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ABSTRACT 

The growth in smartphone usage has led to increased storage of sensitive data on these 

easily lost or stolen devices. In order to mitigate the effects of users who ignore, disable, 

or circumvent authentication measures like passwords, we evaluate a method employing 

gait as a source of identifying information.  

This research is based on previously reported methods with a goal of evaluating 

gait signal processing and classification techniques. This thesis evaluates the performance 

of four signal normalization techniques (raw signal, zero-scaled, gravity-rotated, and 

gravity rotated with zero-scaling). Additionally, we evaluate the effect of carrying 

position on classification. Data was captured from 23 subjects carrying the device in the 

front pocket, back pocket, and on the hip. Unlike previous research, we analyzed 

classifier performance on data collected from multiple positions and tested on each 

individual location, which would be necessary in a robust, deployable system. 

Our results indicate that restricting device position can achieve the best overall 

performance using zero-scaling with 6.13% total error rate (TER) on the XY-axis but 

with a high variance across different axes. Using data from all positions with gravity 

rotation can achieve 12.6% TER with a low statistical variance. 
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I. INTRODUCTION 

According to a 2011 survey conducted by Ponemon [1], companies reported 

approximately four percent of employee-issued smartphones were lost or stolen. While it 

is assessed that 60% of these lost phones contain sensitive and confidential information, 

57% of them were reported to not employ data protection mechanisms. The issue of 

mobile phone theft has become significant enough that, in 2012, the FCC, along with 

leaders of major metropolitan cities, announced new initiatives to reduce theft and 

encourage users to better protect their data [2]. In 2012, it was reported that nearly 85% 

of smartphone users perform both work and personal tasks on their mobile devices [3]. 

Of those users who employ passcodes, two-thirds report writing their passwords down on 

a piece of paper, against best security practices. As such, the study and evaluation of 

potential methods for authorizing, and denying, data access is crucial.  

The use of non-intrusive, passive authentication techniques is of particular 

interest. Since 2005, nearly all smartphones have contained built in tri-axial 

accelerometers, which can detect the rate of change in the speed of movement in lateral, 

longitudinal, and vertical directions. Arghire [4] predicted that one out of three mobile 

devices would ship with accelerometers in 2010 with an increasing trend. Additionally, 

the implementation of the accelerometer listener in the Android SDK does not require 

direct user permission or known involvement to collect and analyze data, thus creating 

the potential for an unobtrusive system. The goal of this research is to examine the effects 

of on-body placement and data normalization, while determining the most discriminatory 

set of variables for passive gait authentication. 

A. MOTIVATION 

With the increased worldwide usage of smartphones, sensitive data now travels 

more frequently, both electronically and physically, from work to home and places in 

between. This increases the chances of loss or theft of devices storing sensitive 

information. Ponemon [3] observed that of 116 companies surveyed, 62% of devices lost 

or stolen contained some sensitive data. Government agencies, including the Department 
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of Defense, are particularly sensitive to data leakage. The Attorney General of New York 

even asked Google, Apple, and other device manufacturers to take action to stop 

smartphone theft and ebb the increase in the black market smartphone trade [5]. In order 

to protect the data from potential compromise, new data access control mechanisms have 

been proposed. 

Smartphones typically ship with built-in screen locking and PIN authentication 

functions, but Ponemon [3] found that 60% of the companies surveyed reported that their 

employees would ignore or disable security mechanisms such as passwords and keylocks. 

Therefore, it is critical to develop methods of authentication that do not require user 

attention to invoke, such as passive authentication.  

Previous research by Gufarov et al. [6] and Nickel [7] have shown that the rhythm 

of an individual’s walk, henceforth referred to as gait, can be detected by smartphone 

accelerometers. Further, the accelerometer signal for each individual is sufficiently 

characteristic that it has an acceptable recognition rate for authentication. However, these 

previous studies all required the device to be located at and attached to the hip, thus 

fixing the orientation and removing variations in signal caused by different carry 

positions.  

In this study, we will continue to advance toward a deployable gait recognition 

system that can operate in real-world situations. That is, we will evaluate the effects of 

placing the device in different body locations, using different normalization techniques, 

to simulate the differences in user carrying preference. 

B. RESEARCH QUESTIONS 

This thesis addresses the question of whether gait authentication methods could 

be improved through more discriminatory selection of data and alternate signal 

processing techniques. In order to address this, the following sub-questions will be 

evaluated. 

 Would current well-performing gait authentication methods benefit from 
the use of an alternative classifier type? 
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 Can current methods be improved through the selection of alternate 
primary axes? 

 Can the classification performance of current techniques be improved with 
alternative data normalization methods? 

 Do current well-performing methods show similar performance when data 
is captured from different on-body carrying positions? 

 Can an authentication system be developed that will show similar 
classification performance regardless of where the data capture device is 
carried on the body? 

In order to answer these questions, we collected gait data from multiple subjects 

and implemented an authentication system using previously reported settings but 

modified to perform multiple normalization techniques on multiple classifiers. We ran a 

range of experiments on the system in order to determine what methods performed the 

best on our data set. Finally, we evaluate the performance of data from individual 

locations and implement a classifier that evaluates performance on data from all carrying 

positions.  

C. SIGNIFICANT FINDINGS 

After running experiments with two classification techniques, on five axis feature 

sets, using four normalization techniques, from three on-body carrying positions, we 

report several important findings. 

 Of the 60 experiments run, in 51 cases kNN classifiers showed a lower 
error rate when compared to SVM. 

 When experimenting on individual carrying positions, we observed in the 
hip carrying position, the zero-scaled, combined XY-axis showed the best 
overall TER of 6.13%. This result was similar to the best performing 
features, though an improvement over the 10.7% mTER from Brandt [8]. 
This suggests the zero-scaling technique may be optimal when the device 
is located on the hip in a stable holder, which agrees with Vildjiounaite 
[9]. 

 When performing position-independent analysis, we observed that 
regardless of the device’s carrying position, the individual Y-axis when 
rotated due to gravity achieved the best mTER of 12.6%. Additionally, the 
combined XY and XYZ axes, when rotated, achieved satisfactory mTERs 
of 15.4% and 18.0%, respectively, indicating the significance of the effect 
of gravity on the Y, or vertical axis. 
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 A carrying-position-independent gait authentication system can produce 
consistent performance results when using a gravity rotated XY-axis, and 
the signal processing techniques of Nickel [7] and Brandt [8]. 

 Normalization technique is important when training a classifier on from all 
known carrying positions and tested on samples from any one of the 
positions. The zero-scaling technique yielded better than a 30% TER in all 
cases, while the gravity rotation technique performed better than 20% 
TER with a reduced statistical variance across experiments. 

 When training and testing on data from the same carrying position, the 
classifier performances of individual experiments are slightly worse using 
the gravity rotation technique than zero-scaling; however, the performance 
when combining all positions and testing on any one is equivalent, or 
better, than training and testing on the back pocket position alone. This 
implies that a system allowing the user to carry the device in multiple 
positions may perform slightly worse than position restrictive techniques, 
but can achieve consistent and acceptable performance when training on 
all positions. 

D. ORGANIZATION OF THIS THESIS 

This thesis is organized as follows: 

 Chapter I describes the justification for studying gait authentication 
techniques 

 Chapter II discusses previous research in the fields of gait biometrics and 
smartphone accelerometer recognition techniques 

 Chapter III explains of the experimental methodology and reasoning for 
system design decisions 

 Chapter IV describes the results of the experiments, including an analysis 
of the findings 

 Chapter V details the limitations of this work that explain the findings and 
offers recommendations for future research. 
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II. BACKGROUND 

Gait is the cyclic, coordinated rhythm of the body while moving on foot. Biometric 

gait recognition is the verification, often referred to as authentication, and identification 

of an individual based on his or her walking style. Gait, as a biometric, authentication is 

the process of capturing the signal emanated from an individual’s gait, determining 

whether it surpasses a threshold value for its similarity to known gaits stored in a 

database of previously observed signals, and confirming or denying the individual 

matches the individual’s claimed identity. In order to build a database of gait signals and 

develop an effective classification technique, one must determine optimal gait processing 

techniques, discriminatory feature vectors, and efficient classifier settings. 

A. BIOMETRICS 

Biometrics are the unique biological and behavioral characteristics of an 

individual, distinguishable from those of other individuals. Originally described by 

Bianchi et al. [10], the different biomechanical characteristics of individuals, along with 

different kinematic strategies, that is, the individuals’ control of energy oscillations in 

their bodies, allow gait to be reasonably categorized as a biometric. Following the 

terminology used in gait studies by Nickel [7] and Brandt [8], the term genuine will refer 

to an individual claiming an identity that matches his or her biometric sample. The term 

imposter will refer to a user with a biometric sample that does not match a claimed 

identity. 

1. Biometric System 

A biometric system is an automated system that captures, processes, and analyzes 

a biometric. The value from biometric systems comes from the capability to verify and 

identify an individual.  

Identification of gait involves comparing an unknown gait sample to the entire 

database of known gaits. Identification is a one-to-N comparison for a database of N 

known gait samples. If the unknown sample, when compared to the database, surpasses a 
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threshold for similarity to a known sample, then the system should identify the unknown 

sample as the known individual.  

Verification, also known as authentication, refers to the process of comparing an 

unknown gait sample to a gait sample that is claimed by the unknown individual. If the 

threshold is met for the similarity to the claimed sample, then the system should verify 

the individual’s identity. As opposed to identification, verification is a one-to-one 

comparison.  

a. Biometric System Performance 

For evaluating biometric performance, there exists a standard set of metrics for 

performance and evaluation; for an overview see the standards described by a report from 

the United States Military Academy (USMA) [11]. In this thesis, primary evaluation of 

classification performance will be derived from the False Match Rate (FMR) and False 

Non-Match Rate (FNMR) of each experiment.  

