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Abstract 
This paper presents a rigorous mathematical formulation for modeling the upper 

extremity that is capable of considering a relatively large number of degrees of freedom, 

thus yielding a realistic model and associated envelope. Kinematic models are used to 

determine the reach envelope in closed-form and to better understand human motion. 

Joint ranges of motion are taken into account by transforming unilateral inequality 

constraints into equalities that are included in the formulation. Methods from geometry 

are implemented to analyze the motion and delineate barriers within the workspace. It is 

observed that these barriers are indeed surfaces where the limb has one or more joints at 

their limits, but also where the hand’s motion has encountered a kinematic singular 

configuration. Such a configuration is mathematically defined and is physically 

associated with two links being parallel at an instant in time or where two joints have 

their axes parallel (e.g., a fully extended arm yields a singular configuration). Barriers to 

motion can now be characterized in terms of different human performance measures, thus 

leading to a better understanding of the path trajectories assumed by humans as they 

execute tasks. 

 

Keywords:  Reach envelope, ergonomics, shoulder complex, elbow, wrist. 
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1. Introduction 
Analytical methods in the field of robotics have significantly contributed to the 

evaluation, programming, and design of mechanical robotic manipulators and similar 

devices. The motivation for investigating the motion of human limbs using such 

mathematical methods is twofold: to achieve a better understanding of functionality, in 

terms of evaluative measures, and to obtain more rigorous methods for designing 

ergonomic workspaces. The ultimate goal of this research, however, is to develop a 

method for identifying  injured joints from a path trajectory.. 

 

Biomechanical models of the shoulder have been proposed by many researchers, such as 

qualitative planar kinematic models (Dvir and Berme 1978; Jackson, et al. 1977), but 

were confined to a single motion pattern.  A complex model of the shoulder was 

proposed by Högfors, et al. (1991), in which it was treated as a three-rigid body twelve 

degree-of-freedom (DOF) system.  From a biomechanical point of view, the human arm 

mechanism, particularly the shoulder joints, are probably the most complex of the human 

body.  The upper extremity is typically modeled as a series of segmental links connected 

in a special arrangement of one DOF revolute or prismatic joint (Wood et al. 1989, 

Benati et al. 1980 and Engin et al. 1990).  These links have typically been limited to a 

small number of DOFs because of the difficulty in addressing larger numbers.  We will 

follow a similar modeling method, but will not limit the number of DOFs. Instead, we 

will develop and demonstrate a mathematical method for analyzing human motion, 

visualizing the resulting workspace to better understand the barriers therein.  Most 

importantly, we will account for ranges of motion in determining and visualizing the 

envelope. 

 

In an earlier investigation (Lenarcic et al. 1994), a simple model of a human arm only 

considers the shoulder complex and the elbow joint where the two translational motions 

were replaced with two rotational DOFs to simplify the analysis.  The European Esprit 

Project CHARM (Maurel 1998) developed a comprehensive human animation resource 

model allowing the dynamic simulation of complex musculoskeletal systems, including 

finite element deformation of soft-tissues and muscular contraction.  A biomechanical 
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model of the human arm and shoulder was designed including properties for bones, 

joints, and muscle lines of action. However, reach envelopes were not determined.  

Indeed, many researchers (including commercial human modeling software developers) 

have adapted a simplified approach of moving the arm through its ranges (arm fully 

extended) to determine the outer most boundary.  While this method yields only one 

barrier, it is approximate in nature, does not determine all barriers, and does not yield 

closed form equations of the boundary surfaces.  

 

This paper extends our previous work (Abdel-Malek & Yang 2001) by presenting a 

practical model of the human arm that includes the resulting motion of the shoulder 

complex.  The first section of this paper reviews the modeling approach and provides a 

brief anatomy of the upper extremity.  In the second section, we present the kinematic 

model and the theory of swept volumes that we will use to determine the reach envelope.  

Based on this approach, we use two steps to analyze the human arm workspace.  First, we 

will directly address the workspace of the 7DOFs without the translational motion of the 

scapulathorasic joint.  Second, we will subject the resulting geometry to a sweep motion 

due to the shoulder translational joints.  We are then able to visualize the reach envelope, 

characterize boundary surfaces in closed form, and describe barriers therein that are due 

to joint limits. 

 

2. Background 
In order to develop a realistic kinematic model of the upper extremity, it is important to 

understand human anatomy. The upper limb is composed of three chained mechanisms: 

the shoulder girdle, the elbow and the wrist. If we consider bones in pairs, seven joints 

may be distinguished: the sterno-clavicular joint, which articulates the clavicle by its 

proximal end onto the sternum, the acromio-clavicular joint, which articulates the scapula 

by its acromion onto the distal end of the clavicle, the scapulo-thoracic joint, which 

allows the scapula to glide on the thorax, the gleno-humeral joint, which allows the 

humeral head to rotate in the glenoid fossa of the scapula, the ulno-humeral and the 

humero-radial joints, which articulate both ulna and radius on the distal end of the 
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humerus, and finally, the ulno-radial joint where both distal ends of ulna and radius join 

together.  

