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ABSTRACT 

The aim of this work is to explore the applicability and usability of multi-objective 

optimization into various aspects of the design of an autonomous underwater vehicle 

(AUV). First, I begin with an introduction of the systems engineering design process and 

the background work for the multi-objective optimization process. Furthermore, I 

investigate and analyze the existing multi-objective optimization methods in decision 

making. I focus on various design aspects of an AUV such as the hull design, the weight 

distribution, the propulsion and, especially, the power supply technology.  

The objectives I used in the model are the minimization of the power needed to 

propel the vehicle and the maximization of both the weight of the energy section and the 

total range. Implementation of both the model and the optimization are carried out using 

Matlab, particularly the global optimization toolbox and the multi-objective genetic 

algorithm solver, whereas a special case of two objectives is implemented in Excel using 

Visual Basic and Excel solver.  

This research also explores the potential for a designer to use goals in the multi-

objective optimization as well as approaches that let a designer choose one particular 

solution once all Pareto optimal solutions are found.  
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I. INTRODUCTION 

A. MOTIVATION 

Both military operations and the civilian sector have been using autonomous 

vehicles for over six decades. Recent military experiences, in particular, have showed 

their significant role in naval operations. Therefore, an increase in demand for 

autonomous vehicles in the near future is expected. Autonomous underwater vehicles 

(AUVs) have been used in the collection of ocean data, the survey of marine 

environments, the observation of animal life, as well as for military purposes. In any case, 

the optimization of various and often conflicting design objectives is always the goal for 

designers of such versatile vehicles. In a survey of missions for unmanned undersea 

vehicles [1], the authors present and analyze various types of AUVs and define the 

current status of technologies of computing and robotics, navigation, communications 

and networking, power sources and propulsion, and materials.  

Designing a complex system is a demanding and intensive task. A ship’s designer, 

as any designer of complex systems, faces a variety of stakeholder requirements, needs, 

variables and constraints. It is his job to take all these inputs into consideration and 

present an optimal design, reflecting the necessary trade-offs and feasible design region. 

The latest published Unmanned Systems Integrated Roadmap FY2013‒2038 of 

the U.S. Secretary of Defense [2] states: 

Operational issues will be more complex as the pace of technological 
change accelerates. Designing systems to easily accept technological 
improvement capabilities and support multiple mission needs will be 
increasingly important. 

Many of today’s persistent systems rely on efficient forms of propulsion 
that are sustainable for long-endurance missions. Other systems require 
propulsion that can be optimized for long range and endurance or 
optimized for high speed. Additionally, systems such as UUVs face 
challenges to extend endurance into months with energy technologies that 
are air independent. Certainly powering for long-term persistence is a 
large challenge.  
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Early decisions made in systems design are quite important and determine the 

output to a great extent. The systems engineering approach usually requires an iterative 

design process. Multi-objective optimization can help the designer to incorporate an 

overall systems engineering approach into the design process. Most real-world problems 

have several objectives that need to be optimized at the same time; that is, they are multi-

objective in nature. 

Moreover, recent technological developments and improvements have created the 

potential to improve overall power and propulsion performance and therefore overall 

vehicle capability. To integrate such technology into an AUV design requires a firm 

understanding of all the design parts. 

B. OBJECTIVES  

The main objective of this work is to use multi-objective optimization to help the 

designer of an AUV find the best solutions when there are conflicting objectives. First, I 

begin with an introduction of the systems engineering design process and the background 

work for the multi-objective optimization process. Furthermore, I investigate and analyze 

the existing multi-objective optimization methods in decision making. I focus on various 

design aspects of an AUV, such as the hull design, the weight distribution, the propulsion 

and especially the power supply technology.  

Then, I demonstrate the setup of the AUV model. I create a design space of 

several variables, constraints and objectives, and I search this design space for the best 

designs, or Pareto front, that includes the non-dominated solutions. Specifically, I am 

presenting an AUV model with three objectives to be optimized: namely the effective 

horsepower needed for overcoming the resistance of the vehicle, the weight of the energy 

section and the range of the required mission.  

Implementation of both the model and the optimization process are carried out 

using Matlab, particularly the global optimization toolbox and the multi-objective genetic 

algorithm solver, whereas a special case of two objectives is implemented in Excel using 

Visual Basic and Excel solver.  
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Finally, I present the results of this work and some ideas for possible future work. 

The primary outcome of this work is to help system designers and specifically AUV 

designers map a design space and find optimal solutions taking into consideration 

existing constraints, as well as the stakeholders' objectives and requirements using multi-

objective optimization techniques. 
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II. DESIGN PROCESS 

Systems engineering is an interdisciplinary approach that originated from large 

aerospace projects to manage project complexity due to the large number of parts, people 

and complex interfaces involved. It is a methodology developed over decades and is still 

evolving. 

The U.S. Department of Defense states that: 

Systems engineering offers a technical framework to enable sound 
decision making relative to trade studies, system performance, risk, cost, 
and schedule. The successful instantiation of proven, disciplined systems 
engineering processes results in a total system solution that is adaptive to 
changing technical, production, and operating environments and to the 
needs of the use and is balanced among the multiple requirements, design 
considerations, design constraints, and program budgets. [3] 

Systems engineers analyze system needs and define top-level features. They 

decompose the system and move top-level requirements to individual design areas. 

Furthermore, they maintain the baseline configuration, document changes and review the 

system at all phases of development. Systems engineering management includes the 

development phasing, a systems engineering process (SEP) and the life cycle integration 

as we can see in Figure 1. 
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Figure 1.  Activities of Systems Engineering Management. From [4]. 

The first part of SEP is the analysis of the system’s functional behavior. The 

systems engineer (SE) partitions the whole system into functional areas and develops the 

appropriate functional requirements related to the mission. He should also take special 

care during that phase as problematic requirements may not be met. Developing and 

documenting a functional baseline as well as functional interfaces is a part of this phase 

of the SEP. 

The second phase of the SEP includes analyzing top-level needs and then 

developing the specific requirement statements. The SE moves requirements to lower 

levels keeping them balanced across the entire system, and provides traceability and 

documentation for all requirements. 

The next step is the verification of the functional and requirements analysis. First, 

the SE conducts an analysis of the subsystems and component behavior, taking into 

account vendors’ or stakeholders’ specifications, using analytic and/or computer models. 

Second, he conducts an analysis of the total system behavior through computer models 

and simulations. 
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The synthesis phase is the final part of SEP. Through synthesis the SE defines the 

configuration and the interfaces of the system and conducts the trade-off and risk 

analysis. Finally, he selects the preferred solutions (Figure 2).  

 
Figure 2.  The Systems Engineering Process. From [4]. 

According to the Naval Systems Engineering Guide [5], the SE needs to apply 

these processes recursively and iteratively to define the system products of the system 

hierarchy from the top down, and then, to implement and transition the system products, 

from the bottom up to the user or customer. Figure 3 shows the sub-processes used in 

systems engineering, which are applicable to the engineering or reengineering of the end 

products that make up a system. 
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Figure 3.  Relationship of Processes for Engineering a System. From [5]. 

There are two major system development models used in systems engineering, 

and both have strengths and weaknesses. 

A. WATERFALL MODEL 

Waterfall is the classic model that allows for easy planning and more precise 

estimation of the project’s cost. This model is suited to projects whose requirements are 

well known and have an inflexible budget. Its structure minimizes wasted effort as it 

provides accuracy at each step of the project, so it works well for relatively technically 

inexperienced staff. A well-known weakness of the model is that the steps of the model 

do not interact with each other, making it less effective in overcoming problems that arise 

during development. Another drawback is that the budget should be available at the start 
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of project planning. This requirement is difficult for enterprises/organizations with 

limited budgets. Some implied management risks associated with the waterfall model are 

the dependence on well-known requirements prior to development, which is usually 

difficult in large projects, and the inability to adopt new technology that emerges during 

the development phase. Moreover, the customer cannot see the product until the 

completion of the project. 

B. SPIRAL MODEL 

The spiral model is a risk-reduction oriented model that breaks a project up into 

“mini” projects. It suits more complicated projects and lets them start, even though the 

requirements are not yet clear or known, and the problems or discrepancies can be 

corrected early as the nature of this model allows feedback in every stage. That means 

lower cost, among other benefits. On the other hand, this approach is more complicated 

and requires more experienced personnel to be successful. The decision maker cannot 

easily estimate the overall cost from the beginning, and there is the danger of the total 

cost exceeding the funding. Furthermore, inexperienced managers may have problems 

using the model, causing delays and increasing the cost of the whole project. Figure 4 

shows the spiral model implemented into a submersible vehicle systems design. In this 

figure, we can see the iterative design process through the various loops for the 

conceptual, preliminary and contract design, beginning from the general arrangement and 

ending up with the cost estimate summary. 
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Figure 4.  Submersible Vehicle Design Spiral. From [6]. 

One of the most important steps in designing a system is determining the 

objectives and the requirements. Stakeholders are the people who have an interest in the 

project and may have different and often contradicting objectives. Stakeholder analysis is 

the systematic gathering and analyzing of qualitative information to determine whose 

interests should be taken into account when developing and/or implementing a policy or 

program [7]. Stakeholder analysis is not just an examination of who the individual 

stakeholders are, but also of how their motives, interests, and values affect system 

development. 

Early in the design phase, requirements extraction should follow a formal process 

to identify the stakeholders. The designer should not take the requirements as given but 
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he needs to validate those using interviews, to prioritize them and document them using a 

hierarchical structure for easy traceability. 

The following discussion about the criteria of a good requirement follows the 

guidelines of [8]. Requirements are necessary for the system to meet real and prioritized 

needs. A good requirement should be verifiable; that is, one can ensure that the system 

under development meets the requirement. A good requirement should also be attainable; 

that is, it is feasible for the system to meet the requirement. Moreover, a good 

requirement is unambiguous and complete. In other words, the decision maker 

determines all known requirements, as well as all the conditions under which the 

requirement applies. Furthermore, the requirement should be consistent as it has to be 

met without conflicting with all other requirements. The decision maker needs also to 

define the requirements simply and clearly in order to be concise and traceable.  

Figure 5 depicts the importance of requirements identification through showing 

the effect of requirements process investment on program costs for various NASA 

programs, such as the earth radiation budget satellite (ERB), the Hubble space telescope 

(HST) and the infrared astronomical observatory (IRAS). One can see that when the 

percentage of the requirements process investment is lower than 5% of the total cost, 

there is an 80%‒200% project cost overrun. That overrun highlights the importance of 

requirements development that is dependent on the program strategy and the method 

used. It is widely accepted that the larger the project is the more difficult requirements 

extraction becomes, as there are many users, customers and stakeholders that have many 

conflicting needs and desires. Thus, it becomes more difficult to get the time and 

attention of key people. 

In this chapter, I highlighted the challenges presented by the design process 

particularly in regard to the AUV design under the prism of systems engineering. I 

analyzed the major system development models, as well as the importance of objectives 

and requirements development. In the next chapter, I address some background 

information regarding the existing multi-objective optimization methods in decision 

making and how they can be applied when the objectives and the requirements are 

known.  
 11 



 
Figure 5.  Effect of Requirements Process Investment on Program Costs.  

From [9]. 
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III. MULTI-OBJECTIVE OPTIMIZATION 

A. GENERAL DESCRIPTION AND DEFINITIONS 

As discussed in the previous chapter, the importance of the requirements, as well 

as the objectives that come out of those requirements, becomes obvious. By employing a 

multi-objective optimization process, the designer can address some of the problems 

associated with the traditional design approaches, such as the waterfall or spiral model. 