The FMR is the proportion of zero-effort imposter attempts that are incorrectly 

classified as a match to the genuine subject. This metric helps describe the distinctiveness 

of a sample. 

Imposter Attempts Classified a

Total Impos

s Genui

ter Att

n

e t

e

mp s
FMR   

Conversely, the FNMR is defined as the proportion of genuine attempts falsely 

classified as imposter attempts. The FNMR can be used to assess the permanence of the 

biometric modality. 

Genuine Attempts Classified a

Total Ge

s I

nu

mpos

ine Attempts

ter
FNMR   

In addition to the FMR and FNMR, the performance of a biometric system may 

be evaluated using the False Acceptance Rate (FAR) and False Rejection Rate (FRR). 

The difference between the FMR-FNMR and the FAR-FRR is that the latter takes the 

Failure to Accept (FTA) rate of the system into account. The FTA is the number of 

samples the system failed to successfully acquire due to problems with user presentation, 
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signal processing, feature extraction, or quality control. Since the data in this thesis is 

manually evaluated for quality prior to analysis, the FTA, and thus the FAR and FRR, 

will not be evaluated. 

The Equal Error Rate (EER) will also not be reported in this thesis. The EER is 

the point where FAR and FRR are equal, or assuming FTA = 0, the point where FMR and 

FNMR are equal. Whereas this metric allows for a single value to report on the 

generalized performance of a biometric system, two systems with equal EER may have 

drastically different performance when comparing FMR-FNMR pairs under real-world 

operating settings and conditions, as described by Bromba [12]. For a security-centric 

authentication system, the primary goal is to minimize the FMR to prevent unauthorized 

access. Whereas minimizing FNMR is beneficial for system practicality, the goal is not to 

report only the point where FMR equals FNMR. 

The performance of the techniques in this thesis will be evaluated and reported 

based on the Total Error Rate (TER). The TER is the sum of FMR and FNMR. Since the 

goal is to minimize the FMR, with an acceptable FNMR, this sum can be used to 

compare similarly low FMR results from different settings, while taking the usability of 

the system into account. Thus, a low TER will be evaluated as a well-performing feature 

vector. 

B. ACCELEROMETERS 

The acceleration recording element, referred to as an accelerometer, is a small, 

embedded system found in almost every smartphone manufactured since 2005. The 

accelerometer can read data on three axes as shown in Figure 1: forward-backward 

(anteroposterior), up-and-down (vertically), and side-to-side (laterally). This provides 

raw acceleration data on X, Y, and Z axes. Depending on the device’s orientation, gravity 

will affect one or more axes with a mean acceleration of approximately 9.81 m/s2 toward 

the center of the Earth. 
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Figure 1.  Human gait with anteroposterior (x), vertical (y), and lateral (z) directions. 

C. GAIT RECOGNITION 

The field of gait recognition involves the extraction of the unique characteristics 

of an individual’s locomotion in order to map a gait signal to an individual. There are 

three primary methods for gait analysis as defined by Gafurov et al. [6]: Machine-Vision, 

Floor Sensors, and Wearable Sensors. 

Machine Vision (MV) describes the use of optical sensors, such as cameras, on 

which computer vision techniques may be applied in order to detect and extract gait 

features. The benefit of MV gait recognition is that the subject does not have to explicitly 

interact with a device, nor even know a recording device is nearby. Previous works by 

Nixon et al. [13], Han et al. [14], and Liu et al. [15] have shown that optical systems, 

along with image feature extraction algorithms, may be applied to satisfactorily recognize 

individuals. This ability to identify individuals at a distance has implications in fields 

such as surveillance and security.  
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Floor Sensors (FS) involve the use of fixed ground sensors that can detect the 

characteristics of body mass movement over a fixed distance. Due to the overtness of a 

fixed FS, the techniques shown by Nakajima et al. [16] and Jenkins et al. [17] have 

applications in scenarios such as fixed facility access. 

Wearable Sensors (WS) describe the method of attaching sensing devices to 

points on an individual’s body in order to pull gait characteristics from the motion of 

body parts during locomotion. This thesis focuses on further developing the viable 

features of gait for a real-world approach to WS, specifically smartphone embedded 

accelerometers.  

Wearable Sensors were chosen as the focus due to the ubiquity of smartphones, 

and their incorporated accelerometers, in our daily lives. Since the mid-2000s, 

smartphones have been manufactured with embedded accelerometers that are sensitive 

enough to detect the minute differences in an individual’s walking rhythm. Additionally, 

these accelerometer sensors can be employed without a need for direct user involvement 

or change of normal daily activity. Thus, the employment of smartphone accelerometers 

for individual recognition has important implications on methods, including passive 

authentication, to secure smartphone data. 

As early as Ailisto [18] in 2005, WS for gait recognition has been studied as a 

potential unobtrusive authentication method. Many previous studies collected gait data 

primarily from the hip position. One of the exceptions, Vildjiounaite [9] collected data 

from multiple positions; however, no attempt was made to combine the collected data 

from all positions in order to generalize a classifier for carrying-position-independent 

authentication. Table 1 provides a summary of the results of previous studies. 
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STUDY POSTION AXES SEGMENT FEATURES RESULT 

Gafurov [6] Lower leg X,Y,Z None; 
Cycle-based 

Histogram; 
Cycle length 

EER=5%;9% 

Nickel [7] Hip X,Y,Z,
M 

Time-based BFCC, Min, 
Max, Std, 
Bin 

TER=17.7% 

Brandt [8] Hip X,Y Time-based BFCC mTER=10.3% 

Vildjiounaite 
[9] 

Hand; 
Breast 
Pocket; 
Hip 

X,Y,Z Cycle-based Correlation; 
FFT 

EER=14.1% 
(Hip); 13.7% 
(Br) 

Ailisto [18] Lower 
back 

X,Y Cycle-based Correlation EER=6.4%; 
TER=12% 

Mäntyjärvi [19] Lower 
back 

X,Y Cycle-based Correlation; 
FFT; 
Histogram 

EER=7%; 
10%; 19% 

Gafurov [20] Hip X,Y,Z Cycle-based Euclidean 
Distance 

EER=16% 

Gafurov [21] Right 
pocket 

X,Y,Z Cycle-based Absolute 
Distance 

EER=7.3% 

Sprager [22] Hip X,Y Cycle-based Cumulant 
Coefficients 

TER=7.4% 

Rong [23] Waist X,Y,Z Cycle-based Dynamic 
Time 
Warping 

EER=6.7%; 
TER=13.3% 

Derawi [24] Hip X,Y,Z Cycle-based Cyclic-
Rotation 
Metric 

EER=5.7% 

Gafurov [25] Ankle X,Y,Z Cycle-based Euclidean 
Distance 

EER=1.5% 

Holien [26] Hip X,Y,Z Cycle-based Dynamic 
Time 
Warping 

EER=5.9% 

Nickel [36] Hip X,Y,Z,
M 

Time-based BFCC EER=8.24% 

Table 1.   Comparison of previous gait recognition research. 

1. Gait Segmentation 

Since gait may be evaluated as a continuous signal, some form of segmentation 

must be performed in order to create discrete value for analysis and classification. The 

two primary methods are cycle-based segmentation and time-window segmentation. In 
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cycle-based segmentation, as used in Gafurov [6], Ailisto [18], Mäntyjärvi [19], and 

Sprager [22], the gait is assumed to be a periodic signal in which each gait cycle is the 

period after one foot touches the ground until that foot touches again. The first step in 

cycle-based segmentation involves identifying local minima and maxima over a 

designated period, thus requiring a peak-detection algorithm. 

In Nickel [7] and Brandt [8], a time-window approach is introduced. Using a 

designated time-length window, the gait signal is segmented into windows of length l, 

with an overlap of l/2 for adjacent segments. With this approach, since gait is assumed to 

be periodic, each time segment is reasonably assumed to contain similar signal features. 

This approach requires fewer computational operations than cycle-detection and thus is 

more suited to use with mobile devices. Sliding window segmentation will be applied in 

this thesis. 

2. Feature Extraction 

Gait capture with WS involves the collection of a time series of raw 

accelerometer data points. As such, a feature vector consisting of each raw data point 

would be too large to make real-time processing realistic. However, a data reduction 

technique could be applied to the raw data points if they are evaluated as a discrete 

signal. Specifically, in Nickel [7] and Brandt [8], Mel-Frequency and Bark-Frequency 

Cepstral Coefficients are shown to be sufficiently unique descriptors of the signal 

characteristics. 

The concept of the cepstrum was introduced by Bogert et al. [27] in 1963 as a 

heuristic technique for finding echo arrival times of composite signals, essentially 

defining the cepstrum as the spectrum of the log-spectrum of a function. Using this 

method, the cepstrum of a signal displays peaks where the original time waveform 

contained “echos” as described by Oppenheim et al. [28]. Since the power cepstrum 

described in Bogert [27] discards the phase information of the spectrum, Oppenheim [28] 

developed a complex cepstrum. The complex cepstrum, while still capable of echo 

detection, retains the phase information of the original wavelet, and may be used for 

wavelet recovery of the original signal. Thus, the coefficients from a discrete cosine 
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function applied to the Mel or Bark scaled cepstrum, can reduce the raw signal into a 

discrete and finite feature vector. 