 

The shoulder girdle is perhaps the most difficult to model because of the extension of 

some muscles over more than two segmental links and joints. The two main bones of the 

shoulder are the humerus and the scapula (shoulder blade).  The end of the scapula, called 

the glenoid, meets the head of the humerus to form a glenohumeral cavity that acts as a 

flexible ball-and-socket joint (Figure 1). 

          
Figure 1.  Anatomy of the shoulder complex 

Shoulder movements are usually referred to as ventral/dorsal, cranial/caudal and axial 

rotations for the sterno-clavicular (3 DOFs), as abduction/adduction, flexion/extension 

and axial rotation for the gleno-humeral joint (3 DOFs), as elevation/depression, 

protraction/retraction, tipping forward/backward and medial/lateral rotations for the 

scapulo-thoracic joint (5 DOFs), and as flexion/extension and pronation/supination 

movements for the forearm joints (2 DOFs).  In our modeling, we shall use 5DOFs for 

the shoulder complex, where we have accounted for 3 rotational and two translational 

motions (Figure 2). 
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Figure 2.  Modeling of the shoulder complex as three revolute and two sliding DOFs 

 

This model allows for consideration of the coupling between some of the joints, as is the 

case in the shoulder where muscles extend over more than one segment. When muscles 

are used to lift the arm in a rotational motion a translational motion of the shoulder 

unwittingly occurs. 

 

The elbow is a hinge joint made up of the humerus, ulna and radius. The unique 

positioning and interaction of the bones in the joint allows for a small amount of rotation 

and hinge action.  Theprimary stability of the elbow is provided by the ulnar collateral 

ligament, on the medial (inner) side of the elbow. It is safe to model the elbow as a 1DOF 

revolute joint. 

                            

The hand is composed of many small bones called carpals, metacarpals, and phalanges. 

The two bones of the lower arm -- the radius and the ulna -- meet at the hand to form the 

wrist.  We will model the wrist as three revolute joints intersecting at one point, whose 

action yields a spherical wrist (Pieper 1968).  The complete 9 DOF model of the upper 

extremity is shown in Figure 3. 
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Figure 3.  Modeling of the upper extremity as a 9 degree of freedom kinematic chain 

 

Given the respective material properties, bones may be regarded as rigid bodies in 

contrast to soft tissues with respect to the relevant physiological ranges of motion and 

force handling.  This allows for a rigid body segmental representation of the kinematics 

among the skeletal subsystem from the soft tissues by converting their relations with the 

bones into external actions. Therefore, the kinematic model can only be analyzed by 

considering the skeletal components. 

 

3. Mathematical Formulation 
Although the anatomy of the human upper extremity and joints are very complex as 

evidenced by the debate in the literature on the correct method for modeling joint motion 

(Engin 1984; Choi 1993; Engin 1989a,b; Hogfors 1991; Raikova 1992; Helm 1994, 

Maurel 1998), we will employ a kinematic pair (or combination thereof) used in the field 

of robotics.  In fact, all anatomical joints can be modeled using a combination of basic 

kinematic pairs.  Consider the two segmental links connected by a joint in Figure 4.  We 

will use a coordinate frame for each degree of freedom in the system. Because the 
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shoulder in our model has 5DOFs, for example, it will have five variables associated with 

it in which each variable is denoted by  iq

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Definition of a kinematic pair (e.g., a revolute joint) 

We define q  as the vector of n-generalized coordinates 

characterizing the motion of a limb, where qi (i =1, 2, … , n) represents a DOF.  For 

instance, the elbow joint will be represented by one DOF, for example q6  (Figure 4), 

while the wrist joint will be represented by three DOF, namely q7, q8 and q9.  The vector 

function generated by a point of interest written as a multiplication of rotation matrices 

and position vectors is expressed by 
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where θ i  is the joint angle from the  axis to the  axis,  is the shortest distance 

between  and  axes,  is the offset distance  between  and  axes, and 

xi−1 xi di

xi−1 xi ai zi zi−1 α i  is 

the offset angle from   and  axes.   The generalized variable is zi−1 zi qi = iθ  for a 

revolute joint and  for a prismatic joint. iq d= i

 

The vector function  characterizes the set of all points inside and on the boundary 

of the reach envelope generated by an anatomical landmark, and typically selected as a 

fingertip.  The objective is to visualize this vector function consisting of many parameters 

and to better understand the motion governed by .  At a specified position in space 

given by P( ,

*( )Φ q

*( )Φ q

, )x y zp p p , Eq. 1 can be written as a constraint function. 
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Ranges of Motion 

Ranges of motion are imposed in terms of inequality constraints in the form of 
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where q q= *T T
T

λ  is the vector of all generalized coordinates.  Note that although 

new variables (n − λ i ) have been added, n − equations have also been added to the 

constraint vector function without loosing the dimensionality of the problem. 

