

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

STREAMLINING COMPLIANCE VALIDATION THROUGH

AUTOMATION PROCESSES

by

Alex C. Hudson

Richard T. Leitner

March 2014

Thesis Co-Advisors: John Gibson

 Karen L. Burke

Second Reader: George Dinolt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-

0188
Public reporting burden for this collection of information is estimated to average one hour per

response, including the time for reviewing instruction, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington headquarters Services, Directorate

for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

March 2014

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

STREAMLINING COMPLIANCE VALIDATION THROUGH AUTOMATION

PROCESSES

5. FUNDING NUMBERS

6. AUTHOR(S) Alex C. Hudson and Richard T. Leitner

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

IRB protocol number ___N/A_____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200words)

This thesis analyzes some of the processes, tools, and content used in the

certification and accreditation of Department of Defense information

technology systems. The result of this analysis identifies the areas that

would be improved by streamlining compliance validation through continuous

monitoring and automating processes. The output of this research will be used

to determine a set of requirements that, if met, would allow for the creation

of a system that could be used to reduce the cost associated with compliance

testing of network devices and servers, while increasing the accuracy and

frequency of compliance validation. A result of this thesis will be a proof-

of-concept tool that will be evaluated for functionality and used as a

starting point for further discussion on future development.

14. SUBJECT TERMS

Information assurance, certification and accreditation (C&A),

continuous monitoring, compliance validation.

15. NUMBER OF

PAGES

215

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

STREAMLINING COMPLIANCE VALIDATION THROUGH AUTOMATION

PROCESSES

Alex C. Hudson

Civilian, Department of the Navy

B.S., Clemson University, 1999

Richard T. Leitner

Civilian, Department of the Navy

B.S., University of South Carolina, 2003

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2014

Author: Alex C. Hudson

 Richard T. Leitner

Approved by: John Gibson

Thesis Co-Advisor

 Karen L. Burke

Thesis Co-Advisor

George Dinolt

Second Reader

Peter Denning

Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis analyzes some of the processes, tools, and

content used in the certification and accreditation of

Department of Defense information technology systems. The

result of this analysis identifies the areas that would be

improved by streamlining compliance validation through

continuous monitoring and automating processes. The output

of this research will be used to determine a set of

requirements that, if met, would allow for the creation of

a system that could be used to reduce the cost associated

with compliance testing of network devices and servers,

while increasing the accuracy and frequency of compliance

validation. A result of this thesis will be a proof-of-

concept tool that will be evaluated for functionality and

used as a starting point for further discussion on future

development.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. PROBLEM SCOPE1
B. THESIS SCOPE2
C. ORGANIZATION OF THESIS3

II. BACKGROUND ..5
A. INTRODUCTION5
B. CURRENT PROBLEMS FACING DOD IT SECURITY7
C. C&A PROCESS AND PURPOSE12

1. Overview12
2. DIACAP12
3. Risk Management Framework15
4. Lasting Effects18

D. CONTINUOUS MONITORING AND COMPLIANCE VALIDATION

TOOLS ...18
E. SECURITY CONTENT AUTOMATION PROTOCOL23

1. SCAP Languages24
2. SCAP Enumerations26
3. SCAP Reporting Formats28
4. SCAP Integrity Component28

F. ASSURED COMPLIANCE ASSESSMENT SUITE29
1. SecurityCenter29
2. Nessus Vulnerability Scanner29
3. Passive Vulnerability Scanner29
4. X-Tool30
5. Topology Viewer30

G. VULNERABILITY MANAGEMENT SYSTEM31
H. CONTINUOUS MONITORING AND RISK SCORING32

1. CMRS HBSS Asset Reporting33
2. CMRS ACAS Asset Reporting34

III. REQUIREMENTS ...35
A. SECURITY-FOCUSED CONFIGURATION MANAGEMENT35

1. Configuration Baseline Monitoring36
2. Secure Configuration Environment37

B. TRANSITION FROM VMS TO CMRS37
C. SYSTEM CONCEPT39

1. Scripting Languages41
2. Relational Database45
3. Front End Web Server47
4. Additional Concerns48

IV. PROOF-OF-CONCEPT SYSTEM51
A. INDIVIDUAL FUNCTIONS52

 viii

1. Import52
2. Codefunctions53
3. Documents57
4. Groups58
5. Generate Scripts60
6. Hosts ..62
7. Uploadresults62
8. Uploadconfig63
9. Scans ..64
10. Configs65
11. Reviewscans67

B. SYSTEM FLOW68

V. FUNCTIONAL TESTING71
A. SERVER FUNCTIONAL TESTING71

1. Import XCCDF Content Files72
2. Adding Server and Network Device Hosts74
3. Upload SCAP Baseline Scan Results75
4. View Scan Results77
5. Review Scans78

B. NETWORK DEVICE FUNCTIONAL TESTING80
1. Preparing Custom Checks81
2. Validation and Comparison85

VI. CONCLUSION ...95
A. PROOF-OF-CONCEPT SYSTEM RESULTS95
B. IMPROVEMENTS97

1. Role Based Access Control97
2. System Flow98
3. Custom Checks98

C. FUTURE WORK100

APPENDIX A. PROOF-OF-CONCEPT DATABASE STRUCTURE105
A. CODE ...105
B. CODEFUNCTIONS105
C. CONFIGS ..106
D. DOCUMENTS ..106
E. GROUPS ...107
F. HOSTS ..108
G. PROFILES ...109
H. PROFILESMAP109
I. RESULTS ..109
J. SCANS ..110

APPENDIX B. PROOF-OF-CONCEPT SOURCE CODE111
A. INDEX.PHP ..111
B. VARIABLES.PHP111
C. FUNCTIONS.PHP112

 ix

D. HTMLHEAD.PHP113
E. MENU.PHP ...121
F. IMPORT.PHP122
G. CODEFUNCTIONS.PHP137
H. DOCUMENTS.PHP142
I. PROFILES.PHP143
J. GROUPS.PHP144
K. EDITGROUP.PHP146
L. SCRIPT.PHP154
M. HOSTS.PHP ..159
N. UPLOADRESULTS.PHP162
O. UPLOADCONFIG.PHP168
P. SCANS.PHP ..173
Q. CONFIGS.PHP176
R. REVIEWSCANS.PHP180
S. RESULTS.PHP182

LIST OF REFERENCES ...187

INITIAL DISTRIBUTION LIST193

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Number of CVEs reported per year 9
Figure 2. Top three CVE Categories (by year).................. 10
Figure 3. The Five DIACAP Activities 13
Figure 4. Risk Management Framework 16
Figure 5. OVAL Overview 25
Figure 6. CVSS Metric Groups 27
Figure 7. Nessus and PVS Data Flow 30
Figure 8. CMRS Report for IAVA/Bs out of compliance 32
Figure 9. CMRS Data Flow 33
Figure 10. Security-Focused Configuration Management Phases 35
Figure 11. System Functional Diagram 41
Figure 12. Import XCCDF Content 53
Figure 13. Create Code Functions 54
Figure 14. Code Functions List 55
Figure 15. Edit Code Functions 56
Figure 16. XCCDF Documents List 57
Figure 17. Select Profile 58
Figure 18. XCCDF Vulnerability List 59
Figure 19. Create Custom Check 60
Figure 20. Generate Custom Scripts 61
Figure 21. Execute Custom Scan 61
Figure 22. Add Hosts .. 62
Figure 23. Upload Results 63
Figure 24. Upload Config 64
Figure 25. Scan Results 65
Figure 26. Configuration List 65
Figure 27. Loaded Configuration 66
Figure 28. Review Scans Listing 67
Figure 29. Review Scan Results 67
Figure 30. Modify Scan Result 68
Figure 31. Import XCCDF Content 73
Figure 32. Imported XCCDF Content 73
Figure 33. Add Hosts Dialog 74
Figure 34. Hosts Information Table 74
Figure 35. Hosts Update / Delete Dialog 75
Figure 36. Upload Results Dialog 75
Figure 37. Upload Results Table 76
Figure 38. Upload Results Update / Delete Dialog 76
Figure 39. View Scans Table 77
Figure 40. Update / Delete Scans Dialog 77
Figure 41. Review Scans Table 78
Figure 42. Internet Explorer Scans Comparison.................. 79
Figure 43. Windows 2008 R2 Scans Comparison 80
Figure 44. Document List 81
Figure 45. Document Profiles List 81

 xii

Figure 46. XCCDF Document Vulnerability List................... 82
Figure 47. Vulnerability Check Creation 83
Figure 48. Vulnerability Check 84
Figure 49. Custom Check Status 85
Figure 50. Uploadconfig Dialog 85
Figure 51. Choosing a File Dialog 86
Figure 52. Uploading a Configuration File 87
Figure 53. Uploaded Configuration Files 87
Figure 54. Initial Configs Tab 88
Figure 55. Selected Config File View 88
Figure 56. Update, Delete or Select Config Options 89
Figure 57. Configuration Selected 90
Figure 58. Scripts Generated 90
Figure 59. Execute scan 91
Figure 60. Scan of Original Config 91
Figure 61. Uploaded Scans 92
Figure 62. Scan of Modified Config 92
Figure 63. Review Scans for Network Device 93
Figure 64. Network Results Comparison 94
Figure 65. Password Custom Check 99

 xiii

LIST OF TABLES

Table 1. Gold Disk Automated Checks 21
Table 2. SCAP 1.2 Components 24
Table 3. Retina Versus ACAS Severity Code Comparison 38
Table 4. Test Server Configuration Changes Modified 72
Table 5. Test Server SCAP Benchmark Result Files 72
Table 6. XCCDF Content Files 73
Table 7. Code Table Data Columns 105
Table 8. Codefunctions Table Data Columns 106
Table 9. Config Table Data Columns 106
Table 10. Documents Table Data Columns 107
Table 11. Groups Table Data Columns 108
Table 12. Hosts Table Data Columns 109
Table 13. Profiles Table Data Columns 109
Table 14. ProfilesMap Table Data Columns 109
Table 15. Results Table Data Columns 110
Table 16. Scans Table Data Columns 110

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

ACAS Assured Compliance Assessment Suite

AMP Apache-MySQL-PHP

ANSI American National Standards Institute

ARF asset reporting format

AI asset identification

AIS automated information system

APS asset publishing service

AV antivirus

C&A certification and accreditation

CCE common configuration enumeration

CCSS Common Configuration Scoring System

CEO chief executive officer

CMRS Continuous Monitoring and Risk Scoring

CNDSP computer network defense service provider

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposure

CVSS Common Vulnerability Scoring System

DAA designated approving authority

DIACAP DoD Information Assurance C&A Process

DISA Defense Information Systems Agency

DoD Department of Defense

EUD end user device

FIPS Federal Information Processing Standard

FSO field security operations

GIG global information grid

GPO group policy object

GUI graphical user interface

HBSS host based security system

IA information assurance

 xvi

IAVA/Bs information assurance vulnerability alerts

and bulletins

IAVM information assurance vulnerability

management

IE Internet Explorer

IP Internet Protocol

IS information system

ISO International Organization of Standards

ISS Internet Information Services

IT information technology

JTFTI Joint Task Force Transformation Initiative

LAMP Linux AMP

MAC mission assurance category

MHS military health systems

MS Microsoft©

NCSD National Cyber Security Division

NIST National Institute of Standards and

Technology

NVD National Vulnerability Database

OAM operation attribute model

OCIL Open Checklist Interactive Language

OS operating system

OVAL Open Vulnerability and Assessment Language

POA&M plan of action and milestones

PVS Passive Vulnerability Scanner

RAM random access memory

RBAC role based access control

REM Retina Events Manager

RDBMS Relational Database Management System

RMF Risk Management Framework

SCAP Security Content Automation Protocol

SecCM security-focused configuration management

SME subject matter expert

 xvii

SOE standard operating environment

SQL Structured Query Language

SRR system readiness/review

SSH secure shell

SSL secure sockets layer

STIG Security Technical Implementation Guide

TAR tape archive

TLS transport layer security

TMSAD trust model for security automation data

VMS Vulnerability Management System

XCCDF Extensible Configuration Checklist

Description Format

XML Extensible Markup Language

XSS cross-site scripting

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

We are grateful to SPAWAR Systems Center Atlantic for

the opportunity to pursue this degree from the Naval

Postgraduate School. To our advisors, Professor Karen Burke

and Professor John Gibson, thank you for all your support

and hard work throughout this process. Without your

assistance, this would not have been possible. To our

friend, Clay Stuckey, thank you for taking the time to help

us with some of the technical difficulties of the proof-of-

concept. Your generosity is an inspiration. To our wives,

Angel Leitner and Kimberly Hudson, thank you for your

patience, understanding, and support as we worked to

complete this task. We love you.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Intel co-founder Gordon E. Moore described what would

eventually be termed Moore’s law in his 1965 paper,

"Cramming More Components onto Integrated Circuits" [1]. He

observed integrated circuit component density doubling

every 12 months. As a result, the cost per transistor per

integrated circuit decreased every year. This demonstrates

that while computing power increase the costs to the

consumer continue to decrease. Moore predicted that this

trend would continue for at least another decade. In fact,

the trend for the most part has continued to present day.

For example, in 1968 Hewlett Packard sold the 40 pound

“portable” 9100A personal computer [2] for $4900, which

would be over $32,000 [3] in today’s money. It was billed

as a personal computer capable of scientific and

engineering computations utilizing up to 16 data storage

registers. By contrast, the Raspberry Pi is a credit card

sized computer that is sold for $35 and comes “stock” with

512MB of random access memory (RAM) and an ARM11 processor

capable of 700 million operations per second while weighing

in at 1.6 ounces [4]. As a result of these trends and

ubiquitous network connectivity, we find more and more

computers being used in the government, private sector and

our homes. For example the number of personal computers in

use worldwide reached one billion in 2008 and by the year

2014 there are estimated to be over two billion in use [5].

A. PROBLEM SCOPE

The United States government’s reliance on computing

technologies and its connectivity to public networking

 2

infrastructure positioned it on a warfare domain with an

ever expanding battlefront in which any adversary with a

computer can engage in battle. According to a July 2011,

report generated by the U.S. Government Accountability

Office regarding cyber efforts,

The U.S. military is dominant in the land domain,

unchallenged in the air, and has few near-peers

in the maritime domain. However, the technical

and economic barriers to entry into the cyber

domain are much lower for adversaries and as a

result place U.S. networks at great risk. [6]

The rapid growth of information technology (IT)

systems and reliance on technology present unique

challenges for the Department of Defense (DoD) concerning

IT Security. The integration of new technologies and

systems into the everyday work-life of DoD employees has

introduced a reliance on these systems in order to

function. As new systems are introduced and existing

systems upgraded to provide additional security or function

more potential vulnerabilities are introduced, a result of

the growing complexity of systems. According to Symantec,

in 2011 there were 4,989 new vulnerabilities reported,

which works out to be approximately 95 new vulnerabilities

reported per week [7]. Both the growing number of

vulnerabilities being introduced daily and the trend of

system component growth are increasing the time and

resources required to secure systems.

B. THESIS SCOPE

The primary focus of this thesis is to examine the

effects that the growing number of computing devices, as

well as the ever increasing levels of computing power, has

 3

on the process for securing an environment within the DoD.

Relevant information assurance (IA) processes, standards,

and tools are discussed and analyzed with an emphasis on

supporting continuous monitoring and automated validation.

The output of this research is a list of requirements for

constructing a toolset to monitor and assess IT devices and

a proof-of-concept tool to demonstrate the requirements.

C. ORGANIZATION OF THESIS

The main content is divided into four additional

chapters following the introduction. First, the current

certification and accreditation (C&A) IA processes and

tools for validating assets and maintaining compliance are

evaluated in Chapter II. Additionally, the difficulties

associated with maintaining a secure environment as these

assets grow in number and interconnectivity is also

discussed. Chapter III proposes a set of requirements for

meeting these challenges and discusses possible options for

satisfying them. Chapter IV details a proof-of-concept

system built to satisfy the requirements posed in Chapter

III, while Chapter V details how the system was validated

for functionality. Finally, Chapter VI evaluates whether

the proof-of-concept system is viable, the effect it could

have on compliance monitoring and validation, and what

improvements or further development should take place.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. INTRODUCTION

DoD funded organizations are tasked with evaluating

the security posture of networking devices and servers

against the security technical implementation guides

(STIGs) provided by Defense Information Systems Agency

(DISA) as part of a site or type accreditation. The current

process for these evaluations typically involves a C&A team

funded for the purpose of executing security audits on each

applicable system component and providing vulnerability

assessment reports to the system owners. This team must

interface directly with system owners to coordinate scans

on each device, often requiring hands-on assistance. This

process is repeated prior to any scheduled accreditation

event or during routine evaluations against the system’s

accredited baseline.

The current process calls for fully funded engineers

with intimate working knowledge of each system component to

work alongside the C&A team during the evaluation period.

Unfortunately, it is unrealistic from a technical or

financial perspective to hire engineers dedicated to

supporting these tasks.

Typically, during the evaluation period project funded

engineers are pulled from current tasking, which interrupts

their project workflow, in order to complete these C&A

tasks. It is inefficient to rely on project funded

engineers to complete these tasks as it often results in a

loss of momentum in their primary project tasking in

addition to a potential conflict of interest. It is often

 6

during these evaluation periods that these systems are

discovered to be out of compliance, which requires the C&A

evaluators revalidate once the system has been brought back

into compliance, further impacting the collaterally tasked

engineers.

Several commercially available enterprise tools exist

that meet some of these needs. There are tools, for example

Retina and Nessus, which provide an automated way of

evaluating a component’s security baseline. Unfortunately,

these types of tools are geared mostly towards information

assurance vulnerability management (IAVM) compliance and

are not ideal tools to provide continuous system

monitoring. Other commercial tools from companies like EiQ

Networks and Refense Technologies provide a means of

continuously monitoring the target environment and an

opportunity to react in real-time to non-compliance issues,

but are costly.

From a DoD perspective, DISA has been providing STIG

guidance in the form of checklists with limited system

readiness/review (SRR) scripts and Security Content

Automation Protocol (SCAP) content. The DISA Gold Disk had

been the primary automated tool for evaluating STIG

compliance on supported platforms. It primarily supported

“the ability to detect installed products, identify and

remediate applicable vulnerabilities and generate a file

that can be used for asset registration and findings upload

into DISA’s vulnerability management system (VMS)” [8].

However, as of late 2012, DISA stopped providing updates

for the DISA Gold disk utility and has focused primarily on

supporting the SCAP standard.

 7

DISA is continuing development of a Continuous

Monitoring and Risk Scoring (CMRS) system that takes a risk

management approach to providing a quantitative view of an

organizations security posture. At this time there is no

widely adopted automation or continuous monitoring

integrated into the network and system compliance

validation process, which leads to an extensive amount of

resources being dedicated to these tasks. For example, the

manual process to validate STIG compliance against network

devices can take hours per device and even then the

likelihood of error or omission is high because the

reviewer is often the same person who configured the

device.

There would be great value in an open source system or

tool set that utilizes a standard framework for evaluating

system security baselines. Such a tool should take as input

custom templates based on a standard framework that would

allow users to share, create and customize security

compliance templates to meet their specific organizational

needs. Providing an open source tool to the DoD community

would allow organizations to adopt its use and would

encourage further development of custom templates and

refinement of existing templates to be used by the

community as a whole.

B. CURRENT PROBLEMS FACING DOD IT SECURITY

The rapid growth of IT systems and technology present

unique challenges for the DoD concerning IT security.

Consider that:

 8

For the top brass, computer technology is both a

blessing and a curse. Bombs are guided by GPS

satellites; drones are piloted remotely from

across the world; fighter planes and warships are

now huge data-processing centres; even the

ordinary foot-soldier is being wired up. Yet

growing connectivity over an insecure internet

multiplies the avenues for e-attack; and growing

dependence on computers increases the harm they

can cause. [9]

The integration of new technologies and systems into

the everyday work-life of DoD employees has introduced a

reliance on these systems in order to function. As new

systems are introduced and existing systems upgraded to

provide additional security or functionality, more

potential vulnerabilities are introduced as these systems

become more complex. The Common Vulnerabilities and

Exposure (CVE) dictionary developed in 1999 by the Mitre

Corporation and currently funded by the Office of Cyber

Security and Communications, provides a common naming

convention for listing information security vulnerabilities

and exposures for openly published software security flaws.

The Mitre Corporation defines vulnerability as a mistake in

software that can be leveraged by an attacker to gain

unauthorized access to a system or network, while an

exposure is defined as mistake in software provides access

to information of capabilities that could be used by an

attacker as a vehicle to gain access to a system or

network. Figure 1 shows the number of CVEs reported by year

from the National Institute of Standards and Technology

(NIST) between 1988 and 2013 according to the CVE

Statistics Query Page for the National Vulnerability

Database (NVD) [10].

 9

Figure 1. Number of CVEs reported per year

The increase in vulnerabilities introduced each year,

as depicted in Figure 1, can be attributed to at least two

things: new applications being introduced to market and

products becoming more complex as they introduce additional

features and capabilities. These changes in number and

complexity alter the vulnerability landscape and introduce

new avenues for exploitation. Figure 2 shows the top three

CVE vulnerability categories reported by year.

0

1000

2000

3000

4000

5000

6000

7000

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

CVEs Reported to NVD (by year)

CVEs Reported

 10

Figure 2. Top three CVE Categories (by year)

The introduction of new types of vulnerabilities may

attribute to the spikes in reported vulnerabilities. The

declines in reported vulnerabilities may be the result of

product vendors patching existing software and learning to

develop future software with additional safeguards and

protections. For example, in 2005 cross-site scripting

(XSS) and Structured Query Language (SQL) injection

vulnerabilities show up in the top three with 2006 seeing

the introduction of code injection exploits as well [11].

NIST explains these vulnerabilities, documented as

CVEs, are categorized and maintained within the NVD that is

a comprehensive database of cyber security

vulnerabilities in IT products that was developed

by NIST with the support of the National Cyber

Security Division (NCSD) of U.S. Department of

Homeland Security. [12]

The growing number of vulnerabilities being added daily to

the NVD provides a staggeringly large avenue for

exploitation considering the DoD currently operates more

 11

than 15,000 different computer networks across 4,000

military installations around the world. On any given day,

there are as many as seven million DoD computers and

telecommunications tools in use in 88 countries using

thousands of warfighting and support applications. [13]

Given the increasing exposure to exploitation, due to

the growing number of software vulnerabilities and attack

vectors, the cyber domain has become as relevant as the

traditional domains of land, sea, air, and space.

While computing power is getting faster and cheaper

for consumers and industry, these resources are also

becoming more readily available for conducting cyber

warfare. According to a July 2011 report on DoD cyber

efforts:

The U.S. military is dominant in the land domain,

unchallenged in the air, and has few near-peers

in the maritime domain. However, the technical

and economic barriers to entry into the cyber

domain are much lower for adversaries and as a

result place U.S. networks at great risk. [6]

On the cyber front the US is fighting a war where all

one needs is a computer with an internet connection to

compete. The February 2010 Quadrennial Defense Review has

this to say:

It is therefore not surprising that DoD’s

information networks have become targets for

adversaries who seek to blunt U.S. military

operations. Indeed, these networks are

infiltrated daily by a myriad of sources, ranging

from small groups of individuals to some of the

largest countries in the world. [13]

As technology and interconnectivity become more

integrated into the other traditional domains the

 12

importance of protecting and establishing a dominant

presence in the cyber domain is greatly increased. One

tactic employed by the government to foster this dominance

is through the use of C&A.