Mermelstein [29], in a preliminary experiment, showed that Mel-frequency 

Cepstral Coefficients (MFCC) could represent consonantal information in speech. 

Further, Davis [30] confirmed the selection of a compact frequency scale, such as Mel, 

which has linear frequency spacing below 1000 Hz and log-frequency spacing above 

1000 Hz, can adequately represent speech with a small number of coefficients. The use of 

MFCC in speech and speaker recognition has since become standard. Both Nickel [7] and 

Brandt [8] showed the Bark scale, as opposed to the Mel scale, showed better results 

when applied to gait recognition. 

D. ACTIVITY DETECTION 

The use of smartphone accelerometers to determine an individual’s activity, be it 

sitting, standing, walking, running, or others, is a heavily studied area as presented by 

Kwapisz [31]. This field has application in many industries, including medical devices 

for fall detection, as studied by Zhang [32] and Dai [33]. While this thesis is focused on 

walking activity, some of the techniques used in activity detection will be applied.  

The methods of determining an activity were shown by Tundo et al. [34] to 

perform better when the orientation of a device remains constant throughout the transition 

between activities. As such, many studies have required the attachment of the device in  

a known position on the human body. This, however, is not the normal behavior of 

individuals in the real world, who may place the device in a variety of pockets. Both 

Sprager [22] and Tundo [34] showed that with a baseline reading of the effect of  

gravity on the in-pocket accelerometer, a rotation can be applied to each subsequent 

accelerometer sample, thus re-orienting the device axes toward the strongest gravitational 

reading. 

E. DEVICE ROTATION 

While experiments can attempt to control the orientation of a device used to 

capture gait data, in real-world application a device’s base axes may be directed in an 
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unknown orientation due to variances in the size and shape of a carrying location, such as 

a pocket. If a device is accidentally rotated, with respect to gravity, it was shown in 

Tundo [34] that normalizing all of the raw data mathematically by rotating from the 

device’s reference frame to a gravity-based reference frame, as shown in Figure 2, can 

provide more accurate classification results for activity detection. 

 

Figure 2.  A device’s reference frame (blue) rotated toward gravity (red). 

If a vector v


exists in the device’s reference frame F, it can be transformed to v  in 

the gravity reference frame F’ by multiplying it by a rotation matrix R, representing the 

transform from F to F’. Sprager [22] employed a calibration technique that captured each 

subjects’ stationary data with the collection device in position for a period prior to the 

start of the walk. This initial stationary period was averaged to calculate a rotation matrix 

based on gravity, which was then applied to each subsequent sample during the walk. The 

effect of a similar calibration technique will be evaluated in this thesis.  

F. MACHINE LEARNING 

Machine learning is the method of giving a computer the ability to train to better 

perform a task without requiring explicit programming. Learning may be performed 
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either supervised or unsupervised. In supervised learning, the machine learns to make 

predictions based on previously seen events. Supervised learning has the benefit that, 

once properly trained, the machine may begin providing accurate predictions 

immediately after initial training. In unsupervised learning, the machine does not have 

knowledge of previous events, but instead must possess a method of receiving feedback 

on the accuracy of its predictions. With proper feedback, the unsupervised method can 

further improve its accuracy through exposure to more events. While unsupervised 

learning may suffer from a “learning curve” in early predictions, it benefits from not 

requiring an extensive database of prior knowledge.  

Since we are concerned with authenticating a known individual, this thesis will 

focus solely on supervised learning. The machines employed will be trained on known 

instances of an individual’s gait in order to classify future instances from this prior 

knowledge. 

1. Machine Learning Techniques 

Development and employment of optimal algorithms to perform machine learning 

tasks is a heavily studied field. Here, we evaluate and compare the classification accuracy 

of two common machine learning algorithms, Support Vector Machine (SVM) and k-

nearest neighbor (kNN). Both techniques require two sets of data: training and testing 

sets. Both sets contain multiple vectors, each representing a case. Each case contains a 

group of attributes of that case known as features. Each case is also given a label of what 

class the case is a member. The goal of each technique is to build a model from the 

training set that most accurately predicts the labels of the cases in the testing set.  

a. Support Vector Machine 

Support Vector Machine (SVM) was chosen for this thesis as it has shown good 

performance in previous gait recognition research, including both Nickel [7] and Brandt 

[8], but also because this algorithm works particularly well for binary classification tasks, 

or the process of describing an event as one of two known classes.  
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SVM works by determining a hyperplane of n dimensional space, with n equal to 

the size of the feature vector, which best separates two or more classes. It does this by 

determining the maximum margin between the hyperplane that best divides the classes, 

and the support vectors, or the closest data points to the hyperplane. Using x


 as the 

point (vector) and w


 as the weights, then the hyperplane may be defined as 0T
kw x b 

 
 

for all kx


 of one class and 0T
jw x b 

 
 for all jx


of the other class as explained by Lewis 

[35]. If each class is labeled as {0,1}ky   with 1 being a positive case and 0 a negative 

case, then the equation for the hyperplane is y ( ) 0T
k kw x b 
 

. 

Since (x , y )k k  is known for all training cases, then this equation may be used to 

solve for ,w b


 which gives the hyperplane. In cases where a clear division between the 

classes does not exist, the SVM employs a slack variable which provides an allowance of 

data points to lie on the wrong side of the division. Thus, the goal of the SVM is to 

minimize the slack variable and maximize the margin between support vectors. The SVM 

will either be able to draw a clear divide between the classes with no error, or it will have 

some error with data points on the wrong side of the divide. In either case, the same 

equation may be used to determine the maximum margin between data sets. If the data 

can be clearly separated, then the error penalty 0C  . If there is some error, then 0C  . 

2

,b,

1
min

2

n

w
i

w C


   

Here   is the slack variable and the entire term 
n

i
C   is the soft margin for the 

SVM. In order to determine the optimal C  and  , a logarithmic grid search may be used, 

which evaluates the performance of the SVM on the training data using all possible pairs 

of 5 3 1 1 3 5{2 , 2 , 2 , 2 , 2 , 2 }C     and 15 10 5 0 5{2 , 2 , 2 , 2 , 2 }    , then scores the outputs to 

determine the optimal. Grid search is a computational intensive task, as the training data 

is first divided into equal-sized segments, then N SVMs are built with N-1 training sets 

and one test set, for each of the N segments.  



 16

b. k-Nearest Neighbor 

K-nearest neighbor (kNN) was chosen since in at least one previous study by 

Nickel [36], kNN showed better performance in accurately classifying gait than SVM. 

The kNN technique involves calculating the distance between a test case, which is a 

vector of attributes, and stored training cases. In this thesis, as with Nickel [36], the 

Euclidean distance will be used. The k-nearest neighbors, by distance, of the test vector 

then “vote” based on their labels, and the majority label of the k-neighbors is applied to 

the test vector. If there is an even number of positive and negative neighbors, then the 

genuine label, by default, is applied to the test case. 

2. Machine Learning Tools 

Orange [37] is a comprehensive, open-source toolbox for machine learning and 

data mining. Based on Python, it provides the user the ability to quickly write scripts to 

perform a multitude of tasks, including data management, classifier construction, 

calibration, prediction, evaluation, and visualization, using built-in functions. The data 

management and preprocessing functions allow loading data, sampling data, filtering, 

scaling, attribute selection, set construction, and saving data. In classifier construction, 

there are functions for training and testing SVMs (based on LibSVM), kNN, Decision 

trees, and many others. The prediction, evaluation, and visualization functions use trained 

classifiers to predict classifications of a training set and score the output, which may then 

be displayed graphically for the user. Due to the scale and flexibility of the Orange 

toolbox, the classification tasks in the thesis are performed using a custom Python script 

leveraging Orange’s functionality. 
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III. METHODOLOGY 

This chapter discusses the software design considerations and describes the 

equipment used for the experiments. First, the method developed to extract accelerometer 

data from the Android device is explained. Then, a description of the signal processing 

and feature extraction procedure is provided. Finally, the implementation of the gait 

classifier is discussed. 

A. DATA COLLECTION 

The gait database for these experiments consists of raw accelerometer data 

collected from a LG Nexus 4. The Nexus 4 comes embedded with an Invensense MPU-

6050 Six-Axis gyroscope and accelerometer, which measures accelerometer data in three 

directions as illustrated in Figure 3. 

 

Figure 3.  The accelerometer axes in the device’s frame of reference, from [38]. 
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An application was written using the Android SDK to extract raw accelerometer 

data using the Android SDK’s onSensorChanged method. As the accelerometer reading 

changes over time, the data is written to an internal SQLite database containing an 

instance identifier, a time-stamp, and the accelerometer magnitude in each of the three 

directions.  

To build a database of representative, real-world gait accelerometer 

measurements, 23 subjects were invited to participate in data collection. Summaries of 

the group demographics appear in Table 2 and Table 3. Note that the majority of 

participants were healthy males between the ages of 26 and 34 with an average height of 

5′10″, minimizing the effects of age, gender, and health on classification.  

 
AGE MALE FEMALE 

26–28 8 0 

29–31 5 2 

32–34 6 1 

> 35 1 0 

 

Table 2.   Summary of subject ages. 

HEIGHT MALE FEMALE 

< 5’6” 0 1 

5’6”-5’9” 5 2 

5’9”-5’11” 11 0 

6’-6’2” 4 0 

 

Table 3.   Summary of subject heights. 

