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ABSTRACT 

Intelligence analysts face a glut of information and limited time to identify which 

information is relevant. Also, they are unaware of other analysts with similar intelligence 

problems, preventing collaboration and often causing intelligence failure. To identify 

relevant information, analysts use adopted commercial search engines designed for 

internet-sized databases containing hyperlinked web-pages that are not effective on 

intelligence databases consisting of non-hyperlinked documents.  

This thesis outlines a model to fundamentally increase search effectiveness and 

collaboration by using a social network of like-minded users based on user biographies 

and search behavior. After entering a query, the likelihood of returning a relevant 

document is increased by leveraging data from other, similar users. The model goes 

beyond standard search engine design by presenting similar analysts for collaboration and 

presenting relevant documents without queries. Our framework is mathematically 

grounded in a Markov random field information retrieval model and recent developments 

in recommender systems. We build and test a prototype system on datasets from the 

National Institute of Standards & Technology. The test results combine with 

computational sensitivity analyses to show significant improvements over existing search 

systems. The improvements are shown to be robust to high levels of human error and low 

similarity between users. 
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EXECUTIVE SUMMARY 

The U.S. Intelligence Community’s (IC) mission is to “collect and convey essential 

information” (Director of National Intelligence, 2013). In order to complete their mission, 

intelligence analysts must be able to locate and synthesize disparate pieces of information 

into a cohesive assessment. In this thesis, we develop a model we call Cairn that 

addresses two common problems in intelligence analysis 1) the ability of an analyst to 

find information relevant to their mission and 2) the ability of an analyst to identify other 

analysts with knowledge that is relevant to the mission. 

Cairn uses information collected about analysts to identify similar users and 

improve search performance. The information collected about an analyst is called a user 

profile—containing biographical, interest, and behavior information about the user. A 

key part of a user profile is an interest profile, specifying the information requirement of 

the user. Given user profiles for a group of analysts, Cairn can identify similar analysts 

across organizational and departmental boundaries, addressing point 2) above.  

To improve search performance, point 1) above, Cairn uses document ratings 

from similar analysts to recommend new documents to the analyst who is performing the 

search. These recommendations serve as predicted rating document scores that can be 

incorporated with modern-day search engine document scores, improving the 

performance of the search engine. To illustrate this performance improvement, we 

implement and test our model against TIPSTER, a document and query set provided by 

the National Institute of Standards and Technology (Harman & Liberman, 1993). We 

integrate document scores computed from user similarity with the scores generated by 

Lucene™, an open source search engine (Hatcher, Gospodnetic, & McCandless, 2009), 

which scores documents for query match. Both theoretical and empirical results show 

that Cairn can provide significant improvements to the search results. For example, we 

show that an integrated score outperforms both the Lucene™ search engine and a 

similarity-based recommendation alone. 



 xvi 

Our results suggest creating a new search model for intelligence analysts. To 

illustrate the existing workflow, imagine a young military intelligence analyst who has 

just received an information requirement from her commanding officer. That analyst 

would typically then begin searching for any recent reporting or previous analytic work 

regarding that requirement. That process involves a database search using several 

possible query terms intended to capture facets of the information requirement. After 

several hours of searching through mostly irrelevant information, the analyst has 

hopefully been able to find a few pieces of relevant information from which to create an 

assessment. In our new search model, we propose that the analyst instead creates an 

interest profile detailing her information requirement. She will immediately be connected 

to other analysts who share a similar information requirement. Further, the analyst can 

search using query terms, as before, however, the resulting list of documents not only 

measures how well a document matches a query, but also how strongly a document has 

been recommended by other analysts. This new work flow enables the analysts to 1) find 

relevant information more quickly and 2) collaborate with analysts who share the same 

information requirement. Empowered by this model, analysts are able to produce more 

timely and well developed intelligence analysis. 

The improvements in search performance exhibited by Cairn are possible because 

of two key characteristics that are feasible within the Intelligence Community. First, the 

model requires extensive user-profiles in order to compute similarity. There are settings 

where collecting such information is impractical because of data collection or privacy 

limitations. Second, users must share a small set of possible information requirements. In 

other words, the interest profile must describe the user’s information requirement. If it is 

unlikely that users share information requirements, then it would not be possible to 

benefit from the document ratings of other users to improve the current user’s search 

results. 
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I. Introduction  

I.A. THE PROBLEM  

Many of the assessments an intelligence analyst must provide will attempt to 

accurately predict the future or know an unknowable state of reality. Further, these 

assessments are often based on incomplete information gathered from error-prone 

sensors. Although United States Intelligence Community (IC) analysts enjoy 

comparatively high levels of financial, geographic, technological, and political resources, 

the ultimate challenge remains as to how to put together disparate, relevant pieces of data 

into a coherent intelligence picture.  

In attempting to counter this, the U.S. IC has grown significantly in recent years, 

with the combined Military Intelligence Program and National Intelligence Program 

budgets growing from an estimated $44 billion in 2005 (Shane, 2005) to $75.4 billion in 

2012 (Waterman, 2012) . This has resulted in a drastic increase in collection platforms 

and, consequently, an abundance of collected information. An individual analyst 

struggles to cope with this overwhelming amount of information. Critical information 

becomes more likely to be missed while unnecessary information needlessly occupies the 

analysts time.  

Therefore, the three critical aspects of the problem facing intelligence analysts 

are: 1) the constrained time available to filter through search results, 2) the difficulty in 

discovering and assessing critical information necessary to answer an information need, 

and 3) the stovepiping of intelligence analytic expertise. A solution to this problem 

requires the right analyst to get the right information at the right time. The buildup of 

intelligence collection platforms has provided databases that contain the necessary 

information, but finding the relevant data within those databases remains a key 

technological problem.  

This thesis addresses improvements of the current model of database search used 

in the Intelligence Community. Figure 1 provides a depiction of the current Intelligence 

Community search model and our proposed improvements. We concentrate on refining 
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the search engine, currently the single point of intersection for all analysts. Small changes 

in the way that analysts interact with the search engine will enable analysts to connect 

with other analysts with similar intelligence problems, and those connections can be used 

to improve search effectiveness.  

 

Figure 1.  Comparison of Current and Solution Search Models. 

The search engine is a critical common denominator in all analysts work. Current search 

engines produce largely similar results for all users. By integrating a user profile and user 

document ratings, our proposed model allows users to connect with other users. These 

connections can then be used to generate document recommendations for the current user 

which can be integrated into the scored and ranked search results. 

I.B. THE INTELLIGENCE COMMUNITY  

The United States Intelligence Community is a complex web of 17 agencies 

(DNI, 2014) working across nearly all branches and departments of the government. The 

fabric of methods and processes that each IC member agency has developed to enable 

this support vary significantly, but there is one agreed upon common thread throughout, 

the six categories of intelligence operations within the intelligence process. This chapter 
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introduces this process, then discusses the analysts that make up the heart of the 

Intelligence Community, and finally presents the challenges faced by those analysts. Our 

research provides one possible solution towards two of these challenges, namely the 

difficulty in fostering analyst collaboration across organizations and the inefficiency in 

quickly and accurately locating information which is relevant to an analysts information 

need.  

I.C. THE INTELLIGENCE PROCESS 

The foundation for the intelligence process is “…the comparing of information 

against a database of knowledge already held and the drawing of conclusions by an 

intelligence analyst” (Joint Staff, 2007). The intelligence process consists of six recurrent 

and overlapping operations: planning and direction; collection; processing and 

exploitation; analysis and production; dissemination and integration; and evaluation and 

feedback. Although listed in a semi-temporal order, these operations are not strictly 

subsequent to each other or even necessary for the production of intelligence. For 

example, many intelligence operations involving a live video feed from an unmanned air 

vehicle (UAV) have minimal to no analysis or production before being delivered to a 

decision maker. However, this process does describe a general set of activities for 

creating, delivering, and assessing intelligence.  

I.D. INTELLIGENCE ANALYSTS 

We now focus on the intelligence analyst. We present their role within the 

intelligence cycle, their analytic responsibilities, and the challenges faced in performing 

those responsibilities. Finally, we discuss aspects of those challenges which are uniquely 

difficult for a Marine intelligence analyst.  

Just as sensors are critical in intelligence collection, intelligence analysts are the 

critical component in the fourth operation of the intelligence cycle, analysis and 

production. Within this particular operation, the analyst must assimilate multiple 

disparate pieces of information in order to produce an “understanding encompass[ing] a 

sophisticated knowledge of the threat and the physical, political, economic, and cultural 
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environment in the area of operations” (United States Marine Corps, 2001). In conducting 

this task, the analyst is responsible for acquiring the necessary information, analyzing its 

content, synthesizing relevant information into a coherent picture, and using that picture 

to assess the current situation and possible situations into the future. The analyst will start 

by searching a database for information to answer their intelligence requirement. Once 

complete, they then identify relationships among those disparate pieces of information, 

bringing those relationships together in a way that generates a hypothesis about the 

possible state of events. This hypothesis may then undergo critical analysis in order to be 

built into an analytic assessment. If everything has gone well to this point, the analyst 

will now be able to develop a final product, typically a report or briefing, which will be 

useful to the decision maker or other analysts across the IC.  

This thesis works to address analytic problems within the Marine Corps 

Intelligence Community. Marine intelligence analysts often face several competing 

priorities, which stem from the fact that they are both an intelligence analyst, as well as 

United States Marines. In their role as Marines, the analysts must meet individual unit 

and organizational responsibilities. In fact, Marine analysts have found that time spent 

conducting collateral duties is the most common hurdle in performing their intelligence 

responsibilities (Paul et al., 2011). In their role as an intelligence analyst, the Marine also 

faces multiple competing intelligence requirements. These requirements often cover a 

broad spectrum of topics, leaving the analyst with a finite amount of time to dedicate 

towards any single piece of analysis, hindering any attempts to become true “subject 

matter experts.” 

Within the information retrieval community, an information need is an abstract 

description of the information necessary to solve a searchers problem, arising “when an 

individual recognizes that his/her current state of knowledge is insufficient to cope with 

the task in hand, or to resolve conflicts in a subject area, or to fill a void in some area of 

knowledge (Chowdhury, 2004, p. 194).” Expressing an information need as a small set of 

critical search terms is naturally difficult, but made more so for the Marine analyst. The 

Marine analyst is likely to be younger, less experienced, and less educated than nearly 

any other analyst from other service branches or agencies (Department of Defense, 2012). 
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These factors result in a reduced ability for a junior analyst to accurately define his 

information need. Once this information need has been defined and a search has been 

initiated, it is now up to the analyst to screen through the results. Quickly and accurately 

screening for relevant documents among a set of search results is an essential skill for 

every analyst. As an analyst gains experience and expertise, she can more efficiently and 

effectively identify critical information and determine the value of that information 

towards the information need. Again the young Marine analyst is relatively restricted in 

their ability to conduct this task due to their comparative inexperience and lower 

education levels.  

I.E. OTHER EFFORTS 

The problems discussed above are by no means new to the Intelligence 

Community. Specifically, stovepiping and lack of collaboration have seen many 

evolutions of technology to address these issues, as seen in Figure 2.  

  

 

Figure 2.  Intelligence Community Technology Responses to Stovepiping and 

Information Overload 
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Despite this continued adaptation, these models have not yet found satisfactory 

solutions within these two problem spaces. Solutions to stovepiping are presented 

through collaborative tools such as e-mail, chat rooms, and community webpages each 

still have their own limitations. Namely, each is a collaborative support tool, not a 

collaborative exploration tool. An analyst must already be connected to other analysts in 

order to use these tools, but the analyst still has no way of finding other analysts who they 

share intelligence problems with. Solutions to the information overload problem have 

seen three distinct generations of technology solutions. The first technology solution was 

the classified internet search engine, known as Intelink, meant to allow for any analyst to 

be able to search the classified internet for intelligence. Intelink relies heavily on 

Google’s PageRank algorithm, which assumes a structure of hyperlinked documents. 

This is remarkably effective over the world wide web, and remarkably ineffective over 

intelligence databases which lack such a hyperlink structure. The next generation of 

technology incorporated big data analytics, where algorithms and statistical methods 

could be applied to a large set of intelligence reports in order to extract previously unseen 

information. For example, social network analysi s could be applied to identify a terrorist 

network based upon communications intercepted between individuals. Recently the 

Intelligence Community has begun to push these algorithms towards complete 

automation, removing the human from the analytic loop entirely. However, this type of 

automation is only effective within a narrow class of intelligence problems where 

patterns are known and established, thus not the silver bullet solution some see it as. This 

type of automation may shift the core analytic skill set shift away from creative, critical 

analysis towards watch desk alert-monitoring. The popular military technology blog, 

c4isrnet.com, penned a recent article focusing on intelligence analytics in the military. 

John Edwards succinctly details several of the competing forces at play in the world of 

intelligence analytics. According to Edwards: 

Algorithms are optimal for forecasting known patterns, while analysts are 

vital for considering whole new types of data, use cases, and contexts not 

considered in the construction of the algorithms themselves, which is 

especially important in a dynamic time-sensitive environment. (Edwards, 

2014)  
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I.F. THESIS OVERVIEW 

Chapter II will introduce the information retrieval and recommender systems 

research communities. Our work, though inspired by operations research, contains 

significant overlap with ongoing efforts in each of these fields. Chapter III will then 

present our model for developing a group of similar users, and how that information can 

be used to influence search engine results. We introduce the document and query data 

used to build and test our model in Chapter IV. Chapter V discusses how our model is 

translated into software built upon the Lucene™ open-source search engine. We also 

present the graphical user interface developed to support our software. Chapter VI 

presents the analytic experiments conducted to evaluate the effectiveness of our 

modeling. We first analyze the theoretical approach towards using human ratings in 

search. We also conduct model parameter analyses in order to develop a more complete 

understanding of how our model influences standard search engine results. A robust 

design method shows near-optimal use of the model. Finally, Chapter VII considers our 

body of work in whole, summarizing our efforts, results, contributions and future 

research.  
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II. Background on Information Retrieval & Recommender Systems 

II.A. INFORMATION RETRIEVAL 

At its core, information retrieval (IR) is simply the set of methods we use to 

access a single piece of information from a collection of information. Basic information 

retrieval uses unstructured information (e.g., documents, videos, images, books, or other 

forms of data), and structured information contained within a database where the 

information is stored in a well-structured way and can be accessed via a lookup index. 

