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On the Design of Cost-Tables for 
Realizing Multiple-valued Circuits 

Kriss A. Schueller, Member, ZEEE, and Jon T. Butler, Fellow, ZEEE 

Abstruct- We propose a heuristic for finding minimal cost- 
tables for use in the design of multiple-valued logic circuits. It is 
an iterative approach, in which a good table of size t is composed 
of a good table of size t - 1, etc. We analyze its performance, 
comparing it with three other heuristics. The importance of 
finding good cost-tables is demonstrated by an analysis that shows 
there is a wide variation in both cost-table performance and in 
the performance of heuristics for generating cost-tables. 

We study linear cost, a general cost function of which two 
previously studied cost functions are special cases. It is shown that 
the minimal cost-table using one of the (infinitely many) linear 
cost functions is identical to a minimal cost-table using any other 
linear cost function. Thus, a heuristic for finding the minimal 
cost-table using the linear cost function is independent of the 
specific cost function parameters. This result and our observation 
of well-studied nonlinear cost functions indicate that cost-table 
design is only marginally dependent on the cost function. 

We show two additional results on cost-table design. First, it 
is demonstrated that a search for minimal cost-tables cannot 
exclude certain seemingly useless functions called composite func- 
tions. Second, while the complexity of cost-table design appears to 
preclude a computationally efficient general algorithm for finding 
the minimal cost-table, a special case allows efficient design. For 
the case of a small cost-table, we show how to find the minimal 
cost-table. 

Index Tenns-Cost-table, logic design, minimization, multiple- 
valued logic, synthesis. 

I. INTRODUCTION 
N the classical synthesis of logic functions, a given func- I tion is realized as a set of component functions that are 

combined by a connecting function. For example, in binary 
minimal sum-of-products synthesis, the component functions 
are the AND of variables or their complements and the con- 
necting function is the OR. Determining which component 
and connecting functions to provide the designer has been 
traditionally an ad hoc process, depending on the perceived 
usefulness and cost of supplied functions. Cost is an especially 
important factor, and is determined by the technology used. 
For example, in multiple-valued charge-coupled device (CCD) 
logic [6], the sum operator is especially inexpensive, and so 
it occurs frequently in realizations. However, the value of a 
component or connective function depends also on the extent 
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to which it can be used to realize other functions. There has 
been little formal study of this problem. 

A formalization of this process is design by cost-table. 
In the cost-table approach, components are chosen from 
a table and combined to fulfill the design specifications 
at the least cost. Cost is the sum of the costs of the 
components plus the cost of combining them. The use 
of cost-tables is universal. For example, the writing of a 
program is essentially a design by cost-table. Here, entries 
are instructions and cost can be execution speed. Similarly, 
VLSI layout is a cost-table approach where the table is 
a library of modules and cost can be chip area. The 
question of reduced-instruction set computers verses complex- 
instruction set computers is a matter of whether low cost 
(simple) instructions or high cost (complex) instructions 
should be provided in a cost-table consisting of machine 
instructions. 

The need for design techniques for CCD multiple-valued 
logic circuits [6], [7] has inspired interest in the cost-table 
approach [1]-[3], [5], [7], [SI, [lo], [14]. Here, cost represents 
chip area, power dissipation, speed, etc. Given a function, there 
may be many ways to realize it using cost-table functions, and 
we are interested in one with lowest cost. This is called the 
cost-table realization problem. 

The concept of a cost of realizations has long been a part 
of the study of multiple-valued logic. For example, Allen 
and Givone [4], Miller and Muzio [9], and Smith-[15] have 
used cost measures in evaluating sum-of-products expressions. 
The first use of the cost-table in the design of multiple- 
valued logic circuits was by Kerkhoff and Robroek [7] and 
Robroek [ 111. Their proposed table contains 45 functions, 
from which all 256 one-variable functions are synthesized. The 
cost of each function in the cost-table is an approximation 
to the chip area occupied by a CCD realization of that 
function. The synthesis technique used is exhaustive search. 
Lee and Butler [SI show a cost-table of 24 entries that 
produces realizations as good as or better than those in [7] 
and [ l l ] .  The proposed synthesis algorithm is still a search; 
however, nonproductive combinations are eliminated by using 
the transition count of the function to guide the search. 
Abd-El Barr, Vranesic, and Zaky [2] propose two heuristics 
for implementing one- and two-variable functions. For one- 
variable functions, the design uses the break count of a given 
function, and this results in an improvement in the realization 
of 20% of the one-variable functions considered in [8]. Abd- 
El Barr, Vranesic, and Zaky [3] analyze the realizations of 
one-variable functions used in the cost-table technique. By an 
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enumerative process, a cost reduction is achieved in 76% of 
the functions. 

Unlike the cost-table realization problem, the minimal cost- 
tableproblem concerns the design of a cost-table, i.e., selecting 
the functions in the table. Here, the choice of a cost-table is 
determined by the average cost of the realizations produced; 
for a given cost-table size, one wants a cost-table that yields 
the lowest average cost. Schueller, Tirumalai, and Butler [13] 
show a heuristic for finding a cost-table that is minimal or 
nearly so, and from this, it was found that the cost-tables of [7] 
and [8] are not minimal. For 85% of the cost-table sizes over 
which it was applied, the resulting tables are provably minimal. 
No proof of minimality exists for the remaining 15%. Most are 
believed to be minimal, although for one size, the generated 
cost-table is provably not minimal. These results show that 
there is a point of diminishing returns with respect to cost- 
table size. That is, while cost-tables of larger size produce more 
economical realizations, beyond a certain size, about 10% of 
the total number of functions to be synthesized, there is little 
benefit to adding more functions to the cost-table. The analysis 
in [13] was done for five different costs, and it was found that 
the point of diminishing returns is approximately the same for 
all costs. 

In this paper, we analyze the minimal cost-table problem. In 
addition, to the heuristic in [13], we consider three others. All 
four heuristics are analyzed over cost-tables on the set of one- 
variable 4-valued functions, one of the few sets where such 
an analysis is computationally possible. It is shown that one 
heuristic (the one given in [13]) is significantly better that the 
others. Additionally, we generate a set of random cost-tables 
with specific sizes and compare the average total cost with 
heuristically generated best total costs. For the case where cost- 
tables are small relative to the number of functions realized 
(including practical cost-tables on multiple-valued functions of 
two or more functions), we find that it is important to carefully 
choose the heuristic. On the other hand, for larger sizes, we 
find that almost any cost-table gives good results. 

As in [13], our analysis covers five cost functions. We show 
that two of these, which appear to be different, are really 
members of a single class, called linear cost functions, and that 
their characteristics are amenable to an analysis. For example, 
we show how to identify all minimal cost-tables of size 1 larger 
than the smallest size. Also, we show that the minimal cost- 
table of a given size is the same for any of the infinitely many 
linear cost functions. That is, if the existing cost function is 
linear, the resulting minimal cost-table of some specified size 
is independent of the particular linear parameters used. This 
formal statement on a set of specific cost functions agrees 
with our observation about other types of cost functions; cost 
functions seem to have a marginal eSfect on the composition of 
the minimal cost-table. 