A data collection session was conducted with the device in each of three 

locations: back pocket, front pocket, and hip holster. All carrying positions were on the 

right side of the body and each subject wore business casual clothing and shoes. In each 
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position, the device was carried with the screen facing toward the body and the top of the 

device toward the ground. This ensures the raw orientation of each axis is consistent, in 

relation to positive and negative values, no matter the carrying position. This is necessary 

for rotation normalization during signal processing.  

After loading the data collection application, each subject placed the device first 

in the back pocket. For approximately eight seconds, the subject was asked to remain still 

in order to collect gravity calibration data. At the end of the approximately eight seconds, 

the subject was tasked to walk at a comfortable pace for approximately 20 seconds on a 

straight path. Following this approximately 30 seconds of total data collection, the 

database was saved, the device reset, and the experiment conducted again with the device 

in the front pocket and finally in the hip carrying position.  

In order to ensure enough data was available for training and testing sets, 

following the completion of the first round of data collection walks, each walk was 

conducted a second time for a total of six, 30-second data collection sessions for each 

subject providing a total of approximately 4200 seconds of raw data. 

B. SIGNAL PROCESSING 

Following the completion of the data collection, the raw database is visually 

inspected using database plotting software. After visual verification of the X, Y, and Z 

magnitudes over time, the database can be loaded into a custom Python script, leveraging 

Scipy and Numpy [39] libraries for the following manipulations. 

1. Interpolation 

Due to a limitation in the Android API, the only time the data is pulled from the 

accelerometer is when the sensor changes. As this change may not occur at a fixed 

interval, and since higher priority processes may interrupt the polling of the 

accelerometer, the raw data is not stored at a uniform sampling rate. Table 4 shows a 

sample of the raw data from the calibration portion of a sample gait collection session. 

Observe the inconsistent time deltas, in nanoseconds, between data points.  
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TIME DELTA x y z 

20141600 -0.358291625976562 -9.813888549804687 2.42636108398437

20141602 -0.364242553710937 -9.876968383789062 2.41921997070312

20141602 -0.352340698242187 -9.779373168945312 2.39541625976562

20141600 -0.391616821289062 -9.769851684570312 2.44540405273437

20172120 -0.398757934570312 -9.805557250976562 2.47991943359375

20172120 -0.366622924804687 -9.788894653320312 2.42755126953125

20141600 -0.344009399414062 -9.817459106445312 2.44778442382812

20080566 -0.367813110351562 -9.853164672851562 2.391845703125 

20141602 -0.322586059570312 -9.847213745117187 2.41207885742187

20141600 -0.321395874023437 -9.811508178710937 2.44302368164062

 

Table 4.   Sample of raw gait data with time delta between samples. 

In order to ensure we are comparing controlled data sets, interpolation to a fixed 

rate is necessary. As each subject’s data was collected for approximately 30 seconds, we 

interpolate to 1500 samples in the 30 second sessions to extract data at 50 Hz. In Brandt 

[8], 50 Hz was shown as an adequate rate for gait discrimination. Raw data points beyond 

30 seconds are dropped in order to ensure the same number of samples for each walk 

session. This leaves us with the blue signal, as depicted in Figure 4. 
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Figure 4.  The raw data points (red) and interpolated signal (blue) in X, Y, and Z axes 
with the overlapping segment boundaries overlaid in gold and green.  

2. Segmentation 

With each session of raw data interpolated to 1500 samples, each session is 

divided into discrete segments. In performing non-cyclic gait classification, Nickel [7] 

and Brandt [8] showed equal length segments with 50% overlap provide low FMR and 

FNMR. The raw signal of length l is split into segments of time t with a distance d 

between the start of consecutive segments. Since our data collection and experimental 

method is similar to that in Brandt [8], we use their optimal segment lengths where 5t   

seconds, which at 50 Hz is 250 samples per segment, and 2.5d   seconds. 

Starting with the approximately 30 seconds of initial raw data, each session is thus 

divided into 11 segments. Due to the approximately eight-second resting calibration 

period of each session, the first three segments are assumed to be non-walking segments 

and discarded after normalization is complete, leaving eight segments per subject for the 

classification task.  

3. Normalization 

Note the presence of gravity on the Y-axis in Figure 4. This noise on the raw 

signal may potentially interfere with the recognition of an individual’s gait and instead 
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classify a user based on the way the device is carried. Due to this potential, classification 

will be performed on gaits normalized using several techniques. 

As a baseline, experiments are first run to classify gait without normalizing the 

raw data. Following this, the normalization of Nickel [7] and Brandt [8], which was used 

to remove accelerometer noise and allow an evaluation of a zero-crossing metric, is 

verified by averaging the signal in each segment to yield . This average is subtracted 

from each data point to get a zero-normalized value at time t. 

'(t) ( ) for { , , }k k ks s t k x y z    

Additionally, the effect of normalizing the raw data by an axis-rotation, as 

proposed by Tundo [34] and Cooke [40], is evaluated. The direction and magnitude of the 

axis rotation can be determined from the mean magnitude of the acceleration of each axis 

during the eight second “at-rest” calibration potion of the data collection session. After 

calculating the mean, a direction and magnitude of axis-rotation is determined and 

applied to each data point. While a rotation matrix can perform this task, for this thesis a 

quaternion rotation is performed due to calculation speed and efficiency. 

Finally, after evaluating the effect of the rotation on classifier results, the rotation 

technique is applied, followed by a scaling to zero. The average for each segment is 

calculated for each rotated segment, and this mean subtracted from each data point to 

center all data points near zero. 

C. QUATERNION ROTATION 

Contrary to using a 3-by-3 matrix to represent rotation in three dimensions, a 

four-dimensional quaternion vector may be used instead. Quaternions offer several 

advantages over using a rotation matrix, including compact representation and storage 

requirements. Further discussion of the advantages of employing quaternions for 

rotations can be found in Dam et al. [41]. Instead of applying many elementary arithmetic 

operations on a 9-element matrix, we instead operate on the 4-element quaternion 

represented by the following linear combination. 

2 2 2
0 1 2 3 , where 1q q q i q j q k i j k ijk          
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The process of rotating an angle by a quaternion involves building a quaternion 

rotation matrix. First, the axis-vector must be produced from the cross-product of the 

initial gravitation-vector and the desired gravity vector. 

i fA v v 
 

 

Since the initial vector is i Xi Y Zkv j  


 and the desired gravity vector is 

' ' 'f X i Z kv Y j  


, then the dot product may be used to derive the angle of rotation. 

cos( )i fi f v vv v 
   
  

' ' 'i f Xv YY ZZv X  
 
  

The desired gravity vector is equal to (0.0, -9.81, 0.0) so 'X  and ' 0Z   and 

'fv Y


, therefore the angle of rotation is: 

arccos
i

Y

v


 
 
 
 
 . 

The angle of rotation and the axis-vector elements can now be used to build the 

quaternion rotation matrix using the quaternion rotation equations described in Cooke 

[40]. 

0q cos
2

   
 

 

1q sin
2

xA
   
 

 

2q sin
2

yA
   
 

 

3q sin
2

zA
   
 
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q q q q q q q q q q

    
 

      
     

 

Considering an initial vector represented by  , ,
T

X Y Z , multiplying this vector 

with the rotation matrix produces the rotated vector with respect to the desired gravitation 

vector. 

'

'

'

X X

Y R Y

Z Z

   
      
      

 

D. FEATURE EXTRACTION 

Both Nickel [7] and Brandt [8] showed that Mel and Bark Frequency Cepstral 

Coefficients (BFCC), commonly exploited in speech recognition tasks, perform better for 

gait classification than statistic features. Thus, instead of using common statistical 

features such as max, min, mean, and standard deviation, this thesis will instead use the 

BFCC calculated using the optimal parameters as described in Brandt [8]. Bark scale was 

first described by Zwicker [42] in 1961. A detailed discussion of MFCC and BFCC 

construction can be found in Rabiner [43]. An overview of the BFCC process is shown in 

Figure 5. 

 

Figure 5.  The BFCC process. 

1. Pre-emphasis 

The first phase is pre-emphasis of the raw signal. In this step, higher frequencies 

are emphasized by increasing the energy of the signal in the higher frequency bands. The 

equation for this indicates that the pre-emphasized sample is equal to the raw sample 

minus 97% of the previous sample. 
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'[ ] [ ] 0.97* [ 1]A n A n A n    

The raw input signal is constantly changing over the length of the segment; 

however, in order to simplify calculations, it can be assumed the signal does not change 

significantly over a shorter window.  

2. Windowing 

Note the term segment is used to describe a portion of the original signal and 

window is used to describe a portion of the segment. Thus, the 250 sample segment is 

further windowed, again with 50% overlap.  

3. Discrete Fourier Transform 

Since each window is reduced enough to be easily described by a few 

coefficients, a Fourier Transform, in the form of a FFT for speed of computation, is 

performed on each window. 

4. Bark Filterbank 

In order to smooth the spectrum and emphasize the meaningful frequencies, the 

spectral components are divided into frequency bins according to the Bark scale. The 

Bark scale, like the Mel scale, is based on findings that, in speech, lower frequencies are 

perceptually more important than higher ones. Thus, the Bark filterbank is applied to the 

frequency outputs of each FFT using the following conversion formula described by 

Traunmüller [44]. 