C. C&A PROCESS AND PURPOSE

1. Overview

C&A is a federally mandated, formal process for

identifying, implementing, and managing IA requirements,

controls and services with an emphasis on maintaining them

throughout the system lifecycle. To deconstruct the

terminology, the National Computer Security Center states

that certification is:

the comprehensive assessment of the technical and

nontechnical security features and other

safeguards of a system to establish the extent to

which a particular system meets a set of

specified security requirements for its use and

environment, [14]

while, accreditation is:

the formal declaration by the Designated

Approving Authority (DAA) that an automated

information system (AIS) is approved to operate

in a particular security mode using a prescribed

set of safeguards and should be strongly based on

the residual risks identified during

certification. [14]

2. DIACAP

The Department of Defense Information Assurance

Certification and Accreditation Process (DIACAP) is the

DoD’s official process for C&A. DIACAP can be broken into

five distinct activities, as shown in the following process

wheel diagram in Figure 3 [15].

 13

Figure 3. The Five DIACAP Activities

Initiating and planning IA C&A is listed as the first

activity. This is where the DIACAP team is assembled and

the system is registered with a DoD component IA program.

It is also when IA controls are assigned and concurrence

for the implementation plan is determined.

Implementation and validation of assigned IA controls

is the next activity and it is here where the greatest

impact of automated validation tools can be made. After the

DIACAP implementation plan is executed, validation

activities are conducted and validation results are

compiled into a DIACAP scorecard. Today, certain automated

tools, such as vulnerability scanners, SRRs and the DISA

Gold disk, can be used to conduct portions of the

validation activities. Commercial software exists that

allow for network device evaluation to be automated as

well. The use of automated tools should increase efficiency

 14

and accuracy through the minimization of human error. The

resulting artifact of the validation activities is a

scorecard that is used during the next step.

The third activity is to make the certification

determination and the accreditation decision. In short, the

risks, vulnerabilities, mitigation costs, and exposure are

all weighed and a recommendation is made. This

recommendation, the business and mission needs, along with

the likelihood and potential impact of any loss of

confidentiality, integrity or availability suffered by the

system would then be weighed by the accrediting body and a

decision made to accredit or not accredit the system. If

accredited, the system would enter the fourth activity of

DIACAP.

In the fourth activity, the authorization to operate

is maintained and annual reviews are conducted. This is

another area where automated validation tools can have a

significant impact. In the second activity, the tools were

used to evaluate a system from scratch. In this activity

the tools can be used to continuously monitor a system to

insure it remains in compliance. Such tools can also be

used during any re-accreditation, typically due to system

upgrade or modification, since they will be able to provide

an up-to-date validation compliance report.

The final activity associated with the DIACAP process

is decommissioning. This activity is initiated when the

decision is made to retire a system. In order to retire the

system the DIACAP registration information, system related

data and supporting IA objects or core services in the

DoD’s global information grid (GIG) must be disposed.

 15

3. Risk Management Framework

The traditional C&A process has been transformed into

a common framework whose goal is to “improve information

security, strengthen risk management processes, and

encourage reciprocity among federal agencies” [16]. NIST

publication 800-37, developed by the Joint Task Force

Transformation Initiative (JTFTI) Working Group, created a

six-step process for risk management called the Risk

Management Framework (RMF). The main tenants of the RMF

include: (i) “baking in” of information security

capabilities through the use of management, operational and

technical security controls; (ii) continuous awareness of

information system (IS) security through monitoring

processes; and (iii) the delivery of needed information to

senior leaders in an efficient manner that allows them to

make decisions relative to risk management.

The overall RMF process is illustrated in Figure 4

[16].

 16

Figure 4. Risk Management Framework

The first step is to categorize the system. This

requires understanding how the information will be used,

how it will be transmitted, and how it will be stored. It

also requires understanding the impacts associated if that

information's confidentiality, integrity, or availability

is compromised.

Once the system is categorized, security controls can

be selected. Initially, a baseline set of controls is

assigned but as risk is assessed and local conditions are

taken into account the set of selected controls may be

supplemented or tailored to meet specific needs.

The third step centers on implementation of the

selected security controls. It is also during this step

 17

that time is taken to explain how the controls are

implemented within the information system and its operating

environment.

The fourth step is where the implemented security

controls are assessed. Someone trained in the appropriate

assessment protocol, called a validator, is looking to

ensure that the selected security controls have been

implemented properly and are working correctly and are

achieving the desired results. Due to the nature of the

work in this step, it is expected that a validation

automation tool would or could have significant positive

impact on both the results and efficiency of this activity.

Once the assessment is complete, a decision is made

based on the results of the assessment and the

determination of risk associated with operation of the

information system. If the risk is acceptable to the

organization in charge of the decision, then the system is

authorized for use. If not, additional work must be done to

get the system security posture suitable for authorization.

Once a system is authorized for use, monitoring of the

system begins. In this step, the security controls are

assessed in the same manner as they were during step four

including assessing the effectiveness of the controls and

documenting any changes to the system or the operational

environment. It is also during this step that any changes

made to the system are analyzed for risk impact and

additional risk acceptance decisions from organizational

officials be obtained as required. Obviously, an automated

validation and continuous monitoring solution would allow

 18

the organization to track changes while maintaining a

constant picture of the information system's security

posture.

4. Lasting Effects

All too often security is an afterthought during the

various phases of the system life cycle. Fortunately, no

matter the phase, initiation, development and acquisition,

implementation, operations and maintenance, or disposal and

retirement, the C&A process can still be applied to great

effect. Whether DIACAP or RMF is chosen, C&A is a powerful

process that if utilized properly, can manage the security

of a system throughout its life cycle. A system that allows

for more rapid and consistent validation and monitoring of

security controls also allows C&A processes to better

fulfill their purpose.

D. CONTINUOUS MONITORING AND COMPLIANCE VALIDATION TOOLS

Millions of dollars and thousands of hours are

spent on C&A, and C&A levels are used to assess

security. In reality C&A is a 20-year-old

paperwork exercise that does not yield improved

security. The only real way to measure security

is to track the numbers and types of compromise

over time, and try to see that number decrease.

Richard Bejtlich, President & Chief Executive Officer

(CEO) of TaoSecurity [17]

While Mr. Bejtlich may be exaggerating the

ineffectiveness of C&A, his statement does highlight two

issues with the current C&A process: the cost and time

associated with the effort and the real world implication

that the true measure of security for any given system will

be seen over an extended period of time. While capturing

 19

these costs can be difficult, tools that can automate any

portion of compliance validation could have significant

impact on both the cost and time associated with these

events. Tools that can provide a means to continuously

monitor systems would help counter the “set it and forget

it” mentality that implies the C&A process is largely a

paper drill with no lasting effect on the system security.

In order to provide sufficient support during C&A

events, management must plan to have privileged subject

matter experts (SME) available to support the validator’s

specific system component reviews. The process for

completing an evaluation of a system component is

cumbersome and requires an exhaustive review of the system

component against the last DISA provided STIG.

The DISA field security operations (FSO) provide

technical guidance for locking down IA systems and software

through STIGs. In addition to STIGs, the DISA FSO also

provides STIG checklists, which are detailed instructions

for performing configuration validation and remediation

against applicable STIGs for an IA asset. DISA publishes

all current versions of STIGs and STIG checklists to

https://iase.disa.mil/stigs. DISA also publishes SRR

Scripts, which are custom built tools for performing

automated STIG compliance validation. The most frequently

used SRR tool is the DISA Gold disk that provided STIG

validation against the most current Microsoft Windows

operating systems. As of December 2012, support for the

DISA Gold disk terminated and current efforts are focused

on providing SCAP content for new/updated DISA STIGs.

 20

Typically, the STIG for a system component is

available in a generic or device specific checklist or

system readiness/review (SRR) scripted application. While

the availability of the checklists and SRRs provide

significant time savings and structured guidance during the

evaluation process they are limited in scope. Many devices

do not have a device specific checklist; this then requires

a degree of interpretation by the C&A team when evaluating

a system component against a generic device STIG. While SRR

scripted applications are available for most MS Windows and

Linux/Unix based operating systems (OS) and most common

software suites, they are virtually non-existent for

network devices thereby requiring a manual review for each

component.

For example, in the past the STIG review process for

MS Windows-based servers often involved running the latest

version of the DISA Gold disk for the Windows OS and many

major Windows applications (e.g., Internet Explorer (IE),

Microsoft Office, and Antivirus (AV)). The DISA Gold disk

from July 2012 was used to evaluate a generic Windows 2003

Member Server (e.g., not a domain controller or DNS/DHCP

server). Table 1 was constructed using these scan results

to show the components reviewed, the number of automated

checks, the number of manual checks, and a percentage of

the total number of checks that are automated.

 21

Table 1. Gold Disk Automated Checks

The absence of automation within the SRR utility adds

labor hours and additional cost to each system component

reviewed. For example, the Application Virtualization

Hosting Environment under DoD Military Health Systems (MHS)

manages 1500 Servers for hosting applications for MHS

users.

The DISA-provided SRRs and SCAP content provide for

some measure of automation regarding servers and end user

devices (EUDs) such as desktop and laptop computers, but at

this time the checklists they provide for networking

devices are primarily used as a guide to complete manual

validation checks. In many ways this is to be expected. In

the case of servers and EUDs, the OS and installed

applications are leveraged to run the automation scripts

and create the compliance reports. Networking devices are

often by design special purpose and usually run code

specifically designed to support the device’s primary

function. While these devices might offer standard methods

of access and configuration backup, the wide range of

 22

proprietary software supporting these products makes it

difficult to create any standard tools that run on the

devices themselves.

Networking devices comprise the foundational

infrastructure that makes server and EUD communication

possible. Besides supporting all communication between

servers and EUDs and providing these devices connections to

larger networks, networking devices often serve as the

first line of defense from unauthorized access to computing

networks. When comparing sheer numbers, networking devices

make up a very small portion of those devices connected to

the internet. The role of network devices in supporting

network connectivity and defense places them at points in

the architecture that increase their exposure to potential

enemies. They are both the first line of defense and the

most easily visible from the Internet. Additionally, their

various roles in the architecture also make them high

impact targets. In many cases, the exploitation of a single

network device can result in loss of confidentiality,

integrity and availability of mission essential resources.

This makes network device security compliance of paramount

importance.

As mentioned previously compliance validation of

network devices is a manual process. According to Military

Information Technology magazine’s article, “Automatic for

Security”:

That manual process can take between 45 minutes

and 2 hours per device, and it must be done by a

very skilled engineer with networking credentials

and certifications to confirm the device

 23

configuration. Not only is this labor intensive,

but it is also difficult to achieve a high degree

of accuracy. [18]

A tool that could automate this process would go a

long way toward ensuring that network security settings

were being implemented in a standard and accurate way

across the DoD. Additionally, if this tool had a means of

continuously monitoring these settings across the

enterprise, then security configurations could be more

consistently maintained over longer periods of time

therefore reducing the number of vulnerabilities exposed to

the enemy. Of course, a common standard for DoD security

personnel to write and share compliance validation content

would prevent duplicate work and aid in implementation of

standardized checks. To meet this goal, NIST created a

framework for using specific standards-enabled automated

compliance validation.

E. SECURITY CONTENT AUTOMATION PROTOCOL

SCAP is a standardized set of specifications that

compose a framework, designed to promote the automation of

security compliance validation and detection while

maintaining interoperability across a wide range of

security products that vary in function and scope. SCAP is

composed of 11 components in five categories, which are

listed in Table 2, as part of the SCAP 1.2 specification

[19].

 24

Table 2. SCAP 1.2 Components

1. SCAP Languages

SCAP languages provide a vocabulary specifically

designed for expressing security policy, checks, and

assessments. The Open Vulnerability and Assessment Language

(OVAL) is used to provide a standardized method for

expressing machine readable rules to assess current system

setting states defined in these rules. It provides a means

for writing automated checks that can be evaluated against

an asset through SCAP compliant tools. The OVAL process is

shown in Figure 5 [20].

 25

Figure 5. OVAL Overview

Typically, OVAL rules are used to evaluate a system’s

security configuration or software patch compliance;

however, rules can be created to validate non-security

machine readable settings as well. For example, content

written using OVAL can be used to validate that Internet

Explorer’s zone configurations are set according to DISA

STIG guidance as well as ensuring that the browser’s

homepage is set to a company’s intranet site. The Open

Checklist Interactive Language (OCIL) is an XML-based

language that is utilized to provide a method for

presenting questionnaires to users for the purpose of

gathering information that is not machine-readable or

harvest data from previous assessments. This enables the

integration of manual checks, which currently cannot be

automated, into SCAP content. OCIL can also be used to

aggregate results from varied data sources and display them

in a single standardized format [21].

 26

The Extensible Configuration Checklist Description

Formation (XCCDF) specification is a vender-neutral,

standardized approach to documenting security checklists

for automated and manual validation checks. XCCDF is

written in XML that can be embedded inside existing

documentation. As an example, the DISA STIG Checklists, now

embedded with XCCDF content, can be read by an XCCDF tool

while maintaining the same look and feel as previous

versions. XCCDF also supports the integration of future

content, data formats, and features without hindering the

functionality of existing XCCDF tools. XCCDF does not

specify how the checks are executed but instead references

the OVAL and OCIL definition files that contain this

information [22].

2. SCAP Enumerations

SCAP enumerations define a standardized naming

convention and a list of items expressed with this

standard. Common Configuration Enumerations (CCEs) are

unique identifiers assigned to configuration guidance

statements. Similar to CCEs, the CVEs are unique

identifiers assigned to known system vulnerabilities.

Common Platform Enumeration (CPE) provides the naming

conventions used to identify and describe the applications,

operating systems, and hardware devices being evaluated

[23].

Measurement and scoring SCAP components are used to

categorically examine security weaknesses and provide a

quantitative measurement for each vulnerability. The Common

Vulnerability Scoring System (CVSS) is a standard framework

for quantifying risk of vulnerabilities introduced by

 27

software flaws as they pertain to an organizations

operating environment. CVSS is composed of three Metrics

Groups, categorically grouping the metrics defined, as seen

in Figure 6 [24].

Figure 6. CVSS Metric Groups

The base metric group comprise metrics that are

consistent across all environments and do not change over

time. Temporal metrics represent threats to

vulnerabilities that may change over time. Environmental

Metrics address threats to vulnerabilities that are

associated with the user’s operating environment. Each

group produces a score between 0.0 and 10.0 that, when used

in conjunction with Federal Information Processing

Standards (FIPS) 199 categories, can be used to produce

impact scores tailored to the organization’s operating

environment. Impact scoring is used to quantify the

severity of a successful exploitation for a given

vulnerability as it pertains to the confidentiality,

integrity, and availability of the system being evaluated.

The Common Configuration Scoring System (CCSS) is

derived from CVSS and is used to quantify the severity of

security configuration issue vulnerabilities. CCSS uses the

 28

same scoring range as CVSS and is composed of the same

three metric groups, with variations to the metrics within

the Temporal and Environmental Metric Groups. CVSS and CCSS

scoring components, integrated with SCAP content, provide

the objective scoring required to quantify the risk

associated with individual checks [24].

3. SCAP Reporting Formats

Reporting formats in SCAP are used to collect asset

information and define how the output will be displayed.

The Asset Identification framework in SCAP defines a

process for using known attributes or identifiable data

generated by the asset. The Asset Reporting Format (ARF)

standardizes the way reports are generated and processed.

The ARF can also correlate data from various sources as it

pertains to a unique device that has identifiable

attributes discovered through Asset Identification (AI).

These reporting formats provide a vendor neutral process

for identifying assets and presenting information that

pertain to each asset [25].

4. SCAP Integrity Component

The SCAP integrity component, the trust model for

security automation data (TMSAD), was created to provided

integrity, authentication, and traceability for security

automation data. The TMSAD defines a data component that

can be integrated into Extensible Markup Language (XML)

documents using existing standards to provide a means of

generating hashes and signatures for automation data [26].

 29

F. ASSURED COMPLIANCE ASSESSMENT SUITE

The Assured Compliance Assessment Suite (ACAS) is a

software suite that provides vulnerability scanning,

configuration assessment, and network discovery. ACAS was

developed by DISA with collaboration from industry partners

to replace the DoD’s current vulnerability scanning

toolset, Retina and Retina Events Manager (REM). The ACAS

suite is composed of five components.

1. SecurityCenter

The SecurityCenter is a management console that

provides a graphical user interface (GUI) to centrally

manage assets within an organization’s infrastructure that

are being monitored by the ACAS scanning component.

SecurityCenter also enables distributed and load-balanced

scanning and customized reports for analyzing aggregate

scan data [27].

2. Nessus Vulnerability Scanner

The Nessus Vulnerability Scanner enables the discovery

of assets, vulnerability scanning, configuration auditing,

and compliance validation.

3. Passive Vulnerability Scanner

The Passive Vulnerability Scanner (PVS) monitors real-

time network traffic, using packet captures to determine

the network topology and detect server and client side

vulnerabilities. It is continuously monitoring network

traffic, detecting new hosts, applications, and

vulnerabilities and reporting this information to

SecurityCenter in real-time. Figure 7 shows the Nessus and

 30

PVS components working together as a continuous network

monitoring solution [28].

Figure 7. Nessus and PVS Data Flow

4. X-Tool

The X-Tool is a standalone tool used to convert

XCCDF/OVAL files into an XML Schema that can be imported

into SecurityCenter. This tool is only used for converting

SCAP content into a format that can be used by

SecurityCenter.

5. Topology Viewer

The Topology Viewer is used to graphically display the

network map with protocols and vulnerability information

created from data gathered by the PVS hosts and reported to

SecurityCenter.

 31

G. VULNERABILITY MANAGEMENT SYSTEM

DISA built the VMS to provide command and security

channels within DoD a view into the current compliance

state of a DoD device and the organization responsible for

that asset. The C&A process utilizes VMS to record and

track assets, vulnerability compliance, and manage plan of

action and milestones (POA&M) for accreditation activities.

VMS is also utilized to provide vulnerability notifications

and track the receipt and remediation or mitigation of

vulnerabilities.

The introduction of VMS provided a much-needed

centralized distribution for IAVM; however, the tracking

system relies on manual input for assets and tracking

compliance for each asset. The manual entry aspect of VMS

is very labor intensive, subject to human error, and easily

manipulated. The inherent flaw of VMS is the requirement

that system owners manually enter their assets, software

baseline, and provide monthly scan reports. Those who

choose not to utilize VMS or neglect to accurately

represent the software baseline of an asset would operate

undetected and potentially in a non-compliant state. Few

measures are in place to dissuade “check box compliance”

where an asset could be marked compliant without external

validation.

The diagram in Figure 8 shows data captured from seven

sites that have been transitioned by their Computer Network

Defense Service Provider (CNDSP) from VMS to CMRS.

 32

Figure 8. CMRS Report for IAVA/Bs out of compliance

Each of these sites had reported in VMS full compliance for

these information assurance vulnerability alerts and

bulletins (IAVA/Bs) with no outstanding POA&Ms.

H. CONTINUOUS MONITORING AND RISK SCORING

The DISA CMRS user’s guide states:

The objective of CMRS is to assess and measure

the risk state of the DoD Enterprise security

controls such as software inventory, security

technical implementation guide (STIG) compliance,

vulnerability and patch compliance, and anti-

virus configurations. [29]

CMRS is a web-based security risk reporting system for

DoD assets that supports the RMF and collects compliance

data from automated feeds provided by host based security

system (HBSS) or ACAS managed assets. Figure 9 shows the

interaction between HBSS and ACAS assets reporting into

CMRS [29].

 33

Figure 9. CMRS Data Flow

1. CMRS HBSS Asset Reporting

The HBSS solution deployed to servers, laptops, and

desktops within DoD is the McAfee Endpoint Product security

applications. Under CMRS HBSS functionality is extended

through additional modules and capability. The Asset

Publishing Service (APS) provides HBSS data (asset, audit,

software inventory, and event summary) to be accessible and

consumed by CMRS. The operational attribute module (OAM)

allows tagging assets with operational attributes to be

sent to CMRS to provide additional detail about a monitored

asset.

HBSS assets are given a score from 0 to 16,000 (zero

meaning no calculated risk and 16,000 being the maximum

 34

calculated risk). CMRS calculates a risk score for each of

the four risk factors (AV, Standard Operating Environment

(SOE), IAVM, and STIG) with a score from 0 to 4,000. HBSS

is currently the main source for CMRS asset compliance

data; however, data feeds from DISA’s ACAS are also

supported.

2. CMRS ACAS Asset Reporting

ACAS asset reporting to CMRS is available for devices

that do not support the installation of HBSS software. In

addition, ACAS can provide an external look at an asset’s

compliance from the network side.

ACAS assets are given a score from 0 to 8,000 (zero

meaning no calculated risk and 8,000 being the maximum

calculated risk). CMRS calculates a risk score for two risk

factors (IAVM and STIG) with a score from 0 to 4,000.

 35

III. REQUIREMENTS

A. SECURITY-FOCUSED CONFIGURATION MANAGEMENT

According to NIST SP 800-128, “Security-focused

Configuration Management (SecCM) is the management and

control of secure configurations for an information system

to enable security and facilitate the management of risk”

[30]. SecCM improves upon the configuration management

process with the integration of security policies into an

organization’s existing CM process. The process flow

diagram in Figure 10 shows the four SecCM phases for

developing a SecCM process.

Figure 10. Security-Focused Configuration Management

Phases

The configuration of a baseline for an asset is a

component of the identifying and implementing

Configurations phase of SecCM. An asset baseline can evolve

over time but is established to provide a basis for future

builds and changes to software and configurations. Creating

and documenting the baseline configuration for an asset

supports the implementation of NIST SP 800-53 control CM-2

baseline configuration [31].

 36

1. Configuration Baseline Monitoring

An asset baseline configuration comprises the system

specific security configuration that is required for the

asset to function within its environment. The baseline

configuration may include hardware components, software

components, software configurations, operating system

configurations, and documentation. An asset could have a

different baseline configuration for each stage of its

lifecycle.

As recommended by the NIST SP 800-128, “When possible,

organizations employ automated tools to support the

management of baseline configurations and to keep the

configuration information as up to date and near real time

as possible” [30]. Tools, such as group policy objects

(GPOs) for MS Windows based servers, can be used to enforce

a configuration baseline for an asset or group of assets.

This automated method for providing policy enforcement can

provide a degree of assurance that an asset is operating in

a known secure state.

Issues can arise when relying solely on GPOs for

maintaining a baseline if the management of these policies

has not been incorporated into the CM process and

undocumented changes are allowed that effect the enforced

baseline. GPOs are limited in scope to the set of

administrative templates that are available and may not

cover all the required security settings in a configuration

baseline. If a GPO fails to process due to an external

issue, this can place the server in a non-compliant state

that could go undetected if proper monitoring is not in

place to detect these failures.

 37

2. Secure Configuration Environment

As a best practice, organizations should validate

security configuration baselines in an isolated environment

before deploying to a production environment. As assets

become more complex in function and rely on third party

software and external components, the security

configuration process becomes increasingly challenging.

Many applications have specific operating requirements with

functionality that can break down when a common secure

baseline is applied. Isolation of assets, when building or

modifying a configuration baseline, provides a controlled

environment for testing configuration changes while

protecting the production assets from the unsecured assets.

B. TRANSITION FROM VMS TO CMRS

The transition from VMS reporting to CMRS introduced

unique challenges for managers of assets and an

organization’s standing accreditation. The scoring

mechanism has changed substantially from the DoD severity

codes used by Retina (reported to VMS) and the CVSS

severity codes used by ACAS (reported to CMRS). There is

not a one to one mapping between the severity codes from

Retina to CVSS. The NVD provides severity rankings of high,

medium, and low that mapped directly to the severity codes

provided by Retina. To integrate support for CVSS scoring

the NVD has mapped the CVSS numerical values to its

existing severity codes, high (7.0 10.0), medium (4.0-6.9),

and low (0.0-3.9).

Table 3 demonstrates the disparity between the

severity codes reported by the legacy vulnerability

assessment tool and the latest DoD tool.