The index is a means of storing and accessing information using some common 

characteristics among that information, such as a book’s title or date of publication. A 

user inputs a term or set of terms, known as a query, in an attempt to retrieve a specific 

piece of information located within the database. A user’s query is driven by her 

information need, which is the user’s understanding of the type of information needed in 

order to resolve her specific problem. An IR system allows a user to find information 

relevant to her information need, with varying levels of effectiveness.  

Creating an IR system requires solutions to a number of complex problems. First, 

the system designer must decide how to store and index the information, if at all. This 

involves determining what pieces of information to use as the indices, such as the 

information topic, a title, the chronological order of creation, or perhaps every word 

contained within. Second, the method used to index must support how a user expects to 

search for information. Problems quickly arise if the user is looking for a specific title, 

but the information is only indexed chronologically. Third, the designer must then find a 

way to support querying of the information. Of course, it is necessary to query the index 

itself in order to retrieve documents, but it’s likely that the user will want to retrieve 

documents based also on the content of the information. Large, modern databases require 

a computer-based system to store the information and look for any documents which 

match the query. Finally, the system must also be able to handle query-specific problems. 

These include queries which are too specific, too ambiguous, or which use an incorrect 

synonym. An IR system attempts to address all of these difficult problems and many 
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others not presented here such as image retrieval, cross-language information retrieval, 

natural language queries, and semantic searching.  

These problems have grown in complexity in recent history as the amount of 

information available to humans has increased exponentially. As of 2013, over 90% of 

the world’s data had been generated in the last two years alone (Dragland, 2013). IR 

began in libraries, which, until the age of the internet, served as some of the largest 

information databases in the world. In 1876 Melvil Dewey created the Dewey Decimal 

Classification, assigning three-digit numerical codes to collection items as they were 

added, based off their topic. The three-digit numeral can then be expanded with decimals 

to capture sub-topics and other information important to the database. Although relatively 

simple to understand and implement, this method quickly proved obsolete due to the fact 

that items are only accessible via a single subject. According to this indexing method, 

books and articles which crossed topics had to be redundantly located else only one of the 

topics will be able to store it. In 1951, Mortimer Taube developed a list of terms, known 

as Uniterms, to index a document. Items were then retrieved using a series of punch cards 

fed into a machine reader (Taube, 1951). The keyword indexing method spawned the 

field of IR as we know it today. Into the 1950s and 60s, the incorporation of machines 

and the computer into IR expanded quickly along with the methods used to index, 

retrieve, and rank results. The ubiquity of the internet spawned the next era of IR with an 

ever-expanding database beyond any collection size previously considered. The problem 

now wasn’t that it was too difficult to find information in general, it now became too 

difficult to find the precise information the user was looking for. For example, in one 

study of more than 20,000 search queries researchers found that, on average, Google 

delivered at least one result worth selecting only 48 percent of the time (Towers, 2012). 

In other words, in 52 percent of cases, searchers chose to select none of the results 

returned . The vast size of the internet required new and innovative methods for 

information storage, retrieval, and ranking of results.  

The field of IR is populated today with a variety of methods, some public and 

some proprietary, each with its own strengths and weaknesses. Ultimately, there is no 

single IR system which is optimal for all databases and situations, thus allowing for 
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separate and distinct modeling approaches in IR. IR systems have traditionally been 

divided into three model categories: Boolean, vector space, and probabilistic models. 

Since our work depends upon these models, we present them below.  

II.A.1. Boolean Models for Information Retrieval 

Boolean models operate off the principles of Boolean logic which have three 

basic comparison functions; AND, NOT, and OR (Chowdhury, 2004, p. 172). Each 

comparison function returns a value of true or false, depending on how the objects being 

compared relate to each other through the function chosen. The Boolean retrieval model 

requires the user to input a query with the exact combination of terms and Boolean 

relationships for which the user wishes to return documents. For example, if a user was 

searching for information related to a new North Korean aircraft, they may be required to 

develop a query which looked something like the following: north AND (korea OR 

korean) AND (aircraft OR airplane OR plane OR jet) . This query requires that the term 

north is contained within the document, along with at least one of the terms from both 

sets of OR-related terms. A readily identifiable problem with this method is the 

requirement for the user to consider all possible terms which could relate to their 

information need. In this instance, the query includes four explicitly defined terms just to 

access information related to a single topic, that of an aircraft. This is due to the problems 

of synonymy and polysemy. Synonymy occurs when multiple words refer to the same 

thing, such as in our example when an aircraft could be described as an airplane, plane, or 

a jet, depending on the originator of the document. Polysemy occurs when we have a 

word with multiple possible meanings, again found in our example with the word plane, 

which could also refer to a flat two-dimensional surface. These problems can be 

mitigated through a very skillful and knowledgeable user of the IR system, but the 

average user will likely fall victim to synonymy, missing out on critical documents. 

Conversely, polysemy may take over, thus receiving results much different than what was 

intended—perhaps a North Korean student’s geometry textbook for the above example.  

The standard Boolean retrieval model also suffers in that the system does not try 

and determine which result best suits the users query, only returning a non-ranked list of 
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documents which match the users query expression. Advanced methods were developed 

to accommodate ranked results, but it soon become apparent that other models were 

necessary in order to achieve greater retrieval effectiveness.  

II.A.2. Vector Space Models for Information Retrieval 

In order to understand both vector space models and probabilistic models, we 

define some common IR terminology. Term frequency is the number of documents a term 

  appears within,    . Inverse document frequency gives a measure for the uniqueness of 

a term within a collection via the equation          

   
, where   is the number of 

documents in the collection (Manning, Raghavan, & Schütze, 2008, p. 118). A word that 

appears often within a collection likely tells us less about the contents of a document 

within that collection than a word that appears less often. Consider a collection of 

intelligence documents wherein the word ‘weapon’ is compared to the word ‘rifle’. Many 

more documents within the collection will likely contain ‘weapon’ (              , 

             ) and so instances of ‘weapon’ tell us less about the contents of the 

document than if the document contained ‘rifle’. The vocabulary is the set of all terms in 

the collection. In IR, it is common to assume that a document is a bag of words, assuming 

no order of terms within the document, representing the document as a subset of the 

vocabulary. Some IR systems do not make this assumption, for example, the Markov 

random fields model for IR, introduced in Section II.A.4. It is often useful to reduce the 

vocabulary set through stop words and stemming. Stop words are words that are known to 

have little to no value in terms of content or retrieval, such as ‘then’, ‘always’, ‘this’, etc. 

Stemming is the shortening or adapting of different forms of the same word into just one 

representation of that word, such as the adaption of the words ‘approaches’, 

‘approached’, and ‘approaching’ into the word ‘approach’. Non-intuitive stems are also 

common, such as ‘production’ and ‘produced’ stemmed into ‘produc’ instead of the 

alternative stem of ‘product’, which has a different intended meaning.  

Vector space models view documents and queries as vectors of the vocabulary, 

with coordinates of the vector indicating the occurrence of a word within that document 

or query (Chowdhury, 2004, p. 176). The Boolean model can be replicated by valuing the 
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document vector entries as binary for whether or not a document contains a given word. 

However, the entries can also be valued through their        value, giving a method 

for scoring a document based on how well it matches a query. The document score can be 

computed in a number of different ways by comparing the document vector to the query 

vector. For example, one simple way to compute this is through a dot product between 

the two vectors, then giving a vector similarity score for the relevance of each document 

to the query. The documents can then be presented in descending order, allowing for 

ranked retrieval of documents. The vector space model was improved through 

developments such as Latent Semantic Indexing (LSI), in which the model utilized 

semantic properties of the document in order to reduce the dimensions of the vector 

(Chowdhury, 2004, p. 179). This is done by abstracting the vocabulary away from 

particular words and instead into latent concepts which the words are intended to 

represent. For example, ‘airplane’, ‘jet’, ‘plane’, ‘airliner’, would all be abstracted into a 

single concept such as ‘fixed wing air vehicle’.  

II.A.3. Probabilistic Models for Information Retrieval 

The main approach in this thesis is based on probabilistic models. All 

probabilistic models are centered on the Probability Ranking Principle (PRP), which 

states:  

If a reference retrieval system’s response to each request is a ranking 

of the documents in the collection in order of decreasing probability 

of relevance to the user who submitted the request, where the probabilities 

are estimated as accurately as possible on the basis of whatever 

data have been made available to the system for this purpose, the 

overall effectiveness of the system to its user will be the best that is 

obtainable on the basis of those data. (van Rijsbergen, 1979) 

The PRP aims at returning only the most relevant documents,  , in a decreasing 

order of relevancy probability for a particular query,  . The random variable   is a 

binary-valued, representing the likelihood that a document is relevant to a query;     

means that a relevant document has been found and     means that a relevant 

document has not been found. The probability that a document   is relevant for a query 

  is then given by            . Conversely, we can represent the probability that a 

document is not relevant to a query using            .  
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The actual forms of       and how those random variables are converted into 

probability equations,                        , are unique to the type of 

probabilistic model developed. See (Croft, 1998; Manning et al., 2008; Robertson, 1994) 

for some of the most common probabilistic models and their retrieval algorithms. Our 

approach is based on a distinctly different probabilistic model, the Markov random fields 

model for IR.  

II.A.4. Markov Random Field (MRF) Model for IR 

II.A.4.a. Graph Structure 

MRFs are a method to represent joint probability distributions in an efficient 

manner, using a graph structure (Koller & Friedman, 2009). Nodes of the graph represent 

random quantities and edges represent dependence among those quantities. The model 

takes advantage of the Markov property, which states that a node in an MRF is 

independent of any non-connected node, given an observed value for its connected node. 

The MRF Model for IR (Metzler, 2007) represents the joint distribution of document 

relevancy and a sequence of query terms. Specifically, the random quantities are  , a 

binary variable indicating the relevancy of the document,  , a random quantity indicating 

the document itself, and            , a sequence of query terms often described 

through a single vector-valued random quantity  . The joint distribution computes the 

total probability of relevancy,                         in order to return only the 

most relevant documents. Within the MRF, node   represents a single document, with 

the terms contained in the user’s query represented as individual term nodes, 

              . For this IR model, the MRF computes              which is a 

function of   and   only. Therefore, the number of nodes in the MRF model for IR is 

one plus the number of terms in the query. Probability distributions can then be 

associated with each clique of nodes. The query term nodes have possible states 

described by the database vocabulary  . Similarly, the document node has possible states 

described by the documents contained within the database. The MRF model includes 

edges between the document node and each query node. Maximal cliques are the largest 

grouping of nodes where each node has an edge to all other nodes in the group. There are 
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now three options for modeling dependence between query terms via the connected 

edges, as shown in Figure 3. (Metzler, 2007). Section II.A.5 presents a small example to 

illustrate these random quantities, but we first build the remaining theoretical framework.  

 

 

    
 

 

 

          
    

 

   
 

 

 

       

 

    
 

 

 

       
 

 

Figure 3.  Modeling Query Term Dependence within the MRF model for IR.  

(Maximal Cliques) Full Independence (FI) (left) adopts the bag of words assumption in 

which term order has no role. Sequential Dependence (SD) (middle) allows for single-

pair ordering of terms, Full Dependence (FD) (right) considers all possible ordered 

dependencies. 

 

 

Table 1.   Summary Description of Query Term Dependence Structures 

Each option contains particular assumptions about the structure and relationships 

of the query terms. These assumptions are formally depicted in Table 1. (Metzler, 2007). 

The Full Independence (FI) model assumes that each query term is independent of the 

others, given the document node. This option is clearly the simplest in terms of 

representation, but may not accurately reflect the dependence of query terms input by the 

user. This is contrasted by the Full Dependence (FD) model, in which all query terms (or 

as restricted by a window size) are assumed to be dependent. This model may be overly 

complex, but it does allow for the most accurate representation of the real world 

dependency relationships between query terms. These two extreme models are 

Model Name Description of Dependence Formal Description 

Full Independence (FI) 
Query Terms Independent, Given 

Document Node 
                     

Sequential Dependence (SD)  
Neighboring Query Terms Dependent, 

Given Document Node 
                          

Full Dependence (FD)  
All (n) Query Terms Dependent, Given 

Document Node 
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compromised through the final model, Sequential Dependence (SD). This allows for 

dependency between sequential terms in the query, thus representing the assumption that 

the strongest dependencies exist between adjacent query terms.  

II.A.4.b. MRF Model for IR Probability Functions 

With the graph, G, constructed according to which dependency assumptions are 

made, we may now direct our attention towards computing the joint probability mass 

function (PMF) for the MRF,             . This function makes use of query term 

nodes Q, document node D, and parameter vector Λ. The vector Λ will be used to control 

weighting parameters to be considered in the final probability mass function. The PMF 

considers whether a relevant document has been found or not,        , across all 

possible documents and all possible query terms. However, when we instantiate this 

function with a particular document and a particular set of query terms, we are left with a 

function for the probability that a document   is relevant to a query  . For brevity, we 

now refer to                as           . This function can now be considered as a 

scoring equation to be evaluated for each document based upon the query terms 

contained within that document.  

Due to the structure of MRFs, we represent the document relevancy probability 

joint distribution as the product of potential functions,         defined over the maximal 

cliques,       , of the graph   (Equation 2.1). The scalar    may serve to normalize 

the joint distribution using the parameter vector  . 

            
 

  
∏       

      

 

 (Equation 2.1) 

Metzler’s IR model takes a novel approach towards constructing potential 

functions using feature functions defined over sub-cliques of the maximal cliques. A 

feature function,        takes as input a specific clique type,    such as a single ‘document-

to-term’ pair or a ‘document-to-term-to-term’ triple. From this input, the feature function 

outputs a probability for how likely this document is relevant to the query, based off the 

status of the nodes within the clique,  . The features are weighted by the parameter,   , in 
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order to control the influence of each feature function. These functions can be defined in 

creative and novel ways to also allow for other relevancy algorithms, and this adaptability 

is one reason for our use of the MRF model for IR. The process of defining the MRF 

model for IR potential functions,     , with multiple possible feature functions,      , is 

defined in (Metzler, 2007). The first step is to group each clique,    in the graph,  , 

according to the types and relationships of the nodes it contains. Once categorized, clique 

type-specific feature functions,        and weights,   , will be assigned to each clique. 