The multi-objective optimization approach allows different steps to be designed 

concurrently. At the same time, optimization is at every step trying to exceed existing 

standards while reducing the resources needed. Optimization is the process of 

maximizing or minimizing a desired objective function while satisfying the prevailing 

constraints [10]. There are various methods dealing with different kinds of problems of 

unconstrained or constrained optimization, including linear programming, direct search 

methods for nonlinear optimization, integer and discrete programming and dynamic 

programming. Figure 6 shows a classification of optimization methods (derivative and 

non-derivative based). The derivative methods are fast, but they have some limitations, 

such as the necessity for the continuity of the objective function and a large probability of 

losing the global optimum and being stuck to a local optimum. Another drawback is that 

the choice of starting point influences the convergence. A thorough discussion on 

concepts of continuity, global and local optima and function convergence can be found in 

[10]. The non-derivative-based optimization techniques do not need derivative 

evaluations, and the optimization is performed by calculating the value of the objective 

function only. For more information on these methods the reader can find an extended 

bibliography at the end of this thesis. 
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Figure 6.  Classification of Optimization Methods in Derivative and Non-

derivative Methods with Examples of Some Non-derivative Methods. 
From [11]. 

According to [10], to date, designers have been using optimization more as a 

design or decision aid, rather than for concept generation or detailed design. In this sense, 

optimization is an engineering tool. In real-life problems, there are several conflicting 

objectives that need to be considered simultaneously. Engineering design is clearly about 

making many decisions often under uncertainty and with multiple conflicting criteria. 

Figure 7 shows a classification of various methods for multi-objective optimization. In 

this study I use the multi-objective optimization, and more specifically the genetic 

algorithms, as a designing tool to find the optimal solutions having contradictory 

objectives.  
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Figure 7.  A Classification of Methods for Multi-objective Optimization.  

From [11]. 

Before discussing multi-objective optimization, I will give some general 

definitions of terms related to this method. A constraint is some relation that must be 

satisfied and an objective is some function that represents a requirement (something we 

need to minimize or maximize). A goal is some outcome that is desirable to achieve, but 

could be violated at some penalty to overall value of solution. In a mathematical sense the 

multi-objective optimization concept can be stated as: 
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minimize ( ) ( ) ( )1 2, ,...., nf f x f x f x =    subject to x  ∈ S, with constraints 

( )
( )

0, 1,2,...,

0, 1, 2,...,K

j

k

g x j J

h x k

≥ =

= =
 

S ⊂ Rn = feasible region formed by constraint functions 

If the objective functions do not conflict with one another, all the objectives can 

be minimized simultaneously. One can solve a maximization problem by minimizing the 

negative of the objective function, and thus, the minimization form can be generalized. 

Normally, (marine) design problems include multiple conflicting objectives. When this is 

the case, the concept of Pareto optimality is generally used, as articulated by the Italian-

French economist Vilfredo Pareto in 1906. It was originally proposed by Francis Y. 

Edgeworth and sometimes it is called Edgeworth-Pareto optimal, but I will use the most 

commonly accepted term: Pareto optimal (PO). 

A point x* ϵ S is a global Pareto optimal, if there does not exist another point x ϵ 

S such that ( ) ( *)j jf x f x≤  for all j 1,..., n=  and ( ) ( *)j jf x f x<  for at least one j.  

A point is Pareto optimal if it satisfies the constraints and is such that no 
criterion can be further improved without causing at least one of the other 
criteria to decline. A point is weakly Pareto optimal if it satisfies the 
constraints and one criterion remains constant while at least one of the 
other criteria declines. These definitions typically result in a set of optimal 
solutions rather than a single unique solution. [12] 

Figure 8 provides a visualization of the nomenclature. 
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Figure 8.  Parameter/Solution and Attribute Space Nomenclature for a Two 

Dimensional Problem with Two Objectives. From [11]. 

In large and complicated projects it is usually an analyst who is responsible for 

the mathematical side of the problem to meet the requirements and the given preferences. 

In the end, a decision maker needs to identify a final PO solution, that is, the best possible 

compromise. The decision maker knows the problem and can express preference 

relations.  

B. BACKGROUND INFORMATION 

The methods that need no preference information, like min-max and global 

criterion method [13], [14], [15], are not widely used in engineering design. Since no 

preferences from the designer are needed, the outcome is only one point on the Pareto 

front. The designer has to accept that point as the final solution. The min-max 

formulation is based on the minimization of the relative distance from a candidate 

solution to the utopian solution F* (Figure 8). The following formulation of a global 

criterion method is taken from [11]. 

( ) ( )
1

*

*
1

min min

p p
k j j

j j

f x f
d x

f=

  −  =   
   

∑  subject to x  ϵ S, 1≤p≤∞ 
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The optimization problem becomes the minimization of the distance ( )d x . In this 

form, the nearest to the utopian solution results when 2p = ; that is, a weighted Euclidean 

distance of any point in the objective space from the ideal point is minimized, whereas, 

when a large p is used the form is called the weighted Tchebycheff problem that 

guarantees finding each and every PO solution [16]. The Archimedean goal-

programming solution and the weighted sum solution correspond to the 1p =  case. These 

are special forms of the more general formulation [12]. The decision maker can obtain 

various points on the Pareto front by giving different weightings to the single objectives 

according to his preferences. 

The most easily and perhaps most widely used method is the weighted-sum 

approach. The multi-objective problem is converted to a single optimization problem and 

then the appropriate method is used. 

( )
1

min
k

j j
j

w f x
=
∑  subject to x  ϵ S,  

where jw ≥0 for all j=1,…,n  and   
1

1
k

j
j

w
=

=∑  

This method is the most convenient one but has been frequently criticized, mainly 

because of correlation issues and nonlinear affects (non-convex problems). As a way to 

overcome the difficulties in solving problems having non-convex objective spaces, the 

constraint∈−  method is used [16]. The values of the weights depend on the importance 

of each objective and a small change in weights changes the solution dramatically, 

whereas evenly distributed weights do not produce an evenly distributed representation of 

the Pareto optimal set. The various objectives can have different scales and units, so it is 

important the designer to normalize them using reference values obtained by solving the 

optimization problem for each objective ( 0
kf ). That way the objectives values are set in 

the range between zero and one. The generally used term for this approach is the normed 

weighted sum optimum that yields, 
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( ) 0

1
[ ( )] [ / ]

k

j j k
j

P f x w f x f
=

=∑  

The value function method (or utility function method) uses a mathematical value 

function U that relates all objectives. The goal is to maximize the value function; that is, 

the preference of a solution must increase if one of the objective function values is 

decreased while keeping the other objective function values the same [16]. Miettinen [17] 

proved the following theorem: 

Let the value function U: M →   be strongly decreasing. Let U attain its 
maximum at f ∗ . Then, f ∗ is Pareto-optimal.  

This method creates contours of the value function and the contour tangential to 

the PO front is the preferred solution (Figure 9). Using this method, the designer finds 

one solution at a time and by changing the parameters of the utility function he can find 

various PO solutions. The utility function is usually chosen to be a nonlinear function of 

the objectives. A more thorough discussion on the theory of value (or utility) functions 

can be found in [18]. 

 
Figure 9.  Contours of the Value Function. From [16]. 
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The lexicographic ordering is an a priori method in which the decision maker has 

to specify an absolute order of importance for objectives. If the most important objective 

has a unique solution, the method stops and it gives a solution. Otherwise, the second 

most important objective is optimized such that the most important objective maintains 

its optimal value and so on. This method is quite robust. The less important objectives 

have very little chance to affect the final solution. If there is a clear distinction between 

the objectives’ significance, it is easy for the designer to use this method. Even though a 

lot of people make decisions successively, it is usually difficult to determine the absolute 

order of importance in real life problems. 

Goal programming is another a priori method that dates back to the mid-1950s. It 

was introduced in an application of a linear programming problem by Charnes et al. [19] 

and used in management models of linear programing. It asks the decision maker to 

specify goals, that is, aspiration levels for each objective function.  

( )( ),goal f x t

x S

=

∈
 

The main idea is to find solutions that meet the goals and if this is not possible, 

then deviations from goals are minimized. In other words, the goal is to find a point in the 

design space that has the smallest deviation from the utopian solution. This method has 

been used in various marine applications [20], [21], [22]. It is implemented using the 

weighted approach, the lexicographic approach or a combination of the two, where a 

weighted sum of deviations is minimized in a priority-driven manner. There can be four 

different types of goal criteria [23].  

( )
( )

( )
( )

   :

   :

 :

 , : a b

f x t

f x t

Less than equal to

Greater than equal to

l to

Within a ran

Equa f x t
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This method is widely used mainly because of its simplicity and because it gives 

the decision maker some freedom by setting goals and changing them accordingly. There 

is still the inherent drawback of having the user specify the importance of the objectives a 

priori.  

There are some methods that need very little knowledge to be there a priori. They 

use progressive articulation of preference information from the decision maker as the 

direction of search, weight vector and reference points during the optimization process. 

There are various methods such as the ISWT method, Guess method, NIMBUS approach, 

STEM method, method of Steuer and Light beam search. More information about these 

methods can be found in [17].  

All methods mentioned previously require some knowledge about the problem, 

and the PO solution will depend on the chosen weights or parameters. They convert a 

multi-objective optimization problem into a single-objective one and it depends on the 

efficiency of the single-objective optimization algorithm to find the PO solution. Thus, 

the preferences of the designer and his personal assumptions and expectations play a 

significant role in the final solution.  These methods have been widely used in real-world 

multi-objective optimization applications mainly due to their simplicity and because they 

are easy to implement in a programming language.  

Another category of multi-objective optimization methods includes the a 

posteriori articulation of preference information methods. They are used mainly in order 

to avoid the subjective judgment of the decision maker. Ideally, in a multi-objective 

optimization, the goal is to find the set of PO solutions by considering all objectives to be 

important. After a set of such solutions is found, the decision maker can choose a 

particular solution using higher-level information related to the problem, which is often 

non-technical, qualitative and experience driven. When the PO solutions are available, 

one can judge the pros and cons of each of these solutions based on this higher-level 

information and compare them to make a choice. Furthermore, the visual representation 

of the PO front makes it easier for the designer to choose especially if there are knee-

points, which may well represent a natural preferred solution. A definition of a knee-point 
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suggested in a study [24] was based on finding two or more neighboring solutions and 

calculating the reflex angle, as shown in Figure 10: 

A knee point is the Pareto-optimal point having the maximum reflex angle 
computed from its neighbors. [24] 

A knee-point is usually preferred over all the other PO solutions because the 

designer needs to pay a high cost in one objective to have a minor gain in another 

objective. It is noteworthy to mention that as the number of objectives increases 

visualization becomes harder. For two objectives, the PO front is at most a two-

dimensional curve, and for three objectives, the PO front is at most a three-dimensional 

surface and so on.   

 
Figure 10.  The Reflex Angle Based Definition of a Knee-Point. From [25]. 
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C. EVOLUTIONARY OPTIMIZATION – GENETIC ALGORITHMS 

Over the last two decades there has been an increasing interest in evolutionary 

multi-objective optimization (EMO) algorithms that follow the principles of the a 

posteriori articulation of preference information. A number of stochastic search strategies 

have been developed such as the tabu search, simulated annealing, ant colony 

optimization, genetic algorithms and particle swarm optimization.  