We analyze the composition of functions that belong to the 
minimal cost-table. Specifically, we show that a search for 
a minimal cost-table cannot exclude certain functions, called 
composite functions, that are best realized as a combination 
of other functions. This is a surprising result, since, in large 
cost-tables, composite functions are unnecessary. They do not 
contribute to any function realization. 

11. BACKGROUND AND NOTATION 

Let R = {0 ,1 , .  . . , r - 1) be a set of T logic values, where 
r 2 2. Let X = { x 1 , x 2 , . . . , x n }  be a set of n variables, 
where x, takes on values from R. A function f ( X )  is a 
mapping f : R" -+ R. If X is a single variable x, f(x) 
is represented as an r-tuple, ( f ( O ) ,  f ( l ) ,  . . . , f ( r  - 1)). For 
example, if r = 4, then f ( x )  = (3 ,2,1,0)  represents a 
complement function in which 0 maps to 3, 1 to 2, 2 to 3, 
and 3 to 0. Let Un,r be the set of all r-valued functions 
of n r-valued variables. Let ~ ( f ) ,  the cost of function f ,  
be a mapping c : lJn,r -+ IR, where R is the set of real 
numbers. The cost function c ( f )  introduced by Kerkhoff and 
Robroek [7], [ l l ]  for the design of 4-valued CCD logic circuits 
correlates closely with the chip area occupied by the most 
compact implementation of f .  The cost function can also be 
chosen to correlate with other quantities like speed and power 
dissipation, allowing a range of parameters to be optimized. 

In the realization of a given function by cost-table, cost- 
table functions are combined using a connecting operation. 
The connecting operation + between functions used in this 
paper is similar to ordinary addition with logic values viewed 
as integers. That is, if f ( X )  is represented as the sum f ( X )  = 
f l ( X ) + f 2 ( X ) + . . . + f m ( X ) ,  then, for any assignment v of 
values to X, f ( v )  = f l ( v )  + + . . . + f m ( w ) ,  where 
each f z ( v )  is taken as an integer and where + is ordinary 
addition, except when the sum exceeds T - 1, the highest 
output logic value, in which case + is undefined. For example, 
if f l ( x )  = (0,1.2.3) and f 2 ( x )  = (3 ,2,1,0) ,  then f l ( x )  + 
f 2 ( z )  = (3 .3 .3 ,3 )  and f l ( z )+ f l ( z )  is undefined. The first 
example shows that the sum of the identity function (0,1,2,3) 
and the complement function (3,2,1,0) is the constant function 
(3,3,3,3). 

Let s be the cost of realizing the sum operation (+) 
between two functions. Thus, the cost of the realization f = 
f l+f2+.  . .+fm is c ( f1 )  + 4 f 2 )  + . . . + c ( f m )  + (m  - l ) s ,  
where the last term is the cost of ( m  - 1) two-input adders. 

Function f is a basisfunction iff f ( X )  is 1 for exactly one 
assignment of values to X and is 0 otherwise. Let BT be 
the set of all basis functions plus the constant 0 function (i.e., 
for all assignments of values to z, the constant 0 function is 
0). A set of functions F is a cost-table iff BT C F G 
The condition BT 5 F guarantees that all functions can be 
realized as the sum + of cost-table functions. For example, 

(1,0,0,0)}. If (0,0,0,1) is missing, it is impossible to realize 
certain functions, including (O,O,O, 1) itself. Conversely, any 
function (UO. ~ 1 ,  u2. a3)  can be realized as the sum of functions 
exclusively from BT, specifically a0 functions of the form 
(1,0,0,0), u1 (O,l,O,O), a2 (O,O,l,O), and a3 (1,0,0,0). BT is 
called the basis cost-table. 

e F ( f ) ,  the cost of realizing f E Un,T with respect to cost- 
table F is the cost of the minimal cost realization, specifically 

in u1,4, BT = { (O,O,O,O), (O,O,OJ), (O,oJ,O),  (0,1,0,0), 

where f = fl+f2+...+fm and c is a cost function. f = 
fl+ f 2 + .  . . + f m  is said to be a minimal realization of f, if 
there is no other realization of lower cost. The total cost, T ( F ) ,  
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of cost-table F is 

T ( F )  = C F ( f ) .  
f€Un, ,  

That is, T ( F )  is the sum of the minimal costs of all functions 
realized under F. Ft is a minimal cost-table of size t iff 
lFtl = t and T(Ft)  5 T ( F ) ,  for all F such that IF1 = t .  
A near-minimal cost-table is a cost-table with a total cost that 
is close to minimal and may even be minimal but has not been 
proven so. Dividing T ( F )  by lUn,rl yields the average cost of 
realizing a function by cost-table F. Thus, if F is a minimal 
cost-table, then the average cost of realizing functions with F 
is no greater than with any other cost-table of the same size. If 
any function is as likely to be realized by the cost-table method 
as any other function, then a suitable criteria for judging cost- 
tables is average cost, or equivalently, total cost. Thus, for any 
given size t ,  we seek a cost-table with the smallest total cost. 
This is the minimal cost-table problem. 

To assess the importance of finding a minimal cost-table, 
it is necessary to see the range of cost-table quality. Ft is a 
maximal cost-table of size t if lFtl = t and T(F,) 2 T ( F ) ,  
for all F, such that IF1 = t .  In the analysis to follow, 
representatives of maximal cost-tables will be used to show 
the range of cost-tables available. A near-maximal cost-table 
is a cost-table with a total cost that is close to maximal and 
may even be maximal but has not been proven so. 

Since there is only one basis cost-table of size rn + 1, it is 
minimal. However, the task of finding a minimal cost-table of 
other sizes is typically nontrivial. For no known nontrivial 
cases has the minimal cost-table problem been previously 
solved. In Section VI1 of this paper, we show a nontrivial 
case where this problem can be solved. However, an efficient 
process for finding a minimal t-entry cost-table Ft is needed 
that applies to all cases. We compare four heuristics for finding 
near-minimal cost-tables, all of which are based on the premise 
that a minimal cost-table of size t is likely to contain a minimal 
cost-table of size t - 1. To compare these heuristics, we 
consider one-variable 4-valued functions of which there are 
256. For 4-valued functions with more than one variable, it is 
impossible to compare average or total costs of cost-tables. For 
example, to compute the average or total cost of a cost-table 
on two-variable 4-valued functions, it is necessary to compute 
the costs of 442 x 4 x lo9 functions! Since we are interested 
in the cost-table approach in general, our analysis is done with 
five different cost functions. They are as follows. 