  26.81
0.53, where is the vector of frequencies from the FFT

1960

f
Bark f f

f
 


 

This reduces the calculated FFT spectrum into a reduced set of energy values. The 

optimal results, as produced by Brandt [8], reduce the FFT spectrum to 40 values, of 

which the log is taken.  
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5. Discrete Cosine Transform 

Finally, a Discrete Cosine Transform (DCT) is applied to each of the 40 log-

energies. Since the Bark-frequency vectors calculated for each window are highly 

correlated, a DCT is used as an approximation of the Karhunen-Loeve transform, which 

decorrelates the vectors and thus reduces the number of parameters in the system Logan 

[45]. The DCT yields 40 coefficients describing the original signal. Due to the spacing of 

the frequencies in the filterbank, the coefficients past 13 contain little information beyond 

noise and are thus discarded. With 13 coefficients for each of the windows, the mean 

value for each coefficient is returned as a vector of the BFCC for the input segment.  

Dan Ellis’ [46] MFCC implementation for MATLAB, as used in Nickel [7] and 

Brandt [8], was chosen for this thesis. This implementation calculates cepstral 

coefficients as described and includes an option to use the Bark-scale filterbank vice the 

Mel-scale. Table 5 displays the parameter settings. 

 
PARAMETER VALUE 

Window Length 0.007 

Window Hop Time 0.0002 

Sampling Rate 16000 

Minimum Frequency 0 

Maximum Frequency 1200 

Pre-emphasis Filters 0.97 

Number of Spectral Bands 40 

Number of Cepstral Features 13 

Cepstral Liftering None 

Cepstral Scale Bark 

 

Table 5.   Dan Ellis’ script settings for BFCC calculation 
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E. SIGNAL CLASSIFICATION 

In order to determine the best performing combination of the features being 

investigated, a binary classifier is developed. The purpose of the classifier is to separate 

instances of a genuine user from that of the many imposters: thus, it is a one-to-many 

classifier. Since the goal is to determine the best performing features in any case, for each 

experiment N one-to-many classifiers are built for each of N subjects. The results on each 

classifier are combined to get an average TER for the feature set. 

The data is first captured and processed as described. Once the features are 

extracted for all samples, half of the resulting feature vectors are used for training and the 

other half are used for testing. In all experiments, the training occurs on the samples from 

the first walking sessions and testing is performed on the second walking session. No 

samples from the training set appear in the testing set.  

In order to determine the best performing classifier for the test, each experiment is 

run concurrently on both a SVM and kNN trained and tested on the same data sets. Both 

techniques are implemented in a Python script leveraging the Orange libraries. Prior to 

loading the feature vectors, the vectors are scaled to values between zero and one in order 

to reduce the influence of higher value attributes on others. In order to ensure scaling by 

the same amount on the training and testing sets, allowing values in each set to vary by 

different ranges, the scaling amount from the training set must be saved and applied to 

the data in the testing set regardless of its internal range variance. This method is 

presented as a best practice by Hsu [47]. 

Additionally, unless noted otherwise, all classification tasks are performed on 

homogenous carrying positions: that is, the classifier will be trained on walks from the 

same carrying positions as those in the test set. This is done in order to evaluate the signal 

classification effect from different positions and to determine which classifier, 

normalization technique, and primary axis are most discriminatory. 
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1. Classifier Settings 

The first step in building the Support Vector classifier requires the determination 

of the optimal kernel parameter   and the penalty parameter C . The Gaussian radial 

basis function (RBF) was chosen as it was shown by Brandt [8] and Hsu [47] as well 

performing for gait classification tasks. The SVM implementation in Orange uses the 

automatic parameter selection function from LibSVM, performing a grid search on all 

pairs of logarithmically-spaced   and C  values during cross-validation in order to 

determine the optimal pair. 

In building a kNN classifier, the two parameters that most affect performance are 

the distance function and the number of neighbors, k. In keeping with Nickel [36], the 

Euclidean distance is used and 8k  was selected as each walking session is previously 

determined to contain eight segments. 

2. Experimental Method 

In order to evaluate the effect of carrying position and normalization technique, 

multiple combinations of feature selection mixtures were evaluated. For each carrying 

position (hip, back pocket, and front pocket), and for each axis (x, y, and z), each of our 

normalization techniques (no normalization, zero-scaling, rotation, and zero-scaled 

rotation) was evaluated. Additionally, for each position-normalization technique, the X 

and Y axes and all three axes are combined separately, as these combined features were 

shown to perform well in previous studies (see Table 1). The important information when 

combining axes is the overall effect of the combined magnitude of the individual axes. In 

order to calculate this combined magnitude, at each time t  the data points from each axis 

of interest (      , , andx y zs t s t s t ) is treated as a vector with the magnitude of its value 

in the direction of the respective axis. The Euclidean norm of these axis vectors is 

calculated for each t  and the features extracted from the combined segment vector combs . 

   2
for { , , }comb ks t s t k x y z    
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Following the structure of Brandt [8], the initial baseline was developed using and 

SVM on data originating at the hip-carrying position, processed with the zero-scaling 

normalization technique for each individual axis. The TER results are showing in  

Table 6.  

 
POSITION AXIS FMR FNMR TER 

H
IP

 (
H

) X 0.0217 0.6250 0.6467 

Y 0.0326 0.4239 0.4565 

Z 0.0440 0.4837 0.5277 

 

Table 6.   Baseline results for individual axes.  

It can be seen that the individual Y and Z axes are the best performing. When 

combining axes, the X and Y axes show good performance (see Table 7), which is similar 

to Brandt [8], however, not an improvement to the individual Y-axis. 

 
POSITION AXIS FMR FNMR TER 

H
IP

 XY 0.0292 0.4674 0.4966 

XYZ 0.0341 0.4837 0.5178 

 

Table 7.   Baseline results for combined axes. 

3. Voting Scheme 

Though the baseline results are computed for each segment of an individual’s 

walk session, the goal is to authenticate a user over a period of time. In the current 

settings, with a FNMR near 50%, the genuine user is rejected about half the time. For a 

usable system, this result is unacceptable. In order to improve the usability of the 

classifier a voting scheme is implemented similar to the ones described by Nickel [7] and 

Brandt [8].  
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Instead of authenticating on each individual segment, several consecutive 

segments V are used to authenticate a period of time so long as a goal number G of the 

segments are classified as genuine. For the following experiments, since the number of 

genuine segments is known to be eight, in order to ensure only genuine or only impostor 

segments are included in the authentication period, the V must be a whole number divisor 

of eight. In order to set the goal number, the baseline classification settings are used to 

empirically evaluate the best performing V and G numbers to be used for following 

experiments. The abridged results of the voting scheme are shown in Table 8, where it 

can be seen that XY is the best performing axis. While the FMR increased by six 

percentage points, the TER decreased by over 50%.  

 
AXIS METHOD V G FMR FNMR TER 

X 
SVM 8 1 0.0652 0.3478 0.4130 

kNN 8 1 0.1759 0.1304 0.3063 

Y 
SVM 8 2 0.0613 0.1739 0.2352 

kNN 8 3 0.0692 0.1739 0.2431 

Z 
SVM 8 2 0.0711 0.3043 0.3754 

kNN 4 1 0.1314 0.2826 0.4140 

XY 
SVM 8 1 0.0988 0.1087 0.2075 

kNN 8 2 0.0850 0.1087 0.1937 

XYZ 
SVM 8 1 0.0929 0.1739 0.2668 

kNN 8 2 0.0830 0.1739 0.2569 

 

Table 8.   Performance of voting scheme on baseline parameters. 

Table 9, showing the mean TER for the combined performance of both SVM and 

kNN on all axis combinations, indicates that the use of eight votes, with a goal of two 

genuine, has the best overall performance and is used in further experiments. Appendix A 

includes the results of all voting optimization experiments. 
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V G mTER 

1 1 0.4981 

2 1 0.3945 

2 2 0.6025 

4 1 0.3352 

4 2 0.3989 

4 3 0.5206 

4 4 0.7394 

8 1 0.3132 

8 2 0.3118 

8 3 0.3336 

8 4 0.3838 

8 5 0.5011 

8 6 0.5925 

8 7 0.6951 

8 8 0.8571 

 

Table 9.   Mean TER of SVM and kNN performance with different voting parameters. 

Since each session in the data set includes eight segments of five seconds each, 

several cases must be addressed. For example, if only a single segment in a series is 

classified as genuine, should the entire period be recognized as authentic? If so, does it 

matter where this genuine segment falls in the walking period be it beginning, middle, or 

end? Thus, cases may represent times of positive authentication, such as when a genuine 

user walks and stops, or walks and takes the device out of the pocket, or negative 

authentication such as when a device is taken from the genuine user in the middle of a 

walking period. The study of these settings is particularly interesting and we leave their 

exploration for future research. Following Nickel [7] and Brandt [8], we evaluated the 

bundling of segments and determined the entire 20 second walk from bundling 8-

segments is a practical unit of classification for our data set. 
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IV. ANALYSIS AND RESULTS 

In the process of developing a gait authentication system and analyzing feature 

processing methods, several important results were determined. First, as described 

previously, it was found that the implementation of a voting scheme can improve the 

usability of a gait authentication scheme by reducing the system’s FNMR with acceptable 

FMR trade-off. For this data set, requiring two positive votes out of eight, five-second 

segments showed the best performance improvement. These settings were used for 

evaluation and comparison for the rest of the experiments. 

A. CLASSIFIER EVALUATION 

In determining the best performing classifier technique and signal processing 

methods, 60 experiments were conducted involving 20 different mixtures of feature 

vectors and processing techniques, as described by Table 10. Each mixture’s performance 

was evaluated for each of the three carrying positions. 
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AXIS NORMALIZATION 

X 

None 

Zero-Scaling 

Rotation 

Rotation and Zero-Scaling 

Y 

None 

Zero-Scaling 

Rotation 

Rotation and Zero-Scaling 

Z 

None 

Zero-Scaling 

Rotation 

Rotation and Zero-Scaling 

XY 

None 

Zero-Scaling 

Rotation 

Rotation and Zero-Scaling 

XYZ 

None 

Zero-Scaling 

Rotation 

Rotation and Zero-Scaling 

 

Table 10.   Experimental mixtures for each carrying position. 

