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ABSTRACT

Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion
to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or
ultra capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and
switching between these different power components. The hybrid system allows modeling power source on/off
switching and different regimes of operation, together with continuous parameters such as state of charge, tem-
perature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable
to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strate-
gies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal
constraints.
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1. INTRODUCTION

Future robotic vehicles including both small unmanned ground vehicles (UGVs) and full-scale vehicles have
multiple sources of power, including batteries, fuel cells, combustion engines, ultracapacitors, and solar cells, to
allow for extended periods of operation. Fuel-based power sources have a higher specific energy than batteries,
the reason most current automobiles are gasoline-powered. Batteries have many other advantages in terms of
low noise profile, easy replacement, and direct energy conversion. Solar charging allows for harvesting of natural
resources to increase total energy reserves. Mission duration may be maximized by using a combination of power
systems. Long endurance is especially valuable for autonomous robots that can operate indefinitely without
human contact.

To effectively integrate multiple power system components, we present a modeling framework that can be
used to simulate and plan operation of UGV power systems. First, each component is individually modeled
using either empirical or theoretical techniques. These models consider power component states, such as time of
operation, state of charge, and temperature. For a given mission, the power demand is estimated and the power
system models are combined to compute total energy use. As a part of the model, we also account for energy
losses due to the operation of power system components. Losses include resistive heating in batteries and startup
or shutdown power demands. In addition to full, nonlinear models for the UGV power system, we demonstrate
a simplification process that can be used to reduce the models to linear dynamics. These simplified models can
be used plan missions or roughly estimate power system operation for a desired mission.

In particular, we are motivated by a 200 W fuel cell manufactured by Ultra Electronics, Adaptive Materials,
Inc. This particular fuel cell, as described in more detail in Section 3.1, can only be turned on or off, with no
variation in the power produced when on, and requires several minutes and nontrivial power input to transition
between on and off. These limitations on the fuel cell lead naturally to the proposed hybrid systems framework.

Using a model of this fuel cell connected to a battery, we simulate operation of the power system and
evaluate different control strategies in terms of relative energy efficiency while maintaining constraints on other
state variables. Section 4 considers different ways of operating the fuel cell based on the battery state of charge.
The relative energy efficiency and thermal response of the battery are presented for each control strategy.
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2. RELATED WORK

While current UGVs are almost universally battery powered, the UGV community has begun to investigate
replacing or augmenting the battery with a fuel cell. Wilhelm et al. present a UGV powered exclusively by a fuel
cell.1 Their robot was quite small, using a 10 W fuel cell, and served as a proof of concept. Joh et al. present
a humanoid robot powered by a fuel cell and a battery in parallel.2 The authors demonstrate the use of their
robot, including the use of the battery to supplement the fuel cell when the power demand exceeds the capacity
of the fuel cell. However, the fuel cell is able to vary the power output to meet the demand and there is no
discussion of charging the battery when power demands are low.

2.1 Hybrid Power Sources

Hybrid power sources are a major area of interest in the automotive industry.3 Most existing systems are based
on a combustion engine/battery hybrid. However, there are some initial investigations into a fuel cell/battery
hybrid automobile.4,5 Ceraolo et al. presents a general approach to hybrid power architectures for automobiles.6

For cars, due to the fact that the engine produces mechanical power and the battery produces electrical power,
one of the key design decisions is between a parallel, series, or more complex power connection.

The main objective of hybrid power controllers in the published literature is to increase fuel economy through
limiting inefficiencies. For a series configuration, the generator can be run at any desired speed. Barsali et al.
present one algorithm for this configuration.7 If possible, they run the generator in an on-off mode of operation,
with the generator operating at the most efficient point when on. They optimize the ratio of on-time to off-time
and, based on a desired range of battery state of charge, the actual values of these times. In cases where the
generator must be run constantly at a less efficient set point, the average battery level is held constant.

For parallel configurations, the speed of the engine cannot be chosen due to mechanical coupling with the
wheels. Lin et al. present a power management strategy for a parallel hybrid vehicle.8 In this strategy, the
power split between the battery and the engine is obtained using an optimal control technique to maximize fuel
economy and minimize emissions while maintaining the state of charge of the battery. The primary difference
between the established work in the automotive industry and our problem is that our particular fuel cell cannot
be throttled, requiring a more complex modeling mechanism than is used in the current system formulations.

