
Multi. Val. Logic, 1996, Vol. I, pp. 39-64 
Reprints available directly from the publisher 
Photocopying permitted by license only 

© 1996 OPA (Overseas Publishers Association) 
Amsterdam B.V. Published in The Netherlands under 
license by Gordon and Breach Science Publishers SA 

Printed in India 

Planar Decision Diagrams for 
Multiple-Valued Functions* 

TSUTOMU SASAQ• and JON T. BUTLERb 

•Department of Computer Science and Electronics, Kyushu 
Institute of Technology, lizuka 820, Japan 
b Department of Electrical and Computer Engineering, Naval 
Postgraduate School, Monterey, CA 93943-5121 

Recommended for publication by Dan Simovici 

(Received 15 October 1995) 

In VLSI, crossings of interconnect occupy space and cause delay. Therefore, there is 
significant benefit to planar circuits. We propose the use of planar multiple-valued 
decision diagrams to produce planar multiple-valued circuits. Specifically, we show 
conditions on 1) threshold functions, 2) symmetric functions, and 3) monotone increas­
ing functions that produce planar diagrams. Our results apply to binary functions, as 
well. For example, we show that all two-valued monotone increasing threshold func­
tions of up to five variables have planar ordered binary decision diagrams. 
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1. INTRODUCTION 

The existence of integrated circuits with more than one million gates 
has made imperative the efficient design of large logic" functions. An 
important problem, therefore, is to represent large logic functions. 
Truth tables are inefficient; all functions on n variables require a table 
of size 0(2n). Algebraic expressions are better; for example, the sum-

*A preliminary version of this paper has appeared in the IEEE Proceedings of the 
25th International Symposium on Multiple-Valued Logic. 

39 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
OCT 1995 2. REPORT TYPE 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
Planar Decision Diagrams for Multiple-Valued Functions 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Department of Electrical and Computer 
Engineering,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

26 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



40 T. SASAO AND J. T. BUTLER 

of-products expression (SOP) for x1 V x2 V · · · xn has size O(n). However, 
to represent x1 ® x 2 ® · · · ® xn requires an SOP of size 0(2n). 

During the past decade, there has been considerable interest in the 
ordered binary decision diagram (OBDD), a topic that has its origins 
in the 1960's and 1970's [1]. In an OBDD, nodes represent functions 
and edges represent assignments of values to variables. As with SOP's, 
the complexity of OBDD's varies. Widespread use of OBDD's in 
commercially available CAD packages is evidence of the compactness 
of this representation. 

In this paper, we consider the ordered multiple-valued decision 
diagram (OMDD) of a multiple-valued function f: W-+R, where 
R = {0, 1, ... ,r-1 }. The history of OMDD's is recent [4, 6]. For such 
functions, both the function and the variables take on values from R. 
We denote functions with r = 2 as switching functions. 

An OMDD of a functionf(x 1,x2 , ... ,xn) is a directed graph that has 
a root node (i.e., no incoming edges) which represents f From this 
node, there are outgoing edges labeled 0,1, ... ,r-1 directed to nodes 
that represent f(O,x 2 , ••• ,xn), f(1,x2, ••• ,xn), . .. , and f(r-1,x 2 , ••• ,xn), 
respectively. For each of these nodes, there are r outgoing edges, etc., 
that go to nodes that haver outgoing edges, etc. A terminal node is a 
node with no outgoing edges. It is labeled by 0, 1, ... , or r-1, and 
corresponds to a logic value of the function. To achieve a compact 
representation, we require 

• merging rule-if two nodes 171 and 172 represent the same func­
tion, then 1] 2 and its subtree are removed and all edges going to 
1] 2 now go to 1] 1. 

• elimination rule-if a node 11 in which all descendents are the same 
node 1J 1, then 11 is eliminated and all incoming edges to 1J go to 1] 1. 

Figure 1(a) shows an OBDD for f = x1x2 V x3x4 . As is usual, arrows 
are omitted; edges are assumed to be directed down. Note that no edges 
cross in this OBDD. It is interesting that interchanging x 2 and x3 yields 
an OBDD for this same function in which two pairs of edges cross. The 
OBDD corresponding to this ordering is shown in Figure 1(b). 

DEFINITION 1 An OMDD or OBDD in which the merging and 
elimination rules have been applied to the greatest extent possible is a 
reduced OMDD or OBDD, respectively. These are denoted as 
ROMDD or ROBDD, respectively. 



PLANAR DECISION DIAGRAMS 41 

Bryant [2] has shown that, for any given ordering of variables, the 
OBDD is unique. Therefore, regardless of what order the merging and 
elimination rule and applied, the final OBDD is the same. 

