
178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992

On the Design of Cost-Tables for
Realizing Multiple-valued Circuits

Kriss A. Schueller, Member, ZEEE, and Jon T. Butler, Fellow, ZEEE

Abstruct- We propose a heuristic for finding minimal cost-
tables for use in the design of multiple-valued logic circuits. It is
an iterative approach, in which a good table of size t is composed
of a good table of size t - 1, etc. We analyze its performance,
comparing it with three other heuristics. The importance of
finding good cost-tables is demonstrated by an analysis that shows
there is a wide variation in both cost-table performance and in
the performance of heuristics for generating cost-tables.

We study linear cost, a general cost function of which two
previously studied cost functions are special cases. It is shown that
the minimal cost-table using one of the (infinitely many) linear
cost functions is identical to a minimal cost-table using any other
linear cost function. Thus, a heuristic for finding the minimal
cost-table using the linear cost function is independent of the
specific cost function parameters. This result and our observation
of well-studied nonlinear cost functions indicate that cost-table
design is only marginally dependent on the cost function.

We show two additional results on cost-table design. First, it
is demonstrated that a search for minimal cost-tables cannot
exclude certain seemingly useless functions called composite func-
tions. Second, while the complexity of cost-table design appears to
preclude a computationally efficient general algorithm for finding
the minimal cost-table, a special case allows efficient design. For
the case of a small cost-table, we show how to find the minimal
cost-table.

Index Tenns-Cost-table, logic design, minimization, multiple-
valued logic, synthesis.

I. INTRODUCTION
N the classical synthesis of logic functions, a given func- I tion is realized as a set of component functions that are

combined by a connecting function. For example, in binary
minimal sum-of-products synthesis, the component functions
are the AND of variables or their complements and the con-
necting function is the OR. Determining which component
and connecting functions to provide the designer has been
traditionally an ad hoc process, depending on the perceived
usefulness and cost of supplied functions. Cost is an especially
important factor, and is determined by the technology used.
For example, in multiple-valued charge-coupled device (CCD)
logic [6], the sum operator is especially inexpensive, and so
it occurs frequently in realizations. However, the value of a
component or connective function depends also on the extent

Manuscript received April 16, 1987; revised February 12, 1991. This work
was supported by NATO Grant 423/84, by NSF Grant MIP-8706553, and by
NRL under an NPS direct-funded grant.

K. A. Schueller is with the Department of Mathematics and Computer
Science, Youngstown State University, Youngstown, OH 44555.

J. T. Butler is with the Department of Electrical and Computer Engineering,
Naval Postgraduate School, Monterey, CA 93943.

IEEE Log Number 9103108.

to which it can be used to realize other functions. There has
been little formal study of this problem.

A formalization of this process is design by cost-table.
In the cost-table approach, components are chosen from
a table and combined to fulfill the design specifications
at the least cost. Cost is the sum of the costs of the
components plus the cost of combining them. The use
of cost-tables is universal. For example, the writing of a
program is essentially a design by cost-table. Here, entries
are instructions and cost can be execution speed. Similarly,
VLSI layout is a cost-table approach where the table is
a library of modules and cost can be chip area. The
question of reduced-instruction set computers verses complex-
instruction set computers is a matter of whether low cost
(simple) instructions or high cost (complex) instructions
should be provided in a cost-table consisting of machine
instructions.

The need for design techniques for CCD multiple-valued
logic circuits [6], [7] has inspired interest in the cost-table
approach [1]-[3], [5], [7], [SI, [lo], [14]. Here, cost represents
chip area, power dissipation, speed, etc. Given a function, there
may be many ways to realize it using cost-table functions, and
we are interested in one with lowest cost. This is called the
cost-table realization problem.

The concept of a cost of realizations has long been a part
of the study of multiple-valued logic. For example, Allen
and Givone [4], Miller and Muzio [9], and Smith-[15] have
used cost measures in evaluating sum-of-products expressions.
The first use of the cost-table in the design of multiple-
valued logic circuits was by Kerkhoff and Robroek [7] and
Robroek [111. Their proposed table contains 45 functions,
from which all 256 one-variable functions are synthesized. The
cost of each function in the cost-table is an approximation
to the chip area occupied by a CCD realization of that
function. The synthesis technique used is exhaustive search.
Lee and Butler [SI show a cost-table of 24 entries that
produces realizations as good as or better than those in [7]
and [l l] . The proposed synthesis algorithm is still a search;
however, nonproductive combinations are eliminated by using
the transition count of the function to guide the search.
Abd-El Barr, Vranesic, and Zaky [2] propose two heuristics
for implementing one- and two-variable functions. For one-
variable functions, the design uses the break count of a given
function, and this results in an improvement in the realization
of 20% of the one-variable functions considered in [8]. Abd-
El Barr, Vranesic, and Zaky [3] analyze the realizations of
one-variable functions used in the cost-table technique. By an

0018-9340/92$03.00 0 1992 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 1991 2. REPORT TYPE

3. DATES COVERED

4. TITLE AND SUBTITLE
On the Design of Cost-Tables for Realizing Multiple-valued Circuits

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Electrical and Computer
Engineering,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We propose a heuristic for finding minimal costtables for use in the design of multiple-valued logic circuits.
It is an iterative approach, in which a good table of size t is composed of a good table of size t - 1, etc. We
analyze its performance comparing it with three other heuristics. The importance of finding good
cost-tables is demonstrated by an analysis that shows there is a wide variation in both cost-table
performance and in the performance of heuristics for generating cost-tables. We study linear cost, a
general cost function of which two previously studied cost functions are special cases. It is shown that the
minimal cost-table using one of the (infinitely many) linear cost functions is identical to a minimal
cost-table using any other linear cost function. Thus, a heuristic for finding the minimal cost-table using
the linear cost function is independent of the specific cost function parameters. This result and our
observation of well-studied nonlinear cost functions indicate that cost-table design is only marginally
dependent on the cost function. We show two additional results on cost-table design. First, it is
demonstrated that a search for minimal cost-tables cannot exclude certain seemingly useless functions
called composite functions. Second, while the complexity of cost-table design appears to preclude a
computationally efficient general algorithm for finding the minimal cost-table, a special case allows
efficient design. For the case of a small cost-table, we show how to find the minimal cost-table.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SCHUELLER AND BUTLER: DESIGN OF COST-TABLES FOR REALIZING MULTIPLE-VALUED CIRCUITS

~

179

enumerative process, a cost reduction is achieved in 76% of
the functions.

Unlike the cost-table realization problem, the minimal cost-
tableproblem concerns the design of a cost-table, i.e., selecting
the functions in the table. Here, the choice of a cost-table is
determined by the average cost of the realizations produced;
for a given cost-table size, one wants a cost-table that yields
the lowest average cost. Schueller, Tirumalai, and Butler [13]
show a heuristic for finding a cost-table that is minimal or
nearly so, and from this, it was found that the cost-tables of [7]
and [8] are not minimal. For 85% of the cost-table sizes over
which it was applied, the resulting tables are provably minimal.
No proof of minimality exists for the remaining 15%. Most are
believed to be minimal, although for one size, the generated
cost-table is provably not minimal. These results show that
there is a point of diminishing returns with respect to cost-
table size. That is, while cost-tables of larger size produce more
economical realizations, beyond a certain size, about 10% of
the total number of functions to be synthesized, there is little
benefit to adding more functions to the cost-table. The analysis
in [13] was done for five different costs, and it was found that
the point of diminishing returns is approximately the same for
all costs.

