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Abstract—The above papet finds an optimal fixed-polarity Reed—Muller 101 101 101 101
expansion of an m-variable totally symmetric function using an 11 11 11 11
OFDD-based algorithm that requires O(n™) time and O(n®) storage 0 0 0 0
space. However, an algorithm based on Suprun’s transeunt triangles RM, RM, RM; RM;

[4], [3], [4] requires only O(n®) time and O(n?) storage space. An
implementation of this algorithm yields computation times lower by several  Fig. 2. Reed-Muller expansion matrices embedded in the transeunt triangle of

orders of magnitude. flay, 22, ¥3) = T1T2T5 + w1223,
Index Terms—FPRM (fixed polarity Reed—Muller expressions), two-level
AND/EXOR forms, symmetric functions, logic synthesis, minimization. terms. In this example, the two middle polarities are both optimum,

yielding an expansion of four terms each.
A function f(x1, x2, -+ x,) is (totally) symmetricif and only
if it is unchanged by any permutation of variables. For example,
A recent program,Sympathy for finding optimal polarity f(x1, 22, 23) = T1ToTs + x1a222 iS symmetric. Certain coeffi-
Reed-Muller (FPRM) expansions of symmetric functions is based oients in the FPRM expansion of a symmetric function are identical.
an algorithm whose data structure is an OFDD of the given functiobet the Reed—Muller expansion matrof a symmetric function be an
It requiresO(n”) operations and)(r°®) storage space, where is (n 4+ 1) x (n + 1) matrix of binary coefficients

|. INTRODUCTION

the number of variables. However, if one uses a more efficient data doo  do1 -+ don
structure, specifically the transeunt triangle of Suprun [1], [3], [4], dio  dir---din
the same computation can be done vittn®) operations and)(n?) RM; = | . : 2

storage space. The improvement is achieved because coefficients J . .
needed in various expansions are computed and stored only once . . 70 nl - Gnn e

whereas Symathybuilds a new OFDD for each polarity. On bench-\g hé&:ﬁ:’.fgh'flgh.ﬁ c%ggégleg:.sglzsp;?glé(c:)trr:elr?mc;f;] tseénazrc;aiepr?o'\t/l
mark functions, the speed improvement is by orders of magnitude xpansi in Whic? varl P '

For the four FPRM expansions §fw,, @2, x3) = T1T2Ts +a102w3,

we have

II. NOTATION . 1.1 0 1 1 0 0
A FPRM expansion for a general functigiz,, o, ..., x,) is RM, = 0000 rv, = |2 01 0
flar, k2, covy an) =co@er12) Beras B Bentn, Beppra1 45 00 00 00 00
L0 0 0 O 0 0 0 O

Do Peon_raixy ey (1) i
wherex; is eitherz; orz; everywhere. The terriixed-polarityrefers 1000 1000
to the fact that each variable occurs in the expressioninonly oneway, p;r, — (1 0 0 0 = | 000
x; or ;. For examplef (w1, @2, x3) = T1T2T3 + x122a3 has the - 01 0 0 1 0 00
following four FPRM expansions. 0 0 0 O 00 00

The bold values represent coefficients in the corresponding FPRM ex-
pansion. The 0s not in bold are 04t Reed—Muller expansion matrices
for the samepolarity.

Two variables complementedl; & 7,7 & T1a3 & Faxs A symmetric function is completely specified bycarry vector(_)f
logic valuesA = [ag, ai, ..., a,], such thatf(z1, z2, ..., z,) IS

All variables complemented:D 71 © 7o B T3] D [F1 T2 BT1 T3 D . !
T2 73] a; for all assignments of values tey, =2, ..., =, that havei 1s,
Note the total number of product terms required to realize this fun@€re0 < i < n. For example, the carry vector ¢f1, w2, x3) =
tion. In the first and fourth FPRM expansions, seven terms are requirdd? 273 + 12223 1S 1. 0,0, 1].
while in the second and third, only four are required. FRRM sim-
plification problemis to determine which af +1 polarities (number of

complemented variables) yields the FPRM expansion with the fewest EXPANSIONS

Consider atriangle of Os and 1s, where the base is a symmetric func-
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€To 1‘3]
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TABLE |
EXECUTION TIMES (IN SECS) FOR SYMMETRIC BENCHMARK FUNCTIONS*

