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Abstract 
We propose an algorithm for ihe design of multiple- 
valued current-mode CMOS logic (CMCL) circuiis that 
i s  based on the cost-fable iechnique. The a1 orithm is 
a heuristic search technique AO' algorithm) L O , l l ]  ap- 

Exhaustive Search while providing realizations that are 
almost as good. A new cost-table is also proposed ihai 
results in better realizations ihan obtained with a previ- 
ous cost-table [ Id] .  

1 Introduction 
The development of multiple-valued current-mode 
CMOS circuits (ChICL) [3,12,13,14] has resulted in a 
need for design techniques for such circuits. The de- 
velopment of charge-coupled device (CCD circuits has 
inspired a close examination of the cost-ta b le technique 
[2,8,9,14,16]. A natural extension of this work is a cost- 
table technique for ChlCL [14]. In this paper, we show 
an improved cost-table for CMCL. The improvement oc- 
curs in two ways. First, the table is extended to include 
more operations. Second, an Exhaustive Search tech- 
nique is replaced by an efficient search technique which 
is similar to AO' algorithm [10,11]. 
This paper is divided as follows; Section 2 is a descrip- 
tion of notation, Section 3 describes the new cost-table 
and decompsition method, Section 4 is a description of 
improvements obtained, and Section 5 is the conclu- 
sions. 

plied i o  an AND-OR tree. / t is  significantly faster ihan 

2 Background, Notation and Basic Cir- 
cuit Elements 

Let R =  {O,l,...,r-l} beasetofrlogicvalues, where 
r 2 2. Let X = (21 , 22,  - , zn} be a set of n variables, 
where zi takes on values from R. A function f ( X )  is a 
mapping f : R" + R. If X is a single variable 2, f z) is 
represented as an r-tuple, c f(O), f(l), - - .  , f ( r  - \) >. 
For example, if r = 4, then f(z) =< 3,2,1,0 > repre- 
sents a complement function in which 0 maps to  3, 1 to 
2, 2 to 1, and 3 to 0. Let U: be the set of all r-valued 
functions of n r-valued inputs. Let c ( f ) ,  the cost of func- 
tion f, be a mapping c : U: + Ro+, where RO+ is the 

tRerearch supported by NATO Grant 423184, by NSF Grant 
MIP-8706553, and by an NPS Dmct Funded Grant in cooperation 
with the Naval Fbaarch Laboratory. 

set of real numbers. The cost function c ( f )  introduced 
by Kerkhoff and Robroek (81 for the design of 4-valued 
CCD logic circuits correlates closely with the chip area 
occuppied by the most compact implementation of f. 
In the realization of a given function by cost-table, cost- 
table functions are combined using a connecting oper- 
ation. The connecting operation + between functions 

value, in which case + is undefined. For example, if 
=c 0,1,2,3 > and f 2 ( z )  =< 3,2,1,0 >, then 

tity function < 0,1,2,3 > and the complement function 
< 3,2,1,0 > is the constant function c 3,3,3,3 >. 
Let s be the cost of realizing the sum operation (+) 
between two function:. Thus, the cost of the realization 

adders. 
Function f is a basis function if and only if f ( X )  is 1 
for exactly one assignment of values to X and is 0 oth- 
erwise. Let BT be the union of all basis functions and 
the constant 0 function. BT is called the basis cost- 
iable. F is a cost-fable if and only if BT E F 5 U',. 
The condition BT C F guarantees that all functions 
can be realized as the sum (+) of cost-table functions. 
Forexample,inUt, B T =  {<O,O,O,O>, <0,0,0,1>,  

is missing, it is impossible to realize certain functions, 
including < O,O,O, 1 > itself. Conversely, any function 
c ao,al,a2, a3 > can be realized as the sum of func- 
tions exclusively from BT, specifically a0 functions of 
the form < 1,0,0,0 >, 01 < O , l , O , O  >, 02 < O,O, 1,0 >, 
and 03 < 0,0,0,1 >. 
C F ( ~ ) ,  th? cost of realizing f EY: with respect to cost- 
table F, is the minimal cost re uation, specifically 

=< 3,3,3,3 > and fl z)+fi(t) is unde- 
rst example shows that t 6 e sum of the iden- 

f = ft+f2+ . . * +fm 1s ~ ( f i )  +c(f2)  + 
l)s, where the last term 1s the cost of 

<0,0,1,0>, <0,1,0,0>, <1,0,0,0>}. If < O , O , O , l >  

where c is the cost function. f = f1+f2+. 
said to be a minimal cost realizaiion of f, 

+fm is 
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Two cost functions are of special interest. 

lkansistor Count 
This eoet function was introduced in [14] as a measure 
of the area in an implementation of a circuit. Area cor- 
relates clwely with the number of transistors needed 
in the minimal circuit implementation. I t  is straight- 
forward to calculate given the circuit, and we use it 
here. Because the adder uses no transistors, its cost, s, 
is 0. 
Because it is useful in predicting cost in the AO' algo- 
rithm, we also use the following. 

