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Abstract 
 
Evolutionary pressures have led to some astonishing camouflage strategies in the animal 
kingdom. Cephalopods like cuttlefish and octopus mastered a rather unique skill: they 
can rapidly adapt the way their skin looks in color, texture and pattern, blending in with 
their backgrounds. Showing a general resemblance to a visual background is one of the 
many camouflage strategies used in nature. For animals like cuttlefish that can 
dynamically change the way they look, we would like to be able to determine which 
camouflage strategy a given pattern serves. For example, does an inexact match to a 
particular background mean the animal has physiological limitations to the patterns it can 
show, or is it employing a different camouflage strategy (e.g., disrupting its outline)? 
This thesis uses a computational and data-driven approach to quantify camouflage 
patterns of cuttlefish in terms of color and pattern. First, we assess the color match of 
cuttlefish to the features in its natural background in the eyes of its predators. Then, we 
study overall body patterns to discover relationships and limitations between chromatic 
components. To facilitate repeatability of our work by others, we also explore ways for 
unbiased data acquisition using consumer cameras and conventional spectrometers, 
which are optical imaging instruments most commonly used in studies of animal 
coloration and camouflage. This thesis makes the following contributions: (1) Proposes a 
methodology for scene-specific color calibration for the use of RGB cameras for accurate 
and consistent data acquisition. (2) Introduces an equation relating the numerical aperture 
and diameter of the optical fiber of a spectrometer to measurement distance and angle, 
quantifying the degree of spectral contamination. (3) Presents the first study assessing the 
color match of cuttlefish (S. officinalis) to its background using in situ spectrometry. (4) 
Develops a computational approach to pattern quantification using techniques from 
computer vision, image processing, statistics and pattern recognition; and introduces 
Cuttlefish72x5, the first database of calibrated raw (linear) images of cuttlefish.  
 
Thesis Supervisor: Ruth Rosenholtz 
Title: Principal Research Scientist 
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Chapter 1 

Introduction 
Evolutionary pressures have led to some astonishing camouflage strategies in the 

animal kingdom. One kind of spittlebug evolved to look like bird droppings. Some fish in 
Amazonian waters adopted the appearance of fallen leaves, and spend all daylight hours 
motionless on the riverbed (Stevens and Merilaita 2009). In the tropics, brightly colored 
wing patterns of many butterflies send warning signals to predators indicating that these 
prey are toxic and should not be consumed. Some of these butterflies are perfectly 
palatable; they are only mimicking the appearance of their toxic cousins who live nearby 
(Boggs et al. 2003). Cephalopods like cuttlefish and octopus, which lost their hard outer 
shell millions of years ago, now depend on camouflage for survival, and have mastered a 
rather unique skill: they can rapidly adapt the way their skin looks in color, texture and 
pattern, blending in with their visual backgrounds (Hanlon and Messenger 1996; 
Messenger 2001b) – a trait noted in Aristotle’s Historia Animalium (Aristotle 1910), and 
grossly exaggerated in many Greek myths. But it is not only their ability to dynamically 
change their looks that makes cephalopod 
camouflage impressive; they match their 
surroundings in color and pattern without 
actually sensing color with their eyes 
(Mäthger et al. 2006; Marshall and 
Messenger 1996). Figure 1.1 shows a 
small subset of the many different body 
patterns of cuttlefish we observed during 
the field season of 2011 in Urla, Turkey. 

One immediately wonders their 
capabilities: “How many different 
camouflage patterns can cuttlefish show?” 
“How well does one pattern camouflage 
the cuttlefish compared to another it could 
have shown?” “Does each of these 
patterns fool a different aspect of the 
predator’s visual system?” These are 
arguably the most important questions in 
the study of biological camouflage today, 
generalizing to animals other than 
cuttlefish. We can best investigate such 
questions using a comprehensive approach 
that takes into account the properties of the 
natural environment camouflage is 
displayed against, the ambient light field 
and the visual system of the observer(s) viewing the camouflage.  