Example 1 Figure 1 shows two ROBDD's of the function!= x 1x 2 V 
x 3x 4 for different orderings of the variables. Note that the number of 
nodes is different for the two orderings. 

In our analysis of planar OMDD's, we adopt the following restric­
tion. 

RESTRICTION 1 

1. All edges are straight and emerge down from the root node; 
2. All edges emerging from a node are labeled 0, 1, ... ,r -1 from left 

to right; and 

3. The leaf nodes (representing constant functions) ar~ labeled 
0,1, ... ,r-1 from left to right. 

With this restriction, we have 

DEFINITION 2 An OMDD is planar if it can be drawn without 
crossings. 

(a) Planar BOD. (b) Non-Planar BOD. 
FIGURE I Example of how planarity in an OBDD depends on variable ordering. 
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1.1 Multiplexer Realization 

Figure 2 shows multiplexer realizations of the OBDD's shown in 
Figure 1. In this case, the network's output occurs at the top of the 
figure. The circuit's inputs occur along the side and each determines 
which of the two multiplexer inputs are connected to the output 
(which are all directed upward). For each node in the ROBDD of the 
original function (Fig. 1), there is a multiplexer in the network realiz­
ation (Fig. 2) and vice versa. 

Note that if we ignore the lines for input variables, the network has 
no crossings. Figure 2(a), which is a multiplexer implementation of the 
crossing-free ROBDD of Figure l(a), has no crossings. Figure 2(b), 
which is a multiplexer implementation of the ROBDD with crossings 
in Figure l(b), also has crossings. In VLSI, crossings are expensive; 
they require additional channels and increase delay. 

Thus, networks without crossings are particularly desirable. In this 
paper, we demonstrate classes of logic functions whose OMDD's and 
OBDD's are planar. This includes many functions common in logic 

(a) A MUX network corresponding (b) A MUX network corresponding 
to Fig. 1 (a). to Fig. 1 (b). 

FIGURE 2 The multiplexer implementation of an OBDD. 
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design practice and theory, including symmetric functions and certain 
classes of threshold functions. 

2. PLANAR OMDD'S 

In this section, we consider multiple-valued functions and their repre­
sentation using decision diagrams. We show two classes of functions 
that have planar OMDD's. Then, we consider a function f whose 
OMDD is planar given thatfcan be decomposed in some specific way 
into subfunctions that have planar OMDD's. These results are used in 
Section 3 to identify functions that have planar OBDD's. 

In preparation for the presentation of our main results, it is con­
venient to consider a special class of OMDD's. 

DEFINITION 3 A complete OMDT (ordered multiple-valued decision 
tree) for function f(x 1,x2 , ••• ,xn) is an OMDD with rn terminal nodes, 
corresponding to all assignments of values to the variables 
x1,x2 , ..• ,xn. Further, there are rn distinct paths from the root node to 
the terminal nodes. 

A complete OMDT also has r0 +r1 +r2 + ... +,n = ,n+ 1 -1/r-1 
non-terminal nodes, corresponding to all partial assignments of values 
to variables starting from X;. For example, when r=2, there is a node 
for every assignment of values to the tuple (x1,x2, ... ,xn) of the form 
0** ···*, 1 ** ···*, 00** ···*, 01 **···*, 10** ··· *, 11 ** ···*,etc., where* 
represents an, as yet, unassigned variable. In a complete OMDD, 
neither the merging nor the elimination rule has been applied. We can 
make the following observation. 

LEMMA 1 A complete OMDTis planar. 

Figure 3 shows a MUX network that corresponds to a complete 
OMDT. Each MUX has r primary inputs labeled 0,1, ... ,r-1, and 
one multiple-valued control input labeled X;. At the bottom of this 
figure are logic values that correspond to terminal nodes in the 
OMDT. It is convenient to view these as truth table values. Indeed, 
from this, it follows that 

LEMMA 2 A complete OMDTrealizes any multiple-valued function. 

The significance of the complete OMDT will be shown shortly. 
Because it is planar, the application of the merging and elimination 
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rules to a complete OMDT, given appropriate restrictions, produces 
an OMDD that is also planar. In this way, we can show useful results. 

DEFINITION 4 Let a= (a 1,a2 , ••• ,an) and b = (b 1,b2 , •.• ,bn) be vectors 
such that a;,b;E {0,1, ... ,r-1}, and let Na and Nb be the baser num­
bers, Na = a 1 a2 ••• an and Nb = b1 b2 ••• bm associated with a and b, res­
pectively; i.e. Na = a1rn- 1 + a2rn- 2 + ··· + anr0 and Nb =b1rn- 1 + b2rn- 2 

+ ... + bnr0
. Then, a~ b iff Na ~ Nb. 

Example 2 For n = 3 and r = 2, (0,0,0) ~ (0,0,1), and for n = 2 and 
r = 3, (1,2) ~ (2,1). 