In this paper, we analyze the minimal cost-table problem. In
addition, to the heuristic in [13], we consider three others. All
four heuristics are analyzed over cost-tables on the set of one-
variable 4-valued functions, one of the few sets where such
an analysis is computationally possible. It is shown that one
heuristic (the one given in [13]) is significantly better that the
others. Additionally, we generate a set of random cost-tables
with specific sizes and compare the average total cost with
heuristically generated best total costs. For the case where cost-
tables are small relative to the number of functions realized
(including practical cost-tables on multiple-valued functions of
two or more functions), we find that it is important to carefully
choose the heuristic. On the other hand, for larger sizes, we
find that almost any cost-table gives good results.

As in [13], our analysis covers five cost functions. We show
that two of these, which appear to be different, are really
members of a single class, called linear cost functions, and that
their characteristics are amenable to an analysis. For example,
we show how to identify all minimal cost-tables of size 1 larger
than the smallest size. Also, we show that the minimal cost-
table of a given size is the same for any of the infinitely many
linear cost functions. That is, if the existing cost function is
linear, the resulting minimal cost-table of some specified size
is independent of the particular linear parameters used. This
formal statement on a set of specific cost functions agrees
with our observation about other types of cost functions; cost
functions seem to have a marginal eSfect on the composition of
the minimal cost-table.

We analyze the composition of functions that belong to the
minimal cost-table. Specifically, we show that a search for
a minimal cost-table cannot exclude certain functions, called
composite functions, that are best realized as a combination
of other functions. This is a surprising result, since, in large
cost-tables, composite functions are unnecessary. They do not
contribute to any function realization.

11. BACKGROUND AND NOTATION

Let R = {0 ,1 , . . . , r - 1) be a set of T logic values, where
r 2 2. Let X = { x 1 , x 2 , . . . , x n } be a set of n variables,
where x, takes on values from R. A function f (X) is a
mapping f : R" -+ R. If X is a single variable x, f(x)
is represented as an r-tuple, (f (O) , f (l) , . . . , f (r - 1)). For
example, if r = 4, then f (x) = (3 ,2,1,0) represents a
complement function in which 0 maps to 3, 1 to 2, 2 to 3,
and 3 to 0. Let Un,r be the set of all r-valued functions
of n r-valued variables. Let ~ (f) , the cost of function f ,
be a mapping c : lJn,r -+ IR, where R is the set of real
numbers. The cost function c (f) introduced by Kerkhoff and
Robroek [7], [l l] for the design of 4-valued CCD logic circuits
correlates closely with the chip area occupied by the most
compact implementation of f . The cost function can also be
chosen to correlate with other quantities like speed and power
dissipation, allowing a range of parameters to be optimized.

In the realization of a given function by cost-table, cost-
table functions are combined using a connecting operation.
The connecting operation + between functions used in this
paper is similar to ordinary addition with logic values viewed
as integers. That is, if f (X) is represented as the sum f (X) =
f l (X) + f 2 (X) + . . . + f m (X) , then, for any assignment v of
values to X, f (v) = f l (v) + + . . . + f m (w) , where
each f z (v) is taken as an integer and where + is ordinary
addition, except when the sum exceeds T - 1, the highest
output logic value, in which case + is undefined. For example,
if f l (x) = (0,1.2.3) and f 2 (x) = (3 ,2,1,0) , then f l (x) +
f 2 (z) = (3 .3 .3 ,3) and f l (z)+ f l (z) is undefined. The first
example shows that the sum of the identity function (0,1,2,3)
and the complement function (3,2,1,0) is the constant function
(3,3,3,3).

Let s be the cost of realizing the sum operation (+)
between two functions. Thus, the cost of the realization f =
f l+f2+. . .+fm is c (f1) + 4 f 2) + . . . + c (f m) + (m - l) s ,
where the last term is the cost of (m - 1) two-input adders.

Function f is a basisfunction iff f (X) is 1 for exactly one
assignment of values to X and is 0 otherwise. Let BT be
the set of all basis functions plus the constant 0 function (i.e.,
for all assignments of values to z, the constant 0 function is
0). A set of functions F is a cost-table iff BT C F G
The condition BT 5 F guarantees that all functions can be
realized as the sum + of cost-table functions. For example,

(1,0,0,0)}. If (0,0,0,1) is missing, it is impossible to realize
certain functions, including (O,O,O, 1) itself. Conversely, any
function (UO. ~ 1 , u2. a3) can be realized as the sum of functions
exclusively from BT, specifically a0 functions of the form
(1,0,0,0), u1 (O,l,O,O), a2 (O,O,l,O), and a3 (1,0,0,0). BT is
called the basis cost-table.

e F (f) , the cost of realizing f E Un,T with respect to cost-
table F is the cost of the minimal cost realization, specifically

in u1,4, BT = { (O,O,O,O), (O,O,OJ), (O,oJ,O), (0,1,0,0),

where f = fl+f2+...+fm and c is a cost function. f =
fl+ f 2 + . . . + f m is said to be a minimal realization of f, if
there is no other realization of lower cost. The total cost, T (F) ,

180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992

of cost-table F is

T (F) = C F (f) .
f€Un, ,

That is, T (F) is the sum of the minimal costs of all functions
realized under F. Ft is a minimal cost-table of size t iff
lFtl = t and T(Ft) 5 T (F) , for all F such that IF1 = t .
A near-minimal cost-table is a cost-table with a total cost that
is close to minimal and may even be minimal but has not been
proven so. Dividing T (F) by lUn,rl yields the average cost of
realizing a function by cost-table F. Thus, if F is a minimal
cost-table, then the average cost of realizing functions with F
is no greater than with any other cost-table of the same size. If
any function is as likely to be realized by the cost-table method
as any other function, then a suitable criteria for judging cost-
tables is average cost, or equivalently, total cost. Thus, for any
given size t , we seek a cost-table with the smallest total cost.
This is the minimal cost-table problem.

To assess the importance of finding a minimal cost-table,
it is necessary to see the range of cost-table quality. Ft is a
maximal cost-table of size t if lFtl = t and T(F,) 2 T (F) ,
for all F, such that IF1 = t . In the analysis to follow,
representatives of maximal cost-tables will be used to show
the range of cost-tables available. A near-maximal cost-table
is a cost-table with a total cost that is close to maximal and
may even be maximal but has not been proven so.

Since there is only one basis cost-table of size rn + 1, it is
minimal. However, the task of finding a minimal cost-table of
other sizes is typically nontrivial. For no known nontrivial
cases has the minimal cost-table problem been previously
solved. In Section VI1 of this paper, we show a nontrivial
case where this problem can be solved. However, an efficient
process for finding a minimal t-entry cost-table Ft is needed
that applies to all cases. We compare four heuristics for finding
near-minimal cost-tables, all of which are based on the premise
that a minimal cost-table of size t is likely to contain a minimal
cost-table of size t - 1. To compare these heuristics, we
consider one-variable 4-valued functions of which there are
256. For 4-valued functions with more than one variable, it is
impossible to compare average or total costs of cost-tables. For
example, to compute the average or total cost of a cost-table
on two-variable 4-valued functions, it is necessary to compute
the costs of 442 x 4 x lo9 functions! Since we are interested
in the cost-table approach in general, our analysis is done with
five different cost functions. They are as follows.

1) Area-A(f): The area cost function was proposed by
Kerkhoff and Robroek [7] and Robroek [ll] as a way to
minimize implementation costs of CCD circuits, especially
chip area. The cost A (f) of a specific function f is determined
by the best realization known at that time. As improved
realizations become available, this function changes. In this
paper, we use the costs derived originally in (71 and [ll] with
improvements listed in [8] and [13].