More recently, Murphey et al. presented a power management scheme for a vehicle with multiple power
sources.9 Each individual source can be turned on or off, in addition to any throttling allowed by the device.
Using a machine learning algorithm, the controller can decide at each time step which power sources are the
best to use for a given state. While this algorithm has the same purpose as our algorithm, there are several
key differences. First, the model assumes that the power sources can be turned on and off instantaneously, and,
second, the optimization looks over a short time horizon and not over an entire mission profile.

2.2 Hybrid Control Systems

The field of hybrid control systems, consisting of both continuous and discrete dynamics, is well developed.10,11

Using both types of dynamics, a much larger set of behaviors can be analyzed and modeled than using either
type in isolation. In general, a hybrid system consists of a discrete state representing different modes of operation
and continuous state representing physical parameters. The continuous dynamics depend on the current discrete
state and the transition between discrete states can be constrained based on continuous state values.

In this paper, we use a hybrid automaton model.12 This model encodes the discrete state of the system in a
graph and the dynamics are defined for each node in the graph. Here, we present the discrete states graphically.
The directed edges show possible state transitions, along with conditions that must be met for the transition to
occur. In each discrete state, the evolution of the continuous state is written as ẋ = f(x, t, u), where x is the
continuous state, t is the current time and u is the model input. Additionally, we define the power output as a
function of both the continuous and discrete states and the input.
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3. EXAMPLE POWER COMPONENTS

In this section, we propose a power system model consisting of a 200 W fuel cell and a Li-ion battery. First we
present the models of these system components using the framework of hybrid systems. These models are joined
to form a model of the integrated power system. We look in particular at two types of models: full models used
for simulation and simplified models that can be used for optimization.

3.1 Fuel Cell

Figure 1: TALON with Integrated Fuel
Cell (Source: Ultra Electronics, AMI)

The 200 W fuel cell power source was designed and manufactured by
Ultra Electronics, Adaptive Materials, Inc (AMI). It is fueled by com-
mercial propane canisters and consists of a 200 W solid oxide fuel cell, a
fuel reformer, and a DC/DC converter. The propane gas is first desulfu-
rized and then reformed via partial oxidation into a hydrogen-rich fuel
stream to feed the fuel cell. The fuel cell was designed to be integrated
with existing batteries on small unmanned ground vehicles, such as
the TALON robot. This combined power system significantly increases
the possible mission duration, especially under low power loads such as
persistent stare missions.

One of the challenges of integrating this power source is to develop
an optimal duty cycle for using the fuel cell to recharge the batteries.
Solid oxide fuel cells have significant warm-up and cool-down periods
during which they consume power to run blowers or heating elements.
The power consumption of the fuel cell during these periods becomes
a crucial factor for optimization, since there is an energy cost associated with each on/off cycle of the fuel cell.
To support this study, we conducted a preliminary assessment of the startup and shutdown power usage of the
AMI 200-watt UGV fuel cell.

The fuel cell was connected to a TALON battery pack with a moderate state-of-charge (SOC) and issued a
startup command. The current draw from the batteries was logged every 10 seconds until the fuel cell completed
the startup procedure and began charging the batteries. Likewise, the fuel cell was then issued a shutdown
command and the current draw was logged every 10 seconds until the fuel cell shut down. Power and energy
values were calculated using the average voltage of the battery back (35 volts) throughout the tests. The power
draw over time is shown in Figure 2 The fuel cell consumed approximately 6.5 Watt-hours over 16 minutes to
start up, and approximately 5.3 Watt-hours over 18 minutes to shut down.

To model the operation of the fuel cell, we propose the hybrid model shown in Figure 3. The model consists
of five discrete states, representing on, off and transitions. We divide the startup phase into two different discrete
states q1 and q2 based on the power draw required and when fuel consumption begins. As seen in Figure 2,
the input power decreases at about 300 seconds. We model two continuous states, time t and fuel level F . The
time state is used to record how long the fuel cell has been in the shutdown or startup states and the transitions
between the startup and shutdown states occur when the timer reaches an empirically determined value. The
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Startup 1 (q1
1)

Pfc = Pfc,1(t) W
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Figure 3: Hybrid model of fuel cell with discrete states
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ful for averaged dynamics with constant power draw

Figure 4: Battery models

power draw also depends on the timer during startup and shutdown. For this fuel cell, the difference between
an averaged model and the full empirical model is negligible.