Sum Cost 
Given f ( z )  =< z0,z1,-.-,t,-1 >, the sum cod is 

SC(f(+)) = 20 + 21 + + t r - 1 -  

For example, SC < 1 ,1 ,1 ,1  >) = 4 and 
SC(< 3,0,1,2>) = 6 . 
The elements in the cost-table of [14 were chosen by 

consider here two kinds of logic element sets. One set 
includes sum, constant, and mirror, which were used in 
[14.  The other includes threshold detector logic. In 
ad d ition to the set of basic elements in [14], threshold 
detector logic in [5,6,17] and their modifications are also 
used. 

analyzing many CMCL circuits [5,6, 1 2,13,14,17]. We 

Sum. The simplest operation in the current d e  
main is arithmetic addition. The sum is the only 
connective operator in the set of basic circuit el+ 
ments. The circuit realization of the sum, as shown 
in Fig. 1, is sim ly an interconnection between all 
the inputs and t\e output. 

Constant. The second basic element is the con- 
stant generator, as shown in Fig. 1. It can p r s  
vide any ositive or negative integer value between 
Mr a negafive logic value) and (r - l ) ,  where 
r denotes the radix. A negative logic value, i, repre- 
sents a logic value corresponding to the same quan- 
tity of current that is represented by i ,  except that 
the flow is in the opposite direction. The circuit of 
a constant generator consists of one or more MOS 
N-ty e transistor(s) or P-type transistor(s). The 
gate&) of the transistor(s) are connected to a ref- 
erence voltage, which can be generated locally. 

N-type and P-type mirror. The mirrors are 
one-input , multiple output logic operators of which 
there are two kinds, an N-type and a P-type. The 
mathematical functions bndp (bound-positive and 
bndn (bound-ne ative) are used in the alge b raic 
representation of these mirrors. They are defined 

bndp(z) = "(0, z) 
bndn(2) = min(0, z) 

For example, if the input strin with component x 
is { 3 2 I 0 1 2 3 }, the string o%tained by applying 

as: 

bndp(z) and bndn(z) is 0 0 0 0 1 2  3 } and { $210 
are shown in Fi 1. Multiple copies of the out- 
put sign& are &tained by using separate output 
transistors. Multiplication of the output s' nals by 
an integer is obtained by connecting the gains of 
several identical output transistors together. 

0 0 0 }, respectively. T 6, e circuits of these mirrors 

There are two kinds of threshold detector circuits. 
When input z is m or greater, one produces z at the 
output, while the other produces a constant c. When z 
is less than m, both kinds produce 0. 

e Threshold detector. A voltageswitched cur- 
rent source threshold detector can be implemented 
with a constant generator and a pass-transistor, as 
shown in Fig. 1. A threshold detector with con- 
stant generator was designed with those basic el- 
ements in [5,17]. Fig. 2a shows a circuit that is 
identical except for the addition of a current mirror 
to invert the input current direction. Considering 
Fig. 2a, the operation of the threshold detector is 
as follows: if the control input current z in the up- 
per side of the box in the symbol diagram of Fig. 2 
is smaller than or equal to the threshold m, the out- 
put current is 0. On the other hand, if the control 
input current g is greater than m, the gate output is 
connected by pass-transistor T1 to a current source 
T2. In Fig. 2b, however, T 2  produces the value 
i". The function realized is defined as 

constant c or input z 

0 otherwise. 

6 The cost Q ( f )  of TD(m, e) Fig. 2.a) is 2 + m -+ 
c. The 2 occurs because t ere are 3 transistors 
of cost 1, one of which is shared with other cost- 
table functions (the P-type input transistor). The 
m occurs because the transistor in Fig. 2.a labeled 
m occupies m times the area of each of the three 
transistors discussed above. The c occurs because 
of the transistor in Fig. 2.a labeled by c. The 
cost of TD(m, z)(Fi . 2.b is 5 + m. There are six 
transistors of size 1 (!ncluding T1 and T2 of which 
one, the input transistor, is not counted i ecause it 
is shared with other cost-table functions. The m 
occurs because of the transistor labeled m in Fig. 
2.b. 

e Modified threshold detector. From the above 
threshold detector, a modified threshold detector, 
as shown in Fig. 1, was used in [SI. This is defined 
as 

constant c or input z 

0 otherwise. 
MTD(m1, m2,z) 

a The cost of MTD(m1, m2 : c is 4 + m l  + m2 + c. 
The 4 occurs because of the transistors of size 1 
shown in Fig. 1 and 2 additional transistors (not 
shown) needed for the current mirror. Again, one of 
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I circuit 
Realization 