To interpret a scene with a camouflaged animal--in a laboratory setting or in the wild-
- we would like to be able to describe the animal’s camouflage quantitatively, so we can 
compare certain properties of its pattern to those of its environment. For example, we 
would like to be able to determine how closely the colors of the animal’s body pattern 

What is camouflage? 
There are many ways to camouflage without 
having a body pattern that exactly matches, or 
resembles a particular background. In biology, 
camouflage is an umbrella term that describes 
all strategies used for concealment, including 
body patterning and coloration, mimicking 
behavior, and motion (Stevens and Merilaita 
2009). While there is no widespread consensus 
on the definitions of camouflage in the biology 
community, they are often described based on 
their function or strategy: i.e. the function of 
the evolutionary adaptation, such as breaking 
up form; as opposed to the strategy, the specific 
perceptual processes targeted, e.g. does the 
pattern disrupt normal edge detection 
mechanisms? In this thesis, we are most 
interested in the crypsis function, which aims to 
initially prevent detection and includes 
strategies of background matching, distractive 
markings, disruptive coloration, self-shadow 
concealment, obliterative shading and flicker-
fusion camouflage. Figure 1.2 shows examples 
of camouflage strategies associated with the 
crypsis function. 
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match the colors of its background. If we have a model representing the visual system of 
a predator, we might even be able to assess whether the animal’s colors are 
distinguishable from those of its background in the eyes of that predator. In the same 
way, we can investigate whether there are any similarities between the spatial 
composition of a pattern (e.g., lines, splotches, dots, etc.) and the features found in its 
natural background. Two pre-conditions must be met before undertaking such 
quantitative analyses. First, the data representing the camouflage scene must be acquired 
in an unbiased fashion, using the appropriate calibrated instrument(s). In the field of 
animal coloration and camouflage, most commonly used instruments for data acquisition 
are consumer cameras, conventional spectrometers and multi/hyper-spectral imagers. 
Second, the methodology used for pattern quantification must be objective, free of 
subjective input from human observers, to facilitate repeatability of work by other 
researchers. 

In this thesis, we use a data-driven and computational approach to quantify 
camouflage patterns of European cuttlefish (Sepia officinalis) using techniques from 
computer vision, image processing, statistics and pattern recognition. For cuttlefish (and 
other cephalopods such as squid and octopus), the body pattern, describing the overall 
appearance of the animal at any given moment, consists of chromatic (e.g., light or dark), 
textural (e.g., smooth or rough), postural (e.g., skin papillae and arm postures) and 
locomotor (e.g., buried or hovering) components, all of which can be combined in many 
ways (Hanlon and Messenger 1996; Messenger 2001b). The visual nature of cephalopod 
communication and their versatility have led to thinking of the production of body 
patterns as behaviors (Packard and Hochberg 1977) much like feeding, foraging, 
reproduction and communication. We utilize images of camouflage scenes collected with 
both consumer cameras and conventional spectrometers. To ensure our analysis of 
camouflage meets the necessary pre-conditions mentioned above, we first explore ways 
of acquiring unbiased data using commercial-off-the-shelf cameras (Chapter 2) and 
conventional spectrometers (Chapter 3). Then, we investigate biologically important 
questions regarding cuttlefish camouflage. In Chapter 4, we present the first study that 
assesses color match of cuttlefish in the eyes of its predators, using spectral data collected 
in situ. Quantifying the color matching abilities of cuttlefish is important because 
cuttlefish are colorblind (Marshall and Messenger 1996; Mäthger et al. 2006). In 
addition, the properties of ambient light that penetrates to cuttlefish habitats underwater 
generally makes all objects appear blue or green, except for those at very shallow depths 
(Åhlén 2005; Jerlov 1976; Akkaynak et al. 2011; Smith and Baker 1978; Vasilescu 
2009). What degree of color match is sufficient to fool the visual systems of predators in 
such chromatically limited underwater environments? 

After investigating color match, we move on to the analysis of entire body patterns of 
cuttlefish. This is a difficult problem because models of visual pattern perception for fish 
predators do not exist; and therefore we can only approach this problem from the point of 
view of the human visual system. Since cuttlefish can dynamically and rapidly change the 
way their body pattern looks, it is not always straightforward to determine which 
camouflage strategy their pattern might serve. If they do not display a good resemblance 
to their backgrounds, is it because they are using a different camouflage strategy (e.g., 
disruptive coloration, see Figure 1.2), or because they have physiological limitations that 
prevent them from generating a pattern with a good match to that background? We 
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investigate the camouflage pattern generating capabilities of cuttlefish from calibrated 
photographs in Chapter 5. Understanding limitations to the patterns cuttlefish show can 
give us insights into determining whether cuttlefish are capable of employing more than 
one camouflage strategy. Even though it has not been experimentally proven for 
cephalopods, Hanlon and colleagues present evidence of disruptive coloration in two 
different species of cuttlefish (Hanlon et al. 2009; Hanlon et al. 2013). If cuttlefish can 
indeed employ different camouflage strategies, when we investigate the structure of the 
space their patterns form, we might expect to observe well-separated, discrete number of 
clusters, instead of a continuum. Such analyses can contribute to the ongoing research 
regarding how many camouflage patterns cuttlefish can show, and in turn, help answer 
how many total camouflage patterns there may be in all of animal kingdom. 