 

The Jacobian (after the German mathematician Karl Gustav Jacob Jacobi) of the 

constraint function H q  at a point  is the ( ) q0 ( )3 2+ ×n n  matrix 

  ∂ ∂=qH H q  (7) 

where the subscript denotes a derivative.  With the modified formulation that includes 

ranges of motion, the Jacobian is expanded to 
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In earlier work by the authors aimed at determining difficulties in the control of robot 

manipulators (Abdel-Malek and Yeh 1997a; 1997b; Abdel-Malek, et al. 1997; and 

Abdel-Malek, et al. 1999), it was shown that impediments to motion (halting of a 

trajectory) arise inside the workspace when the Jacobian becomes singular (Abdel-Malek 

and Yeh 2000).  Because the Jacobian is not square, rank deficiency criteria were 

developed.  Before addressing these criteria, it is important to show why the singularity 

of the Jacobian has a direct effect on the control. The differentiation of Eq. (1) with 

respect to time yields the velocity of the fingertip  as Φ&

   (11) *
*=

q
Φ Φ q& &

 10



where  is the vector of joint velocities.  Given a specified path trajectory (i.e., Φ ), the 

calculation of (i.e., joint velocities) requires computing an inverse of the Jacobian .  

For a singular Jacobian, it is not possible to compute the required velocities.  These cases 

are typically associated with a kinematic configuration of the upper extremity that does 

not admit motion in a particular direction, but requires  a change in the arm’s posture in 

order to execute the path.  If the Jacobian was square, then the determinant of  will 

yield the postures in space where singular behavior occurs. We will use this concept to 

explore the surrounding workspace. 

& *q &

& *q *q
Φ

*q
Φ

 

Jacobian Analysis 

Because the Jacobian is not square, we define these singular sets as a subset of the 

workspace in which the Jacobian of the constraint function of Eq. (7) is row rank 

deficient (Abdel-Malek, et al. 1999); i.e., the barriers are defined by W  and 

characterized by 

   { }∂W k⊂ <Rank  for some  with H q q H q 0q ( ) , ( ) =  (12) 

where k is at least .  Imposition of the rank deficiency condition can be 

implemented using a variety of methods, but perhaps the most computationally efficient 

one is the repeated elimination of square sub-Jacobians, until a number of non-linear 

equations are determined.  For example, consider a 7 DOF model of the arm, where the 

Jacobian is 10 , where is in the following form, 

( )3+ −n 1

14× *q
Φ

3 7×

− − − − − − −⎡ ⎤
⎢ ⎥− − − − − − −⎢ ⎥
⎢ ⎥− − − − − − −⎣ ⎦

and 

where  is in this form: *
λq
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 Therefore, three sets of 

singularities can be identified:   
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(a). The largest square submatrix of  is 3 3*q
Φ ×  

3 71J ×
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 submatrices (also 

called sub-Jacobians).. The determinants of these matrices are 1J
− − −

= − − −
− − −

, …, 

35J
− − −

= − − −
− − −

.  If all the determinants are kept at zero, then the group of equations can 

then be numerically solved to identify the singular sets.   

 

(b). When  reaches its limit, eliminate the th column in  and it will be a 3 6iq i *q
Φ ×  

matrix. Therefore there are 20 sub-Jacobians and 20 equations can be solved together to 

obtain the third set. When  and iq jq  reach their limits repeat the same procedure to find 

the singular set. When , iq jq  and reach their limits repeat the same procedure to find 

the singular set until the remaining Jacobian of  is a square matrix. These sets are 

denoted by a, b, and c, where each set comprises a number of constant joint values (from 

the total number of DOF) and two variables. Upon substituting these sets into Eq. (1), we 

obtain an equation of a surface parameterized in terms of two variables (i.e., a 2DOF 

surface in 3D space), such that: 

kq

*q
Φ

 ( ) ( ) ( )( ) ( ,i i i )+=f u Φ u q  (13) 

where  and  is the vector function describing the new parametric 

surface characterizing a barrier to motion. 

* (i+ →q q uI ) ( )if
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(c). Since  is a square matrix the singular sets can be obtained by solving the equation *
λq

* 0

− − − − − − −
− − − − − − −
− − − − − − −

= − − − − − − −
− − − − − − −
− − − − − − −
− − − − − − −

λq = . The singular sets are exact when the joints reach their 

limits. 

 

In order to separate the analysis of rotational joints from that of translational joints, we 

break the formulation down into two distinct steps. First, we address the all-revolute 7 

DOF model of the human upper extremity (including glenohumeral, elbow and wrist), but 

exclude the two shoulder translational joints. We will then perform a sweep of the 

resulting envelope to visualize the complete reach envelope. 