DEFINITION 5 A function f(x 1,x2 , ... ,xn) is t-monotonic (lexi­
cographically monotonic). iff for a= (a 1,a2 , ... ,an) and b = (b1, b2 , 

... ,bn), such that a;, b; E {0, 1, ... ,r -1 }, a~ b implies f(a) ~ f(b), where 
logic values are viewed as integers. 

Example 3 The switching functions AND and OR,f1 (x1,x2)=x1 x 2 

and/2 (x1,x2) = x 1 V x 2 are t-monotonic. 

f 

O(o.o.•••,o) O(r, r ,•••,r) 

FIGURE 3 The multiplexer implementation of an example OBDD. 
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Example 4 The switching functions AND and OR,/1 (x 1,x2) = x1 x 2 

andf2 (x1,x2) = x1 V x2 , have the property f 1 £f2 • 

LEMMA 3 Ant-monotonic function has a planar ROMDD. 

Proof From Lemma 2, an t-monotonic function has a complete 
OMDT, which, by Lemma 1, is planar. We now show thatany appli­
cation of the merging rule and the elimination rule preserves planar­
ity. This is true of the elimination rule because if we merge all suc­
cessor nodes of some node, the resulting OMDD is still planar. Con­
sider merging two nodes 'h and '72 that represent the same function. 
Because the OMDD is planar, we can adjust nodes so that the nodes 
corresponding to a function on variables X;, possibly xi+ 1, possibly 
X;+ 2 , .•. , and possibly xn are at the same level. Therefore, 1] 1 and 1]2 

can be assumed to be at the same level. Figure 4 shows how the 
elimination rule is applied to this case. 

For any assignment of values to the variables in an OMDD, we 
have various values at nodes in the OMDD. Further, the logic values 
in a planar OMDD representation of an t-monotonic function are 
monotone increasing left to right across the same level. From this and 
the fact that '7 1 and '7 2 realize the same function, it follows that any 
node '7; between 1] 1 and 1]2 realize the same function as 1] 1 and 1]2 • 

Therefore, we can merge '7 1 and '7 2 with all nodes in between. The 
resulting OMDD is planar. Repeated applications of the merging and 
elimination rules, therefore, ultimately produce a planar ROMDD. 

Q.E.D. 

(b) 

FIGURE 4 Derivation of a planar ROBDD. 
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DEFINITION 7 A multiple-valued function/is a monotone threshold 
function iff can be represented as follows. Given a set of positive 
integer-valued weights w1,w2 , ... , wn, and a set of non-negative integer­
valued thresholds T0 , T1, .•. , T,. with the property 0 = T0 < T1 < 
Tz < ... < T,.-1 < T,. = ~?=1 W;+ 1, 

n 

f(x 1,X2, •.• ,xn) = j iff ~ < L W;X; < ~+ 1. 
i= 1 

for 0 <j < r-1, where values of X; are viewed as integers. Let 
(w1, w2, ... , wn; T1, T2 , . •• , T,._ 1) be the weight-threshold vector off 

Note that, when r = 2, a monotone threshold function corresponds 
to a conventional switching threshold function. 

Example 5 The switching functions AND and OR,f1(x1,x2)=x1 x2 

andf2 (x1,x2) = x1 V x2 , are monotone threshold functions with weight­
threshold vectors (1, 1;2) and (1, 1; 1), respectively. 

THEOREM 1 Let f be a monotone threshold function whose weight­

threshold vector satisfies W; ~ ~~=i+ 1 wk(r-1) and W; ~ 1. Then,f has a 
planar ROMDD. 

Proof Consider two vectors a= (a 1,a2 , ••• ,an) and b = (b 1,b2, ••• ,bn), 
such that a< b. From the hypothesis, 

n 

W; ~ L: wk(r-1), 
k=i+ 1 

and it follows that a< b implies ~?= 1 w;a; < ~?= 1 w;b;. Thus,f(a) <f(b), 
andfis t-monotone. By Lemma 3,fhas a planar ROMDD. Q.E.D. .. 

Example 6 Consider the two-valued threshold function /T(x1,x2,x3) 

with the weight-threshold vector (2, 1, 1; T). Note that this function 
satisfies the conditions of Theorem 1. Thus,fT has a planar ROBDD. 
Note that fT represents the functions fT = x 1 x2x3 when T= 4, 
fT = x1(x2 V x3) when T= 3,fT = x1 V x2 x3 when T= 2,fT = x1 V x 2 V x3 

when T= 1, and fT = 1 when T= 0. Figure 5(a) is the complete 
ROMDT of fT for T= 2 with edges labeled by weights instead of logic 
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(a) Complete decision tree with weights. (b)ROBDD. 