 38

Table 3. Retina Versus ACAS Severity Code Comparison

Migrating a system to the ACAS / CMRS solution will

undoubtedly result in a change to the reported and

accredited risk assessment score. A DAA that has accepted

the reported risk of an asset may require the reevaluation

of an asset due to the change risk score in order to accept

the newer assessment.

The current release of CMRS, as of August 16, 2013, is

only capable of displaying a management/executive view of

an organization’s total risk assessment score based on the

sum of all assets associated with that organization. A

future release is planned to provide the ability to view

individual asset assessments. The CMRS tool does not

support the input of POA&Ms for findings associated with an

asset and at this time there is no way of providing

mitigation write-ups to lower a reported findings severity

code recorded in CMRS [29]. As a result, the presence of

false positives will skew the assessment data present in

the system.

 39

C. SYSTEM CONCEPT

A continuously monitoring/automated validation system

that could fill some of the gaps identified above should be

capable of several core functions. The system should be

able to digest SCAP compliant validation reports, when

available, and store scan results data within a database.

It should have the ability to consume files on a regular

basis through automated or manual actions, cataloging

results by host, finding, definition, result, and time of

scan, providing a near real-time view into each monitored

asset’s compliance state.

Many SCAP compliant tools already exist for server

validation that provide results in a standard format that

can be reliably parsed to obtain host and compliance data.

Utilizing these pre-existing tools will avoid the need to

develop an additional system component and allow an

organization to continue to utilize their existing tools.

Integrating networking devices into this system will

require creation of a validation component that is capable

of parsing through flat configuration files completing STIG

vulnerability checks and outputting compliance results. In

order to support the wide range of networking devices and

their applicable STIG checklists, the system must allow the

creation of custom content that enables the scripting of

checks for their applicable vulnerabilities. The system

should support the ability to export the scripted checks

and scan results. This capability would provide an

organization the ability to run the scans from an external

source. The resultant compliance data should be stored in a

database capturing the device hostname, finding reference,

 40

definition, compliance state and the time and date for the

results data.

A major aspect of implementing SecCM involves the

establishment of system baselines for each asset and

applicable lifecycle state, as well as an isolated

environment for testing configuration settings when

building an asset’s secured configuration. This means the

tool must be capable of operating as a standalone system in

environments dedicated to any stage of development. It must

also allow users to track changes in the security baseline

of a single host while supporting the ability to add notes

specific to that system or assessment finding. This will

provide users with the ability to justify open findings or

enter notes specific to a system’s baseline settings.

The sum of the these capabilities, along with the

ability to operate without affecting a site’s CMRS scores,

show that the proof-of-concept system address some specific

use cases that ACAS and CMRS do not.

Figure 11 is a conceptual diagram that illustrates the

various functions and components of the proof-of-concept

system. The sections that follow provide an overview of

components required to assemble and develop this system.

 41

XCCDF

Files

(XML)

SCAP

Results

(XML)

File Uploads

Network

Device

Configs

Datastore

Build Custom

Checks

Generate

Scripts

Execute

Checks

Download

Scripts

Import SCAP

Content

Import Device

Configs

Import

Scans

Select

Baseline

Check Scan

w/ Baseline

Display

Results

Add Check

Edit Check

Delete Check

Generate

Scripts

Device

Scripts

Compare

Scripts

Figure 11. System Functional Diagram

1. Scripting Languages

The automated compliance validation system depicted in

Figure 11 is predicated on having the ability to parse

through various files. The three most critical types of

 42

files are as follows: SCAP XCCDF files, which detail the

definition ID, vulnerability ID, version number, category

levels and titles of a structured set of security checks

for some target system or component; SCAP XCCDF result

files that detail the relevant target host identifier, the

time of the evaluation, the SCAP definition ID and the SCAP

check result (true/false); and finally, network device

configuration files, which are basically flat files read

into the running environment line-by-line during device

boot-up detailing the device’s settings. The ability to

effectively parse through these files will allow the proof-

of-concept system to extract user-defined data of interest.

On a movie set, a script provides simple instructions

to each actor or actress detailing, in clear language, what

they should say or how they should behave given a certain

set of circumstances. Similarly, a computer script is a

special type of program, a set of simple instructions,

often in textual form that can automate a set of tasks

given a certain set of circumstances. Usually these tasks

are those that alternatively could be executed by a human

operator one at a time. In the case of an automated

compliance validation system, these one-by-one tasks should

be automated through the use of one or more scripting

languages.

The simplest types of scripting can be achieved via

shell scripting. Bourne Again Shell (BASH) [32] is one of

the most common Unix/Linux command line interfaces or

“shells”. It comes standard on most versions of Unix/Linux

and MAC OS X, though ports of BASH exist for many other

systems. While BASH can be utilized in the one-by-one

 43

interactive mode described in the previous paragraph, it

also has the ability to run a script of commands. This

makes “programming” or scripting in BASH relatively easy.

This is analogous to a batch file on a Windows-based

system.

For the most part, each line of a script can be tested

via the command line interface first. This allows those

with less experience to build their scripts line-by-line

instead of utilizing the iterative process of testing and

troubleshooting each script as a whole. Another advantage

to utilizing BASH scripting is that many commands and

functions native to BASH are ideal for parsing, searching,

comparing and manipulating text files. This ability is

especially important when it comes to evaluating network

device configurations against specific command line

security checks. This type of scripting will also support

user-defined checks, allowing a user to create custom

configuration checks based on STIG guidance or

configuration settings specific to their organization.

While BASH scripting is a very versatile tool, the proof-

of-concept system could also take advantage of alternative

scripting languages that are particularly suited for

certain tasks. One of these is Perl.

Perl is a dynamic programming, or scripting language

developed in 1987 by Larry Wall to make report processing

easier. As explained in Beginning Perl,

many programmers assume that PERL is an acronym

for Practical Extraction and Report Language.

However perlfaq1—the documentation that shipped

with Perl—sets the record straight:

 44

... never write "PERL,” because perl is not an

acronym, apocryphal folklore and post-facto

expansions notwithstanding. [33]

Since its inception, Perl has undergone many changes

including the borrowing of powerful text processing

facilities that allow for easy manipulation of text files

from other languages, such as C and shell scripting. In its

current revision, Perl is used in a myriad of applications

that take advantage of its flexibility and coarse

simplicity. What makes Perl so attractive to the proof-of-

concept system is its use of regular expressions as

explained by Sammy Esmail:

It is no secret that Perl regular expressions are

the envy of other languages. As data continues to

have an ever-growing importance in today's world,

regular expressions provide us with the power to

slice and dice data so that we can measure,

learn, and make intelligent decisions. Good

regular expressions, such as those in Perl, will

therefore become increasingly important. [34]

Perl’s capabilities could augment the proof-of-concept

system’s ability to parse data by providing a way to parse

data that may be in a format that might not be as suited

for BASH scripts. Given Perl is open source, relatively

easy to use because it favors language constructs that are

natural for humans to understand, and runs on virtually any

platform, Perl could be a very useful component of the

proof-of-concept system.

While Perl is suitable, “PHP is the most popular

server-side scripting language in web development, powering

an estimated 78.9% of all websites” [35]. Originally

developed in 1994 by Rasmus Lerdorf, these personal home

page tools were a collection of small programs or scripts

 45

used to maintain his website. Over the years, continued

development by others has pushed the meaning of PHP to now

stand for PHP hypertext processor [36].

PHP is ideal for the proof-of-concept system for

several reasons. It works well with HTML, which would form

the basis for interacting with the proof-of-concept system.

It is also relatively easy to learn and has hundreds of

built in functions and thousands more available through

extensions, which makes is suitable for many tasks. Several

of these built-in functions are particularly suited for

dealing with XML files that could provide the basis for

proof-of-concept the system’s ability to process and

consume much of the SCAP content available.

Finally, it is free and easy to install as part of the

Apache/MySQL/PHP (AMP) [37] software stack on Linux, can

run on virtually any web server, platform, or OS, and can

interact with many relational database management systems

(RDBMS). This last attribute allows the proof-of-concept

system to take advantage of the inherent power of

databases.

2. Relational Database

Another key requirement for this system is the ability

to store data in an organized way so it can be searched and

retrieved later. The relational database, pioneered by E.

F. Codd in his 1970 paper, “A Relational Model of Data for

Large Shared Data Banks,” is ideally suited for storing,

organizing and manipulating data. As summarized on

Wikipedia:

 46

In relational databases, each data item has a row

of attributes, so the database displays a

fundamentally tabular organization. The table

goes down a row of items (the records) and across

many columns of attributes or fields. The same

data (along with new and different attributes)

can be organized into different tables. [38]

The characteristics of the relational database provide

many potential applications for use in a compliance

validation system. A system capable of consuming XCCDF and

SCAP result files and entering this data into a relational

database would have the ability to perform many tasks. With

this information stored within a relational database, the

system should be capable of processing, comparing and

displaying information in many different ways. Among other

things, this would allow for baseline comparisons reports

and reports by individual vulnerability, finding, or

server.

The most common means to take advantage of all a

relational database has to offer is to utilize a relational

database management system (RDBMS). An RDBMS is a software

solution used to define, create, manage, query, and update

relational databases. Nearly all RDBMS products available

today are American National Standards Institute

(ANSI)/International Organization for Standards (ISO)

Structured Query Language (SQL) compliant [39]. As a

result, any standards compliant SQL RDBMS can be used.

According to its website, MySQL is the world’s most

popular open source database, with over 65,000 downloads

per day. This is partially due to it being a central

component of the AMP software stack [37] that is often used

in open source development projects. Larger projects, such

 47

as Wikipedia, Facebook, Twitter, YouTube, and Flickr also

rely on MySQL but are most likely utilizing a paid, more

feature-rich version.

3. Front End Web Server

Another key requirement for the proposed system is a

graphical user interface (GUI). This portion of the system

allows users to upload, create, modify, delete, and view

content/data. While a traditional, software-defined GUI

would meet these needs, utilization of a web front-end

allows almost any user with an EUD to interact with the

system.

The two most popular options, those with the highest

market share among all websites as noted in Netcraft’s

December 2013 web server survey, are the Apache (41

percent) and Microsoft (28 percent) offerings while the

balance is split between nginx (15 percent) and Google

(four percent) [40]. Besides being the most popular web

server software in the world, Apache offers several

advantages over the other choices.

Apache is open source and can run on virtually any of

the commonly used operating systems. This provides some

flexibility that MS Internet Information Services (IIS)

does not. For example, the current version of IIS is only

supported on MS Windows Vista, MS Windows 7, and MS Windows

server variants, which normally require a licensing fee to

be paid [41]. Apache’s ability to run on nearly any OS

allows users of the system to install it practically

anywhere. With Apache, the proof-of-concept system could be

run on a MS Windows based laptop, a MS Windows based server

 48

or virtually any Linux or Unix OS providing flexibility

that is just not possible with IIS.

Apache is also part of the AMP software stack. As part

of this software stack, is it easily installed as part of a

precompiled package available from most mainstream Linux

distributions where it is referred to as LAMP (Linux-AMP).

For non-Linux OS, install packages can be downloaded from

the Apache HTTP Server project website [42]. Additional

features include secure sockets layer (SSL), transport

layer security (TLS), authentication modules, and common

language interface support for Perl, Python, and PHP.

As the largest software company in the world,

Microsoft provides potential hackers with the greatest

number of potential victims and therefore Microsoft

products provide the biggest “bang for the buck” for cyber-

criminals. By steering clear of IIS, a whole host of

potential exploits can be avoided. Of course, any product

will have its share of vulnerabilities and respective

updates; it is the responsibility of the system owner to

maintain proper levels of security.

4. Additional Concerns

There are several additional security items of concern

that relate to the functions and components described in

the previous sections. One of the first is the ability to

control who has access to the system. While the proof-of-

concept system concentrates on its core functions, it is

important to mention that role based access controls (RBAC)

[31] could be used to limit access to various components of

the system to those with an appropriate administrative

role.

 49

Another concern is the ability to control what can be

uploaded or imported into the system. This particular item

addresses two different scenarios. The first is the ability

to perform some type of input validation during file

uploads. This should help prevent someone from maliciously

uploading an inappropriate file or prevent a user with good

intentions from simply uploading an incorrect file type.

The second scenario addresses what type of information

should be imported into the system. For example, if the

system’s primary function is to store validation results

necessary baseline comparisons, there would be no need to

store entire device configurations within the database.

Doing so would needlessly introduce potentially sensitive

data into the system offering an additional exploitation

vector.

Finally, a whole host of STIG and security settings

must be applied to the proof-of-concept system itself. A

system used to validate and track asset compliance should

be held to even higher standards of security than many, if

not all, of the systems it is tracking so that the system

components do not negatively affect the overall risk of an

organizations assets. Based on some of the components

describe above, several checklists, including those for OS,

Database, and Webserver, are at a minimum applicable to the

proof-of-concept system detailed in the next chapter.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

IV. PROOF-OF-CONCEPT SYSTEM

As detailed in the previous sections, many different

components could have been used to develop the proof-of-

concept system. For the purposes of this development

effort, a web front end, a database, and at least one

scripting language are required. When evaluating the

various options, it is clear that a Linux based host using

the LAMP software stack provides the most convenient

development system. As an added bonus, Linux’s built in

support of BASH allows shell scripting to be utilized

without additional modifications.

For this particular effort, an Apache name-based

virtual host website was configured on a shared Cent OS

Linux server. An Apache name-based virtual host allows for

the hosting of multiple web sites on a single internet

protocol (IP) address. This particular server was hosted on

a consumer grade internet connection and was remotely

accessible via secure shell (SSH) using a private

key/public key exchange for authentication. By hosting the

development site on the internet, each member of the team

could work collaboratively or on their own while

maintaining all code in a central location.

Many factors play a role in an organization’s

selection of system components. The use of Apache and MySQL

are appropriate in this case, but an organization that

relies on other compatible products could easily decide to

utilize Microsoft’s IIS and Microsoft’s SQL software if

these components are preferred.

 52

A. INDIVIDUAL FUNCTIONS

The rest of Chapter IV primarily details how the

system functions from a user’s perspective. The bulk of

this interaction is through the web interface, which

consists of a basic menu of tabs for each of the system’s

core functions. The individual tabs or functions are

described in the following sub-sections. The database

tables and data types used in this proof-of-concept system

are found in Appendix A. The various supporting code source

files used are found in Appendix B.

1. Import

The import tab/function checks for XCCDF XML files in

a folder named “content” in the website root folder. The

Import tab webpage is generated based on the files in the

content folder. If the XCCDF XML file has not been imported

into the database, an import button is available for that

file and is selected to import the XCCDF content. A sample

view of the import content table is shown in the Figure 12.

 53

Figure 12. Import XCCDF Content

The import function parses through an XCCDF Manual or

Benchmark file. A manual XCCDF file contains all the checks

associated with a platform or application STIG. A benchmark

XCCDF file contains only automated SCAP checks and SCAP

definition data. The import function parses data from these

files and stores this data in the database to be utilized

by other system functions.

2. Codefunctions

The code functions tab/function allows the user to

create a snippet of code to be used as a template when

 54

creating specific checks in the Groups tab. Shell based

code can be entered into the code section and saved along

with various other attributes, such as name, description,

and creator. Figure 13 shows where code can be created and

added.

Figure 13. Create Code Functions

In order to edit or delete a code function, the user

first has to select the template by clicking on the name in

the table shown at the bottom of the Code Functions page.

This table is shown in the Figure 14. After a template is

selected, the main area of the page is populated.

 55

Figure 14. Code Functions List

From here the user has the option to delete or make

changes to the existing code function. In Figure 15, the

code function “Cisco Config Null is Bad” has been selected.

If check returns no output, the check is considered to have

failed.

 56

Figure 15. Edit Code Functions

In this case, the function is checking for specific

configuration commands within the device configuration

file, “device.cfg”. If it finds specific configuration

commands, the status is set to “0,” which is passing. The

proof-of-concept system then displays, within the notes,

the specific line found in the configuration. If the

configuration commands are not found, the status is set to

“1,” which is failing, and the code specific to the check

is concatenated with the words “produced no output” to

clearly indicate exactly the commands that were executed

and that nothing was found. From this same interface

 57

changes are made and saved or the entire code function is

deleted, using the update and delete buttons respectively.

3. Documents

The documents tab/function displays the current list

of XCCDF XML files that have been imported in the database.

The XCCDF files and their document titles are displayed in

a table similar to the one shown in Figure 16.

Figure 16. XCCDF Documents List

Clicking the select button brings up a table that

displays all applicable profiles associated with the

selected XCCDF document. Each profile contains a list of

applicable findings associated with that profile’s

classification and mission assurance category (MAC) level

as shown in the Figure 17.

 58

Figure 17. Select Profile

Selecting a profile loads the findings from the

database to a table that is viewed from the groups tab.

4. Groups

The groups tab/function displays the individual

vulnerabilities associated with a particular profile. As

shown in Figure 18, the count, vulnerability ID, version,

CAT level, and title are all displayed.

 59

Figure 18. XCCDF Vulnerability List

Each vulnerability has a select button associated with

it. These buttons appear in several colors. The default

color is grey, and upon initial import, all vulnerabilities

begin with this color. Green buttons indicate that the

check’s status has been marked as tested. If a check has

been marked as having a bug, meaning the check does not

function properly, the button is red. Finally, yellow

buttons indicate that the check has been added, but it has

not been marked as tested or as having a bug.

When selecting one of the vulnerabilities, the user is

presented with an interface to create a custom check. The

user may choose to import one of the previously defined

code functions by selecting one from the drop-down and

inserting the template code into the coding area.

Alternatively, the user may type directly into the coding

area. In either scenario, the user has the ability to

customize the script as needed. Figure 19 displays the

custom check for verifying that a password has been set on

a Cisco Switch or Router. This particular check was created

using the “Cisco Config Null is Bad” template.

 60

Figure 19. Create Custom Check

Each custom check created, is stored within the

database associated with that particular vulnerability.

These checks are used by the generate scripts function.

5. Generate Scripts

A configuration file needs to be selected from the

config tab, before the generate script tab is visible. The

generate scripts tab/function creates scripts from all the

custom checks created in the documents tab. Once the

generate scripts tab is selected, the scripts are

generated, compressed, and stored in a tape archive (TAR)

file. Figure 20 shows sample display output from the

generate scripts function from five custom network checks.

 61

Figure 20. Generate Custom Scripts

Selecting HERE from “Click HERE to download” allows

the user to download the TAR file containing all the custom

shell scripts for use on a standalone EUD. If utilizing the

proof-of-concepts scan function, the user can select a

host, and name the associated platform for the

configuration. Selecting the scan button runs the scripts

against the selected configuration file and produces an

output similar to the one shown in Figure 21.

Figure 21. Execute Custom Scan

The output from the scan displays the rule ID,

vulnerability ID, version, status, title, and notes

associated with the custom check. The STATUS out provides

 62

the findings current compliance state if there is one (0 =

passing, 1 = failing).

6. Hosts

The hosts tab/function allows the user to add hosts

that are linked to scan results. The hosts created are

identified by data entered in the name and description

fields. Once a host is added, it appears in the table like

the one shown in Figure 22.

Figure 22. Add Hosts

The host data input is stored in the Hosts table of

the database. Selecting a host allows the user to edit the

host’s data or delete the host.

7. Uploadresults

Through the upload results tab/function the user

uploads XCCDF results files generated from SCAP compliant

tools. The uploaded files are stored in the directory

 63

“uploads,” created under the website root folder. The

platform field is used to specify the platform or

application associated with the uploaded scan result. A

listing of uploaded XCCDF results files and network scan

results is shown in Figure 23.

Figure 23. Upload Results

The table generated displays the list of all the XCCDF

results uploaded, including the host name, timestamp the

scan was completed, and the XCCDF results file name. The

table also displays network scan results that have been

automatically imported into the results database as a

result of initiating a scan from the generate scripts tab.

8. Uploadconfig

The upload config tab/function allows the user to

upload a device configuration file to the proof-of-concept

 64

system. The uploaded files are stored in the directory

“uploads” created under the website root folder. The user

selects the host associated with the device configuration

file and provides a description for the uploaded

configuration file. The upload config page looks similar to

Figure 24.

Figure 24. Upload Config

This table provides a list of all the configuration

files uploaded, including the user provided description,

host ID, and timestamp.

9. Scans

The scans tab/function displays a list of all the

XCCDF results uploaded and the network device scan results

generated from the custom check scripts. Figure 25 displays

the table showing the date the scan was completed, the

host’s name, the associated platform, and the scan results

filename.

 65

Figure 25. Scan Results

Selecting a scan result allows the properties

associated with the scan to be modified or deleted.

10. Configs

The configs function/tab displays all the previously

uploaded network device configuration files as shown in

Figure 26. When a user selects a configuration file, the

configuration file is written into the scanning directory

and renamed device.cfg. The previously created custom

checks are used to validate security settings.

Figure 26. Configuration List

 66

When a user clicks on the file name for an individual

configuration that file’s location and name, description,

host Id and timestamp are loaded into their respective

fields. The device configuration is also loaded in the text

field. The user can review the configuration manually as

well as make changes the configuration’s editable fields.

The user can also delete the configuration. A truncated

example of a loaded configuration file can be seen Figure

27.

Figure 27. Loaded Configuration

 67

11. Reviewscans

The review scans tab/function provides a list of all

the scan results. The user selects a scan as the base line

and a scan as the target as shown Figure 28.

Figure 28. Review Scans Listing

The user clicks the submit button to compare the

target scan result with the baseline. The provided output

is a status of all the findings for the baseline and target

scans. Non-matching results appear highlighted in red as

shown in the Figure 29.

Figure 29. Review Scan Results

Selecting the edit button next to a finding brings up

the results form, as shown in Figure 30. This allows the

user to make changes or add notes to a specific result.

This field is used for custom notes regarding false

positives, POA&Ms, or simply for informational purposes.

 68

Figure 30. Modify Scan Result

Selecting the update button saves the user provided

input, while the delete button will remove the finding from

the database.

B. SYSTEM FLOW

To summarize the system flow, the following example is

given. If a user wants to evaluate a network configuration

and the XCCDF file for the evaluated asset is already

imported; the user takes the following actions.

First, the user selects the host tab to add the device

as a host, if it does not already exist. Then, the user

selects the upload configs tab and uploads the config to be

evaluated. The config is uploaded and the user selects the

config tab to view the configs and selects the config to be

evaluated. Next, the user selects the documents tab to view

the list of XCCDF content imported into the system database

and selects the applicable content for the network device,

 69

as well as its profile (MAC level / sensitivity) for the

operating environment. Once the document and profile have

been selected, the groups and generate scripts tab appear,

and the user is redirected to the groups tab. The user then

edits any custom checks or views applicable STIG content if

desired. Next, the user selects the generate scripts tab

that creates the server-side custom check scripts. Finally,

the user selects the host, provides the device platform and

clicks the scan button to run the generated scripts against

the selected device configuration file. The output from

the checks is then displayed below the scan button for the

user to read, and the results are entered into the database

for use by other functions.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

V. FUNCTIONAL TESTING

In order to understand the proof-of-concept system’s

viability as an IA tool, it had to be put through

functional testing. This testing was completed using actual

SCAP benchmark data and actual network configuration files.

The following sections detail the process and results of

that testing in a step-by-step manner.

A. SERVER FUNCTIONAL TESTING

In order to validate server functionality, test data

sets had to be created. A Windows 2008 R2 test server,

SVR01_WIN2008R2, was used to generate SCAP benchmark data

for testing the functional code for the proof-of-concept

system. The SCAP Compliance Checker (SCC) tool, version

3.1, was used for generating the SCAP benchmark results

files. The SCC tool was created by and maintained by Space

and Naval Warfare (SPAWAR) Systems Center ATLANTIC [43].