2) Transition Count-TC(f): The transition count was
proposed in [8] as a simpler alternative to the area cost. Unlike
area cost, the transition count is not derived from a table but
is computed directly from the function. However, as noted in
[8], there is a correlation between the area cost of a function

and its transition count. The transition count, TC(f), of a
function f is the number of times the logic value in f changes
from decreasing to increasing and vice versa plus 1 if the
function is initially decreasing, as the input logic values z
increase from 0 to 3. For example, TC((1,1 ,2 ,2)) = 0 and
TC((2 ,0 ,3 ,1)) = 3.

Formally, given f(z) = (ao, a l , a2, a3), let

1 if ai-1 < ai > a i + l or ai-1 > ai < ai+l,

0 otherwise,
1 5 i 5 2 I i (f) =

1 if a0 < a 1 = a2 > a3 or a0 > a 1 = a2 < a3

= { 0 otherwise, and

1 if there is a p , 0 5 p 5 2, such that
a0 = a1 UP > UP+l, ID(!) = = * . . = i 0 otherwise.

&(f) is 1 iff the ith function value is either strictly larger or
strictly smaller than both of the two adjacent values, for i = 1
or 2. That is, Ii is 1 if there is an inflection point. As such,
values on both sides of a prospective inflection point must be
known. Thus, i is restricted to interior logic values. 1 1 2 (f) is
1 iff the middle two logic values are the same and are either
strictly larger or strictly smaller than both of the end values.
1D(f) is 1 iff the function values are initially decreasing.

The transition count T C (f) of function f is

TC(f) = k(f) + 1 2 (f) + 1 1 2 (f) + m f) .
3) Total Transition Size-TTS(f) : The correlation between

transition count and area cost is not exact. To achieve a closer
correlation, the total transition size was introduced [131. In
the transition count, for each transition from increasing to
decreasing or from decreasing to increasing, 1 is added to
the function’s cost, whereas, with total transition size, the
exact size of the transition is added to the cost. That is,
T T S (f) is the sum of the size of each transition (increasing
to decreasing or decreasing to increasing) plus the size of the
first transition (again) if f is initially decreasing. For example,
TTS((1 ,1 ,2 ,2)) = 1 and TTS((2,0,3,1)) = 9.

Formally, given f (z) = (ao, al, a2, a3), define beginning,
middle, and end transition sizes as follows,

)a3 - a21
&(f) = la3 - all

if 12 = 1 or 1 1 2 = 1
if 1 2 = 0 and 1 1 = 1

{ O otherwise.
S b (f) , Sm(f), and S,(f) are the beginning, middle, and end
transition sizes, respectively. The total transition size T T S (f)
of a function f is

TTS(f) = sb(f) + S m (f) f Se(f) + Sb(f)1o(f)*

SCHUELLER AND BUTLER: DESIGN OF COST-TABLES FOR REALIZING MULTIPLE-VALUED CIRCUITS 181

Since total transition size can be measured between each
adjacent pair of logic values, an alternative definition is

TTS(f) = [ai - a01 + l a2 - all + la3 - a21 + sb(f)lo(f).
4) Constant-C(f): For this cost function, each function

f has a fixed cost, C (f) = c. We consider c = 0, in
which case, the cost of realizing a given function is just the
cost of combining cost-table functions. Such a cost function
approximates the situation where the cost of combining cost-
table functions is much larger than the cost of the functions
themselves.

5) Sum-SC(f): The surprisingly similar behavior of the
above four cost functions, with respect to the dependence of
costs of near-minimal cost-tables on cost-table size, inspired
an examination of a significantly different cost function. With
sum cost, the cost of a function f (z) is the arithmetic sum of
the logic values produced when z = 0 ,1 ,2 ,3 . For example,
SC((1 ,1 ,2 ,2)) = 6 and SC((2:0,3,1)) = 6.

Formally, given f (z) = (ao, al, a2, a3) the sum cost is

SC((a0. a l , a2, a3)) = a0 + a1 + uz + a3

111. THE MINIMAL COST-TABLE PROBLEM

In preparation for the discussion in the next section on
the results of heuristics for designing minimal cost-tables,
we show here the context in which such heuristics operate.
That is, a heuristic can be viewed as simply a selection
of a cost-table from all possible cost-tables. We show the
range over which the selection is made. In so doing, we
determine the importance of finding good heuristics. A criteria
by which a cost-table is judged is the average function cost
over all functions realized. Equivalently, the total cost over all
functions can be used, which we do here. Schueller, Tirumalai,
and Butler [13] plot the total cost of both near-minimal and
near-maximal cost-tables as a function of cost-table size for
each of the five cost functions defined in the previous section.
It is shown that the total cost of near-minimal cost-tables
decreases rapidly as the table size t increases, when t is small.
However, when t is large, the decrease is small, and there is
little (and sometimes no) benefit to increasing the size of the
cost-table. On the other hand, the total cost of near-maximal
cost-tables is shown to decrease almost linearly as the size
of the cost-table increases. Thus, there is a large difference
between near-minimal and near-maximal cost-tables when size
is small and a small difference for large cost-tables. To analyze
the merits of heuristics, we seek the distribution of the total
costs of cost-tables over all cost-tables.

We know of no computationally feasible method for finding
this distribution. Exhaustive enumeration is infeasible even
for one-variable 4-valued functions. For example, for size
t = 129, there are (2 : ;) zz cost-tables. Therefore,
our approach is to randomly generate sample cost-tables of
a specific size and then find the distribution of the total costs
of these samples. The results are shown in Fig. 1. In computing
these costs, we assume that the cost, s, of the two-input adder
is 2 for all cost functions. The total cost for near-minimal
and near-maximal cost-tables found in [13] are plotted in the

horizontal plane. Specifically, the axis pointing into the page
(northeast) represents total cost T , which is a function of t ,
the cost-table size, and is represented by the axis pointing
down and to the right (southeast). So, a point on the near-
minimal curve represents the total cost of the cost-table with
the smallest known cost, while a point on the near-maximal
curve represents the total cost of a cost-table with the largest
known cost. It can be seen that, for all five cost functions,
as cost-table size increases, the total cost of the near-minimal
cost-table drops sharply until about size 20, after which there
is only a marginal decrease in total cost as size increases. The
heavier lines associated with the near-minimal costs represent
known minimal cost-tables. From this, it can be seen that
the majority of the near-minimal cost-tables are known to be
minimal. Also plotted are the average cost and the average
2 one standard deviation for a sample set of 500 cost-tables.
That is, for each cost-table size, 500 randomly selected cost-
tables are generated, and the average and standard deviation
computed. The axis pointing up (north) shows the number N
of occurrences of cost-tables at the various sizes. To avoid an
overly complex diagram, only seven distributions are shown.
These are for cost-table sizes 32, 64, 96, 128, 160, 192, and
224. Each vertical line represents the number of cost-tables
whose total cost occurs in an interval called a cell. Because
of the wide variation in costs among the cost functions, the
cell sizes are normalized to one one-hundredth of the cost
of the basis cost-table. Without normalization, cost functions
with high costs and thus many different costs, such as area,
produce histograms with many short, indistinguishable lines
(this corresponds to a cell size of 1).

While 500 is a relatively small sample set size (there can
be as many as cost-tables for each of the chosen sizes),
the complexity of calculating the total cost of individual cost-
tables limits the number of samples we can generate. However,
we have run our programs with smaller sample sizes, and
the results are similar, suggesting that our sample size is
sufficiently large. Each calculation of total cost requires a
nearly exhaustive search.

The plots for all five cost functions have similar features.
One of the most interesting is the small standard deviation
over all sizes; almost all cost-tables are near average. The small
standard deviation is especially surprising for small cost-tables,
where there is a large difference in cost between near-minimal
and near-maximal cost-tables.