FIGURE 5 Example of the derivation of planar ROBDD for threshold function. 

values. In this figure, the sum of the weights of edges in a path from 
the root node to a leaf node are shown at the leaf node. Figure 5(b) is 
the ROBDD for this function. 

Example 7 Consider the three-valued two-variable monotone thres­
hold function f(x 1,x2) with weight-threshold vector (3,1; T1, T2), where 
T1 < T2 • Figure 6(a) shows how the four thresholds can be assigned 
values and how the corresponding function values occur from this 
assignment. Note that this function satisfies the coqditions of The­
orem 1. Figure 6(b) shows the complete OMDT off with weighted 
edges, for the case where T1 = 2 and T2 = 6. Figure 6(c) shows the 
corresponding ROMDD. 

Example 8 Consider the four variable switching function f = x 1 V 
x2 (x3 V x4). Note that f is a threshold function with the weight-thres­
hold vector (5,3, 1, 1;4). This vector satisfies the condition of Theorem 
1. So, the function with the ordering (xl, Xz, X3, x4) has a planar 
ROBDD, as shown in Figure 7(a). Here, we have replaced logic value 
labels of edges with weight values. A different ordering (x4 ,x 1,x3,x2) 

produces a non-planar ROBDD, as shown in Figure 7(b). 

DEFINITION 8 The min· and max V function have the property 

A· B =min {A, B} 
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(c) 

FIGURE 6 Derivation of a planar ROBDD for three-valued threshold function. 

(a) Planar ROBDD. (b) Non planar ROBDD 

A V B=max{A,B}. 

When r = 2, the min and max function correspond to the AND and 
OR function, respectively. 
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DEFINITION 9 Let x be a variable that takes on values from 
R={0,1, ... ,r-1}, and let S~R. Then, x•=O if x¢S and x•=r-1 
if x E S. x• is called the literal function. 

THEOREM 2 Let g(x 1,x2, ... ,xn) be a multiple-valued function that 
does not depend on x and let 

where A= {a, a+ 1, ... ,r-1 }. If g has a planar ROMDD, so also have 
f 1 andf2 • 

Proof Figures 8a and 8b show a planar realization of f 1 and f 2 • The 
planarity of the realizations off1 andf2 follow from the planarity of g. 

Q.E.D. 
Note that if g is t'-monotone, then f 1 (x 1,x2 , ... ,xn) and 

f 2 (x1,x2, ..• ,xn) are t'-monotone, and the result of Theorem 2, that f 1 

andf2 have planar ROMDD's can also be concluded from Lemma 3. 
Thus, Theorem 2 represents an extension of Lemma 3 to the case where 
g is not t'-monotone. We can achieve a further extension as follows. 

h 

X 

(a) planar OMDD for f=XA· g. (b) planar OMDD forf=XAvg. 

FIGURE 8 Planar ROMDD's for / 1 = xA · g and/2 = xA V g. 
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THEOREM 3 Let g(x 1,x2 , ... ,xn) be a multiple-valued function that 
does not depend on x, such that c1ow ~ g ~ chigh' for C10w,chigh E {0, 1, ... , 
r-1 }. Let 

where L={0,1, ... ,l-1}, M={l,l+1, ... ,h-1,h}, H={h+1,h+2, 
.. · ,r-1 }, gL(x) and g8 (x) are monotone (increasing)functions on x from 
L to {0, 1, ... ,c1ow} and from H to { chigh•chigh + 1, ... ,r -1 }, respectively. If 
g has a planar ROMDD, so also hasf 

Proof Figure 9 shows a planar realization off The planarity off 
follows from the planarity of g, the fact that L, M and H are disjoint, 
and the fact that gL(x) and g8 (x) are monotone increasing. Q.E.D. 

Theorem 2 is a special case of Theorem 3, where c 1ow = 0, chigh = r -1, 
and either l=a and h=r-1(! = xA ·g), or 1=0 and h=a-1(! = xA V g). 

3. PLANAR OBDD'S 

Because binary systems represents an important sub-class of multiple­
valued systems, we consider them in this section. Specifically, we con­
sider switching functions that have planar OBDD's. 

X 

FIGURE 9 Decomposition of a planar ROMDD. 
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DEFINITION 10 A complete symmetric OBDD is an OBDD for a 
symmetric function that has a node for every i and m such that i of the 
m variables associated with the present level are 1, for 0::::::; i::::::; m::::::; n. 

Figure 10 shows that complete symmetric decision diagram for a 
symmetric function on 1,2 and 3 variables. A leaf node v; can be 
reached if and only if i of the variables above it are 1. Thus, v0 can be 
reached only if all variables are 0, v1 can be reached only if exactly one 
is 1, etc .. Note that these OBDD's are planar. We have 

LEMMA 4 A symmetric function has a complete symmetric OBDD. 