 

Motion on the Barriers of Motion 

To better understand when the hand may or may not cross barriers under given 

conditions, we explore the barrier’s kinematic properties. We propose a criterion that is 

based on normal acceleration at a point on a barrier, such that crossability is achieved if 

the barrier admits a normal acceleration in one direction or another.   A point on a barrier 

admits motion normal to the surface in either direction depending on the difference in 

acceleration components (defined by the indicatorη ), such that 

 η
ρ

= −a v
n

t

o

2

 (14) 

where  is the tangential velocity, a  is normal acceleration, and vt n 1 ρo  is the normal 

curvature of the barrier with respect to the tangent direction of  (vt ρo  is the radius of 

curvature).  The need for formulating the problem in terms of velocities and accelerations 

will become apparent, as the resulting expression for the indicator η  will be independent 

of acceleration values, but will be a quadratic form that has definiteness properties.  A 

point on a singular surface will have no acceleration if the quantity η  computes to null.   
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For a singular parametric entity  (where u is a vector representing the 

remaining joint variables—those not constant), and in the field of differential geometry, 

the First Fundamental Form (Farin 1993) is denoted by , where 

, and is defined as 

( ) ( ) 3( )i i ∈f u R

I p

[ ]( ) TTi
i ju v q q⎡= = ⎣u ⎤⎦

uδ  (15) I u f fu up
T T≡ δ

where f fu = u∂ ∂ .  The Second Fundamental Form is defined as 

 II u N f u
uup

T T≡ δ δ

2

 (16) 

or expanded to 

  (17) II N f N f N fp
T

uu
T

uv
T

vvdu du dv dv= + +2 2  

where N is the vector normal to the singular surface and f fuv u v= ∂ ∂ ∂2 .  The Normal 

Curvature  of a parametric surface at a configuration , in the direction of Ko qo du dv , 

can then be defined as the ratio (Farin 1993) 

 Ko
o

p

p

= =
1
ρ

II
I

 (18) 

In order to determine the kinematics quantities, we define the Time-Modified First and 

Second Fundamental Forms as 

  (19) ′ ≡I u f fu up
T T& u&

 II u N f u
uu

′ ≡p
T T& &  (20) 

such that the normal curvature can still be defined as 

 Ko
o

p

p

p

p

= = =
′

′
1
ρ

II
I

II
I

 (21) 

For a singular surface , the derivative using the chain rule is ( ) ( )(i if u ) f uu & .  Similarly, for 

the overall description of the workspace G q , the derivative is G .  Therefore, at an 

instant of time, the tangential velocity in terms of f or G at any point on the barrier is 

( ) qq &

 v f u G qut q= =& &  (22) 
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If joint limits are considered, then the derivatives can be written as  and &u u ss= & & &q q ss= .  

The squared norm of the velocity is  

 v v v u f fu ut t
T

t
T T2 = = & u&  (23) 

which is equal to the Time-Modified First Fundamental Form ′I p  of Eq. 19.  Therefore, 

 can be written as  ′I p

 ′ =I p tv
2

 (24)  

Substituting 1 ρo  into η  yields  

 2 p
n t n

p

a v aη p

′
′= − = −

′
II

II
I

 (25) 

This expression can be written in quadratic form whereby the matrix of the quadratic 

form need only be evaluated.   

 

 

4.  Reach Envelope of the Upper Extremity Excluding Translation 
Consider a model of the upper extremity comprising 7 rotational joints (7DOFs) as 

shown in Figure 5.  Note that this model does not include the two translational joints in 

the shoulder, which will be addressed in the subsequent section.  Note too that the arm is 

fully extended, as it was in the initial configuration.  We will consider the following 

ranges of motion from this initial configuration: , , 

, , , , and 

. 

390 90o oq− ≤ ≤ 4110 120o oq− ≤ ≤

590 90o oq− ≤ ≤ 6150 0o oq− ≤ ≤ 760 60o oq− ≤ ≤ 820 20o q− ≤ ≤ o

990 90o oq− ≤ ≤
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Figure 5. Kinematic model of the 7DOF all revolute upper extremity 

 

According to the DH method, the XYZ coordinates of the tracked fingertip point in terms 

of the seven variables are 

3 5 4 3 5 6 3 5 4 3 5 3 4 6 8 7 6 3 5 4

3 5 3 4 6 5 3 3 4 5 7 3 4 6 3 5 4 3 5 6 8

( )[1] 20 20 15 ( ) 15 10( ( ( (
              ) ) ( ) ) ( ( ) )

c c s s s c c c s s s c c s c c c c c s
s s c c s c s c s s s c c c c c s s s s s

= − + + − + − + −
+ − + + + − − +

Φ q
 

5 3 4 3 5 6 5 3 4 3 5 4 3 6 8 7 6 5 3 4

3 5 4 3 6 3 5 3 4 5 7 4 6 3 5 3 4 3 5 6 8

( )[2] 20 20 15 ( ) 15 10( ( ( (
              ) ) ( ) ) ( ( ) )

c s s c s c c s s c s c s s c c c c s s
c s c s s c c s s s s c c s c s s c s s s

= − − + − − − + −
− − + − + + − − − −

Φ q

4 5 4 5 6 4 6 8 7 4 5 6 4 6 4 5 7

6 4 4 5 6 8

( ) 3[ ] 20 15 15 10( ( ( ) )
             ( ) )

c c c c c s s c c c c c s s c s s
c s c c s s

= + − + − −
+ − −

qΦ
 (26) 

 

Singularity Sets 

Since  is a 3  matrix, there are *q
Φ 7× ! 7! 35

3!( 3)! 3!4!
n

n
= =

−
 equations to be 

simultaneously solved, which represent the determinants of all square 3  sub-

Jacobians.  There are three sets of solutions:  

3

 (a). As a result of solving the equations generated by the sub-Jacobians, the rank 

deficiency of  yields . This set, when substituted into Eq. 1 

yields a surface parameterized into three generalized coordinates.   