The genetic algorithm (GA) is a search and optimization method, which uses 

random starting points and mimics the processing of chromosomes in the Darwinian 

principle of evolution [26]. The algorithm begins with a feasible random set that is first 

generated and used as a starting point, which is called a population with a fixed initial 

size or a number of individuals. Each individual is a chromosome, and is defined by 

optimization variables. The chromosome represents a possible solution to the 

optimization problem, and its length is affected by the number of optimization variables 

and their required precision. Also, each variable has to be bounded by a minimum and a 

maximum value [26]. The worst solutions are eliminated and best solutions kept 

throughout the iterative optimization process and used as starting points. After each 

generation (iteration), the individuals reproduce, survive, or disappear as a result of the 

action of a selection operator. Typically, the better an individual performs, the higher the 

probability it will be selected. The iteration phase ensures the genetic mix via mutation 

that introduces random modifications to an individual and cross-breeding, where one or 

several children are generated from a combination of two parents. Using these operations 

new regions in the search space are explored to find individuals that perform better. Thus, 

new individuals are constructed (Figure 11).  
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Figure 11.  Flow Chart of a GA. From [27]. 

It is useful to mention some differences that GA has over traditional algorithms 

highlighted by [16]. GA works with a discrete search space, even though the function 

may be continuous. That allows GA to be used in problems with discontinuous functions. 

GA works with a population of solutions, and it is more likely the expected solution to be 

a global one. No gradient or auxiliary problem information is needed as it is only the 

objective function values that are used. Genetic algorithms use an initial random 

population and probabilistic rules to guide their search, help them recover from early 

mistakes and handle a wide range of problems. Furthermore, by using various operators, 

GA can take advantage of parallel computing to reduce the overall computation time. A 

comprehensive study of genetic algorithms is presented in [28].  

GA has been used both in single-objective and multi-objective optimization. 

Fonseca and Fleming [29] have divided multi-objective GA in non-Pareto and Pareto 

based approaches. The major advantage of GA is that it has a high probability of locating 

the global optimum. The main drawback, inherent in all EMO algorithms, is that they can 

be computationally expensive. Srinivas and Deb [30] proposed the non-dominated sorting 

genetic algorithm (NSGA), which is based on layers of classifications of the individuals. 
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The population is ranked on the basis of domination and all non-dominated individuals 

are classified into one category. The general flow chart of that approach is shown in 

Figure 12.  

 
Figure 12.   Flow Chart of the NSGA. From [30].  

Deb at al. [31] proposed a new version called NSGA-II, which is more efficient 

and uses the concept of elitism, which keeps the best individuals from the parent and the 

child population. The multi-objective GA function gamultiobj of Matlab uses a controlled 

elitist genetic algorithm (a variant of NSGA-II) [32]. Elitist GAs favor individuals with 

better fitness value (rank) whereas, controlled elitist GAs also favor individuals that can 

help increase the diversity of the population even if they have a lower fitness value. The 
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initial population is generated randomly by default. The next generation of the population 

is computed using the non-dominated rank and a distance measure of the individuals in 

the current generation. Figure 13 shows a flow chart of that algorithm. An improved 

NSGA-II, called NSGA-IIa, has been proposed by [33] and another variant from [34] 

called NSGA-IIb. The new approaches have not been extensively tested yet, to the 

author's knowledge. 

The particle swarm optimization (PSO) is another EMO and a population based 

stochastic optimization technique developed in 1995 by Eberhart and Kennedy [35]. The 

algorithm starts with a group of a randomly generated population and updates the 

population and searches for the optimum with random techniques. However, it does not 

guarantee success as it may get stuck in local optimums. PSO is easy to implement and 

there are few parameters to adjust. All the particles tend to converge to the best solution 

quickly, even in the local version, in most cases. A thorough description of particle 

swarm optimization is given in [36]. 
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Figure 13.  Flow chart for the NSGA-II algorithm. From [37]. 
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IV. AUTONOMOUS UNDERWATER VEHICLE CASE STUDY 

A. OVERVIEW 

The question is how one would design an AUV. The answer to that question is by 

meeting the requirements; that is, meeting the needs of the mission. Various payload 

configurations, depth ratings and endurances will be taken into account before the last 

decisions are made. There are two ways of tackling this problem. One approach is to 

optimize the model to meet the requirements at the feasible region of the design space, 

and the other one is to use modular design that permits reconfiguration of the vehicle for 

different applications. I use the first approach as the modular design is out of the scope of 

this thesis. 

The main characteristics that determine the design of an AUV are the payload, the 

depth, the speed and the range at which it will operate. After determining those 

characteristics, the designer has the basic information to define and optimize the size, 

weight and power requirements of the AUV. One of the major characteristics of an AUV 

is the depth at which it will operate. The pressure to which an AUV is subjected increases 

linearly with depth. Roughly speaking, each 10 m of depth increases pressure by one 

atmosphere (14.7 psi). Thus, at 600 meters below the surface the pressure is about 60 

times the atmospheric pressure, or 882 psi. The form of the hull and the pressure that this 

hull will tolerate must be considered first. There are a number of different ways in which 

hull design can be approached. Some aspects that must be considered during hull design 

are depth of operation, structural integrity for additions and tapings, impact conditions, 

water permeability, accessibility, versatility, future additions, size requirements, 

corrosion and chemical resistance. 

In this case study three objective functions were evaluated that form a multi-

objective problem. One of the goals is to minimize the power needed to overcome the 

resistance of the hull and provide the "hotel load," a term which will be explained 

subsequently. The other goals include maximizing the weight of the battery or any other 

energy-providing means compartment and maximizing the range of the AUV.  
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B. AUV MODEL 

1. Hull Geometry 

Pressure hull is a critical part of the design as it is the main load bearing structure 

of the AUV. It enables the AUV to withstand sea pressure as it descends into the water. 

Due to its nature the pressure hull is usually considered as a thin-walled curved structure. 

Moreover, the hull should be weight-efficient and its form should contribute to a low-

drag vehicle design. The depth influences the size and the range of the vehicle. Going 

deeper tends to reduce the AUV’s range and payload capacity. At the same time, the need 

to descend deeper increases the AUV’s size and weight, mainly because the pressure hull 

should be thicker and heavier, leaving less residual buoyancy to support payload. 

Even though a sphere is a good shape for withstanding pressure, there is the 

stability issue that makes it unusable [38]. A circular cylindrical hull is a good shape to 

resist the pressure [39] and most of the current AUVs have a circular cylindrical hull, 

including the most popular in military and scientific use, REMUS. Hsu et al. [40] give a 

detailed description of the hull stress concentration effect for deep-diving submersible 

vehicles. 

There are two main hull forms that can be used in the design of an underwater 

vehicle and specifically an AUV. The one is the Carmichael hull, developed and tested by 

Dr. Bruce Carmichael of Rockwell International in the 1970s, which promotes laminar 

flow within the boundary layer. Regarding drag reduction, laminar flow is preferred to a 

turbulent boundary layer, because the skin friction is much lower. In a turbulent boundary 

layer the fluid particles move erratically causing higher shear stresses between layers and 

the surface [41]. The second choice is the cylindrical hull or ‘torpedo body’ hull, which 

has a nose cap followed by a parallel mid-section and a tail section. It has been the form 

choice for torpedo and submarine designers for a very long time (Figure 14).  The 

advantages of the torpedo body hull are modularity, ease in launch and recovery, better 

hydrodynamic form than a spherical form of the same volume and low speed stability 

[39]. Even so, Paster [38] states that cavitation is one of the disadvantages of a cylindrical 

hull. Cavitation is a well-known phenomenon caused by the pressure distribution 
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generated by the moving vehicle. The maximum rate of change in curvature of the body 

has the negative minimum pressure. The water will start to boil when this pressure 

reaches the vapor pressure of water. These bubbles collapse when they reach the point 

where the pressure increases again and very high pressure is generated. This leads to high 

noise levels and the possibility of damaging the vehicle [38]. According to Paster, the 

nose of the circular cylinder used to be spherical, but this caused instability and 

cavitation. The shape of the nose was fine tuned to resemble the front of a teardrop. A 

good hydrodynamic body shape design will reduce the drag and improves the range of 

the vehicle by two to 10 times [38]. 

 
Figure 14.  Example of Laminar Flow Hull and Torpedo Body. From [41]. 

In this work a torpedo body hull is used following the conceptual design phase 

prescribed in Jackson [42]. A summary of how the method, called the MIT method in the 

literature, was applied in the model is included for the purposes of identification and 

completeness. Design variables and parameters used in the model are summarized in 

Table 1.   
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Design Variable Definition 

Variable Definition Min Max 

D Maximum hull diameter 0.1 m  1.5 m 

Ltot Total Overall Length  0.6 m 9 m 

na  Aft form factor 1 6 

nf Forward form factor 1 6 

V Vehicle Speed 0.5 m/sec 3.1 m/sec 

Parameter Definition 

Parameter Definition Value 

ρ Seawater density 1025 kg/m3 

ν Kinematic viscosity 1.05*10-6 m2/s 

ca Hull roughness coefficient 0.0004 

Vmax Maximum speed 2.1 m/sec 

n Discretization of hull  1000 

Table 1.   Design Variables – Parameters Definition. 

The hydrodynamic hull is broken up into three sections (Figure 15): the aft 

section, the forward section, and the parallel body. Lf is the length of forward part, La is 

the length of the aft part and the Lpmb is the length of the parallel body. Ltot is the total 

overall length of the hull. First, body plans are generated by calculating the location of 

each point on the hull as described in the following paragraphs. 
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Figure 15.  Geometry of a Torpedo Body Hull. From [42]. 

2.4
3.6

0...
( )

f

a

tot f a pmb

tot

i

L D
L D
L L L L

Lx
n

i n
x i x

δ

δ

=
=
= + +

=

=
=  

I divide the length of the hull by n where 1000n =  and ix  is the actual 

longitudinal location of each point. In this case iy  is the ith transverse location of the hull.  

1

1 0...
2

...
2

1 ...
2

nf
f

a

f i
f i f

f

pmb i f f pmb

n
i f pmb

a i f pmb tot
a

nD L xy where x L
L

Dy where x L L L

D x L Ly where x L L L
L

 − = − =  
   

= = +

 − − = − = +  
     

For the wetted surface and the volume of the hull the formulas Jackson used are: 

2 2LWS D K
D

π  = −  
 ,    

3

1
4
D LV K

D
π  = −  

, 

 33 



where L/D is the length-to-diameter ratio and K2 is a function of na and nf which is 

calculated using a formula or tabulated data (Figure 16). In this thesis, the wetted surface 

is calculated using Matlab both by integrating the formula: 2A rhπ=  with ir y=  (1) and 

0... fh L=  and by using trapezoidal rule (command trapz in Matlab) (Appendix A). The 

same applies for calculation of the volume of the hull using: 2V r hπ= .  

 
Figure 16.   Parameters K1 and K2 as a Function of na and nf. From [42]. 

There are two kinds of drag an underwater vehicle encounters, one from the 

normal forces and one from tangential forces (form drag and skin friction drag). As the 

L/D ratio increases, the body becomes longer and more slender and the pressure drag 

decreases. The skin friction drag is proportional to the wetted surface. A long vehicle 

would have more wetted surface than a short fat one of the same displacement. Figure 17 

shows the variation of the two kinds of drag and their summation plotted against the L/D 

ratio for constant volume. There is no precise minimum, and therefore, there is some 

disagreement in the literature about the ‘ideal’ L/D ratio where a value of six or seven is 

used. This work uses an L/D ratio of six.  
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Figure 17.  Drag Components for Constant Volume Form. From [43]. 