For large cost-tables, there is little difference in cost between
an average cost-table and a near-minimal cost-table for all five
cost functions. This shows that most heuristics work well for
large cost-tables. On the other hand, a significant difference
exists between the average cost and the near-minimal tables
for small size, which implies heuristics for generating small
cost-tables should be chosen carefully. This observation is
important, since practical cost-tables on more than one variable
are small compared to the set of all functions. For example,
since there are 4 x lo9 two-variable 4-valued functions, any
cost-table small enough to be stored in a modern computer is
small relative to the number of all possible functions. This
observation is the basis for the statement earlier that it is
important to have good heuristics for designing cost-tables.

182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992

Total Transition Size 7

Std. Dev.

Std. Dev.

3% Constant 0

\

$k

Fig. 1. Distribution of random cost-tables for one-variable 4-valued functions with respect to total cost and size. Each vertical line represents the number N of
cost-tables with total cost T and size t . The three solid lines under the distributions represent the average total cost and the average f one standard deviation.

Iv. ANALYSIS OF HEURISTICS FOR lyzed. They are:

FINDING MINIMAL COST-TABLES 1) MIMUM-REDUCTION: Consider BT, the basis cost-
table and some given cost function c. Given a function f that

Four heuristic algorithms for finding cost-tables are ana- has a realization of less cost than a realization from BT (i.e.,

SCHUELLER AND BUTLER: DESIGN OF COST-TABLES FOR REALIZING MULTIPLE-VALUED CIRCUITS 1x3

c (f) < c ~ ~ (f)) , the addition of f to BT yields a lower total
cost. That is, any use of f achieves a reduction in cost that is
the difference between the cost of f in BT and the cost of f
in BT U { f } . Let the reduction of f be

r (f) = c m 4 . f) - C B T U { f } (f) .

The MAXIMUM-REDUCTION heuristic forms a cost-table
of size t by combining BT with the t - lBTl functions of
largest y(f), with ties broken arbitrarily.

2) MAXIMUM-USE: Let 9 (f) be the total number of times
f can be used in the realization of functions in Un,r. That is,

Q (f) = p (f . g)
9 E c,, .?

where p (f l g) is the number of times f can be used in the
realization of g. Specifically, p (f , g) is the largest integer such
that g(w) 2 p (f , g) f (w) for all assignments w of values to
the variables. For example, if f (z) = (l , l , 1 , l) and g (x) =
(3,2,3, a), then p (f , g) = 2. That is, f (x) can be used at most
two times in g(z) ((3,2.3,2) = (1. l,l,l) + (1,1,1.1) +
(1, 0,l 0)). The MAXIMUM-USE heuristic forms a cost-
table of size t by combining BT with the t - lBTl functions
of largest S (f) , with ties broken arbitrarily.

3) MAXIMUM-TOTAL-REDUCTION: Given f , the total
reduction achieved by using f is

R B T (f) = r(f)Q(f) .
That is, adding f to the basis cost-table BT produces a
total cost that is less than T (B T) by R B T (~) . Thus, a
minimal cost-table of size lBTl + 1 is achieved with BT U
{ f } , where f is a function of largest R B T (~) . The MAXI-
MUM-TOTAL-REDUCTION heuristic forms a cost-table of
size t by combining BT with the t - lBTl functions of largest
R B T (~) , with ties broken arbitrarily. While this heuristic
produces the minimal cost-table of size lBTl + 1, it is not
guaranteed to produce minimal cost-tables of larger size. This
is discussed later.

4) ITERATIVE-BEST: A near-minimal cost-table of size
t + 1 can be formed from a near-minimal cost-table F of
size t by choosing a function not in F and adding it to F .
If we compute the total cost of all cost-tables so formed and
keep the one with lowest cost, we are likely to achieve a total
cost that is close to minimal. However, we can improve the
chances of finding a minimal cost-table by performing this
process on two or more near-minimal cost-tables, instead of
just one. This is what is done in calculating the near-minimal
cost curves for Fig. 1. Here, the d = 10 best cost-tables were
retained. The formal algorithm is given in [13]. Making d as
large as possible improves the results of this heuristic. We
observe that the marginal improvement drops off rapidly as d
increases from 1.

Fig. 2 shows how the four heuristics compare. Shown
are the worst costs from [13], the costs produced by the
four heuristics, and the average costs produced by the sta-
tistical study. The MAXIMUM-REDUCTION heuristic pro-
duces poor results, significantly worse than even the average
for randomly chosen cost-table. The heuristic consistently

producing the lowest total cost is ITERATIVE-BEST, with
MAXIMUM-USE and MAXIMUM-TOTAL-REDUCTION
doing considerably better than the average case. For small
and mid-size cost-tables, the latter curves fluctuate because of
the random choice of cost-tables when ties are broken. For
the area cost, it is interesting that the cost-tables of Kerkhoff
and Robroek [7], [l l] and Lee and Butler [8], both chosen
heuristically, are better than any of the random cost-tables
generated, but are about the same as the costs produced by the
MAXIMUM-USE and MAXIMUM-TOTAL-REDUCTION
heuristics.

In understanding these results, we note particularly the poor
performance of MAXIMAL-REDUCTION. In this heuristic,
a function f with a large reduction, r (f) = c ~ ~ (f) -
C B (f) . is included before functions with smaller reduc-
tion values. In the case of all five cost functions, (3,3,3,3) has
the largest reduction. Thus, in MAXIMUM-REDUCTION, it
is included in all cost-tables of size 6 (1 larger than BT).
However, it is an unfortunate choice, since there is only
one realization where it is used, specifically (3,3,3,3). Thus,
there is only a marginal improvement in the total cost over
the basis cost-table. To see this, consider, for example, the
transition count. For f (z) = (3,3,3,3), T C (f) = 0, and thus
C B T ~ { ~ } (~) = 0. Further, C B T (~) = 3(1 + 1 + 1 + 0) +
(12 - 1)2 = 31, and so r (f) = c ~ ~ (f) - c ~ ~ ~ { f } (f) = 31.
This is the largest reduction of any function g, since there
is no larger c B T (g) , nor is there a smaller c B ~ ~ { ~ j (g) .
Thus, MAXIMUM-REDUCTION yields BT U { (3,3,3.3)}
as the cost-table of size 6. The total cost for the basis cost-
table using the transition count is T (B T) = 3714, while
T(BTU { (3.3.3,3)}) = 3683. Thus, adding (3,3,3.3) to the
basis cost-table nets only a 0.8% improvement. A provably
minimal cost-table of size 6 consists of BT and (l,l,l,l) and
has a total cost of ?"(BTU ((1.1.1.1))) = 2832, resulting in
a 23.7% improvement. Interestingly, BT U { (3 ,3 ,3 ,3)} is a
provably maximal cost-table.

While we have performed this analysis for cost-tables of
size 6, clearly a similar trend exists for larger cost-tables. A
good function to add to an existing cost-table is one that 1)
has low cost and 2) can be used in the realization of many
other functions. With MAXIMUM-REDUCTION, the chosen
functions tend to satisfy the first criteria but not the second.

Heuristic MAXIMUM-USE, which does significantly better
than MAXIMUM-REDUCTION, satisfies the second criteria.
That is, a function is added the current cost-table if it can
be used in the realization of the most number of functions,
9 (f) = , p (f , g) . For example, except for the basis
functions, the functions usable in the most other functions
are (1.1.0.0). (1 .0.1.0) . (1.0.0.1). (0.1.1.0). (0,l.O. I),
and (0.0.1.1). Thus, with the MAXIMUM-USE heuristic,
the cost-table of size 6 contains the basis functions and one of
the six functions with two 1's. The specific function is chosen
randomly. Because MAXIMUM-USE depends only on the
relationship among functions, the cost-tables generated are the
same for all cost functions.