Arithemotlc 
Summator 

q-x+y+. . .+z 

Constant 

Llq Llr 4t$E N-type 
Mirror 

xl=bndn ( x) 

r--Nxl 
q=-Mx' 

xl=bndp (x )  
q=-ux, 
r--Nx' 

P-t ype 
Mirror 

t l q  t l r  

ZdL Threshold 
Detector 

Modified 
Threshold 
Detector 

MTD (ml , m2 : c: 

Inverse 
Threshold 
Detector 

ITD(m,c) 

Figure 1: The basic set of CMCL circuit 

constant value "c" or 5 + m  for ZTD(m, z) with the 
pass-transistor. 

these is not counted because it is shared with other 
functions. Similarly, the cost of MTD(m1, m2 : z) 
can be calculated as 7 + m l  +m2.  The operation of 
the modified threshold detector logic is same as the 
literal generator and is useful in implementin the 
Universal Unary Programmable Circuit(UUP6) or 
T-gate, and Programmable Logic Arrays(PLAs). 

0 Inverse threshold detector. The inverse thresh- 
old detector or down-literal enerator operates as 
the inverse operation of threkold detector. It can 
be implemented as a modification of the threshold 
detector and is defined as 

Its symbol and circuit dia am are shown in Fig. 
1. The cost Q(f) of I T D g , c )  is 3 + m + c with 

3 The Proposed Cost-table Technique 
In this section, a cost-table design algorithm is shown 
which yields improved realizations over a previous a1 o- 
rithm. The improvements are due to insi ht gainedgby 
an operation called Vertical Partitioning &P). 

3.1 Cost-table circuits 
The circuit structure of CMCL cost-table functions con- 
sists of three parts ([14]); a distribution circuit for the 
input, circuits that reahze the cost-table functions, and 
an output summator circuit. 
Cost-table functions in [14] were realized using the cir- 
cuits shown in Fig. 3.a and 3.b. We augment the 
cost-table in [14] with functions that can be realized 

132 



T2 

vss 

Figure 2: The operation of threshold detector logic 

Figure 3: Cost-table circuit structures 

using a multiplication. For example, instead of just 
< 0,0,0,1 >, we choose to include < 0,0,0,2 > and 
< O,O, 0,3 > also. Table 1 shows the au mented cost- 
table. This increases the cost-table size t o m  37 to  53. 
Although the cost-table size is increased by more than 
40%, the algorithm is simplified using this cost-table. 
A further improvement can be obtained by using the 
threshold operations explained in the previous sec- 
tion. Specifically, the threshold detector TD(m, c) and 
TD m , z )  M T D  ml m2,c) and M T D  ml ,mz,z) ,  and 

improvement in certmn costs in Table 1. The resulting 
cost-table is shown in Table 2. As with Table 2, this 
table lists the circuit structure type, the values of the 
parameters, the cost, and the values of the cost func- 
tions. 
In CMCL, the area of the circuit correlates closely with 
the number of transistors. As in the studies of CCD, it 
is of interest to compare the eosts of functions obtained 

IT 6 (m,c)  and IkD(m,t) are used. T 6 is results in an 

Table 1: Cost-table with the circuits of Fig. 3a(circuit 
a), 3b(circuit b). 

4 
6 
0 
0 
T 
r 
T 
7 
T 
0 
0 
0 
0 
0 
0 
0 
s 
9 
9 
9 
9 
9 
9 
9 
e 
10 
10 
10 
10 
IO 
10 
IO 
10 
I1 
11 
I1 
I1 
I1 
11 
I2 
I2 