1)  Area-A(f):  The area cost function was proposed by 
Kerkhoff and Robroek [7] and Robroek [ll] as a way to 
minimize implementation costs of CCD circuits, especially 
chip area. The cost A ( f )  of a specific function f is determined 
by the best realization known at that time. As improved 
realizations become available, this function changes. In this 
paper, we use the costs derived originally in (71 and [ll] with 
improvements listed in [8] and [13]. 

2) Transition Count-TC(f):  The transition count was 
proposed in [8] as a simpler alternative to the area cost. Unlike 
area cost, the transition count is not derived from a table but 
is computed directly from the function. However, as noted in 
[8], there is a correlation between the area cost of a function 

and its transition count. The transition count, TC(f),  of a 
function f is the number of times the logic value in f changes 
from decreasing to increasing and vice versa plus 1 if the 
function is initially decreasing, as the input logic values z 
increase from 0 to 3. For example, TC((  1,1 ,2 ,2) )  = 0 and 
TC((2 ,0 ,3 ,1) )  = 3. 

Formally, given f(z) = (ao, a l ,  a2, a3),  let 

1 if ai-1 < ai > a i + l  or ai-1 > ai < ai+l, 

0 otherwise, 
1 5 i 5 2  I i ( f )  = 

1 if a0 < a 1  = a2 > a3 or a0 > a 1  = a2 < a3 

= { 0 otherwise, and 

1 if there is a p ,  0 5 p 5 2, such that 
a0 = a1 UP > UP+l, ID(!) = = * .  . = i 0 otherwise. 

&(f) is 1 iff the ith function value is either strictly larger or 
strictly smaller than both of the two adjacent values, for i = 1 
or 2. That is, Ii is 1 if there is an inflection point. As such, 
values on both sides of a prospective inflection point must be 
known. Thus, i is restricted to interior logic values. 1 1 2 ( f )  is 
1 iff the middle two logic values are the same and are either 
strictly larger or strictly smaller than both of the end values. 
1D(f) is 1 iff the function values are initially decreasing. 

The transition count T C ( f )  of function f is 

TC(f) = k(f) + 1 2 ( f )  + 1 1 2 ( f )  + m f ) .  
3) Total Transition Size-TTS( f ) :  The correlation between 

transition count and area cost is not exact. To achieve a closer 
correlation, the total transition size was introduced [ 131. In 
the transition count, for each transition from increasing to 
decreasing or from decreasing to increasing, 1 is added to 
the function’s cost, whereas, with total transition size, the 
exact size of the transition is added to the cost. That is, 
T T S ( f )  is the sum of the size of each transition (increasing 
to decreasing or decreasing to increasing) plus the size of the 
first transition (again) if f is initially decreasing. For example, 
TTS((1 ,1 ,2 ,2) )  = 1 and TTS((2,0,3,1)) = 9. 

Formally, given f ( z )  = (ao, al,  a2, a3),  define beginning, 
middle, and end transition sizes as follows, 

)a3 - a21 
&(f)  = la3 - all 

if 12  = 1 or 1 1 2  = 1 
if 1 2  = 0 and 1 1  = 1 

{ O  otherwise. 
S b ( f ) ,  Sm(f), and S,(f) are the beginning, middle, and end 
transition sizes, respectively. The total transition size T T S ( f )  
of a function f is 

TTS(f) = sb(f) + S m ( f )  f Se(f) + Sb(f)1o(f)* 
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Since total transition size can be measured between each 
adjacent pair of logic values, an alternative definition is 

TTS(f) = [ai - a01 + l a2  - all + la3 - a21 + sb(f)lo(f). 
4) Constant-C(f): For this cost function, each function 

f has a fixed cost, C ( f )  = c. We consider c = 0, in 
which case, the cost of realizing a given function is just the 
cost of combining cost-table functions. Such a cost function 
approximates the situation where the cost of combining cost- 
table functions is much larger than the cost of the functions 
themselves. 

5) Sum-SC(f): The surprisingly similar behavior of the 
above four cost functions, with respect to the dependence of 
costs of near-minimal cost-tables on cost-table size, inspired 
an examination of a significantly different cost function. With 
sum cost, the cost of a function f ( z )  is the arithmetic sum of 
the logic values produced when z = 0 ,1 ,2 ,3 .  For example, 
SC( (1 ,1 ,2 ,2 ) )  = 6 and SC((2:0,3,1))  = 6. 

Formally, given f ( z )  = (ao, al, a2, a3) the sum cost is 

SC((a0. a l ,  a2, a3)) = a0 + a1 + uz + a3 

111. THE MINIMAL COST-TABLE PROBLEM 

In preparation for the discussion in the next section on 
the results of heuristics for designing minimal cost-tables, 
we show here the context in which such heuristics operate. 
That is, a heuristic can be viewed as simply a selection 
of a cost-table from all possible cost-tables. We show the 
range over which the selection is made. In so doing, we 
determine the importance of finding good heuristics. A criteria 
by which a cost-table is judged is the average function cost 
over all functions realized. Equivalently, the total cost over all 
functions can be used, which we do here. Schueller, Tirumalai, 
and Butler [13] plot the total cost of both near-minimal and 
near-maximal cost-tables as a function of cost-table size for 
each of the five cost functions defined in the previous section. 
It is shown that the total cost of near-minimal cost-tables 
decreases rapidly as the table size t increases, when t is small. 
However, when t is large, the decrease is small, and there is 
little (and sometimes no) benefit to increasing the size of the 
cost-table. On the other hand, the total cost of near-maximal 
cost-tables is shown to decrease almost linearly as the size 
of the cost-table increases. Thus, there is a large difference 
between near-minimal and near-maximal cost-tables when size 
is small and a small difference for large cost-tables. To analyze 
the merits of heuristics, we seek the distribution of the total 
costs of cost-tables over all cost-tables. 