DEFINITION 11 A voting function St/n is a symmetric function that is 1 
if and only if t or more of the n variables are 1, for 0::::::; t::::::; n. 

LEMMA 5 A symmetric function has a planar ROBDD iff it is a voting 
function. 

Proof (if) We can derive the ROBDD off, a voting function, by 
applying the merging and elimination rules to a complete OBDD off 
Specifically, we can first apply the rules to produce a complete symmet­
ric OBDD and second apply the rules to produce the final ROBDD. 
Since the complete symmetric OBDD is planar, it suffices to show that 
the second application of the rules preserves planarity. However, since f 
is a voting function, the leaf nodes of its complete symmetric OBDD 
consist of at most one string of O's to the left of at most one string of 1 's 

and the two rules preserve planarity. 

(a) n=1. (b) n=2. (c) n=3. 

FIGURE 10 Complete symmetric decision diagrams. 
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(only if) On the contrary, suppose there is a symmetric function f 
that is not a voting function that has a planar ROBDD. We can first 
reduce the complete OBDT off to a complete symmetric OBDD reali­
zing f Iff is not a voting function or the complement of a voting 
function, there are two pair of adjacent leaf nodes labeled 01 and 10. 
These correspond to functions xn and xn, where xn is the last variable in 
the OBDD ordering. Since these nodes can never be combined, and 
they produce crossing edges at the lowest level of the OBDD, the 
ROBDD for fis not planar, a contradiction. If/is the complement of a 
voting function, there is one pair of adjacent nodes labeled 10 and none 
labeled 01. However, the merging and elimination rules yield an OBDD 
with the leaf node 1 to the left of the leaf node 0, and such an OBDD 
does not satisfy Restriction 1. Q.E.D. 

Note the correlation of this result with Lemma 3, which states that 
an t'-monotone function has a planar ROMDD. That is, in the case of 
switching logic, the only t' -monotone symmetric functions are the AND 
and OR, which, by the repeated application of Theorem 2 have planar 
ROBDD's. However, Lemma 5 extends this to all voting functions by 
showing that they have planar ROBDD's. 

Example 9 Figure 11 shows the construction of an ROBDD for a 
voting function, S214, from a complete symmetric OBDD realization for 
S214• It is interesting that the resulting ROBDD has a rectangular struc­
ture with 2· 3 = 6 internal nodes. In general, a voting function S11n has an 
ROBDD with a rectangular structure with t·(n-t+1) internal nodes. 

DEFINITION 12 Let II={X1,X2 , ... ,Xn} be a partition of X={x1, 

x2 , ••• ,xn}· A function is partially symmetric with respect to II iff is 
unchanged by any permutation of the variables in X;. 

Given a partially symmetric function with respect to II, we can form 
an OMDD that recognizes the various parts as nodes with output edges 
corresponding to the number of variables in X; that are 1. We have 

DEFINITION 13 Letfbe a partially symmetric function with respect to 
II= {X1,X2, ... ,Xn}· Then,J can be represented by a companion func-
tion g(Y1, Yz, ... , Y, ), where Y; E {0, 1, ... , IX;I} represents the number of 1's 
in X;, and ge {0,1}. 
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1 

(a) (b) 

FIGURE 11 Construction of the ROBDD from a complete OBDD. 

Example 10 Figure 12(a) shows the ROBDD of a six variable func­
tion f partially symmetric with respect to n = {{x1},{x2,x3}, {x4, 
x 5,x6 } }. Figure 12(b) shows the ROMDD of the companion function 
tof 

THEOREM 4 If the companion function of a partially symmetric function 
f has a planar ROMDD, then f has a planar ROBDD. 

Proof Consider a planar ROMDD of some companion function g to 
a given partially symmetric function f By replacing each node with a 
complete symmetric decision diagram, we form an OBDD for f Any 
application of the merging or elimination rule preserves planarity; 
only nodes within one complete decision diagram can be merged or 
eliminated. Q.E.D. 

Example 11 f = (xl v x2) (x3x4 v XsX6) is partially symmetric with res­
pect to X 1 = { x1,x2}, X 2 = {x3,x4} and X 3 = { x5,x6}. Let 

Y;=O if X;={O,O} 

Y; = 1 if X;= {0,1} or X;= {1,0}, and 

¥;=2 if X;={1,1}. 
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(a)ROBDD. (b) Companion Function. 

FIGURE 12 ROBDD of a partially symmetric function and its companion function. 