The SCAP content for Windows Server 2008 R2 and Internet

Explorer 8 were used to evaluate the STIG compliance of the

test server. A preliminary scan was completed to produce a

benchmark scan result file for the test server.

Configuration changes to the base OS and Internet Explorer

8 were made to create a modified system target. These

changes were made to bring these configuration settings out

of compliance on the test server and are presented in Table

4.

 72

Table 4. Test Server Configuration Changes Modified

The modified system target was re-evaluated with the

SCC tool generating a second set of benchmark scan result

files. In Table 5, the filenames of the scan result files

for the test server and the result type are shown.

Table 5. Test Server SCAP Benchmark Result Files

1. Import XCCDF Content Files

 The user uploaded the XCCDF content files, listed in

Table 6, to the content directory of the web server.

 73

Table 6. XCCDF Content Files

Once the files have been uploaded the user clicked the

import tab. The list of xml files from the content

directory is shown in the import content folder as seen in

Figure 31.

Figure 31. Import XCCDF Content

The user clicked the import button for each of the

content files. After each of the files was imported, the

import content table changed as shown in Figure 32.

Figure 32. Imported XCCDF Content

Once the import was completed, the user had the option

to select the documents tab to see a list of the imported

XCCDF content. This content would be used later, and

reviewed during the testing of the network device

functionality.

 74

2. Adding Server and Network Device Hosts

Prior to uploading the scan result files for

evaluation in the proof-of-concept tool, the user had to

create an entry for the test server. To add a new host, the

user selected the host tab, which brought up the “Add Hosts

Dialog” shown in Figure 33.

Figure 33. Add Hosts Dialog

The user entered the server hostname, SVR01_WIN2008R2,

in the “Name” field and the description “Test Server 01”.

The user then clicked the add button, which saves the host

data to the “hosts” database and displays the host

information in a table on the hosts tab as shown in Figure

34.

Figure 34. Hosts Information Table

After the host entry for the test server had been

created the delete and update functions were tested. The

 75

user selected the host name “SVR01_WIN2008R2,” which

displayed the update and delete button as seen in Figure

35.

Figure 35. Hosts Update / Delete Dialog

The user clicked the update button and tested

modifying the host name and description. The updated host

was selected, and the user selected the delete button,

which removed the record. The SVR01_WIN2008R2 host was

added back and the user proceeded to the uploadresults tab

for testing the upload scan results function.

3. Upload SCAP Baseline Scan Results

The user selected the uploadresults tab to bring up

the upload results dialog window seen in Figure 36.

Figure 36. Upload Results Dialog

Using the scan result files and data provided in the

“Test Server SCAP Benchmark Result Files” table, the user

 76

added each of the result files for the host SVR01_WIN2008R2

by selecting the host from the dropdown menu and entering

the associated platform in the platform field. As the

results are uploaded and added to the database, the data

for each uploaded result appears in the upload results

table under the uploadresults tab, seen in Figure 37.

Figure 37. Upload Results Table

After the scan results were uploaded, the user tested

the ability to update and delete uploaded scan results. The

user selected the host name “SVR01_WIN2008R2,” which

displayed the update and delete button as seen in Figure

38.

Figure 38. Upload Results Update / Delete Dialog

The user clicked the update button and tested

modifying the host, platform, and scan result file. The

updated scan result was selected and the user selected the

 77

delete button to remove the record. The deleted scan result

file was added back and the user proceeded to the scans tab

for testing the view scan results function.

4. View Scan Results

The user selected the scans tab, which displayed the

scan results list as showing in Figure 39. This list

displays the date, host, platform, and file name for the

uploaded scan results.

Figure 39. View Scans Table

The user selected the date in the first column of the

view scans table, which displayed the data related recorded

with the uploaded scan result. Figure 40 displays the scans

dialog that permits the user to update data related to each

uploaded scan result.

Figure 40. Update / Delete Scans Dialog

 78

The user tested updating the platform associated with

a selected scan result. The user clicked the delete button,

which removed the modified scan result. The deleted scan

result was then uploaded and added from the uploadscans

tab.

5. Review Scans

The user selected the reviewscans tab to test the

comparative functions for analyzing the baseline scan

results with the modified target results. The review scans

table is shown in Figure 41.

Figure 41. Review Scans Table

The user selected the Internet Explorer 8 scan results

from 06-03-2013 as the baseline and selected the 06-29-2013

result as the target. The user selected the submit button,

which produced a results comparison table as seen in Figure

42. As expected, the vulnerabilities that had mismatched

values between the baseline and target were highlighted in

red and matched the configuration changes made for the

target result scan.

 79

Figure 42. Internet Explorer Scans Comparison

The review scans comparison table displays the Vuln

ID, Ident CCI, Rule ID, Rule and the results for the

baseline and target files. The Vuln ID represents the

unique vulnerability identifier that is used for

identifying vulnerabilities in VMS. The Ident CCI column

displays the CCE ID used by the NVD for identifying unique

system configuration related vulnerabilities. The Rule ID

is used within the SCAP XCCDF and benchmark result files to

denote a specific automated check. The rule column provides

the title or a short description of the vulnerability

check.

The user selected the Windows 2008 R2 scan results

from 06-03-2013 as the baseline and selected the 06-29-2013

result as the target. The user selected the submit button,

which produced a results comparison table as seen in Figure

43. As expected, the vulnerabilities that had mismatched

 80

values between the baseline and target were highlighted in

red and matched the configuration changes made for the

target result scan.

Figure 43. Windows 2008 R2 Scans Comparison

This concluded the functional testing for the server

validation components of the proof-of-concept system.

B. NETWORK DEVICE FUNCTIONAL TESTING

In order to validate network device functionality, a

pair of configuration files needed to be created. A Cisco

3560E layer-2 switch configuration file was used for

network device testing. For the baseline, the configuration

setting associated with finding V-3085, titled “The network

element must have HTTP service for administrative access

disabled,” was set to a compliant state. The updated config

was set to a non-compliant state to represent a switch that

had fallen out of compliance. These configuration files

would be used later in the testing.

 81

1. Preparing Custom Checks

The XCCDF XML content file,

“U_L2_Switch_Cisco_V8R16_Manual-XCCDF.xml” was imported

into the proof-of-concept system using the same procedure

described in the previous section. Once the import was

completed, the user selected the documents tab and was

presented with the document title and xml file names as

shown in Figure 44.

Figure 44. Document List

From here, the user clicked the select button for the

U_L2_Switch_Cisco_V8R16_Manual-XCCDF.xml file, which

produced the table shown in Figure 45. This table includes

a selectable list of profiles made up of MAC and

sensitivity levels.

Figure 45. Document Profiles List

 82

The user clicked on the select button next to the

“MAC-2_Sensitive II–Mission Support Sensitive,” which

produced a list of all vulnerabilities associated with that

MAC and sensitivity level for the selected XCCDF document.

A truncated version of that output is show in Figure 46.

Figure 46. XCCDF Document Vulnerability List

To create a custom check, the user selected

vulnerability V-3012, “The network element must be password

protected.” The user was then redirected to the interface

for custom check creation. The user then selected “Cisco

Config Null is Bad” from the functions drop down and

inserted this previously created code function. This

interface, with the inserted code function, appears in

Figure 47.

 83

Figure 47. Vulnerability Check Creation

The user then modified the existing evaluation script

to check the configuration file for a line beginning with

the words “enable secret” or “enable password”. To do this,

the line #vc="cat $file |egrep

'^words\s+(in|the_config)\s+\S+'" was uncommented, by

removing the # mark, and changed to vc=”cat $file |egrep

‘^enable\s+(secret|password)\s+\S+’”. The final state of

the check is shown in Figure 48.

 84

Figure 48. Vulnerability Check

The check was then added by clicking the add button.

In normal operation, this new check could be run against a

known configuration and validated as good or bad. This

particular check was known to be good and was marked as

such by the user who checked the “Tested” box. This process

was repeated for several other checks. Some of these checks

also tested as good, while others did not. Finally some

checks were started, but never marked as good or bad. The

select button next to these checks of varying status appear

in the colors green, red and yellow to signify good, bad

and unknown respectively as shown in Figure 49.

 85

Figure 49. Custom Check Status

2. Validation and Comparison

Once the custom checks were created, it was time to

begin the testing of validation and comparison. In order to

do this, the network configuration files previously created

needed to be uploaded into the system. To do this the user

started by clicking on the uploadconfig tab. Doing so

displayed the interface shown in Figure 50.

Figure 50. Uploadconfig Dialog

 86

The user then selected the host Tester_3560E and

clicked on the “Choose File” button to select a

configuration file from his local machine. This dialog is

shown in Figure 51.

Figure 51. Choosing a File Dialog

The user selected the original file and click open to

confirm the selection. The user then entered a relevant

description in the description field. This is show in

Figure 52.

 87

Figure 52. Uploading a Configuration File

After clicking the add button and running through the

procedure a second time to upload the updated

configuration, the user was presented with updated page

shown in Figure 53.

Figure 53. Uploaded Configuration Files

Once the configuration files were uploaded, the user

moved on to the configs tab where the configurations could

be selected and loaded into a temporary file for validation

scanning. These options are shown in Figure 54.

 88

Figure 54. Initial Configs Tab

By clicking on the file path and name, the

configuration file was presented in the text box for visual

inspection by the user. A truncated version of the text

field and the other editable fields are shown in Figure 55.

Figure 55. Selected Config File View

 89

From here the user scrolled down to the bottom of the

page where he had to option to update the file,

description, host id or timestamp field, delete the entire

configuration file from the system or select one of the

configuration files for validation scanning. This is shown

in Figure 56.

Figure 56. Update, Delete or Select Config Options

 90

For the proof-of-concept testing, the user selected

the original configuration file. This is indicated by the

words “Config has been selected” as shown in Figure 57.

Figure 57. Configuration Selected

Once a configuration file was selected, the user

clicked on the generate script tab to generate the scripts

for custom checks created earlier in the proof-of-concept

testing. Each individual check is converted into a script

based on the version name of the check. The user was then

presented with the web page in Figure 58.

Figure 58. Scripts Generated

 91

From here the user selected the previously configured

switch host and entered information identifying the scan as

the original as shown in Figure 59.

Figure 59. Execute scan

The user then selected the scan button to run the

validation. The results of the scan were entered into the

database as well as being displayed as shown in Figure 60.

Figure 60. Scan of Original Config

The user reviewed the validation results and

determined that original configuration file passed three of

 92

the four checks. The only failing check was V-3079, titled

“The network element must have the finger service

disabled”. To verify that the validation results were

uploaded the user clicked on the scans tab and was

presented with the webpage shown in Figure 61.

Figure 61. Uploaded Scans

The user then repeated the process for validating the

updated configuration file. After the user executed the

scan of the updated configuration file, he was presented

with the webpage shown in Figure 62.

Figure 62. Scan of Modified Config

 93

The user then verified that the update configuration

file failed both V-3079, as the original had, and V-3085

titled “The network element must have HTTP service for

administrative access disabled,” which the original did

not. This was the setting that was toggled on purpose to

illicit a difference in validation reports between the

original and updated configuration files. From here the

user clicked on the review scans tab and was presented with

the webpage shown in Figure 63. The user then selected the

original validation as the baseline and the updated

validation as the target.

Figure 63. Review Scans for Network Device

The user then clicked the submit button to compare the

two results. As expected, the proof-of-concept system

identified V-3085 as differing between the baseline and the

target as show in Figure 64.

 94

Figure 64. Network Results Comparison

This completed the testing for network validation

component. This concluded the proof-of-concept system

functional test.

 95

VI. CONCLUSION

A. PROOF-OF-CONCEPT SYSTEM RESULTS

The proof-of-concept system testing demonstrates

capabilities that address several areas of need that the

current DoD-mandated tools do not. The ability to digest,

archive, and compare both SCAP and custom-written security

validation results for individual assets or asset types

proves valuable in several use case scenarios.

In isolated development environments where security

settings may be adjusted as part of application testing, an

organization may not want, or be able to, use CMRS. An

organization’s requirement to isolate their development

environment may preclude them from utilizing a solution

that must have external connectivity in order to report or

update security content.

CMRS reporting, in its current preliminary state, does

not support reporting risk scores associated with

individual assets, instead providing an overall risk score

for all monitored organizational assets. A CMRS score

associated with an organization’s assets is a raw score,

which cannot be altered from the compliance data provided

by reporting agents, such as HBSS or ACAS. The initial

deployment phase of CMRS does not support the modification

of scoring due to risk mitigation or the identification of

false positives. The insertion of POA&Ms for specific

reported findings is also currently unsupported.

The proof-of-concept system has shown the ability to

address both of these issues. This system does not require

external connectivity for updates of security content or

 96

reporting, so it can operate in a standalone or “air-gap”

network. The proof-of-concept system also allows for a

single asset to be compared to other assets of the same

type or for a previous version of that asset to be compared

to a later version of that same asset. In essence, whether

operating in a closed or connected environment the proof-

of-concept system allows users to identify a standard set

of security settings that make up a system security

baseline and compare those results to results generated

against the same system or same type of system at a later

date in development. These capabilities prove especially

valuable when conducting engineering and development

activities.

Another advantage of the proof-of-concept system is

the ability to support custom written validation checks.

This allows the system to validate network device

configurations against specific security checks, which is

especially useful when SCAP content for a device does not

exist. This capability is also useful when scripting or

staging network configurations since network engineers

often pre-build or script a configuration prior to loading

it on a device. This saves time during an install and

allows others to review their work prior to deployment. The

system’s ability to parse through flat files searching for

user specified security settings makes it ideal for these

purposes.

The proof-of-concept system has shown that it is

capable of meeting some immediate needs for both servers

and network devices, but there are some short-comings. In

its present form, the system does not utilize an

 97

authentication mechanism for restricting access. The

overall flow of the system could be improved as it relates

to network validation actions and the process of writing

custom checks requires a fairly strong understanding of

shell scripting in order to parse and identify target data.

These shortcomings and a number of potential improvements

are the focus of the next section.

B. IMPROVEMENTS

The following sections address improvements that could

be made to the system to further enhance its capability.

1. Role Based Access Control

The proof-of-concept system can be deployed to a

single user’s laptop, workstation, or virtual machine. In

these instances, access control to individually assigned

assets is often controlled via corporate security policies.

These restrictions are implemented to prevent external

users from accessing content on another individual’s asset.

However, when the proof-of-concept system is deployed in a

shared environment where multiple users may utilize it,

access control needs to be established.

When multiple users utilize the system, data detailing

the security posture of IT from various parts of the

organization may be present on the same system. In this

case, controls must be in place to control the

confidentiality and integrity of the user’s data. RBAC is

an ideal approach because it allows personnel from

different areas of an organization to be assigned various

roles. In the case of the proof-of-concept system, these

roles could be defined in many different ways. For example,

 98

these roles could be based on what a user should be able to

see, change, delete or create. When implemented, the

specific requirements of an organization would define

exactly what roles were created.

2. System Flow

As detailed in Chapters IV and V, the system utilizes

tabs that represent each specific functional requirement of

the proof-of-concept system. These tabs define the layout

of the GUI. The GUI could be improved to provide a more

intuitive interface that more clearly represents the

process for evaluating an asset.

For example, the system layout could be broken into

network device and server sections. This would eliminate

tabs that were not relevant to a particular section,

cleaning up the overall appearance of the GUI. Another

example might be to allow users to select and run scans

directly from the configs tab or for user to have the

option to upload XCCDF results files while simultaneously

defining a new host.

While the system is intentionally designed in this

tabbed format to showcase each individual function

independently, it could be modified to provide a more user-

friendly operating environment.

3. Custom Checks

Custom checks provide a framework for vulnerability

assessment as it relates to network devices. In the case of

the proof-of-concept system the checks associated with each

vulnerability ID are written from scratch in shell

scripting or created by modifying code from a selected

 99

template. In either case, even with the ability to check

scripts from the command line, a moderate understanding of

programming is needed to ensure that the information being

searched is identified when present and is identified as

missing when it is not present. In the Figure 65, a check

has been written using the “Cisco Null is Bad” template.

The vulnerability being evaluated is meant to ensure that

administrative access to the network device is password

protected.

Figure 65. Password Custom Check

A validator inspecting this vulnerability on a Cisco

switch or router needs to ensure that “enable secret” or

“enable password” is present in the device’s configuration

file. The script above uses both the cat and egrep

commands. The cat command is usually used to display a

file. The egrep command is usually used to search text for

a specific set of characters. When they are combined in the

manner above, the device.cfg file is parsed looking for a

line beginning with the word “enable” followed by one or

more spaces and then either the word “secret” or the word

 100

“password”. Writing these checks becomes more challenging

as the acceptable set of strings grows and dependencies

become relevant.

To simplify and standardize the way network checks are

created, the code used could be derived from an improved

set of templates. These templates would allow users to

enter commands or attributes of interest into various

fields associated with regular expressions such as “and,”

“not,” “matches” and “contains,” and the checks would

automatically be created. Based on the fields used, the

check would search for the presence or the absence of

specific text to validate a check. By standardizing the way

checks are created, network validation results would be

more consistent and easier to create.

C. FUTURE WORK

There are several areas where future work should be

focused. It would be worthwhile to expand the capabilities

of the network validation functionality. As described in

the previous section, a more user-friendly template for

creating checks would be particularly useful in this

regard. DISA-provided network-checklists come in generic

roles or functions, and device specific varieties.

For example, in the proof-of-concept system both the

Layer 2 Switch Security Technical Implementation Guide—

Cisco and the Layer 2 Switch Security Technical

Implementation Guide—Generic were loaded. The Cisco version

of the guide has Cisco IOS specific checks for the various

vulnerabilities identified. The generic version of the

guide does not apply to a specific vendor product or

operating system. This implies that the same vulnerability,

 101

referenced in each guide, may require multiple checks to be

written. Each version of the check would then need to be

assigned to a specific vendor, operating system, or even a

specific model of device. This would all need to be tracked

within the database and the process for creating the

scripts, running them and uploading the results into the

database would need to be modified.

Another way to expand the capabilities of the proof-

of-concept system would be to address continuous

monitoring. There are several approaches that could be

taken here, but the most straightforward would take

advantage of most OS’ abilities to schedule jobs and

utilize network files systems. On systems where continuous

monitoring is desired, administrators could schedule

existing SCAP compliant tools to run validation scans and

save the results to a network file-share. The proof-of-

concept tool could monitor these various file-shares while

consuming and cataloging the results as they appeared.

Significant changes to the proof-of-concept system would be

required to add this automation feature. The system would

need some way of knowing which new result files belong to

which systems, though it is possible that this information

could be pulled from the XCCDF benchmark results files.

Ideally, the system would have the ability to compare the

most recent results against the baseline for a given system

and notify users of any changes that affected the risk

assessment of an asset.

The same challenges would exist for network device

validation, but the process would be a little different. In

this scenario it would make more sense to automate the

 102

process of attaining device configuration files. With

specific settings needed for each device, the cataloguing

or assignment of a specific device configuration, as well

as the validation results, would most likely be tied to the

initial process of downloading that specific device’s

configuration file. In this way, the proof-of-concept tool

would know which device and validation checks to be run

before it even attempted to retrieve a device

configuration. Having the ability to provide a near real-

time status on the network devices and servers within a

particular environment would provide an organization with

valuable information on the security posture of the

monitored assets in their environment.

To evaluate the usability of the system, several

potential studies could be conducted. The proof-of-concept

system could be provided to assessors for use in a real

world evaluations or compliance monitoring scenarios. It

could also be piloted or tested in a scenario, where some

assessors would have access to the proof-of-concept system

and others would not, that could illustrate the effect on

time savings and accuracy. Finally, the proof-of-concept

system could be used in a classroom system to explore the

compliance process and maintenance through an example. Each

of these scenarios would provide valuable feedback that

could shape future versions of the tool and provide an

enhanced understanding of its usability.

These improvements and suggestions for future work aim

to address shortcomings and extended capabilities that are

needed to integrate the proof-of-concept system into a

production security monitoring system capable of providing

 103

automated compliance validation and continuous monitoring.

An open source system like this could be tailored and

enhanced to meet the specific needs of individuals and

organizations to provide security monitoring and/or augment

their existing tool sets.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX A. PROOF-OF-CONCEPT DATABASE STRUCTURE

For the proof-of-concept, a database named SCANS was

created. This database contains many tables. Some of the

tables were created manually, while others were created as

part of script execution. A short description of each

table, along with basic characteristics of each field

within each table can be found below.

A. CODE

Description: This table stores the custom code created

to assess the status of each vulnerability.

Column Type Null

id int(11) No

groupId int(11) Yes

creatorId int(11) Yes

fnId int(11) Yes

code text Yes

notes text Yes

selected varchar(3) Yes

codeTypeId int(11) Yes

tested varchar(2) Yes

bug varchar(2) Yes

Table 7. Code Table Data Columns

B. CODEFUNCTIONS

Description: This table stores the code functions that

can be used as a template for custom code.

 106

Column Type Null

id int(11) No

name varchar(100) Yes

description text Yes

code text Yes

codeTypeId int(11) Yes

tested int(11) Yes

creatorId int(11) Yes

variables varchar(200) Yes

execute varchar(2) Yes

Table 8. Codefunctions Table Data Columns

C. CONFIGS

Description: This table stores the uploaded device

configuration files that can be validated by the proof-of-

concept system.

Column Type Null

id int(11) No

file varchar(200) Yes

description varchar(50) Yes

hostId int(11) Yes

timestamp int(11) Yes

Table 9. Config Table Data Columns

D. DOCUMENTS

Description: This table stores all the information

parsed from the XCCDF XML documents.

 107

Column Type Null

id int(11) No

documentTitle varchar(200) Yes

documentDescription text Yes

documentPublisher varchar(50) Yes

documentSource varchar(50) Yes

documentHref varchar(50) Yes

documentRelease varchar(100) Yes

documentReleaseVersion varchar(50) Yes

xmlNsDsig varchar(100) Yes

xmlNsXhtml varchar(100) Yes

xmlNsXsi varchar(100) Yes

xmlNsCpe varchar(100) Yes

xmlNsDc varchar(100) Yes

xmlId varchar(100) Yes

xmlLang varchar(100) Yes

xmlSchemaLocation varchar(200) Yes

xmlNs varchar(100) Yes

documentDate varchar(100) Yes

xsiSchemaLocation varchar(200) Yes

xmlfile varchar(200) Yes

Table 10. Documents Table Data Columns

E. GROUPS

Description: This table stores information about each

requirement described in the XCCDF XML documents.

Column Type Null

id int(11) No

vulnId varchar(20) Yes

ruleId varchar(20) Yes

severity varchar(20) Yes

weight varchar(20) Yes

version varchar(50) Yes

title text Yes

 108

Column Type Null

description text Yes

falsePositives varchar(200) Yes

falseNegatives varchar(200) Yes

documentable varchar(200) Yes

mitigations varchar(200) Yes

severityOverrideGuidance varchar(200) Yes

potentialImpacts varchar(200) Yes

thirdPartyTools varchar(200) Yes

mitigationControl varchar(200) Yes

responsibility varchar(200) Yes

iaControls varchar(200) Yes

dcTitle varchar(200) Yes

dcPublisher varchar(50) Yes

dcType varchar(50) Yes

dcSubject varchar(50) Yes

dcIdentifier varchar(50) Yes

identSystemUrl varchar(100) Yes

identCci varchar(100) Yes

fixRefId varchar(100) Yes

fixText text Yes

fixId varchar(100) Yes

chkId varchar(100) Yes

checkContentRef varchar(50) Yes

checkContentHref varchar(100) Yes

checkText text Yes

fnId int(11) Yes

noFn int(1) Yes

referenceId varchar(20) Yes

Table 11. Groups Table Data Columns

F. HOSTS

Description: This table stores the list of hosts. It

is used as a data source to associate a particular host

with each uploaded scan results document.

