitation of analyst social network. The user-similarity we define

creates an implicit social network between analysts. We use that social network in only

one way currently: to compute predicted rating scores for documents. It would be

straight-forward to use our approach to also recommend queries, topics, regions of

interest, organizations, etc. based on analysts similar to the current user. Moreover, the

 90

implicit social network could be explored in further social network analysis. This

network would likely provide a powerful tool for network-wide collaboration, vice

current use, only from the point of view of the current user.

Testing of near-optimal predicted rating score weight, . We developed a

method for robustly determining under assumptions regarding the stochasticity

found in other users and their error rates. Further computational experiments would be

useful to validate these results. Additional TIPSTER queries, or another document corpus

could provide input to such future testing.

Stochastic bot parameter analysis. Our analysis created bots with the same

similarity, visibility, and false error rate parameters. However, the analysis software we

construct can create bots using a probability distribution for each of the bot parameters.

The scope of our analysis prevented us from testing the model under these stochastically

generated bot parameters, but future research could evaluate performance under these

conditions.

Human-based testing and evaluation. Testing Cairn with real-world human

users and searches is an important future direction of research. There are likely critical

considerations which are only knowable once we have seen how a user interacts with the

model. These considerations may then change portions of the model and produce more

benefit to the analyst.

Implicitly developed interest profile. It may be possible to implicitly compute

an interest profile for analyst based on their searches and viewed documents. This would

streamline the input that Cairn uses, requiring less work by the analyst user.

Time-based results. In an intelligence setting, the timing of information is

critical. The timing of document ratings, the timing of documents themselves, and the

timing of endorsements could determine the relevancy of a document. Old information is

sometimes less useful than newer information. A useful intelligence search model could

extend Cairn to allow analysts to control for these time dependencies.

 91

List of References

Al-Maskari, A., Sanderson, M., & Clough, P. (2007). The relationship between

effectiveness measures and user satisfaction. SIGIR '07 Proceedings,773–774.

Amsterdam, Netherlands.

Briggs, P., & Smyth, B. (2008). Provenance, trust, and sharing in peer-to-peer case-based

web search. In K. Althoff, R. Bergmann , M. Minor, & A. Hanft (Eds.), Advances

in Case-Based Reasoning (pp. 89–103). Berlin: Springer.

Buttcher, S., Clarke, C. L., & Cormack, G. V. (2010). In Information Retrieval:

Implementing and Evaluating Search Engines (pp. 71–74). Cambridge, MA:

Massachusetts Insitute of Technology.

Chowdhury, G. G. (2004). Introduction to Modern Information Retrieval. Cornwall:

Facet Publishing.

Director of National Intelligence. (2013). Our mission. Retrieved from

http://www.intelligence.gov/mission/

Director of National Intelligence . (n.d.). Members of the IC. Retrieved May 2, 2014,

from http://www.dni.gov/index.php/intelligence-community/members-of-the-ic

Dragland, A. (2013, May 22). Big data for better or worse. (SINTEF). Retrieved May 2,

2014,from: http://www.sintef.no/home/Press-Room/Research-News/Big-Data--

for-better-or-worse/

Edwards, J. (2014, June 2). Military, intel turn to big data for better situational awareness.

Retrieved from

http://www.c4isrnet.com/article/20140530/C4ISRNET14/305300002/Military-

intel-turn-big-data-better-situational-awareness

Harman, D., & Liberman, M. (1993). TIPSTER Complete LDC93T3A. DVD.

Philadelphia, PA: Linguistic Data Consortium.

Hatcher, E., Gospodnetic, O., & McCandless, M. (2009). Lucene in Action . Greenwich,

CT: Manning.

Hawalah, A., & Fasli, M. (2011). A hybrid re-ranking algorithm based on ontological

user profiles. Colchester: University of Essex.

 92

Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 37–

50.

Joint Staff, Department of Defense. (2007). Joint Publication 2-0, Joint Intelligence.

Washington, DC: Joint Staff, Department of Defense.

Koller, D., & Friedman, N. (2009). Probalistic Graphical Models. Cambidge: The MIT

Press.

Koren, Y., & Bell, R. (2011). Advances in collaborative filtering. In F. Ricci, L. Rokach,

B. Shapira, & P. B. Kantor (Eds.), Recommender Systems Handbook(pp.145–

186). New York: SpringerU.S..

Lucene. (2013, February 28). Lucene--Powered By. Retrieved from

http://wiki.apache.org/lucene-java/PoweredBy

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval.

Cambridge: Cambridge University Press.

Metzler, D. (2007). Beyond bags of words: effectively modeling dependence and features

in information retrieval. PhD dissertation, University of Massachusetts, Amherst..

Department of Defense. (2012). 2011 demographics, profile of the military community.

Washington, DC: Office of the Deputy Under Secretary of Defense.

Morris, M. R. (2013). Collaborative search revisited. Proceedings of the 2013 Conference

on Computer supported cooperative work(pp. 1181–1192). New York, NY.

Paul, C., Thie, H., Watkins Webb, K., Young, S., Clarke, C., Straus, S., Serena, C.

(2011). Alert and ready: an organizationl design assessment of marine corps

intelligence. Santa Monica: RAND Corporation.

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2011). Recommender Systems

Handbook. New York: Springer.

S. Robertson, S. W.-B. (1994). Okapi at TREC-3. Proc. 3rd Text REtrieval Conference

(pp. 109–126). Gaithersburg, MD.

Sanchez, S. (2000). Robust design: seeking the best of all possible worlds. Proceedings

of the 2000 Winter Simulation Conference. Orlando, FL.

Shane, S. (2005, November 8). Official reveals budget for US intelligence. New York

Times. Retrieved May 2, 2014, from

http://www.nytimes.com/2005/11/08/politics/08budget.html?_r=0

 93

Sieg, A., Mobasher, B., & Burke, R. (2007). Representing context in web search with

ontological user profiles. Proceedings of the Sixth International and

Interdisciplinary Conference on Modeling and Using Context. Roskilde,

Denmark.

Sunden, J. (2003). Material virtualities. New York: Peter Lang.

Taube, M. (1951). Coordinate indexing of scientific fields. Mechanical Aids to Chemical

Documentation. New York: Division of Chemical Literature, American Chemical

Society.

Towers, D. (2012, August 23). PPC accounts for just 6% of total search clicks. Retrieved

from https://econsultancy.com/blog/10586-ppc-accounts-for-just-6-of-total-

search-clicks-infographic#i.16phlzk148ffae

United States Marine Corps. (2001). Marine Corps warfighting publication 2-3, MAGTF

intelligence production and analysis. Quantico, VA: United States Marine Corps.

van Rijsbergen, C. J. (1979). Information Retrieval. Oxford: Butterworth.

Voorhees, E., & Harman, D. (1999, Dec). The text retrieval conference (TREC): history

and plans for trec-9. ACM SIGIR Forum (pp. 12–15). New York: ACM.

W. Bruce Croft, J. P. (1998). A language modeling approact to information retrieval.

Proceedings 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 275–281). Melbourne, Australia.

Waterman, S. (2012, October 30). US intel budget topped 75 billion in 2012. Washington

Times. Retrieved May 2, 2014, from

http://www.washingtontimes.com/news/2012/oct/30/us-intel-budget-topped-75-

billion-in-2012/

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

Initial Distribution List

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