Imaging camouflage patterns 
The tools used to study camouflage, particularly to image animals and their 

backgrounds are important because the appearance of a camouflage scene may be 
different when viewed by a non-human animal’s visual system. Indeed, our lack of 
consideration or knowledge of the visual mechanisms of the relevant observers is thought 
to be one of the major obstacles hindering full understanding of camouflage strategies 
(Stevens and Merilaita 2009). We know less about the visual systems of animals than we 
do about humans’ (Stevens et al. 2007; Mäthger et al. 2008), but taking into account the 
visual capabilities of the observer(s) viewing a camouflage pattern is important because 
analyzing color signals from the point-of-view of humans and making inferences about 
their appearances to animals often produces erroneous conclusions. This is because 
animal visual systems differ from ours in important ways. For example, birds have four 
photoreceptors, one more than humans with normal color vision. In addition, they are 
sensitive to the ultraviolet (UV) part of the electromagnetic spectrum (Hart et al. 1998), 
to which we are not. In a recent publication, Stoddard and Stevens (Stoddard and Stevens 
2011) showed that some common cuckoo eggs (which are laid in nests of other species 
and often hatched and raised by unsuspecting host birds) appeared to have a good color 
match to the host eggs when viewed by humans, but had clear and quantifiable 
differences when modeled in avian color space. Their study highlights a key point: the 
optical instrument that will be used to image camouflage pattern must be capable of 
recording information in the parts of the electromagnetic spectrum to which relevant 
observers are sensitive. 

Three kinds of optical instruments are used for imaging animal patterns: 
consumer cameras (also known as RGB cameras), spectrometers and hyper-spectral 
imagers (Akkaynak 2014). Among these, hyper-spectral imagers provide the most 
comprehensive data because in addition to recording a spatial image, they also densely 
sample the electromagnetic spectrum, creating an image of dimensions N x M x P. These 
dimensions correspond to height (N), width (M) and the number of spectral samples (P, 
typically between 70-100). Despite being ideal instruments for imaging animal patterns in 
color, hyper-spectral imagers are least commonly used for animal coloration studies 
because of their high cost and physical bulkiness. In addition, their slow imaging times 
that make it difficult to photograph moving objects like animals in the wild. Consumer 
cameras, on the other hand, provide a compact and affordable alternative to hyper-
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spectral imagers because they also do spatial imaging; however they are limited in color 
capture capabilities. 

 
 

 

 
Figure 1.1 The versatility of cuttlefish, and its remarkable ability to combine pigments with 
textural elements and body postures makes these animals perfect models for the study of 
camouflage. Here we show a subset of body patterns, used for communication and 
camouflage, that we observed in cuttlefish’s (S.officinalis) natural habitat on the Aegean 
coast of Turkey. Image credits: Derya Akkaynak, Justine J. Allen & Roger T. Hanlon.  
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By design, consumer cameras sample the electromagnetic spectrum narrowly, 
creating images of dimensions N x M x 3, and the parts of the spectrum they record data 
from are chosen to overlap with the sensitivities of the human visual system (Akkaynak 
et al. 2014; Stevens et al. 2007). Even when it is desired or acceptable to capture a 
photograph just in the visible range, there are a number of manual processing steps 
required before camera-dependent colors can be transformed into a camera-independent 
color space, which is a minimum requirement to facilitate repeatability of work by others 
in the context of scientific applications. In the field of animal coloration and camouflage, 
the limitations of consumer cameras and the need to manually process their images were 
generally overlooked until the work of Stevens et al. (2007), who emphasized that in-
camera processed photographs (e.g., images in jpg format) may contain artifacts that 
cannot be removed, compromising data quality. In this work, we expand their study that 
focused on consistency of colors captured with consumer cameras, and introduce a 
method to also increase the accuracy of color capture using consumer cameras. We call 
this method scene-specific color calibration, and describe it in detail in Chapter 2. 