While a function with two 1's is a reasonably good
choice for the smallest nonbasis cost-table, i t is not
the best choice. For all five cost functions, a provably

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992 184

Total Cost T

14000

12000

6000

4000

2000

T o t a l Cost T

4 Area

/ I
Lee Kerkhoff B Bob1

3500

3000

1500

1000

T r a n s i t i o n Count

I I I I I
10 20 30 40 50

I I I I I

I I , I 1 10 20 30 40 50

Number of E n t r i e s t Number of E n t r i e s t
Total Cost T

T o t a l T r a n s i t i o n S i z e
T o t a l Cos t T

5000 4000

4000 -

3000

2000

1000--

3000 -

2000 -

1000 -
500 -

- -

-
- -
- -

-
-

I I I 1 I I I I I I
I I I I

10 20 30 40 50
Number of E n t r i e s t

Total Cost T
Constant 0 4

2500

1000

500

30 40 50
Number of E n t r i e s t

MAXIMUM REDUCTION

MAXIMUM USE

MAXIMUM TOTAL REDUCTION

ITERATIVE BEST

known minimal

10 20 30 40 50
Number of E n t r i e s t

Fig. 2. The results of four heuristic algorithms for finding minimal cost-tables on one-variable 4-valued functions. The three solid lines represent
the worst, median, and ITERATIVE-BEST plots, while the three dotted lines represent the MAXIMUM-REDUCTION, MAXIMUM-USE, and MAX-
IMUM-TOTAL-REDUCTION plots.

minimal cost-table of size 6 is BT U { (l , l , l , l) } . MAX-
IMUM-TOTAL-REDUCTION, however, correctly chooses
(l , l , l , l) as the function to be added to the basis cost-table. In
this heuristic, the function chosen is the one with maximum

R B T (~) , and so, the smallest T(BT U {f}) is achieved for
a function f with the largest R B T (~) . As was observed
earlier, while the use of MAXIMUM-TOT&-REDUCTION
generates the minimal cost-table of size lBTl + 1, it does not
necessarily generate minimal cost-tables of larger size. This is
because it neglects the interaction among cost-table functions.
As with all previous heuristics, once a function is chosen for
a cost-table of size t , it is included in all larger cost-tables.
This can result in nonminimal cost-tables. For example, while
(l , l , l , l) is the best function to use in a cost-table of size 6, for

R B T (f) = T (f) q (f) * Indeed, T(BT U if}) = T(BT) -

the transition count, total transition size, constant 0, and sum
cost functions, the (only) minimal cost-table of size 7 does not
contain (l , l , l , l) ; instead (l , l ,O,O) and (l,O,l,l) are included.

ITERATIVE-BEST produces the lowest cost because it ac-
commodates the interaction among functions. In this heuristic,
the d cost-tables of size t with lowest total -cost are used
to generate d cost-tables of size t + 1 with lowest cost.
Specifically, for each of the d cost-tables of size t with lowest
cost, one remaining function is added forming a size t + 1
cost-table. Among all cost-tables of size t + 1 so formed, the
d least costly are chosen.

In our application of this heuristic, d = 10. Over the
whole range of t , a total of 316 260 cost-tables are examined.
This is considerably less than the 2251 cost-tables considered
in exhaustive enumeration. If two of the t-entry cost-tables

TABLE 1
RANGE OF COST-TABLE SIZES WHERE ITERATIVE-BEST

GENERATES A PROVABLY MINIMAL COST-TABLE

Which

Produces a
Nonminimal
Cost-Table

Which
ITERATIVE-BEST
Produces a Provably
Minimal Cost-Table

Function

Area 5-10 and 52-256
Transition Count 5-7 and 67-256
Total Transition Size 5-7 and 52-256
Constant 0 5-7 and 32-256
Sum 5-7 and 32-256

among those d with lowest total cost are the same except for
one function, then a t + 1-entry cost-table is generated twice.
However, an upper bound on the amount of double counting
is a small fraction of the total, and, although our program
generates these, only a small penalty in computation time is
paid.

The superiority of ITERATIVE-BEST is shown by the num-
ber of cost-tables it generates that are provably minimal. Table
I (from [13]) shows the range of cost-table size where provably
minimal cost-tables are generated. The heavy lines in Figs.
1 and 2 associated with ITERATIVE-BEST correspond to
ranges where provably minimal cost-tables are generated. The
range of lower cost-table sizes of minimal cost-tables has been
shown by exhaustive enumeration. Specifically, all potentially
minimal cost-tables of these sizes have been generated and
checked. For larger sizes, exhaustive enumeration is too time
consuming. The range of larger cost-table sizes in Table I
corresponding to minimal cost-tables has been proved so in
Lemma 1 of [13]. Specifically, this is a sufficient condition
for a cost-table to be minimal. The table also shows that for
one cost-table size, a nonminimal cost-table is produced. For
all values not shown, it is not known whether the generated
cost-tables are minimal.

v. THE LINEAR COST

As observed in [13], the plots for the sum cost and the
constant 0 cost are similar. Further, it was observed that if F
is a near-minimal or near-maximal cost-table using constant 0
cost, then F is also a near-minimal or near-maximal cost-
table using sum cost, and vice-versa. We now generalize
this observation to n-variable, r-valued functions and relax
a condition on the way such cost functions are formulated.

Let f E be an n-variable, r-valued function, and
let q = rn. Then, f can be represented as a vector with q
components: f = (ao, a l , . . . , aq- l) . Let F be a cost-table,
and define a linear cost of a function f as follows:

0-1

i=O

where c; is a real-valued constant. For example, with q =
rn = 4 l , CO = c1 = c2 = c3 = 1 and e4 = 0 corresponds
to the sum cost function, and CO = c1 = c2 = c3 = c4 = 0
corresponds to the constant 0 cost function.

Let L F (~) be the cost of a minimal realization for function
f with respect to cost-table F, and let a minimal realization
be f = f l + f 2 + . . e +fm, where fi E F. Then,

m

j=1
m Tu-1 1

= f j , C i + c, + (m - 1)s
j = 1 i=o 1

where f j , is the value of fj for the ith assignment of values
to the variable. Rearranging this expression yields

0 - 1 m

SCHUELLER AND BUTLER: DESIGN OF COST-TABLES FOR REALIZING MULTIPLE-VALUED CIRCUITS 185

m

since fj, = a;,
i=O j=1

= L C (f) + (m - l)(C, + s) .

Let A D D F (~) be the number of adders used in a minimal
realization of function f with respect to cost-table F. Then,

The minimal cost realization for f is L C (f) , the cost of f in
the cost-table containing all functions, plus (c , + s) times the
number of adders in a minimal realization. If (c, + s) > 0,
then minimizing the cost of f is the same as minimizing the
number of adders used in its realization, regardless of the
values ofthe constants ci, for 0 5 i < q. Thus, the minimal
realization of f does not depend on the linear cost function
used. This topic is discussed in more detail in Butler and
Schueller [5] . For example, it is shown that if the cost of
adding functions is sufficiently large, any cost function yields
a minimal realization that is identical to a minimal realization
under a linear cost function.

The total cost of a cost-table F is

f€U,,,

Since T(Un,r)r cq, and s are constants, minimizing the total
cost is equivalent to minimizing the total number of adders
needed to realize all functions, if c, + s > 0. Therefore, if
c, + s > 0, a minimal cost-table of size t corresponds to a
set o f t functions that sum to form all functions with the least
number of adders (independent of the linear cost parameters!).
This proves the following.

