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Abstract

In this note, we investigate the delta sequence associated to the
classical Thue-Morse sequence and prove a conjecture about the delta
sequence. Further, we generalize the Thue-Morse sequence and show
some results about this new sequence and its associated delta sequence.

1 Motivation and Some Definitions

The Thue-Morse (TM) sequence T = (tn)n≥0 is defined as the limit of iter-
ates ϕn(0), where the map ϕ is defined by ϕ(0) = 01, ϕ(1) = 10. We denote
the 2n-length initial segment of the TM sequence by T2n . Furthermore, the
TM sequence can also be generated by:

T1 = t0 = 0,

T2n = T2n−1T2n−1 , n ≥ 1.

or

T1 = t0 = 0,

T2n = T2n−1r(T2n−1), for n odd.

T2n = T2n−1r(T2n−1), for n even,

∗Research supported by the Naval Postgraduate School RIP funding.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
27 FEB 2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
On the Delta Sequence of the Thue-Morse Sequence 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Department of Applied 
Mathematics,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Australasian Journal of Combinatorics 39 (2007), 293-300. 

14. ABSTRACT 
In this note, we investigate the delta sequence associated to the classical Thue-Morse sequence and prove a
conjecture about the delta sequence. Further, we generalize the Thue-Morse sequence and show some
results about this new sequence and its associated delta sequence. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

9 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



where r(·) is the map that reverses the bits of the argument, and B is the
complement of B. Moreover, the TM sequence can also be generated by
using the bit expansion of the position, that is,

if i =
∑

j

bj2j , then ti =
∑

j

bj (mod 2), (1)

that is, T = (tn)n≥0 counts the number of 1’s (mod 2) in the base-2 repre-
sentation of n. The first few terms of the Thue-Morse sequence are

T = 011010011001011010010 · · ·

x1 x2 x3 x4 f
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Table 1: Truth table of a Boolean function

Let Fn
2 be the vector space of dimension n over the two element field F2.

Let us denote the addition operator over F2 by ⊕, and the direct product by
“·”. The vectors consisting of all 1, respectively, all 0 (of some length) are
denoted by 1, respectively, 0. By abuse of notation, when there is no danger
of confusion, we sometimes use 1,0 to denote a binary string consisting of
all 1, respectively, all 0. A Boolean function on n variables may be viewed
as a mapping from Fn

2 into F2. We order Fn
2 lexicographically, and denote

v0 = (0, . . . , 0, 0), v1 = (0, . . . , 0, 1), v2n−1 = (1, . . . , 1, 1). We interpret a
Boolean function f(x1, . . . , xn) as the output column of its truth table, i.e.,
a binary string of length 2n, f = [f(v0), f(v1), f(v2), . . . , f(v2n−1)]. In
Table 1 we present the truth table of a 4-variable Boolean function.

The novelty of our work consists of the Boolean functions approach on
the TM sequence, which enables us to resolve several questions on the TM
sequence. We do not claim that some of our results cannot be obtained by
working with the sequence directly, however our approach is elegant and
brings into play the powerful tool of Boolean functions.
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2 Delta sequence of the TM-sequence

We define

S = {A = 0, 0, 1, 1; Ā = 1, 1, 0, 0; B = 0, 1, 0, 1; B̄ = 1, 0, 1, 0;
C = 0, 1, 1, 0; C̄ = 1, 0, 0, 1; D = 0, 0, 0, 0; D̄ = 1, 1, 1, 1}.

(2)

Our Theorem 1 will give an alternate definition for the TM sequence, and it
can be deduced from the generation algorithm (1) and the following lemma.

Lemma 2.1. (Folklore Lemma [8, Lemma 3.7.2]) Any affine function f =
[t1, . . . , t2n ] on n variables, n ≥ 2, is a linear string of length 2n made up of
4-bit blocks I1, . . . , I2n−2 given as follows:

1. The first block I1 is one of A,B, C, D, Ā, B̄, C̄ or D̄.

2. The second block I2 is I1 or Ī1.

3. The next two blocks I3, I4 are I1, I2 or Ī1, Ī2.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

n− 1. The 2n−3 blocks I2n−3+1, . . . , I2n−2 are I1, . . . , I2n−3 or Ī1, ..., Ī2n−3.

Theorem 1. The initial segment of length 2n, n ≥ 2, of the TM sequence
is the truth table of the Boolean function

f(x1, x2, . . . , xn) = x1⊕x2⊕ · · ·⊕xn,

defined on Fn
2 (ordered lexicographically).

Proof. By the Folklore Lemma it is easy to see that x1⊕ · · ·⊕xn = CC̄ · · · ,
which is exactly the initial segment of length 2n of the TM sequence.

In [4] the following delta-j sequence (we will call it delta sequence, if j is
understood from the context) is associated to the TM sequence: For j ≥ 1,
we define

δ
(j)
i = ti⊕ti+j .