The cliques are then grouped into their parent maximal cliques,     , conditional on the 

term-dependency structure selected. The maximal cliques are dependent on the structure 

(FI, SD, FD). For the FI model, the cliques are defined by the set {        }, where   

contains only the document node,    contains only single query nodes, and     contains 

single document-query term nodes. The set of cliques within the SD model contains 

ordered query term nodes,   , and ordered document-query term nodes,    . The FD 

model cliques contain unordered query term nodes,   , and unordered document-query 

term nodes,    . This allows removing the bag of words assumption made for other 

common probabilistic models. Finally, for each maximal clique, the potential function is 

defined as:  

           (∑       
       

 )   

  (Equation 2.2)  

where      
 denotes the set of cliques within the maximal clique       

By defining the potential functions as exponential functions, we now represent the 

joint distribution (Equation 2.1) as the sum of feature functions defined over sub-cliques 

within each maximal clique (Equation 2.3).  
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We then end with a rank-equivalent function for document relevancy scoring 

(Equation 2.4).  
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This final ranking function is a “simple weighted linear combination of feature 

functions that can be computed efficiently for reasonable graphs” (Metzler, 2007). Each 

line is intuitively defined. Line 1 captures the relationships between query terms and the 

documents in our database (e.g., the “representativeness” of the document by the query 

term(s)). Line 2 provides a measure for evaluating the importance of the query terms 

within the overall collection and how compatible query terms are together. Line 3 gives a 

means to evaluate the prior relevance of a document, in the face of no other known 

information. This can be interpreted as document bias, which can exist for any of several 

rank 

(Equation2.4) 

(Equation 2.3) 

Document + Query Dependent  

Query Dependent 

Document Dependent           Document + Query Independent 
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reasons, depending on the type of documents and context with which the IR system is 

implemented. The allowance of this explicit a priori document relevance is another 

foundational reason for our use of the MRF model for IR. Our work extends the basic 

model using prior document relevance based off similar users who have rated a particular 

document as relevant.  

II.A.5. Example MRF Model For IR 

This small example illustrates some features of the MRF model for IR. We 

consider two documents,             and a set of query terms from an earlier example, 

                     . The documents each contain a set of ordered terms,      

containing                                , and      containing               . 

We consider the MRF Model for IR Full Dependence (FD) model, given in Figure 4.  

 

          
 

 

 

                      

  

Figure 4.  Example Full Dependence MRF Model for IR 

Our example then contains the following query-document cliques: 

     {
                                          

                                          
} , 

    {
                                                                       

                                                                       
}     

    {
                     

                     
} 

For each type of query-document clique  , this example assumes three equally 

weighted, binary-valued, feature functions, {    
        

        
   }, that evaluate the 

relevance of document   with respect to the query term nodes  . The first feature 

function,     
   , evaluates single term document relevancy, one if the document 
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contains the term, zero if not. The second feature function,     
   , evaluates sequential 

term relevancy, one if the document contains the precise sequence of terms, zero if not. 

The third feature function,     
   , evaluates unordered term relevancy, one if the 

document contains all terms, zero if not. For instance,     
                  is one, but 

    
                  is zero since      does not contain the term         . Given this 

set of cliques, the final ranking function for each document   and set of query terms 

                          is:  
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Evaluating each document across query terms and cliques, we find the following 

results where      has higher non-normalized probability ranking:  

               [
                

              

       
]       

               [
                

              

       
]      

II.A.6. Evaluation of Information Retrieval Systems 

In Section I.D we presented how difficult it can be for a user to express their 

information need in a small set of query terms. Similarly, evaluating how well the 

returning documents match that user’s information need is also inherently subjective. 

However, standardized methods of evaluation were required to be developed in order to 

attempt to remove the subjectivity and be able to identify improvements between IR 

systems. Additionally, test collections of documents were needed to support these 

rank 

rank 

rank 
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evaluation methods. Manning, et.al, discusses three critical elements of a retrieval system 

test collection (Manning, Raghavan, & Schütze, 2008):  

1. A document collection 

2. A test suite of information needs, expressible as queries 

3. A set of relevance judgments, standardly a binary assessment of either 

relevant or nonrelevant for each query-document pair. 

Chapter IV presents the data set containing the test collection used for our model 

evaluation. In addition to the test collection, an IR system must use measures of 

effectiveness for system evaluation. Precision is the proportion of returned relevant 

documents across all the returned documents.  

           
                             

                    
 

[MOE 1:Precision]  

This contrasts with recall, which is the proportion of returned relevant documents 

across all relevant documents contained in the collection.  

        
                             

                                  
 

[MOE 2:Recall]  

Precision is a measure of how efficient the system is, whereas recall is a measure 

of how effective the system is. An ideal IR system would handle both MOEs 

appropriately, but often an increase in one results in a decrease in the other. For example, 

we can return every single document in the collection as a result of a query, thus giving 

perfect recall but very poor precision. Alternatively, we could return only the single top-

ranked document for a particular query. This document would likely be relevant, and our 

precision would be perfect, but we would also have very poor recall in missing all the 

other relevant documents in the collection. Chapter VI will address the ideas of false 

positives (FP), a document which has been claimed relevant which actually isn’t, and 

false negatives (FN), a document which has been assessed non-relevant which actually is 

relevant. Precision and recall, while valuable, are often too simplified when used for 

evaluating modern, ranked retrieval systems. Therefore, we elect to use more advanced 

measures which are popular within the IR and recommender systems (RS) communities.  
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We first consider Precision At k (P@k). P@k considers a recall level represented 

as particular top-ranked number of results,  , and then finds the precision within that 

subset of returned documents,   . For instance, if the user was only to look at the top ten 

results which contained only three relevant documents, then         . Since most 

users of IR systems only look at the first page of results, this measure has been shown to 

be correlated with user satisfaction of an IR system (Al-Maskari, Sanderson, & Clough, 

2007). For this reason we use P@10 for our evaluation. However, P@k requires setting 

the allowable recall level, which can skew the evaluation of a system which may have 

good precision at higher-than-normal recall levels.  

               
                                              

 
 

[MOE 3: Precision at k Documents]  

In light of this weakness, a related but more aggregated measure emerged 

(Manning, Raghavan, & Schütze, 2008, p. 158). Mean Average Precision (MAP) 

provides a single score which represents a value across multiple levels of recall, or  ’s. 

MAP is commonly used in TREC evaluations, and we adopt it within our evaluation. 

MAP considers a set of individual queries,     , the corresponding set of truly relevant 

documents for that query          
 , and the set of the top   ranked results,    , for 

that query. The precision is then averaged over all the queries, normalized for the number 

of queries. 
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[MOE 4: Mean Average Precision] 

II.B. RECOMMENDER SYSTEMS 

Our work intersects between IR and the field of recommender systems (RS), in 

which a user is recommended certain items contained within the system. These 

recommendations are formed from a profile of the user’s preferences for items. Despite 

overlap between IR and RS, recommender systems differ from information retrieval 

systems in one distinct way. An IR system requires the user to input a query, and from 

that query the system scours the database to generate an ordered ranking of relevant 
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items. A recommender system instead collects information about the user, explicitly or 

implicitly, and then generates a potentially ranked set of relevant items from that user-

specific information. However, the ultimate goal for both systems is to find relevant 

items for the user. If a prototypical example of an IR system is the Google search engine, 

two prototypical examples of recommender systems are Amazon’s product 

recommendation system and the music service Pandora music recommendation system. 

Due to their relatively recent emergence in the mid-1990s, recommender systems serve as 

a fertile ground for exploring their application within the information retrieval realm 

(Ricci, Rokach, Shapira, & Kantor, 2011).  

Many new concepts within the RS community are quickly being absorbed into the 

IR community and equally, several of the proven IR methodologies have provided 

foundational knowledge for the RS community. The graying between these two 

communities is where our work hopes to contribute, and in doing so we hope to also 

benefit the Intelligence Community. Chapter 18 of the Recommender Systems Handbook 

(Ricci et al., 2011) unknowingly provides an excellent definition for the challenge of any 

modern intelligence analysis tool, “The … convergence of recommender systems and 

search systems (IR)… would result in highly satisfied users receiving the right 

information at the right time.”   

II.B.1. Recommender System Models 

There are two distinct approaches towards recommender systems; Collaborative 

Filtering (CF) and Content-Based Filtering (CBF). CF compares a particular user’s 

preference to other similar users, then recommends items based off the items that similar 

users found relevant (Koren & Bell, 2011). Amazon recommendations work in this exact 

way, by telling you what other users bought, based off the fact that you and another 

user(s) bought a certain item. While CF puts the focus on system users, CBF instead 

focuses on the items within the system. CBF recommends items which are 

characteristically similar to an item that the user has an identified preference for. Pandora 

music recommendations occur in this way, basing song recommendations on the  
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characteristics of the music that the user prefers, as defined by an example song, artist, or 

album. Our work falls in line with traditional CF, due to the advantage that CF requires 

no knowledge of the items within the system. 

Recommender systems rely on at least one of two types of feedback in order to 

capture user preferences. Implicit feedback uses user behavior information in order to 

infer a user’s preference for certain items within the system. Explicit feedback, also 

known as a rating, requires direct user interaction to the system so that the system knows 

with certainty what the user’s preference is. Users are then represented with a user model, 

which could contain many types of user-specific information. CF recommender system 

user models commonly contain a vector of the user’s preference for items, as discovered 

through that users feedback. This vector contains all possible items as elements, with the 

values capturing the strength of a user’s preference for that item. Regardless of how the 

user model is defined, the system must now find a way to recommend new, previously 

unseen items  

There are many approaches towards generating an item recommendation. One of 

the simplest and earliest is through the neighborhood approach, where a similarity 

neighborhood is built containing users of the system who are similar to the current user. 

Predicted item ratings are based on the previous ratings of other similar users, weighted 

by the strength of the similarity between the current user and the other user who rated that 

item. Figure 5 depicts such a neighborhood. Edges are colored by the type of weight 

placed on them. Line thickness indicates higher or lower weight values upon the edge. 

Ultimately, the most relevant document for either model will be that has the greatest sum 

of weighted neighbored edges. 
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    User Similarity           

      

   Predicted Ratings        Previous Ratings 

Figure 5.  Neighborhood Modeling Approach; 

Line thickness indicates user preference; The black document has a higher predicted 

rating for the user due to the higher ratings provided by other users. 

II.B.2. Collaborative Filtering Model 

In presenting formal CF modeling, we adopt the annotation provided in (Ricci et 

al., 2011). We have a set of explicit feedback ratings provided by   users, 

                    of the system containing   items,                    . The 

rating     defines the preference of user   to item  . Rating     may take on any range of 

values, but for simplicity we assume     to be valued between [0,1]. We then want to 

provide predicted relevancy values between a user and nonrated items, denoted  ̂  . The 

set                contains all items which a user   has previously rated. Similarly, 

the set                contains the ratings, or lack thereof, of item   by all the users of 

the system.  

The nearest neighbor approach calculates an item’s predicted rating from the 

previous ratings of the   most similar users, or the set                . The users 

contained within    are drawn from those users with the highest similarity over all of the 

system users, as calculated from some similarity measurement,        ́ . This 

measurement must take each user’s user model as input, and output a value for how 

similar the two users are. If, as described above, the user model is simply a vector 

representation of the users preferences, then the similarity measure could then be some 

type of vector angularity measurement. Regardless of how similarity is computed, once 
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the set    has been built, a predicted rating for item   can be calculated. To do this, the 

users average baseline ratings,  ̅  is added to the average rating provided by the   

similar users. This predicted rating is regularized for both user similarity in        ́  

and user rating bias in     ́   ̅ ́  .  

 ̂    ̅  
 

∑        ́  ́   

 ∑     ́   ̅ ́ 

 ́   

       ́  

 (Equation 2.7)  

(Ricci et al., 2011, p. 163) 

Recall that alternative similarity measures are also possible, allowing for 

similarity measurements unique to the application at hand. In Chapter III we propose just 

such an application-specific similarity measurement which uses both the users previous 

search behaviors and the users characteristic profile in order to generate inter-user 

similarity.  

II.B.3. RS Model Evaluation 

Evaluation of the effectiveness of recommendation systems are notoriously 

difficult due to the focus on modeling a specific user’s latent preferences, something 

which can only be known, often subconsciously, to the user herself. Traditional IR 

evaluation measures such as precision, recall, and Mean Average Precision (MAP), will 

likely not provide a holistic evaluation of just how effective the final recommendation 

system is. Therefore, user-centric metrics are recommended such as recommendation list 

similarity, recommendation serendipity, and the subjective matching of user needs and 

expectations (Ricci et al., 2011). For the introductory purposes of our work, we do not 

consider these user-specific effectiveness measures, instead leaving this area open for 

future work.  

II.B.4. Recommender Systems Inclusion into MRF Model for IR 

Our approach in using recommender systems is to utilize the recommendations as 

a critical component of our information retrieval model. We are not trying to just 

recommend items to a user, as in traditional RS. Rather, we use the strength of document 

recommendations to increase the probability of relevancy for that document, given a 
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particular user and their query. If a user queries a database for information, the returned 

information should be guided largely by three pieces of evidence. The first is the most 

obvious, the relationship between the query and the documents within the database, as 

provided in traditional IR systems. The second is the preferences of the subset of users 

which are similar to our particular user, as in collaborative filtering recommender 

systems. These preferences can be generated explicitly, i.e., a similar user identifies 

particular documents as relevant to them and their information requirement, therefore 

those documents will likely be relevant for other similar users. Alternatively, preferences 

can be generated implicitly (i.e., a user clicks on a particular document and views it for a 

long period of time), thus we infer that the document is relevant to them. The third is the 

comparative contextual metadata attached to the documents, such as the date and location 

of the report, the summary content contained in the report, etc., as in content-based 

filtering recommender systems. We use the MRF model for IR because each of these 

pieces of evidence can be viewed as distinct feature functions to be evaluated for each 

document in determining that documents probability of relevancy. Further, we can weight 

each component in order to develop a personally optimal information retrieval system 

based on the type of the users information need. For example, if the user wishes to 

receive query-independent content recommendations, we would merely set the query 

feature function weights to zero. Alternatively, if the user wishes to receive standard 

results ranking documents based on the query terms, we then set both the contextual 

information and the user similarity weights to zero, thus giving us a traditional IR system 

model. The form of these RS-derived feature functions will be discussed in detail in the 

following chapter.  