 109

Column Type Null

id int(11) No

name varchar(50) Yes

description varchar(100) Yes

Table 12. Hosts Table Data Columns

G. PROFILES

Description: This table stores the various profiles

(e.g., MAC-1 Classified, MAC-2 Public) contained within

each uploaded XCCDF file.

Column Type Null

id int(11) No

documentId int(11) Yes

profileName varchar(100) Yes

profileTitle varchar(100) Yes

Table 13. Profiles Table Data Columns

H. PROFILESMAP

Description: This table stores information relating a

profile with its individual group entries

(vulnerabilities).

Column Type Null

id int(11) No

profileId int(11) Yes

vulnId varchar(50) Yes

Table 14. ProfilesMap Table Data Columns

I. RESULTS

Description: This table stores the scan results.

 110

Column Type Null

id int(11) No

timestamp int(11) Yes

ruleId varchar(50) Yes

result varchar(10) Yes

identCci varchar(50) Yes

scanId int(11) Yes

note varchar(255) Yes

output varchar(255) Yes

status int(1) Yes

Table 15. Results Table Data Columns

J. SCANS

Description: This table stores all the information

about a particular scan.

Column Type Null

id int(11) No

hostId int(11) Yes

timestamp int(11) Yes

file varchar(255) Yes

platform varchar(255) Yes

Table 16. Scans Table Data Columns

 111

APPENDIX B. PROOF-OF-CONCEPT SOURCE CODE

The php source code for each page of the proof-of-

concept application:

A. INDEX.PHP

<?php

include "includes.php";

?>

Includes.php

<?php

include "variables.php";

include "functions.php";

include "htmlhead.php";

include "menu.php";

?>

B. VARIABLES.PHP

<?php

//*** General Variables ***

session_start();

$phpSelf=basename($_SERVER['PHP_SELF']);

$websiteName="SuperSCAP";

date_default_timezone_set('America/New_York');

$now=time();

//*** Framework Database ***

$dbUser="dbuser";

$dbServer="localhost";

$dbPass="dbpassword";

$dbName="scans";

$mysqli = new mysqli($dbServer,$dbUser,$dbPass,$dbName);

//*** Colors ***

$defaultBgColor="d8d8d8";

$defaultFontFace="arial";

$defaultFontSize="10px";

$myRed="af1d0e";

$myBlue="1c5f92";

$myGreen="6d722d";

$myYellow="d4961b";

 112

$rc1="#c0c0c0"; // list row color 1

$rc2="#e8e8e8"; // list row color 2

$cc=0;

$tc=$rc1;

//*** Reference Variables ***

$page=basename(substr($phpSelf, 0, -4));

if(isset($_POST['setDocumentId'])){

 $documentId=$_POST['setDocumentId'];

 $_SESSION['documentId']=$_POST['setDocumentId'];

}

if((!isset($documentId))&&(isset($_SESSION['documentId'])))

{

 $documentId=$_SESSION['documentId'];

}

if(isset($_POST['setProfileId'])){

 $profileId=$_POST['setProfileId'];

 $_SESSION['profileId']=$_POST['setProfileId'];

}

if((!isset($profileId))&&(isset($_SESSION['profileId']))){

 $profileId=$_SESSION['profileId'];

}

if(!isset($id)){

 $id='';

}

if(isset($_POST['mode'])){

 $mode=$_POST['mode'];

}elseif(isset($_GET['mode'])){

 $mode=$_GET['mode'];

}else{

 $mode="none";

}

?>

C. FUNCTIONS.PHP

<?php

function getFields($dbTable){

 global $mysqli,$dbName;

 $vars=array();

 $sql="select column_name from information_schema.columns

where table_schema='$dbName' and table_name='$dbTable'

order by ordinal_position";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $var=$row['column_name'];

 113

 array_push($vars,"$var");

 }

 return $vars;

}

function showFields($dbTable){

global $mysqli,$dbName;

 $vars=array();

 $sql="select column_name from information_schema.columns

where table_schema='$dbName' and table_name='$dbTable'

order by ordinal_position";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $var=$row['column_name'];

 array_push($vars,"$var");

 }

 print "dbName: $dbName
";

 print "dbTable: $dbTable
";

 foreach($vars as $var){

 print "var: $var
";

 }

}

?>

D. HTMLHEAD.PHP

<html><head>

<title><?php print "$websiteName"; ?></title>

<link rel="shortcut icon" href="images/favicon.ico"

type="image/x-icon" />

<?php

include "css.php";

?>

</head>

<body topmargin=0 leftmargin=0 bgcolor=<?php print

"$defaultBgColor"; ?>>

css.php

<style type=text/css>

a:link { color: black; text-decoration: none }

a:active { color: yellow; text-decoration: none }

a:visited { color: black; text-decoration: none }

a:hover {

color: #c6c6c6;

text-decoration: none

}

 114

h1{

font-size: 10px;

font-family: serif;

font-style: normal;

}

h2 {

 font: bold 330%/100% "Lucida Grande";

 position: relative;

 color: #464646;

 margin-bottom:0;

 font-size:12px;

}

h2 span {

 background: url(images/gradient-white.png) repeat-x;

 position: absolute;

 display: block;

 width: 100%;

 height: 22px;

}

h4{

font-size: 16px;

font-family: serif;

font-style: normal;

}

td{

 font-family: <?php print "$defaultFontFace"; ?>;

 font-size: <?php print "$defaultFontSize"; ?>;

}

td.menuSpace{

 padding: 0;

}

td.menu{

 font-family: arial;

 font-size: 12px;

 padding: 4 10 4 10;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #888888;

 font-weight: normal;

 -webkit-border-radius: 3 3 0 0 ;

 115

 -moz-border-radius: 3 3 0 0 ;

 border-radius: 3 3 0 0;

}

td.subMenu{

 font-family: arial;

 font-size: 12px;

 padding: 4 10 4 10;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #888888;

 font-weight: normal;

 -webkit-border-radius: 3 3 0 0;

 -moz-border-radius: 3 3 0 0;

 border-radius: 3 3 0 0;

}

td.menuSel{

 font-family: arial;

 font-size: 12px;

 padding: 4 10 4 10;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #d4961b;

 color: #ebebeb;

 font-weight: bold;

 -webkit-border-radius: 3 3 0 0;

 -moz-border-radius: 3 3 0 0;

 border-radius: 3 3 0 0;

}

td.subMenuSel{

 font-family: arial;

 font-size: 12px;

 padding: 4 10 4 10;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #d4961b;

 color: #ebebeb;

 font-weight: bold;

 -webkit-border-radius: 3 3 0 0;

 -moz-border-radius: 3 3 0 0;

 border-radius: 3 3 0 0;

}

table.form{

 116

 border-color: #ffffff;

 border-width: 3px ;

 border-style: double;

 border-spacing: 0px;

 padding: 5 5 5 5;

 background-color: #a0a0a0;

}

table.form2{

 border-color: #ffffff;

 border-width: 3px ;

 border-style: double;

 border-spacing: 2px;

 padding: 5px;

 background-color: #a0a0a0;

}

td.formLabel{

 font-family: arial;

 font-size: 11px;

 padding: 2;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #a0a0a0;

 font-weight: normal;

 vertical-align: top;

 text-align: right;

 white-space: nowrap;

}

td.formFieldSmall{

 font-family: arial;

 font-size: 11px;

 padding: 2;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #a0a0a0;

 font-weight: normal;

}

#tooltip1 { position: relative; }

#tooltip1 a span { display: none; color: #black; }

#tooltip1 a:hover span {

 display: block;

 position: absolute;

 background-color: #ffffcc;

 117

 color: #black;

 padding: 5px;

 border-color: #606060;

 border-style: solid;

 border-width: 2;

 -webkit-border-radius: 6px;

 -moz-border-radius: 6px;

 border-radius: 6px;

 }

#tooltip2 { position: relative; }

#tooltip2 a span { display: none; color: #000000; }

#tooltip2 a:hover span {

 left: 50px;

 display: block;

 position: absolute;

 background-color: #ffffcc;

 color: #000000;

 font-size:14px;

 padding: 5px;

 border-color: #606060;

 border-style: solid;

 border-width: 2;

 -webkit-border-radius: 6px;

 -moz-border-radius: 6px;

 border-radius: 6px;

 }

td.formTitle{

 font-family: arial;

 font-size: 14px;

 padding: 0 0 0 10;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #a0a0a0;

 font-weight: normal;

 text-align: center;

}

td.formSection{

 font-family: arial;

 font-size: 13px;

 padding: 0 0 0 5;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #a0a0a0;

 118

 font-weight: normal;

 text-align: left;

}

td.formField{

 font-family: arial;

 font-size: 12px;

 padding: 2;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #a0a0a0;

 font-weight: normal;

}

td.formCode{

 font-family: arial;

 font-size: 12px;

 padding: 0;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #000000;

 font-weight: normal;

}

td.formText{

 font-family: arial;

 font-size: 12px;

 padding: 2;

 border-color: #ffffff;

 border-width: 1px;

 background-color: #d0d0d0;

 font-weight: normal;

}

td.formFooter{

 text-align: center;

}

table.list{

 border-color: #ffffff;

 border-width: 3px ;

 border-style: double;

 border-spacing: 1px;

 padding: 5 3 5 3;

 background-color: #a0a0a0;

 119

 background-color: #808080;

}

td.listTitle{

 text-align: center;

 font-family: arial;

 font-size: 14px;

}

td.listHeader{

 text-align: center;

 font-family: arial;

 font-size: 10px;

}

td.list2{

 font-family: arial;

 font-size: 9px;

 font-weight: normal;

 padding: 2 5 2 5 ;

 border-width: 0;

}

td.list3{

 font-family: arial;

 font-size: 6px;

 font-weight: normal;

 padding: 2 5 2 5 ;

 border-width: 0;

}

.smallText{

font-size:10px;

height: 16px;

}

.smallText2{

font-size:10px;

font-family: arial;

}

.textR{

height: 18px;

}

body {

 120

 font: 0.8em/21px arial,sans-serif;

}

.checkbox, .radio {

 width: 19px;

 height: 25px;

 padding: 0 5px 0 0;

 background: url(checkbox.png) no-repeat;

 display: block;

 clear: left;

 float: left;

}

.radio {

 background: url(radio.png) no-repeat;

}

.select {

 position: absolute;

 width: 158px;

 height: 21px;

 padding: 0 24px 0 8px;

 color: #fff;

 background: url(select.png) no-repeat;

 overflow: hidden;

 font: 12px/21px arial,sans-serif;

}

.greybutton

{

background-color: #a0a0a0;

color: #383838;

}

.yellowbutton

{

background-color: #ffff99;

}

.greenbutton

{

background-color: #66ff99;

}

.redbutton

{

 121

background-color: #ffcccc;

}

.button5

{

background-color: #66ff99;

border-bottom:solid;

border-left: #FFEEEE;

border-right:solid;

border-top: #EEEEEE;

color: black;

font-family: Verdana, Arial

}

#off{

 font-family: arial;

 font-size: 11px;

 padding: 2 4 3 2 ;

 border-color: #b8b8b8;

 border-width: 1px;

 background-color: #c0c0c0;

 font-weight: normal;

 -webkit-border-radius: 3 ;

 -moz-border-radius: 3;

 border-radius: 3 ;

}

#on{

 font-family: arial;

 font-size: 11px;

 padding: 2 4 3 2;

 border-color: #b8b8b8;

 border-width: 1px;

 background-color: #d4961b;

 font-weight: normal;

 -webkit-border-radius: 3 ;

 -moz-border-radius: 3 ;

 border-radius: 3 ;

}

</style>

E. MENU.PHP

<?php

if(isset($documentId)){

 if(isset($profileId)){

 122

$menuItems=array('import','codefunctions','documents','grou

ps','script','hosts','uploadresults','uploadconfig','scans'

,'configs','reviewscans');

}else{

$menuItems=array('import','codefunctions','documents','host

s','uploadresults','uploadconfig','scans','configs','review

scans');

 }

}else{

$menuItems=array('import','codefunctions','documents','host

s','uploadresults','uploadconfig','scans','configs','review

scans');

}

print "<table class=menu><tr>";

foreach($menuItems as $menuItem){

 $menuItemUrl="$menuItem.php";

 if($menuItem=="script"){

 $menuItem="Generate Scripts";

 }

 print "<td class=menu>$menuItem</td>";

}

print "</tr></table>";

?>

F. IMPORT.PHP

<?php

include "includes.php";

$mysqli = new mysqli($dbServer,$dbUser,$dbPass,$dbName);

$profileId="";

print "";

$section="head";

$printSection="group";

$r="";

$bl="";

$b="";

$e="$b";

$s=" ";

$ID='';

//### DEBUG - Enable Write to DB (0=disable,1=enable)

$documentsInsert=1;

$profilesInsert=1;

$profilesMapInsert=1;

 123

$groupsInsert=1;

//### DEBUG - Enable Show Vars (0=disable,1=enable)

$showVars=0;

if(isset($_POST['xmlfile'])){

 $xmlfile=$_POST['xmlfile'];

}

if(isset($_POST['deleteAll'])){

$dbTables=array('groups','profilesMap','profiles','document

s');

 foreach($dbTables as $dbTable){

 $sql="truncate $dbTable";

 $mysqli->query($sql);

 }

}

if(!isset($xmlfile)){

 //### Populate Files Array ###

 $files=array();

 if ($handle = opendir('./content')){

 while (false !== ($file = readdir($handle))){

 if (($file!=".")&&($file!="..")){

 $fileExt=substr($file, strrpos($file, '.')+1);

 if($fileExt=="xml"){

 array_push($files, $file);

 }

 }

 }

 closedir($handle);

 sort($files);

 print "<table class=list>";

 print "<tr><td class=listTitle colspan=20>Import

Content</td></tr>";

 $table="documents";

 $docCount=0;

 foreach($files as $file){

 $docCount++;

 $sql2="select COUNT(id) from $table where

xmlfile='$file'";

 if ($result = $mysqli->query($sql2)){

 while ($row = $result->fetch_assoc()){

 $existingRecords=$row['COUNT(id)'];

 }

 mysqli_free_result($result);

 }

 124

 if($existingRecords<1){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 print "<tr><td class=list bgcolor=$tc>$docCount</td><td

class=list bgcolor=$tc>$file</td><td class=list

bgcolor=$tc>";

 print "<form action=$phpSelf method=post style=margin-

bottom:0;>";

 print "<input type=hidden name=xmlfile value='$file'>";

 print "<input type=submit value=import></form>";

 print "</td></tr>";

 }else{

 print "<tr><td class=list bgcolor=$tc>$docCount</td><td

class=list bgcolor=$tc>$file</td><td class=list

bgcolor=$tc>";

 print "</td></tr>";

 }

 }

 print "</table>";

 }

//### Parse XML File ##########

}else{

 $xmlfilePath="content/$xmlfile";

 $fp = fopen($xmlfilePath, 'r');

 $xmldata = fread($fp,filesize($xmlfilePath));

 fclose($fp);

 $p = xml_parser_create();

 xml_parse_into_struct($p, $xmldata, $vals, $index);

 xml_parser_free($p);

 foreach($vals as $key=>$val){

 $type='';

 $level='';

 $value='';

 $tag='';

 foreach($val as $key2=>$val2){

 if($showVars==1){

 print "$r key2:$e $key2";

 }

 //### LEVEL 2 ###

 if(!is_array($val2)){

 $$key2=$val2;

 125

 if($showVars==1){

 print "$r val2:$e $val2
";

 }

 if($section=="head"){

 if(($tag=="TITLE")&&($key2=="value")){

 $documentTitle="$val2";

 }

 if(($tag=="DESCRIPTION")&&($key2=="value")){

 $documentDescription="$val2";

 }

 if(($tag=="DC:PUBLISHER")&&($key2=="value")){

 $documentPublisher="$val2";

 }

 if(($tag=="DC:SOURCE")&&($key2=="value")){

 $documentSource="$val2";

 }

 if($ID=="release-info"){

 if(($tag=="PLAIN-TEXT")&&($key2=="value")){

 $documentRelease="$val2";

 }

 if(($tag=="VERSION")&&($key2=="value")){

 $documentReleaseVersion="$val2";

 }

 }

 }elseif($section=="profile"){

 if(($tag=="TITLE")&&($key2=="value")){

 $profileTitle=$val2;

 }

 //### Create Profile Rectord ###

 if(($started==1)&&($tag=="DESCRIPTION")){

 if(isset($documentId)){

$tableVars=array('profileName','profileTitle','documentId')

;

 $table="profiles";

 //### Build SQL Query to add data to Profiles Table

 $sql="insert into $table (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$tableVar;

 $count++;

 }

 $sql.=") values (";

 126

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 $sql.=",";

 }

 $sql.="\"${$tableVar}\"";

 $count++;

 }

 $sql.=")";

 //### Check for Existing Records (auditName,

statusDate, documentRelease, documentVersion and

benchmarkDate)

 $sql2="select COUNT(id) from $table where

profileName='$profileName' and profileTitle='$profileTitle'

and documentId='$documentId'";

 if ($result = $mysqli->query($sql2)){

 while ($row = $result->fetch_assoc()){

 $existingRecords=$row['COUNT(id)'];

 }

 mysqli_free_result($result);

 }

 //### Execute Query if No Existing Record Exists

 if($existingRecords<1){

 if($profilesInsert==1){

 $mysqli->query($sql);

 }

 }

 $sql="select id from $table where

profileName='$profileName' and profileTitle='$profileTitle'

and documentId='$documentId'";

 if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 $profileId=$row['id'];

 }

 mysqli_free_result($result);

 }

 }

 $started=2;

 }

 }elseif($section=="group"){

 if(($key3=="ID")&&($val2=="TITLE")){

 $vulnId=$val3;

 }

 if($key2=="tag"){

 $tag==$val2;

 }

 127

 if($tag=="VERSION"){

 $version=$val2;

 }

 if($tag=="TITLE"){

 $title=$val2;

 }

if(($tag=="DESCRIPTION")&&($level=="4")&&($val2!="4")){

 //### Parse Description

 $tmpVar="description";

 $descriptionLine=$val2;

 $delimiter="VulnDiscussion";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$val2);$$tmpVar=$tmpVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse False Positives

 $tmpVar="falsePositives";

 $delimiter="FalsePositives";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse False Negatives

 $tmpVar="falseNegatives";

 $delimiter="FalseNegatives";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Documentable Status

 $tmpVar="documentable";

 $delimiter="Documentable";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

 128

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Mitigations

 $tmpVar="mitigations";

 $delimiter="Mitigations";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Severity Override Guidance

 $tmpVar="severityOverrideGuidance";

 $delimiter="SeverityOverrideGuidance";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Potential Impacts

 $tmpVar="potentialImpacts";

 $delimiter="PotentialImpacts";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Third Party Tools

 $tmpVar="thirdPartyTools";

 $delimiter="ThirdPartyTools";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

 129

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Mitigation Controls

 $tmpVar="mitigationControl";

 $delimiter="MitigationControl";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse Responsibility

 $tmpVar="responsibility";

 $delimiter="Responsibility";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 //### Parse IA Controls

 $tmpVar="iaControls";

 $delimiter="IAControls";

 $delimiter1="<$delimiter>";

 $delimiter2="</$delimiter>";

$tmpVars=explode($delimiter1,$descriptionLine);$$tmpVar=$tm

pVars[1];

$tmpVars=explode($delimiter2,${$tmpVar});$$tmpVar=$tmpVars[

0];

 }

 if($tag=="DC:TITLE"){

 $dcTitle=$val2;

 }

 if($tag=="DC:PUBLISHER"){

 $dcPublisher=$val2;

 }

 130

 if($tag=="DC:TYPE"){

 $dcType=$val2;

 }

 if($tag=="DC:SUBJECT"){

 $dcSubject=$val2;

 }

 if($tag=="DC:IDENTIFIER"){

 $dcIdentifier=$val2;

 }

 if(($tag=="IDENT")&&($key2=="value")){

 $identCci=$val2;

 }

 if(($tag=="FIXTEXT")&&($key2=="value")){

 $fixText=$val2;

 }

 if(($tag=="CHECK-CONTENT")&&($key2=="value")){

 $checkText=$val2;

 }

 }

 }else{

 if($showVars==1){

 print "

";

 }

 foreach($val2 as $key3=>$val3){

 //### LEVEL 3 ###

 if(!is_array($val3)){

 $$key3=$val3;

 if($showVars==1){

 print "ssss$r key3:$e$key3 $r val3:$e$val3
";

 }

 if($section=="head"){

 if($key3=="XMLNS:DSIG"){

 $xmlNsDsig=$val3;

 }

 if($key3=="XMLNS:XHTML"){

 $xmlNsXhtml=$val3;

 }

 if($key3=="XMLNS:XSI"){

 $xmlNsXsi=$val3;

 }

 if($key3=="XMLNS:CPE"){

 $xmlNsCpe=$val3;

 }

 if($key3=="XMLNS:DC"){

 $xmlNsDc=$val3;

 }

 131

 if(($tag=="BENCHMARK")&&($key3=="ID")){

 $xmlId=$val3;

 }

 if($key3=="XML:LANG"){

 $xmlLang=$val3;

 }

 if($key3=="XSI:SCHEMALOCATION"){

 $xsiSchemaLocation=$val3;

 }

 if($key3=="XMLNS"){

 $xmlNs=$val3;

 }

 if($key3=="DATE"){

 $documentDate=$val3;

 }

 if($key3=="HREF"){

 $documentHref="$val3";

 }

 }elseif($section=="profile"){

 if($key3=="ID"){

 $profileName=$val3;

 }

 if($key3=="IDREF"){

 $vulnId=$val3;

 }

 //### Create ProfilesMap Entry ###

 if(($key3=="SELECTED")&&($val3=="true")){

 $tableVars=array('profileId','vulnId');

 $table="profilesMap";

 //### Build SQL Query to add data to ProfilesMap

Table

 $sql="insert into $table (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$tableVar;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 $sql.=",";

 }

 132

 $sql.="\"${$tableVar}\"";

 $count++;

 }

 $sql.=")";

 //### Check for Existing Records (auditName,

statusDate, documentRelease, documentVersion and

benchmarkDate)

 $sql2="select COUNT(id) from $table where

profileId='$profileId' and vulnId='$vulnId'";

 if ($result = $mysqli->query($sql2)){

 while ($row = $result->fetch_assoc()){

 $existingRecords=$row['COUNT(id)'];

 }

 }

 mysqli_free_result($result);

 //### Execute Query if No Existing Record Exists

 if($existingRecords<1){

 if($profilesMapInsert==1){

 $mysqli->query($sql);

 }

 }

 $sql="select id from $table where

profileId='$profileId' and vulnId='$vulnId'";

 if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 $profilesMapId=$row['id'];

 }

 mysqli_free_result($result);

 }

 $started=2;

 }

 }elseif($section=="group"){

 if(($tag=="RULE")&&($key3=="ID")){

 $ruleId=$val3;

 }

 if(($tag=="RULE")&&($key3=="SEVERITY")){

 $severity=$val3;

 }

 if(($tag=="RULE")&&($key3=="WEIGHT")){

 $weight=$val3;

 }

 if(($tag=="IDENT")&&($key3=="SYSTEM")){

 $identSystemUrl=$val3;

 }

 if(($tag=="FIXTEXT")&&($key3=="FIXREF")){

 $fixRefId=$val3;

 133

 }

 if(($tag=="FIX")&&($key3=="ID")){

 $fixId=$val3;

 }

 if(($tag=="CHECK")&&($key3=="SYSTEM")){

 $chkId=$val3;

 }

 if(($tag=="CHECK-CONTENT-REF")&&($key3=="NAME")){

 $checkContentRef=$val3;

 print "-$val3-
";