We know of no computationally feasible method for finding 
this distribution. Exhaustive enumeration is infeasible even 
for one-variable 4-valued functions. For example, for size 
t = 129, there are (2 : ; )  zz cost-tables. Therefore, 
our approach is to randomly generate sample cost-tables of 
a specific size and then find the distribution of the total costs 
of these samples. The results are shown in Fig. 1. In computing 
these costs, we assume that the cost, s,  of the two-input adder 
is 2 for all cost functions. The total cost for near-minimal 
and near-maximal cost-tables found in [13] are plotted in the 

horizontal plane. Specifically, the axis pointing into the page 
(northeast) represents total cost T ,  which is a function of t ,  
the cost-table size, and is represented by the axis pointing 
down and to the right (southeast). So, a point on the near- 
minimal curve represents the total cost of the cost-table with 
the smallest known cost, while a point on the near-maximal 
curve represents the total cost of a cost-table with the largest 
known cost. It can be seen that, for all five cost functions, 
as cost-table size increases, the total cost of the near-minimal 
cost-table drops sharply until about size 20, after which there 
is only a marginal decrease in total cost as size increases. The 
heavier lines associated with the near-minimal costs represent 
known minimal cost-tables. From this, it can be seen that 
the majority of the near-minimal cost-tables are known to be 
minimal. Also plotted are the average cost and the average 
2 one standard deviation for a sample set of 500 cost-tables. 
That is, for each cost-table size, 500 randomly selected cost- 
tables are generated, and the average and standard deviation 
computed. The axis pointing up (north) shows the number N 
of occurrences of cost-tables at the various sizes. To avoid an 
overly complex diagram, only seven distributions are shown. 
These are for cost-table sizes 32, 64, 96, 128, 160, 192, and 
224. Each vertical line represents the number of cost-tables 
whose total cost occurs in an interval called a cell. Because 
of the wide variation in costs among the cost functions, the 
cell sizes are normalized to one one-hundredth of the cost 
of the basis cost-table. Without normalization, cost functions 
with high costs and thus many different costs, such as area, 
produce histograms with many short, indistinguishable lines 
(this corresponds to a cell size of 1). 

While 500 is a relatively small sample set size (there can 
be as many as cost-tables for each of the chosen sizes), 
the complexity of calculating the total cost of individual cost- 
tables limits the number of samples we can generate. However, 
we have run our programs with smaller sample sizes, and 
the results are similar, suggesting that our sample size is 
sufficiently large. Each calculation of total cost requires a 
nearly exhaustive search. 

The plots for all five cost functions have similar features. 
One of the most interesting is the small standard deviation 
over all sizes; almost all cost-tables are near average. The small 
standard deviation is especially surprising for small cost-tables, 
where there is a large difference in cost between near-minimal 
and near-maximal cost-tables. 

For large cost-tables, there is little difference in cost between 
an average cost-table and a near-minimal cost-table for all five 
cost functions. This shows that most heuristics work well for 
large cost-tables. On the other hand, a significant difference 
exists between the average cost and the near-minimal tables 
for small size, which implies heuristics for generating small 
cost-tables should be chosen carefully. This observation is 
important, since practical cost-tables on more than one variable 
are small compared to the set of all functions. For example, 
since there are 4 x lo9 two-variable 4-valued functions, any 
cost-table small enough to be stored in a modern computer is 
small relative to the number of all possible functions. This 
observation is the basis for the statement earlier that it is 
important to have good heuristics for designing cost-tables. 
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Fig. 1. Distribution of random cost-tables for one-variable 4-valued functions with respect to total cost and size. Each vertical line represents the number N of 
cost-tables with total cost T and size t .  The three solid lines under the distributions represent the average total cost and the average f one standard deviation. 

Iv. ANALYSIS OF HEURISTICS FOR lyzed. They are: 

FINDING MINIMAL COST-TABLES 1) MIMUM-REDUCTION: Consider BT, the basis cost- 
table and some given cost function c. Given a function f that 

Four heuristic algorithms for finding cost-tables are ana- has a realization of less cost than a realization from BT (i.e., 
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c ( f )  < c ~ ~ ( f ) ) ,  the addition of f to BT yields a lower total 
cost. That is, any use of f achieves a reduction in cost that is 
the difference between the cost of f in BT and the cost of f 
in BT U { f } .  Let the reduction of f be 

r ( f )  = c m 4 . f )  - C B T U { f } ( f ) .  

The MAXIMUM-REDUCTION heuristic forms a cost-table 
of size t by combining BT with the t - lBTl functions of 
largest y( f ), with ties broken arbitrarily. 

2) MAXIMUM-USE: Let 9 ( f )  be the total number of times 
f can be used in the realization of functions in Un,r.  That is, 

Q ( f )  = p ( f . g )  
9 E c,, .? 

where p ( f l g )  is the number of times f can be used in the 
realization of g. Specifically, p ( f ,  g) is the largest integer such 
that g(w) 2 p ( f , g ) f ( w )  for all assignments w of values to 
the variables. For example, if f ( z )  = (l , l ,  1 , l )  and g ( x )  = 
(3,2,3, a), then p ( f ,  g) = 2. That is, f ( x )  can be used at most 
two times in g(z) ((3,2.3,2) = (1. l,l,l) + (1,1,1.1) + 
(1, 0,l 0)). The MAXIMUM-USE heuristic forms a cost- 
table of size t by combining BT with the t - lBTl functions 
of largest S ( f ) ,  with ties broken arbitrarily. 

3) MAXIMUM-TOTAL-REDUCTION: Given f ,  the total 
reduction achieved by using f is 

R B T ( f )  = r(f )Q( f ) .  
That is, adding f to the basis cost-table BT produces a 
total cost that is less than T ( B T )  by R B T ( ~ ) .  Thus, a 
minimal cost-table of size lBTl + 1 is achieved with BT U 
{ f } ,  where f is a function of largest R B T ( ~ ) .  The MAXI- 
MUM-TOTAL-REDUCTION heuristic forms a cost-table of 
size t by combining BT with the t - lBTl functions of largest 
R B T ( ~ ) ,  with ties broken arbitrarily. While this heuristic 
produces the minimal cost-table of size lBTl + 1, it is not 
guaranteed to produce minimal cost-tables of larger size. This 
is discussed later. 

4) ITERATIVE-BEST: A near-minimal cost-table of size 
t + 1 can be formed from a near-minimal cost-table F of 
size t by choosing a function not in F and adding it to F .  
If we compute the total cost of all cost-tables so formed and 
keep the one with lowest cost, we are likely to achieve a total 
cost that is close to minimal. However, we can improve the 
chances of finding a minimal cost-table by performing this 
process on two or more near-minimal cost-tables, instead of 
just one. This is what is done in calculating the near-minimal 
cost curves for Fig. 1. Here, the d = 10 best cost-tables were 
retained. The formal algorithm is given in [13]. Making d as 
large as possible improves the results of this heuristic. We 
observe that the marginal improvement drops off rapidly as d 
increases from 1. 

Fig. 2 shows how the four heuristics compare. Shown 
are the worst costs from [13], the costs produced by the 
four heuristics, and the average costs produced by the sta- 
tistical study. The MAXIMUM-REDUCTION heuristic pro- 
duces poor results, significantly worse than even the average 
for randomly chosen cost-table. The heuristic consistently 

producing the lowest total cost is ITERATIVE-BEST, with 
MAXIMUM-USE and MAXIMUM-TOTAL-REDUCTION 
doing considerably better than the average case. For small 
and mid-size cost-tables, the latter curves fluctuate because of 
the random choice of cost-tables when ties are broken. For 
the area cost, it is interesting that the cost-tables of Kerkhoff 
and Robroek [7], [ l l]  and Lee and Butler [8], both chosen 
heuristically, are better than any of the random cost-tables 
generated, but are about the same as the costs produced by the 
MAXIMUM-USE and MAXIMUM-TOTAL-REDUCTION 
heuristics. 