Then, the companion function g is represented by 

g( r: y: Y:)=Y{1,2l(y(2Jv y(2J) 
1• 2• 3 1 2 3 . (1) 

Figure 13(a) shows the planar ROMDD for g. By Theorem 4, we can 
conclude that the partially symmetric function associated with g has a 
planar ROMDD. Indeed, by replacing each node in the OBDD of g, we 
form a planar ROBDD for f, as shown in Figure 13(b). Note that f is 
not a threshold function. Also, note that companion functions can be 
generated iteratively. For example, (1) can be written as 

where 



y1 

y2 

y3 

PLANAR DECISION DIAGRAMS 

g 

(a) Planar MOD for 
g=Yf1.2l<YflvYf'). 

X1 

X2 

X3 

X4 

Xs 

Xe 

f 

(b)~BDDfor 
f:(X1Y Xe)(XsXcv X6Xa). 

FIGURE 13 Derivation of a planar OBDD. 
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In this way, companion functions can be constructed from other com­
panion functions. 

Note that the converse of Theorem 4 is not true. That is, if the 
ROBDD of a partially symmetric function is planar, it does not follow 
that the companion function is planar. The function in Figure 12 repre­
sents a counterexample. 

The bottom part of the ROBDD in Figure 12(a), labeled by x4,x5, 

and x 6 realizes the three voting functions x4 x5x6 , x4 x5 V x4 x6 V x 5x 6 , 

and x4 V x 5 V x6 • Each function is realized by a separate node in the 
companion function. This observation can be made more general by 
observing that all voting functions can be realized in one ROMDD. 
For example, Figure 14 shows the realization of all voting functions on 
four variables. In general, we have 

LEMMA 6 The voting functions st/n' for 0::::::; t::::::; n + 1, collectively have 
a single planar ROBDD. 
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FIGURE 14 Planar realization of all voting functions on four variables. 

The structure realizing one or more symmetric functions has the form 
shown in Figure 15 below. Figure 15(a) shows specific voting functions 
that are 1 iff t or more of the n variables are 1, for n = 5 and 0 ~ t ~ 5. 
The label t/n abbreviates S11". Figure 15(b) shows a general implemen­
tation of this structure, in which two nodes '7 1 and 1J 2 , realizing voting 
functions S1""'' and S1, 1n, respectively, are identified. In preparation for 
Theorem 5, we establish conditions under which IJ, (shown in Fig. 15(b) 
as a node external to the structure realizing Sr,/n, and Sr,/n,), '7 1 and '7 2 

are part of a planar OBDD. 

(a) SpecifiC (b) General 

FIGURE 15 Structure realizing the voting functions. 
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LEMMA 7 Let n1 =IX 11 and n2 =IX 21· si1/•1(X 1) s;;; st2!•2(X 2), where 
either X 1 2X2 or X 2 2 X 1 ifft1 ?::-t2 and n1-t1 ~n2 -t2 . 

Proof (only if) Assume S111.JX 1) s;;; S121•2(X 2) and, on the contrary, as­
sume either t 1 <t2 or n1 -t1 > n2 -t2. Assume, X 1 2 X 2; the argument 
for X 2 2X1 is similar. Since n 1 ?;;n2, t1<t2 implies n1 -t1 >n2-t2, 

and it is sufficient to consider only the latter. Consider the voting 
function obtained by setting the n1 - n2 variables of X 1 - X 2 in 
S111.JX 1) to 1. This forms a symmetric function S11 -•1 +n2;.2(X 2). From 
n1-t1 >n2-t2, it follows that t 1 -n1 <t2-n2, and we can conclude 
that t1-n1 +n2<t2. Therefore S11 _•1+n

2
;.

2
(X2) and S121•2(X2) are dis­

tinct functions (since t1 -n1 + n2 #t2), such that S11 _.1 +n
2
;.

2
(X2) 2 S121•2(X2) 

(since t 1 - n1 + n2 < t2), contradicting the assumption S11;.1 (X 1) s;;; S121•2(X 2). 

(if) Assume t 1?;;t2 and n 1 -t 1 ~n2 -t2 . Assume X 12X2; the argu­
ment for X 2 2 X 1 is similar. Consider any assignment of values to 
X 1 - X 2 in S111•1 (X 1). The resulting function S11•2(X 2) has the property 
t?;;t 1 -n1 +n2, the lower bound on t corresponding to assigning 0 to 
all n1- n2 variables in X 1- X 2. But, from n1- t 1 ~ n2 ~ t2, t ~ t2, and 
it follows that S11•2(X 2) s;;; S121•2(X 2), from which we can conclude that 

St1!•1(X 1) s;;; St2!•2(X 2). Q.E.D. 