To overcome the color limitations of consumer cameras, conventional 
spectrometers with optical fibers are frequently used in their place, or in tandem, to 
measure colors from an animal’s habitat, nest, eggs, body parts, skin, fur and plumage 
(Akkaynak 2014). Spectrometers sample the electromagnetic spectrum densely with the 
capability to record information outside of the visible range. However, the image they 
record is a single pixel big (i.e., has dimensions 1 x 1 x P), requiring multiple 
measurements on a carefully gridded setup, and a complex reconstruction scheme to 
capture spectra for the entire layout of a pattern. In addition, depending on the optical 
properties of a fiber, it may not be possible to resolve spectra from features that are very 
small without colors from neighboring features mixing in. For features that are large 
enough, recording uncontaminated spectra demands the positioning of the optical fiber as 
close as possible to surface being measured, without touching it. This is standard practice 
in laboratory setups but not easily accomplished in field studies because it is challenging 
to get the fiber very close to freely behaving animals in the wild. In Chapter 3, we 
investigate what kinds of camouflage assessment errors contaminated spectra can lead to 
if the surveyor fails to get very close to the feature being measured.  

Quantifying camouflage patterns 
Given a camouflage pattern, we would like to be able to determine which aspects 

of the visual background it may match, or which camouflage strategy it serves. This is 
not straightforward because quantitative models describing camouflage strategies do not 
exist. Mäthger and colleagues (2008) were to first to quantitatively analyze the color 
matching abilities of cuttlefish. They measured reflectance spectra from ten points on 
animals and background substrates in the laboratory and used normalized Euclidean 
distance to quantify spectral difference. They found that cuttlefish showed a better 
spectral match to natural substrates than they did for artificial substrates, but did not 
analyze the discriminability of colors according to the visual systems of predators. Chiao 
and colleagues (2011) also performed a color match assessment in the laboratory, but 
they used a hyper-spectral imager to capture body patterns. They modeled the visual 
systems of hypothetical predators and found that the colors cuttlefish produced were 
indistinguishable in the eyes of predators. In both studies, the natural substrates used 
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were sands and gravel. Cuttlefish live in habitats ranging from the Mediterranean to the 
coral reefs of West Africa, which have a diversity of background substrates that extend 
beyond sands and gravel including three-dimensional elements like sea grass, pinna, 
rocks, boulders, etc. We advanced existing work by travelling to one of the natural 
habitats of cuttlefish in the Aegean Sea and conducting the first in situ spectroscopic 
survey of color and luminance from cuttlefish skin and substrates from that habitat. Then, 
we calculated color and luminance contrast using the Vorobyev-Osario receptor noise 
model (Vorobyev and Osorio 1998), which allowed us to assess the discriminability of 
colors in the eyes of hypothetical di- and tri-chromat predators (Chapter 4). In this field 
study, we focused only on quantifying spectral discriminability, omitting spatial 
configurations of body patterns, which we investigate in Chapter 5. 

To compare one camouflage pattern with another and quantify the differences 
between them, it is important to use a dataset that is free of instrument bias, and an 
analysis method that does not contain subjective judgments. To facilitate repeatability of 
our work by others, prior to our analysis of overall camouflage patterns, we created 
Cuttlefish72x5, the first database consisting of linear images of camouflaged cuttlefish. It 
was important to establish this database before asking biological camouflage questions 
because previous work describing animal patterns and coloration often based their 
analyses on images in jpg format. Such images are standard outputs of consumer cameras 
and have been processed and compressed in ways that they no longer maintain a linear 
relationship to scene radiance (Stevens et al. 2007; Akkaynak et al. 2014). This means 
that they may not accurately represent the pattern that was photographed. In addition, 
earlier studies that describe camouflage patterns involved subjective judgments by human 
observers. While assessments of patterns by human observers is quick and does not 
require any specialized instruments, it is inherently subjective and the resulting 
qualitative descriptions often vary between observers, causing low repeatability (Stevens 
2011). Thus, camera bias and processing artifacts were minimized for the images in our 
database, facilitating repeatability of our results by other researchers. Based on the 
images in the Cuttlefish72x5 database, we focused on three aspects of cuttlefish 
camouflage patterns and used computational methods to investigate them: the 
relationship between the level of expression of components in terms of intensity and 
mottleness; the structure of the camouflage pattern space (e.g., do patterns form discrete 
clusters or a continuum), and whether cuttlefish can show all of the patterns they are 
theoretically capable of producing. These questions are investigated in detail in Chapter 
5. 
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Figure 1.2 While there is no widespread consensus on the definitions of biological camouflage, Stevens 
and Merilaita (2009) provide the most comprehensive set of descriptions, which we adopt in this 
work. (a) Background matching by cuttlefish (b) Counter-shaded grey reef shark (c) Obliterative 
shading makes one of the two decoy ducks in this photograph disappear (on the right, practically 
invisible) while the non-countershaded on the left is visible (d) Disruptive pattern of a panda bear (e) 
The patterning of the common European viper might trigger a flicker-fusion illusion (f) False eye 
spots serve as distractive markings on this brush-footed butterfly. Image credits: (a): Hanlon Lab, 
(b)-(f): Wikipedia. 
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Chapter 2 