II.C. PERSONALIZED SEARCH 

The fields of information retrieval and recommender systems have both made 

progress in the area of personalized search, and our work hopes to contribute to this 

intersection. Generally, documents are re-ranked after a query, based on information 

which is unique to that user. This information stems from some form of context 

surrounding the user, the query, or both. The recommender systems community is, by 

definition, a form of personalized search. Recommendations are provided to the user 
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based off their connection to other users, as in collaborative filtering, or their connection 

to the items in the database, as in content based filtering. However, personalized search is 

a relatively new addition to the information retrieval community, with two distinct areas 

of active research. The first is user profiling, where a profile is constructed based on the 

users’ interests. This profile is then considered when ranking documents, alongside the 

users query (Hawalah & Fasli, 2011) (Sieg, Mobasher, & Burke, 2007). The second line 

of research concerns contextual information surrounding the user and the query. This 

contextual information usually came from either previous user queries or from previous 

user browsing behavior. Regardless, all of the current IR approaches known to the 

authors only allow for personalized search to affect the search through query expansion 

or re-ranking the documents after a standard query search has been performed. We 

propose conducting personalized search within the initial document relevancy calculation 

utilizing the MRF model for IR. Two distinct advantages come from this method. By 

setting the query-dependent weights within the model to zero, we can provide a query-

independent document relevancy based only on the user’s profile. Additionally, we have 

a computationally compact method of calculating relevancy, as the inclusion of user 

profile information entails only the addition of a small document prior function to the 

existing retrieval model.  

II.D. SOCIAL SEARCH 

Our work is also similar to the social search field. Social search extends the 

research of collaborative search, in which a team of users collaborate in their searching 

effort in an attempt to resolve a common information need (Morris, 2013). Previous work 

has required that distinct communities of like-minded users will be generated, with new 

users attaching themselves to one such community (Briggs & Smyth, 2008). Social 

search instead focuses on implicit methods for creating personalized search results using 

a network of collaborators. The contributions of these collaborators can be either 

explicitly or implicitly defined. Privacy concerns in the commercial sector have shied 

away from conducting direct user-to-user comparisons and data collection in order to  
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generate these networks. However, it is precisely these connections which we wish to 

model and capture within the Intelligence Community. Additionally, these connections 

will inform the personalized search results for the current user of the system.  
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III. The Model: Cairn  

III.A. MODEL OBJECTIVES 

Our project has two objectives designed to address the deficiencies noted in 

Section I.A. First, we want to connect analysts with similar interests, behaviors, and 

intelligence requirements. Second, in finding this network of similar analysts, we want to 

support better information searching. Our model leverages the prior document ratings 

given by those users similar to the current user in order to more effectively deliver 

documents to the current user. Accomplishing these objectives serves to increase the 

capability of each analyst within the IC. Analysts with limited expertise will be able to 

benefit from the ratings and implicit recommendations provided by the community of 

other, more experienced analysts. Recommendations are built using the previous ratings 

of other analysts. Analysts with greater expertise may not want to be influenced by 

recommendations of less experienced analysts, but they are able to explore a network of 

analysts with similar interests and behaviors. This allows them to expand their analytic 

scope and develop collaborative analytic products beyond the normal intra-organizational 

and topic-specific boundaries.  

We have labeled our project Cairn. Existing since the prehistoric era, a cairn is a 

stack of rocks which serve as a marker in order to identify a piece of territory. In the 

modern era, they are commonly used by hikers in order to locate hard to find trails. The 

stack continues to grow in size when passer-by hikers contribute a rock to the pile. We 

adopt this concept as a thought model to inspire the essence of what our work intends to 

accomplish. That is, each analyst is contributing to the greater knowledge of the 

community of other analysts as they all attempt to fulfill their information requirements. 

As with all proper military projects, we develop a concept-capturing acronym to 

accompany this name, Collaborative Analyst Intelligence Recommendation Network.  
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Figure 6.  Cairn near Soberanes Canyon, Big Sur, California 

III.A.1. Model Overview 

In this section, we provide an English language overview of the benefits and 

methods employed in Cairn. Specifically, we break down our English language overview 

into four pieces: 1a) the benefit of identifying similar users, 1b) the method of identifying 

similar users, 2a) the benefit of user similarity in document search, 2b) the method of 

incorporating user similarity in document search. We conclude with some remarks on the 

general applicability of our method. 

If a model can identify analysts with similar interests, it would provide increased 

cross-organizational analytic rigor beyond the current stovepipe-restricted capabilities. 

For example, a Marine Corps analyst could connect with Army analysts to help analyze a 

particular weapons system. Currently, collaboration is only conducted within an analyst’s 

existing social circle—and it is difficult to discover new experts. An automated model 

that can deliver a ranked list of similar analysts would directly address this limitation. 

Cairn can provide such a list, and moreover, it can provide the list based on a user-

specified similarity criteria. Because a user can select the similarity criteria, she has more 

control over and trust in the result of the model.  
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To compute user similarity, Cairn employs a User Similarity Model based on user 

profiles. These profiles digitally define the user, containing all available information 

about the user, her interests, and her behavior when using the search model. Similar 

profiles have been used in the recommender systems community, in order “to type 

oneself [and their problems] into being.” (Sunden, 2003, p. 3). Given a database of users’ 

profiles, our model finds the set of users that have profiles most similar to the current 

user’s profile. This concept of ‘most similar’ can be constrained, or scoped, by a portion 

of the profile so that a user may find other users who only share that respective profile 

portion. For example, a user could scope similarity to only find other users who are in the 

same or similar organizations or have only typed in similar queries to her own.  

Informing document search using a network of similar users provides multiple 

benefits. One benefit is the ability to provide personalized content recommendations to 

the current user derived from the content contained within similar user profiles. For 

example, the model could recommend queries, documents, topics of interest, regional 

areas of interest etc. This can be combined with the similarity scoping mechanism to 

answer powerful questions such as, “What are the most popular queries among analysts 

with similar areas of expertise?,” or “What documents are recommended by other similar 

users within my unit or units similar to mine?.” A second potential benefit is that a search 

model based on both a query and user similarity could provide better search results than 

one based on a query alone. 

Cairn incorporates user similarity in document search by creating a predicted 

rating score for each document and each user. The predicted rating score is calculated 

based on the frequency of the content within similar user profiles. One part of a user 

profile are historical document ratings for that user—documents that the user has labeled 

as relevant. These relevancy rankings are used to generate predicted ratings for 

documents that the current user has never seen. The predicted rating score can be 

combined with the score generated by a query-driven search model so that results are 

ranked not only by how well the documents match the query, but also by how strongly a 

document is rated by similar users. We term our method of generating predicted rating 

scores as the document-ranking model.  
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III.B. USER SIMILARITY MODEL FORMULATION 

The user-similarity model (USM) develops a network of users to be used for 

collaboration and to support the document-ranking model (DRM). The USM defines 

three distinct portions of a user profile; biographical information, interests and 

behaviors. A user’s biographical information remains stable, such as her name, contact 

information, and organizations she belongs to. We combine a set of interests and 

associated behaviors into an interest profile. A user will only have one user profile that 

may contain multiple interest profiles, one for each unique intelligence requirement. An 

interest profile contains information specifying a specific requirement, and the associated 

search behavior—for example queries, relevant documents etc.  

An intelligence requirement can be specified by a group of interests. Although the 

list of possible interests could be quite large, we organize it using two basic 

characteristics: 

 Topics of interest: General interest areas for the intelligence requirement, 

for example weapons systems, groups, or individuals 

 Locations of interest: Geographic locations related to the intelligence 

requirement, for example cities, countries, or geographic coordinates 

Search behaviors are associated with a specific intelligence requirement. As the 

user interacts with the search model to answer her intelligence requirement, she will 

generate queries, viewed documents, and rated documents. There is a large set of 

behavior data that could be collected. We consider the following subset:  

 Previous queries 

 Previously viewed documents 

 Previously relevant-rated documents 

Figure 7 shows a hypothetical user profile of Alice. Alice’s profile is separated 

into her biographical information and two interest profiles. The first interest profile 

describes an existing intelligence requirement focused on IEDs located in Sangin District, 

Helmand Province, Afghanistan. The second interest profile describes a new intelligence 

requirement focused on the status of the current opium harvest. Notice that her existing 

interest profile contains previous queries, viewed documents, and relevant rated 

documents, whereas her new interest profile does not.  
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Name: Alice 

Contact Information: alice@site.com 

Organization: USMC – II Marine Expeditionary Force – 2d Marine Aircraft 

Wing 

Interest Profile 1: 

 Topics of Interest: Ground Threats – Explosive Munitions – 

Improvised Explosive Devices 

 Locations of Interest: CENTCOM – Afghanistan – Helmand 

Province – Sangin District 

 Previous Queries: “RCIED”, “VBIED”, “PPIED”,… 

 Previously Viewed Documents: “Report 1”, “Report 4”, … 

 Previously Relevant-Rated Documents: “Report 4” 

 Interest Profile 2: 
 Topics of Interest: Economic–Drug Trade–Opium 

 Locations of Interest: CENTCOM – Afghanistan – Helmand 

Province – Sangin District 

 Previous Queries: None 

 Previously Viewed Documents: None 

 Previously Relevant-Rated Documents: None 

Figure 7.  Alice’s User Profile 

Given a model containing a set of profiles for users and their intelligence 

requirements, we now calculate user-to-user similarity. Figure 8 presents an example 

network of users which we utilize throughout our model formulation. Alice is the current 

user of the model. Alice’s current interest profile describes her IED-focused intelligence 

requirement. Based on this information, Alice is similar to only three other users: John, 

Ruth, and Sally. Alice’s interest profile is highly similar to both Sally and John, whereas 

Ruth and Alice have interest profiles which are only marginally similar. In the next 

section we formally define how to compute this user similarity  
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Bob  Alice  John 

 

 

    
 Ruth    Sally  

Figure 8.  User Similarity Model Network.  

Edge type indicates the strength of the recommendation provided by the other 

users for the current user (Alice).   

III.B.1. User Similarity Model: Sets 

   Set of users, these are all the analysts using the model 

(Bob, Alice, John, Ruth, Sally in Figure 8) 

  Set of user characteristics, each is a binary-valued property 

about the analyst and their intelligence requirement. The set 

of possible characteristics is defined by the model designer 

and completely describes the biographical information and 

interest profile of a user. The model designer controls the 

level of resolution for possible user organizations, topics of 

interest, and locations of interest. We call a characteristic 

that is true of the current user as an active characteristic. 

  Tree of characteristics, where each characteristic is a leaf 

node in the tree. We organize the characteristics in   

hierarchically (See Figure 9. . Each internal node (a node 

with children), represents a group of characteristics. For 

example, the Department of Defense (DoD) group includes 

different organizations within the DoD. Alice is a member 

of the 2d Marine Air Wing, USMC, and sets the 

corresponding characteristic within the tree. In Figure 9, 

Alice’s active characteristics are highlighted in green. The 

figure is a small example, in practice,   can be significantly 

larger. Alice need only set a few of the characteristics in T, 

those that describe her.  

  The set of internal nodes of  , each specifying a group of 

characteristics. In the example, the set   is defined by the 

 
    Low Similarity 

High Similarity 
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following internal nodes: 
                                                

                                         

                                            

                             

 

 

Figure 9.  Example characteristic tree.  

The user characteristics are leaves of the tree. Internal nodes represent groupings of 

characteristics. Alice’s characteristics, using her IED-focused interest profile, are the leaf 

nodes highlighted in green. 

III.B.2. User Similarity Model: Functions 

      A binary-valued vector for a particular user     and a 

characteristic grouping     (a subtree of  ). Each entry 

in the vector depicts whether or not a characteristic, a leaf 

node of the subtree rooted at    is active for the user. Figure 

10 provides an example for             . 

                    For two users,         , and a grouping    , 

    (             ) takes as input the users group 

characteristic vectors,              , and returns a value 

Root 

Organization 

Department 
of Defense 

USAF USN USMC 

II MEF 

2d MAW 

Topics of 
Interest 

Ground 
Threats 

Explosive 
Munitions 

Improvised 
Explosive 
Devices 

Anti-Tank 
Mines 

Locations of 
Interest 

CENTCOM 

Afghanistan 

Helmand 

Sangin 

Marjeh 

 Alice’s User Profile 

Contained  

Not Contained 
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within      , specifying how similar the two users are with 

respect to the grouping  . One way this could be defined is 

using Jaccard’s similarity coefficient (Jaccard, 1912).  

           For two users,         ,           , takes a weighted 

average of the group similarities to determine the overall 

similarity between the two users.  

  

  
∑                         

∑      
, where    are real number 

constants determined empirically.  

 

Leaf Node/Characteristic             . 

Org – DoD – USAF  0 

Org – DoD – USN 0 

Org – DoD – USMC  1 

Org – DoD – USMC – IIMEF  1 

Org – DoD – USMC – IIMEF – 2dMAW 1 

Topics – Ground Threats  1 

Topics – Ground Threats – Explosive Munitions  1 

Topics – Ground Threats – Explosive Munitions – AntiTank Mines 0 

Topics – Ground Threats – Explosive Munitions – Improvised 

Explosive Devices 
1 

Locations – CENTCOM – Afghanistan  1 

Locations – CENTCOM – Afghanistan – Helmand 1 

Locations – CENTCOM – Afghanistan – Helmand – Sangin  1 

Locations – CENTCOM – Afghanistan – Helmand –Marjeh  0 

Table 2.               , Vector of Characteristic Properties 

III.C. DOCUMENT RANKING MODEL FORMULATION 

The DRM uses the previously rated documents contained within the interest 

profiles of similar users. A predicted document rating is provided for the current user 

based upon three items: the degree of similarity between users, the previous document 

ratings provided by similar users, and the quality of a similar user. The quality of a user 

measures the level of trust a user should have for another user’s document rating. The 

ratings of high quality users have greater impact on recommendations than the ratings of 
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low quality users. The weight of a user is determined from analytic endorsements. 

Analysts endorse other analysts for interest characteristics. An analyst that has been 

endorsed many times for an interest is a high quality user for that topic.  

Cairn computes a predicted rating as a sum over a network of similar users. A 

document receives a predicted rating if the current user has not provided a rating, and if it 

has been rated within the network of similar users. Figure 10 shows two predicted 

document rating scores for Alice, based off the ratings provided by John and Ruth. Notice 

that John’s document rating is considered above Ruths. This is because of two reasons: 

Alice is more similar to John, and John has been endorsed and is thus deemed to have 

higher quality ratings than Ruth. Though we focus on predicted document ratings, similar 

methods can recommend other information contained in the user profile such as queries, 

locations of interest, and topics of interest. In the following section, we describe how 

Cairn computes these predicted document ratings. 