While all experiments were run on both SVM and kNN classifiers, in 51 of  

60 experiments kNN outperform SVM. Table 11 shows the mean TER of the classifiers 

on all experiments. This concurs with the results of Nickel et al. [36] and suggests that, in 

general, kNN is a better performing technique for gait classification. Full results of all the 

experiments are included in Appendix B with graphical representations of per position 

performance in Appendix C. 
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 SVM kNN 

mTER 0.3913 0.3010 

 

Table 11.   Means of classifier performance on all experiments. 

Using kNN on all experimental mixtures, we developed a scatter plot of classifier 

performance that provided us a method to visually determine viable mixtures (see Figure 

6). As the intent is to evaluate the performance regardless of device position, and 

observing that the inter-position variance is relatively low, with a mean variance of 

0.0068, we perform further analysis on the mean TER of all positions (see Figure 7). 

 

Figure 6.  3D scatter plot depicting the performance of kNN, by TER, on all 
experimental mixtures. 
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Figure 7.  3D scatter plot of the inter-position mTER where large points represent  
a large inter-position variance (see Appendix D). 

1. Normalization Analysis 

To evaluate the performance of the normalization techniques on each axis, Figure 

7 allowed us to observe data across the intersections of normalization and axis settings. 

We first observed that the best performing data point, by lowest mTER, occurred at 

12.6% on the Y-axis when normalized by a gravity rotation. The XY, and XYZ axes have 

similar performance, 15.4% and 18.0%, respectively, indicating a dependence on the Y-

axis.  

The zero-scaling normalization technique displayed the worst inter-position 

variance regardless of axis at 0.0129, though the second-best mTER of 13.8% occurs on 

the zero-scaled XY-axis. Additionally, the single best position-dependent data point 

occurred on the zero-scaled XY-axis, from the hip carrying position, at 6.13% TER. Of 

note, this mixture was the primary one used by Brandt [8].  

When no data normalization was performed, the data showed the lowest inter-

position variance at 0.0029 and an average TER across axes centered at 26.3%. Though 
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the rotated and zero-scaled data showed a poor inter-pocket variance at 0.0072, it has the 

lowest inter-axis variance with all data points clustered around 28% TER. Results are 

summarized in Table 12. 

 
 CENTER VARIANCE 

None 26.3% 0.0102 

Zero-Scaled 33.8% 0.0113 

Rotated 26.9% 0.0212 

Rotated and Zero 28.9% 0.0009 

 

Table 12.   Normalization cluster centers and inter-axis variance across axes. 

2. Axis Analysis 

Similar to the analysis of the normalization techniques, we used Figure 7 to make 

observations of the effect of axis-selection on classification. We first observed that the Y-

axis had the lowest mTER of the individual axes, but the highest variance across 

normalization techniques. The combined XY-axis had the lowest mTER at 17.9% and the 

lowest variance across normalizations. Again, this agreed with Brandt’s [8] selection of 

the XY-axis for gait authentication. If we looked at only zero-scaled data, the XY-axis 

also showed the best mTER of 13.7% though it had the highest inter-position variance, 

0.0069, of XY-axis data across normalization techniques. The XY-axis data with the 

lowest inter-position variance, 0.0013, occurred on gravity rotated data achieving an 

mTER of 15.4%. This indicates position-independent gait authentication may perform 

more consistently on XY-axis data normalized by a gravity rotation. 
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 CENTER VARIANCE 

X 41.5% 0.0035 

Y 25.0% 0.0097 

Z 36.5% 0.0021 

XY 17.9% 0.0021 

XYZ 23.9% 0.0037 

 

Table 13.   Axis cluster centers and inter-normalization variance  
across normalization techniques. 

B. CARRYING POSITION INDEPENDENT CLASSIFICATION 

Samples received from different carrying positions were not combined in any 

form, as receiving signal from multiple positions would be impossible with a single 

device. Instead, in order to determine the most realistic method of authenticating gait data 

from different carrying positions, analysis was performed using the previously 

determined best performing axis (XY) and two best normalization techniques (zero-

scaling and gravity rotation) and mixing training and testing sets from the different 

carrying positions. Based on our results indicating a strong dependence on the Y-axis and 

our best performance agreeing with the selection of the XY axis by Brandt [8], we did not 

evaluate the performance of the following experiment using other combinations of axes. 

First, the classifier was trained and tested on data from the individual carrying 

positions. Then, the classifier was trained on data from all the carrying positions, and 

testing was performed on data from the individual carrying positions. We present the 

results in Figure 8 and Figure 9, using the zero-scaling and gravity rotation, respectively. 

It is apparent that classifiers trained and tested on data originating from the same 

carrying position show the best performance. The effect of the normalization techniques 

is particularly interesting. Though the performance when comparing data from the same 

positions is slightly worst using the gravity rotation technique, the performance of 

position combination techniques all improve. The performance of training on all data and 
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testing on a single position is equivalent, or better, than training and testing on the back 

pocket position alone. 

 

Figure 8.  Training and testing on carrying positions using zero-scaling normalization. 
Data from the hip position show the best performance overall. 
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Figure 9.  Training and testing on carrying positions using gravity rotation 
normalization. The inter-position variance decreased from the zero-scaled 

experiments. 

C. SUMMARY OF RESULTS 

After analyzing the performance of multiple combinations of processing 

techniques on the same data set, we found that certain features perform better. The best 

performing method involved first calculating the combined magnitude of the X and Y 

axes. This combined magnitude was then segmented and normalized around zero or 

normalize by a gravity rotation. A BFCC was extracted from each segment, then the 

segment sets were divided into two halves in order to train and test a kNN classifier, 

using 8k  .  

The best result using zero-scaling normalization on a single position (hip-to-hip) 

was a TER of 6.13%. The best position-independent result using gravity rotation 

normalization was an mTER of 15.4%. The single position experiments closely 

resembled both Nickel [7] and Brandt [8], with TERs of 17.7% and 10.3%, respectively, 
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except for the data set and the selection of kNN as the classifier, thus indicating kNN as a 

better-performing classifier than SVM for gait authentication. In Nickel [36], kNN was 

also shown to be a valid classifier, though their TER of 16.48% is outperformed by our 

method. 
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V. CONCLUSION AND RECOMMENDATIONS 

This thesis presented methods of processing accelerometer-based gait signal for 

smartphone authentication. Our results were compared to baseline methods, as studied by 

others, to justify the usage of our methods in future research. Additionally, these well-

performing methods were employed to evaluate the authentication performance of a 

system trained on data collected from multiple body positions and tested on data from 

unknown carrying locations.  

A. OBSERVATIONS 

In addition to performing a robust evaluation of the best performing classifier and 

axis of previous studies, we made the hypothesis that a normalization technique involving 

the rotation of the devices frame of reference in relation to gravity, would perform better 

than a zero-scaling. We also attempted to develop a gait authentication system that would 

not restrict a user from carrying the device in different position. 

1. Rotation Performance 

The effect of rotating the device’s axes showed promising results. Regardless of 

the device’s carrying position, the individual Y-axis when rotated due to gravity achieved 

an mTER of 12.6%. Additionally, the combined XY and XYZ axes, when rotated, 

achieved mTERs of 15.4% and 18.0%, respectively, indicating the dependence on the 

axis experiencing the strongest gravitational effect, the Y, or vertical, axis. This is better 

than 24.3% baseline for the Y-axis, the 19.4% for the XY-axis, and 25.7% for the XYZ-

axis as well as an improvement on many previously reported results.  

Data that was only zero-scaled and not rotated, as performed by other studies, 

showed mixed results. While the lowest position-dependent (hip-to-hip) TER of 6.13% 

occurred on the zero-scaled XY-axis, the data across axes had the worst mTER of all 

normalization techniques clustering around 33.8%. Surprisingly, data that was not 

normalized showed the best mTER cluster regardless of axis at 26.8%. When zero-

scaling is applied after the rotation, the selection of axis is less significant as this 
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technique showed the lowest statistical variance across axes of all normalization 

techniques evaluated.  

2. Carrying Position Performance 

As expected, training a classifier on a single carrying position and testing on data 

from another position yields poor performance. However, we were able to show that 

training a classifier on all carrying positions, and testing on any of the other positions, 

will yield consistent and satisfactory performance no matter which position the test data 

is captured from, particularly when the data is normalized by a gravity rotation. This 

important result leads us to the conclusion that any deployable smartphone-based gait 

authentication system should train on data captured from multiple positions, thus 

eliminating artificial restrictions on the placement of the device. 

B. FUTURE WORK 

This thesis combined and evaluated the performance of several important settings 

for smartphone-based gait authentication, including axis selection, normalization 

techniques, and carrying position. Future work should include combining our findings 

with those of others, such as Nickel [7], Brandt [8], Vildjiounaite [9], Gafurov [21], and 

Holien [26], to determine the optimal settings when accounting for the speed of walk, 

types of footwear and clothing, terrain effects, and others leading to a deployable 

smartphone-based authentication system. 