Unbiased data acquisition: Commercial-off-the-shelf digital 
cameras1  

2.1 Introduction 
State-of-the-art hardware, built-in photo enhancement software, waterproof 

housings and affordable prices enable widespread use of commercial off-the-shelf 
(COTS) digital cameras in research laboratories. However it is often overlooked that 
these cameras are not optimized for accurate color capture, but rather for producing 
photographs that will appear pleasing to the human eye when viewed on small gamut and 
low dynamic range consumer devices (Chakrabarti et al. 2009; Seon Joo et al. 2012). As 
such, use of cameras as black-box systems for scientific data acquisition, without 
knowledge and control of how photographs are manipulated inside, may compromise 
data quality and in turn, hinder repeatability. For example, a common color-sensitive use 
of consumer cameras is in the field of animal coloration and camouflage (Stevens et al. 
2007; Pike 2011b). How well do the colors from the skin of a camouflaged animal match 
the colors in a particular background? For an objective analysis of this question, the 
photograph of the animal taken by a researcher using a certain make and model COTS 
camera should be reproducible by another researcher using a different camera. This is not 
straightforward to accomplish because each camera records colors differently, based on 
the material properties of its sensor, and built-in images processing algorithms are often 
make and model specific, and proprietary. Thus, for scientific research, manual 
processing of COTS camera images to obtain device-independent photographs is crucial. 
In this chapter, we explore the following question: what are the pre- and post-image 
acquisition steps necessary so color capture using COTS cameras is consistent and 
accurate enough to yield photographs that can be used as scientific data? Our goal is to 
identify the limitations of COTS cameras for color imaging and streamline the manual 
processing steps necessary for their use as consistent and accurate scientific data 
acquisition instruments. 

A consumer camera 
photograph is considered 
unbiased if it has a known 
relationship to scene 
radiance. This can be a 
purely linear relationship, 
or a non-linear one where 
the non-linearities are 
precisely known and can be 
inverted. A linear relationship to scene radiance makes it possible to obtain device-
independent photographs that can be quantitatively compared with no knowledge of the 
original imaging system. Raw photographs recorded by many cameras have this desired 
property (Chakrabarti et al. 2009), whereas camera-processed images, most commonly 

1 Parts of this chapter were previously published. See (Akkaynak et al. 2014) for full 
reference. 

 
Figure 2.1 Basic image-processing pipeline in a consumer camera. 
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images in jpg format, do not. For scientific research, obtaining device-independent 
photographs is crucial because each consumer camera records colors differently. Only 
after camera-dependent colors are transformed to a standard, camera-independent color 
space, researchers using different makes and/or models of cameras can reproduce them. 

When pixel intensities in photographs are to be used as scientific data, it is 
important to use raw images, and manually process them, controlling each step, rather 
than using camera-processed images. In-camera processing introduces non-linearities 
through make and model-specific and often proprietary operations that alter the color, 
contrast and white balance of images. These images are then transformed to a non-linear 
RGB space, and compressed in an irreversible fashion (Figure 2.1). Compression, for 
instance, creates artifacts that can be so unnatural that they may be mistaken for cases of 
image tampering (Figure 2.2) (Farid 2011). As a consequence, pixel intensities in 
consumer camera photographs are modified such that they are no longer linearly related 
to scene radiance. Models that approximate raw (linear) RGB from non-linear RGB 
images (e.g., sRGB) exist, but at their current stage they require a series of training 
images taken under different settings and light conditions as well as ground-truth raw 
images (Seon Joo et al. 2012). 