 

     
Ruth   Alice   John 

 

     

Doc1   Doc2   Doc3 

Figure 10.  Document Ranking Model Network.  

Edge thickness indicates strength of user similarity and predicted document rating. Alice 

is similar to both Ruth and John, but Doc 3 has a higher predicted rating than Doc 1 due 

to Alice’s higher similarity to John.  

III.C.1. Document Ranking Model: Sets 

 ̅    Set of documents.   

III.C.2. Document Ranking Model: Functions 

         A real-number valued measure of the quality of user 

   with respect to shared interests with user     We define 

a special subtree            , which consists only of 

User Similarity 

Relevancy Rating 

Endorsed Rating 

Predicted Relevancy 
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user interests. Let   be a list of leaf nodes for the           

grouping. Each user can endorse other users for expertise in 

one of the characteristics in  . For the user   ,       is a 

vector of integers of the same length as               . 

However, each entry is now integer valued, representing 

the number of external endorsements received for a 

particular interest area. We define          as 

                    , the number of endorsements    has 

for      interests. Figure 10 shows that John’s document 

rating is weighted above Ruth’s for two reasons. John is 

more similar to Alice and John has been endorsed. 

       Describes the previous relevancy rating on a document 

   ̅, as provided by a user    . These are binary-

valued,      . 
 ̂       Provides a predicted document rating for user    on 

document    Document scores are normalized to integrate 

with the MRF Model for IR, given by 

     
 ̅

 ∑                          

           

 

We compute the predicted document rating as 

  

 
 

 
∑                          

           

 

III.D. INTEGRATING CAIRN INTO MRF MODEL FOR IR 

Section II.A.4.b introduced the document ranking function—Equation 2.4, shown again 

below for reference—for an MRF Model for IR. Recall that line 1 captures relevancy 

between a document   and query terms  ; line 2 captures relevancy from query terms 

alone; and line 3 captures prior relevancy from a document. The predicted document 

scores from Cairn can be integrated into line 3.   
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 (Line1) 

(Line2) 

 (Line3) 
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The predicted rating ,  ̂      , is a relevancy score for a particular document, 

given the current user. This serves as a document prior bias on the relevancy of a 

document,  . Integrating the predicted rating into line 3 produces a new document 

ranking function dependent on the set of query terms,  , and the current user,   . We 

weight the predicted rating score with a constant     , determined empirically. 
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This document ranking function maintains all the flexibility offered by the MRF 

Model for IR. We can incorporate most modern query-matched score algorithms, and 

integrate predicted ratings generated from the Document Ranking Model. A query-

matched score is a value between 0 and 1 returned by a search engine model that 

measures the relevancy of a document for a particular set of query terms—in other words, 

lines 1 and 2 above. Given this modeling structure, we can now test Cairn using a  

 

rank 

(Equation 2.4) 

rank 

(Equation 3.1) 
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particular query-matching algorithm, a set of users, and a set of document ratings. 

Chapter 4 discusses the data used for our model evaluation, while Chapter 5 presents the 

software built to implement our modeling.   
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IV. Data 

IV.A. TIPSTER DATA 

We use the TIPSTER dataset, provided by the National Institute of Standards and 

Technology (NIST) (Harman & Liberman, 1993). This dataset was originally compiled in 

1993 and still serves as a popular benchmark for testing and evaluating IR systems in the 

annual Text REtrieval Conference (TREC). The Defense Advanced Research & Projects 

Agency (DARPA) created TIPSTER in order to further the development of textual 

analysis and document retrieval (Voorhees & Harman, 1999). TIPSTER contains both 

government documents and news articles from sources such as the Federal Register, the 

Congressional Record, the Department of Energy, the Wall Street Journal, the Associated 

Press, and the Financial Times. Additionally, TREC has generated test queries and 

associated documents relevant to each query.  

IV.A.1. TIPSTER Documents 

Each document is formatted similarly using XML-like fields. Each field contains 

pieces of information pertaining to that document such as headlines, authors, bylines, 

topic codes, story dates, etc. These fields are not always consistent across news sources 

or even within a single source. However, there are two information fields common to all 

sources that 1) uniquely identify particular documents (<DOCNO>) and, 2) collect the 

document text (<TEXT>). Two example documents are presented in Figure 11. 
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<DOC> 

<DOCNO> WSJ870924-0053 </DOCNO> 

<HL>  

Service Tax Cited</HL> 

<DD> 09/24/87</DD> 

<SO> WALL STREET JOURNAL (J)</SO> 

<IN> BOND MARKET NEWS (BON) </IN> 

<DATELINE> NEW YORK </DATELINE> 

<TEXT> 

  Standard & Poor's Corp. said it placed the state 

of Florida's double-A-rated debt on its CreditWatch list "with 

negative implications.” S&P cited uncertainty over the fate of 

the state's new tax on services.  S&P said the move involves 

$4 billion of debt as well as $260 ….  

</TEXT> 

</DOC> 

 

 

<DOC> 

<DOCNO> AP900101-0113 </DOCNO> 

<FILEID>AP-NR-01-01-90 2049EDT</FILEID> 

<FIRST>r i AM-BRF--Cuba-Castro   01-01 

0167</FIRST> 

<SECOND>AM-BRF--Cuba-

Castro,0171</SECOND> 

<HEAD>Castro Says Cuba Will Remain 

Socialist</HEAD> 

<DATELINE>MEXICO CITY (AP) 

</DATELINE> 

<TEXT> 

  Fidel Castro said Monday that nothing would 

divert Cuba from socialism, indicating his government would 

not be swayed by the reforms sweeping Eastern Europe, the 

Cuban news agency Prensa Latina said.  ``I am sure that we 

have all the political and moral factors to confront any type 

of problem and that nothing and no one will make our nation 

backtrack on the road of socialism,'' the official news agency 

quoted Castro as saying.  The Cuban president spoke … 

</TEXT> 

</DOC>

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Example TIPSTER Document Data.  

Left; Wall Street Journal, Right; Associated Press Newswire. The two fields used in our 

analysis are highlighted in bold. 

In order for this dataset to be used for testing and evaluating, the documents must 

be accompanied by sets of queries and related relevant documents. TREC provides test 

queries on an annual basis, generating over 400 test queries to date. TREC also supports 

research in information filtering, crowdsourcing, context suggestion, temporal 

summarization, and many others (Text REtrieval Conference Web Site). Therefore, 
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TREC creates topics, containing information beyond a simple query. Figure 12 provides 

one such topic description, from which we use the <title> field in order to generate queries 

used in our analysis.  

 

<top> 

<head> Tipster Topic Description 

<num> Number: 051  

<dom> Domain: International Economics 

<title> Topic: Airbus Subsidies 

<desc> Description: 

Document will discuss government assistance to Airbus Industrie, or mention atrade dispute between Airbus 

and a U.S. aircraft producer over the issue of subsidies. 

<smry> Summary: Document will discuss government assistance to Airbus Industrie, or mention a trade dispute 

between Airbus and a U.S. aircraft producer over the issue of subsidies. 

<narr> Narrative: A relevant document will cite or discuss assistance to Airbus Industrie by the 

French, German, British or Spanish government(s), or will discuss a trade dispute between Airbus or the 

European governments and a U.S. aircraft producer, most likely Boeing Co. or McDonnell Douglas Corp., or 

the U.S. government, over federal subsidies to Airbus. 

<con> Concept(s): 

1. Airbus Industries 

2. European aircraft consortium, Messerschmitt-Boelkow-Blohm GmbH, British 

  Aerospace PLC, Aerospatiale, Construcciones Aeronauticas S.A.  

3. federal subsidies, government assistance, aid, loan, financing 

4. trade dispute, trade controversy, trade tension 

5. General Agreement on Tariffs and Trade (GATT) aircraft code 

6. Trade Policy Review Group (TPRG) 

7. complaint, objection 

8. retaliation, anti-dumping duty petition, countervailing duty petition, 

  sanctions 

<fac> Factor(s): 

<def> Definition(s): 

</top> 

Figure 12.  TREC Example Topic.  

We use the <title> field as a query for the topic. 

IV.A.2. Relevancy Assessments 

Each TREC-provided topic is accompanied by the set of documents that are 

deemed as relevant for that query. These judgments are provided from a group of 

assessors who view approximately 1500-2000 documents per topic. The relevancy 

assessments are aggregated into a single file which lists the relevant documents for a 

topic.  
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V. Software  

V.A. SOFTWARE DESIGN 

We develop software which implements the modeling presented in Chapter III. In 

addition to implementing the model, the software supports analysis of search 

performance. The program is written in Java and Python and executes in both Windows 

and *nix systems. We also present a prototype graphical user interface (GUI) as a 

demonstration of a possible real world user-to-computer interaction. The remaining 

chapter describes the set of executables that implement the software model. 

V.B. PROFILER 

The Profiler executable manages user profiles. It is used to create a new profile 

database, add a new profile, modify an existing profile, or delete a profile. The profiles 

within the profile database are encoded in XML format, as seen in Figure 13. Profiler is 

written in both Java and Python and is dependent upon the Python package ElementTree, 

an XML file handler. The command line arguments for Profiler are presented in Table 3, 

along with a description of their meaning and an example usage.  

 

CLI 

Argument 
Description Example 

-I File Path to User Profile Database (New or Existing) -I “/system/usr/profiles.xml” 

-U New User Name -U “Alice” 

-N Binary, Is This a new profile database? -N 

-A Binary, Are we adding a new profile to the database? -A 

-C New User Contact Information -C “alice@site.com” 

-O New User Organization(s) -O “USMC,IIMEF,2dMAW”  

-G New User Geographic Area of Interest(s) 
-G 

“CENTCOM,Afghanistan,Helmand,Sangin” 

-T New User Topics of Interest(s) 
-T “Explosive Munitions,Improvised 

Explosive Devices” 

-Q New User Previous Queries -Q “RCIED,” “VBIED,” “PPIED” 

-V New User Viewed Document(s) -V “report 1,report 4,report 5” 

-R New User Relevant-Rated Document(s) -R “report 4” 

Table 3.   Profiler Command Line Arguments 
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<userProfileSet> 

<userProfile>Alice 

<contact>alice@site.com</contact>  

<character> 

<org> 

<unit1>USMC</unit1> 

<unit2>IIMEF</unit2> 

<unit3>2dMAW</unit3> 

</org> 

<geo> 

<geo1>CENTCOM</geo1> 

<geo2>Afghanistan</geo2> 

<geo3>Helmand </geo3 

<geo4>Sangin </geo4> 

</geo> 

<topic> 

<topic1>Explosive Munitions </topic1> 

<topic2>Improvised Explosive Devices </topic2> 

 

</topic> 

</character> 

<behavior> 

<query> 

<query1>RCIED</query1> 

<query2>VBIED </query2> 

<query3>PPIED</query3> 

</query> 

<viewed> 

<viewed1>report1</viewed1> 

<viewed2>report4</viewed2> 

<viewed3>report5 </viewed3> 

</viewed> 

<rel> 

<rel1>report4</rel1> 

</rel> 

</behavior> 

</userProfile> 

</userProfileSet> 

Figure 13.  Example Profile Database  

V.C. EXPLORER 

The Explorer executable finds and scores similar users and then provides a ranked 

list of predicted document ratings for the current user. The first portion of this process is 

a Similarity Calculator. This compares the current user’s interest profile to all other 

interest profiles, where the type of similarity can be controlled through a command line 

argument. The second portion of the process is a Content Finder, where similar user 

profiles are scanned for rated documents. The current implementation of our software 

only provides predicted ratings, however it would be simple to provide recommendations 

on other content such as queries, topics of interest, or similar organizations. The third and 

final portion is the Predicted Rating Document Ranking, which develops a ranked list of  
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predicted rating scores using ratings from database user profiles. Table 4 lists the 

command line arguments for Explorer. The remainder of the section describes each of the 

three processes executed within Explorer. 

 

CLI 

Argument 
Description 

-U Current User ID 

-I File path to existing user profile database 

-ALL [Default] Binary, Use entire profile to find similarity 

-ORG Binary, Use organizations to find similarity 

-CHAR Binary, Use topics & geography of interest to find similarity 

-TOP Binary, use topics of interest to find similarity 

-GEO Binary, Use geographic areas of interest to find similarity 

-BEH Binary, Use all search behavior to find similarity 

-QUERY Binary, Use previous queries to find similarity 

-VIEWED Binary, Use viewed documents to find similarity 

-REL Binary, Use relevant-rated documents to find similarity 

-OS File path to output predicted ratingss 

Table 4.   Explorer Command Line Arguments 

 

The Similarity Calculator first builds a vector representation of leaf nodes from 

each user’s tree of characteristics. This vector contains only characteristics within the 

selected similarity scope. User similarity is computed using vector dot product. Once 

complete, we have a similarity score between the current user and every other user of the 

model.  

The Content Finder iterates over the list of similar users and extracts documents 

ranked as relevant by any similar user.  

The Predicted Rating Document Ranking generates a predicted rating for each 

document extracted by the Content Finder. Figure 14 displays an example output at the 

completion of Explorer. 
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wsj880907-0111,1.0 

wsj880112-0102,0.78 

ap880322-0296,0.5 

wsj910201-0041,0.48 

wsj910610-0019,0.32 

wsj911105-0088,0.3 

wsj880323-0065,0.21 

wsj870512-0048,0.16 

ap880704-0023,0.15 

wsj880321-0045,0.08 

wsj920121-0016,0.02 

wsj871130-0005,0.02 

Figure 14.  Example Explorer Predicted Rating Document Ranking Output 

V.D. SEARCHER 

The Searcher executable integrates a query-match score from an existing search 

engine model and a predicted rating score from the DRM, returning a ranked list of 

documents. The Searcher acts similar to traditional search engines, however it also 

integrates the database of users and user similarity computations. Searcher employs 

Apache’s popular Lucene™ open source search engine framework. It has been widely 

used in applications ranging from Wikipedia to Netflix to Twitter (Lucene, 2013). 

Lucene™ allows us to index very large collections of documents, query them, and 

receive a query-matched score for each document. Table 6 describes the command line 

arguments for Searcher. 