 }

 if(($tag=="CHECK-CONTENT-REF")&&($key3=="HREF")){

 $checkContentHref=$val3;

 }

 }

 }

 }

 }

if(($section!="head")&&($tag=="BENCHMARK")&&($type=="open")

){

 $section="head";

 }

 //### Create Documents Entry ###

 if(($section=="head")&&($tag=="PROFILE")){

 $section="profile";

 $started=0;

$tableVars=array('xmlNsDsig','xmlNsXhtml','xmlNsXsi','xmlNs

Cpe','xmlNsDc','xmlId','xmlLang','xsiSchemaLocation','xmlNs

','documentDate','documentTitle','documentDescription','doc

umentPublisher','documentSource','documentHref','documentRe

lease','documentReleaseVersion','xmlfile');

 $table="documents";

 //### Build SQL Query to add data to documents Table

 $sql="insert into $table (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){$sql.=",";}

 $sql.=$tableVar;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 134

 $sql.=",";

 }

 $sql.="\"${$tableVar}\"";

 $count++;

 }

 $sql.=")";

 //### Check for Existing Records (auditName,

statusDate, documentRelease, documentVersion and

benchmarkDate)

 $sql2="select COUNT(id) from documents where

xmlId='$xmlId' and documentDate='$documentDate' and

documentTitle='$documentTitle' and

documentDescription='$documentDescription' and

documentRelease='$documentRelease' and

documentReleaseVersion='$documentReleaseVersion' and

xmlfile='$xmlfile'";

 if ($result = $mysqli->query($sql2)){

 while ($row = $result->fetch_assoc()){

 $existingRecords=$row['COUNT(id)'];

 }

 }

 mysqli_free_result($result);

 //### Execute Query if No Existing Record Exists

 if($existingRecords<1){

 if($documentsInsert==1){

 $mysqli->query($sql);

 }

 }

 $sql="select id from documents where xmlId='$xmlId' and

documentDate='$documentDate' and

documentTitle='$documentTitle' and

documentDescription='$documentDescription' and

documentRelease='$documentRelease' and

documentReleaseVersion='$documentReleaseVersion' and

xmlfile='$xmlfile'";

 if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 $documentId=$row['id'];

 }

 }

 mysqli_free_result($result);

 print "documentId: $documentId - $xmlfile
";

 }

if(($section=="profile")&&($tag=="PROFILE")&&($type=="open"

)&&($started==0)){

 135

 $started=1;

 }

if(($section=="profile")&&($tag=="PROFILE")&&($type=="close

")&&($started>=1)){

 $started=0;

 }

 if(($section=="profile")&&($tag=="GROUP")){

 $section="group";

 //print "PROFILES FINISHED

";

 $started=0;

 }

if(($section=="group")&&($tag=="GROUP")&&($type=="open")&&(

$started==0)){

 $started=1;

 }

 //### Create Group Record ###

if(($section=="group")&&($tag=="GROUP")&&($type=="close")&&

($started==1)){

 $started=0;

 $description=$mysqli->real_escape_string($description);

 $title=$mysqli->real_escape_string($title);

 $fixText=$mysqli->real_escape_string($fixText);

 $checkText=$mysqli->real_escape_string($checkText);

$tableVars=array('vulnId','ruleId','severity','weight','ver

sion','title','description','falsePositives','falseNegative

s','documentable','mitigations','severityOverrideGuidance',

'potentialImpacts','thirdPartyTools','mitigationControl','r

esponsibility','iaControls','dcTitle','dcPublisher','dcType

','dcSubject','dcIdentifier','identSystemUrl','identCci','f

ixRefId','fixText','fixId','chkId','checkContentRef','check

ContentHref','checkText');

 $table="groups";

 //### Build SQL Query to add data to Groups Table

 $sql="insert into $table (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$tableVar;

 $count++;

 }

 136

 $sql.=") values (";

 $count=1;

 foreach($tableVars as $tableVar){

 if($count>=2){

 $sql.=",";

 }

 $sql.="\"${$tableVar}\"";

 $count++;

 }

 $sql.=")";

 //### Check for Existing Records (auditName,

statusDate, documentRelease, documentVersion and

benchmarkDate)

 $sql2="select COUNT(id) from $table where

vulnId='$vulnId'";

 if ($result = $mysqli->query($sql2)){

 while ($row = $result->fetch_assoc()){

 $existingRecords=$row['COUNT(id)'];

 }

 }

 mysqli_free_result($result);

 //### Execute Query if No Existing Record Exists

 if($existingRecords<1){

 if($groupsInsert==1){

 $mysqli->query($sql);

 }

 }

 $sql="select id from $table where vulnId='$vulnId'";

 if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 $groupId=$row['id'];

 }

 mysqli_free_result($result);

 }

 }

 }

 }

mysqli_close($mysqli);

print "

<form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=submit value='Check for more'>

</form>";

}

print "INFO: This page is used for importing Manual and

Benchmark XCCDF XML Content. First place the file in the

content directory.";

 137

?>

G. CODEFUNCTIONS.PHP

<?php

include "includes.php";

$dbTable="codeFunctions";

$vars=getFields($dbTable);

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){

 $$var=$_POST["$var"];

 }

 if(isset($_GET["$var"])){

 $$var=$_GET["$var"];

 }

 if(!isset(${$var})){

 $$var='';

 }

}

//*** Delete Record ***

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 $mode="none";

}

//*** Add ***

if($mode=="add"){

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$var;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($vars as $var){

 if($var=="code"){

 $$var=addslashes(${$var});

 }

 138

 if($count>=2){

 $sql.=",";

 }

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

}

//*** Update Database ***

if($mode=="update"){

 $sql="update $dbTable set ";

 $count=1;

 foreach($vars as $var){

 if($var=="code"){

 $$var=addslashes(${$var});

 }

 if($count>=2){

 $sql.=",";

 }

 $sql.="$var=\"${$var}\"";

 $count++;

 }

 $sql.=" where id=$id";

 $mysqli->query($sql);

 $mode="none";

}

//*** Define Variables ***

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){

 $$var='';

 }

}

//*** Query DB for Edit ***

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $result->close();

 139

}

//*** Form Header ***

print "<form action=$phpSelf method=post style=margin-

bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2 class=formtitle>Code

Functions</td></tr>";

//*** Form ***

print "<tr><td class=formlabel>Name:</td><td

class=formfield><input type=text size=80 name=name

value='$name'></td></tr>";

print "<tr><td class=formlabel>Description:</td><td

class=formfield><textarea rows=5 cols=80

name=description>$description</textarea></td></tr>";

print "<tr><td class=formlabel>Code:

Not A Finding - 0

Open - 1

Manual Check - 2

Exception - 3

Unknown - 4

</td><td class=formfield><textarea rows=20 cols=80

name=code style='color: white; background-color: black'>";

print $code;

print "</textarea></td></tr>";

print "<tr><td class=formlabel>Variables:</td><td

class=formfield><input type=text size=80 name=variables

value='$variables'></td></tr>";

print "<tr><td class=formLabel>Code Type:</td><td

class=formField>";

$sId="codeTypeId";

$qTable="codeTypes";

$qId="id";

$qId2="qid";

$qDisplay="type";

print "<select name=$sId>";

$sql2="select $qId,$qDisplay from $qTable";

$result2 = $mysqli->query($sql2);

while ($row2 = $result2->fetch_assoc()){

 $$qId2=$row2[$qId];

 $$qDisplay=$row2[$qDisplay];

 if(${$qId2}==${$sId}){

 140

 print "<option selected

value='${$qId2}'>${$qDisplay}</option>";

 }else{

 print "<option value='${$qId2}'>${$qDisplay}</option>";

 }

}

print "</select>";

print "</td></tr>";

print "<tr><td class=formlabel>Tested:</td><td

class=formfield><input type=text size=20 name=tested

value='$tested'></td></tr>";

if ($execute=="on"){

 $executeChecked="checked";

}else{

 $executeChecked="";

}

print "<tr><td class=formlabel>Execute:</td><td

class=formfield><input type=checkbox name=execute

$executeChecked></td></tr>";

print "<tr><td class=formlabel>Creator:</td><td

class=formfield><input type=text size=20 name=creatorId

value='$creatorId'></td></tr>";

//*** Form Footer ***

if($mode=="none"){

 $mode="add";

}

if($mode=="edit"){

 print "<input type=hidden name=id value=$id>";

 $mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//*** BROWSE ***

print "<table class=list>";

 141

print "<tr>";

$browseVars=array('id','name','type');

foreach($browseVars as $var){

 if($var!="id"){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "</tr>";

$sql="select cf.id,cf.name,cft.type from codeFunctions cf

join codeTypes cft on (cft.id=cf.codeTypeId)";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 print "<tr>";

 $col=1;

 foreach($browseVars as $var){

 $$var=$row["$var"];

 if($var!="id"){

 if($col==1){

 print "<td class=list bgcolor=$tc>$id ${$var}</td>";

 }else{

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 $col++;

 }

 }

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

print "INFO: This page is for creating code functions that

will be used in the edit groups page.";

?>

 142

H. DOCUMENTS.PHP

<?php

include "includes.php";

$dbTable="documents";

$vars=array('id','documentTitle','xmlfile');

//### Get Variables ###

foreach($vars as $var){

 if(isset($_POST["$var"])){$$var=$_POST["$var"];}

 if(isset($_GET["$var"])){$$var=$_GET["$var"];}

}

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){$$var='';}

}

//### BROWSE ###

print "<table class=list>";

print "<tr>";

foreach($vars as $var){

 if($var!="id"){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "<td class=listheader></td>";

print "</tr>";

$sql="select * from $dbTable";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;$cc=0;

 }else{

 $tc=$rc2;$cc=1;

 }

 print "<tr>";

 $col=1;

 foreach($vars as $var){

 $$var=$row["$var"];

 if($var!="id"){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 }

 print "<td class=list bgcolor=$tc>

<form action=profiles.php method=post style=margin-

bottom:0;>

<input type=hidden name=setDocumentId value='$id'>

<input type=submit value=select>

 143

</form></td>";

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

?>

I. PROFILES.PHP

<?php

include "includes.php";

$dbTable="profiles";

$vars=getFields($dbTable);

//### BROWSE ###

print "<table class=list>";

print "<tr>";

foreach($vars as $var){

 if(($var!="id")&&($var!="documentId")){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "<td class=listheader></td>";

print "</tr>";

$sql="select * from $dbTable where

documentId='$documentId'";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;$cc=0;

 }else{

 $tc=$rc2;$cc=1;

 }

 print "<tr>";

 foreach($vars as $var){

 $$var=$row["$var"];

 if(($var!="id")&&($var!="documentId")){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 }

 print "<td class=list bgcolor=$tc>

<form action=groups.php method=post style=margin-bottom:0;>

<input type=hidden name=setProfileId value='$id'>

<input type=submit value=select>

 144

</form></td>";

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

?>

J. GROUPS.PHP

<?php

include "includes.php";

$dbTable="groups";

$tested='';

$vars=getFields($dbTable);

$browseVars=array('id','vulnId','version','severity','title

');

//### BROWSE ###

$sql="select distinct(pm.vulnId) vulnId,g.id

gGroupId,c.groupId cGroupId,

g.version,g.title,g.severity,g.id, c.bug bug, c.tested

tested, c.id codeId from profilesMap pm join profiles p on

(p.id = pm.profileId) join groups g on (pm.vulnId =

g.vulnId) left join code c on (c.groupId=g.id) where

p.documentId='$documentId' and p.id='$profileId' and c.id

is null";

$result = $mysqli->query($sql);

$remainingRecords=mysqli_num_rows($result);

print "<table class=list>";

print "<tr>";

print "<td class=listHeader>$remainingRecords</td>";

print "<td class=listHeader>Vuln ID</td>";

print "<td class=listHeader>Version</td>";

print "<td class=listHeader>CAT</td>";

print "<td class=listHeader>Title</td>";

print "</tr>";

$count=0;

$sql="select distinct(pm.vulnId) vulnId,g.id

gGroupId,c.groupId cGroupId,

g.version,g.title,g.severity,g.id, c.bug bug, c.tested

tested, c.id codeId from profilesMap pm join profiles p on

(p.id = pm.profileId) join groups g on (pm.vulnId =

g.vulnId) left join code c on (c.groupId=g.id) where

p.documentId='$documentId' and p.id='$profileId'";

if ($result = $mysqli->query($sql)){

 145

 while ($row = $result->fetch_assoc()){

 $count++;

 if($cc==1){

 $tc=$rc1;$cc=0;

 }else{

 $tc=$rc2;$cc=1;

 }

 print "<tr>";

 $id=$row['id'];

 $cGroupId=$row['cGroupId'];

 $bug=$row['bug'];

 $tested=$row['tested'];

 if($cGroupId){

 $button="yellowbutton";

 }else{

 $button="greybutton";

 }

 if($tested=="on"){

 $button="greenbutton";

 }

 if($bug=="on"){

 $button="redbutton";

 }

 print "<td class=list bgcolor=$tc>

<form action=editgroup.php method=post style=margin-

bottom:0;>

<input type=hidden name=groupId value='$id'>

<input type=submit value=select class=$button>

</form></td>";

 $col=1;

 foreach($browseVars as $var){

 $$var=$row["$var"];

 if($var=="severity"){

 if($severity=="low"){

 $severity="III";$tc2="green";

 }

 if($severity=="medium"){

 $severity="II";$tc2="yellow";

 }

 if($severity=="high"){

 $severity="I";$tc2="red";

 }

 }

 if(($var!="id")&&($var!="tested")){

 if($var=="severity"){

 $myColor=$tc2;

 146

 print "<td class=list align=center

bgcolor=$myColor>${$var}</td>";

 }else{

 $myColor=$tc;

 print "<td class=list bgcolor=$myColor>${$var}</td>";

 }

 }

 }

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

print "Records: $count
";

?>

K. EDITGROUP.PHP

<?php

include "includes.php";

$status='';

$code='';

$codeId='';

$codeFunctionId='';

$bug='';

$tested='';

$notes='';

//*** Update Database ***

if($mode=="update"){

 $code=addslashes($_POST['code']);

 $codeId=$_POST['codeId'];

 $notes=$_POST['notes'];

if(isset($_POST['tested'])){$tested=$_POST['tested'];}else{

$tested='';}

if(isset($_POST['bug'])){$bug=$_POST['bug'];}else{$bug='';}

 $codeFunctionId=$_POST['codeFunctionId'];

 $sql="update code set bug='$bug',tested='$tested',

code='$code',fnId='$codeFunctionId',notes='$notes' where

id='$codeId'";

 $mysqli->query($sql);

 $mode="edit";

}

 147

//*** Delete Record ***

if($mode=="delete"){

 $codeId=$_POST['codeId'];

 $sql="delete from code where id='$codeId'";

 $result = $mysqli->query($sql);

 $mode="none";

}

if(!isset($_POST['groupId'])){

 print "Please access this page from the groups page.
";

 exit;

}else{

 $groupId=$_POST['groupId'];

 $dbTable="groups";

 $vars=getFields($dbTable);

 $sql="select * from $dbTable where id=$groupId";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $result->close();

 $sql="select documentTitle from documents where

id='$documentId'";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $documentTitle=$row['documentTitle'];

 }

 $result->close();

 $today=date('m/d/Y');

 $codeHeader="#!/bin/bash

DATE: $today

CHECK: $version

VULN: $vulnId

TITLE: $title

\$status: 0=not a finding. 1=open finding. 2=manual

check. 3=unable to check. 4=unknown.

";

 //*** Insert Function ***

if(($mode=="insertFunction")||($mode=="insertFunctionWizard

")){

 if($mode=="insertFunction"){

 $codeFunctionId=$_POST['codeFunctionId'];

 148

 }

 if($codeFunctionId){

 //*** Get function ***

 $groupId=$_POST['groupId'];

 $sql="select code,variables,execute from codeFunctions

where id=$codeFunctionId";

 $result=$mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $code=$row['code'];

 $execute=$row['execute'];

 $variables=$row['variables'];

 }

 $result->close();

 }

 //*** End of checkText matching ***

 $sql="select id codeId from code where groupId=$groupId";

 $result=$mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $codeId=$row['codeId'];

 }

 if($codeId>=1){

 $mode="edit";

 }else{

 $mode="none";

 }

 $result->close();

 }else{

 $codeFunctionId='';

 $sql="select * from code where groupId='$groupId'";

 $result=$mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $codeId=$row['id'];

 $tested=$row['tested'];

 $bug=$row['bug'];

 $notes=$row['notes'];

 $code=$row['code'];

 $codeFunctionId=$row['fnId'];

 }

 $result->close();

 if($code){$mode="edit";}

 }

 //*** Add ***

 if($mode=="add"){

 149

 if(isset($_POST['tested'])){

 $tested=$_POST['tested'];

 }

 if(isset($_POST['bug'])){

 $bug=$_POST['bug'];

 }

 if(isset($_POST['notes'])){

 $notes=$_POST['notes'];

 }

 $code=addslashes($_POST['code']);

 $sql="insert into code

(groupId,code,fnId,tested,bug,notes) values

('$groupId','$code','$codeFunctionId','$tested','$bug','$no

tes')";

 $mysqli->query($sql);

 $mode="edit";

 $sql="select * from code where groupId='$groupId'";

 $result=$mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 $codeId=$row['id'];

 $codeFunctionId=$row['fnId'];

 }

 $result->close();

 }

if($code==""){$code=$codeHeader . "

echo \$status\$notes";

}

$prevGroupId=$groupId-1;

$nextGroupId=$groupId+1;

print "

<table cellpadding=0 cellspacing=0><tr><td>

<form action=editgroup.php method=post style=margin-

bottom:0;>

<input type=hidden name=groupId value='$prevGroupId'>

<input type=submit value='<'>

</form>

</td><td>

<form action=editgroup.php method=post style=margin-

bottom:0;>

<input type=hidden name=groupId value='$nextGroupId'>

<input type=submit value='>'>

</form>

</td></tr>

</table>

";

 150

if($severity=="low"){

 $severityCat="CAT III";

}

elseif($severity=="medium"){

 $severityCat="CAT II";

}

elseif($severity=="high"){

 $severityCat="CAT I";

}

else{

 $severityCat=$severity;

}

 //*** Display groups info for this groupId ***

 $p1="<pre style='white-space:pre-wrap;'><font

face=arial>";

 $p2="</pre>";

 print "<table width=900><tr><td>"; // table surrounding

the 2 sections

 print "<table width=100%>";

 $httpReferer=$_SERVER['HTTP_REFERER'];

 $lastElement=basename($_SERVER['SCRIPT_NAME']);

$groupsPage=preg_replace("!".$lastElement."!",'groups.php',

$httpReferer);

 print "<tr><td class=formLabel><p id=tooltip2>Title:<span style='text-align:left;white-

space:normal;width:600;'>DESCRIPTION:
$descriptio

n</p></td><td width=100%

class=formfieldsmall>$version $vulnId $title</td></tr>";

 print "<tr><td class=formLabel><p id=tooltip2>Check:<span style='text-align:left;white-

space:pre-

wrap;width:600;'>FIX:
$fixText</p></td

><td class=formfield>$p1$checkText$p2</td></tr>";

 print "<tr><td class=formLabel>Tresys:</td><td

class=formfieldsmall>";

 print "<a target='_none'

href=http://oss.tresys.com/projects/clip/browser/packages/a

queduct/aqueduct/compliance/Bash/STIG/rhel-

5/prod/$version.sh>";

 print "Tresys Link</td></tr>";

 print "</table>";

 print "</td></tr><tr><td>"; //separate the 2 sections

 151

 //*** Check/Audit Code ***

 print "<form action=$phpSelf method=post style=margin-

bottom:0;><table class=form width=100%>";

 print "<tr><td class=formlabel>Functions:</td><td>";

 print "<table><tr><td>";

 $sId="codeFunctionId";

 $qTable="codeFunctions";

 $qId="id";

 $qId2="qid";

 $qDisplay="name";

 print "<select name=$sId>";

 $sql2="select $qId,$qDisplay from $qTable";

 $result2 = $mysqli->query($sql2);

 print "<option value=''>--None--</option>";

 while ($row2 = $result2->fetch_assoc()){

 $$qId2=$row2[$qId];

 $$qDisplay=$row2[$qDisplay];

 if(${$qId2}==${$sId}){

 print "<option selected

value='${$qId2}'>${$qDisplay}</option>";

 }else{

 print "<option value='${$qId2}'>${$qDisplay}</option>";

 }

 }

 print "

 </select>

 <input type=hidden name='codeId' value='$codeId'>

 <input type=hidden name='groupId' value='$groupId'>

 <input type=hidden name='mode' value='insertFunction'>

<input type=submit value='Insert'>

 </form>";

 print "</td></tr></table></td></tr>";

 if($tested=="on"){

 $testedChecked="checked";

 }else{

 $testedChecked='';

 }

 if($bug=="on"){

 $bugChecked="checked";

 }else{

 $bugChecked='';

 }

 152

 print "<form action=$phpSelf method=post style=margin-

bottom:0;>";

 print "<tr><td class=formLabel>Status:</td><td

class=formfield>";

 print "Tested: <input name=tested type=checkbox

$testedChecked> ";

 print "Bug: <input name=bug type=checkbox $bugChecked>";

 print "</td></tr>";

 print "<tr><td class=formlabel>Notes:</td><td

class=formfield>";

 print "<textarea rows=2 cols=100

name=notes>$notes</textarea></td></tr>";

 print "<tr><td class=formlabel>Code:</td><td

class=formfield>";

 print "<textarea rows=30 cols=114 name=code style='color:

white; background-color:

black'>$code</textarea></td></tr>";

 print "<input type=hidden name=groupId value=$groupId>";

 //*** Form Footer ***

 if($mode=="none"){

 $mode="add";

 }

 if($mode=="edit"){

 $mode="update";

 }

 print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

 print "<td>

 <input type=hidden name=codeId value='$codeId'>

 <input type=hidden name=codeFunctionId

value='$codeFunctionId'>

<input type=hidden name=mode value=$mode><input type=submit

value=$mode></form></td>";

 if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=groupId value='$groupId'>

 <input type=hidden name=codeId value='$codeId'>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

 }

 print "</tr></table></td></tr></table>";

}

 153

print "</td></tr></table>"; //close off the 2 sections

print "<table class=form>";

print "<tr><td>

<form action=$phpSelf method=post style=margin-bottom:0;>

<input type=hidden name=scannow value=yes>

<input type=hidden name=groupId value='$groupId'>

<input type=submit value=scan></form>

</td></tr>";

if(isset($_POST['scannow'])){

 $scriptDir="scanbox";

 $today = date("d-M-Y Hi");

 $wrapperFile="$scriptDir/runall.sh";

 $wrapperHandle = fopen($wrapperFile, 'w') or die("can't

open file");

 $wrapperHeader="#!/bin/bash

SuperSCAP Wrapper

hostname=`hostname`

osType=`uname -s`

report(){

 if [\"\$osType\" = \"SunOs\"];then

 startTime=`/usr/bin/truss /usr/bin/date 2>&1 | nawk -F=

'/^time\(\)/ {gsub(/ /,\"\",$2);print $2}'`

 else

 startTime=`date +%s`

 fi

 line=`./\$version.sh`

 exitCode=$?

 if [\"\$osType\" = \"SunOs\"];then

 endTime=`/usr/bin/truss /usr/bin/date 2>&1 | nawk -F=

'/^time\(\)/ {gsub(/ /,\"\",$2);print $2}'`

 else

 endTime=`date +%s`

 fi

 totalTime=`expr \$endTime - \$startTime`

 if [\$totalTime -gt 10];then

 echo \$version >> slow_scripts

 fi

 if [\$exitCode -eq 0];then

 status=`echo \$line |cut -c1`

 notes=`echo \$line |cut -c2-`

 echo \$version >> ok_scripts

 else

 status=unknown

 notes='script could not run properly'

 echo \$version.sh had an issue

 154

 echo \$version.sh >> problem_scripts

 fi

 echo;echo \"VULN ID: \$vulnId VERSION: \$version STATUS:

\$status\"

 echo \"TITLE: \$title\"

 echo -e \"NOTES: \$notes\"

 echo

\"\$vulnId;\$version;\$status;\$title;\$vc;\$vo;\$notes\"

>> \$hostname.log

}

";

 fwrite($wrapperHandle, $wrapperHeader);

 $thisFile="$scriptDir/$version.sh";

 $thisHandle = fopen($thisFile, 'w') or die("can't open

file");

 fwrite($thisHandle, $code);

 fclose($thisHandle);

 `dos2unix $thisFile`;

 chmod($thisFile,0777);

$thisScript="vulnId='$vulnId';version=$version;title='$titl

e';report";

 fwrite($wrapperHandle, $thisScript);

 fclose($wrapperHandle);

 `dos2unix $wrapperFile`;

 chmod($wrapperFile,0777);

 $sessionConfigId=$_SESSION['configId'];

 $sql="select file from configs where id=$sessionConfigId";

 $result = $mysqli->query($sql);

 $row = $result->fetch_assoc();

 $configFile=$row['file'];

 copy("$configFile","scanbox/device.cfg");

 chdir("scanbox");

 $output=`./runall.sh`;

 chdir("../");

 print "<tr><td><pre>$output</pre></td></tr>";

}

print "</table>";

?>

L. SCRIPT.PHP

<?php

include "includes.php";

$hostId='';

$platform='';

 155

$b="
";

//*** Clear Script DIR ***

$scriptDir="superscap";

`rm $scriptDir/*.sh`;

`rm $scriptDir/*.log`;

`rm $scriptDir/*.csv`;

`rm $scriptDir/*.xml`;

`rm $scriptDir/*.html`;

`rm $scriptDir/*.txt`;

`rm $scriptDir/*.gz`;

//*** SQL Query for Custom Check Scripts ***

$sql="select distinct(pm.vulnId) vulnId,g.ruleId ruleId,

g.description gDescription, g.severity gSeverity,

g.checkText gCheckText, g.fixText gFixText, g.id

gGroupId,c.code code,c.groupId cGroupId, g.version

version,g.title title,g.severity severity,g.id, c.id codeId

from profilesMap pm join profiles p on (p.id =

pm.profileId) join groups g on (pm.vulnId = g.vulnId) left

join code c on (c.groupId=g.id) where

p.documentId='$documentId' and p.id='$profileId'";

if ($result = $mysqli->query($sql)){

 $today = date("d-M-Y Hi");

 $wrapperFile="$scriptDir/runall.sh";

 $wrapperHandle = fopen($wrapperFile, 'w') or die("can't

open file");

 //*** Create Wrapper ***

 $wrapperHeader="#!/bin/bash

SuperSCAP Wrapper

hostname=`hostname`

osType=`uname -s`

report(){

 if [\"\$osType\" = \"SunOs\"];then

 startTime=`/usr/bin/truss /usr/bin/date 2>&1 | nawk -F=

'/^time\(\)/ {gsub(/ /,\"\",$2);print $2}'`

 else

 startTime=`date +%s`

 fi

 line=`./\$version.sh`

 exitCode=$?

 if [\"\$osType\" = \"SunOs\"];then

 endTime=`/usr/bin/truss /usr/bin/date 2>&1 | nawk -F=

'/^time\(\)/ {gsub(/ /,\"\",$2);print $2}'`

 else

 endTime=`date +%s`

 fi

 156

 totalTime=`expr \$endTime - \$startTime`

 if [\$totalTime -gt 10];then

 echo \$version >> slow_scripts

 fi

 if [\$exitCode -eq 0];then

 status=`echo \$line |cut -c1`

 notes=`echo \$line |cut -c2-`

 echo \$version >> ok_scripts

 else

 status=unknown

 notes='script could not run properly'

 echo \$version.sh had an issue

 echo \$version.sh >> problem_scripts

 fi

 echo;echo \"RULE ID: \$ruleId VULN ID: \$vulnId VERSION:

\$version STATUS: \$status\"

 echo \"TITLE: \$title\"

 echo -e \"NOTES: \$notes\"

 echo

\"\$ruleId;\$vulnId;\$version;\$status;\$title;\$vc;\$vo;\$

notes\" >> \$hostname.log

}

";

 //*** Write Script File ***

 fwrite($wrapperHandle, $wrapperHeader);

 while ($row = $result->fetch_assoc()){

 $ruleId=$row['ruleId'];

 $vulnId=$row['vulnId'];

 $version=$row['version'];

 $code=$row['code'];

 $title=str_replace('\'','\\\'',$row['title']);

 $severity=$row['severity'];

 $gDescription=$row['gDescription'];

 $gFixText=$row['gFixText'];

 $gCheckText=$row['gCheckText'];

 $cGroupId=$row['cGroupId'];

 if($severity=="high"){$severity="CAT I";}

 if($severity=="medium"){$severity="CAT II";}

 if($severity=="low"){$severity="CAT III";}

 if($cGroupId){

 $thisFile="$scriptDir/$version.sh";

 $thisHandle = fopen($thisFile, 'w') or die("can't open

file");

 fwrite($thisHandle, $code);

 fclose($thisHandle);

 `dos2unix $thisFile`;

 157

 chmod($thisFile,0777);

$thisScript="vulnId='$vulnId';ruleId=$ruleId;version=$versi

on;title='$title';report

";

 print "adding $version
";

 fwrite($wrapperHandle, $thisScript);

 }

 }

fclose($wrapperHandle);

`dos2unix $wrapperFile`;

chmod($wrapperFile,0777);

}

//*** Compress Scripts ***

system("tar --exclude=SuperSCAPScripts.tar.gz -czf

superscap/SuperSCAPScripts.tar.gz superscap 2> /dev/null");

print "Scripts have been generated.
";

print "Click HERE to

download.";

print "<table class=form>";

print "

<form action=$phpSelf method=post style=margin-bottom:0;>

<tr><td class=formtag>Host:</td><td class=formfield>

<select name=hostId>

<option value=''>--SELECT--</option>

";

$sql="select id,name from hosts";

$result = $mysqli->query($sql);

while ($row = $result->fetch_assoc()){

 $hostId=$row['id'];

 $hostName=$row['name'];

 print "<option value=$hostId>$hostName</option>";

}

print "

</select></td></tr>

<tr><td class=formtag>Platform:</td><td

class=formfield><input type=text size=40

name=platform></td></tr>

<input type=hidden name=scannow value=yes>

 158

<tr><td align=center colspan=2><input type=submit

value=scan></form></td></tr>

</td></tr>";

//*** Execute Scripts ***

if(isset($_POST['scannow'])){

 $scriptDir="scanbox/superscap";

 $sessionConfigId=$_SESSION['configId'];

 $sql="select file from configs where id=$sessionConfigId";

 $result = $mysqli->query($sql);

 $row = $result->fetch_assoc();

 $configFile=$row['file'];

 chdir("scanbox");

 $myDir=getcwd();

 $outHost=gethostname();

 $outFile=$myDir . "/superscap/" . $outHost . ".log";

 unlink($outFile);

 `tar -zxvf ../superscap/SuperSCAPScripts.tar.gz`;

 chdir("../");

 copy("$configFile","$scriptDir/device.cfg");

 chdir($scriptDir);

 $output=`./runall.sh`;

 chdir("../../");

 print "<tr><td><pre>$output</pre></td></tr>";

}

print "</table>";

//*** Parse Scan Output ***

if(isset($_POST['scannow'])){

 $outHost=gethostname();

 $outFile="scanbox/superscap/" . $outHost . ".log";

 $handle = fopen($outFile, "r");

 if($handle){

 //*** Create Scan Entry ***

 $myHostId=$_POST['hostId'];

 $myPlatform=$_POST['platform'];

 $sql="insert into scans (hostId,timestamp,file,platform)

values ('$myHostId','$now','$outFile','$myPlatform')";

 $mysqli->query($sql);

 //*** Get ID of Scan Entry ***

 $result=$mysqli->query("select id from scans order by id

desc limit 1");

 $row = $result->fetch_assoc();

 $scanId=$row['id'];

 while (($line = fgets($handle)) !== false){

 159

 $tmpVar=$line;

 $tmpVars=explode(";",$tmpVar);

 $myRuleId=$tmpVars[0];

 $myStatus=$tmpVars[3];

 $myNotes=$tmpVars[7];

 $identCci='';

if($myStatus=="0"){$myResult="pass";}else{$myResult="fail";

}

 //*** Insert Results into DB ***

 $sql="insert into results

(ruleId,result,identCci,timestamp,scanId) values

('$myRuleId','$myResult','$identCci','$now','$scanId')";

 $mysqli->query($sql);

 }

 }else{

 print "Could not open $outFile
";

 }

}

?>

M. HOSTS.PHP

<?php

include "includes.php";

$dbTable="hosts";

$vars=getFields($dbTable);

//### Get Variables ###

foreach($vars as $var){

 if(isset($_POST["$var"])){$$var=$_POST["$var"];}

 if(isset($_GET["$var"])){$$var=$_GET["$var"];}

}

//### Delete Record ###

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 $mode="none";

}

//### Add ###

if($mode=="add"){

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.=$var;

 $count++;

 160

 }

 $sql.=") values (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

}

//### Update Database ###

if($mode=="update"){

 $sql="update $dbTable set ";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.="$var=\"${$var}\"";

 $count++;

 }

 $sql.=" where id=$id";

 $mysqli->query($sql);

 $mode="none";

}

//### Define Variables ###

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){$$var='';}

}

//### Query DB for Edit ###

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $result->close();

}

//### Form Header ###

print "<form action=$phpSelf method=post style=margin-

bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2

class=formTitle>$uc_page</td></tr>";

//### Form ###

 161

foreach($vars as $var){

 $uc_var=ucfirst($var);

 if($var!="id"){

 print "<tr><td class=formtag>$uc_var:</td><td

class=formfield><input type=text size=20 name=$var

value='${$var}'></td></tr>";

 }

}

//### Form Footer ###

if($mode=="none"){$mode="add";}

if($mode=="edit"){

 print "<input type=hidden name=id value=$id>";

 $mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//### BROWSE ###

print "<table class=list>";

print "<tr>";

foreach($vars as $var){

 if($var!="id"){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "</tr>";

$sql="select * from $dbTable";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 162

 print "<tr>";

 $col=1;

 foreach($vars as $var){

 $$var=$row["$var"];

 if($var!="id"){

 if($col==1){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }else{

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 $col++;

 }

 }

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

?>

N. UPLOADRESULTS.PHP

<?php

include "includes.php";

$dbTable="scans";

$vars=getFields($dbTable);

$now=time();

$timestamp=time();

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){

 $$var=$_POST["$var"];

 }

 if(isset($_GET["$var"])){

 $$var=$_GET["$var"];

 }

}

//*** Delete Record ***

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 $mode="none";

 163

}

//*** Add ***

if($mode=="add"){

 //*** Upload File ***

 $allowedExts = array("xml");

 $temp = explode(".", $_FILES["file"]["name"]);

 $extension = end($temp);

 if (($_FILES["file"]["size"] < 2000000)

 && in_array($extension, $allowedExts)){

 if (!$_FILES["file"]["error"] > 0){

 move_uploaded_file($_FILES["file"]["tmp_name"],

 "uploads/" . $now . "-" . $_FILES["file"]["name"]);

 $file="uploads/" . $now . "-" . $_FILES["file"]["name"];

 }

 }

 //*** Create Scan Entry ***

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$var;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

 $result=$mysqli->query("select id from scans order by id

desc limit 1");

 $row = $result->fetch_assoc();

 $scanId=$row['id'];

 //*** Create Records Entries ***

 $xmlfile=$file;

 164

 $fp = fopen($xmlfile, 'r');

 $xmldata = fread($fp,filesize($xmlfile));

 fclose($fp);

 $p = xml_parser_create();

 xml_parser_set_option($p,XML_OPTION_SKIP_WHITE,1);

 xml_parse_into_struct($p, $xmldata, $vals, $index);

 xml_parser_free($p);

 $mVars=array('tag','attributes');

 $groupStarted=0;

 foreach($vals as $key=>$val){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 foreach($val as $key2=>$val2){

 $$key2=$val2;

 }

 if((isset($tag))&&($tag=="CDF:SELECT")){

 continue;

 }

 foreach($mVars as $mVar){

 if(($mVar=="attributes")&&(is_array($attributes))){

 foreach($attributes as $aKey=>$aVal){

 $$aKey=$aVal;

 }

 }

 }

 if(($level==3)&&($type=="open")&&($tag=="CDF:RULE-

RESULT")){

 $ruleId=$IDREF;

 }

if(($level==4)&&($type=="complete")&&($tag=="CDF:RESULT")){

 $result=$value;

 }

if(($level==4)&&($type=="complete")&&($tag=="CDF:IDENT")){

 $identCci=$value;

 }

 if(($ruleId)&&($result)&&($tag=="CDF:RULE-

RESULT")&&($level==3)&&($type=="close")){

 $date=preg_split("[T]",$TIME);

 $time=$date[1];

 165

 $date=$date[0];

 $year=preg_split("[-]",$date);

 $day=$year[2];

 $month=$year[1];

 $year=$year[0];

 $time=str_replace("-","",$time);

 $timestamp = strtotime("$year-$month-$day $time");

 $sql="insert into results

(ruleId,result,identCci,timestamp,scanId) values

('$ruleId','$result','$identCci','$timestamp','$scanId');";

 print "$sql
";

 $mysqli->query($sql);

 $lastTimestamp=$timestamp;

 $ruleId='';

 $result='';

 $identCci='';

 $time='';

 $timestamp='';

 $year='';

 $month='';

 $day='';

 $date='';

 $sql='';

 }

 }

 $sql="update scans set timestamp=$lastTimestamp where

id=$scanId";

 $mysqli->query($sql);

}

//*** Define Variables ***

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){

 $$var='';

 }

}

//*** Query DB for Edit ***

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 166

 $result->close();

}

//*** Form Header ***

print "<form enctype='multipart/form-data' action=$phpSelf

method=post style=margin-bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2

class=formTitle>$uc_page</td></tr>";

//*** Form ***

print "

<tr><td class=formtag>Host:</td><td class=formfield>

<select name=hostId>

<option value=''>--SELECT--</option>

";

$sql="select id,name from hosts";

$result = $mysqli->query($sql);

while ($row = $result->fetch_assoc()){

 $hostId=$row['id'];

 $hostName=$row['name'];

 print "<option value=$hostId>$hostName</option>";

}

print "

</select></td></tr>

<tr><td class=formtag>Platform:</td><td

class=formfield><input type=text size=40

name=platform></td></tr>

<tr><td class=formtag>File:</td><td class=formfield><input

type=file name=file></td></tr>

";

//*** Form Footer ***

if($mode=="none"){

 $mode="add";

}

if($mode=="edit"){

 print "<input type=hidden name=id value=$id>";

 $mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

 167

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//*** BROWSE ***

print "<table class=list>";

print "<tr>";

$vars=array('id','name','timestamp','file');

foreach($vars as $var){

 if($var!="id"){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "</tr>";

$sql="select * from $dbTable";

$sql="select s.id id, s.timestamp timestamp, s.file file,

h.name name from scans s join hosts h on s.hostId=h.id";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 print "<tr>";

 $col=1;

 foreach($vars as $var){

 $$var=$row["$var"];

 if($var=="timestamp"){

 $timestamp=date("m/d/y",$timestamp);

 }

 if($var!="id"){

 if($col==1){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }else{

 168

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 $col++;

 }

 }

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

?>

O. UPLOADCONFIG.PHP

<?php

include "includes.php";

$now=time();

if(isset($_POST['scanmode'])){

 //*** Create Scan Entry ***

 print "<table class=list>";

 $scriptDir="scanbox";

 $sessionConfigId=$_SESSION['configId'];

 //*** Copy Config File ***

 $sql="select hostId,file from configs where

id=$sessionConfigId";

 $res = $mysqli->query($sql);

 $row = $res->fetch_assoc();

 $configFile=$row['file'];

 $hostId=$row['hostId'];

 $mysqli->query("insert into scans (hostId,timestamp)

values ($hostId,$now)");

 $res=$mysqli->query("select id from scans order by id desc

limit 1");

 $row = $res->fetch_assoc();

 $scanId=$row['id'];

 copy("$configFile","$scriptDir/device.cfg");

 //*** Create Check Files ***

 $sql="select g.version version,g.identCci

identCci,g.ruleId ruleId, g.title title,c.code code from

profilesMap pm join profiles p on (p.id = pm.profileId)

join groups g on (pm.vulnId = g.vulnId) left join code c on

 169

(c.groupId=g.id) where p.documentId='$documentId' and

p.id='$profileId' and c.code is not null";

 $res = $mysqli->query($sql);

 while($row = $res->fetch_assoc()){

 $version=$row['version'];

 $code=$row['code'];

 $identCci=$row['identCci'];

 $ruleId=$row['ruleId'];

 $title=$row['title'];

 if(file_exists($version)){unlink($version);}

 $thisFile="$scriptDir/$version.sh";

 $thisHandle = fopen($thisFile, 'w') or die("can't open

file");

 fwrite($thisHandle, $code);

 fclose($thisHandle);

 `dos2unix $thisFile`;

 chmod($thisFile,0777);

 chdir($scriptDir);

 $output=`./$version.sh`;

 $status=substr($output,0,1);

 if($status=="0"){$result="pass";}else{$result="fail";}

 $output=substr($output,1);

 $sql2="insert into results

(timestamp,ruleId,result,identCci,scanId,output,status)

values

($now,'$ruleId','$result','$identCci',$scanId','$output','$

status')";

 $mysqli->query($sql2);

 chdir("../");

 if($cc==1){$tc=$rc1;$cc=0;}else{$tc=$rc2;$cc=1;}

 print "<tr><td class=list bgcolor=$tc>$version $identCci

-$status-</td><td class=list

bgcolor=$tc><pre>$output</pre></td></tr>";

 }

 chdir("../../");

 print "</table>";

}

$dbTable="configs";

$vars=getFields($dbTable);

$now=time();

$timestamp=time();

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){$$var=$_POST["$var"];}

 170

 if(isset($_GET["$var"])){$$var=$_GET["$var"];}

}

//*** Delete Record ***

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 $mode="none";

}

//*** Add Record ***

if($mode=="add"){

 //*** Upload File ***

 $temp = explode(".", $_FILES["file"]["name"]);

 if ($_FILES["file"]["size"] < 2000000){

 if (!$_FILES["file"]["error"] > 0){

 move_uploaded_file($_FILES["file"]["tmp_name"],

 "uploads/" . $now . "-" . $_FILES["file"]["name"]);

 $file="uploads/" . $now . "-" . $_FILES["file"]["name"];

 }

 }

 //*** Add Scan Entry to DB ***

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.=$var;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";} //insert commas as needed

 if($var=="timestamp"){$$var==time();}

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

}

//*** Define Variables ***

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){$$var='';}

}

 171

//*** Query DB for Edit ***

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $result->close();

}

//*** Form Header ***

print "<form enctype='multipart/form-data' action=$phpSelf

method=post style=margin-bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2

class=formTitle>$uc_page</td></tr>";

//*** Form ***

 print "

<tr><td class=formtag>Host:</td><td class=formfield>

<select name=hostId>

<option value=''>--SELECT--</option>

";

$sql="select id,name from hosts";

$result = $mysqli->query($sql);

while ($row = $result->fetch_assoc()){

 $hostId=$row['id'];

 $hostName=$row['name'];

 print "<option value=$hostId>$hostName</option>";

}

print "

</select></td></tr>

<tr><td class=formtag>Description:</td><td

class=formfield><input type=input name=description

value='$description' size=50 ></td></tr>

<tr><td class=formtag>File:</td><td class=formfield><input

type=file name=file></td></tr>

";

//*** Form Footer ***

if($mode=="none"){$mode="add";}

if($mode=="edit"){

 172

 print "<input type=hidden name=id value=$id>";

 $mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//*** BROWSE ***

print "<table class=list>";

print "<tr>";

foreach($vars as $var){

 if($var!="id") {

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "<td></td></tr>";

$sql="select * from $dbTable";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()) {

 if($cc==1){$tc=$rc1;$cc=0;}else{$tc=$rc2;$cc=1;}

 print "<tr>";

 $col=1;

 foreach($vars as $var){

 $$var=$row["$var"];

 if($var!="id"){

 if($col==1){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }else{

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 $col++;

 }

 }

 print "</tr>";

 }

 $result->close();

 173

}

$mysqli->close();

print "</table>";

?>

P. SCANS.PHP

<?php

include "includes.php";

$dbTable="scans";

$vars=getFields($dbTable);

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){$$var=$_POST["$var"];}

 if(isset($_GET["$var"])){$$var=$_GET["$var"];}

}

//*** Delete Record ***

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 $mode="none";

}

//*** Add ***

if($mode=="add"){

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.=$var;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

}

//*** Update Database ***

if($mode=="update"){

 $sql="update $dbTable set ";

 $count=1;

 174

 foreach($vars as $var){

 if($count>=2){$sql.=",";}

 $sql.="$var=\"${$var}\"";

 $count++;

 }

 $sql.=" where id=$id";

 $mysqli->query($sql);

 $mode="none";

}

//*** Define Variables ***

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){$$var='';}}

//*** Query DB for Edit ***

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $result->close();

}

//*** Form Header ***

print "<form action=$phpSelf method=post style=margin-

bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2

class=formTitle>$uc_page</td></tr>";

//*** Form ***

foreach($vars as $var){

 $uc_var=ucfirst($var);

 if($var!="id") {

 print "<tr><td class=formtag>$uc_var:</td><td

class=formfield><input type=text size=20 name=$var

value='${$var}'></td></tr>";

 }

}

//*** Form Footer ***

if($mode=="none"){$mode="add";}

if($mode=="edit"){

 print "<input type=hidden name=id value=$id>";

 $mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

 175

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//*** BROWSE ***

print "<table class=list>";

print "<tr>";

print "<td class=listheader>Date</td>";

print "<td class=listheader>Host</td>";

print "<td class=listheader>Platform</td>";

print "<td class=listheader>File</td>";

print "</tr>";

$sql="select s.id id, s.hostId hostId, s.timestamp

timestamp, s.file file, s.platform platform,h.name from

scans s join hosts h on s.hostId=h.id order by timestamp";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 $id=$row['id'];

 $hostId=$row['hostId'];

 $timestamp=$row['timestamp'];

 $file=$row['file'];

 $name=$row['name'];

 $platform=$row['platform'];

 $timeFormatted=date("d-M-y",$timestamp);

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 print "<tr>";

 print "<td class=list bgcolor=$tc>$timeFormatted</td>";

 print "<td class=list bgcolor=$tc>$name</td>";

 print "<td class=list bgcolor=$tc>$platform</td>";

 print "<td class=list bgcolor=$tc>$file</td>";

 print "</tr>";

 }

 $result->close();

 176

}

$mysqli->close();

print "</table>";

?>

Q. CONFIGS.PHP

<?php

include "includes.php";

$dbTable="configs";

if(isset($_POST['configId'])){

 print "Config has been selected
";

 $_SESSION['configId']=$_POST['configId'];

}

$vars=getFields($dbTable);

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){

 $$var=$_POST["$var"];

 }

 if(isset($_GET["$var"])){

 $$var=$_GET["$var"];

 }

}

//*** Delete Record ***

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 $mode="none";

}

//*** Add ***

if($mode=="add"){

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$var;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 177

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

}

//*** Update Database ***

if($mode=="update"){

 $sql="update $dbTable set ";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.="$var=\"${$var}\"";

 $count++;