In understanding these results, we note particularly the poor 
performance of MAXIMAL-REDUCTION. In this heuristic, 
a function f with a large reduction, r ( f )  = c ~ ~ ( f )  - 
C B  ( f ) .  is included before functions with smaller reduc- 
tion values. In the case of all five cost functions, (3,3,3,3) has 
the largest reduction. Thus, in MAXIMUM-REDUCTION, it 
is included in all cost-tables of size 6 (1 larger than BT). 
However, it is an unfortunate choice, since there is only 
one realization where it is used, specifically (3,3,3,3). Thus, 
there is only a marginal improvement in the total cost over 
the basis cost-table. To see this, consider, for example, the 
transition count. For f ( z )  = (3,3,3,3), T C ( f )  = 0, and thus 
C B T ~ { ~ } ( ~ )  = 0. Further, C B T ( ~ )  = 3(1 + 1 + 1 + 0) + 
(12 - 1)2 = 31, and so r ( f )  = c ~ ~ ( f )  - c ~ ~ ~ { f } ( f )  = 31. 
This is the largest reduction of any function g, since there 
is no larger c B T ( g ) ,  nor is there a smaller c B ~ ~ { ~ j ( g ) .  
Thus, MAXIMUM-REDUCTION yields BT U { (3,3,3.3)} 
as the cost-table of size 6. The total cost for the basis cost- 
table using the transition count is T ( B T )  = 3714, while 
T(BTU { (3.3.3,3)}) = 3683. Thus, adding (3,3,3.3) to the 
basis cost-table nets only a 0.8% improvement. A provably 
minimal cost-table of size 6 consists of BT and (l,l,l,l) and 
has a total cost of ?"(BTU ((1.1.1.1))) = 2832, resulting in 
a 23.7% improvement. Interestingly, BT U { (3 ,3 ,3 ,3)}  is a 
provably maximal cost-table. 

While we have performed this analysis for cost-tables of 
size 6, clearly a similar trend exists for larger cost-tables. A 
good function to add to an existing cost-table is one that 1) 
has low cost and 2 )  can be used in the realization of many 
other functions. With MAXIMUM-REDUCTION, the chosen 
functions tend to satisfy the first criteria but not the second. 

Heuristic MAXIMUM-USE, which does significantly better 
than MAXIMUM-REDUCTION, satisfies the second criteria. 
That is, a function is added the current cost-table if it can 
be used in the realization of the most number of functions, 
9 ( f )  = , p ( f , g ) .  For example, except for the basis 
functions, the functions usable in the most other functions 
are (1.1.0.0). (1 .0.1.0) .  (1.0.0.1). (0.1.1.0). (0,l.O. I), 
and (0.0.1.1). Thus, with the MAXIMUM-USE heuristic, 
the cost-table of size 6 contains the basis functions and one of 
the six functions with two 1's. The specific function is chosen 
randomly. Because MAXIMUM-USE depends only on the 
relationship among functions, the cost-tables generated are the 
same for all cost functions. 

While a function with two 1's is a reasonably good 
choice for the smallest nonbasis cost-table, i t  is not 
the best choice. For all five cost functions, a provably 
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Fig. 2. The results of four heuristic algorithms for finding minimal cost-tables on one-variable 4-valued functions. The three solid lines represent 
the worst, median, and ITERATIVE-BEST plots, while the three dotted lines represent the MAXIMUM-REDUCTION, MAXIMUM-USE, and MAX- 
IMUM-TOTAL-REDUCTION plots. 

minimal cost-table of size 6 is BT U { ( l , l , l , l ) } .  MAX- 
IMUM-TOTAL-REDUCTION, however, correctly chooses 
( l , l , l , l )  as the function to be added to the basis cost-table. In 
this heuristic, the function chosen is the one with maximum 

R B T ( ~ ) ,  and so, the smallest T(BT U {f}) is achieved for 
a function f with the largest R B T ( ~ ) .  As was observed 
earlier, while the use of MAXIMUM-TOT&-REDUCTION 
generates the minimal cost-table of size lBTl + 1, it does not 
necessarily generate minimal cost-tables of larger size. This is 
because it neglects the interaction among cost-table functions. 
As with all previous heuristics, once a function is chosen for 
a cost-table of size t ,  it is included in all larger cost-tables. 
This can result in nonminimal cost-tables. For example, while 
( l , l , l , l )  is the best function to use in a cost-table of size 6, for 

R B T ( f )  = T ( f ) q ( f ) *  Indeed, T(BT U if}) = T(BT)  - 

the transition count, total transition size, constant 0, and sum 
cost functions, the (only) minimal cost-table of size 7 does not 
contain ( l , l , l , l ) ;  instead ( l , l ,O,O) and (l,O,l,l) are included. 

ITERATIVE-BEST produces the lowest cost because it ac- 
commodates the interaction among functions. In this heuristic, 
the d cost-tables of size t with lowest total -cost are used 
to generate d cost-tables of size t + 1 with lowest cost. 
Specifically, for each of the d cost-tables of size t with lowest 
cost, one remaining function is added forming a size t + 1 
cost-table. Among all cost-tables of size t + 1 so formed, the 
d least costly are chosen. 

In our application of this heuristic, d = 10. Over the 
whole range of t ,  a total of 316 260 cost-tables are examined. 
This is considerably less than the 2251 cost-tables considered 
in exhaustive enumeration. If two of the t-entry cost-tables 



TABLE 1 
RANGE OF COST-TABLE SIZES WHERE ITERATIVE-BEST 

GENERATES A PROVABLY MINIMAL COST-TABLE 

Which 

Produces a 
Nonminimal 
Cost-Table 

Which 
ITERATIVE-BEST 
Produces a Provably 
Minimal Cost-Table 

Function 

Area 5-10 and 52-256 
Transition Count 5-7 and 67-256 
Total Transition Size 5-7 and 52-256 
Constant 0 5-7 and 32-256 
Sum 5-7 and 32-256 

among those d with lowest total cost are the same except for 
one function, then a t + 1-entry cost-table is generated twice. 
However, an upper bound on the amount of double counting 
is a small fraction of the total, and, although our program 
generates these, only a small penalty in computation time is 
paid. 