According to Jackson and many others in the literature, the ideal form needs a 

continuously changing diameter along the length of the vehicle. The ideal shape would 

have an elliptical bow and a parabolic stern [43]. Jackson states that the ideal submarine 

hull would be one with no parallel mid-body, and the sum of the aft and forward section 

length would be six times the maximum diameter. It is obvious that the number of 

scientific or military devices needed for the subsea vehicles nowadays has been increased 

considerably in order to meet the required operational capabilities. Thus, more volume is 

needed, and the designers inevitably stretch the hull by increasing the mid-body length. If 

a modest differentiation from the ideal is adopted, namely using a small portion of the 

parallel mid-body, that would result in an increase of the available volume and payload as 

well as in a reduction of the building costs without any severe drag and noise penalties. A 

great deviation from the ideal form, however, would increase the drag and the noise and 

consequently would affect maximum speed and range (Figure 18).  
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Figure 18.  Hull forms. From [44]. 

2. Resistance – Power 

When the AUV is moving at a constant speed, the thrust needed is equal to the 

drag of the vehicle. Drag force is one type of surface force encountered by any object 

traveling through water. The total drag on a body consists of a combination of pressure 

forces (form drag) and shear forces (skin friction drag). The form drag is due to the shape 

of the vehicle and long thin bodies typically have a lower form drag. The skin-friction 

drag is created due to the contact of the surface area of the body with the fluid. The goal 

for the designer is to minimize the total drag by finding the ideal body shape. As already 

mentioned, the contradiction between objectives may make the designer deviate from the 

optimum body shape if, for example, more internal volume is needed.  

The total drag force or resistance of a submersible vehicle is: 

2
max

1 * *V *(WS*( * ) )
2t F A r appR c formfac c c Rρ= + + +

  

I have not included the wave-making coefficient in the previous formula. It is 

widely accepted that a deeply submerged vehicle does not generate wave resistance. This 

coefficient applies only to conventional submarines which are required to travel close to 

the surface when snorkeling, resulting in the generation of surface waves.  
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There are various ways to calculate the coefficient of friction ( Fc ) in the 

literature. The one proposed by [42] is used here.  

2
10

0.075
log ( 2)Fc

RE
=

−
    where   max*tot

VRE L
ν

=  (RE is the Reynolds number) 

There are various ways to calculate the form factor (formfac) as well. I used the 

one proposed by Gillmer and Johnson [45]. 

3

1 0.5* 3*
tot tot

D Dformfac
L L

 
= + +  

   

Ac is usually called the roughness correlation allowance coefficient. It is a coefficient for 

the resistance caused by hull openings, fouling of the hull and so forth. The value ranges 

from 0.0003 to 0.0012 and a typical value of 0.0004 is used in this model. rc  accounts for 

the pressure difference along the hull while it is moving. Designers usually take it into 

account for high-speed submersibles and into submarine design. I will consider rc  as 

negligible in this case. appR accounts for discontinuities, control surfaces, and other 

appendages that increase the total drag. Manufacturers try to make the surface as smooth 

as possible and create a smooth transition into the main body in order to minimize their 

contribution to the total drag. For concept designs a value of 1/1000 of the product of the 

total length and diameter of the hull is assumed for the appendage resistance, 

notwithstanding. 

Knowing the total resistance, one can calculate the effective horsepower, EHP, 

needed to propel the hull of the AUV at a given speed. 

max*tEHP R V=  

The first objective of this multi-objective optimization problem is to minimize the 

resistance of the AUV hull and consequently to minimize the effective horsepower. 
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3. Payload 

Payload is the most important part of the vehicle. It includes science sensors, 

sonar electronics, data transfer devices or anything that the vehicle would carry to fulfill 

its mission. I could have used the maximization of the payload of the vehicle through 

maximizing the volume as one of the objectives. I assumed, however, that for a practical 

design specific operational requirements are more likely to exist, and therefore, the 

payload weight would be given. Thus, in this model the payload weight payloadW  is taken 

to be 40% of the total weight.  

AUVs are typically designed to operate at neutral or near-neutral buoyancy and a 

fixed ballast system is used to achieve the proper trim condition. Additionally, they are 

equipped with an emergency drop weight system to bring the vehicle to the surface if the 

propulsion or control system fails. During ascent-descent movement or salinity changes, 

on-board variable ballast tanks are used together with compressed air systems to fill and 

empty the tanks with water. Therefore, designers calculate the total weight by multiplying 

the volume of the hull by its density, which must be equal to the density of the 

surrounding water (sea water in this case). I also assumed the weight of the machinery 

and propulsion (motor, propeller) propW  and the weight of the appendages appendW  to be 

10% and 5% of the total weight, respectively. The weight of the hull hullW  is calculated 

by multiplying the difference of the outer and the inner volume of the hull by the density 

of the selected material. A hull thickness of 6mm is typically used for maximum depths 

of 600m. The second objective is to maximize the weight of the energy section of the 

vehicle and it is measured in kg. 

energy tot hull prop append payloadW =W -W -W -W -W  

An important choice that needs to be made during the design phase is the kind of 

material that will be used for the hull. Steel has been used extensively in the past. Various 

materials have been proposed and some features that need to be taken into account are: 

high strength-to-weight ratio, affordability and corrosion resistance. Ross [39] compared 

four materials: titanium, high-strength steel, aluminum and composites.  
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The titanium alloy (Ti‐6Al‐4V) has a high cost, high strength, light weight and it 

is maintenance-free. The titanium alloy has the following characteristics: the specific 

gravity is 4.5 (kg/dm3); it has high corrosion resistance, low electric conductivity, low 

heat conductance, is not magnetized and has low workability [46]. The titanium alloy 

does not need the surface treatment even if it is used in the sea. 

The high tensile strength steel has a moderate cost; it is heavy weight and requires 

surface treatment to use it in the sea. The specific gravity of the high tensile strength steel 

is about 7.9 (kg/dm3). The advantages of high strength steel are its moderate price and 

the fact that it is commonly used. The major disadvantage of steel is the low strength-to-

weight ratio.  

Aluminum is also widely available and it has a better strength-to-weight ratio than 

steel. The disadvantage of aluminum is its vulnerability to corrosion as it is anodic to 

most other structural alloys. It has a better strength-to-weight ratio of titanium, but it is an 

expensive material.  

Glass-fiber reinforced plastic (GFRP) is the most commonly used composite for 

marine vehicles. The main advantages of GFRP are its price and a very high strength-to-

weight ratio. Metal matrix composites (MMC) have several advantages over GFRP but 

are still in the development phase, making them very expensive (about 15 times more 

expensive than GFRP) [47]. Another material that can be used for AUVs is acrylic 

plastic. Table 2 summarizes the properties of some common materials that are used or 

can be used for the hull of an AUV. The specific strength is given by the ratio of the yield 

strength and the density. Figure 19 shows several AUV hull materials used in various 

depths. 

Other alloys are under development to be used in new type pressure vessels with a 

goal of reducing the weight. Magnesium alloy and super carbon fiber are two examples. 

Many magnesium alloys have been developed lately as parts of cars, aircraft and mobile 

devices. The magnesium alloy is lightweight and its specific strength is very high. The 

specific gravity of the magnesium alloy is 1.8 (kg/dm3), which is about one-third that of 
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titanium or about two-thirds of aluminum [46]. This model lets the user select the 

material for the hull and I chose the aluminum for obtaining the values for this thesis. 

 
Material Density 

(kg/dm3) 
Yield strength 
(MPa) 

Tensile modulus 
(GPa) 

Specific strength 
(kNm/kg) 

High strength Steel (HY80) 7.86 550 207 70 

Aluminum alloy(7075-6) 2.9 503 70 173 

Titanium alloy (6-4 STOA) 4.5 830 120 184 

GFRP (Epoxy/S-lass) 2.1 1200 65 571 

CFRP (Epoxy/HS) 1.7 1200 210 706 

MMC (6061 Al/SiC) 2.7 3000 140 1111 

Acrylic 1.2 103 3.1 86 

PVC 1.4 48 35 34 

Table 2.   Material Properties. From [47]. 

 

 
Figure 19.   Various AUV Hull Materials. From [48]. 

 40 



4. Energy – Range 

A critical part of the AUV design is the energy storage unit and its efficiency. 

Since I need to maximize the range of the AUV, a power source that can make it operate 

for a long period of time is needed. Thus, a power source with high-energy density and 

high-energy efficiency is an essential component of the vehicle.  

Although prototype fuel cells, Stirling engines, CCDE (Closed Cycle Diesel 

Engines) and closed steam turbines have been developed and manufactured in recent 

years as underwater power sources, the most common power supply for AUVs is 

batteries. For more than 40 years low energy density batteries such as lead-acid and 

nickel-cadmium batteries have been used extensively. Another widely used power source 

in later years was the silver zinc battery which has high specific energy (130 Wh/kg) and 

density (240 Wh/lt). However, choices have changed recently due to the advantages 

offered by lithium-ion and lithium-polymer batteries [49]. Primary batteries (that is, 

batteries that are non-rechargeable) are available with specific energies to over  

600 Wh/kg. High cost, nevertheless, makes their use justifiable only for very small 

vehicles or for special purpose missions. Manufacturers have widely used secondary 

batteries having the advantage of charging-recharging cycles and an energy density that 

comes up to 350 Wh/kg for the lithium ion batteries (Figure 20) [50]. Their relatively low 

price makes lithium batteries attractive for use in AUVs. They are not supposed, 

however, to reach a specific energy of 500 Wh.kg-1 for the next years, as described in the 

AEA Technology roadmap for AGM lithium ion ‘D’ cells out to 2020, with an 

improvement from ~7Ah in 2005 to ~17Ah in 2020 (equivalent to ~400 Wh/kg) [51]. 
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Figure 20.  Comparison of Lithium Ion Batteries with Various Transition Metal 

Oxide Cathode Materials. From [50]. 

There are typically two types of loads, propulsion load and the non-propulsion 

load or “hotel load.” Propulsion load includes propulsion and control surface actuator 

load, while the hotel load includes power consumption of the on-board computers, 

vehicle navigation sensors, and other auxiliary loads. In this model, I assume that specific 

operational requirements are given, and therefore, I can take the hotel load and the 

payload weight as given.  

The fuel cell is considered to have been invented in 1839 by Sir William Grove, a 

British physicist, who was a pioneer of fuel cell technology. In a fuel cell, hydrogen and 

oxygen react electrochemically to produce electric power. Fuel cells change chemical 

energy directly into electric energy, and therefore, they have high energy efficiency.  

Recently, the U.S. Navy has been heading towards power sources other than 

batteries, including fuel cells. In 2010, the U.S. Navy started a major multi-million dollar 

program for a long endurance Unmanned Underwater Vehicle (UUV). Ingenium was the 

prime contractor and the program started around October 2011. A second major new 

UUV program started in 2011 (for a large displacement UUV). In 2010 the Naval 

Undersea Warfare Center Division, Newport in Newport, R.I., awarded a sole-source 
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contract to Delphi to provide the 30-fuel cell Solid Oxide Fuel Cell (SOFC) system to 

power UUV applications [52]. 

In general, the fuel cell with hydrogen storage can provide far greater specific 

energy than rechargeable batteries, but has poorer specific power as shown in the Ragone 

plot of Figure 21. The poor specific power is mainly due to mass transfer limitations 

associated with the oxygen cathode [50]. There are five generic categories of practical 

fuel cells depending on the type of electrolyte used, including: phosphoric acid fuel cell 

(PAFC), proton exchange membrane fuel cell (PEMFC), molten carbonate fuel cell 

(MCFC), solid oxide fuel cell (SOFC) and direct and indirect methanol fuel cell (DMFC).   

 
Figure 21.  Specific Power vs. Specific Energy for Energy Conversion and 

Storage Systems. From [50]. 