Lemma 1: Let LC and LC’ be two linear cost functions
with constant components c, and c;, respectively, such that
cq + s > 0 and c; + s > 0, where s is the cost of adding
two cost-table functions. Cost-table F is a minimal cost-table
using LC iff F is a minimal cost-table using LC’.

The sum and constant 0 costs considered earlier are in-
stances of this linear cost. For both the sum cost and the

186 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992

constant 0 cost function, cq = 0. Since the cost of the adder s
isaconstant 2 , c q + s = 2,and (c q + s) C f E u , , , A D D F (f) is
the same for both cost functions. Thus, the only difference in
total costs between these linear cost functions is the difference
in the costs of the universal cost-table. For the constant 0 cost
function, the total cost is 0. For the sum cost, the total cost
T S C (~ I , ~) is

3

TSC(u1,4) = sc(f) = c u i
fcU1.4 fEU1,4 i=o

- - i o + 21 + 22 + 23

20 , i i , i z , i 3 E{O,1,2,3}

= 1536

which is the difference in costs between the sum cost and the
constant 0 cost shown in the plots of Fig. 1 for these two cost
functions.

We find the independence of the composition of minimal
cost-tables on the linear cost parameters ci to be surprising.
Intuitively, the best functions for inclusion in a cost-table for
any cost function are those that have 1) low cost and 2) can
be used many times in the realization of other functions. This
is confirmed by the list of the minimal cost-tables in [13],
which shows that the best functions for the cost functions
considered tend to consist of 0’s and 1’s exclusively (for all
the cost functions considered, functions with 0’s and 1’s have
low cost). It is interesting to note that, since the constants
ci for 0 5 i 5 q - 1 in the linear cost function can be
negative, a cost function exists where functions with 0’s
and 1’s are the most expensive functions. However, from
Lemma 1, the minimal cost-table is unaffected by specific
values of ci. Therefore, these (expensive) functions still are the
best functions to use. Thus, of the two criteria for selecting the
best functions to include, the number of times a function can be
used is more important. This is the second substantiation of this
observation. Recall that, of the two heuristics for generating
cost-tables, MAXIMUM-USE, which selects a function that
is potentially usable in the most number of other functions,
is significantly better than MAXIMUM-REDUCTION, which
selects functions with the largest reduction, a parameter that
is directly related to function cost.

VI. THE PRESENCE OF COMPOSITE
FUNCTIONS IN MINIMAL COST-TABLES

In the design of a cost-table, it is useful to know if certain
functions never occur in minimal cost-tables. For example, the
design of binary sum-of-products expressions for realization
by programmable logic arrays relies on a significant reduction
in the search by the observation that only prime implicants
need be considered. It is tempting to believe that certain
functions that are better realized as the composition of other
functions never occur in a minimal cost-table. We show,
however, that this is not so. For a given cost function c, a
cost-table F , and a function f , f is said to belong to one of
three composition classes. f is

1) noncomposite with respect to F iff c (f) < c ~ (f),

2) simple composite with respect to F iff c (f) = C F (f) ,

3) pure composite with respect to F iff c(f) > C F (~) .
and

A function that is simple or pure composite with respect
to F is said to be composite with respect to F. If f is
noncomposite with respect to F, then the cost of f is reduced
by adding f to cost-table F . This, in turn, may reduce the
cost of other functions that can use f in their realizations.
Adding a function f that is simple composite with respect to
F to the cost-table does not alter the cost of any function; it
simply enlarges the cost-table. Similarly, i f f is pure composite
with respect to F, there is also no benefit to adding f to
cost-table F. By definition, a lower cost realization exists,
so c(f) is not the cost of a minimal realization. In spite of
this, such functions do occur as the result of mathematical
formulations of cost functions. For example, the compensated
transition count (CTC) cost of Tirumalai [16] is such a
cost. The CTC of a function is the sum of the (second)
transition sizes when the function changes from increasing to
decreasing, or vice-versa, plus the size of the first transition,
if the function is initially decreasing. Consider one-variable
4-valued functions f (x) = (1 ,1,0,3) , f l (x) = (1 ,1,0,0) ,
and fZ(x) = (1 ,0,0,3) . G T C (f) = 4, CTC(f1) = 1, and
CTC(f2) = 0. The cost of the realization fl(x) + fz(x)
is C T C (f 1) + CTC(f2) + s = 1 + s. If f l , f2 E F and
s < 3, then f is a pure composite function with respect to F.
Using the CTC cost and an adder cost of 2, there are 36 pure
composite and 44 simple composite functions with respect to
U14. In general, the number of composite functions depends
on the cost of combining functions.

In our previous discussion of the linear cost function, we
assumed that (cq + s) > 0. We now consider the effect
of relaxing this condition. Recall that LF(f), the cost of a
function f using cost-table F, is

L F (f) = LC(f) + A D D F (f)(cq +
Lemma 2: Let L be a linear cost function, where cq is the

constant parameter. Let F be a cost-table used with L C , and
let s be the cost of adding two functions. A function f # F is

1) noncomposite with respect to F iff (cq + s) > 0,
2) simple composite with respect to F iff (cq + s) = 0, and
3) pure composite with respect to F iff (cq + s) < 0.

Proof: Since f 6 F, any realization of f with re-
spect to cost-table F must be a composition of functions, so
ADDF(f) > 0. The proof follows directly from the definitions
of composite classes. Q.E.D.

Applying Lemma 2 with F = B T , we find that all functions
f E Un,T - BT belong to the same composition class,
regardless of the cost-table. Here, (cq + s) = 0 and all possible
realizations of a function have the same cost. As a result, all
cost-tables have the same total cost, regardless of size. Under
this condition, any attempt to minimize the cost of a function
is futile. If (cq + s) < 0, there is a paradox; the cost of any
realization of a function can be reduced simply by adding the
function consisting of all O’s!

A function is noncomposite, simple composite, pure com-
posite, or composite, if it is noncomposite, simple composite,

~

SCHUELLER AND BUTLER: DESIGN OF COST-TABLES FOR REALIZING MULTIPLE-VALUED CIRCUITS 187

pure composite, or composite, respectively, with respect to
the universal cost-table. The search for minimal cost-tables
would be faster if cost-table functions were all noncomposite.
However, this is not the case. For example, the universal cost-
table is a minimal cost-table that can contain a composite
function. In the universal cost-tables for the area and transition
count cost functions, there are 171 and 6 simple composite
functions, respectively. However, in the universal cost-table
with total transition size, sum, or constant 0 function, there are
no simple composite functions. There are no pure composite
functions in any universal cost-tables for the five cost functions
considered.

Composite functions provide no benefit to the universal
cost-table. Thus, T(U,,, - {f}) = T(Un,r) , where f is
composite, and it follows that - {f} is minimal also.
Further, T(Un,, - { f l f is composite}) = T(U,,,), and so
U,,, - { f l f is composite} is a minimal cost-table with no
composite functions. One might at first believe that minimal
cost-tables of size t < IU,,,-{flf is composite}[also contain
no composite functions. However, this is not the case.

Observation: There exists a minimal cost-table of size 1
larger than the basis cost-table that contains a composite
function.