*q
Φ 1 6 7 8s { 0, 0, 0}q q q= = = =
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(b). The second set is identified when one, two or three joints reach their limits (in this 

example,  only includes 6 variables, ). When one joint reaches an upper or 

lower limit, for example 

( )Φ q 3,...,q q8

4 2 / 3q π= , we substitute 4 2 / 3q π=  into  and compute 

 (the remaining Jacobian excluding the  column). Since  is a  matrix, 

there are 

( )Φ q

*q
Φ 4q *q

Φ 3 6×

6! 20
3!3!

=  equations to be simultaneously solved, whose solution is 

.  Therefore, a singular set is identified as 5 7 8â { 0, 0, 0}q q q= = = =

1 4 5 7 8
2{ , 0, 0, 0}
3

q q q qπ
= = = = =a . Substituting only one of the constraint limits and 

applying the rank-deficiency condition yields the singular sets listed in Appendix A. This 

process continues for all variables. When two variables reach their constraint limits, such 

as 3 4/ 2, 2 / 3q qπ π= − = , substituting these limits into  and calculating  (again, 

excluding both associated columns) yields 4 equations.  When simultaneously solved we 

obtain 

( )Φ q *q
Φ

7 8b̂ { 0, 0q q= = = } . Therefore a singular set is identified as 

2 3 4 7 8{ / 2, 2 / 3, 0, 0}q q q qπ π= = − = = =b .  Repeating the process also yields the 

singular sets listed in Appendix A. When three variables reach their constraint limits such 

as 3 4 5
11, ,

2 18
q q q

2
π π

= − = − = −
π , substituting these limits into  and calculating  

(again, excluding three associated columns) yields 1 equation.  When solved, we obtain 

. Therefore a singular set is identified as 

( )Φ q *q
Φ

8ĉ { 0}q= =

1 3 4 5 8
11{ , , ,

2 18 2
q q q q 0}π π π

= = − = − = − =c .  

 

 (c). The third set is when four of the variables reach their constraint limits such as 

, , 3

/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

4

11 /18
2 / 3

q
π
π

−⎧ ⎫
= ⎨ ⎬
⎩ ⎭

5

/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, and 6

5 / 6
0

q
π−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. There are total 232 

singular surfaces in Appendix A. In order to perform this symbolic manipulation, we 

have developed a computer code using Mathematica®. 
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The determinants of sub-Jacobians for  are as follows: ( )Φ q

1 2 16

17 7 8 6 6 8 8 4 5 7 4

7 8 6 6 8 5 4 6 7 8 6 8

29 30 8 5 7 5

0

500((2 cos cos )sin cos sin )( cos sin sin sin cos ((2

cos cos )sin cos sin ) cos sin (4 cos (2 cos cos ) sin sin ))
.
.
.

250cos (2cos cos sin sin

J J J

J q q q q q q q q q q

q q q q q q q q q q q q

J J q q q q

= = ⋅⋅⋅ = =

= + + − +

+ + + + + −

= = + 7 7 8 6 6 8

31 8 8 5 6 7 5 7 8 6 8 6 8

32 8 7 7 8 6 7 8 6 8

33 8 6

)((2 cos cos )sin cos sin )

250cos (cos sin sin sin cos (2cos cos sin sin 2cos sin ))

250cos sin (4 2cos cos cos (2 cos cos ) sin sin )

125sin (2(1 cos )(c

q q q q q q

J q q q q q q q q q q q q

J q q q q q q q q q

J q q

+ +

= − + + +

= + + + −

= + 2
7 8 7 8 7 6 6

2
34 6 8 7

35 8

os ) cos ( 3 cos(2 )) cos 2cos (4 2cos sin sin ))

250(2 cos )(cos ) sin

125sin(2 )

q q q q q q q q

J q q q

J q

+ − + + + −

= − +

= −

8

 

Enforce all above to be zero and solve the equations simultaneously and one obtains the 

rank deficiency of  which is *q
Φ 1 6 7 8s { 0, 0, 0}q q q= = = = . 