 

  

 
Figure 2.2 (a) An uncompressed image. (b) Artifacts after jpg compression: 1) grid-like 
pattern along block boundaries 2) blurring due to quantization 3) color artifacts 4) jagged 
object boundaries. Photo credit: Dr. Hany Farid. Used with permission.  
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2.2 Background and related work 
The limitations and merit of COTS cameras for scientific applications have 

previously been explored, albeit disjointly, in ecology (Levin et al. 2005), environmental 
sciences (De La Barrera and Smith 2009), systematics (McKay 2013), animal coloration  
(Stevens et al. 2007), dentistry (Wee et al. 2006) and underwater imaging (Åhlén 2005; 
Akkaynak et al. 2011). Stevens et al. (Stevens et al. 2007) wrote:  

 
“... most current applications of digital photography to studies of animal 

coloration fail to utilize the full potential of the technology; more commonly, they yield 
data that are qualitative at best and uninterpretable at worst”.  

 
Our goal is to address this issue and make COTS cameras accessible to 

researchers from all disciplines as proper data collection instruments. We focus on two 
aspects of color capture using consumer cameras: consistency (Ch. 2.3-2.7) and accuracy 
(Ch. 2.8). Calibration of consumer cameras through imaging photographic calibration 
targets (i.e., camera characterization) is a technique well known to recreational and 
professional photographers for obtaining consistent colors under a given light source. 
Researchers in fields like image processing, computer vision and computational 
photography also frequently use this technique (Szeliski 2010; Shirley et al. 2009; Pharr 
and Humphreys 2010; Joshi and Jensen 2004). However, in the field of animal coloration, 
the limitations of consumer cameras and the need to manually calibrate them were 
generally overlooked until the work of Stevens et al. (2007), who emphasized that in-
camera processed photographs (e.g., images in jpg format) may contain artifacts that 
cannot be removed, compromising data quality. In the first part of this chapter, we review 
and streamline the necessary manual processing steps described by Stevens et al. (2007) 
and others.  

In Chapter 2.8, we introduce the idea of scene-specific color calibration and show 
that it improves color transformation accuracy when a non-ordinary scene is 
photographed. We define an ordinary scene as one that has colors that are within the 
gamut of a commercially available color calibration target. Color transformation, which 
we describe in detail in Chapter 2.7, is done through a transformation matrix that maps 
device-specific colors to a standard, device-independent space based on known, 
manufacturer-specified chromatic properties of calibration target patches. This 
transformation matrix is generally computed through solving a system of equations with 
using linear least squares regression. Previous work that focused on increasing color 
transformation accuracy used standard, off-the-shelf calibration targets and investigated 
methods other than linear least squares regression to minimize the error between captured 
and desired RGB values. Examples of methods used include non-linear regression 
(Westland and Ripamonti 2004), constrained least squares regression (Finlayson and 
Drew 1997), neural networks (Cheung et al. 2004) and interpolation (Johnson 1996). Our 
approach differs from existing work in that we use the simplest mathematical solution to 
the system of equations that describe the color transformation (i.e., linear least squares 
regression), and derive the desired set of RGB value directly from features in the scene 
instead of commercial photographic calibration targets.  

Even though our work is motivated by accurate capture of colors from 
camouflage patterns of animals, our methodology is applicable to problems in all fields of 
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science consumer cameras are used; we demonstrate this in Chapter 2.9 using real 
scientific problems. Throughout this work, “camera” will refer to “COTS digital 
cameras”, also known as “consumer,” “digital still,” “trichromatic” or “RGB” cameras. 
Any references to RGB will mean “linear RGB” and non-linear RGB images or color 
spaces will be explicitly specified as such. 

2.3 Color imaging with COTS cameras 
Color vision in humans (and other animals) is used to distinguish objects and 

surfaces based on 
their spectral 
properties. Normal 
human vision is 
trichromatic; the 
retina has three cone 
photoreceptors 
referred to as short (S, 
peak 440 nm), 
medium (M, peak 545 
nm) and long (L, peak 
580 nm). Multiple 
light stimuli with 
different spectral 
shapes evoke the 
same response. This 
response is 
represented by three 
scalars known as tri-stimulus values, and stimuli that have the same tri-stimulus values 
create the same color perception (Wyszecki and Stiles 2000). Typical cameras are also 
designed to be trichromatic; they use color filter arrays on their sensors to filter 
broadband light in the visible part of the electromagnetic spectrum in regions humans 
perceive as red (R), green (G) and blue (B). These filters are characterized by their 
spectral sensitivity curves, unique to every make and model (Figure 2.4). This means that 
two different cameras record different RGB values for the same scene.  

Human photoreceptor spectral sensitivities are often modeled by the color 
matching functions defined for the 2° observer (foveal vision) in the CIE 1931 XYZ 
color space. Any color space that has a well-documented relationship to XYZ is called 
device-independent (Reinhard et al. 2008). Conversion of device-dependent camera 
colors to device-independent color spaces is the key for repeatability of work by others; 
we describe this conversion in Ch. 2.7 & 2.8. 