I1 
I3 
13 
w 
w 
w 
I4 
I4 
IT 

ia 

- 

0111 
0 0 1 1  
D O 0 1  
1 0 0 0  
0 0 0 1  
D l 1 1  
1100 
1100  

1000  
1 1 1 0  
1 2 1 0  
0 1 1 1  
0 1 0 0  
a 1 0 0  
0111 

J I O O  

0 0 1 1  
0 1 1 1  
1 1 1 0  

oooa 

a o o o  

3 3 1 0  

a a o o  
i a a o  
o a o o  

a i a o  

0 5 3 3  
0 3 0 0  

0 1 1 0  
0 0 1 0  
0 1 1 0  
0 1 1 0  

0 0 1 2  
0 1 3 3  
1 1 1 0  
0 0 3 3  
0 1 2 0  
0 0 2 0  

0 3 1 1  

i a o o  

o i a i  

i a a o  
i a i o  
o a a o  
0 0 2 1  
0 1  J 1  
0 3 1 0  

0 0 3 0  

I110 
0 0 3 1  

i a o o  
o i a o  

- 

- 
KIO L l  ul 
K-1 k-1-1 
K = l  M r l  

K I O  l p l  k-1 bl ul b=O 
K r l  k d  r l  

K r l  Lo k-1 bl -1 k l  
K s l  L-1 M Irl -1 b 4  
K I O  L-2 h l  bla-1 b-0 

K d  td rl 
K-0 L-I L l  l-1 r l  b=O 
K s I  Ipl k r l  l-I r l  brO 
K s l  W k=l bl -1 b-0 
K r l  Lo k=l bl -1 k l  
K r l  Lo k r l  l-1-1 bil 
K c I  l p l  k=l IrI rl b=O 
K r l  Iro k r l  l-1-1 k l  
K I O  L-I k=I 1 4  rl b d  
K I O  Ira k d  Irl rl b+O 
K c l  Ips k=lI= l  a r l  biO 
K r l  Lo1 k=l l-1-1 k l  
K r l  Lo k=¶ bl u l  b-1 
K s l  b l  k r t k l  a i l  b r l  
K s l  L--I k -1 1-3 ail b=O 
K s I  I p l  k 1 I=¶ rl b d  
K r l l r O l  ' ~ I r l r l k l  
K r l  L-0 k-1 Ira -1 b=l 
K r l  Lo L r I  I d  arl  k l  
K 5 I  Ipl k r l  b3 rl bra 
K r 5  Lo k=I bl a 4  b=l 
K r l  b l  k r t  I r l  a r l  bsl  
K d  Lo k-3 111 a-I k l  
K r l  lrO k-3 I r l  a r l  b=l 
K s I  G . 1  k-5 bl rl b=l 
K r 3  L=l k=lI=I -1 b=l 
K r l  Irl  k-1 111 arl b=l 
K s l  b l  krS lrl a=l b=l 
K r l  Irl k = I l r 3  r l  k l  
K r 5  b o  k-1 bl r l  b r l  
K r l  I,-I k=l  b 2  -1 b r l  
K s l  Irl k J  111 -1 b=2 
K r l  IrO k-4 Irl rl b-3 
K s l  b - 1  k-4 1-1 ul brl  
Ksl  b l  k-4 bl arl b=l 
K r 5  IrO k=l b S  -2 bil 
K r I  IrI k I )  bI rl brl 
K - I  Irl k-4 1-1 rl brl 
K-I IrO k-S I r l - 1  b-J 
K s l  I r - Y  k 3  Irl u l  bel 

K-1 Irl k=S 111 ul k l  
K-I  Ir-1 LrI bl .J brl 
K r I  b 3  k=S bI ul b i 3  

K-S hi k t a  h a  ~i boi 

from a rigidly specified table of costs to costs derived 
dir-ectly from the functions themselves, that is, costs 
of four previously defined cost functions TC [16], TTS 
[16], SUM [16], and BC [l]. We do the same in this 
study. 
For the decomposition program, it is interesting to know 
how the transistor counts of the cost-table functions 
and the mathematical cost functions are related to each 
other. Table 2 also lists the relations between the 
TTS, SUM, BC, and TC cost functions and transistor 
count Q for the functions in the cost-table in [14]. For 
the iven functions, the mathematical cost functions are 
fixe%. Therefore, the values of the mathematical cost 
functions are not duplicated in Table 1. 
As seen in [20 for all cost-table functions, TTS < 7, 

add the threshold detector logic circuits as basic circuit 
elements, the correlation between the cost Q and the 
mathematical cost functions is weak as shown in Table 
2. Because of this negative correlation, these cost func- 
tions are not useful in a direct way to realize a function 
by the cost-table technique. However, one, the SUM, is 

SUM < 10, BI C < 4 and TC < 2. Even though we 

133 



Table 2: Proposed Cogt-table for Cvalued CMCL func- 
tions with the circuits of Fi . 3a(circuit a), 3b(circuit 
b), 3c(circuit c), 3d(circuit d? and 3e(circuit e). 

- 

01 

03 
04 
05 

OT 
00 
09 
10 
11 
11 
13 
14 
15 
16 
I7 
18 
19 
20 
11 
11 
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16 
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17 
m 
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36 
38 

m 

on 

sa 
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38 
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40 
41 
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4 
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6 
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6 
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7 
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7 

7.6 
7.5 
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8 
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0 
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0 
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I4 
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- 
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O O l O  
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3330 
0 1 1 0  

0 1 1 0  

0 0 1 0  
o s 1 0  
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2 3 1 0  
003a 

0 3 1 1  
I 3 1 0  
0 0 1 1  
0 1 3 1  

a o o o  

a s t o  

o l i o  

i a o o  

0 1 3 1  

o s i o  
i 3 o a  
o i 3 a  
i l i a  - 
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K=1 La1 rrl 
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TD(l.S.1) 
m q 0 . I . l )  

TD(O.6.I) 

K=Z k=1 rcl 
ITD(O.I.2) 
mD(1.K.I) 
TD(l.I.3) 

KrO k=l  rl ud TD(l.5.x) 
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HTD(O.5.1.5:l) 
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mD(0.6.3) 
ITD(1 .SJ) 
ITD(l.S.1) 

k=11=1 e - 1  b=l 
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'D(O.S.2 %I) 