 

When  reaches its limit, such as iq 3 2
q π

= − , we substitute 3 / 2q π= −  into  and 

compute  (the remaining Jacobian excluding the  column). The determinants of the 

sub-Jacobians are 

( )Φ q

*q
Φ 3q

 18



1 2 10

11 7 8 6 6 8 8 5 7

5 6 7 8 6 8

12 6 8 5 8 5 7 5 6 7 8

6 8

0

500((2 cos cos )sin cos sin )( cos sin sin

cos (4 cos (2 cos cos ) sin sin ))

250(1 2cos )cos sin ( cos sin sin cos (4 cos (2 cos cos )

sin sin ))

J J J

J q q q q q q q q

q q q q q q

J q q q q q q q q q q

q q

J

= = ⋅⋅⋅ = =

= − + + −

+ + + −

= − + − + + +

−

13 8 6 6 7 8 8 5 7 5 6

7 8 6 8

14 8 5 7 5 7 7 8 6 6 8

15 7 5 5 7

250(2cos sin (1 2cos )cos sin )( cos sin sin cos (4 cos

(2 cos cos ) sin sin ))

250cos (2cos cos sin sin )((2 cos cos )sin cos sin )

250(cos sin 2cos sin )si

q q q q q q q q q q

q q q q

J q q q q q q q q q q

J q q q q

= − + + − + +

+ −

= + + +

= − 8 7 8 6 6 8

2 2
16 8 5 6 7 5 7 8 6 6 8

17 8 7 7 8 6 7 8 6 8

18 8 6

n ((2 cos cos )sin cos sin )

125(2(cos ) sin sin sin cos (4cos (cos ) sin (1 2cos )sin(2 )))

250cos sin (4 2cos cos cos (2 cos cos ) sin sin )

125sin (2(1 cos

q q q q q q

J q q q q q q q q q q

J q q q q q q q q q

J q q

+ +

= − + + +

= + + + −

= + 2
7 8 7 8 7 6 6

19 8

2
20 6 8 7

)(cos ) cos ( 3 cos(2 )) cos 2cos (4 2cos sin sin ))

125sin(2 )

250(2 cos )(cos ) sin

q q q q q q q q

J q

J q q q

+ − + + + −

= −

= − +

8

 

If we enforce the rule that all the determinants will be zero simultaneously and solve 

these equations, we obtain one singular set, 5 3 5 7 8{ , , 0,
2 2

q q q q 0}π π
= = = − = =a . One 

can then obtain other  by repeating this procedure.  When  and ia iq jq  reach their limits, 

such as 3 2
q π

= −  and 4
11
18

q π
= − , we substitute them into  and compute  (the 

remaining Jacobian excluding the  and  columns). The determinants of the sub-

Jacobians are 

( )Φ q *q
Φ

3q 4q

1 2 6

7 8 7 7 8 6 7 8 6 8

2
8 8 6 7 8 7 8 7 6 6

2
9 6 8 7

10

0

250cos sin (4 2cos cos cos (2 cos cos ) sin sin )

125sin (2(1 cos )(cos ) cos ( 3 cos(2 )) cos 2cos (4 2cos sin sin ))

250(2 cos )(cos ) sin

125sin(

J J J

J q q q q q q q q q

J q q q q q q q q q

J q q q

J

= = ⋅⋅⋅ = =

= + + + −

= + + − + + + −

= − +

= − 82 )q

8q
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Once again, we enforce all of the determinants to be zero simultaneously and solve these 

equations to obtain one singular set 1 3 4 7 8
11{ , , 0,

2 18
q q q q 0}π π

= = − = − = =b . By 

repeating this procedure other  are obtained. When , ib iq jq  and  reach their limits, 

such as 

kq

3 2
q π

= − , 4
11
18

q π
= −  and 5 2

q π
= − , we substitute them into  and compute 

 (the remaining Jacobian excluding the ,  and  columns). The determinants of 

sub-Jacobians are 

( )Φ q

*q
Φ 3q 4q 5q

1 2 3

4 8

0

125sin(2 )

J J J

J q

= = =

= −
 

 

We enforce all the determinants to be zero simultaneously and solve these equations to 

obtain one singular set 1 3 4 5 8
11{ , , ,

2 18 2
q q q q 0}π π π

= = − = − = − =c . We repeat this 

procedure to obtain other . ic

 

When  is singular, then *
λq

7
* 3 4 5 6 7 8 9115 cos cos cos cos cos cos cos 0

419904
π λ λ λ λ λ λ λ

= − =λq . 

We can obtain iλ  and plug it into Eq. 5; that means  reaches its limit. While  

doesn’t include  when any four of the variables reach their limits, it will be singular 

set. It is now possible to visualize each surface by substituting all singular sets into Eq. 

26, as illustrated in Figure 6.  

iq ( )Φ q

9q

 20



   
                              41γ - 56γ                                              153γ - 168γ          

 
                         169γ - 184γ        201γ - 216γ  

 

Figure 6.  The different singular sets of surfaces 
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In fact, combining all singular surfaces yields the reach envelope of the 7 DOF model as 

shown in Figure 7.  We have identified the outer boundary to the reach envelope in 

closed form (also shown in Figure 8). 