2.4 Image formation principles 
The intensity of light recorded at a sensor pixel is a function of the light that 

illuminates the object of interest (irradiance, Figure 2.5), the light that is reflected from 
the object towards the sensor (radiance), the spectral sensitivity of the sensor and optics 
of the imaging system: 

 

 
Figure 2.3 The workflow proposed for processing raw images. Consumer 
cameras can be used for scientific data acquisition if images are captured 
in raw format and processed manually so that they maintain a linear 
relationship to scene radiance. 
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Ic = k(γ)cosθi ∫ Sc(λ)Li(λ)F(λ, θ)dλλmax
λmin

.                                    (2.1) 
 
Here c is the color channel (e.g., R, G, B), Sc(λ) is the spectral sensitivity of that 

channel, Li(λ) is the irradiance, F(λ,θ) is the bi-directional reflectance distribution 
function and λmin and λmax denote the lower and upper bounds of the spectrum of 
interest, respectively (Szeliski 2010). Scene radiance is given by:  

 
  Lr(λ) = Li(λ)F (λ,θ) cosθi                   (2.2) 

 
where F(λ,θ) is dependent on the incident light direction as well as the camera viewing 
angle where θ = (θi,ϕi, θr,ϕr). The function k(γ) depends on optics and other imaging 
parameters and the cosθi term accounts for the changes in the exposed area as the angle 
between surface normal and illumination direction changes. Digital imaging devices use 
different optics and sensors to capture scene radiance according to these principles (Table 
1). 

 
Table 1 Comparison of basic properties of color imaging devices 

Device Spatial Spectral Image Size Cost 
Spectrometer ⤫ ✓ 1 × p ≥ $2,000 
COTS camera ✓ ⤫ n × m × 3 ≥ $200 

Hyperspectral 
imager ✓ ✓ n × m × p ≥ $20,000 

 

2.5 Demosaicing  
 In single-sensor cameras the raw image is a two dimensional array (Figure 2.6a, 
inset). At each pixel, it contains intensity values that belong to one of R, G or B channels 
according to the mosaic layout of the filter array. Bayer Pattern is the most commonly 
used mosaic. At each location, the two missing intensities are estimated through 
interpolation in a process called demosaicing (Ramanath et al. 2002). The highest quality 
demosaicing algorithm available should be used regardless of its computation speed 
(Figure 2.6), because speed is only prohibitive when demosaicing is carried out using the 
limited resources in a camera, not when it is done by a computer. 

 
Figure 2.4 Human color matching functions for the CIE XYZ color space for 2° observer 
and spectral sensitivities of two cameras; Canon EOS 1Ds mk II and Nikon D70. 
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2.6 White balancing  
In visual perception and color reproduction, white has a privileged status 

(Finlayson and Drew 1997). This is because through a process called chromatic 
adaptation our visual system is able to discount small changes in the color of an 
illuminant, effectively causing different lighting conditions to appear “white” (Reinhard 
et al. 2008). For example, a white slate viewed underwater would still be perceived as 
white by a SCUBA diver, even though the color of the ambient light is likely to be blue 
or green, as long as the diver is adapted to the light source. Cameras cannot adapt like 
humans, and therefore cannot discount the color of the ambient light. Thus, photographs 
must be white balanced to appear realistic to a human observer. White balancing often 
refers to two concepts that are related but not identical: RGB equalization and chromatic 
adaptation transform (CAT), described below. 

In scientific imaging, consistent capture of scenes often has more practical 
importance than capturing them with high perceptual accuracy. White balancing as 

 
Figure 2.5 (a) Irradiance of daylight at noon (CIE D65 illuminant) and noon daylight 
on a sunny day recorded at 3 meters depth in the Aegean Sea. (b) Reflectance spectra 
of blue, orange and red patches from a Macbeth ColorChecker. Reflectance is the 
ratio of reflected light to incoming light at each wavelength and it is a physical 
property of a surface, unaffected by the ambient light field, unlike radiance. (c) 
Radiance of the same patches under noon daylight on land and (d) underwater. 
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described here is a linear operation modifies photos so they appear “natural” to us. For 
purely computational applications in which human perception does not play a role, and 
therefore a natural look is not necessary, white balancing can be done using RGB 
Equalization, which has less perceptual relevance than CAT, but is simpler to implement 
(see examples in Ch. 2.9). Here, we describe both methods of white balancing and leave 
it up to the reader to decide which method to use. 