3.2 Battery

The BB2590 battery pack is commonly used in military applications. For this research, we use the thermal-
electric battery model presented by Kim et al.13 The model has two continuous states, battery state of charge
(SOC) and temperature T , and one input, battery current i. This model has been parameterized and validated
against the BB2590 battery pack. The model is encoded in a Simulink module.

To enforce constraints on operation, we formulate a discrete state structure for the battery model shown in
Figure 4a. The battery switches to the full state q21 when soc = 100% and switches to the empty state q24 when
soc = 0%. When the battery is full, the input current must be zero and if the current becomes negative (power
drawn from the battery), the state switches to discharging. The transitions between charging and discharging
are based on the battery current. In each discrete state, the dynamic functions for SOC and temperature are
written ˙soc = f1(soc, T, i) and Ṫ = f2(soc, T, i) respectively.

For our simplified model, we need dynamics to be of the form ˙soc = k, where k is a constant that is known
for each discrete state. To make this simplification, the power draw must be constant since ˙soc depends on the
power output. At a constant power draw, the discharge rate ˙soc varies little and can be approximated by the
average discharge rate.

However, due to the required charging curve for the battery, the rate of charging decreases dramatically when
the SOC gets close to 100%. As shown in Figure 5, the charge rate ˙soc varies over the charging cycle. Averaging
the dynamics over the entire charge cycle would result in significant model errors, especially if the battery started
from a higher state of charge. To account for this change in our simplified model, we divide the charging state
into a sequence of charging states, as shown in Figure 4b, with each state having dynamics of the form ˙soc = k.
For this particular power charging level, we determined that three Charging: Mostly Full states was sufficient to
model the SOC dynamics.

Most of the charging is done in the Charging: Low SOC state. However, once the SOC is sufficiently high,
the charging constraints reduce the rate of charging (and the power used to charge). In this example, transition
between Low SOC to Mostly Full 1 was set at the point where the charging rate starts to decrease significantly.
The rest of the transitions are chosen so that the variation in the charging rate is the same (i.e. in Figure 5, the
difference between ˙soc at the beginning and end of the Mostly Full segments is the same).

The number of Mostly Full states is based on desired fidelity of the model. As shown in Figure 5, the only
significant deviation in SOC between the averaged and actual values occurs at very high state of charge. This
linear model is sufficient for planning and optimization, which we will address in future work. Temperature
dynamics can also be averaged, but would require many more states to sufficiently capture.

In addition to modeling battery operation, the full battery model can be used to estimate electrical efficiency.
Using this model, we parameterized the efficiency of the battery based on SOC and the input current, as shown in
Figure 6. These values were obtained by simulating the system with alternating charging and discharging current
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current

of the same magnitude. The efficiency is calculated by comparing the power input to the power output. The
upper current limit was chosen based on the maximum allowable charging current; efficiency values for higher
discharge currents are obtained by extrapolation. Since the efficiency is roughly constant for a given current
draw at different SOCs, we can average the efficiency in each discrete state for the simplified model as well.

3.3 Integrated Power System Model

UGV Power Demand
(Pd)

Power
Component 1

Power
Component 2

Power
Component n

u1

u2

un

Pn

P 2

P 1

Figure 7: Interconnection of the power components

Having defined the individual power models, we now
present our integrated power system model. Fig-
ure 7 shows the basic interconnection of power sources.
Each component produces a certain power P i based on
the input ui. Some components might also consume
power in certain circumstances. The sum of the indi-
vidual outputs must produce sufficient power to meet
UGV demand Pd. In a physical system, there are ad-
ditional components that are required for the intercon-
nection. These components can consume power. For
simplicity, we assume that these are either negligible
or modeled in conjunction with one of the individual
components.

3.3.1 Power Demand

To determine the power requirements for the mission, we use a simulation model for the UGV operating in a
known environment. This model includes motor models and track-terrain interaction models. From this model,
we can simulate the desired mission and obtain the power demand over time Pd for a given mission. To allow
for continuous operation, we assume that the averaged power demand Pd,avg < Pfc,on. Otherwise, the battery
would eventually deplete, even with the fuel cell on, and leave the UGV incapacitated.