Function || In | Out # | Car. Vec. [ Opt. Pol. [ Products | FDD | Sympathy | Symphony
cold 14 0 0103 14 14 | 368.1 03 0.000118
mil 6 6 108 6 1 1.0 0.1 0.000016
m4 6t 8 108 6 1 4.2 0.1 0.000016
misex2 5t 5 051 0 1 1 0.4 0.000011
misj 10t 10 1109 0 2 0.6 0.000050
xor5 5 0 (01)3 0,24 5 05 0.1 0.000011
rd53 5 ] 0412 0 5 - - 0.000012
rd53 5 1 021202 0,5 10 - - 0.000011
rd53 5 2 (o1)3 0,24 5 - - 0.000011
rd73 7 (] 0414 0 35 - - 0.000022
rd73 7 1 (0212)2 0 21 - - 0.000023
rd73 7 2 (01)* 0,2,4,6 7 - - 0.000022
rds4§ 8 0 (0212)29 28 4.7 0.1 0.000029
rds4§ 8 1 (01)*0 | 0,2,4,6,8 8 - - 0.000030
rds4§ 8 2 081 0 1 - - 0.000030
rd84§ 8 3 041402 0 70 5.3 0.1 0.000029
sym4 4 0 01202 4 6 - - 0.000008
sym6 6 0 021302 0,6 36 - - 0.000016
sym9 9 0 031403 4,5 173 | 117 0.1 0.000039
sym10 10 0 041502 0 266 | 27.6 0.2 0.000050
sym12 12 0 041504 0,12 1288 - - 0.000079
syml5 15 0 051605 7,8 15139 - - 0.000139
dbruijn2 4 0 02120 0 6 - - 0.000008
dbruijn_3 9 0 03101302 7 256 - - 0.000039
dbruijn4 || 18 0 04102120101403 17 106,284 - - 0.000297
dbruijn.s || 35 0 | 0°10%120210102130101201504 6 | 15,215,790,080 - - 0.002739
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IV. THE ALGORITHM AND ITS TIME AND SPACE COMPLEXITY
A. The Algorithm

Note that a single element of the transeunt triangle represents Q€comparison of Symphony on benchmark functions
or more coefficients in the various Reed—Muller expansion matrices. . . .
The efficiency of the transeunt triangle is due to the fact that it is not 12P!€ I shows, for certain symmetric benchmark functions, the exe-

necessary to recompute this coefficient for each polarity. cution time ofSymphonycompared to Symathyand to FDD, another
OFDD-based minimizer that does not consider symmetry [2]. Table |
also shows the number of inputs (In), the Output Number (Out), the
Carrier Vector expressed as a regular expression (Car. Vec.), the po-
larity(ies) that produced the optimal realization (Opt. Pol.), and the
number of product terms in the optimal solution (Products). The three
execution times (FDD, Sypathy, andSymphony) are shown in sec-

Microsoft's Visual Studio Version 6.0 for Windows98. It was run on a
400 MHz. Pentium system.

Algorithm 1 [4]

1) Generate the transeunt triangle.

2) For each RM;, extract the coefficients
(d;x), and compute the number of product

terms. onds.
3) Choose an RM; with the fewest product As can be seerSymphony is very fast, requiring no more than
terms.

0.0002 secs. on any of the functions considered by Dreschler and
Becker. Indeed, these execution times are less than the time interval
between real time clock interrupts. As a result, timing functions in
C++ return zero elapsed time for program execution. To achieve the

The following lemma gives both the time and space complexity oecessary resolution, each function was minimized 2 000 000 times
the above algorithm. The time complexity is due to [4]. and the total time was divided by 2 000 000.