V.D.1. Lucene™ Open Source Search Framework 

Lucene™ is a Java-based library of open source software for implementing search 

engine functionality. Combined with Solr, the web server-based Lucene™ 

implementation, it is currently the most popular and widely distributed search library, 

becoming accepted throughout many of the most popular websites and desktop search 

solutions (Lucene, 2013). One advantage of Lucene™ is its ability to take a large 

collection of documents and rapidly create a distributed index. In the case of this 

research, we use Lucene™ to index and search a collection of 750,000 documents on a 

modern laptop (Windows 8.1 x64, i7 3517U 2.4 GHz, 8GB RAM). Another unique 

advantage to Lucene™ is the ability to implement multiple popular IR algorithms.  
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Finally, Lucene’s™ open source code can be manipulated to support many types of 

extensions. Before we integrate Lucene™ into Cairn, there are several steps which need 

to be accomplished.  

The first step in using Lucene™ is to ingest the TIPSTER document dataset. For 

our purposes, we store three pieces of information for each document: the document 

name, the <DOCNO> TIPSTER data field, the document text, the <TEXT> TIPSTER data 

field, and the predicted rating provided by the Explorer package. Before we can search 

for documents, we have to choose a document ranking function for Lucene™. 

Although it is not integral to our modeling, it is useful to understand how 

Lucene™ calculates document relevancy from a particular query. We use the default 

Lucene™ scoring model, which is a combination of vector-space models and Boolean 

models, shown in Equation 5.1. This score equation is calculated for each document,  , 

which matches each term,  , contained in the query,  . We quote the parameter 

definitions for the scoring equation from  (Hatcher, Gospodnetic, & McCandless, 2009) 

                                         

                   ∑                                                    

   

 

(Equation 5.1) 

 

Parameter Description 

      Term frequency factor for the term,  , in the document,  , i.e., how many times the 

term to occurs in the document.  

       Inverse document frequency factor of the term: A measure of how “unique” the term is. 

Very common terms have a low    ; very rare terms have a high    .  

                 Field & Document boost, as set during indexing. This can be used to statically boost 

certain index fields and documents over others.  

                      Normalization value of a field, given the number of terms within the field. This value is 

computed during indexing and stored in the index norms. Shorter fields (fewer tokens) 

get a bigger boost from this factor.  

           Coordination factor, based on the number of query terms the document contains. The 

coordination factor gives an “AND”-like boost to documents that contain more of the 

search terms than other documents.  

             Normalization value for a query, given the sum of the squared weights of each of the 

query terms.  

Table 5.   Lucene™ Scoring Equation Factors (after Hatcher et al., 2009) 
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For this scoring equation to integrate with our weighted predicted rating score, we 

must normalize it to a [0,1] scale. This is done by finding the maximum document score 

for the query,                           then dividing each lower document score by 

this value, given in Equation 5.2.  

              
              

                        
 

(Equation 5.2) 

 

V.D.2. Integrating Lucene™ Ranking with Predicted Rating 

In order to integrate our predicted rating document score, we provide Lucene™ 

with a set of predicted rating scores based on the current user’s interest profile. In 

addition, we select the weighting factor      . Recall that      determines the balance 

between the predicted rating score and the Lucene™-provided query-matched score. The 

final document score is drawn from equation 5.3. A weight of 0.0 places no importance 

on the predicted rating score, representing a standard query-based search engine. A 

weight of 1.0 uses only the predicted rating score, independent of any query-matching 

information. 

                                                            

(Equation 5.3) 

 

CLI 

Argument 
Description 

Example  

-IL File path to index location (New or existing)  -IL “/system/data/documents/index” 

-IF File path to documents location -IF “/system/data/documents/” 

-M 
Binary, Multiple documents per file? (Or single document 

per file without argument) 

-M 

-O Binary, Overwrite existing index, if one exists?  -O 

-IU File path to predicted rating document scoring results  -IU “/system/data/similarity_scores.txt” 

-U Binary, Updating index with new predicted rating scores? -U 

-SW Predicted rating score weight,       to be used in final 

scoring equation 

-SW 0.5 

-N Number of results to return per query -N 100 

-Q For automated querying, the query to be passed -Q “web 2.0” 

-T For record keeping, the topic number of the query passed -T 51 

Table 6.   Searcher Command Line Arguments 
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V.E. AUTOMATED PROFILE GENERATION 

To test Cairn, we need to generate a database of user profiles, and their prior 

interaction with the search model. We term these generated users bots. Just like real 

users, bots have certain biographical information, interests, and behaviors. The 

information contained in these profiles is controlled through parameters in our software. 

The bot similarity controls how much of the characteristic information in the bot’s profile 

is shared with the current user of the model. We use the test queries from the TIPSTER 

dataset for intelligence requirements. A bot draws its relevant-rated documents from the 

set of actually relevant documents for that test query. We term the number of rated 

documents in the bot’s profile as the visibility of the bot. To test Cairn, we run many 

queries and corresponding bot parameterizations, producing confidence intervals for the 

results. We discuss each of the bot parameters in detail below, before describing the 

software to generate bots. 

V.E.1. Similarity 

We use the letter   to denote the similarity value. A similarity of 1.0 will create 

another bot whose profile is a perfect replica of the current user profile. A bot profile 

with a similarity of 0.0 will share no profile properties with the current user. For 

similarities between 0.0 and 1.0, we randomly draw an   fraction of the current user’s 

profile. For instance, creating two bots with similarity 0.5 using a current user profile 

which contains ten properties means creating two bot profiles each containing five 

randomly drawn properties from the current user’s properties. Although the specific 

elements of similarity will be different between the two bots, the overall similarity score 

will be the same.  

V.E.2. Visibility 

We use the letter   to denote the visibility value, the number of rated documents 

within the bot profile. The set of truly relevant documents is test query-specific, as 

provided by the TIPSTER dataset. A visibility of 1.0 creates a bot that rates at most the 

exact number of documents truly relevant for that test query. Conversely, a visibility of 



 54 

0.0 results in a bot without document ratings. For visibility between 0 and 1, we set the 

number of rated documents as the   fraction of the number of truly relevant documents.  

V.E.3. False Positive Rate 

Visibility only defines the number of rated documents in the bot profile. Some of 

the documents rated as relevant by the bot may be truly relevant, and others may not be 

truly relevant. The number of relevant vice non-relevant documents in the bot profile 

depends on the false positive rate (FPR) parameter. The FPR dictates the percentage of 

non-relevant documents rated as relevant by the bot. An FPR of 0.0 will cause perfect 

ratings, that is, each document rated relevant is truly relevant for that test query. An FPR 

1.0 cases each document rated relevant to be truly non-relevant. The specific documents 

to be rated are drawn randomly from the sets of truly relevant and non-relevant 

documents. For example, if we create two bots each with visibility of 100 documents, 

each with        , then each bot’s profile will rate 100 documents as relevant, with 

30 of those being truly relevant and 70 being truly nonrelevant.  

V.E.4. Bot Creator 

The Bot Creator establishes a new profile database, and creates the necessary bot 

user profiles—a test query-specific profile database. Table 7 describes the command line 

arguments for Bot Creator. 
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CLI 

Argument 
Description 

Example 

-IP 
File path to input profile database (to extract current user 

profile information)  
-IP “/system/data/profiles.xml” 

-IT File path to data topics file -IT “/system/data/topics.txt” 

-U Current user name -U “john doe” 

-T Current topic ID -T 51 

-N Number of bots to be created -N 50 

-S Bot similarity level -S 0.2 

-SD Bot similarity distribution (unused for now) -SD unif:0.1:0.5 

-V Bot visibility level -V 0.7 

-FP Bot false positive rate -FP 0.2 

-VD Bot visibility distribution (unused for now) -VD tri:0.0:1.0:0.5 

-OP File path to output bot profile database -OP “/system/data/bot_profiles.xml” 

Table 7.   Automated Profile Generator Command Line Arguments 

V.F. CAIRN GRAPHICAL USER INTERFACE 

We worked with programmers from the NPS MOVES institute to develop a 

prototype user interface for Cairn. The interface strives to achieve three objectives: quick 

access to information, simple software interaction, and methodology transparency. 

Figures 15-19 depict the interface designs, divided into two interface windows: Search & 

Profile. These two windows hold three sections: Content Results, Search Configuration, 

and Profile Configuration. We now detail each of these sections. References to the 

appropriate interface figure follow each description.  
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Figure 15.  Cairn Search Interface 

1. The Content Results section presents all information that Cairn can provide. 

Aside from standard document results, the user also receives a similar user network, 

recommended queries, and common regions of interest. These recommendations are 

based on the similarities computed with other users in the model, as specified by the 

search configuration. (Figure 15)  

2. The Search Configuration section allows the user to control his search 

experience. The user is permitted to input query terms and receive standard query-

matched results, or he may use the modeling extensions we offer in Cairn (Figure 15).  
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Figure 16.  Search Configuration  

 

A. The Interest Profile Selection field selects the user’s current interest profile. 

The interest profile selected by the user reflects the type of information the user is 

currently searching for. Recall that user search behaviors are attached to specific interest 

profiles in order to associate documents with intelligence requirements. (Figure 17) 

(Figure 16)  

B. The Similarity Type Selection field selects the method used to calculate 

similarity between users. This allows the user to have a high amount of control and trust 

in how the network of similar users is built. For example, the user may want to view 

popular documents and queries within his organization or organizations similar to his 

own. Alternatively, an analyst may instead wish to see the relevant-rated documents 

using only analysts who are focused on the same intelligence topics as he is (Figures 17 

and 16).  
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Figure 17.  Search Configuration 

 

C. Query Term Input takes in a user’s query so that Cairn may return document 

results. The results are a function of: 1) how well a document matches the query and 2), 

the ratings on that document provided by other similar users. (Figure 17)  

D. Content Results Selection allows a user to select the information displayed in 

the Content Results pane. (Figure 17)  

E. Search-Profile Switch toggles the active window between the Search 

interface window and the Profile interface window (Figures 17 and 18)  
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Figure 18.  Cairn Profile Interface 

 

F. Biographical Information Input allows a user to enter information into the 

biographical portion of his user profile. (Figure 18)  

G. Interests Input allows a user to input topics of interest and locations of 

interest. We consider topics and locations as hierarchically-organized data which could 

be selected via nested drop-down menus. Other methods could also be used for interest 

data input. (Figure 18)  

H. Behavior Input allows a user to view and edit their previous search behavior. 

We allow a user to remove previous queries or documents they previously rated as 

relevant. (Figure 18)  

I. Interest Profile Selection determines which interest profile information is 

active in Sections G and H. When a new profile is created, these sections will contain no 

information. However, if an existing profile is selected, these sections will reflect the 

associated user interests and search behavior information. A user may maintain multiple 

interest profiles, but only one interest profile is active at any time. (Figure 18)  
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The interface above does not incorporate endorsements. Endorsements are not 

strictly required by Cairn, because we can assume that all users have received one 

endorsement for all interest characteristics. However, additional workflows can be added 

to the above interface, to allow for users to endorse others. Moreover, the interface above 

is just one possible method to interact with the Cairn model. 
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VI. Analysis  

VI.A. ANALYTIC OVERVIEW 

We analyze the user-similarity based search model in two ways: analytically and 

empirically. The analytical results show that, in expectation, truly relevant document 

ratings are higher than truly nonrelevent documents even at high false positive rates. In 

practice, this expected result can be achieved either through having many users in the 

model, or having a few users concentrate their ratings on relevant documents. 

Empirically, tests on the TIPSTER dataset show that Cairn outperforms standard 

search engines. Moreover, an integrated score outperforms both a query-matched score 

and a predicted rating score individually. This demonstrates the power of incorporating 

information retrieval approaches with recommender systems approaches. Our 

experiments show that Precision @ 10 improves even for small numbers of ratings and 

large error rates. Mean Average Precision also improves in these conditions, but not as 

much as Precision @ 10. The empirical results mirror the theoretical analysis, which 

states that more user ratings can accommodate nearly all error rates. Empirically, only a 

small number of similar users, less than ten, can double or even triple search 

performance. Finally, we use a robust design to pick a near-optimal weighting,     . 

VI.B. THEORETICAL ANALYSIS 

Our theoretical analysis is driven by the questions provided in Table 8. 

 

Question 1.  Is the expected ranking of a relevant document higher than the ranking of a nonrelevant 

document, given that ratings are error-prone?  

Question 2.  How many users are needed to achieve a particular performance level for a specific corpus 

of documents?  

Table 8.   Probabilistic Analytic Questions 

 

For the purpose of our theoretical analysis, we focus solely on ratings and ignore 

queries. We consider   users of the model who each rate   documents as relevant. Let a 

false positive rate,    describe split between false positive ratings,   , and true positive 
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ratings       . Let   be as the fraction of truly relevant documents in a document 

corpus of size  . The number of relevant documents is    and the number of nonrelevant 

documents is       .  

In order to answer question 1, we find the expected rating of a relevant document 

and a nonrelevant document. The expected rating for a relevant document is described by 

Equation 6.1. Each of the   users rates        relevant documents at random from the 

corpus. The expected rating of a specific relevant document is the expected number of 

ratings the document receives over all the   users. Alternatively, the expected rating for a 

nonrelevant document is provided in Equation 6.2.  

                                
      

  
 

(Equation 6.1) 

                                   
  

      
 

(Equation 6.2) 

We now explore the points at which the expected rating for a relevant document is 

greater than the expected rating of a nonrelevant document. It is at these points where the 

recommendations are useful. We compute this inequality in Equation 6.3 and 6.4 

                                                                 

 
      

  
    

  

      
 

(Equation 6.3) 

        

(Equation 6.4) 

Equation 6.4 shows that, in expectation, a relevant document has a higher rating 

than a nonrelevant document if the false positive rate is less than the fraction of 

nonrelevant documents in the corpus. In most real-world settings     is very close to  

 



 63 

one because most documents are nonrelevant, meaning that high false positive rates still 

yield useful rankings in expectation. To illustrate this, we apply the equations to the 

TIPSTER dataset.  

Among test queries 151 to 200, the average number of relevant documents,   ̅̅ ̅, is 

     , with a corpus size          . At these values, the inequality holds true for all 

false positive rates up to 0.9998. That is, as long as users can rate documents with an 

average false positive rate lower than 99.98%, we can expect higher ratings for relevant 

documents than nonrelevant documents. This conclusion gives confidence in our use of 

error-prone ratings in order to asses document relevancy.  