Various results were proved in [4] by working with the delta-sequence, in
particular it was proved that T has the nonoverlap property (also known as
the BBb property), that is, the subsequence BBb, where B is a block of bits
of any > 0 length, and b is the first bit of B, does not appear in the TM
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sequence. The nonoverlap property was originally proved by Thue in his
seminal papers from 1906 and 1912 [9, 10]. The result has been rediscovered
in [6] and other places (see [2, 3] for surveys of results on the TM sequence).

It is interesting to note that, independently, in [1], a different approach
was taken, which arrives to the same delta sequence. Kimberling proposed
a problem in American Mathematical Monthly on the sequence c = (ck)k

defined by

c0 = 1; ck+1 =

{
ck + 1 if (ck + 1)/2 6∈ c
ck + 2 otherwise.

Later, Plouffe and Zimmermann [7] proposed the following problem (which
was found by a method that goes back to Euler):∑

k≥0

ckx
k =

1
1− x

∏
j≥1

(1 + xej ),

where c is the sequence of Kimberling and e = (ej)j is defined by

e1 = 1; ej+1 =

{
2ej + 1 if j is even

2ej − 1 if j is odd.

The conjecture was proven in [1] by a method that uses the ever-present TM
sequence. Furthermore, if one defines the characteristic function of c,

χ(k) =

{
1 if k ∈ c
0 otherwise,

then one can show [1, Lemma 3] that

χ(k) = tk⊕tk−1,

that is, χ(k) is the same as the delta-1 sequence δ
(1)
k−1.

Fredricksen, in [4], proved that δ
(1)
k is 1 if and only if k +1 = (1+2`)22j ,

for some integers `, j, and Proposition 1 and Lemma 1 of [1] state similar
results about χ(k). Fredricksen proved that δ

(2)
k is the dilated by 2 sequence

of δ
(1)
k , and observed that δ

(4)
k is the dilated by 4 sequence of δ

(1)
k . For

example, δ
(1)
k = 101110 . . . and δ

(2)
k = 110011111100 . . ., that is, δ

(2)
k contains

twice every bit of δ
(1)
k .

Consequently, he proposed a conjecture, which we prove in our main
result of this section.
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Theorem 2. The delta sequence δ(2j) is the dilated by two sequence of the
delta sequence δ(j).

Proof. To prove the claim it is sufficient (and necessary) to show that

δ
(2j)
2i = δ

(2j)
2i+1 = δ

(j)
i . (3)

Let f denote the linear function in Theorem 1 for some fixed n. It is sufficient
to show

f(v2i)⊕f(v2i+2j) = f(v2i+1)⊕f(v2i+2j+1) = f(vi)⊕f(vi+j), (4)

for this function, since then (3) follows for all i and j by letting n tend to
infinity. Observe that v2`+1 = v2`⊕v1 (there is no carry). Since f is linear,
we obtain

f(v2i+1)⊕f(v2i+2j+1)
= f(v2i⊕v1)⊕f(v2i+2j⊕v1)
= f(v2i)⊕f(v1)⊕f(v2i+2j)⊕f(v1)
= f(v2i)⊕f(v2i+2j).

We are left with checking that f(v2i)⊕f(v2i+2j) = f(vi)⊕f(vi+j). We prove
the latest claim, by showing that

f(v2`) = f(v`), (5)

for any `, in particular, for ` = i, and ` = i + j. Equation (5) follows from
the observation that v2` is obtained from v` by moving the leftmost 0 bit
to the rightmost location of the string. That is, the Hamming weight of
v2` is the same as the Hamming weight of v`, which implies, again using
Theorem 1 that f(v2`) = f(v`). The theorem is proved.

See the remark after Theorem 4 for an alternative approach to infer the
truth of Theorem 1.

3 Generalized Thue-Morse sequences

Let ε := ε1ε2 · · · be a sequence of εi ∈ {0, 1} bits (possibly infinite). Define
a function rεi on arbitrary bit-blocks B, in the following way:

rεi(B) =

{
B if εi = 0
B if εi = 1.

(6)
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We introduce the generalized Thue-Morse sequence T ε = (tεn)n≥0 (we call
it the ε-TM sequence) by the following algorithm (T ε

2i is the binary string
made up of the first 2i bits of T ε):

T ε
1 = t0 ∈ {0, 1}

T ε
2i = T ε

2i−1 rεi(T
ε
2i−1)

(7)

The classical Thue-Morse sequence is T ε, where ε = 11 · · ·.

Theorem 3. Given an initial segment T2n of length 2n of a generalized
Thue-Morse sequence, there exists an affine Boolean function f (if t0 = 0,
then f is linear) on n variables, such that T2n is the truth table of f .

Proof. First, assume t0 = 0. Then the choices ε1ε2 = 01, 10, 11, 00 give,
respectively, the initial segments A,B, C, D of length 4. Now by the Folklore
Lemma the resulting generalized Thue-Morse sequences all have their initial
segments T2n given by the corresponding initial segments of some linear
function. If t0 = 1, then the same argument leads to an affine function f
with f(0) = 1.