While I will not discuss the differences of those types of fuel cells in depth, I will 

note that PEMFCs are smaller and have a lower operating temperature compared to the 

other types. Those are the main reasons that PEMFCs have been used in underwater 

vehicles as in the type 212a submarines built by HDW in Kiel, Germany, and the 

Japanese Urashima AUV that achieved the world's first and deepest AUV fuel cell power 

source dive in the summer of 2003 and completed an autonomous cruise of 220 km in the 
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spring of 2004 [53]. They are cells that operate on hydrogen and oxygen and are 

attractive power sources for AUVs because they are efficient, quiet, compact and easy to 

maintain. The total energy delivered by a fuel cell is limited only by the available fuel 

and oxygen stored onboard. The best combination for achieving the highest specific 

energy is using tanks to store liquid hydrogen and liquid oxygen as can be seen from 

Figure 22. Storing hydrogen as liquid, however, is assumed to be dangerous and so other 

forms are used. Type 212a German submarines use oxygen from cryogenic tanks and 

hydrogen from solid-state hydride canisters. Various oxygen storage options and their 

specific capacity/density are shown in Figure 23, where one can see that liquid oxygen 

has the highest volumetric and gravimetric density among the commercially available 

storage technologies. 

 
Figure 22.  Comparison of Fuel Cell to Other Energy Storage Options.  

From [50]. 
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Figure 23.  Various Oxygen Storage Options with Their "Equivalent" or 

"Apparent" Specific Capacity / Density. From [50]. 

From Figure 24 we can see that magnesium hydride has the highest storage 

capacity, even though it is not a practical solid-state storage medium yet [50]. The type 

212a submarine uses the iron-titanium-hydride that has modest storage capacity, but is 

more easily handled.  

 

 
Figure 24.  Range of Hydrides Available for the Solid-state Storage of 

Hydrogen for Underwater and Other Applications. From [50]. 
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An alternative approach to using only fuel cells or batteries is to combine the two 

technologies within a hybrid system. Such systems have been proposed recently, 

combining the high energy density of the fuel cells with the high power density of the 

batteries and supercapacitors [54], [55]. The advantages of implementing such hybrid 

systems in underwater vehicles have been investigated in [51]. A simple illustration of a 

generic hybrid fuel cell power system, which shows the main components, is shown in 

Figure 25.  

 
Figure 25.  A Schematic Illustration of the Fuel Cell Hybrid Power System. 

From [56]. 

In a hybrid system, the fuel cell will provide a constant average power; that is, the 

power needed for overcoming the water resistance and some basic hotel load. The energy 

storage device (a secondary lithium-ion battery, for example) will provide the peak power 

in cases that this power is needed, namely for extra electronic devices like sonars or other 

scientific/military devices together with maneuvering and so forth. Furthermore, the 

battery will be recharged by the fuel cell during the low power demand period. A generic 

power profile is shown in Figure 26, where t1 is the discharge time of the battery, t2 is the 

recharge time, P1 is the peak power and P2 is the base power. The number of cycles 

determines the mission length of the AUV. The goal in this model is to maximize the 

range (that is, the number of those activity cycles). 
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Figure 26.  A Generic Power Profile for an AUV Mission. From [56]. 

The total available energy (Etot) is the product of the weight of the energy section 

of the vehicle and the energy density of the power supply itself. For the hybrid system in 

this model, a specific energy of 500 Wh/kg is assumed, a realistic value for a hybrid 

system [51]. Etot is also the product of the total power consumed and the duration of the 

mission. The total power consumed is the sum of the power consumed by the propulsion 

system and the hotel load. The power consumed by the propulsion system is equal to the 

effective horse power that we already know, EHP, divided by the overall 

efficiency/propulsive coefficient, PC that I will describe next.   

*t
tot

RE HL Duration
PC

 = + 
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=
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The most common form of propulsion in AUVs is the screw propeller, although 

other propulsors have been used, such as the pump-jet propulsion system, the dual 

propeller-counter rotating thrusters or the special case glider/buoyancy-driven AUVs. I 

assume that a screw propeller is used in this model. The hub driven propeller is often 

used fitted onto the shaft of an electric motor. Both the motor and the propeller should 

transfer the power as efficiently as possible, yet several losses exist throughout that 

transfer. If THP is the thrust horsepower, that is, the product of the thrust delivered by the 

propeller and the vehicle speed, then: 

( )
( )
1
1

t
EHP THP

w
−

=
−

 [57] 
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The term ( )
( )
1
1

t
w

−
−

is known as the hull efficiency ηH, t is the thrust deduction 

coefficient that is defined as: tT Rt
T
−

= , where T is the thrust delivered by the propeller 

and Rt is the total resistance. The wake fraction w is the ratio of the speed of the water in 

the wake of the hull or speed of advance, VA, divided by the hull speed V:   AV Vw
V
−

=  

For a well-designed stern and propeller the hull efficiency is approximately equal 

to 1.0 [57]. There are cases, nevertheless, in which the hull efficiency can be greater than 

1.0 and it is not actually a true efficiency [57]. 

Except for hull efficiency, there is also the propeller efficiency ηp that has two 

components: the open water efficiency ηO and the relative rotative efficiency ηR. The open 

water efficiency is the ratio between the power developed by the thrust of the propeller 

and that absorbed by the propeller when operating in open water, and the relative rotative 

efficiency is the ratio between a propeller's efficiency attached to a hull and in open 

water. Typical values for ηO and ηR range from 0.55 to 0.85 and 0.95 to 1.0, respectively. 

The machinery efficiency ηM is defined as the ratio of the power delivered to the 

propeller, propulsive horsepower (PHP), divided by the power delivered by the 

propulsion motor, shaft horsepower (SHP) (Figure 27). An AUV propulsion system 

designer can avoid a reduction gear by carefully choosing an appropriate motor in order 

to save on weight and system losses. For a submersible vehicle ηM ranges from 0.95 to 

0.99 [57].  

A combination of the aforementioned losses known as the propulsive coefficient, 

PC, is usually used. 

 OH MRPC η η η η=    or EHPPC
SHP

=  

Common values of propulsive efficiency typically range from 0.55 to 0.85 [57]. I 

use a value of 0.65 in this model. 
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Figure 27.  Propulsion System Efficiencies. From [57]. 

The range of the AUV at a speed V is measured in km and is given by the 

formula: 

Range Duration V= ∗   

By maximizing the range, the designer maximizes the number of activity cycles 

of the AUV mission as well. 

5. Model Validation 

In order to demonstrate the validity of the model's formulations, I will use an 

existing AUV design. The data gathering of existing AUVs, however, is not an easy task 

mainly because specific values needed, such as the form factors na, nf, are not readily 

available in the literature. Moreover, regarding the range, I am assuming a constant speed 

for the mission and a specific energy of 500 Wh/kg that has not been implemented yet, 

and thus, there is no actual data I could use to compare.  

I used a work done by Alvarez et al. [58] to validate the accuracy of the power 

section. In that work, which calculates the hull hydrodynamic optimization of AUVs, the 

Cormoran vehicle was considered. Cormoran is a surface layer AUV with a torpedo-like 

geometry defined by La=0.38m, Lf=0.24m, Radius=0.08m, na=3 and nf=2.3. The 

theoretical values for resistance were validated experimentally in a ship model basin of 
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the University of Trieste in Italy [58]. Even though the numerical model of that work was 

found to underestimate the total resistance, the differences found between measured and 

computed values were not too big.  

The values of this thesis' model were calculated using the Matlab functions 

surface_hull_2.m, volume_hull_2.m and power_auv.m found in Appendix A. The results 

of both models were compared and the agreement is very good as can be seen in Table 3, 

showing that the method was correctly implemented. A wave resistance component was 

added in the referenced work due to the fact that the vehicle was to move submerged near 

the free surface. 

 

Inputs Reference values [58] This Model's values 

na  3 3 

nf 2.3 2.3 

Total length (m) 1.42 1.42 

Radius (m) 0.08 0.08 

Results   

Length of aft part, La (m) 0.38 0.576 

Length of forward part, Lf (m) 0.24 0.384 

Wet surface (m2) 0.63 0.603 

Volume (m3) 0.0245 0.0221 

Viscous resistance (N) 1.614 1.683 

Wave resistance (N) 0.418 — 

Total resistance (N) 2.03 — 

Table 3.   Model Validation by Comparing with Referenced Work. 
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A power system design based on the lightweight AUV US MARV used in [56] is 

an example of a real-world design that can validate the payload section of this thesis' 

model. The AUV model used in the referenced work is of a representative torpedo size 

with an external diameter of 0.324m, length of 3.76m and weight of 227kg with an 

aluminum hull. I did not have the form factor values of the referenced vehicle and typical 

values of na =2 and nf =2 were used. The values of this thesis' model were calculated 

using the Matlab function weight_energy.m found in Appendix A. The results 

comparison can be seen in Table 4.    

 

Inputs Reference values [56] This Model's values 

na  — 2 

nf — 2 

Total length (m) 3.76 3.76 

Diameter (m) 0.324 0.324 

Results   

Total Weight (kg) 227 250 

Payload (kg) 92.6 100 

Payload Percentage (%) 40.8 40 

Table 4.   Model Validation by Comparing with Referenced Work. 

C. OPTIMIZATION SETUP AND RESULTS 

There are several commercial process integration and design optimization 

software packages to conduct optimization with multiple objectives. The Darwin 

optimization plug-in in Model Center version 7.1 was used in [59]. The parameter space 

investigation method implemented in a software package called MOVI (Multi-criteria 

Optimization and Vector Identification) was used in [60]. Particle swarm optimization as 

well as a comparison with other optimization techniques, like Monte Carlo and sequential 
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Monte Carlo, was demonstrated in [61]. Even statistical analysis software packages, such 

as JMP, have been used developing and analyzing the response surfaces as in [62], [63], 

[64], [65]. The previously mentioned works, however, used an extra tool for modeling 

and building the objectives, such as a ship synthesis model for naval crafts. In this work, 

the objective functions were built in Matlab and the global optimization toolbox of 

Matlab was used, specifically the multiobjective genetic algorithm solver, because of the 

great versatility it offers. Excel solver was used for two objectives to show how it works 

and compares with Matlab.  

1. First Optimization Study 

First, I try to find the Pareto front for two objectives. I have chosen the 

minimization of the power needed (EHP) and the maximization of the weight of the 

energy section of the vehicle. I use the Matlab files power_auv.m and 

weight_energy_auv.m, which are found in Appendix A, together with the Matlab 

optimization tool. I choose the gamultiobj function and a fitness function 

auv_multiobjective.m that consists of the two functions we need to optimize. Four 

variables are used: the diameter (D), the total length (Ltot), and the two sail form factors 

(nf, na). I used two linear inequalities, / 6L D ≥  and / 9L D ≤ , 6 for the ‘ideal’ L/D ratio 

and 9 as an upper bound for the mid-body section. The lower and upper bounds for the 

variables can be seen in Table 1 of this work. I used the default values for the various 

options that the tool gives, although user can change the population type and size, the 

selection function type, the crossover fraction, the mutation function, the migration type, 

the stopping criteria and so forth. The interested reader can find a thorough explanation 

of the various options in the Matlab documentation of the optimization tool. In Figure 28, 

we can see a screenshot of the Matlab optimization tool. 

 52 



 
Figure 28.  Matlab Optimization Tool with Two Objectives and Four Variables. 

In Figure 29, we can see the Pareto front of the two objectives after running the 

solver and picking the Pareto front choice of the plot functions options. Users can also 

choose other plots of distance, genealogy, selection, average Pareto distance and average 

Pareto spread.   
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Figure 29.  Matlab Pareto Front for Two Objectives Optimization Problem. 