The significance of Lemma 7 can be seen as follows. Suppose that 
exactly one of the two conditions of Lemma 7 is not fulfilled. That is, 
either t 1 <t2 or n1 -t1 >n2-t2. Then either 17 1 exists within the 
OBDD that realizes 172 or vice versa, respectively. Therefore, one of the 
edges from 11 must cross edges in the OBDD structure. When both 
conditions are not fulfilled, the roles of 17 1 and 172 are reversed; i.e. 

Sr,;.,(X 1) 2 Sr2;.,(X 2). 

THEOREM 5 Let II be a two-part partition {X1,X2 }, such that 

X 1 = {x1,x2, ... ,xk} and X 2 = {xk+ 1, xk+ 2, ... ,x.}. Let 'P; (X 1) be the 
symmetric function that is 1 when exactly i of the variables in X 1 are 1 
and is 0 otherwise. Let S1,1 • .(X 2) be a voting function, where X 2.; s;;; X 2• 

Let f be represented as 

k 

f(X1,X2) = V 'P;(X1)Sr,; • .(X2.i), (2) 
i=O 

where S1,1 • .(X 2 .;) s;;; S1,+ 11.,+ JX 2 .;+ 1). 1hen,f has a planar ROBDD. 

Proof By Lemma 4, 'P;, a symmetric function, has a complete sym­
metric decision diagram, which is planar. Indeed, any set of symmetric 
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functions on X 1 can be realized. By Lemma 6, all St;Jn; have planar 
ROBDD's. Figure 16 shows an OBDD in which the upper block realiz­
es the '¥/s and the lower block realizes the St;fn;'s. By connecting ter­
minals between the two blocks, we have an ROBDD realization off 
(X 1,X 2). Crossings among these connections are precluded by Lemma 
7. Application of the merging and elimination rules preserves planarity. 

Q.E.D. 

A special case of Theorem 5 OJ::curs when X 2 ,; = X 2 , for all i. As an 
example of this, consider 

Example 12 Consider the function f = (x 1 EBx2)x3x4 V x1x2 (x3 V x4 ). f 
is partially symmetric with respect to X 1 = (xpx2) and X 2 = (x3,x4 ). Note 
that f can be represented as f(X 1,X 2) = '¥ 0(X 1)S312(X 2) V '¥ 1 (X 1)S212 
(X2) V'¥ z(X1)S11z{X2), where '¥ 0(X1) = x1x2, '¥ 1(X 1) = X 1 EBx2, '¥ 2(X 1) 
=x1x2, S3(X2)=0, Sz(X2)=x3x4 , and S1(X2)=x3 Vx4 . Thus, by 
Theorem 5,fhas a planar OBDD, Figure 16 shows this OBDD. 

Another special case of Theorem 5 occurs for a specific type of 
threshold function. 

-----------, 
' X1: 
' ' ' ' Y- • Complde symmeutc 

"": OBDD 

-------. 
' X3: 
' ' : Vodll& l'wM:doa JC11C1*r 

X4: 
' 
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COROLLARY 1 A monotone increasing threshold function having at 

most two different weights has a planar ROBDD. 

Proof 

1. A monotone increasing threshold function f having only one 
weight is a voting function. Thus, by Lemma 5, f has a planar 
ROBDD. 

2. Suppose thatf has a weight-threshold vector (w1,w2 , .•. ,wk+ 1, .•. , 

wn; T), where w1 =w2 = ··· =wk< wk+ 1 = wk+l = ··· =wn. In this 
case,/ is partially symmetric with respect to X 1 = { x 1,x2, ... ,xk} 

and X 2 ={xk+ 1,xk+ 2, ••• ,xn}, and/ can be represented in the form 
(2). Since f is a monotone increasing function, we can assume that 
Sr,;niX2)~Sr,+,;n,+JX2). Thus, by Theorem 5, f has a planar 
ROBDD. 

Q.E.D. 

LEMMA 8 Let X={x 1,x2 , ... ,xn}. Let c/J;(X)(i=0,1, ... ,t) be thre-

shold functions with a weight-threshold vector (w1 , w2 , ... , wn; T), where 

w1 = 1 and 

n 

w;;;::: L wj, and ¢;(X)2¢;+ 1(X). 
j=i+ 1 

Then, both 'P;(X)=c/J;(X). c/J;+1(X)(i=1,2, ... ,t-1) and '¥1 =cp;(X) 
can be represented in a planar OBDD. 

Example 13 Consider the following threshold functions, which are 
represented by the weight-threshold vector (2, 1, 1; T). 

¢ 0(X) = 1 (T=O) 

¢ 1(X)=x1 Vx2 Vx3 (T= 1) 

cp 2(X) = x 1 V x 2 x 3 (T=2) 

¢ 3(X) = x 1(x2 V x 3) (T=3) 

cp4(X) = x 1x 2x 3 (T=4) 
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The 'P functions are formed as follows. 