 

 
 

 
Figure 7. The cross section view of workspace for human arm model (7 DOF) and cross 

sections 

at 0z =  and 20z =  
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Figure 8. Envelope of the 7 DOF Model for Human Model and the cross sections 

 at 0z =  and 20z =  
                                                          
 

5. Sweeping the 7-DOF in two translational directions 
The effect of the scapula-thorasic translational motion is accounted for using a swept 

volume analysis (Blackmore, et al.  1999). We now include two translational joints to the 

shoulder complex, where the kinematic model of a 9 DOF upper extremity is shown in 

Figure 9.   
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Figure 9. Kinematic model for 9 DOF Human Arm 

 

There are a number of surface patches that constitute the outer boundary.  These surfaces 

will be denoted by , where ˆ( )i qF 1,...,i m= , m is the number of surface patches, and 

 has no more than two variables for each surface patch.  A sweep operation 

in the direction of 

ˆ ,
T

i jq q⎡= ⎣q ⎤⎦

[ ]1 2 1 2( , ) 0 Tq q q q=ψ  (the two translational directions) with no 

rotation is defined by the sweep equation 

 { { 1 2
Swept volume Swept entity Translational path

ˆ( ) ( ) ( , )i q q= +Γ p R Φ q ψ
14243  (27) 

where the rotation matrix  is I , an identity matrix since no changes occur in its 

orientation. 

R

[ ]1 2, , , Tq q u v=p  now contains four variables for each surface (Figure 10), 

where u  and v  are the parametric variables of the surface patch on the boundary of the 7 

DOF reach envelope.   
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q2

q1

q2

q1

 
 Figure 10. Sweeping of the 7DOF outer boundary in two translational directions 

 

In order to visualize this vector function , we again make use of the rank deficiency 

condition, where the Jacobian 

( )Γ p

∂ ∂Γ p  is a 3 4×  matrix.  The four determinants of the 

sub-Jacobians of ∂ ∂Γ p  are set to zero and singular sets are determined.  As an example, 

consider the sweep of the surface patch defined by 
35cos( )cos( )

( , ) 35cos( )sin( )
35sin( )

u v
u v u v

v

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ  and 

characterized by the equation  

1

2

35cos( )cos( )
( ) 35cos( )sin( )

35sin( )

q u
q u

v

+⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

Γ p
v
v , where 0 2u π≤ ≤ , / 2vθ π− ≤ ≤ , 11.5 1.5q− ≤ ≤  and 

.  21.5 1.5q− ≤ ≤
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The Jacobian matrix is . Singular sets 

have been determined with the following values: 

1 0 35cos( )sin( ) 35cos( )sin( )
0 1 35sin( )sin( ) 35cos( )cos( )
0 0 0 35cos( )

v u u v
u v u v

v

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

pΓ

1 { 0, / 2u v }ς π= = = , 

2 1{ , 1.u q 5}ς π= = = − , 3 1{ 0, 1.5u q }ς = = = , 4 2{ 3 / 2, 1.5u q }ς π= = = − , 

5 2{ / 2, 1.u q 5}ς π= = = , and 6 2{ 0, 1.5v q }ς = = = − . These sets are automatically 

substituted into  to visualize the boundary.  The process is repeated for all surface 

patches, and the resulting reach envelope is shown in Figure 11.  

( )Γ p

             

 
Figure 11. The final envelope of 9 DOF human arm model 
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Barriers to Motion 

To better understand the relation between barriers within the reach envelope and the 

physical meaning of a singular configuration, we examine a singular set characterized by 

a = 1 2 3 6 7 8 9
5{ 0, 0, 0, , 3, 9, 0
6

q q q q q q q }π π π= = = = − = − = − = , as shown in Figure 12 

with the configurations ( 4 18
q π

= − , 4 0q = , 4 12
q π

= ).  In this case, there is no translational 

motion of the scapula thorasic motion; however, the elbow is at the limit 6
5
6

q π
= − , and 

the wrist joint has reached a combination of limits ( 7 8 90, 9, 0q q qπ= = − = ). Figure 13 

shows the configurations of three singular sets  5 12
q π

= − , 5 0q = , and 5 12
q π

= . 
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             (a). 4 18
q π

= −                                                  (b).  4 0q =

 27



z3

z4

z0

z1

z3

z4

z2

z5

z6

z7

z8

z0

z1

z3

z4

z0

z1

z3

z4

z2

z5

z6

z7

z8

z0

z1

      

(c). 4 12
q π

=        (d) Combined together 

( 4 18
q π

= − , ,4 0q = 4 12
q π

= ) 

Figure 12.  Configurations of three singular sets 
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Figure 13. Three configurations combined together ( 5 12
q π

= − , ,5 0q = 5 12
q π

= ) 

 

The Jacobian analysis has yielded seven constant values of the joint variables, but has left 

two variables unspecified ( q ). Substituting the set of constant variables into Eq. 27 

yields a new equation parameterized in terms of the two remaining variables as 

q4 5,

 