TDII.63) 
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hITD(O.52 S.1) 
bITD(l.S.2 5.1) 
HTD(O.5.I .I J )  
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useful indirectly, as we show later. 
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3.2 The proposed cost-table decomposition 

The addition of the threshold detector logic to the ba- 
sic logic in [14] allows functions to be generated with 
less cost than without this logic. Fig. 4 shows how the 
various functions in the two cost-tables are distributed. 
Data points in boxes indicate number of functions from 
the old cost-table (Table l ) ,  while data points in x's in- 
dicate number of functions from the new cost-table (Ttc 
ble 2). The lower cost of the new cost-table is shown by 
the grouping of x's to the left of the boxes. However, 
the increase in the functions of the cost-table renders 
the direct application of the existing decomposition al- 
gorithms difficult, because the decomposition algorithm 
searches the cost-table at each step. An analysis of the 
functions in the cost-table reveals the following: 

algorithm. 

Number of Functions 
10 

8 

6 

4 

2 

0 

P 

0 2 4  6 8 1 0 1 2  

Cost of Function 

L 
14 16 18 

-B- cost-table Table 1 * cost-table Table 2 

Figure 4: Comparison of the cost functions in the cost- 
tables 

0 Constant functions are the least expensive func- 
t ions. 

0 Monotonously increasing functions (stair-case func- 
tions) such as < 0,1 ,2 ,3  >, < 0,0,1,2 >, 
< 0,0,0,1 >, < 0,1,2,0.>,  < 0,1 ,0 ,0  > and 
< 1,2,?,0 > can be obtained at moderate cost. 

0 -All step-up functions (e.g. < 0,0,2,2 > ) and all 
step-down functions (e.g. < 2,2,0,0 > ) are in the 
table. 

0 Most functions like < xo,x1,0,0 > and 
< 0,0,22,23 > are in the cost-table, where 
~ 0 , ~ 1 , ~ 2 , ~ 3  are any values in radix 4 (i.e. 0, 
1,  2 and 3). The exceptions are < 0,0,3,2 >, 
< 2,3,0,0 >, and < 3,2,0,0 >. 

The following definitions are useful in fomulating the 
decomposition method. We allow the radix r to take on 
any value, and so we consider general r-valued unary 
functions f(z) =< zo,xl , - - - ,zr - l  >. 
Definition 1: Let i,,, be the smallest index i such 
that ti = 0 and # 0. i,,, is said to be the right- 
most internal 0 of f 2). If no Zi is 0 or the only 0's 
extend consecutively \ rom i = r - 1 to lower values, the 
rightmost internal 0 does not exist. 
Example: The functions < 1,3,0,1 >, < 2,0,0,3 >, 
and < O,O,O, 1 > all have a rightmost internal 0 at 
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i = 2. The leftmost internal 0 is defined in a similar 
manner. However, we do not make use of it here. 
Definition 2: If j is the index of the rightmost internal 
0, then LF(x)  = < t o ,  t 1 , -+ . ,  zj-1,0,. - -  , O  > is the lefl 
function and R F ( t )  = < O,...,O, tj,tj+i,*-*,tr-i > 
is the right function. 
Example: Forthefunctions<1,3,0,1>,< 2,0,0,3 > 
and < 0,0,0,1 >, L F ( z )  =< 1.,3,0,0 >,*< 2,0,0,0 >, 
and < O,O,O,O >, respectively, while RF(r) is 
< 0,0,0,1 >, < 0,0,0,3 >, and < 0,0,0,1 >, r e  
spect ively. 
These concepts are useful in decomposing a given func- 
tion into two subfunctions. That is, the algorithm 
shown later accepts a function f ( t  and attempts to 
decompose it into two subfunctions 1 F ( z )  and RF(t). 
Definition 3: f ( z )  =< c, c, . , c > is a constant func- 
tion for 0 < c 5 r - 1. 
Example: < 1 , 1 , 1 , 1  >, < 2,2 ,2 ,2  >, and 
< 3 , 3 , 3 , 3 > are the three constant functions for 
4-valued unary functions. 
Definition 4: f ( z )  =< z 0 , ~ 1 , ~ ~ ~ , t r - l  > is an up- 
staircase (down-staircase) function if f(z) is not a con- 
stant function and zi = bndp(i - c), for 0 5 c 5 r - 2 
( ti = bndp(c - i), for 1 5 c 5 r - 1 ). f(z) is a stair- 
case function if it is either an up-staircase function or a 
down-staircase function. 
Example: < 0,1,2,3 >, < 0,0,1,2.  >, and 
< 0 , 0 , 0 , 1 > are upstaircase functions, while 
< 3 , 2 , 1 , 0 >, <2,1 ,0 ,0>,  and < 1 , 0 , 0 , 0 >  are 
down-staircase functions. 
Definition 5: f(t) =< z0,z1,.-.,t ,-1 > is a partial 
upstairrase (par t ia l  down-staircase function),  if f ( z )  is 
not a constant function, and ti = bndp(i - c) for 0 5 
0 5 i < m ( m 5 i 5 r -  1 ) and t i  = 0 for m < i 
i < m ~ w h e r e m ~ c t l ( m < c - l ) .  f z) isapart ia  whereJ c 5 r - 2 ( ti = bndp(c - i ) ,  for 1 5 c 5 r - 1 ), 