We specifically evaluated data normalization techniques of zero-scaling, gravity 

rotation, and gravity rotation followed by zero-scaling. The gravity rotation technique 

showed interesting results; however, these results may be improved through a more 

robust calibration technique. Our experiments collect a gravity baseline for calibration 

while the subject is standing still. This method seems to work well for a hip-carrying 

position, where the vertical axis’ pitch has minimal change over the course of a walk. In 

the pocket positions, however, the pitch of the vertical axis is more likely to be affected 

by the movement of the leg. Hence, study of calibration techniques that take this leg 

movement into account is warranted. 
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In this thesis, we based our feature extraction on using the well-performing BFCC 

parameters described in Nickel [7] and Brandt [8]. Though these works dedicated a 

significant amount of study to verifying the performance of multiple sets of features, their 

work did not include study of devices in carrying positions aside for the hip holster. We 

conjecture that there may exist other signal features that may improve the classification 

performance for gait authentication. 

We used a relatively small database of 23 subjects to evaluate the performance of 

our settings. Though we believe this number to be adequate to generalize our findings, 

research involving a larger database of subjects, collected over a period of time, could 

further verify our results. With a database that included other carrying positions, 

including in the hand and in a bag, the effect of combining multiple positions may be 

more fully determined. Additionally, making a larger, more robust database available 

publicly, would allow researchers to report comparable results for different techniques on 

the same data set. 

Work in different areas of smartphone authentication, including Fleming [48] and 

Nguyen [49], should be combined with our findings in order to ensure a secure and robust 

system. For instance, while gait may be used to authenticate a user initially, the 

authentication of their typing characteristics or their wireless hotspot signature could be 

employed for follow-up authentication. 

Once a deployable system, with multimodal authentication, is developed, 

evaluation of an imposter’s ability to break the security of the system should be 

conducted. 
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APPENDIX A. VOTING PERFORMANCE 

AXIS METHOD #V #G FMR FNMR TER 

X 

SVM 

1 1 0.0217 0.6250 0.6467 

2 1 0.0326 0.5217 0.5543 

2 2 0.0114 0.7283 0.7397 

4 1 0.0464 0.4348 0.4812 

4 2 0.0267 0.5435 0.5702 

4 3 0.0109 0.7174 0.7283 

4 4 0.0040 0.8043 0.8083 

8 1 0.0652 0.3478 0.4130 

8 2 0.0356 0.4348 0.4704 

8 3 0.0257 0.4783 0.5040 

8 4 0.0217 0.6087 0.6304 

8 5 0.0138 0.7391 0.7529 

8 6 0.0059 0.7826 0.7885 

8 7 0.0059 0.7826 0.7885 

8 8 0.0020 0.8261 0.8281 

kNN 

1 1 0.0556 0.4674 0.5230 

2 1 0.0884 0.3152 0.4036 

2 2 0.0232 0.6196 0.6428 

4 1 0.1235 0.2174 0.3409 

4 2 0.0613 0.3478 0.4091 

4 3 0.0316 0.5217 0.5533 

4 4 0.0069 0.7826 0.7895 

8 1 0.1759 0.1304 0.3063 

8 2 0.0968 0.2609 0.3577 

8 3 0.0672 0.2609 0.3281 

8 4 0.0474 0.3478 0.3952 

8 5 0.0296 0.5217 0.5513 

8 6 0.0178 0.6087 0.6265 

8 7 0.0079 0.6957 0.7036 

8 8 0.0040 0.9130 0.9170 

Table 14.   Voting performance on X-axis data. 
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AXIS METHOD #V #G FMR FNMR TER 

Y 

SVM 

1 1 0.0326 0.4239 0.4565 

2 1 0.0494 0.3043 0.3537 

2 2 0.0168 0.5435 0.5603 

4 1 0.0682 0.2391 0.3073 

4 2 0.0405 0.3043 0.3448 

4 3 0.0188 0.4348 0.4536 

4 4 0.0049 0.7174 0.7223 

8 1 0.0949 0.1739 0.2688 

8 2 0.0613 0.1739 0.2352 

8 3 0.0474 0.2174 0.2648 

8 4 0.0277 0.3478 0.3755 

8 5 0.0198 0.4348 0.4546 

8 6 0.0099 0.4783 0.4882 

8 7 0.0040 0.6087 0.6127 

8 8 0.0000 0.9565 0.9565 

kNN 

1 1 0.0506 0.3967 0.4473 

2 1 0.0741 0.2717 0.3458 

2 2 0.0287 0.5217 0.5504 

4 1 0.1028 0.1957 0.2985 

4 2 0.0603 0.2826 0.3429 

4 3 0.0316 0.4130 0.4446 

4 4 0.0109 0.6957 0.7066 

8 1 0.1383 0.1739 0.3122 

8 2 0.0810 0.1739 0.2549 

8 3 0.0692 0.1739 0.2431 

8 4 0.0534 0.2174 0.2708 

8 5 0.0316 0.4783 0.5099 

8 6 0.0198 0.5217 0.5415 

8 7 0.0138 0.6087 0.6225 

8 8 0.0040 0.8261 0.8301 

Table 15.   Voting performance on Y-axis data. 
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AXIS METHOD #V #G FMR FNMR TER 

Z 

SVM 

1 1 0.0440 0.4837 0.5277 

2 1 0.0623 0.3913 0.4536 

2 2 0.0272 0.5761 0.6033 

4 1 0.0800 0.3478 0.4278 

4 2 0.0514 0.3696 0.4210 

4 3 0.0326 0.5000 0.5326 

4 4 0.0148 0.7174 0.7322 

8 1 0.0968 0.3043 0.4011 

8 2 0.0711 0.3043 0.3754 

8 3 0.0593 0.3478 0.4071 

8 4 0.0455 0.3913 0.4368 

8 5 0.0375 0.4348 0.4723 

8 6 0.0277 0.5217 0.5494 

8 7 0.0138 0.6957 0.7095 

8 8 0.0059 0.8696 0.8755 

kNN 

1 1 0.0679 0.4402 0.5081 

2 1 0.0963 0.3478 0.4441 

2 2 0.0420 0.5326 0.5746 

4 1 0.1314 0.2826 0.4140 

4 2 0.0771 0.3913 0.4684 

4 3 0.0435 0.4348 0.4783 

4 4 0.0247 0.6522 0.6769 

8 1 0.1739 0.2609 0.4348 

8 2 0.1146 0.3043 0.4189 

8 3 0.0791 0.3478 0.4269 

8 4 0.0573 0.3913 0.4486 

8 5 0.0474 0.3913 0.4387 

8 6 0.0415 0.4348 0.4763 

8 7 0.0237 0.6087 0.6324 

8 8 0.0158 0.7826 0.7984 

Table 16.   Voting performance on Z-axis data. 
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AXIS METHOD #V #G FMR FNMR TER 

XY 

SVM 

1 1 0.0292 0.4674 0.4966 

2 1 0.0459 0.3098 0.3557 

2 2 0.0126 0.6250 0.6376 

4 1 0.0692 0.1957 0.2649 

4 2 0.0331 0.3261 0.3592 

4 3 0.0104 0.5543 0.5647 

4 4 0.0044 0.7935 0.7979 

8 1 0.0988 0.1087 0.2075 

8 2 0.0593 0.1739 0.2332 

8 3 0.0356 0.2391 0.2747 

8 4 0.0168 0.3478 0.3646 

8 5 0.0109 0.5000 0.5109 

8 6 0.0079 0.6739 0.6818 

8 7 0.0040 0.8043 0.8083 

8 8 0.0009 0.8913 0.8923 

kNN 

1 1 0.0463 0.3804 0.4267 

2 1 0.0721 0.2228 0.2949 

2 2 0.0208 0.5380 0.5588 

4 1 0.1042 0.1196 0.2238 

4 2 0.0509 0.2283 0.2792 

4 3 0.0227 0.4348 0.4575 

4 4 0.0079 0.7391 0.7470 

8 1 0.1462 0.0870 0.2332 

8 2 0.0850 0.1087 0.1937 

8 3 0.0573 0.1522 0.2095 

8 4 0.0346 0.1957 0.2303 

8 5 0.0198 0.3696 0.3894 

8 6 0.0158 0.5435 0.5593 

8 7 0.0079 0.6957 0.7036 

8 8 0.0049 0.8913 0.8962 

Table 17.   Voting performance on XY-axis data. 
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AXIS METHOD #V #G FMR FNMR TER 

XYZ 

SVM 

1 1 0.0341 0.4837 0.5178 

2 1 0.0504 0.3587 0.4091 

2 2 0.0183 0.6087 0.6270 

4 1 0.0702 0.2391 0.3093 

4 2 0.0415 0.4130 0.4545 

4 3 0.0178 0.5652 0.5830 

4 4 0.0079 0.7174 0.7253 

8 1 0.0929 0.1739 0.2668 

8 2 0.0613 0.2609 0.3222 

8 3 0.0455 0.3478 0.3933 

8 4 0.0277 0.3478 0.3755 

8 5 0.0198 0.5217 0.5415 

8 6 0.0138 0.6957 0.7095 

8 7 0.0099 0.7391 0.7490 

8 8 0.0040 0.7826 0.7866 

kNN 

1 1 0.0553 0.3750 0.4303 

2 1 0.0805 0.2500 0.3305 

2 2 0.0306 0.5000 0.5306 

4 1 0.1107 0.1739 0.2846 

4 2 0.0573 0.2826 0.3399 

4 3 0.0405 0.3696 0.4101 

4 4 0.0138 0.6739 0.6877 

8 1 0.1581 0.1304 0.2885 

8 2 0.0830 0.1739 0.2569 

8 3 0.0672 0.2174 0.2846 

8 4 0.0494 0.2609 0.3103 

8 5 0.0415 0.3478 0.3893 

8 6 0.0257 0.4783 0.5040 

8 7 0.0119 0.6087 0.6206 

8 8 0.0079 0.7826 0.7905 

Table 18.   Voting performance on XYZ-axis data. 
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APPENDIX B. CLASSIFIER PERFORMANCE 

  kNN SVM 
AXIS NORMALIZATION TER FMR FNMR TER FMR FNMR

X 

None 0.3280 0.0237 0.3043 0.5435 0.0217 0.5217

Zerod 0.3774 0.0296 0.3478 0.4150 0.0237 0.3913
Rotated 0.3814 0.0336 0.3478 0.4111 0.0198 0.3913
Rotated Zerod 0.3814 0.0336 0.3478 0.3260 0.0217 0.3043