Lemma 4.1: Algorithm 1 is an O(n®)-time algorithm that re-  Each dbruijn_k entry in Table | is a d’Brujin sequence indexed by
quiresO(n?) storage space for computing the optimal fixed-polarity:. That is, each sequence contains exactly one copy of each df the
Reed—Muller expansion of a symmetric function/omariables. binary k-tuples. Overall, it contains a total 6f + & — 1 bits. This

Proof: In applying the algorithm, G*) storage locations are re- sequence is such that decision diagram representations for such func-
quired for the coefficients in the triangles.:Q(ocations are required tions will have many nodes, as there are few repeated subsequences.
to store the number of product terms, one for each ofithel polari- As a result, algorithms based on decision diagrams will require more
ties, for a total of Of?) locations. B computation time than for other symmetric functons.

The OFDD approach has time complexi{»’) and space com-  Table Il shows, for certain symmetric functions that are also
plexity O(n°®). Thus, Algorithm 1 represents a significantimprovementhreshold functions, the relative execution times of FDD, Bgthy,
andSymphony. Again, Symphonyis fast.

B. Time and Space Complexity

V. EXPERIMENTAL RESULTS

Suprun [3], [4] did not apply his algorithm to benchmark functions. VI. CONCLUSION

Our implementation is calledSymphony, (symmetric phunction Rather than computing the entire FPRM expansion for each polarity,
optimizing system), which is written in &+ and compiled under Symphony computes and stores expansion coefficients only once,
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TABLE I
EXECUTION TIMES (IN SECS) FOR SYMMETRIC THRESHOLD FUNCTIONS

Function || In

| Out # [ Car. Vec. | Opt. Pol. | Products | FDD [ Sympathy | Symphony

thresg10 || 10 0 0°1% 0 11 21.0 0.1 0.000050
thresioqn || 11 0 01032 0 1 42.1 0.2 0.000114
thresyyiz || 12 0 o132 0 13 87.3 0.2 0.000143
thresiz,1s || 13 0 01232 0 13 177.5 0.2 0.000171
thresis s || 14 0 01312 0 15 364.2 0.3 0.000209
thresya s || 15 0 01412 0 15 756.5 0.3 0.000251
thresis,is || 16 0 01812 0 17 | 1555.8 0.3 ~0.000295
thresis,17 || 17 0 01612 0 17 | 31403 0.4 0.000346
thresi7is || 18 0 0l712 0 19 | 6483.9 0.4 0.000406
thresis,1o || 19 0 01812 ] 19 | 13033.1 0.4 0.000468
thresio 2o || 20 0 01913 0 21 | 25870.1 0.4 0.000540
thresz0,21 || 21 0 02012 0 21 | 52549.4 0.5 0.000612
thressyaz || 22 (] 02112 0 23 1 0.5 0.000691
thressa 23 || 23 0 02212 0 23 1 0.5 0.000781
thresas 2q || 24 0 02312 0 25 1 0.6 0.000883
threszq2s || 25 0 02412 0 25 t 0.6 0.000996
threszs,2e || 26 ] 02632 ] 27 t 0.7 0.001109
threse 27 || 27 0 02612 0 27 t 0.7 0.001230
thresar,2s || 28 0 0%712 ] 29 1 0.7 0.001343
threszs 2o || 29 0 02812 0 29 e 0.8 0.001492
threszg 3o || 30 0 0%°12 0 31 t 0.8 0.001658

using the transeunt triangle, and extracts them, as needed, to form REFERENCES

the various expansions. In this way, it achieves a major savings in

computation time and storage over yethy which computes a
decision diagram for each polarity.

An abbreviated version &ymphonycan be accessed at http://www.
oc.nps.navy.mil/~butler/transeunt.html (word length restrictions on the
server preclude carrier vectors with more than 31 bits). Users can inpu
a carrier vector and see the transeunt triangle along with the number

product terms for each polarity.
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