staircase function if it is either a partia \ up-staircase 
function or a partial down-staircase function. 
Example: < 0,1,2,3 >, < 0,0,1,2 >, < 0,0,0,1 >, 
< 0,1,0,0 >, < 0,1,2,0 >, and < 0,0,1,0 > are 
partial upstaircase functions, while < 3,2,1,0 >, 
< 2 , 1 , 0 1 0 >, < 1,0,0,0 >, < O ) O ) l , O  >, 
< 0 , 2 , 1 , 0 >, and < 0,1 ,0 ,0  > are partial 
down-staircase functions. 
Definition 6: f(t) =< t O , t l , ~ - ~ , t r , l  > is a block 
function iff ti = c for imin 5 i 5 i,,, and ti = 0 
for i < imin and i,,, < i ,  where 1 5 c 5 r - 1 and 
0 5 imin < i,,, 5 r - 1, such that imin and i,,, are 
not 0 and r - 1 simultaneously. 
Example: When r = 4, there are 15 block functions 
< o l l l l l l  < o121212 < 0,3 ,3 ,3  >, < o , o l ~ l ~  >, 
< 0,0,2,2 >, < 0,0,3,3 >, < 0,1,1,0 >, < 0,2,2,0 >, 
< 0,3,3,0 >, < 1,1,0,0 >, < 2,2 ,0 ,0  >, < 3,3,0,0 >, 
< 1 , 1 , , 1 , 0 ~ ,  <2 ,2 ,2 ,O>,and<3,3 ,3 ,0>.  
In the algorithm described next, a given function f(z) 
is tested to determine if a nonzero constant function 
can be subtracted from it. Next, an internal 0 is sou ht 
and the corresponding right and left functions RF$t) 

and L F ( z )  are extracted. These are then decomposed 
further. 
This process is performed using an AND-OR tree. From 
certain nodes, there are AND arcs which lead to two 
or more nodes, all of which must be solved to  solve 
the @veri node. Alternatively, if a node has OR arcs 
leading to  two or more nodes, only one of those nodes 
must be solved in order for the initial node to  be solved. 
This algorithmic process is similar to  the well-known A' 
algorithm [4]. But specifically we use the tree structure 
of the AO' algorithm [lO,llj to  find solutions in the 
AND-OR tree, and our terminology is similar to that 
of [15]. The algorithm described here finds a path from 
the startin6 node to a set of nodes representing the cost- 
table functions. 
The proposed Vertical Partitioning algorithm (VP) pro- 
ceeds by searching an AND-OR tree [15]. In this tree, 
nodes represent functions. As the search proceeds, cost 
estimates are generated at each node. These estimates 
are updated as more information is gathered in  the 
search and, in turn, are used to  direct the search to- 
ward productive paths. 
Vertical Parti t ioning Algorithm 

1 .  Let the initial AND-OR tree consist only of the 
node representing f = f(t), which is called IKIT. 
Set this node's cost, Q ( f ) ,  to CO, and denote this 
level as 0. 

2. Generate levels 1, 2, ... and thus the AND-OR 
tree(A0-tree until all leaves become a cost-table 
function or kUTILITY. The AO-tree has AND 
node(s) on levels of odd value and has OR node(s) 
on levels of even value. The algorithm proceeds un- 
til INIT is labeled SOLVED. Repeat the following 
operation at each level until all leaves generated are 
marked SOLVED or FUTILITY: 

a. At each AND node function f, i.e., level 0, 
2, 4, ... , let e be the rightmost internal 0. 
If e exists, partition f into two subfunctions 
fl and f 2 ,  where f1 is the left function(lF) 
and fi is the right function RF) of f. If z 

TILITY, which is equivalent to specifying the 
AND node as not partitioned. Form the AO- 
tree nodes f 1  and f2. If f1 or f 2  is in the cost- 
table, mark the corresponding node SOLVED, 
and assign it the Q value of the function's cost 
from the cost-table. If fl or f2 is not in the 
cost-table, do the following: 

b. At each OR node function, f, level 1, 3, 5, 
... enerate a component function f' of 
f ofltfe following three types 1. a partial 
staircase function(assi ned to the left-hand 
ORsucceasor), 2. a bfock function(assigned 
to  the middle Obucceasor),  and 3. a non- 
eero constant function assigned to the right- 

tion f has the property that 1. f' is in the 
costtable, 2. f (2) 5 f ( t )  for 0 5 t 5 r - 1 

does not exist, let f1 = f, an 6 mark f i  as FU- 

hand ORsuccessor). B ach component func- 

135 



3. 