At least two critiques to the above theoretical analysis exist. First, the results are 

in expectation—results that may not be reached without an infinite amount of users. 

Second, not all nonrelevant documents are created equal. There are some nonrelevant 

documents that are more susceptible to being rated as relevant by a user. These deceiver 

documents might draw a large fraction of the ratings on nonrelevant documents. User 

ratings are only effective, if they concentrate more on relevant documents than 

nonrelevant ones. We develop a simple simulation model in order to address these 

critiques.  

We consider   relevant documents and    deceiver documents where     . The 

proportion of relevant documents, or the signal to noise ratio, is given as        
⁄ . We 

simulate   users who rate   documents from the set consisting of both relevant and 

deceiver documents. The users are able to rate a relevant document as relevant with 

probability  , however, they erroneously rate a nonrelevant deceiver document as relevant 

with probability  . Document ratings are simulated with each user randomly selecting 

either a relevant or deceiver document, and then providing a rating determined by   or  . 

We apply this simulation for an increasing number of users, shown in Figure 19.  
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Figure 19.  Retrieval Performance Based on Erroneous Ratings 

Increasing numbers of users increases performance, despite a high false positive rate. 

Note that as the number of users increases, we converge to our analytic conclusion above, 

that all relevant documents will receive higher ratings than nonrelevant documents.  

30 simulation replications provide 95% confidence intervals. 

We consider a relatively small set of relevant documents,     , hidden among a 

much larger set of deceiver documents,        . Users rate truly relevant documents 

with probability       The results in Figure 19 show that increasing the number of 

users increases performance despite a reasonably high false positive rate. However, the 

number of users required to achieve increased performance is formidable. The document 

ratings are used to improve performance by converging ratings on the comparatively 

small set of relevant documents. The number of ratings can be increased by using more 

users or more ratings per user. Forcing more ratings may be impractical in many 

applications, but there are other options available to improve performance. Reducing the 

number of deceiver documents that are eligible to be rated reduces the potential for error 

and allows a lower number of users to still converge ratings on the set of relevant 

documents. This approach is tested by halving the number of deceiver documents,  

 

 



 65 

increasing the signal to noise ratio from      to     . This small change significantly 

reduces the number of users required to achieve equivalent levels of search performance, 

as seen in Figure 20.  

 

Figure 20.  Retrieval Performance Based on Erroneous Ratings 

Reducing number of deceiver documents increases performance, demonstrating the value 

of integrating a search model with a rating-based model 

We conclude that in order to compensate for erroneous ratings, a recommender 

system can either increase the number of overall ratings or increase the probability that 

the user will be rating a document which is relevant. Our model uses the latter by relying 

on query-matched document scores to increase the probability that a document is relevant 

before it has been delivered to the user for rating. This integration is crucial for 

improving search performance when using a small number of human ratings. Our 

collaborative model is not guaranteed to find a large network of similar users and 

corresponding ratings, therefore this conclusion lends strong support to our modeling 

approach. 
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VI.C. EMPIRICAL ANALYSIS 

We test Cairn across five different input parameters, presented in Table 9. 

Combined with the TIPSTER data, these parameters control the users and ratings of the 

system, thus simulating real-world use of the model. We test over TIPSTER topics 151 

through 200, with 95percent confidence intervals provided after each test. Our analysis is 

driven by the six questions shown in Table 10.  

 
Title  Description Example 

Number of Bots (NB) Defines the number of other users 

(bots) of the model.  

{1, 10, 100, 500} 

Similarity (S) Defines the similarity of the current 

user to other users of the model 

(bots).  

{0.0, 0.5, 1.0} 

Visibility (V) Defines the visibility of the other user 

(bot). Bot rating accuracy. This is the 

proportion of relevant documents 

rated out of the number of truly 

relevant documents for a particular 

query.  

{0.0, 0.5, 1.0} 

False Positive Rate (FPR) Defines the false positive rate of the 

other user (bot). Bot rating precision. 

This is the proportion of falsely 

identifying relevant documents when 

they are actually nonrelevant.. 

{0.0, 0.5, 1.0} 

Similarity-Ranked Score Weight 

(    ) 

Defines the weight given to the score 

generated by our predicted rating 

model. When       , the 

documents are scored using only the 

score generated by Lucene™, 

indicating how well a document 

matches a query. When       , the 

documents are scored using only our 

user predicted rating model. For 

values between 0 and 1, see Section 

V.D.2  

{0.0, 0.5, 1.0} 

Table 9.   Description of Cairn Analytic Parameters  

 

Question 3.  How does the model perform under best & worst case conditions?  

Question 4. How do individual parameters affect search performance?  

Question 5.  How do interactions between parameters affect performance?  

Question 6.  Can we determine a near-optimal value for     , under error and randomness?  

Table 10.   Empirical Analytic Questions 
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VI.C.1. Model Validation; Best & Worst Case 

In the best case scenario, there is one model bot,     . The bot is perfectly 

similar to the current user,      , with perfect rating skill,               . 

Setting          uses only the prior ratings provided by the perfect bot, thus the model 

performs perfectly.  

Table 11 presents a baseline comparison of Cairn using three different      

values. The first column,         , is the standard Lucene™ model performance. The 

second column uses only the predicted rating scores, where         . The third model 

equally divides query-matched scores with predicted rating scores.  

 

 
Lucene™ Search Performance 

(        ) 

Predicted rating 

Performance 

 (        ) 

Mixed Score Performance 

(        ) 

MAP 0.09334 (0.0677, 0.1189) 1.0 (1.0, 1.0) 0.9974 (0.9954, 0.9995) 

P@10 0.2500 (0.1939, 0.3061) 1.0 (1.0, 1.0) 0.9980 (0.9941, 1.0) 

Table 11.   Baseline Best Case Model Validation Results 

95% confidence intervals given in parentheses. At         , Cairn performs on par 

with other query-matched search models. At         , Cairn performs perfectly. At 

        , Cairn still exhibits near-perfect results.  

We see that the base Lucene™, when         , performs on par with modern 

IR systems (Buttcher, Clarke, & Cormack, 2010). Results are perfect when using perfect 

bot ratings, when         . Although this validates that our model is working 

correctly, these results are not representative of expected real world performance. 

Integrating the two scores using          still provides near perfect performance.  

We consider a worst case scenario with one other user of the model,     , who 

is perfectly similar to the current user,      , and he again has perfect visibility over 

which documents are relevant for a particular query,      . However, this user is now 

entirely nefarious, rating every nonrelevant document as relevant,        . Table 12 

provides a summary of the results. We see that when          Cairn again produces 

the same standard search engine performance. However, for         , Cairn provides 

no performance benefit with MOEs near zero. As with the perfect performance seen 

above, this validates expected model behavior.   
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Lucene™ Search Performance 

(        ) 

Predicted rating 

Performance 

 (        ) 

Mixed Score Performance 

(        ) 

MAP 0.09334 (0.0677, 0.1189) 0.0011 (0.0003, 0.0019) 0.0449 (0.0338, 0.0559) 

P@10 0.2500 (0.1939, 0.3061) 0.0140 (0.0043, 0.0237) 0.0280 (0.0154, 0.0405) 

Table 12.    Baseline Worst Case Model Validation Results 

Contrasted with the Table 11 results, at          we no performance benefit 

whatsoever in the search model. This is because Cairn is relying entirely on the erroneous 

ratings of the single other user.  

VI.C.2. Parameter Analysis 

With our model validated under extremes, we wish to consider a range of more 

realistic parameterizations. This section varies a single parameter at a time in order to 

draw insight into how Cairn operates.  
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Varying     : The      parameter is varied first, shown in Figure 21. The left 

axis and blue lines reference MAP results, while the right axis and red lines reference 

P@10 results. See Section II.A.6 for a more detailed description of these MOEs. The 

legend shows the assumed values for the other model parameters. We again provide 

upper and lower 95% confidence intervals.  

 

Figure 21.  Cairn Effectiveness In Varying Predicted Rating Weight,      

Increasing      increases performance under the perfect bot assumption. Near perfect 

performance is achieved even for lower      values.  

Let us consider a more realistic parameterization. Figure 22 shows P@10 where 

             , and      , and we vary     . We consider      and       

indicated by the red and blue lines respectively. For      at zero, we use only query-

matched scores. For      at one, we use only predicted rating scores. Cairn, by 

integrating both scores, outperforms either score independently. Also, there is a wide 

range of options for selecting      in order to achieve near-optimal performance at these 

settings,              . This is important in later analysis to find a      robust to 

many parameter scenarios.  
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Figure 22.  Showing Cairn Improvements Over Traditional Search Engine & 

Recommender Systems Performance 

The      predicted rating weight is used to integrate query-matched scores and predicted 

rating scores, able to improve over either score independently.  
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Varying  : Let          and let us vary the bot similary,  . Figure 23 

demonstrates model effectiveness as the bot becomes increasingly similar to the current 

user. The predicted rating score is normalized across other user ratings, so performance 

increases immediately once the single bot becomes similar to the current user.  

 

Figure 23.  Cairn Effectiveness In Varying Other User Similarity,   

Increasing bot similarity for a perfect bot increases model performance. 
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Varying  : The visibility,  , determines how many documents the bot rates. 

Figure 24 shows performance increases as visibility increases. Model performance is 

limited by the number of documents that the bot rates. If it is less than 10 documents, for 

example, P@10 cannot benefit from ratings on all 10 of the returned documents. Thus, 

even having a user with high similarity, who ranks few documents does not increase 

model performance. 

 

Figure 24.  Cairn Effectiveness In Varying Other User Visibility,   

Increasing visibility increases model performance, particularly for P@10.  
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Varying    : Let us now vary the false positive rate,    , of the other bot. 

Recall that the FPR is the proportion of the bot’s relevant-rated documents which are in 

fact truly nonrelevant. Figure 25 shows decreases in model performance as     

increases. Surprisingly, even at 80% FPR, Cairn outperforms the Lucene™ baseline. At 

higher    , performance actually goes below default query-matched performance. Later 

analysis explores overcoming high FPR with more users or by reducing       

 

Figure 25.  Cairn Effectiveness In Varying Other User False Positive Rate,     

Increasing false positive rates decrease model performance when using ratings from one 

other user. Surprisingly, even at 80% false positive rate, Cairn outperforms the Lucene™ 

baseline. 
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Varying   : We next consider varying the number of other bots,   . We set the 

bot parameters to: similarity of 0.5, visibility of 0.5, and a false positive rate of 0.5. Let 

        . Figure 26 presents NB from zero to 10 and from zero to 200 and 

demonstrates that increased numbers of other users provides increased performance. 

Under these settings, two bots are sufficient to outperform the Lucene™ baseline. This 

conclusion is a key strength found in our modeling approach, alleviating us of the 

requirement to gather very large numbers of user ratings.  

 

Figure 26.  Cairn Effectiveness In Varying Number of Other Similar Users 

(Bots), NB, With FPR=0.5. [          (Top),            
(Bottom)] 

At        , increasing number of other users overcomes high false positive rates.   
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For comparison, Figure 27 increases the     to 0.9 and maintains the other 

scenario parameters. Even at this high false positive rate, Cairn still achieves significant 

gains over the search engine baselines. Cairn outperforms the Lucene™ baselines at 

about 10 users. 

 

Figure 27.  CAIRN Effectiveness In Varying Number of Other Similar Users 

(Bots), NB, With FPR=0.9. [          (Top),            
(Bottom)] 

At        , increasing number of other users overcomes high false positive rates.   
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We consider the relationship between the number of bots,   , and false positive 

rate,    . Figure 28 shows the effect of increasing    at three particular false positive 

rates. The number of bots quickly improves performance, even for high    . 

Performance at lower false positive rates can be accommodated by a lower number of 

bots. 

 

Figure 28.  Cairn Effectiveness In Varying Number of Bots,           , and 

False Positive Rate,                    .  

More users can overcome higher false positive rates, still offering significant 

improvements over standard query-matched search engines.   
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VI.C.3. Two-Way Parameter Analysis 

The previous section varied a single parameter while keeping all other parameters 

fixed. A possible critique of that analysis is that we picked specific parameter values. To 

address this, in this section, we vary two parameters simultaneously. The results of these 

graphs are the same as those in the previous section. Unless otherwise stated, default 

values of the parameters that are not currently being tested are set at the following values: 

                                 .  

The relationship between user similarity and visibility is examined in Figure 29. 

As long as similarity is positive, for one bot, it has no effect on the MOEs because 

predicted rating scores are normalized. As we increase visibility, P@10 improves faster 

than MAP. MAP requires higher accuracy across all relevant documents, whereas P@10 

only requires accuracy within the top 10 documents. 

  

Figure 29.  Cairn Effectiveness In Varying Similarity,  , and Visibility,    

For one bot, as long as similarity is positive, it has no effect on the MOEs because 

predicted rating scores are normalized. Increases visibility increase performance..   

Lucene Baseline 

 Lucene Baseline 
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Figure 30 varies the bot false positive rate,    , and predicted rating score 

weight,     . With a predicted rating weight near one, search performance is highly 

dependent on the false positive rate. In fact, at high    s near 1.0, predicted ratings do 

worse than the Lucene™ baseline. However, at nearly all    s lower than 1.0, the 

predicted-rating scores do better than the Lucene™ baseline.  

 

Figure 30.  Cairn Effectiveness In Varying False Positive Rate,    , and 

Similarity-Score Weight,       

Cairn offers improved performance for nearly all false positive rates and      values. 

Performance is reduced only at high false positive rates, but can be mitigated using a 

lower      weight.  

Lucene Baseline 

 

Lucene Baseline 
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We next consider the relationship between visibility,  , and    , shown in 

Figure 31. High     and low   results in performance at or below baseline Lucene™. 

This poor performance can be addressed by increasing the number of bots. 

  

Figure 31.  Cairn Effectiveness In Varying Visibility,  , and False Positive Rate, 

    

MAP scores are more sensitive to visibility and false positive rates than P@10. However, 

both are improved over standard search performance for nearly all        .   

Lucene Baseline 

 

Lucene Baseline 
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Figure 32 varies    from zero to 10 across all     values. These figures provide 

strong support that Cairn can offer significantly improved search performance in a real-

world application where there are few similar users with potentially high error rates.  

 

Figure 32.  Cairn Effectiveness In Varying Number of Bots,           , and 

False Positive Rate,               . [          (Top),    
        (Bottom)] 

Even for small numbers of users, false positive rates can be quickly overcome to offer 

significant improvements in search performance. Very large numbers of similar users 

offer more robust improvements.   