The driving loads can be decomposed into resistance due to terrain and changes in kinetic energy. We use
the terrain model developed in by Guo and Peng14 to model energy loss due to the terrain. Based on the current
vehicle speed and turn rate, for a given terrain, the resulting resistance torques can be calculated. The model
must be tuned for every different terrain of interest and is currently calculated for clay, sand, and sandy loam
soils.
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Figure 8: Simulating the power components for a variable-power and a constant-power mission

To provide appropriate torque inputs to the terrain model, we introduce a motor model. This model was
obtained experimentally by testing iRobot Packbot motors. The model takes in the current shaft speed and the
power being delivered to the motors and calculated the torque output. Together with a simple rigid body model
of the UGV, we can simulate the UGV completing a mission and record the power used. In addition to variable
power demands due to locomotion, electronic components on board require power for operation. We assume that
these loads are known and constant over the entire mission.

While the full power demand can be used with nonlinear models, we are also interested in averaging the
power demand to fit the constant power demand described in Section 3.2. This simplification assumes that the
operating conditions, such as terrain and slope, are constant throughout the mission and that mission maneuvers
are reasonably constant.

3.3.2 Power System Simulation
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Figure 9: Portion of cover-
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Figure 8b

The nonlinear power system models described previously have been integrated
in Simulink. Figure 8 shows the example power demand (Pd) trends for con-
stant and variable power profiles. The first case, shown in Figure 8a, is based on
a constant power mission, such as a persistent stare, where the power demand
is constant. In general, persistent stare missions would have low power require-
ments, needing to only operate minimal electronic and communication loads.
Previous experiments showed a 30 W power load while remaining stationary.15

Additionally, we can approximate some variable power missions with an average
power draw. For ease of comparison between the constant and variable power
demands, the constant power demand Pd is set at the average power demand
from the variable-power mission.

The variable power profile, shown in Figure 8b, is based on an area coverage
mission. Using the method described by Broderick et al.,16 we planned a ref-
erence path and trajectory for the coverage mission. Figure 9 shows a portion
of the coverage path, with the robot moving from right to left. The marked
locations correspond to Figure 8b, showing how the variation in power demand
correspond to turning sections of the UGV’s path, with the flat power demand
sections corresponding to the straight travel sections.

In both cases, the battery starts at 25% SOC. As the battery charges, it
uses all the available power from the fuel cell until about 60 minutes into the mission. At this point, the SOC
is sufficiently high that the battery must be charged at a lower rate, based on the known charging curve for
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Figure 10: Energy losses for different SOC-based limits

the battery. In both missions, the maximum charging rate follows a similar curve, with some deviation in the
variable power demand case. In the constant power mission, the total power demand is plotted, showing that
the power generated (fuel cell power plus battery power) is greater than the power demand. This excess power
generation represents a loss for the system and should be avoided. When the fuel cell switches off, at about
79 minutes, the fuel cell power becomes negative and the battery power exceeds the power demand. Once the
shutdown period ends, the battery power output matches the power demand.

Both simulations use the full models of the battery and fuel cell. The simplified models can also be used to
simulate the constant power mission. This simulation can be done faster to obtain estimates of power use.

4. COMPARISON OF CONTROL STRATEGIES

One use of the combined model presented in this paper is the comparison of system performance over a simulated
mission. In this section, we consider two different system performance characteristics: energy loss and thermal
behavior. Both can have a large impact on the operation of a UGV in a mission. If energy losses are significant,
the range of the UGV is limited. If thermal constraints are not met, the UGV can be incapacitated in the middle
of a mission, resulting in a potentially dangerous recovery or loss of vehicle. The results from this section can
be used as a basis for mission planning or optimization.

We consider the previously described battery/fuel cell hybrid power system. The control of the fuel cell is
based on the current battery SOC: when the battery reaches a low SOC threshold, the fuel cell is turned on and
when the SOC reaches the higher threshold, the fuel cell is turned off. Mission time or power demand does not
influence the control decision. For these simulations, we use nonlinear models.

4.1 Energy Efficiency

As discussed in the previous sections, we consider three sources of energy loss: battery losses, fuel cell power
draws (during startup and shutdown) and excess power generated by the fuel cell (see shaded area in Figure 8a,
for example). Here we consider the two power demand levels shown in Figure 10. This figure shows the total
energy lost over a 8.6 hr mission. In all of these tests, the battery begins at 50% SOC and the fuel cell is initially
on.