5

4 5 4 5 4

4 5

5 11 11(8 3 3 2cos( ) 2 3 sin( ))sin( )
2 18 18

5 11 11 11( , ) (cos( )cos( )( 8 3 3 2cos( ) 2 3 sin( )) (3 2 3 cos( ) 2sin( ))sin( )
2 18 18 18
5 11 11 11(cos( )(3 2 3 cos( ) 2sin( )) cos( )(8 3 3 2cos( ) 2 3
2 18 18 18

q

q q q q q

q q

π π

π π π π

π π π

− + −

= − − + − − + +

+ + + − + −

Γ 11
18

4
11sin( ))sin( )
18

qπ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Note that the above expression represents the sweep of the fingertip in space with all 

joints but q  in a locked position.  We plot this 2DOF surface in 3D space, as shown 

in Figure 14. 

q4 5,

-2
0

2

-10
-5

0

5

10

-5

0

5

10

-2
0

2

-10
-5

0

5

10
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Figure 14.  A barrier due to singular set 

1 2 3 6 7 8 9
5{ 0, 0, 0, , 3, 9, 0
6

q q q q q q q }π π π= = = = = − = − = − =a  

 

The physical significance of this surface can be observed by examining the inverse 

kinematic solution on any point on the surface.  This particular configuration 

characterizing the barrier delineates important properties of the reach envelope.   

 

 To explain this physical behavior typically associated with Jacobian and limit 

singularities, consider the motion of one's arm aimed at reaching (with the fingertip) a 

point on the barrier surface (Figure 7), where many joints have reached their limits (or 

have reached a Jacobian) singularity, and some joints are free to move.  For a given 

configuration with the fingertip at this point, it is not possible to admit motion normal to 

the barrier in at least one direction.  However, the barrier is indeed in the reachable 

workspace; therefore, any point to the left and right of this point are reachable.  This 

means that a different configuration (other than the configuration that yields the barrier), 

may allow the fingertip to admit motion across the barrier.  Such a result has also been 

observed with mechanical manipulators (especially in the field of welding), where 

continuous motion of the end-effector is necessary.  If the weld seam is positioned across 

a barrier, the manipulator may not smoothly execute the motion, but may halt, change 

inverse solutions, and then continue the motion.  We believe that such kinematically-

driven behavior of the upper extremities is important in identifying disabilities in issuing 

motor commands, and could play an important role in identifying such disabilities.  

 

 

6. Conclusions 
A 9 degree of freedom biomechanical model of the upper extremity has been developed, 

and was used to generate the reach envelope. We have presented a rigorous formulation 

for modeling, analysis, and visualization of the envelope and barriers where one or more 

joints have reached their limits or where a Jacobian singularity is identified.  

Fundamental to this formulation is the underlying concept of accounting for joint ranges 
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of motion in terms of inequality constraints imposed on the motion.  It was shown that 

rank deficiency conditions of the Jacobian of the model yield surface patches that belong 

to the envelope.  It was also shown that a subset of these surfaces fall on the boundary.  

Translational joints of the shoulder are accounted for using a swept volume approach, 

which yields closed form equations of the boundary.  Furthermore, barriers within the 

reach envelope are important in explaining and verifying hand trajectories.  Barriers that 

are a result of kinematic singularities present obstacles to motion for the upper extremity 

when encountered during a path, requiring that the motion be halted and switched to 

another posture. We believe that the identification of these barriers will aid in better 

understanding motor commands issued by the central nervous system, as well as perhaps 

providing insight into path following for people with disabilities. 

  

This study is the first step towards a more rigorous investigation of the reachable 

workspace; a forthcoming extension of this work is to include upper extremity orientation 

capabilities to better understand human dexterity.  Also underway is a study to relate 

barriers that appear within the workspace to neurological commands and motor skills. 
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/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 5

/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 

, , 6

5 / 6
0

q
π−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

8

/ 9
/ 9

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

γ 137…γ 152  Sixteen combinations 3

/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 7

/ 3
/ 3
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π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 

, 8

/ 9
/ 9

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

γ 153…γ 168  Sixteen combinations 4

11 /18
2 / 3

q
π
π

−⎧ ⎫
= ⎨ ⎬
⎩ ⎭

, 5

/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, , 

, 

6

5 / 6
0

q
π−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

7

/ 3
/ 3

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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γ 169…γ 184  Sixteen combinations 4
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= ⎨ ⎬
⎩ ⎭
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/ 2
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q
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6
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q
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= ⎨ ⎬
⎩ ⎭
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q
π
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= ⎨ ⎬
⎩ ⎭

γ 185…γ 200  Sixteen combinations 4
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= ⎨ ⎬
⎩ ⎭
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/ 2
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π
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= ⎨ ⎬
⎩ ⎭
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7

/ 3
/ 3

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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/ 9
/ 9

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

γ 201…γ 216  Sixteen combinations 3

/ 2
/ 2

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 6

5 / 6
0

q
π−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 7

/ 3
/ 3

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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, 8

/ 9
/ 9

q
π
π
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= ⎨ ⎬
⎩ ⎭

γ 217 …γ 232  Sixteen combinations 4

11 /18
2 / 3

q
π
π

−⎧ ⎫
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⎩ ⎭

, 6

5 / 6
0

q
π−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, , 

. 

7

/ 3
/ 3

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭

8

/ 9
/ 9

q
π
π
−⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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