To better demonstrate the Pareto front utility I am introducing two additional 

points (Figure 30). Point A is a feasible point of the design space to the right of the Pareto 

front. Even though it is a feasible point, we can easily see that is dominated by two points 

of the Pareto front. One point located horizontally to A will have the same energy weight 

but a better (that is, lower) power and a point vertical to A will have the same power but a 

better (that is, higher) energy weight. The same applies for every feasible point to the 

right of the Pareto front. We can also see that even though point B dominates other points 

of the Pareto front, it is an infeasible point. That applies for all points to the left of the 

Pareto front. Thus, the only points that are worth considering by the design team are 

those of the Pareto front or Pareto efficient frontier, as it is sometimes called.   
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Figure 30.  Matlab Pareto Front for Two Objectives and Two Additional Points. 

One can also export the problem options and results to the Matlab workspace. The 

values of the variables and the objectives of this problem are shown in Table 5. I kept the 

speed constant with a value of 2.10 m/sec for this case. After obtaining the PO points the 

designer and the decision maker can analyze the interdependencies among decision 

variables and the objectives. They can use those points which dominate over all the 

others to get the best design. For example, a weight of 2584 kg of the energy section of 

the vehicle would give a value of 406 hp for the power needed.  

B 

 55 



 
Table 5.   Matlab Results for Two Objectives Optimization Problem. 

The Excel solver does not have an option for multi-objective optimization but 

there are ways to circumvent that [66], even though multiple steps are required. First, I 

find the minimum and the maximum point for the weight of the energy section by using 

the solver and the same variables and constraints previously used in Matlab. Then I 

perform repeated optimizations on minimizing one of the two objectives—the power in 

this case—while increasingly constraining the weight for several values between the 

minimum and the maximum points. The model used in Excel and built by the author can 

be found in Appendix B. The values for the surface and the volumes needed were 

obtained by using Visual Basic in Excel and a function built to give the integral 

EHP Weight D L nf na
2.536 0.403 0.100 0.600 1.000 1.000
3.668 0.747 0.117 0.721 1.072 1.072

43.952 56.229 0.382 2.541 1.569 1.936
92.904 185.266 0.476 4.003 4.945 1.999
69.564 125.421 0.477 3.185 1.962 2.073

340.573 1759.256 0.927 7.700 4.760 4.778
287.336 1470.422 1.005 6.192 4.013 3.085
305.869 1623.421 1.016 6.333 4.789 3.837
342.606 1921.543 1.035 6.891 4.997 4.623
314.795 1707.808 1.056 6.646 3.610 2.708
406.925 2584.664 1.160 7.694 4.740 3.159
426.603 2787.971 1.180 7.722 3.410 5.051
469.563 3277.854 1.230 8.129 5.878 4.398
431.687 2902.007 1.243 7.607 2.930 4.376
453.455 3146.196 1.255 7.873 5.006 3.557
529.120 3915.689 1.264 8.917 5.929 4.977
481.002 3451.905 1.264 7.980 5.385 5.398
547.386 4189.013 1.311 8.879 4.657 5.629
493.792 3626.906 1.313 8.239 4.986 3.576
508.622 3808.853 1.337 8.256 3.585 4.661
532.101 4108.257 1.352 8.406 5.237 4.764
565.419 4480.576 1.358 8.843 5.341 5.407
590.873 4894.613 1.423 8.795 5.405 5.645
598.312 4977.250 1.423 8.920 5.405 5.645
639.843 5636.593 1.500 9.000 5.975 5.996
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numerically (Appendix B). The results and the plot acquired are shown in Table 6 and 

Figure 31. The similarity of the Excel and Matlab results in both the values and the plots 

is obvious. 

 
Table 6.   Excel Solver Results for Two Objectives Optimization 

Problem. 

W_power> EHP W_power D L nf na
0.44 2.533984 0.44037062 0.10 0.60 1.00 1.00
200 86.09805 200.143333 0.62 3.7 1.05 1.92
500 147.1993 497.341612 0.82 4.95 1.05 1.92

1000 223.9813 998.279654 1.03 6.19 1.05 1.92
1500 285.0312 1505.47083 1.18 7.05 1.05 1.92
2000 340.045 1998.86177 1.280 7.710 1.050 1.920
2500 395 2496.94947 1.38 8.28 1.05 1.92
3000 439.1169 3029.45478 1.45 8.97 1.05 1.92
3500 494.9336 3507.88383 1.27 9 3.38 2.59
4000 537.4575 3991.45585 1.27 9 5 5.5
4500 563.6612 4418.52691 1.33 9 5 5.5
5000 597.2013 5004.51886 1.41 9 5.39 5.65
5500 629.9659 5475.38121 1.49 8.95 5.78 5.7
5639 640.41 5639.12178 1.5 9 6 6
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Figure 31.  Excel Pareto Front for Two Objectives Optimization Problem. 

2. Second Optimization Study 

We can now proceed to an optimization case of three objectives. I choose the 

minimization of the power needed and the maximization of the weight of the energy 

section and the total range. I use the Matlab files power_auv.m, weight_energy_auv.m 

and the range_auv.m found in Appendix A. I choose the Matlab gamultiobj function and 

a fitness function auv_multiobjective.m with the same variables, the linear inequalities 

and the bounds used in the previous case. The speed remains constant with a value of 

2.10 m/sec for this case as well. 

After exporting the problem options and results to the Matlab workspace, I obtain 

the values shown in Table 7.  Using the Matlab function gaplotpareto, I obtain the 3D 

plot shown in Figure 32. Matlab does not have an option for plotting three objectives and 

obtaining the 3D Pareto front. Figures 33 and 34 show the way to circumvent that. 
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Table 7.   Matlab Results for Three Objectives Optimization Problem. 

We cannot see a knee-point in the plot of this optimization problem, so we have to 

consider all solutions equivalent to each other. It is up to the designer's preference or 

other given constraints to choose one of them.  

  

EHP Weight Range D L nf na
2.536 0.403 2.472 0.100 0.600 1.000 1.000

57.946 78.996 425.189 0.381 2.847 4.435 3.536
116.194 289.387 1378.716 0.570 4.172 2.746 3.340
166.584 497.178 2154.636 0.612 5.384 4.420 5.585
191.269 648.248 2690.235 0.676 5.642 4.858 5.365
228.432 872.995 3405.585 0.734 6.344 4.598 4.796
200.282 794.313 3246.156 0.825 5.054 3.847 3.498
240.363 1050.619 4021.053 0.857 5.671 4.122 5.234
271.967 1342.692 4893.942 1.003 6.128 2.470 2.935
343.364 1934.375 6365.093 1.052 6.886 3.249 5.059
362.244 2171.335 6965.739 1.121 6.815 4.430 4.326
454.802 2964.767 8470.302 1.139 8.598 3.439 4.989
403.492 2528.892 7691.612 1.176 7.933 2.336 3.006
429.052 2828.894 8335.893 1.182 7.610 4.231 5.531
470.485 3347.545 9389.797 1.257 7.764 5.812 5.794
494.110 3565.546 9734.336 1.260 8.339 5.778 4.676
494.600 3650.460 9960.646 1.302 7.987 5.722 5.143
528.209 4029.095 10591.835 1.322 8.400 5.615 5.602
554.898 4390.443 11216.113 1.362 8.548 5.908 5.847
522.532 4014.861 10620.003 1.364 8.229 4.384 4.738
567.348 4611.952 11628.929 1.411 8.485 5.580 5.541
580.177 4762.377 11849.606 1.422 8.752 5.715 4.699
598.399 4990.711 12189.042 1.424 8.858 5.929 5.904
639.295 5628.646 13201.447 1.500 9.000 5.938 5.939

 59 



 
Figure 32.  Matlab Pareto Front for Three Objectives Optimization Problem. 

 

 
Figure 33.  Matlab Commands for Plotting 3D Pareto Front. 
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Figure 34.  Matlab Optimization Tool Showing 3D Plot Function. 

3. Third Optimization Study 

In this case, the goal is to optimize the three objectives while having the speed of 

the vehicle as a variable. Thus, I use five variables, and the lower and upper bounds of 

the speed can be seen in Table 1 of this work. The obtained values of the variables and 

the objective functions can be seen in Table 8.  In Figure 35, we can see the 3D plot of 

the three objectives, and in Figure 36, I show the 2D projection of the 3D plot. From the 

visual representation of the Pareto front one can clearly see the knee-point area. 

Even though no one solution is better than any other solution in the PO front, a 

knee-point is a preferred solution, as mentioned before, and gives the designer a safe way 

to pick a single point in a trade-off front—or more if there is a knee-point area with 

multiple points. The designer needs to pay a high cost in either objective to have a minor 

gain in the other objective. Therefore, any movement away from the knee-point is not of 

great value and thus not preferred. As we can observe from the plot, we have to increase 
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the power too much to have a slight increase in the weight of the energy section, as we 

move further from the knee-point.  

 
Table 8.   Results for Three Objectives Optimization Problem with 

Speed as a Variable. 

EHP Weight Range D L nf na Velocity
0.049 0.410 0.618 0.100 0.603 1.003 1.002 0.502
0.049 0.411 0.616 0.101 0.603 1.003 1.002 0.500
2.260 149.669 263.392 0.475 3.594 3.265 1.493 0.590
5.465 810.469 1390.438 0.843 5.229 3.036 2.786 0.580
4.388 835.333 1324.571 0.866 5.211 2.979 2.669 0.534
6.007 1337.534 2136.381 0.975 6.086 3.594 2.991 0.541
6.120 1382.005 2206.428 0.984 6.144 3.624 3.017 0.541
7.282 1743.447 2807.870 1.044 6.677 3.797 3.203 0.547
7.972 2138.233 3423.292 1.178 7.092 3.928 2.005 0.545
8.812 2407.998 3877.093 1.184 7.127 3.801 3.363 0.549

10.034 2918.254 4692.961 1.221 7.871 3.861 3.479 0.550
10.743 3208.970 5182.647 1.266 7.913 4.461 3.660 0.553
11.995 3627.680 5906.520 1.291 8.286 4.671 4.343 0.559
16.588 4302.692 7488.580 1.357 8.743 4.822 4.651 0.605
19.749 4382.814 8033.311 1.385 8.618 4.880 4.524 0.642
20.745 4737.793 8673.920 1.428 8.868 4.636 4.190 0.643
24.321 5127.302 9678.338 1.450 8.961 5.194 5.215 0.668
30.526 5132.662 10333.239 1.451 8.976 4.664 5.410 0.723
84.065 5334.049 13495.746 1.475 8.961 5.224 5.499 1.025
40.378 5297.946 11434.104 1.476 8.981 5.211 5.077 0.794
63.363 5347.803 12813.696 1.488 8.977 5.004 4.937 0.928
96.521 5428.746 14004.334 1.492 8.979 5.174 5.250 1.072

116.846 5456.188 14429.563 1.492 8.994 5.217 5.330 1.145
150.175 5502.600 14886.141 1.499 8.997 5.215 5.301 1.248
203.959 5529.206 15126.490 1.499 8.998 5.226 5.490 1.388
168.872 5533.006 15056.229 1.500 9.000 5.228 5.494 1.299
212.519 5538.984 15149.010 1.500 9.000 5.228 5.516 1.407
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Figure 35.  Matlab 3D Pareto Front for Three Objectives Optimization Problem 

with Speed as a Variable. 

 

 
Figure 36.  Matlab 2D Pareto Front for Three Objectives Optimization Problem 

with Speed as a Variable. 
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Even though all points are PO in the sense that they dominate all the others in the 

design space, the designer could safely pick the point with Power = 24.321 hp, Weight = 

5127.302 kg and Range = 9678.338 km with parameter values shown in Table 6, as the 

best solution. If more knee-points were present, then again it would be up to the decision 

maker and his preferences or other constraints to decide which one to pick. Matlab does 

not have an option of plotting the surface of the Pareto front. The only way the author 

found is using linear interpolation. In Figures 37 and 38, I show two methods for 

obtaining the Pareto front surface using linear interpolation (rating the second as a 

preferred one) and in Figure 39, I show a surface plot of the Pareto front.  