Proof: Consider the set of one-variable six-valued func-
tions, U1,6. Let c (b i) = 10, where bi is the basis function
whose ith component is 1. Let the cost of the function
(O,O,O,O,O,O) be 0, and let s = 2. Let there be three noncom-
posite functions with respect to BT, f l (x) = (2 ,0 ,0 ,0 ,0 ,0) ,
fi(x) = (0 ,2,0,0,0,0) , and f 3 (2) = (2 ,2 ,0 ,0 ,0 ,0) , with
c (f 1) = c (f 2) = 15 and c (f 3) = 33. Assume c (f) 2 c g ~ (f)
for f E U1,6 - BT - { f l , f 2 , f 3 } . f 3 can be realized as
fi + fi at a cost of 15 + 15 + 2 = 32, which is less
than c (f 3) = 33. Thus, f3 is pure composite with respect
to any cost-table containing { f l , fi}. There are only three
possibilities for minimal cost-tables of size (BT(+ 1. Since
T(BT U {fl}) = 7978178, T(BT U { f 2 }) = 7978178, and
T(BT U {f3}) = 7967810, the best cost-table of size 8 is
BTU { f 3 } , which contains a function that is pure composite.

Q.E.D.

VII. MINIMAL COST TABLES OF SIZE (BT(+ 1

It is surprisingly difficult to find provably minimal cost-
tables. The problem of finding a minimal cost realization of a
given function by cost-table is known to be NP-complete [14],
and it is likely that the problem of finding a minimal cost-
table is also NP-complete. Even for small sizes, considerable
computation is needed to find provably minimal cost-tables.
The negative result on composite functions shows that not
even these functions can be removed from consideration. For
a special case, however, we are able to describe, in a precise
way, the minimal cost-table. In this section, we consider, for
the linear cost, minimal cost-tables that have size one larger
than that of the basis cost-table. Rather than calculating the
total cost directly, we proceed by considering the reduction
R g ~ (f) in the total cost of cost-table formed by adding
function f to BT. We have R F (~) = T (F) - T (F U {f}).
However, we are interested in a form of R F (~) more like that

of the previous section. Assuming the function consisting of
all 0’s is used only in its own realization, the realization of
any function f using just basis functions is unique. Let ai be
the ith component of f and bi is the basis function whose ith
component is 1.

0-1

i s 0
q-1 q-1

= C [c (b i) a i] + s [ai] - 1
i=O Lo 1

where the second expression follows from the first by the
observation that the number of two-input adders needed to
realize f is the sum of the components in f less 1.

R g T (f) is the product of the reduction in cost each time f
is used and the number of times f is used in the realization of
functions. The reduction resulting from one use of f is given
as

r(f) = C B T (f) - C B T ~ { f } (f) ,

c g T (f) - c(f) if f is noncomposite with
respect to BT

= (o otherwise.

Let S(f) be the total number of times f is used in the
realization of functions in U,,,, and let @?l(f) be the number
of functions that can use function f at least 1 times in their
realizations; that is,

a-1

i=O

Since addition is undefined if a component sum exceeds T - 1,
there is a limit to the number of times f can be used in the
realization of functions. Let ti be the maximum component of
f , i.e., K. = maxoljlq-l{aj}, and 0 5 K. 5 T - 1. Function
f can be used at most 151 times in the realization of any
function. Consequently, @ z l (f) = 0, for I > 151.

1=1

LGJ

1=1

I e 1 0-1

1=1 i=o

q(f) is independent of the cost function used, while ~ (f)
does depend on the cost function. Using the linear cost with
(cq + s) = 1 with ci unrestricted,

r(f) = L B T (~) - LC(f),
= A D D B T (f) ,

q-1

= C (U i) - 1.
i=O

188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992

q-1 l+l q-1

= [X(.i)-1] i = O 1=1 j=O ~ (r - l u j) .

We now determine the best function to add to BT.
Theorem 1: Using the linear cost, a minimal cost-table of

size lBTl + 1 is BTU { f}, where f : R” 4 {0,1}.

T Number of 1’s
4 3.646 4
6 4.559 5
8 5.321 5

16 7.670 8
24 9.469 9
32 10.985 11
48 13.528 14
64 15.671 16

ponent f;, such that f; > 1. We show there is another function
g such that R B T (g) > R E T (f) , where gi = 1. It follows that
BT U {g) is a cost-table of lower cost than BT U {f}, a

with a1 1’s (and a0 0’s) is a minimal cost-table. A n n-variable
r-valued function has q = rn components, and so (YO = q-al.

contradiction.
g is derived from f by a sequence of operations, first of

Type 1 and then, if necessary, of Type 2. Let f‘ be f or
some intermediate function. The Type 1 operation is applied
to pairs of logic values in f’, one 0 and the other > 1, with
the former increased by 1 and the latter decreased by 1. If
successive applications yields a function with exclusively 0’s
and l’s, we are done. Otherwise, the final function consists of
no 0’s and at least one nonzero value greater than 1. The Type
2 operation reduces by 1 each nonzero logic value greater than
1. A succession of these operations yields the constant function
g = 1. The theorem follows from a demonstration that Type 1
and 2 operations both yield a function with a larger reduction.

Consider the Type 1 operation. The reduction of an inter-
mediate function f’ can be expressed as

where f,! = 0 and f,! > 1. On the application of the Type 1
operation, f,! is replaced by 1 and f,! by f,! - 1, increasing
the product of the right two terms above and leaving all other
terms unchanged. This yields a net increase in reduction.

Consider the Type 2 operation. The reduction of an inter-
mediate function f’ can be expressed as

1

where f,! > 1. An application of the Type 2 operation replaces
y(f’) by y(f’) - 1 and (r - l f :) by (r -1(f,! - l)), leaving the
other terms unchanged. Since f,! 2 1 for all 0 5 j 5 rn - 1
and f,! 2 2, y(f’) 2 T and (r - l f :) 5 r - 2. It follows that
(y(f’)-l)(r-l(fi-l)) >?(f ’) (r - l f , !) , and thereisanet
increase in reduction. Q.E.D.

Theorem 1 states that with the linear cost function, the
function to add to the basis cost-table to produce a minimal
cost-table of size 1 larger contains only 0’s and l’s, However,
it does not show how many of each logic value occurs. Let
a; be the number of components with logic value i for such
a function, where i E {0,1}. Because of the symmetry of the
linear cost function, the basis cost-table plus any function f’

T - 1

1=1

If we view R E T (f‘) as a continuous function of a1, we can
take the derivative with respect to al.

d R B T (f ’) = T T n [(T) r - 1 dal

Setting the derivative to zero, we find, in Table 11, values for
al, the number of 1’s in the best function to add to the basis
cost-table for one-variable r-valued functions.

VIII. CONCLUDING REMARKS

Our interest in the cost-table technique is inspired by its
fundamental nature. Design by cost-table combines compo-
nents so that the design specifications are achieved at the
lowest possible cost. In logic design, the design specification
and components are both logic functions. This simplification
makes logic design a good first choice to study the cost-table
method, and we are able to gain insights not possible with
less formally specified design problems. Even within logic
design, simplifying assumptions are necessary. Our analysis
of heuristics for finding minimal cost-tables could not have
been done on functions with two or more variables; the set of
all functions is too large for a computer analysis (while the
number of one-variable 4-valued functions is 256, there are
4 x lo9 two-variable 4-valued functions!). However, the three
key results, Lemmas 1, 2, and Theorem 1, as well as other
material in Sections V through VII, apply to the general case
of n-variable r-valued functions. Further, the results on one-
variable 4-valued functions in Sections I11 and IV suggests
that similar phenomena occur for the case of functions with
more variables. For example, it is unlikely that, for more than
one variable, the point of diminishing returns with respect
to cost-table size will be exceeded. That is, for a practical
number of inputs, we expect even a small increase in cost-
table size to produce a large decrease in total cost. We also
believe that another observation applies to the more general

SCHUELLER AND BUTLER DESIGN OF COST-TABLES FOR REALIZING MULTIPLE-VALUED CIRCUITS 189

case. The variation observed in the performance of heuristics
suggests that it is important to find good heuristics. For
example, an explanation of the surprisingly poor performance
of MAXIMUM-REDUCTION requires a careful examination
of this heuristic. The analysis shows that, for small sizes, the
average cost-table performance is far from minimal.