Figure 10 shows the energy lost for several different control law SOC thresholds. The first two represent large
SOC ranges for battery operation (20-90% and 20-80% respectively). These cases have the smallest losses due to
the battery and the fuel cell power draw, but in the cases with the high threshold at 90% SOC, there is a region
where excess power is generated by the fuel cell that is not needed for charging or for the mission. The different
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Figure 11: Comparing thermal response under different power conditions using a SOC-based control strategy

power demand levels are identical in this regard, though the excess energy generated is significantly smaller at
the higher power demand.

The other tests show medium sized SOC ranges (20-50% and 50-80%) and small ranges (30-40%, 40-50%,
50-60%, and 60-70%). These cases shows higher losses due to the fuel cell power draw, but the overall losses
depend on the mission power demand. For the lower power demand, the larger ranges have less overall energy loss
and there is minimal difference between energy lost within each group of ranges. At the higher power demand,
there are visible trends within the medium- and small-range groups. In each of these cases, the range with the
higher limits has lower energy usage, due to the higher efficiency of the battery at higher SOC. In fact, when
using the 50-80% SOC range, the higher efficiency almost balances the additional fuel cell power draw compared
to the 20-80% SOC range.

These observations suggest that operating the fuel cell for as long as possible in each cycle yields the most
efficient operation from an energy perspective. However, if the SOC becomes too high, significant amounts of
energy is lost due to the inability of the battery to accept power rapidly. Also, the fuel cell must be restarted
in time for the startup phase to be completed before the battery is fully depleted. Increasing power demand
requires a higher activation threshold for turning on the fuel cell. For the 40 W and 100 W cases, the minimum
lower SOC thresholds are about 9% and 17% respectively.

4.2 Thermal Behavior

Battery thermal behavior is also an important consideration for UGVs.13 When operating in environments with
high ambient temperatures for extended periods of time, battery overheating is a possibility. For some batteries,
including the BB2590 studied in this system, the batteries are designed to shutdown before critical temperatures
are reached. The sources of heat generation include battery resistance and entropic heating (during discharge).
Heat is dissipated to the ambient air and the battery exhibits entropic cooling during charging. While the fuel
cell could be used while the battery is inoperable, this must be considered in the control strategy so that the
fuel cell completes its startup sequence before the battery overheats.

To simulate the thermal response of the system, we used a constant power demand, as described in the
Section 4.1, as well as the same SOC-based control for the fuel cell. The mission duration is also about 8.6 hrs.
At the beginning of the mission, the battery temperature is 35◦ C, which is also the ambient temperature for the
mission. We assume that the ambient temperature remains at 35◦ C over the entire mission. Figure 11 shows
the temperature over time for two different power levels: 40 W and 160 W. In the case of low power demand,
there is little difference in maximum temperature at the different control strategies. None of the runs exceed the
temperature threshold for thermal shutdown.
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In the case of higher power demand, the thermal threshold is exceeded when the more energy efficient (larger
SOC range) is followed. While there are still large temperature spikes while operating at smaller ranges, the spikes
are much smaller, though more frequent. It is important to note that the rapid decreases in battery temperature
are mostly heat loss to the ambient environment. While the battery is charging, the rate of charging is very low
and little heat is being generated due to battery resistance.

Comparing thermal behavior under the 50-60% range with the 60-70% range shows some correlation between
energy efficiency and thermal behavior; the 60-70 % range has smaller temperature spikes and higher energy
efficiency. This suggests that for similar SOC ranges, the energy efficiency does correlate to lower temperature,
but that in different SOC ranges, the effects are not so obvious.

5. CONCLUSIONS

In this paper, we have presented a modeling framework for UGVs with multiple power systems. The hybrid
modeling strategy allows individual components to be modeled and integrated to simulate a UGV mission.
Studying a simple fuel cell/battery hybrid, we have shown how this framework can be used to evaluate the
performance of different control laws for desired criteria. In particular, we investigated energy losses of the entire
power system and thermal response of the battery for an extended UGV mission.

Future work includes using this combined model to plan and optimize energy efficiency for a mission. We
also plan to validate these models by running physical experiments with a UGV carrying a fuel cell and batteries
running the controllers described in this paper.
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