The superiority of ITERATIVE-BEST is shown by the num- 
ber of cost-tables it generates that are provably minimal. Table 
I (from [13]) shows the range of cost-table size where provably 
minimal cost-tables are generated. The heavy lines in Figs. 
1 and 2 associated with ITERATIVE-BEST correspond to 
ranges where provably minimal cost-tables are generated. The 
range of lower cost-table sizes of minimal cost-tables has been 
shown by exhaustive enumeration. Specifically, all potentially 
minimal cost-tables of these sizes have been generated and 
checked. For larger sizes, exhaustive enumeration is too time 
consuming. The range of larger cost-table sizes in Table I 
corresponding to minimal cost-tables has been proved so in 
Lemma 1 of [13]. Specifically, this is a sufficient condition 
for a cost-table to be minimal. The table also shows that for 
one cost-table size, a nonminimal cost-table is produced. For 
all values not shown, it is not known whether the generated 
cost-tables are minimal. 

v. THE LINEAR COST 

As observed in [13], the plots for the sum cost and the 
constant 0 cost are similar. Further, it was observed that if F 
is a near-minimal or near-maximal cost-table using constant 0 
cost, then F is also a near-minimal or near-maximal cost- 
table using sum cost, and vice-versa. We now generalize 
this observation to n-variable, r-valued functions and relax 
a condition on the way such cost functions are formulated. 

Let f E be an n-variable, r-valued function, and 
let q = rn. Then, f can be represented as a vector with q 
components: f = (ao, a l , .  . . , aq- l ) .  Let F be a cost-table, 
and define a linear cost of a function f as follows: 

0-1 

i=O 

where c; is a real-valued constant. For example, with q = 
rn = 4 l ,  CO = c1 = c2 = c3 = 1 and e4 = 0 corresponds 
to the sum cost function, and CO = c1 = c2 = c3 = c4 = 0 
corresponds to the constant 0 cost function. 

Let L F ( ~ )  be the cost of a minimal realization for function 
f with respect to cost-table F, and let a minimal realization 
be f = f l + f 2 + .  . e +fm, where fi E F.  Then, 

m 

j=1 
m Tu-1 1 

= f j , C i  + c, + (m - 1)s  
j = 1  i=o 1 

where f j ,  is the value of fj for the ith assignment of values 
to the variable. Rearranging this expression yields 

0 - 1  m 
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m 

since fj, = a;,  
i=O j=1 

= L C ( f )  + (m - l)(C, + s ) .  

Let A D D F ( ~ )  be the number of adders used in a minimal 
realization of function f with respect to cost-table F. Then, 

The minimal cost realization for f is L C ( f ) ,  the cost of f in 
the cost-table containing all functions, plus ( c ,  + s) times the 
number of adders in a minimal realization. If (c, + s) > 0, 
then minimizing the cost of f is the same as minimizing the 
number of adders used in its realization, regardless of the 
values ofthe constants ci, for 0 5 i < q. Thus, the minimal 
realization of f does not depend on the linear cost function 
used. This topic is discussed in more detail in Butler and 
Schueller [ 5 ] .  For example, it is shown that if the cost of 
adding functions is sufficiently large, any cost function yields 
a minimal realization that is identical to a minimal realization 
under a linear cost function. 

The total cost of a cost-table F is 

f€U,,, 

Since T(Un,r)r cq, and s are constants, minimizing the total 
cost is equivalent to minimizing the total number of adders 
needed to realize all functions, if c, + s > 0. Therefore, if 
c, + s > 0, a minimal cost-table of size t corresponds to a 
set o f t  functions that sum to form all functions with the least 
number of adders (independent of the linear cost parameters!). 
This proves the following. 

Lemma 1:  Let LC and LC’ be two linear cost functions 
with constant components c, and c;,  respectively, such that 
cq + s > 0 and c; + s > 0, where s is the cost of adding 
two cost-table functions. Cost-table F is a minimal cost-table 
using LC iff F is a minimal cost-table using LC’. 

The sum and constant 0 costs considered earlier are in- 
stances of this linear cost. For both the sum cost and the 
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constant 0 cost function, cq = 0. Since the cost of the adder s 
isaconstant 2 , c q + s  = 2,and ( c q + s ) C f E u , , ,  A D D F ( f )  is 
the same for both cost functions. Thus, the only difference in 
total costs between these linear cost functions is the difference 
in the costs of the universal cost-table. For the constant 0 cost 
function, the total cost is 0. For the sum cost, the total cost 
T S C ( ~ I , ~ )  is 

3 

TSC(u1,4) = sc(f) = c u i  
fcU1.4  fEU1,4  i=o 

- - i o  + 21 + 22 + 23 

20 , i i  , i z  , i 3  E{O,1,2,3} 

= 1536 

which is the difference in costs between the sum cost and the 
constant 0 cost shown in the plots of Fig. 1 for these two cost 
functions. 

We find the independence of the composition of minimal 
cost-tables on the linear cost parameters ci to be surprising. 
Intuitively, the best functions for inclusion in a cost-table for 
any cost function are those that have 1) low cost and 2) can 
be used many times in the realization of other functions. This 
is confirmed by the list of the minimal cost-tables in [13], 
which shows that the best functions for the cost functions 
considered tend to consist of 0’s and 1’s exclusively (for all 
the cost functions considered, functions with 0’s and 1’s have 
low cost). It is interesting to note that, since the constants 
ci for 0 5 i 5 q - 1 in the linear cost function can be 
negative, a cost function exists where functions with 0’s 
and 1’s are the most expensive functions. However, from 
Lemma 1, the minimal cost-table is unaffected by specific 
values of ci. Therefore, these (expensive) functions still are the 
best functions to use. Thus, of the two criteria for selecting the 
best functions to include, the number of times a function can be 
used is more important. This is the second substantiation of this 
observation. Recall that, of the two heuristics for generating 
cost-tables, MAXIMUM-USE, which selects a function that 
is potentially usable in the most number of other functions, 
is significantly better than MAXIMUM-REDUCTION, which 
selects functions with the largest reduction, a parameter that 
is directly related to function cost. 

VI. THE PRESENCE OF COMPOSITE 
FUNCTIONS IN MINIMAL COST-TABLES 

In the design of a cost-table, it is useful to know if certain 
functions never occur in minimal cost-tables. For example, the 
design of binary sum-of-products expressions for realization 
by programmable logic arrays relies on a significant reduction 
in the search by the observation that only prime implicants 
need be considered. It is tempting to believe that certain 
functions that are better realized as the composition of other 
functions never occur in a minimal cost-table. We show, 
however, that this is not so. For a given cost function c, a 
cost-table F ,  and a function f ,  f is said to belong to one of 
three composition classes. f is 