Lucene Baseline 

 

Lucene Baseline 
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VI.C.4. Providing Robust Predicted Rating Score Weight 

Our analysis parameterized the network of similar users by   ,  ,  , and    . In 

a real-world environment,   and     are uncontrollable factors in the environment, 

describing the number of documents users rate and the error in those ratings. The 

parameters    and   are also uncontrollable, but can be known with certainty by Cairn. 

Cairn controls only a single model parameter, the predicted rating score weight,     . In 

a real-world application of Cairn,      can be a function of    and  . Further, the      

value chosen should be robust to the unknown model parameters. A good value of      

depends on knowledge of   and      For the analysis below, we assume the model 

designer only knows that these factors are uniformly distributed between      . However, 

this analysis can be re-run if more accurate knowledge on these factors is known. The 

main purpose of this section is to outline a method for computing a good value for       

We worked with the NPS SEED Center (http://harvest.nps.edu) to use robust 

design techniques to determine the      value (Sanchez, 2000). In the terminology of 

robust design, the factors,   ,  , and     , are classified as decision factors. Similarly, in 

robust design terminology     and   are classified as noise factors. We assume     

and   to be uniformly distributed over the interval      . The experimental design is 

created using a crossed nearly-orthogonal Latin hypercube. Over our five parameters, this 

results in an 873 point design. Table 13 contains the resulting correlation values between 

the design factors.  

Factor                 

   1.000 0.002 0.000 0.000 0.006 

  0.002 1.000 -0.001 0.000 0.000 

  0.000 -0.001 1.000 0.000 0.000 

    0.000 0.000 0.000 1.000 0.000 

     0.006 0.000 0.000 0.000 1.000 

Table 13.   Summary Experimental Design NOLH Factor Correlation  

Results are aggregated across the noise factors     and  , leaving 279 

observations where we compute a mean and standard deviation for each MOE,     ̅̅ ̅̅ ̅̅ ̅, 
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    ,.     ̅̅ ̅̅ ̅̅ ̅̅ ,       . We use the resulting data points for,   ,  , and      to fit cross-

validated Generalized Additive Models (GAMs) for the mean and standard deviation of 

MAP and P@10. We save 20% of the data points for a final test, and we use 10-fold 

cross-validation on the remaining 80% to select a well-fitting model. For each response, 

cross-validation selects a GAM with nine to eleven degrees of freedom. The resulting 

models achieve suitable fit on the 20% out-of-sample test data set, as seen in Table 14. 

The fidelity provided by our nearly orthogonal latin hypercube design and the resulting 

metamodel is seen in Figure 33 comparing our GAM predictions to actual CAIRN output.  

 

Model Response                           
                

  

   ̅̅ ̅̅ ̅̅ ̅ 0.0489 96.2 0.0322 97.6 

     0.0349 93.0 0.0212 97.6 

    ̅̅ ̅̅ ̅̅ ̅̅  0.0290 94.2 0.0148 98.92 

      0.0314 96.2 0.0225 98.3 

Table 14.   Robust Design Metamodels for MOE Mean and Standard Deviation 

 

Figure 33.  Robust Design Metamodel Predictions v. Actual Cairn Output 

This shows that the robust design metamodel fits well at different parameterizations of 

our implemented software.  
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We define loss functions,     and      , computing the difference between the 

predicted map MAP and P@10 from a perfect goal of 1.0 as shown in Equation 6.6. We 

aim to minimize these loss functions.  

         ̅̅ ̅̅ ̅           
 ,            ̅̅ ̅̅ ̅̅             

  

(Equation 6.6) 

We use gridded search with 100 points between zero and one to find a good value 

for      at each combination of    and  . The loss-optimized      weights over    and 

  are provided in Figure 34. The chosen      is largely dependent on which MOE is 

desired. For the majority of configurations of    and  , MAP performance is near-

optimal at a relatively high         . Thus Cairn prioritizes the predicted rating score 

over the query matched score when the objective is MAP. P@10 performance instead 

sets the near-optimal      to 0.4. Opposite to MAP, Cairn now weighs the query-

matched document score over the predicted rating score.  

 

Figure 34.  Loss-Optimized      Over Number of Other Users,   , and 

Similarity,    

Robust, near-optimal      weights are provided. Optimizing      results in higher      

than optimizing      . 

We use the predictive MAP and P@10 models and the computed values of 

     to predict Cairn performance. Figure 35 and Figure 36 show mean performance and  
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the loss objective for each MOE. When no other similar users are found, or when   

   , Cairn performance is precisely at the default Lucene™ baseline and loss is at its 

worst. However, both mean and loss performance increase as a similarity network is 

built.  

 

Figure 35.  Cairn Search Performance When Using Robust, Near-Optimal      

Performance gains are seen even for small numbers of similar users. When no similar 

users are present, Cairn performs at standard Lucene™ performance.  

 

Figure 36.  Cairn Loss Performance When Using Robust, Near-Optimal      

More similar users or increased similarity between users decreases expected loss.   

Lucene Baseline 

 Lucene Baseline 
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VII. Conclusions  

VII.A. OBJECTIVE SUMMARY 

Our work endeavors to improve information search in the Intelligence 

Community. In doing so, we strive to enable collaboration between intelligence analysts 

with similar intelligence problems.  

VII.B. PROJECT SUMMARY 

Modeling approach: The collaborative user similarity model (USM) represents a 

user through their user profile. This user profile contains biographical information about 

the user, in addition to multiple possible interest profiles. These interest profiles hold 

information about the users interests and searching behavior regarding a particular 

intelligence problem. Once user profiles are created, the USM calculates similarity to 

other model users, based upon the type of similarity designated by the current user, such 

as ‘Previous Queries’, ‘Shared Regions of Interest’, or ‘Similar Organizations’. This 

network of similar users integrates with the Document Ranking Model (DRM). The 

DRM uses the previous document ratings of the similar users in order to develop a 

predicted document rating for the current user.  

We integrate the DRM with a Markov Random Fields model for IR. The 

predicted rating scores act as document prior relevancy probabilities. This allows the 

predicted rating scores to be mixed with modern-day search engines that provide a query 

matched score.  

Data and software approach: Our software builds upon Lucene™. We 

implement the collaborative model and predicted document relevancy scores. These 

scores are brought into Lucene™ for indexing, searching, and scoring, to be integrated 

with traditional query-matching. Finally, we develop a prototype graphical user interface 

to provide one option as to how this new approach towards collaboration and search may 

be developed into an application.  
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We use documents and test queries provided by the National Institute of 

Standards and Technology. The dataset is commonly known as TIPSTER, and consists of 

over 700,000 articles from the Wall Street Journal, Associated Press, the Federal 

Register, and others. The test queries are accompanied by a list of relevant articles. We 

generate users, or bots, in order to test the model. The behavior of the bots and their 

relationship to the current user of the model is controlled by four input parameters: 

number of bots, similarity of the bots to the current user, truly relevant document 

visibility, and the percentage of false positive ratings. We also create a fifth input 

parameter, the weight given to the predicted rating score vice the query-matched score. 

We assess performance using Mean Average Precision (MAP) and Precision at 10 

Documents (P@10).  

Analysis approach: To analyze the model, we derive theoretical results to assess 

the accuracy of using document ratings provided by humans that are prone to error. We 

also conduct an empirical analysis of the software under a variety of parameter settings. 

We finish by using robust design techniques to compute a reasonable weight for the 

predicted rating score.  

VII.C. RESULTS SUMMARY 

More ratings on relevant documents deliver better performance. By reducing 

the number of deceiver documents presented to the user, Cairn can use a small number of 

ratings to improve search performance. Also, increasing the number of user ratings can 

overcome large false positive rating rates.  

Integrated scoring outperforms other search methods. We show that 

integrating a query-matched score and predicted rating score provides a effective scoring 

solution than either can individually.  

Performance gains can be seen with small numbers of users. Search 

performance can be improved by using a small network of similar users who each have 

high error rates. Cairn improves Precision @ 10 more dramatically than Mean Average 

Precision, but both continue to improve as the number of ratings in the model grows. 
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Robust methods for determining values for     . Robust design techniques 

allow setting a model-determined value for the predicted-rating document score weight, 

    . This method can be re-run using knowledge of a specific model, if required. 

VII.D. NECESSARY CONDITIONS FOR CAIRN PERFORMANCE 

Several key characteristics of the Intelligence Community enable Cairn 

performance in that setting, whereas it may not work well in other settings. First, in an 

intelligence setting, the search model is allowed to collect essentially unlimited amounts 

of data on the user; enabling the use of user-profiles to improve search. Second, 

intelligence queries can be categorized in a relatively small finite set of information 

needs—the interest profile tree. Without this finite set of information needs, it would not 

be possible to distinctly group users searching for the same need. Third, the model 

performs well by maintaining ratings of documents. This would require a user to identify 

documents relevant to their information need. It may be possible to implicitly compute 

relevance, such as relevancy scored by time spent viewing a document, however these 

implicit ratings may reduce performance. 

VII.E. CONTRIBUTIONS 

Our work adds to recent developments in both the information retrieval and 

recommender systems communities. We discuss a number of contributions to those 

communities and also to the Intelligence Community.  

Personalized search with user interest profiles. Personalized search has 

provided noticeable improvements in search performance (Sieg et al., 2007). These works 

use profiles implicitly created from the user’s search behaviors; either the previous 

queries or the viewed documents. Due to the unique considerations in the Intelligence 

Community application, we can require explicit interest profiles containing information 

about the analyst’s intelligence requirement. This introduces a new way of building user 

profiles and providing personalized search.  

Fostering user collaboration through search. Social search applications 

improve search performance by using a social network of similar users and providing 
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recommendations based on information within the network. In our application, this 

network is a group of analysts with shared interests: they may be in the same or similar 

organizations, they may frequently type the same query and view the same documents, or 

they may share the same or similar intelligence requirements. Regardless, in the hands of 

an analyst, this network is powerful information which could improve information 

sharing and collaboration within the Intelligence Community. 

Networks built with user-defined similarity. Other personalized search 

applications implicitly calculate similarity to other users. Unlike these applications, we 

put the similarity control into the hands of the user. For example, an analyst may want to 

see document recommendations from other users within her own analytic organization. 

Given a new intelligence requirement, the analyst may discover a network of analysts 

who share that intelligence requirement. Given an existing intelligence requirement, the 

analyst can view popular queries used by other users. Each of these situations demands 

different similarity scopes to be defined by the analyst.  

Bringing modern search technology to the Intelligence Community. The 

Intelligence Community suffers from critical shortfalls that result in needless intelligence 

failures. Lack of collaboration and information overload are two leading contributions to 

these failures. Current technological thrusts in the Intelligence Community focus around 

advanced data processing algorithms that identify patterns and anomalies within a trove 

of collected information. However, analysts use a relatively archaic search system 

without awareness of other analysts who are searching for the same information. Our 

work allows analysts searching for the same information to discover each other and 

benefit from each other’s searches.  

VII.F. FUTURE WORK 

Our work outlines a method of improving search, however a number of future 

research directions are left open. 

Exploring other query-matching algorithms. We implemented our model into 

Lucene™ using the default document query-match score. This score is an extension of 

vector space models, and sufficiently suited our requirements. However, Lucene™ has 
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also been developed to support other scoring algorithms, and it is also extendable to 

support many other search algorithms. There is potential for significant performance 

improvements to both Lucene™ and Cairn by implementing better query-matched score 

algorithms.  

Integrating content-based filtering models. The CBF approach towards 

recommender systems compares the content of items, documents in our case, in order to 

develop recommendations for the current user from the items which the user has already 

shown a preference for. This is proven to perform well, but with the requirement that the 

item’s content has been aggregated, analyzed, and is suitable for comparison to other 

item content. Integrating CBF models to compute predicted rating scores could 

potentially result in performance improvements. Further, the content within the set of 

documents a user has rated as relevant could be used to extend the user profiles we have 

already generated.  

Different user similarity algorithms. Our User Similarity Model (USM) used a 

vector of user characteristics to define a particular user. While the model allows for many 

similarity functions, in our testing we specifically used the Jaccard similarity measure. 

There are many other methods to compute similarity. We suggest testing of these 

alternative methods in order to determine if other similarity algorithms would perform 

better. Similarity algorithms could be dependent on the subtree type, for example saying 

that users in near-by geographical regions are similar. 

Implementation of user quality model. Our modeling introduced and supported 

the concept of user quality weighting based on endorsements. The software we 

implemented and tested did not implement endorsements. This feature would be a critical 

component of a real-world application of our model.  

Increased exploitation of analyst social network. The user-similarity we define 

creates an implicit social network between analysts. We use that social network in only 

one way currently: to compute predicted rating scores for documents. It would be 

straight-forward to use our approach to also recommend queries, topics, regions of 

interest, organizations, etc. based on analysts similar to the current user. Moreover, the 
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implicit social network could be explored in further social network analysis. This 

network would likely provide a powerful tool for network-wide collaboration, vice 

current use, only from the point of view of the current user.  

Testing of near-optimal predicted rating score weight,     . We developed a 

method for robustly determining      under assumptions regarding the stochasticity 

found in other users and their error rates. Further computational experiments would be 

useful to validate these results. Additional TIPSTER queries, or another document corpus 

could provide input to such future testing.  

Stochastic bot parameter analysis. Our analysis created bots with the same 

similarity, visibility, and false error rate parameters. However, the analysis software we 

construct can create bots using a probability distribution for each of the bot parameters. 

The scope of our analysis prevented us from testing the model under these stochastically 

generated bot parameters, but future research could evaluate performance under these 

conditions.  

Human-based testing and evaluation. Testing Cairn with real-world human 

users and searches is an important future direction of research. There are likely critical 

considerations which are only knowable once we have seen how a user interacts with the 

model. These considerations may then change portions of the model and produce more 

benefit to the analyst.  

Implicitly developed interest profile. It may be possible to implicitly compute 

an interest profile for analyst based on their searches and viewed documents. This would 

streamline the input that Cairn uses, requiring less work by the analyst user. 

Time-based results. In an intelligence setting, the timing of information is 

critical. The timing of document ratings, the timing of documents themselves, and the 

timing of endorsements could determine the relevancy of a document. Old information is 

sometimes less useful than newer information. A useful intelligence search model could 

extend Cairn to allow analysts to control for these time dependencies. 
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