  
Figure 37.  Matlab Commands for Obtaining the Surface of the Pareto Front  

(First Method). 
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Figure 38.  Matlab Commands for Obtaining the Surface of the Pareto Front  

(Second Method). 
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Figure 39.  Matlab 3D Pareto Front Surface for Three Objectives Optimization 

Problem with Speed as a Variable. 

4. Fourth Optimization Study 

Now, I will show a case in which the designer wishes to have specific values for 

one or all objectives. These will be the goals to be achieved, as the contradictory nature 

of the objectives would probably not satisfy all objectives. The classic way of dealing 

with goals is the goal programming method, which attempts to find solutions that satisfy 

the goals to the greatest extent. I have already mentioned that an inherent drawback of 

this and other a priori methods is the obligation of the designer to specify a set of weight 

factors which correlate with the subjective view of the objectives' importance. In every 

run the user gets a solution that corresponds to the weight factors given.   

By using multi-objective GAs, the user can find multiple PO solutions, each 

corresponding to a different set of the weight factors. Moreover, that method is not likely 

to have any difficulty in finding solutions for problems having non-convex feasible 

decision space [67]. The goals in that case are converted to objective functions consisting 

of the minima of the deviations. Table 9 gives an overall view of the procedure. I also 
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need to mention that the bracket operator  returns the value of the operand if the 

operand is positive; otherwise, it returns zero. 

 

Type Goal Objective Function 

≤  ( )j jf x t≤  Minimize ( )j jf x t−  

≥  ( )j jf x t≥  Minimize ( )j jt f x−  

=  ( )j jf x t=  Minimize ( )j jf x t−   

Range ( ) ,l u
j j jf x t t ∈    Minimize ( ) ( )( )max ,l u

j j j jt f x f x t− −   

Table 9.    Formulation of Objective Functions from Goals. From [67]. 

Once all PO solutions are found, the decision maker can use other approaches to 

choose one particular solution. It is easier to choose among given alternatives rather than 

trying to find the best solution by running optimizations with various combinations. After 

having all the PO points, one can find the relative importance of each objective similarly 

to the use of weight factors as follows: 

( )

( )
1

/

/

j j j
j M

i i i
i

t f x t
w

t f x t
=

−
=

−∑
   [67] 

Furthermore, the drawbacks of the weighted goal programming method do not 

exist, and there is no difficulty in scaling the criterion function values [67]. Let us assume 

that the designer needs to find the best solution for the design parameters of the AUV by 

setting the power needed for overcoming the vehicle resistance at a speed of 2.1 m/sec to 

be 300 hp, the energy section weight to be 1500 kg and a range of 5000 km. I minimize 

the absolute value of the difference of the function value with the specific value (see 

Appendix A, function auv_multiobjective.m) and the results are shown in Table 10.  
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From the last columns of the table that contain the weightings, the designer can pick one 

solution according to the importance of each objective.  

 
Table 10.   Results of Three Objectives Optimization with Goals and 

Weightings.  

5. Fifth Optimization Study 

One notably interesting case is when one has all the parameters given and he 

needs to change only the aft and forward form factors na and nf to find the optimum 

solution. In Table 11 one can see the results of finding the PO of the objectives with D, L 

and V given, and na, nf as variables. 

 

EHP Weight Range D L nf na WF EHP WF Weight WF Range
312.805 1500.013 5250.035 0.967 6.683 5.505 2.569 0.000 1.000 0.000
316.033 1500.067 5226.343 0.947 6.821 5.105 2.870 0.001 0.998 0.001
300.647 1596.131 5000.010 0.951 6.617 5.292 2.278 0.001 0.000 0.999
314.756 1501.259 5239.962 0.957 6.799 5.370 2.570 0.016 0.967 0.017
303.618 1501.819 5325.969 1.046 6.505 5.697 1.538 0.090 0.894 0.017
312.174 1516.408 5197.312 0.952 6.606 5.230 3.268 0.174 0.647 0.179
304.231 1505.010 5297.074 1.034 6.501 5.204 1.689 0.183 0.773 0.043
310.495 1521.706 5191.146 0.959 6.618 5.369 2.820 0.231 0.558 0.211
308.810 1537.865 5146.769 0.955 6.671 5.413 2.579 0.316 0.368 0.316
302.867 1584.596 5024.943 0.951 6.616 4.386 2.570 0.324 0.055 0.621
306.256 1558.315 5093.368 0.953 6.667 5.184 2.492 0.377 0.202 0.421
301.151 1590.951 5014.784 0.954 6.633 5.165 2.225 0.424 0.027 0.550
304.947 1540.157 5167.222 0.983 6.602 5.383 2.058 0.474 0.292 0.234
303.683 1567.779 5078.676 0.962 6.639 5.130 2.239 0.487 0.132 0.380
303.433 1564.857 5090.871 0.966 6.597 5.274 2.259 0.528 0.140 0.332
301.450 1519.210 5267.836 1.046 6.505 4.697 1.538 0.681 0.257 0.061
300.822 1584.825 5038.983 0.964 6.617 5.240 2.092 0.714 0.035 0.251
301.908 1543.555 5177.799 1.004 6.507 5.203 1.876 0.715 0.157 0.128
300.138 1582.339 5054.845 0.974 6.656 5.575 1.797 0.952 0.008 0.040
300.000 1600.220 5009.904 0.952 6.606 5.230 2.268 1.000 0.000 0.000
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Table 11.   Results of Three Objectives Optimization Using nf  and na as 

Variables. 

I used the Matlab commands cylinder and surf (see Appendix A, function 

volume_hull_2.m) to obtain the plots of the hull geometry for different cases, as can be 

seen in Figures 40, 41, 42 and 43. 

EHP Weight Range nf na
54.74 90.15 498.18 1.00 1.00 D=0.5
63.45 108.60 588.69 1.04 1.86 L=3.1
57.76 96.05 527.25 1.07 1.15 nf
57.99 96.49 529.38 1.08 1.15 na
70.08 123.79 661.36 1.10 3.12 V=2.1
63.12 107.37 582.41 1.12 1.62
64.19 109.52 592.67 1.18 1.66
60.52 101.45 553.45 1.34 1.07
65.89 112.87 608.55 1.35 1.60
61.83 104.15 566.54 1.38 1.14
61.38 103.31 562.56 1.46 1.03
66.84 114.86 618.00 1.50 1.52
76.70 137.66 725.04 1.69 3.16
68.58 118.77 636.61 1.71 1.52
79.51 144.39 755.96 1.90 3.67
71.40 125.20 666.97 1.90 1.72
72.94 128.75 683.61 1.97 1.90
83.66 154.75 803.10 2.61 4.15
77.82 141.10 741.39 3.21 2.03
82.74 153.02 795.69 3.60 3.00
73.99 133.04 704.80 3.77 1.39
87.79 165.92 853.64 4.43 4.82
71.66 128.73 685.38 4.52 1.10
75.76 137.47 725.50 4.57 1.50
80.05 147.20 769.76 4.62 2.13
74.70 135.39 716.14 4.97 1.35
87.15 164.63 848.13 5.43 4.11
89.40 170.39 873.73 5.92 5.34
90.20 172.45 882.81 5.95 6.00

 69 



 
Figure 40.  Hull Geometry of an AUV with Form Factors nf =3.60 and na =3.00. 

 

 
Figure 41.  Hull Geometry of an AUV with Form Factors nf =2.61 and na =4.15. 
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Figure 42.  Hull Geometry of an AUV with Form Factors nf =1.90 and na =3.67. 

 

 
Figure 43.  Hull Geometry of an AUV with Form Factors nf =1.04 and na =1.86. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

This study presented a preliminary design process to identify the design space of 

some given AUV objectives and to conduct a multi-objective optimization.  It used multi-

objective optimization to integrate multiple disciplines so that total-system decisions can 

be made.    

An AUV model was created using the objectives of the power needed to propel 

the vehicle, the weight of the energy section and the total range. The validity of the model 

was checked using inputs from various sources. Implementation of both the model and 

the optimization was carried out using Matlab. The global optimization toolbox and the 

multi-objective genetic algorithm solver were used as regards the optimization, whereas a 

special case of two objectives was implemented in Excel using Visual Basic and Excel 

Solver.  

The designer’s ability to use goals in the multi-objective optimization, as well as 

approaches that let a designer choose one particular solution once all PO solutions are 

found, were also explored.  

There are many aspects of the AUV design that could be considered for 

improving the current model. I only used some design criteria to demonstrate how a 

preliminary design works using multi-objective optimization. The following can be used 

as recommendations for further research, even though much more can be added. 

An objective of minimizing the total construction cost can be added. Materials, 

man-hours and development costs could also be included. 

A structural analysis using finite elements methods and some object arrangement 

algorithm would be important model advancements. A designer would need to optimize 

the placement of the devices that affect the center of gravity as well.   

Incorporating risk in a quantitative way into the model would increase its 

accuracy. Technology risks based on selection of components or other risks related to 

performance and schedule issues could be considered. 
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APPENDIX A. MATLAB FILES 

function ehp=power_auv(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the power needed for an AUV. 
% I use a cylindrical hull following MIT model (Jackson 1992). 
% It assumes a body of revolution with a length/diameter (L/D) 
% ratio of 6 and a maximum diameter at 0.4L. The entrance has a length,  
% Lf=2.4D. The run or after end has a length, La=3.6D. 
%======================================================================  
  
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
  
%x(5)=2.1;            When speed is given (m/sec - 4 Knts) 
Velocity=x(5);        % When speed is a variable 
  
format long; 
ca=0.0004;            %typical value (or 0.0002) 
rho=1025;             %sea water density kg/m^3 
mhu=0.00108;          %kg/(m*sec) 
  
Re=Loa*Velocity*rho/mhu;                            %Reynold's number 
S=surface_hull_2([Diameter Loa nf na]);             %Wetted surface 
cf=0.075/(log10(Re)-2)^2;                           %Bare-hull skin 
friction coefficient 
formfac=1+0.5*Diameter/Loa+3*(Diameter/Loa)^3;      %The coefficient of 
viscous resistance(multiplied by cf) 
Rapp=1/1000*Loa*Diameter;                           %Account for 
appendages - Vlahopoulos Hart 
Rt=1/2*rho*Velocity^2*(S*(cf*formfac+ca)+Rapp);     %Resistance 
ehp=Rt*Velocity;                                    %EHP Effective 
horse power 
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function W_power=weight_energy(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the weight of the energy section of an AUV. 
% It assumes a hull thickness of 6mm. 
% It assumes a material density of 2700 kg/m3 (Aluminum). 
%======================================================================  
  
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
  
t=0.006;              %hull thickness (m) 
rho_sea=1025;         %sea water density (kg/m^3) 
  
%rho_material=8000;   % Steel:8000(kg/m^3) 
rho_material=2700;    % Aluminum:2700 
%rho_material=1750;   % GRP:1750  
  
format long; 
V_outer=volume_hull_2([Diameter Loa nf na]);   
inner_diameter=Diameter-2*t; 
loa_inner=Loa-2*t; 
V_inner=volume_hull_2([inner_diameter loa_inner nf na]); 
  