Y 

None 0.2411 0.0237 0.2174 0.2273 0.0099 0.2174
Zerod 0.6600 0.3557 0.3043 0.5729 0.0079 0.5650
Rotated 0.1561 0.0257 0.1304 0.2371 0.0198 0.2174
Rotated Zerod 0.3794 0.0316 0.3478 0.4941 0.0158 0.4783

Z 

None 0.3320 0.0277 0.3043 0.3952 0.0039 0.3913
Zerod 0.3320 0.0277 0.3043 0.5415 0.0198 0.5217
Rotated 0.4249 0.0336 0.3913 0.4130 0.0217 0.3913
Rotated Zerod 0.3814 0.0336 0.3478 0.5830 0.0178 0.5652

XY 

None 0.1048 0.0178 0.0870 0.1838 0.0099 0.1739
Zerod 0.2530 0.0356 0.2174 0.3122 0.0079 0.3043
Rotated 0.1521 0.0217 0.1304 0.2352 0.0178 0.2174
Rotated Zerod 0.1877 0.0138 0.1739 0.4426 0.0079 0.4347

XYZ 

None 0.1047 0.0178 0.0869 0.2371 0.0198 0.2174
Zerod 0.3339 0.0296 0.3043 0.4506 0.0158 0.4348
Rotated 0.1047 0.0178 0.0869 0.2371 0.0198 0.2174
Rotated Zerod 0.1205 0.0336 0.0869 0.4091 0.0178 0.3913

Table 19.   kNN and SVM results in back pocket carrying position. 

  



 54

 

  kNN SVM 
AXIS NORMALIZATION TER FMR FNMR TER FMR FNMR

X 

None 0.4684 0.0336 0.4348 0.5000 0.0217 0.4782
Zerod 0.4288 0.0375 0.3913 0.5395 0.0178 0.5217
Rotated 0.4249 0.0336 0.3913 0.4938 0.0158 0.4780
Rotated Zerod 0.2075 0.0336 0.1739 0.3241 0.0198 0.3043

Y 

None 0.2035 0.0296 0.1739 0.4051 0.0138 0.3913
Zerod 0.3750 0.0271 0.3478 0.4505 0.0158 0.4347
Rotated 0.1106 0.0237 0.0869 0.3597 0.0119 0.3478
Rotated Zerod 0.2450 0.0277 0.2174 0.4071 0.0158 0.3913

Z 

None 0.2411 0.0237 0.2174 0.2806 0.0198 0.2609
Zerod 0.3854 0.0376 0.3478 0.3181 0.0138 0.3043
Rotated 0.3419 0.0376 0.3043 0.4190 0.0277 0.3913
Rotated Zerod 0.2945 0.0336 0.2609 0.3695 0.0217 0.3478

XY 

None 0.1976 0.0237 0.1739 0.2312 0.0138 0.2174
Zerod 0.0988 0.0119 0.0869 0.1363 0.0059 0.1304
Rotated 0.1996 0.0257 0.1739 0.3162 0.0119 0.3043
Rotated Zerod 0.3320 0.0277 0.3043 0.4467 0.0119 0.4348

XYZ 

None 0.2371 0.0198 0.2174 0.3636 0.0158 0.3478
Zerod 0.2075 0.0336 0.1739 0.3597 0.0119 0.3478
Rotated 0.2371 0.0198 0.2174 0.3636 0.0158 0.3478
Rotated Zerod 0.4209 0.0296 0.3913 0.6304 0.0217 0.6087

Table 20.   kNN and SVM results in front pocket carrying position. 

  



 55

 
  kNN SVM 
AXIS NORMALIZATION TER FMR FNMR TER FMR FNMR 

X 

None 0.5119 0.0336 0.4782 0.5020 0.0237 0.4783

Zerod 0.4269 0.0355 0.3913 0.4051 0.0138 0.3913
Rotated 0.6561 0.0474 0.6087 0.7233 0.0277 0.6957
Rotated Zerod 0.3854 0.0376 0.3478 0.5830 0.0178 0.5652

Y 

None 0.2016 0.0277 0.1739 0.3162 0.0119 0.3043
Zerod 0.1620 0.0316 0.1304 0.2747 0.0138 0.2609
Rotated 0.1107 0.0237 0.0870 0.2786 0.0178 0.2609
Rotated Zerod 0.1542 0.0237 0.1304 0.2312 0.0138 0.2174

Z 

None 0.3735 0.0257 0.3478 0.4525 0.0178 0.4347
Zerod 0.5454 0.0237 0.5217 0.4506 0.0158 0.4348
Rotated 0.4289 0.0376 0.3913 0.5415 0.0198 0.5217
Rotated Zerod 0.2945 0.0336 0.2609 0.4426 0.0079 0.4347

XY 

None 0.2016 0.0277 0.1739 0.3616 0.0138 0.3478
Zerod 0.0613 0.0178 0.0435 0.3201 0.0158 0.3043
Rotated 0.1106 0.0237 0.0869 0.1423 0.0119 0.1304
Rotated Zerod 0.2510 0.0336 0.2174 0.3241 0.0198 0.3043

XYZ 

None 0.1996 0.0257 0.1739 0.2747 0.0138 0.2609
Zerod 0.4170 0.0267 0.3913 0.4980 0.0198 0.4783
Rotated 0.1996 0.0257 0.1739 0.2746 0.0138 0.2608
Rotated Zerod 0.2925 0.0316 0.2609 0.3992 0.0079 0.3913

Table 21.   kNN and SVM results in hip holster carrying position. 
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APPENDIX C. POSITION-INDEPENDENT PERFORMANCE 

AXIS NORMALIZATION mTER VARIANCE 
X None 0.4361 0.0062 

Zero-Scale 0.4110 0.0006 
Rotated 0.4874 0.0145 
Rotated and Zero 0.3247 0.0069 

Y None 0.2154 0.0003 
Zero-Scale 0.3990 0.0416 
Rotated 0.1258 0.0005 
Rotated and Zero 0.2595 0.0086 

Z None 0.3155 0.0031 
Zero-Scale 0.4209 0.0082 
Rotated 0.3985 0.0016 
Rotated and Zero 0.3234 0.0017 

XY None 0.1680 0.0031 
Zero-Scale 0.1377 0.0074 
Rotated 0.1541 0.0031 
Rotated and Zero 0.2569 0.0151 

XYZ None 0.1805 0.0020 
Zero-Scale 0.3195 0.0069 
Rotated 0.1805 0.0013 
Rotated and Zero 0.2780 0.0035 

Table 22.   mTER and inter-position variance of axis-normalization mixtures across 
positions. 
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APPENDIX D. NORMALIZATION PERFORMANCE PER 
POSITION 

A. NORMALIZATION IN BACK POCKET  

NONE 
ZERO-
SCALED ROTATED 

ROTATED AND ZERO-
SCALED 

X 0.3280 0.3774 0.3814 0.3814
Y 0.2411 0.6600 0.1561 0.3794
Z 0.3320 0.3320 0.4249 0.3814
XY 0.1048 0.2530 0.1521 0.1877
XYZ 0.1048 0.3339 0.1048 0.1205
Mean 0.2221 0.3913 0.2438 0.2901
Variance 0.0102 0.0197 0.0174 0.0128

Table 23.   Performance of normalization techniques in back pocket carrying position. 

 

Figure 10.  Performance of normalization techniques in back pocket carrying position. 
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B. NORMALIZATION IN FRONT POCKET 

NONE 
ZERO-
SCALED ROTATED 

ROTATED AND ZERO-
SCALED 

X 0.4684 0.4288 0.4249 0.2075
Y 0.2035 0.3749 0.1106 0.2451
Z 0.2411 0.3853 0.3418 0.2945
XY 0.1976 0.0988 0.1996 0.3320
XYZ 0.2372 0.2075 0.2371 0.4209
Mean 0.2696 0.2991 0.2628 0.3000
Variance 0.0102 0.0157 0.0121 0.0055

Table 24.   Performance of normalization techniques in front pocket carrying position. 

 

Figure 11.  Performance of normalization techniques in front pocket carrying position. 
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C. NORMALIZATION IN HIP HOLSTER 

NONE 
ZERO-
SCALED ROTATED 

ROTATED AND ZERO-
SCALED 

X 0.5119 0.4269 0.6561 0.3854
Y 0.2016 0.1620 0.1106 0.1541
Z 0.3735 0.5454 0.4288 0.2945
XY 0.2016 0.0613 0.1106 0.2510
XYZ 0.1996 0.4170 0.1996 0.2925
Mean 0.2976 0.3225 0.3011 0.2755
Variance 0.0159 0.0327 0.0450 0.0056

Table 25.   Performance of normalization techniques in hip carrying position. 

 

Figure 12.  Performance of normalization techniques in hip carrying position. 
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