3.3 

in radix t ,  and 3. there is no other compe 
nent function of the some type with a larger 
SUM cost function. Furthermore, among the 
choice8 of component functions with the same 
largest SUM cost, select the one with the low- 
est Q(cost-table cost). If no function of any 
of the three types of functions can be sub- 
tracted, the corresponding ORsuccessor node 
is marked FULTILITY. Next ,  

i. choose the arc associated with a compe 
nent function, f', that has the lowest Q 
value. 

ii. generate the ORsuccessor by subtract- 
ing the corresponding component func- 
tion from the OR node function. 

iii. if the ORsuccessor is found in the cost- 
table, label it SOLVED and assign its Q 
value from the cost-table. 

iv. depth first recursion: If an ORsuccessor 
cannot be found in the cost-table, re- 
Deat the above AND/OR decomoosition 
tntil all successive liaves are mirked as 
SOLVED. 

v. backtrack: When a node status changes 
to SOLVED and its cost changes, its par- 
ent node cost is re-evaluated to determine 
if a lower cost can be assigned to the par- 
ent node. 

vi. repeat Steps 11) to (iv) for other 

component functions are less than the 
cost of the OR node found from 
the completed evaluation of the first 
ORsuccessor. 

Besides the decompositions considered in Steps 1 
and 2 above, which are based on vertical partitions 
about the leftmost internal 0, consider other ver- 
tical partitions. Compute the cost of all vertical 
partitions of the given function, as it is decomposed 
intosubfuctions < 20 , 21 , , ti , 0, . - , 0 > 
a n d <  0 ,  ... , 0 ,  ?i+l , , >,where 
both subfunctions are in the cost-table(if either one 
or both are not in the cost-table, discard the com- 
position). There are r - 1 such decompositions. 
From among these decompositions and the decom- 
positions chosen in Steps 2 and 3, choose the one 
with the lowest cost. 

ORsuccessors i r" the Q values for their 

Examples 
Fig. 5 shows two examples of the Vertical Partitioning 
algorithm. 
Example: Fig. 5a shows how < 3,0,2,3 > is de- 
composed with the cost-table shown in Table l. At 
level 0, this function is partitioned into < 3,0,0,0 > 
and < 0,0,2,3 >. hnction < 3,0,0,0 > is in the 
cost-table and is therefore marked SOLVED, with a 
cost Q = 8. Since the other function < 0,0,2,3 > 
is not in Table 1, it is decomposed as < O,O, 1,l > 
or < O,O,O,  1 > by subtracting the staircase function 

f' =< 0,0,1,2 >, with a cost Q(f') = 4 or the block 
function f' =< 0,0,2,2 >, with a cost Q(f') = 10. 
Because it is not possible to subtract a non-zero con- 
stant, the corresponding node is marked FUTILITY. 
Both < O,O, 1,1 > and < O,O, 0,l > are cost-table func- 
tions and the minimal realization can be obtained as 
< 3,0,0,0 > + < 0,0,1,2 > + < 0,0,1,1 > with a 
total cost of 21. 
Example: Fig. 5b shows the realization of < 3,2,1,1 > 
with the cost-table shown in Table 2. Since < 3,2,1,1 > 
contains no leftmost internal 0, there is no partition 
at level 0. Thus, the left function is marked FUTIL- 
ITY and consequently the right function is a copy of 
parent node function. Next generate three potential 
component functions < 1,1,1,1 >(constant function), 
< 2,2,0,0 > (block function) and < 3,2,1,0 > (stair- 
case function) with costs 1, 7.5 and 8, respectively. 
First, < 3,2,1,1 > is decomposed as < 1,1,1,1 > + 
< 2,1,0,0 > at the right-hand ORsuccessor, since its 
cost is the lowest among the component functions at its 
tree level. Node < 2,1,0,0 > is marked SOLVED be- 
cause it is a cost-table function at a cost Q = 7. At 
this point, one solution is found with the total cost 6 
by summing Q(f') = 1 with Q = 7. Next, test the 
next lowest component, i.e., the middle ORsuccessor. 
Here, OR node function < 3,2,1,1 > can be decom- 
posed as < 2,2,0,0 > + < l,O,l,l > , the latter 
of which can further be partitioned into < 1,0,0,0 > 
and < O,O,l,l > (since < l,O,l,l > is not a cost- 
table function). Both < 1,0,0,0 > and < O,O, 1,l > 
are cost-table functions and are marked SOLVED with 
cost Q = 5.5 and Q = 4.5, res ectively. Now that 
the middle ORsuccessor is solveg. The total cost for 
this path is calculated by summing the cost Q for 
< 1,0,0,0 >, < 0,0,1,1 >, and < l,O,l,l > for a 
total cost larger than the solution already solved for the 
right-hand ORsuccessor. Therefore, the solution for 
the middle ORsuccessor is discarded. The remaining 
left-hand ORsuccessor can also be discarded, since its 
total cost will surely be greater than cost of the com- 
ponent function, < 3,2,1,0 >, which is 8. Thus, the 
solution is < 1,1,1,1 > + < 2,1,0,0 > with a cost 
Q = 8 .  
Example: In [14], < 1,3,0,3 > is realized at a cost 
Q = 24 using < 1,0,0,0 > and < 0,0,1,0 > with a 
multiplication factor of 2 and 3 respectively followed by 
complementation with respect to a constant 3. With the 
cost-table shown in Table 1 presented here, it is realized 
at a cost of Q = 20 as shown in Fig. 6. 
Example: Using the cost-table of Table 2, the Vertical 
Partitioning algorithm decomposes < 0,2,3,2 > into 
< 0,2,2,2 > and < 0,0,1,0 > at a cost of Q = 13.5. 
However, the Exhaustive Search algorithm decomposes 
< 0,2,3,2 >into  < O,l,l,l > and < 0,1,2,1 > at a 
cost of 12.5, which is better than that produced by the 
Vertical Partitioning algorithm. 