1) noncomposite with respect to F iff c ( f )  < c ~ (  f ), 

2) simple composite with respect to F iff c ( f )  = C F ( f ) ,  

3 )  pure composite with respect to F iff c( f) > C F ( ~ ) .  
and 

A function that is simple or pure composite with respect 
to F is said to be composite with respect to F. If f is 
noncomposite with respect to F,  then the cost of f is reduced 
by adding f to cost-table F .  This, in turn, may reduce the 
cost of other functions that can use f in their realizations. 
Adding a function f that is simple composite with respect to 
F to the cost-table does not alter the cost of any function; it 
simply enlarges the cost-table. Similarly, i f f  is pure composite 
with respect to F, there is also no benefit to adding f to 
cost-table F. By definition, a lower cost realization exists, 
so c( f) is not the cost of a minimal realization. In spite of 
this, such functions do occur as the result of mathematical 
formulations of cost functions. For example, the compensated 
transition count (CTC) cost of Tirumalai [16] is such a 
cost. The CTC of a function is the sum of the (second) 
transition sizes when the function changes from increasing to 
decreasing, or vice-versa, plus the size of the first transition, 
if the function is initially decreasing. Consider one-variable 
4-valued functions f (x)  = (1 ,1,0,3) ,  f l (x)  = (1 ,1,0,0) ,  
and fZ(x) = (1 ,0,0,3) .  G T C ( f )  = 4, CTC(f1)  = 1, and 
CTC(f2) = 0. The cost of the realization fl(x) + fz(x) 
is C T C ( f 1 )  + CTC(f2)  + s = 1 + s. If f l , f2  E F and 
s < 3, then f is a pure composite function with respect to F. 
Using the CTC cost and an adder cost of 2, there are 36 pure 
composite and 44 simple composite functions with respect to 
U14. In general, the number of composite functions depends 
on the cost of combining functions. 

In our previous discussion of the linear cost function, we 
assumed that (cq + s) > 0. We now consider the effect 
of relaxing this condition. Recall that LF( f), the cost of a 
function f using cost-table F, is 

L F ( f )  = LC(f) + A D D F ( f  )(cq + 
Lemma 2: Let L be a linear cost function, where cq is the 

constant parameter. Let F be a cost-table used with L C ,  and 
let s be the cost of adding two functions. A function f # F is 

1) noncomposite with respect to F iff (cq + s) > 0, 
2)  simple composite with respect to F iff (cq + s) = 0, and 
3) pure composite with respect to F iff (cq + s )  < 0. 

Proof: Since f 6 F, any realization of f with re- 
spect to cost-table F must be a composition of functions, so 
ADDF( f) > 0. The proof follows directly from the definitions 
of composite classes. Q.E.D. 

Applying Lemma 2 with F = B T ,  we find that all functions 
f E Un,T - BT belong to the same composition class, 
regardless of the cost-table. Here, ( cq + s) = 0 and all possible 
realizations of a function have the same cost. As a result, all 
cost-tables have the same total cost, regardless of size. Under 
this condition, any attempt to minimize the cost of a function 
is futile. If (cq + s) < 0, there is a paradox; the cost of any 
realization of a function can be reduced simply by adding the 
function consisting of all O’s! 

A function is noncomposite, simple composite, pure com- 
posite, or composite, if it is noncomposite, simple composite, 
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pure composite, or composite, respectively, with respect to 
the universal cost-table. The search for minimal cost-tables 
would be faster if cost-table functions were all noncomposite. 
However, this is not the case. For example, the universal cost- 
table is a minimal cost-table that can contain a composite 
function. In the universal cost-tables for the area and transition 
count cost functions, there are 171 and 6 simple composite 
functions, respectively. However, in the universal cost-table 
with total transition size, sum, or constant 0 function, there are 
no simple composite functions. There are no pure composite 
functions in any universal cost-tables for the five cost functions 
considered. 

Composite functions provide no benefit to the universal 
cost-table. Thus, T(U,,, - {f}) = T(Un,r) ,  where f is 
composite, and it follows that - {f} is minimal also. 
Further, T(Un,, - { f l f  is composite}) = T(U,,,), and so 
U,,, - { f l f  is composite} is a minimal cost-table with no 
composite functions. One might at first believe that minimal 
cost-tables of size t < IU,,,-{flf is composite}[ also contain 
no composite functions. However, this is not the case. 

Observation: There exists a minimal cost-table of size 1 
larger than the basis cost-table that contains a composite 
function. 

Proof: Consider the set of one-variable six-valued func- 
tions, U1,6. Let c ( b i )  = 10, where bi is the basis function 
whose ith component is 1. Let the cost of the function 
(O,O,O,O,O,O) be 0, and let s = 2. Let there be three noncom- 
posite functions with respect to BT, f l (x)  = (2 ,0 ,0 ,0 ,0 ,0) ,  
fi(x) = (0 ,2,0,0,0,0) ,  and f 3 ( 2 )  = (2 ,2 ,0 ,0 ,0 ,0) ,  with 
c ( f 1 )  = c ( f 2 )  = 15 and c ( f 3 )  = 33. Assume c ( f )  2 c g ~ ( f )  
for f E U1,6 - BT - { f l ,  f 2 ,  f 3 } .  f 3  can be realized as 
fi + fi at a cost of 15 + 15 + 2 = 32, which is less 
than c ( f 3 )  = 33. Thus, f3 is pure composite with respect 
to any cost-table containing { f l ,  fi}. There are only three 
possibilities for minimal cost-tables of size (BT(  + 1. Since 
T(BT U {fl}) = 7978178, T(BT U { f 2 } )  = 7978178, and 
T(BT U {f3}) = 7967810, the best cost-table of size 8 is 
BTU { f 3 } ,  which contains a function that is pure composite. 

Q.E.D. 

VII. MINIMAL COST TABLES OF SIZE (BT(  + 1 

It is surprisingly difficult to find provably minimal cost- 
tables. The problem of finding a minimal cost realization of a 
given function by cost-table is known to be NP-complete [14], 
and it is likely that the problem of finding a minimal cost- 
table is also NP-complete. Even for small sizes, considerable 
computation is needed to find provably minimal cost-tables. 
The negative result on composite functions shows that not 
even these functions can be removed from consideration. For 
a special case, however, we are able to describe, in a precise 
way, the minimal cost-table. In this section, we consider, for 
the linear cost, minimal cost-tables that have size one larger 
than that of the basis cost-table. Rather than calculating the 
total cost directly, we proceed by considering the reduction 
R g ~ ( f )  in the total cost of cost-table formed by adding 
function f to BT. We have R F ( ~ )  = T ( F )  - T ( F  U {f}). 
However, we are interested in a form of R F ( ~ )  more like that 

of the previous section. Assuming the function consisting of 
all 0’s is used only in its own realization, the realization of 
any function f using just basis functions is unique. Let ai be 
the ith component of f and bi is the basis function whose ith 
component is 1. 

0-1 

i s 0  
q-1 q-1 

= C [ c ( b i ) a i ]  + s [ai] - 1 
i=O Lo 1 

where the second expression follows from the first by the 
observation that the number of two-input adders needed to 
realize f is the sum of the components in f less 1. 

R g T (  f )  is the product of the reduction in cost each time f 
is used and the number of times f is used in the realization of 
functions. The reduction resulting from one use of f is given 
as 

r(f) = C B T ( f )  - C B T ~ { f } ( f ) ,  

c g  T ( f )  - c( f) if f is noncomposite with 
respect to BT 

= ( o  otherwise. 