W_tot=V_outer*rho_sea;      %The total weight of the AUV 
W_hull=(V_outer-V_inner)*rho_material; %The weight of the hull 
if W_hull>0.2*W_tot 
    W_hull=0.2*W_tot;       %It sets a limit to the weight of the hull 
end 
W_prop=0.1*W_tot;           %The weight of the propulsion system 
W_append=0.05*W_tot;        %The weight of the appendages 
W_payload=0.4*W_tot;        %The weight of the payload    
W_power=W_tot-W_hull-W_prop-W_append-W_payload; 
%The weight of the energy section equals to the total weight minus the 
weights of the hull, the propulsion system, the appendages and the 
payload  
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function range=range_auv(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the range of an AUV. 
% A hybrid energy system is assumed with an energy density of 0.5 
kWh/kg. 
% It assumes a hotel load of 600 hp. 
% It uses an overall propulsion coefficient PC=0.65.  
%======================================================================  
  
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
  
%x(5)=2.1;            When speed is given (m/sec - 4 Knts) 
Velocity=x(5);        % When speed is a variable 
  
format long; 
  
energy_density=0.5;   %kWh/kg - Hybrid Energy System 
  
%ehp=resistance_auv_power_source_5([Diameter Loa nf na]);  
ehp=power_auv([Diameter Loa nf na Velocity]); 
  
nH=1.0;                        %hull efficiency (1-t)/(1-w) 
nR=0.98;                       %relative rotative efficiency (open 
water - hull wake) 
nO=0.70;                       %open water efficiency (propeller type, 
diameter, rpm etc) 
nM=0.95;                       %machinery efficiency (rotor, bearings, 
shaft) 
  
Etot=1000*weight_energy([Diameter Loa nf na])*energy_density; %Wh 
p_hotel=600;                   %Hotel load (Watt) 
  
n_prop=nH*nR*nO*nM;                            %overall propulsive 
efficiency  
%n_prop=0.65; 
duration=Etot*n_prop/(ehp+p_hotel*n_prop);     %in hours (Wh/W) 
range=(duration*Velocity*3.6);                 %in km 
 

 

 

 

 

 
 

 77 



function Surface=surface_hull(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the wetted surface of the hull of an AUV. 
% It uses a cylindrical hull following MIT model (Jackson 1992). 
% It assumes a body of revolution with a length/diameter (L/D) 
% ratio between 6 and 9 and a maximum diameter at 0.4L. The entrance   
% has a length Lf=2.4D. The run or after end has a length, La=3.6D. 
% It uses the int() Matlab function but the time needed is much higher 
% than using surface_hull_2(x) 
%======================================================================  
  
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
Lf=2.4*Diameter;  La=3.6*Diameter; 
  
Lpmb=Loa-La-Lf; 
  
syms x; 
s1=pi*Diameter*int((1-(1-x/Lf)^nf)^(1/nf), x,0,Lf); 
s1=vpa(s1,5); 
  
s2=pi*Diameter*(Loa-La-Lf); 
s2=vpa(s2,5); 
  
s3=pi*Diameter*int(1-((x-Lf-Lpmb)/La)^na,x,Loa-La,Loa); 
s3=vpa(s3,5); 
  
Surface=s1+s2+s3; 
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function Surface=surface_hull_2(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the wetted surface of the hull of an AUV. 
% It uses a cylindrical hull following MIT model (Jackson 1992). 
% It assumes a body of revolution with a length/diameter (L/D) 
% ratio between 6 and 9 and a maximum diameter at 0.4L. 
% The entrance has a length Lf=2.4D. The run or after end has a length,  
% La=3.6D. It uses a numerical approximation (Discretization with  
% n=1000) 
%======================================================================  
  
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
Lf=2.4*Diameter;  La=3.6*Diameter; 
  
Lpmb=Loa-La-Lf; 
  
n=1001; 
a=[1:1:n]; 
dx=a*Loa/n; 
bf=Lf*n/Loa; 
bf=floor(bf); 
xf=dx(1:bf); 
ba=(Loa-La)*n/Loa; 
ba=floor(ba); 
  
xa=dx(ba+1:n); 
  
for i=1:bf 
    y=Diameter/2*(1-((Lf-xf)/Lf).^nf).^(1/nf); 
end 
  
j=1; 
for i=bf+1:ba 
    y(i)=Diameter/2; 
    j=j+1; 
end 
  
j=1; 
for i=ba+1:n 
    y(i)=Diameter/2*(1-((xa(j)-Lf-Lpmb)/La).^na); 
    j=j+1; 
end 
  
v=2*pi*y; 
Surface=trapz(dx,v); 
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function Volume=volume_hull(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the volume of the hull of an AUV. 
% It uses a cylindrical hull following MIT model (Jackson 1992). 
% It assumes a body of revolution with a length/diameter (L/D) 
% ratio between 6 and 9 and a maximum diameter at 0.4L. The entrance   
% has a length Lf=2.4D. The run or after end has a length, La=3.6D. 
% It uses the int() Matlab function but the time needed is much higher 
% than using volume_hull_2(x) 
%======================================================================   
 
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
Lf=2.4*Diameter;  La=3.6*Diameter; 
Lpmb=Loa-La-Lf; 
  
format long; 
  
syms x; 
v1=Diameter^2/4*pi*int(((1-(1-x/Lf)^nf)^(1/nf))^2, x,0,Lf); %yf=D/2*{1-
(Lf-xf).... 
v1=vpa(v1,5); 
  
v2=vpa(Diameter^2/4*pi); 
v2=int(v2,Lf,Loa-La); 
  
v3=Diameter^2/4*pi*int((1-((x-Lf-Lpmb)/La)^na)^2,x,Loa-La,Loa); 
v3=vpa(v3,5); 
  
Volume=(v1+v2+v3); 
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function Volume=volume_hull_2(x) 
  
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
% This function calculates the volume of the hull of an AUV. 
% It uses a cylindrical hull following MIT model (Jackson 1992). 
% It assumes a body of revolution with a length/diameter (L/D) 
% ratio between 6 and 9 and a maximum diameter at 0.4L. 
% The entrance has a length Lf=2.4D. The run or after end has a length,  
% La=3.6D. It uses a numerical approximation (Discretization with  
% n=1000) 
%======================================================================  
  
Diameter=x(1);   Loa=x(2);    nf=x(3);   na=x(4); 
Lf=2.4*Diameter;  La=3.6*Diameter; 
Lpmb=Loa-La-Lf; 
  
format long; 
  
n=1001; 
a=[1:1:n]; 
dx=a*Loa/n; 
bf=Lf*n/Loa; 
bf=floor(bf); 
xf=dx(1:bf); 
ba=(Loa-La)*n/Loa; 
ba=floor(ba); 
xa=dx(ba+1:n); 
  
for i=1:bf 
    y=Diameter/2*(1-((Lf-xf)/Lf).^nf).^(1/nf); 
end 
  
j=1; 
for i=bf+1:ba 
    y(i)=Diameter/2; 
    j=j+1; 
end 
  
j=1; 
for i=ba+1:n 
    y(i)=Diameter/2*(1-((xa(j)-Lf-Lpmb)/La).^na); 
    j=j+1; 
end 
  
v=pi*y.^2; 
Volume=trapz(dx,v); 
% If we want to plot an AUV hull 
%[Z,X,Y] = cylinder(y); 
%surf(X,Y,Z) 
%xlabel('z'); ylabel('y'); zlabel('x') 
%view(60,20) 
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function y = auv_multiobjective(x) 
 
%====================================================================== 
% LCDR Sotirios Margonis - Thesis work 
%====================================================================== 
%The function AUV_MULTIOBJECTIVE computes two or three  
%   objectives and returns a vector y of size 2-by-1 or 3-by-1.  
%======================================================================  
  
y=[]; 
% Initialize for two/three objectives  
y(1)=power_auv([x(1) x(2) x(3) x(4) x(5)]); 
y(2)=-weight_energy([x(1) x(2) x(3) x(4) x(5)]); 
y(3)=-range_auv([x(1) x(2) x(3) x(4) x(5)]); 
  
%When we need to use goals 
%y(1)=abs(power_auv([x(1) x(2) x(3) x(4)])-300); 
%y(2)=abs(weight_energy([x(1) x(2) x(3) x(4)])-1500); 
%y(3)=abs(range_auv([x(1) x(2) x(3) x(4)])-5500); 
  
%If we want to find one point in the Pareto front  
%Known preferences/weights 
%y1=power_auv([x(1) x(2) x(3) x(4)]); 
%y2=-weight_energy([x(1) x(2) x(3) x(4)]); 
%y3=-range_auv([x(1) x(2) x(3) x(4)]); 
%y=0.84*y1+0.07*y2+0.09*y3; 
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APPENDIX B.  EXCEL MODEL 

 
 

D(m) Loa(m) nf na V n
1.00 7.00 3.00 3.00 0.50 2000

1.000 7.000 3.000 3.000

Ca mhu rho Viscosity Thickness rho_material
0.0004 0.00108 1025 1.0537E-06 0.006 2700

Lf La Lpmb
2.4 3.6 1

2.400 3.600 1.000

Vf Vpmb Va Vtot
1.51953339 0.785398163 1.81905 4.123981243

Sf Spmb Sa Stot
6.65998479 3.141592654 8.488002 18.2895796

formfac Re Rapp Cf Rt EHP
1.080174927 3321759.259 0.007 0.00366878 11.12074058 5.5603703

Inner_diam Inner_loa
0.988 6.988
0.988 6.988

Lf La Lpmb
2.3712 3.5568 1.06

2.371 3.557 1.060

V_Inner
Vf Vpmb Va Vtot

1.46530442 0.812661407 1.754427 4.032392936

V_outer V_inner W_tot W_hull W_prop W_append W_payload W_power
4.123981243 4.032392936 4227.081 247.288429 422.7080774 211.35404 1690.83231 1654.89792

W_power> EHP W_power D L nf na V
0.44 2.533984 -0.44 0.10 0.60 1.00 1.00 2.06
200 86.09805 -200.14 0.62 3.7 1.05 1.92 2.06
500 147.1993 -497.34 0.82 4.95 1.05 1.92 2.06

1000 223.9813 -998.28 1.03 6.19 1.05 1.92 2.06
1500 285.0312 -1505.47 1.18 7.05 1.05 1.92 2.06
2000 340.045 -1998.86 1.280 7.710 1.050 1.920 2.06
2500 395 -2496.95 1.38 8.28 1.05 1.92 2.06
3000 439.1169 -3029.45 1.45 8.97 1.05 1.92 2.06
3500 494.9336 -3507.88 1.27 9 3.38 2.59 2.06
4000 537.4575 -3991.46 1.27 9 5 5.5 2.06
4500 563.6612 -4418.53 1.33 9 5 5.5 2.06
5000 597.2013 -5004.52 1.41 9 5.39 5.65 2.06
5500 629.9659 -5475.38 1.49 8.95 5.78 5.7 2.06
5639 640.41 -5639.12 1.5 9 6 6 2.06

These are the calculated outputs

Autonomous Underwater Vehicle Design

Please choose the external diameter, overall length, form factor 
coefficients and speed

Parameter Definitions:

D:         Maximimum hull diameter (m)
Loa:      Overall length (m)
nf:         Forward form factor
na:        Aft form factor
Lf:         Forward length (m)
La:        Aft length (m)
Lpmb:   Length of the parallel midbody (m)
V:          Speed of vehicle (m/sec)
n:          Discretizations of hull

Vtot:      Overall volume of the hull
Re:        Reynolds number
Cf:         Bare jull skin friction coefficient
Stot:      Overall wetted surface
formfac: Form factor coefficient

ca:         Correlation Allowance coefficient typical value (or 0.0002)
rho:        Sea water density Kg/m 3̂
mhu:      (mhu/rho: Sea water kinematic viscosity) Kg/(m*sec)
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Microsoft Visual Basic Function that calculates the integral numerically: 
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