4 Overall Comparison Results 
An exam le in the revious section shows that the re- 
sults of tRe Verticaf' Partitioning me sometimes worse 
than Exhaustive Search. In this section, we further 
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Figure 6: f(z) =< 1,3,0,3 > 

b) nations of four cost-table functions. We have verified 
that the cost-table implementation EX(3) is the same 
as Exhaustive Search. These observations hold because 

we didn't need to run EX(4). Therefore, the CPU time 
for EX(4) is an estimate in Table 3. 

Figure 5: Examples of the application of the vertical of the increased size ofthe cost-table to 53. As a result, partitioning algorithm 

quantify the performance of the two algorithms. Fig. 
7 shows the result of applyinz the Vertical Partitioning 5 Conclusions _ -  - - 
algorithm to 255 Cvalued unary functions using tw; 
cost-tables, that of Table 1 and Table 2. Plotted verti- 
cally is the number of functions with a minimum cost of 
realization shown along the horizontal axis. Data points 
in boxes represent the cost-table of Table 1, while data 
points marked by x's correspond to the cost-table shown 
in Table 2. For example, the box at (4,l) means there 
is one function realized at a cost of 4 using the Vertical 
Partitioning algorithm on the cost-table of Table 1. The 
advantage of the cost-table of Table 2 is clearly seen as a 
bulk of the new cost-table histogram is to  the left of the 
bulk of the old cost-table histogram. The average cost 
over all 255 functions is Q=12.1804 with the cost-table 
of Table 2 compared to Q=13.6039 with the cost-table 
of Table 1. A similar experiment was performed using 
the Exhaustive Search algorithm on the cost-table of 
Table 2. The cost-tables of Table 2 and Table1 yielded 
an average cost of Q=12.1235 and Q=13.5686, respec- 
tively. Table 3 shows the computation time of Vertical 
Partitioning algorithm as it compares to the Exhaus- 
tive Search. That is, the Vertical Partitioning alg6 
rithm required 19.3 sec. of CPU time to comDute the 

We have proposed the Vertical Partitioning algorithm 
for the design of current-mode CMOS multiple-valued 
logic. It partitions a given function according to the 
location of logic 0's. The algorithm requires search 
and proceeds in a manner similar to the heuristic 
algorithm(A0'). In addition, the cost-table of Table 
2 is proposed in which threshold detector logic circuits 
augment operations used in a previous cost-table. The 
cost of realizing functions using the cost-table of Ta- 
ble 2 is about 10% less than with Table l. That is, 
using the Vertical Partitioning algorithm, the average 
cost over 255 4-valued functions was Qd2.1804 for the 
cost-table of Table 2 verses Q=13.6039 for the cost-table 
of Table 1, a reduction of 11.7%. The new algorithm 
does not achieve the performance of Exhaustive Search 
which finds a guaranteed minimal solution. However, 
it is not far off, only 0.0047%(calculated from the total 
cost difference between Vertical Partitionin algorithm 
and Exhaustive Search divided by the t o t 3  cost from 
Exhaustive Search for all Cvalued 255 functions) and it 
is faster. 

minimal iealization of all 255 4-valued unary finctions. 
This is five times faster than EX(3) which is Exhaus- 
tive Search for the minimal solution over all combina- 
tions of three cost-table functions. It is 265 times faster 
than EX(4) which is Exhaustive Search over all combi- 

An advantage of the Vertical Partitioning method is 
that it is easily extended to  higher radices in a nat- 
ural way. We expect this, because functions like the 
constant ard staircase will be relatively inexpensive in 
higher radices as well. 
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Figure 7: Comparison of 255 4-valued unary functions 
in two cost-tables 
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