Let S(f) be the total number of times f is used in the 
realization of functions in U,,,, and let @?l(f)  be the number 
of functions that can use function f at least 1 times in their 
realizations; that is, 

a-1 

i=O 

Since addition is undefined if a component sum exceeds T - 1, 
there is a limit to the number of times f can be used in the 
realization of functions. Let ti be the maximum component of 
f ,  i.e., K. = maxoljlq-l{aj}, and 0 5 K. 5 T - 1. Function 
f can be used at most 151 times in the realization of any 
function. Consequently, @ z l ( f )  = 0,  for I > 151. 

1=1 

LGJ 

1=1 

I e 1  0-1 

1=1 i=o 

q(f) is independent of the cost function used, while ~ ( f )  
does depend on the cost function. Using the linear cost with 
(cq + s) = 1 with ci unrestricted, 

r(f) = L B T ( ~ )  - LC(f), 
= A D D B T ( f ) ,  

q-1 

= C ( U i )  - 1. 
i=O 
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q-1 l+l q-1 

= [X(.i)-1] i = O  1=1 j=O ~ ( r - l u j ) .  

We now determine the best function to add to BT.  
Theorem 1: Using the linear cost, a minimal cost-table of 

size lBTl + 1 is BTU { f}, where f : R” 4 {0,1}. 

T Number of 1’s 
4 3.646 4 
6 4.559 5 
8 5.321 5 

16 7.670 8 
24 9.469 9 
32 10.985 11 
48 13.528 14 
64 15.671 16 

ponent f;, such that f; > 1. We show there is another function 
g such that R B T ( g )  > R E T (  f ) ,  where gi = 1. It follows that 
BT U {g) is a cost-table of lower cost than BT U {f}, a 

with a1 1’s (and a0 0’s) is a minimal cost-table. A n  n-variable 
r-valued function has q = rn components, and so (YO = q-al. 

contradiction. 
g is derived from f by a sequence of operations, first of 

Type 1 and then, if necessary, of Type 2. Let f‘ be f or 
some intermediate function. The Type 1 operation is applied 
to pairs of logic values in f’, one 0 and the other > 1, with 
the former increased by 1 and the latter decreased by 1. If 
successive applications yields a function with exclusively 0’s 
and l’s, we are done. Otherwise, the final function consists of 
no 0’s and at least one nonzero value greater than 1. The Type 
2 operation reduces by 1 each nonzero logic value greater than 
1. A succession of these operations yields the constant function 
g = 1. The theorem follows from a demonstration that Type 1 
and 2 operations both yield a function with a larger reduction. 

Consider the Type 1 operation. The reduction of an inter- 
mediate function f’ can be expressed as 

where f,! = 0 and f,! > 1. On the application of the Type 1 
operation, f,! is replaced by 1 and f,! by f,! - 1, increasing 
the product of the right two terms above and leaving all other 
terms unchanged. This yields a net increase in reduction. 

Consider the Type 2 operation. The reduction of an inter- 
mediate function f’ can be expressed as 

1 

where f,! > 1. An application of the Type 2 operation replaces 
y( f’) by y( f’) - 1 and ( r - l f : )  by ( r  -1( f,! - l)), leaving the 
other terms unchanged. Since f,! 2 1 for all 0 5 j 5 rn - 1 
and f,! 2 2, y(f’) 2 T and ( r  - l f : )  5 r - 2. It follows that 
(y(f’)-l)(r-l(fi-l)) >?(f ’ ) ( r - l f , ! ) ,  and thereisanet 
increase in reduction. Q.E.D. 

Theorem 1 states that with the linear cost function, the 
function to add to the basis cost-table to produce a minimal 
cost-table of size 1 larger contains only 0’s and l’s, However, 
it does not show how many of each logic value occurs. Let 
a; be the number of components with logic value i for such 
a function, where i E {0,1}. Because of the symmetry of the 
linear cost function, the basis cost-table plus any function f’ 

T - 1  

1=1 

If we view R E T (  f‘) as a continuous function of a1, we can 
take the derivative with respect to al. 

d R B T ( f ’ )  = T T n  [ ( T) r - 1  dal 

Setting the derivative to zero, we find, in Table 11, values for 
al, the number of 1’s in the best function to add to the basis 
cost-table for one-variable r-valued functions. 

VIII. CONCLUDING REMARKS 

Our interest in the cost-table technique is inspired by its 
fundamental nature. Design by cost-table combines compo- 
nents so that the design specifications are achieved at the 
lowest possible cost. In logic design, the design specification 
and components are both logic functions. This simplification 
makes logic design a good first choice to study the cost-table 
method, and we are able to gain insights not possible with 
less formally specified design problems. Even within logic 
design, simplifying assumptions are necessary. Our analysis 
of heuristics for finding minimal cost-tables could not have 
been done on functions with two or more variables; the set of 
all functions is too large for a computer analysis (while the 
number of one-variable 4-valued functions is 256, there are 
4 x lo9 two-variable 4-valued functions!). However, the three 
key results, Lemmas 1, 2, and Theorem 1, as well as other 
material in Sections V through VII, apply to the general case 
of n-variable r-valued functions. Further, the results on one- 
variable 4-valued functions in Sections I11 and IV suggests 
that similar phenomena occur for the case of functions with 
more variables. For example, it is unlikely that, for more than 
one variable, the point of diminishing returns with respect 
to cost-table size will be exceeded. That is, for a practical 
number of inputs, we expect even a small increase in cost- 
table size to produce a large decrease in total cost. We also 
believe that another observation applies to the more general 
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case. The variation observed in the performance of heuristics 
suggests that it is important to find good heuristics. For 
example, an explanation of the surprisingly poor performance 
of MAXIMUM-REDUCTION requires a careful examination 
of this heuristic. The analysis shows that, for small sizes, the 
average cost-table performance is far from minimal. 

We believe that the design of heuristics warrants further 
study. In spite of the existence of a reasonably good heuristic, 
ITERATIVE-BEST, it is difficult to find provably minimal 
cost-tables. We have done so for cost-tables of size 1 larger 
than the basis cost-table using the linear cost. We feel that a 
productive line of attack on this problem is to identify func- 
tions that will not be in a minimal cost-table. We have shown 
that composite functions are not candidates for elimination. 
However, other functions may be removed from consideration 
in large cost-tables (e.g., Lemma 1 of [13]). 

We believe that the linear cost function also warrants further 
study. It is interesting that a minimal cost-table associated with 
a linear cost function such that cq + s > 0 is also a minimal 
cost-table for any other linear cost function. We observe that 
linear cost functions exist in which the best function to add to 
the basis cost-table is one with high cost, rather than other less 
costly (but less advantageous) functions. Thus, low cost alone 
should not be a criteria for selecting cost-table functions. This 
statement is also supported by the observation that the heuristic 
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