Figure 5(a) shows the decision tree with weights. By merging the ter­
minal nodes that represent the same weight-sum, we achieve the 
ROBDD, as shown in Figure 17. 

We can extend Theorem 5 to the case where the subfunctions on X 2 

are symmetric functions. 

THEOREM 6 Suppose that X= (X 1,X 2) is a partition of variables 
X= (x 1,x2 , .•. ,xn). If a function f can be represented as 

t 

f(Xt,Xz)= V 'P;(Xt)Sa,(Xz), (3) 
i=O 

FIGURE 17 ROBDD generating 'l';'s. 



PLANAR DECISION DIAGRAMS 61 

where Sa,(X2 ) is a symmetricfunction satisfying Sa,(X2 H;;;Sa,+ 1(X 2 ), and 
'P;(i = 1,2, ... ,t) is a function as defined in Theorem 5, thenf has a planar 
OBDD. 

Proof We can prove this theorem in a similar way to Theorem 5. 
Q.E.D. 

COROLLARY 2 Suppose that a monotone increasing thresholdfunctionf 

has a weight-threshold vector (w1,w2, ... ,wk,wk+ 1,' ... ,wn;T), where w1 = 1, 

k 

W;~ L wi, (i=1,2, ... ,k-1), and 
j;i+ 1 

Wk=wk+l = oo•=Wn. 1hen,fhas a planar ROBDD. 

Proof Note that f can be written in the form (3). Because f is mono­
tone increasing, we can assume that Sa,(X2)£Sa,+

1
(X2). Thus, by The­

orem 6,fhas a planar ROBDD. Q.E.D. 

Example 14 Consider the 5-variable function with the weight-thres­
hold vector (4,3,3,2,1;6).f is symmetric with respect to X 2 = {x2,x3 }. 

Also, the weights for X 1 = {x1,x4 ,x5 } satisfy the conditions of 
Theorem 6. Thus, f can be represented as 

7 

f = V 'P;(X t)Sa,(X z). 
i;O 

Figure 18 shows the planar OBDD for f The upper block generates 'P;, 
and the lower block generates Sat Note that each edge has a weight. In 
each path from the root node to the constant 1, the sum of the weights 
is greater than or equal to 6. On the other hand, in each path from the 
root node to the constant 0, the sum of the weights is less than 6. We 
can form an ROBDD without crossings. 

THEOREM 7 All the monotone increasing functions of up to four vari­
ables have planar ROBDD's. 

Proof From the table of NPN-representative functions of four vari­
ables [3], we can identify all the monotone increasing functions. By 
using Theorem 3, Corollaries 1 and 2, we can verify that all the repre-
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f 

x, 

FIGURE 18 OBDD for a threshold function. 

sentative functions have planar ROBDD's, except for g =x1(x2 V x4) V 
x3x4 . But, g has a planar OBDD as shown in Figure 19. Q.E.D. 

THEOREM 8 All the monotone increasing threshold functions of up to 
five variables have planar ROBDD's. 

Proof From the table of D-representative functions of NPN-equiva­
lence classes up to five variables [5], we can verify the theorem. There 

Xt 
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are 62 representative functions. By using Theorem 3, Corollaries 1 and 
2, we can show that 59 functions have planar OBDD's. For the other 3 
functions, we obtained their planar ROBDD's by inspection. Q.E.D. 

4. CONCLUDING REMARKS 

By Restriction 1, all OBDD's in this paper have the property that 
l-edges emerge to the right and 0-edges emerge to the left. By lifting this 
restriction, we can extend our results as follows. 

LEMMA 9 fhas a planar ROBDD iffP has a planar ROBDD, wherefd 
is the dual off 

Proof In the ROBDD off, complement all (node and edge) labels. 
The resulting OBDD is an ROBDD for fd and is planar. Q.E.D. 

Note that rotation of the ROBDD obtained from the above result 
about a vertical line produces an ROBDD that again satisfies Restric­
tion 1. 

However, the lifting of Restriction 1 also allows us to extend our 
results for monotone increasing functions to unate functions. Specifi­
cally, given a unate function f, we can convert f into a monotone 
increasing function by complementing certain variables. In the domain 
of the OBDD, this corresponds to interchanging the 0 and 1 labels 
associated with the complemented variables. Since relabeling edges 
preserves planarity, if the original OBDD had no crossing edges, so also 
with the relabeled OBDD. 

For a given monotone increasing function, in most cases, we can find 
a planar ROBDD among minimum ROBDD's. However, some func­
tions require additional nodes to make their OBDD's planar. In the 
past, reduction of the number of nodes was the major subject in the 
optimization of OBDD's. However, in implementing multi-level net­
works directly from the OBDD's, the planarity of OBDD's is also 
important, since crossings produces delay in LSis. 
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