We call such a sequence T2n as in Theorem 3, the TM-sequence associated
to f , and the Boolean function f – sometimes, labeled fT – is the companion
of T2n .

Define the delta-(ε, j) sequence associated to T ε, in the same way as
before, that is,

δ
(ε,j)
i = tεi⊕tεi+j .

Let ε := ε1ε2 · · · be an infinite bit string.

Theorem 4. The delta sequence δ(ε,2j) satisfies

δ
(ε,2j)
2i = δ

(ε,2j)
2i+1 , (8)

for any i, j. In general, if f(x1, . . . , xn) = xi1⊕ · · ·⊕xik , then the delta
sequence associated to f satisfies

δ
(ε,j)
i = 1 if and only if wt(πi1,...,ik(vi))⊕wt(πi1,...,ik(vi+j)) = 1, ∀i, j

where πi1,...,ik(v) is the length-k projection on the coordinates i1, . . . , ik of
the vector v.
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Proof. Without loss of generality we may assume that t0 = 1. Suppose that
fT (x1, . . . , xn) = xi1⊕ · · ·⊕xik is the companion of the initial segment T2n

of δ(ε,j). To prove (8) it suffices to show

fT (v2i)⊕fT (v2i+2j) = fT (v2i+1)⊕fT (v2i+2j+1), (9)

Since fT is linear, this follows by the argument used in the proof of Theo-
rem 2. To prove (9), we use the facts that

δ
(ε,j)
i = 1 if and only if fT (vi)⊕fT (vi+j) = 1

(from Theorem 3) and

fT (vi) = wt(πi1,...,ik(vi)) (mod 2)

(from the form of the linear function fT ).

An alternative approach, suggested by one reader of the paper is to
observe that t2n ≡ tn (mod 2), and t2n+1 ≡ 1 + tn (mod 2), and so,

δ2j
2i ≡ t2i + t2i+2j ≡ ti + ti+j ≡ δj

i (mod 2),

δ2j
2i+1 ≡ t2i+1 + t2i+2j+1 ≡ (1 + ti) + (1 + ti+j)

≡ ti + ti+j ≡ δj
i (mod 2).

A further analysis of the binary expansion of n, say n =
∑

k≥0 ek(n)2n,
implies

tεn = t0 +
∑
k≥0

ek(n)εk+1 (mod 2),

(using induction on N that the relation is true for all n ∈ [0, 2N ), using
some properties of the Thue-Morse sequence). Now, for k ≥ 1, we have
ek(2n) = ek(2n + 1)(= ek−1(n)), e0(2n) = 0 and e0(2n + 1) = 1. We can
now get δ

(ε,2j)
2i = δ

(ε,2j)
2i+1 .

Next, we shall investigate the nonoverlap property of the generalized
Thue-Morse sequence, and prove our main result of this section.

Theorem 5. The ε-TM sequence satisfies the nonoverlap property if and
only if ε = 1.
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Proof. If the sequence ε is not identically 1, it contains a 0, hence either the
block 00 or one of the blocks 011 or 010. It thus suffices to show that, if the
sequence ε contains one of the blocks 00, 011, 010, then the corresponding ε-
TM sequence contains an overlap. For easy writing, we denote by Bi := T ε

2i ,
i ≥ 0 (obviously, B0 = {t0}). We distinguish the following cases.
Case (i) If εi = 0 and εi+1 = 0, for some i ≥ 1, then

Bi+1 = Birεi+1(Bi) = BiBi

= Bi−1rεi(Bi−1)Bi−1rεi(Bi−1)
= Bi−1Bi−1Bi−1Bi−1,

which contains the cube Bi−1Bi−1Bi−1, hence an overlap.
Case (ii) If εi = 0, εi+1 = 1, and εi+2 = 1, for some i ≥ 1, then

Bi+2 = Bi+1Bi+1 = BiBi BiBi

= Bi−1Bi−1Bi−1 Bi−1 Bi−1 Bi−1Bi−1Bi−1,

which contains the cube Bi−1 Bi−1 Bi−1, hence an overlap.
Case (iii) If εi = 0, εi+1 = 1, and εi+2 = 0, for some i ≥ 1, the next bit
is either εi+3 = 0 and then (i) shows that there is an overlap in Bi+3, or
εi+3 = 1, in which case

Bi+3 = Bi+2Bi+2 = Bi+1Bi+1Bi+1 Bi+1

= BiBiBiBi BiBiBiBi

= Bi−1Bi−1Bi−1 Bi−1 Bi−1Bi−1Bi−1 Bi−1

Bi−1 Bi−1Bi−1Bi−1Bi−1 Bi−1Bi−1Bi−1

which contains the cube Bi−1 Bi−1 Bi−1, hence an overlap.
The theorem is proved.

It would be an interesting problem to investigate what patterns are
avoided in the ε-TM sequence.
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