We believe that the design of heuristics warrants further
study. In spite of the existence of a reasonably good heuristic,
ITERATIVE-BEST, it is difficult to find provably minimal
cost-tables. We have done so for cost-tables of size 1 larger
than the basis cost-table using the linear cost. We feel that a
productive line of attack on this problem is to identify func-
tions that will not be in a minimal cost-table. We have shown
that composite functions are not candidates for elimination.
However, other functions may be removed from consideration
in large cost-tables (e.g., Lemma 1 of [13]).

We believe that the linear cost function also warrants further
study. It is interesting that a minimal cost-table associated with
a linear cost function such that cq + s > 0 is also a minimal
cost-table for any other linear cost function. We observe that
linear cost functions exist in which the best function to add to
the basis cost-table is one with high cost, rather than other less
costly (but less advantageous) functions. Thus, low cost alone
should not be a criteria for selecting cost-table functions. This
statement is also supported by the observation that the heuristic

[111 H. A. J . Robroek, “The synthesis of MVL-CCD circuits,” M.Sc. Rep.
12.3936, Twente Univ. of Technology, Enschede, The Netherlands, Dec.
1981.

[12] K. A. Schueller, “The costtable approach to the logic design of multiple
valued logic circuits,” Ph.D. dissertation, Northwestern Univ., Evanston,
IL, Aug. 1987.

[13] K. A. Schueller, P. P. Tirumalai, and J. T. Butler, “An analysis of the
costtable approach to the design of multiple-valued circuits,” in Proc.
16th lnt. Symp. Multiple-valued Logic, Blacksburg, VA, May 1986, pp.
42-50.

[14] K. A. Schueller and J. T. Butler, “The costtable problem is NP-complete,”
in Proc. 28th Annu. Allerton Conf Commun., Contr., and Comput., Oct.
1990, pp. 948-957.

[15] W. R. Smith 111, “Minimization of multivalued functions,” in Computer
Science and Multiple-Valued Logic, D. C. Rine, Ed. New York: North
Holland, 1977, pp. 221-261.

[161 P. P. Tirumalai, “Four-valued logic CCD programmable logic arrays,”
M.S. thesis, Northwestern Univ., Evanston, IL, June 1984.

Kriss A. Schueller (M’91) was born on
 in Oak Hill, WV. He received the

B.A. degree in physics and the M.S. degree in
mathematics from Youngstown State University,
Youngstown, OH, in 1981 and 1982, respectively,
and the Ph.D. degree in computer science from
Northwestern University, Evanston, IL, in 1987.

Since 1987, he has been an Assistant Professor in
the Department of Mathematical and Computer Sci-
ences, Youngstown State University, Youngstown,
OH. His research interests include multiple-valued

ACKNOWLEDGMENT

The authors thank the referees for constructive comments
that led to improvements in this paper.

REFERENCES

[l] M. H. Abd-El Barr, “Design of multi-valued circuits for CCD and MOS
implementation,” Ph.D. dissertation, Univ. of Toronto, Toronto, Ont.,
Canada, 1986.

[2] M. H. Abd-El Barr, Z. G. Vranesic, and S. C. Zaky, “Synthesis of MVL
functions for CCD implementations,” in Proc. 16th Int. Symp. Mulfiple-
Valued Logic, May 1986, pp. 116-127.

[3] M. H. Abd-El Barr, T. D. Hoang, and 2. G. Vranesic, “The incremental-
cost approach for synthesis of CCD 4-valued unary functions,” in Proc.
18th Int. Symp. Multiple-valued Logic, May 1988.

[4] C. M. Allen and D. D. Givone, “A minimization technique for multiple-
valued logic systems,” IEEE Trans. Cornput., vol. C-17, pp. 182-184,
Feb. 1968.

[5] J. T. Butler and K. A. Schueller, “On the equivalence of cost functions
in the design of circuits by costtable,” IEEE Trans. Comput., vol. C-39,
pp. 842-845, June 1990.

[6] H. G. Kerkhoff and M. L. Tervoert, “Multiple-valued logic charge cou-
pled devices,” IEEE Trans. Comput., vol. C-30, pp. 644-652, Sept.
1981.

[7] H. G. Kerkhoff and H. A. J. Robroek, “The logic design of multiple-
valued logic functions using charge-coupled devices,” in Proc. 12th Int.
Symp. Multiple-valued Logic, Paris, France, May 1982, pp. 35-44.

[8] J.-K. Lee and J.T. Butler, “Tabular methods for the design of CCD
multiple-valued logic,” in Proc. 13th Inc. Symp. Multiple-valued Logic,
Kyoto, Japan, May 1983, pp. 162-170.

[Y] D.M. Miller and J.C. Muzio, “On the minimization of many-valued
functions,” in Proc. 9th Int. Symp. Multiple-valued Logic, Bath, England,
May 1979, pp. 294-299.

[lo] S. Onneweer, H. G. Kerkhoff, and J. T. Butler, “Structural computer-
aided design of current-mode CMOS logic circuits,” in Proc. 18th lnt.
Symp. Multiple-valued Logic, May 1988, pp. 21-30.

Jon T. Butler (S’67-M’67SM’82-F’89) was born
in in Baltimore, MD. He re-
ceived the B.E.E. and M.Engr. (E.E.) degrees from
Rensselaer Polytechnic Institute, Troy, NY, in 1966
and 1967, respectively, and the Ph.D. degree in elec-
trical engineering from the Ohio State University,
Columbus, OH, in 1973.

Since 1987, he has been a Professor in the De-
partment of Electrical and Computer Engineering
of the Naval Postgraduate School, Monterey, CA.
From 1974 to 1987, he was on the Faculty of

Northwestern University, Evanston, IL. During that time, he served two
periods of leave at the Naval Postgraduate School, first as a National Research
Council Senior Postdoctoral Associate (from 1980 to 1981) and second as the
NAVALEX Chair Professor (from 1985 to 1987). From 1973 to 1974, he was
a National Research Council Postdoctoral Associate at the Air Force Avionics
Laboratory, Wright-Patterson AFB, OH, where he worked on the application
of cellular automata to pattern processing problems. His research interests
include multiple-valued logic and reliable multiprocessing systems.

Dr. Butler was Chairman of the 1980 International Symposium on Multiple-
Valued Logic and was the first Chairman of the Multiple-valued Logic
Technical Committee of the IEEE Computer Society from 1980 to 1981.
He was a CO-Guest Editor of a special issue of the IEEE TRANSACTIONS ON
COMPUTERS and a special issue of COMPUTER both on multiple-valued logic.
He has served as an Editor of the IEEE TRANSACTIONS ON COMPUTERS from
1982 to 1986 and of the Computer Society Press from 1986 to 1990. Currently,
he is the Editor-in-Chief of COMPUTER, having served as Editor from 1988
to 1989 and Associate Technical Editor from 1989 to 1990. From 1986 to
1988, he served as Vice-Chair for Hardware of IEEE Computer Society’s
Technical Activities Board. From 1982 to 1985, he was a Distinguished
Visitor of the IEEE Computer Society. He is currently a member of the
Board of Governors of the IEEE Computer Society. He is the co-recipient
of the Award of Excellence and the Outstanding Contributed Paper Award for
papers presented at the Intemational Symposium on Multiple-valued Logic
in 1985 and 1986, respectively.