 }

 $sql.=" where id=$id";

 $mysqli->query($sql);

 $mode="none";

}

//*** Define Variables ***

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){

 $$var='';

 }

}

//*** Query DB for Edit ***

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $result = $mysqli->query($sql);

 while ($row = $result->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $result->close();

}

$configText=file_get_contents($file);

 178

//*** Form Header ***

print "<form action=$phpSelf method=post style=margin-

bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2

class=formTitle>$uc_page</td></tr>";

//*** Form ***

foreach($vars as $var){

 $uc_var=ucfirst($var);

 if($var!="id"){

 print "<tr><td class=formtag>$uc_var:</td><td

class=formfield><input type=text size=20 name=$var

value='${$var}'></td></tr>";

 }

}

print "<tr><td class=formtag>Text:</td><td class=formfield

style='color: #F0F0F0; background-color: #181818;'>";

print "<pre>";

print "$configText";

print "</pre>";

print "</td></tr>";

//*** Form Footer ***

if($mode=="none"){

 $mode="add";

}

if($mode=="edit"){

 print "<input type=hidden name=id value=$id>";

 $mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//*** BROWSE ***

 179

print "<table class=list>";

print "<tr>";

foreach($vars as $var){

 if($var!="id"){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "</tr>";

$sql="select * from $dbTable";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 print "<tr>";

 $col=1;

 foreach($vars as $var){

 $$var=$row["$var"];

 if($var!="id"){

 if($col==1){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }else{

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 $col++;

 }

 }

 print "<td class=list bgcolor=$tc><form action=$phpSelf

method=post style=margin-bottom:0;><input type=hidden

name=configId value=$id><input type=submit

value=select></form></td>";

 print "</tr>";

 }

 $result->close();

}

$mysqli->close();

print "</table>";

?>

 180

R. REVIEWSCANS.PHP

<?php

include "includes.php";

$dbTable="scans";

$vars=getFields($dbTable);

$now=time();

$timestamp=time();

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){

 $$var=$_POST["$var"];

 }

 if(isset($_GET["$var"])){

 $$var=$_GET["$var"];

 }

}

//*** BROWSE ***

print "<table class=list>";

print "<tr>";

print "<td class=listheader>Date</td>";

print "<td class=listheader>Host</td>";

print "<td class=listheader>Platform</td>";

print "<td class=listheader>Baseline</td>";

print "<td class=listheader>Target</td>";

print "</tr>";

print "<form action=$phpSelf method=post>";

$sql="select s.platform platform,s.id id,s.timestamp

timestamp, h.name host from scans s join hosts h on

s.hostId=h.id order by timestamp";

if ($result = $mysqli->query($sql)){

 while ($row = $result->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 $timestamp=$row["timestamp"];

 $id=$row["id"];

 $host=$row["host"];

 $platform=$row["platform"];

 $dateFormatted=date("m-d-Y g:ma",$timestamp);

 181

 print "<tr>";

 print "<td class=list bgcolor=$tc>$dateFormatted</td>";

 print "<td class=list bgcolor=$tc>$host</td>";

 print "<td class=list bgcolor=$tc>$platform</td>";

 print "<td class=list bgcolor=$tc><input type=radio

name=baseline value=$id></td>";

 print "<td class=list bgcolor=$tc><input type=radio

name=target value=$id></td>";

 print "</tr>";

 }

 $result->close();

}

print "<tr><td colspan=30 align=center><input type=submit

value=submit></td></tr>";

print "</table></form>";

if(isset($_POST['baseline'])){

 $baselineId=$_POST['baseline'];

}else{

 $baselineId='';

}

if(isset($_POST['target'])){

 $otherId=$_POST['target'];

}else{

 $otherId='';

}

if($baselineId){

 print "<table class=list>";

 print "<td class=listheader>Vuln ID</td>";

 print "<td class=listheader>Ident CCI</td>";

 print "<td class=listheader>Rule ID</td>";

 print "<td class=listheader>Rule</td>";

 print "<td class=listheader>Baseline</td>";

 print "<td class=listheader>Target</td>";

 print "<td class=listheader></td>";

 $sql="select g.vulnId gVulnId, b.identCci

bIdentCci,g.title title, b.id bResultId, b.ruleId bRuleId,

b.result bResult from results b join groups g on

b.ruleId=g.ruleId where scanId=$baselineId";

 if ($res = $mysqli->query($sql)){

 while ($row = $res->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 182

 }

 $title=$row['title'];

 $identCci=$row['bIdentCci'];

 $vulnId=$row['gVulnId'];

 $ruleId=$row['bRuleId'];

 $bResultId=$row['bResultId'];

 $bResult=$row['bResult'];

 $sql2="select result from results where ruleId='$ruleId'

and scanId=$otherId";

 $res2 = $mysqli->query($sql2);

 $row2 = $res2->fetch_assoc();

 $cResult=$row2['result'];

 print "<tr>";

 if($bResult!=$cResult){

 $tc="#FF6666";

 }else{

 $tc="#c0c0c0";

 }

 print "<td class=list bgcolor=$tc>$vulnId</td>";

 print "<td class=list bgcolor=$tc>$identCci</td>";

 print "<td class=list bgcolor=$tc>$ruleId</td>";

 print "<td class=list bgcolor=$tc>$title</td>";

 print "<td class=list bgcolor=$tc>$bResult</td>";

 print "<td class=list bgcolor=$tc>$cResult</td>";

 print "<td class=list bgcolor=$tc>";

 print "<form action=results.php method=post

style=margin-bottom:0;>";

 print "<input type=hidden name=id value=$bResultId>";

 print "<input type=submit value=edit>";

 print "<input type=hidden name=mode value=edit>";

 print "</form>";

 print "</td>";

 print "</tr>";

 }

 print "</table>";

 }

}

?>

S. RESULTS.PHP

<?php

include "includes.php";

$dbTable="results";

$vars=getFields($dbTable);

 183

//*** Get Variables ***

foreach($vars as $var){

 if(isset($_POST["$var"])){

 $$var=$_POST["$var"];

 }

 if(isset($_GET["$var"])){

 $$var=$_GET["$var"];

 }

}

//*** Delete Record ***

if($mode=="delete"){

 $sql="delete from $dbTable where id=$id";

 $res = $mysqli->query($sql);

 $mode="none";

}

//*** Add ***

if($mode=="add"){

 $sql="insert into $dbTable (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.=$var;

 $count++;

 }

 $sql.=") values (";

 $count=1;

 foreach($vars as $var){

 if($count>=2){

 $sql.=",";

 }

 $sql.="\"${$var}\"";

 $count++;

 }

 $sql.=")";

 $mysqli->query($sql);

}

//*** Update Database ***

if($mode=="update"){

 $sql="update $dbTable set ";

 $count=1;

 foreach($vars as $var){

 184

 if($count>=2){

 $sql.=",";

 }

 $sql.="$var=\"${$var}\"";

 $count++;

 }

 $sql.=" where id=$id";

 $mysqli->query($sql);

 $mode="none";

}

//*** Define Variables ***

if(($mode=="add")||($mode=="none")){

 foreach($vars as $var){

 $$var='';

 }

}

//*** Query DB for Edit ***

if($mode=="edit"){

 $sql="select * from $dbTable where id=$id";

 $res = $mysqli->query($sql);

 while ($row = $res->fetch_assoc()){

 foreach($vars as $var){

 $$var=$row["$var"];

 }

 }

 $res->close();

}

//*** Form Header ***

print "<form action=$phpSelf method=post style=margin-

bottom:0;><table class=form>";

$uc_page=ucfirst($page);

print "<tr><td colspan=2

class=formTitle>$uc_page</td></tr>";

//*** Form ***

foreach($vars as $var){

 $uc_var=ucfirst($var);

 if($var!="id"){

 print "<tr><td class=formtag>$uc_var:</td><td

class=formfield><input type=text size=20 name=$var

value='${$var}'></td></tr>";

 }

}

 185

//*** Form Footer ***

if($mode=="none"){

 $mode="add";

}

if($mode=="edit"){

 print "<input type=hidden name=id

value=$id>";$mode="update";

}

print "<tr><td align=center colspan=2

class=formfooter><table align=center><tr>";

print "<td><input type=hidden name=mode value=$mode><input

type=submit value=$mode></form></td>";

if($mode=="update"){

 print "

 <form action=$phpSelf method=post style=margin-bottom:0;>

 <input type=hidden name=id value=$id>

 <input type=hidden name=mode value=delete>

 <td><input type=submit value=delete></td></form>";

}

print "</tr></table></td></tr></table>";

//*** BROWSE ***

print "<table class=list>";

print "<tr>";

foreach($vars as $var){

 if($var!="id"){

 $uc_var=ucfirst($var);

 print "<td class=listheader>$uc_var</td>";

 }

}

print "</tr>";

$sql="select * from $dbTable";

if ($res = $mysqli->query($sql)){

 while ($row = $res->fetch_assoc()){

 if($cc==1){

 $tc=$rc1;

 $cc=0;

 }else{

 $tc=$rc2;

 $cc=1;

 }

 print "<tr>";

 $col=1;

 foreach($vars as $var){

 $$var=$row["$var"];

 186

 if($var!="id"){

 if($col==1){

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }else{

 print "<td class=list bgcolor=$tc>${$var}</td>";

 }

 $col++;

 }

 }

 print "</tr>";

 }

 $res->close();

}

$mysqli->close();

print "</table>";

?>

 187

LIST OF REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated

circuits,” Electronics, vol. 38, no. 8, pp. 82-84,

April. 1965.

[2] Hewlett-Packard Development Company, L.P. (1968).

“History of the 9100A desktop calculator.” [Online].

Available:

http://www.hp.com/hpinfo/abouthp/histnfacts/museum/per

sonalsystems/0021/0021history.html

[3] U.S. Bureau of Labor Statistics. CPI inflation

calculator. [Online]. Available:

http://data.bls.gov/cgi-bin/cpicalc.pl

[4] Raspberry Pi Foundation. Raspberry Pi FAQs. [Online].

Available: http://www.raspberrypi.org/faqs

[5] R. Meulen and C. Pettey. (2008, June). Gartner says

more than 1 billion PCs in use worldwide and headed to

2 billion units by 2014. Gartner, Inc., Stamford, CT.

[Online news release]. Available:

http://www.gartner.com/newsroom/id/703807

[6] D. D’Agostino and G. Wilshusen. (2011, July). Defense

Department Cyber Efforts: DOD faces challenges in its

cyber activities (GAO-11-75). U.S. Government

Accountability Office, Washington, DC. [Online].

Available: http://www.gao.gov/assets/330/321818.pdf

[7] Symantec Corporation. Vulnerability trends. Symantec

Corporation, Mountain View, CA. [Online]. Available:

http://www.symantec.com/threatreport/topic.jsp?id=vuln

erability_trends&aid=total_number_of_vulnerabilities

[8] SecureState, LLC. DIACAP / DoD 8500. [Online].

Available:

http://www.securestate.com/Federal/Certification%20and

%20%20Accreditation/Pages/DIACAP-D0D8500.aspx

[9] “War in the fifth domain.” (2010, July). The

Economist. [Online]. Available:

http://www.economist.com/node/16478792

http://www.hp.com/hpinfo/abouthp/histnfacts/museum/personalsystems/0021/0021history.html
http://www.hp.com/hpinfo/abouthp/histnfacts/museum/personalsystems/0021/0021history.html
http://data.bls.gov/cgi-bin/cpicalc.pl
http://www.raspberrypi.org/faqs
http://www.gartner.com/newsroom/id/703807
http://www.gao.gov/assets/330/321818.pdf
http://www.symantec.com/threatreport/topic.jsp?id=vulnerability_trends&aid=total_number_of_vulnerabilities
http://www.symantec.com/threatreport/topic.jsp?id=vulnerability_trends&aid=total_number_of_vulnerabilities
http://www.securestate.com/Federal/Certification%20and%20%20Accreditation/Pages/DIACAP-D0D8500.aspx
http://www.securestate.com/Federal/Certification%20and%20%20Accreditation/Pages/DIACAP-D0D8500.aspx
http://www.economist.com/node/16478792

 188

[10] National Institute of Standards and Technology. CVE

and CVE vulnerability database advanced search.

[Online]. Available:

http://web.nvd.nist.gov/view/vuln/search-advanced

[11] “25 Years of vulnerabilities: Linux has the most.”

(2013, March). iTWire. [Online]. Available:

http://www.eitr.com.au/news/25-Years-of-

vulnerabilities-Linux-has-the-most.php

[12] Computer Security Division Information Technology

Laboratory. (2005, October). Advising users on

information technology, Information Technology

Laboratory (ITL) Bulletin. National Institute of

Standards and Technology, Gaithersburg, MD. [Online].

Available:

http://csrc.nist.gov/publications/nistbul/b-Oct-05.pdf

[13] Department of Defense. (2010, February). Quadrennial

defense review report. Department of Defense,

Washington, DC. [Online]. Available:

http://www.defense.gov/qdr/images/QDR_as_of_12Feb10_10

00.pdf

[14] National Computer Security Center. (1994, January).

Introduction to certification and accreditation (NCSC-

TG029). National Computer Security Center, Fort

Meade, MD. [Online]. Available:

http://csrc.nist.gov/publications/secpubs/otherpubs/CA

_Handbook.pdf

[15] Information Assurance Training Center. Lesson 11:

Department of Defense Information Assurance

Certification and Accreditation Process. [Online].

Available:

https://ia.signal.army.mil/IAF/IASOLesson11.asp

[16] Computer Security Division Information Technology

Laboratory (2010, February). Guide for applying the

risk management framework to federal information

systems (special publication 800-37 Rev. 1). National
Institute of Standards and Technology, Gaithersburg,

MD. [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-37-

rev1/sp800-37-rev1-final.pdf

http://web.nvd.nist.gov/view/vuln/search-advanced
http://www.eitr.com.au/news/25-Years-of-vulnerabilities-Linux-has-the-most.php
http://www.eitr.com.au/news/25-Years-of-vulnerabilities-Linux-has-the-most.php
http://csrc.nist.gov/publications/nistbul/b-Oct-05.pdf
http://www.defense.gov/qdr/images/QDR_as_of_12Feb10_1000.pdf
http://www.defense.gov/qdr/images/QDR_as_of_12Feb10_1000.pdf
http://csrc.nist.gov/publications/secpubs/otherpubs/CA_Handbook.pdf
http://csrc.nist.gov/publications/secpubs/otherpubs/CA_Handbook.pdf
https://ia.signal.army.mil/IAF/IASOLesson11.asp
http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-37-rev1-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-37-rev1-final.pdf

 189

[17] “Thoughts on software assurance.” (2009, May). Richard

Bejtlich's TAOSecurity Blog. [Online]. Available:

http://taosecurity.blogspot.com/2005/09/thoughts-on-

software-assurance-last.html

[18] P. Buxbaum, “Automatic for Security,” Military

Information Technology, vol. 16, no. 4, p. 7, May.

2012.

[19] S. Quinn et al. (2012, January). Guide to adopting and

using the security content automation protocol (SCAP)

(Ver. 1.2 NIST Special Publication 800-117 Rev. 1).

[Draft]. National Institute of Standards and

Technology, Gaithersburg, MD. [Online]. Available:

http://csrc.nist.gov/publications/drafts/800-117-

R1/Draft-SP800-117-r1.pdf

[20] The Mitre Corporation. OVAL language overview.

[Online]. Available:

http://oval.mitre.org/language/about/overview.html

[21] D. Waltermire et al. (2011, April). Specification for

the open checklist interactive language (OCIL) Version

2.0 (Report 7692). National Institute of Standards and

Technology, Gaithersburg, MD. [Online]. Available:

http://csrc.nist.gov/publications/nistir/ir7692/nistir

-7692.pdf

[22] N. Ziring and S. D. Quinn. (2012, March).

Specification for the extensible configuration

checklist description format (XCCDF) Ver. 1.2 Rev. 4

(Report 7275). National Institute of Standards and

Technology, Gaithersburg, MD. [Online]. Available:

http://csrc.nist.gov/publications/nistir/ir7275r3/NIST

IR-7275r3.pdf

[23] D. Waltermire and K. Scarfone. (2011, February). Guide

to using vulnerability naming schemes (Special

Publication 800-51 Rev. 1). National Institute of

Standards and Technology, Gaithersburg, MD. [Online].

Available:

http://csrc.nist.gov/publications/nistpubs/800-51-

rev1/SP800-51rev1.pdf

http://taosecurity.blogspot.com/2005/09/thoughts-on-software-assurance-last.html
http://taosecurity.blogspot.com/2005/09/thoughts-on-software-assurance-last.html
http://csrc.nist.gov/publications/drafts/800-117-R1/Draft-SP800-117-r1.pdf
http://csrc.nist.gov/publications/drafts/800-117-R1/Draft-SP800-117-r1.pdf
http://oval.mitre.org/language/about/overview.html
http://csrc.nist.gov/publications/nistir/ir7692/nistir-7692.pdf
http://csrc.nist.gov/publications/nistir/ir7692/nistir-7692.pdf
http://csrc.nist.gov/publications/nistir/ir7275r3/NISTIR-7275r3.pdf
http://csrc.nist.gov/publications/nistir/ir7275r3/NISTIR-7275r3.pdf
http://csrc.nist.gov/publications/nistpubs/800-51-rev1/SP800-51rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-51-rev1/SP800-51rev1.pdf

 190

[24] P. Mell et al. (2007, August). The common

vulnerability scoring system (CVSS) and its

applicability to federal agency systems (Report 7435).

National Institute of Standards and Technology,

Gaithersburg, MD. [Online]. Available:

http://csrc.nist.gov/publications/nistir/ir7435/NISTIR

-7435.pdf

[25] A. Halbardier et al.(2011, June). Specification for

the asset reporting format 1.1 (Report 7694). National

Institute of Standards and Technology, Gaithersburg,

MD. [Online]. Available:

http://csrc.nist.gov/publications/nistir/ir7694/NISTIR

-7694.pdf

[26] H. Booth and A. Halbardier. (2011, September). Trust

model for security automation data 1.0 (TMSAD) (Report

7802). National Institute of Standards and Technology,

Gaithersburg, MD. [Online]. Available:

http://csrc.nist.gov/publications/nistir/ir7802/NISTIR

-7802.pdf

[27] Tenable Network Security, Inc. (2012). Tenable

delivers best-of-breed configuration compliance and

vulnerability management for U.S. Department of

Defense. Tenable Network Security, Inc., Columbia, MD.

[Online]. Available:

http://www.satisnet.co.uk/pdfs/tenable_acas_cs_v1_web.

pdf

[28] Tenable Network Security. Tenable passive

vulnerability scanner data sheet. [Online]. Available:

http://www.tenable.com/sites/drupal.dmz.tenablesecurit

y.com/files/datasheets/PVS_DS_(EN)_v5_web.pdf

[29] User’s guide and help desk/troubleshooting guide

continuous monitoring and risk scoring (CMRS)

Enterprise Release 1.1 (unpublished). Defense

Information Systems Agency , Scott Air Force Base, IL,

2013.

http://csrc.nist.gov/publications/nistir/ir7435/NISTIR-7435.pdf
http://csrc.nist.gov/publications/nistir/ir7435/NISTIR-7435.pdf
http://csrc.nist.gov/publications/nistir/ir7694/NISTIR-7694.pdf
http://csrc.nist.gov/publications/nistir/ir7694/NISTIR-7694.pdf
http://csrc.nist.gov/publications/nistir/ir7802/NISTIR-7802.pdf
http://csrc.nist.gov/publications/nistir/ir7802/NISTIR-7802.pdf
http://www.satisnet.co.uk/pdfs/tenable_acas_cs_v1_web.pdf
http://www.satisnet.co.uk/pdfs/tenable_acas_cs_v1_web.pdf
http://www.tenable.com/sites/drupal.dmz.tenablesecurity.com/files/datasheets/PVS_DS_(EN)_v5_web.pdf
http://www.tenable.com/sites/drupal.dmz.tenablesecurity.com/files/datasheets/PVS_DS_(EN)_v5_web.pdf

 191

[30] Computer Security Division Information Technology

Laboratory. (2011, August). Guide for security-focused

configuration management of information systems

(Special Publication 800-128). National Institute of

Standards and Technology, Gaithersburg, MD. [Online].

Available:

http://csrc.nist.gov/publications/nistpubs/800-

128/sp800-128.pdf

[31] Computer Security Division Information Technology

Laboratory. (2009, August). Recommended security

controls for federal information systems and

organizations (Special Publication 800-53). National

Institute of Standards and Technology, Gaithersburg,

MD. [Online]. Available:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/N

IST.SP.800-53r4.pdf

[32] C. Ramey. (2011, June 8). “The Bourne again shell,” in

The Architecture of Open Source Applications, K.

Bostic et al. [Online]. Available:

http://www.aosabook.org/en/bash.html

[33] C. Poe. (2012, September 19). Beginning Perl.

[Online]. Available: http://it-ebooks.info/book/977/

[34] “Why I use Perl...and will continue to do so.” (2013,

February). Dr Drobb’s World of Software Development.

[Online]. Available: http://www.drdobbs.com/open-

source/why-i-use-perland-will-continue-to-do-

so/240148364

[35] C. Hopkins, Jump Start PHP. Collingwood, Austalia:

SitePoint Pty. Ltd, 2013.

[36] Kristofer Layon, Mobilizing Web Sites: Develop and

Design. Berkeley, CA: Peachpit Press, 2011.

[37] Wikipedia. List of Apache–MySQL–PHP packages.

[Online]. Available:

http://en.wikipedia.org/wiki/List_of_Apache%E2%80%93My

SQL%E2%80%93PHP_packages

[38] Wikipedia. Relational database. [Online]. Available:

http://en.wikipedia.org/wiki/Relational_database

http://csrc.nist.gov/publications/nistpubs/800-128/sp800-128.pdf
http://csrc.nist.gov/publications/nistpubs/800-128/sp800-128.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://www.aosabook.org/en/bash.html
http://it-ebooks.info/book/977/
http://www.drdobbs.com/open-source/why-i-use-perland-will-continue-to-do-so/240148364
http://www.drdobbs.com/open-source/why-i-use-perland-will-continue-to-do-so/240148364
http://www.drdobbs.com/open-source/why-i-use-perland-will-continue-to-do-so/240148364
http://en.wikipedia.org/wiki/List_of_Apache%E2%80%93MySQL%E2%80%93PHP_packages
http://en.wikipedia.org/wiki/List_of_Apache%E2%80%93MySQL%E2%80%93PHP_packages
http://en.wikipedia.org/wiki/Relational_database

 192

[39] Sideris Corporation, Data Modeling: Logical Database

Design. Newton, MA: Sideris Courseware Corporation,

2011.

[40] Netcraft LTD. December 2013 Web server survey.

[Online]. Available:

http://news.netcraft.com/archives/2013/12/06/december-

2013-web-server-survey.html

[41] Microsoft. Installing IIS 7. [Online]. Available:

http://www.iis.net/learn/install

[42] The Apache Software Foundation. Downloading the Apache

HTTP server. [Online]. Available:

http://httpd.apache.org/download.cgi

[43] The United States Navy. Security Content Automation

Protocol (SCAP) compliance checker. [Online].

Available:

http://www.public.navy.mil/spawar/Atlantic/ProductsSer

vices/Pages/SCAP.aspx

http://news.netcraft.com/archives/2013/12/06/december-2013-web-server-survey.html
http://news.netcraft.com/archives/2013/12/06/december-2013-web-server-survey.html
http://www.iis.net/learn/install
http://httpd.apache.org/download.cgi
http://www.public.navy.mil/spawar/Atlantic/ProductsServices/Pages/SCAP.aspx
http://www.public.navy.mil/spawar/Atlantic/ProductsServices/Pages/SCAP.aspx

 193

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