 
2.6.1 Chromatic Adaptation Transform (CAT) 

Also called white point conversion, CAT models approximate the chromatic 
adaptation phenomenon in humans, and have the general form: 

 

 𝑉destination𝑋Y𝑍 =  [𝑀𝐴]−1 �
𝜌𝐷/𝜌𝑆 0 0

0 𝛾𝐷/𝛾𝑠 0
0 0 𝛽𝐷/𝛽𝑆

� [𝑀𝐴]𝑉source𝑋𝑌𝑍           (2.3) 

 
where VXYZ denotes the 3 × N matrix of colors in XYZ space, whose appearance is to be 
transformed from the source illuminant (S) to the destination illuminant (D);  MA is a 3×3 
matrix defined uniquely for the CAT model and ρ, γ and β represent the tri-stimulus 
values in the cone response domain and are computed as follows: 

                       �
𝜌
𝛾
𝛽
�
i

=  [𝑀𝐴][𝑊𝑃]i𝑋𝑌𝑍       𝑖 = 𝑆,𝐷                                                        (2.4) 

Here, WP is a 3×1 vector corresponding to the white point of the light source. The most 
commonly used CAT models are Von Kries, Bradford, Sharp and CMCCAT2000. The 
𝑀𝐴 matrices for these models can be found in (Süsstrunk et al. 2000).  

2.6.2 RGB Equalization 
RGB equalization, often termed the “wrong von Kries model” (Westland and 

Ripamonti 2004), effectively ensures that the R,G and B values recorded for a gray 
calibration target are equal to each other. For a pixel 𝑝 in the 𝑖𝑡ℎ color channel of a linear 
image, RGB equalization is performed as: 
 

 
Figure 2.6 (a) An original scene. Inset at lower left: Bayer mosaic. (b) Close-ups of 
marked areas after high-quality (adaptive) and (c) after low-quality (non-adaptive) 
demosaicing. Artifacts shown here are zippering on the sides of the ear and false colors 
near the white pixels of the whiskers and the eye. 
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𝑝𝑖WB =  𝑝𝑖−𝐷𝑆𝑖
𝑊𝑆𝑖− 𝐷𝑆𝑖

      i  =  R, G, B         (2.5) 
 
where 𝑝𝑖WB is the intensity of the resulting white balanced pixel in the 𝑖𝑡ℎ channel, and 
𝐷𝑆𝑖 and 𝑊𝑆𝑖 are the values of the dark standard and the white standard in the 𝑖𝑡ℎ 
channel, respectively. The dark standard is usually the black patch in a calibration target, 
and the white standard is a gray patch with uniform reflectance spectrum (often, the white 
patch). A gray photographic target (Figure 2.7) is an approximation to a Lambertian 
surface (one that appears equally bright from any angle of view) and has a uniformly 
distributed reflectance spectrum. On such a surface the RGB values recorded by a camera 
are expected to be equal; but this is almost never the case due to a combination of camera 
sensor imperfections and spectral properties of the light field (Westland and Ripamonti 
2004); RGB equalization compensates for that. 

2.7 Color transformation  
Two different cameras record different RGB values for the same scene due to 

differences in color sensitivity. This is true even for cameras of the same make and model 
(Stevens et al. 2007). Thus, the goal of applying a color transformation is to minimize 
this difference by converting device-specific colors to a standard, device-independent 
space (Figure 2.8). Such color transformations are constructed by imaging calibration 
targets. Standard calibration targets contain patches of colors that are carefully selected to 
provide a basis to the majority of natural reflectance spectra. A transformation matrix T 
between camera color space and a device-independent color space is computed as a linear 
least squares regression problem: 
 
   𝑉ground truth

XYZ = 𝑇𝑉linearRGB            (2.6) 

 
Figure 2.7 (a) Examples of photographic calibration targets. Top to bottom: Sekonik 
Exposure Profile Target II, Digital Kolor Kard, Macbeth ColorChecker (MCC), 
ColorChecker Digital. (b) Reflectance spectra (400-700nm) of SpectralonTM targets 
(black curves, prefixed with SRS-), gray patches of the MCC (purple), and a white sheet 
of printer paper (blue). Note that MCC 23 has a flatter spectrum than the white patch 
(MCC 19). The printer paper is bright and reflects most of the light, but it does not do so 
uniformly at each wavelength. 
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Here, 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑋𝑌𝑍  and 𝑉𝑙𝑖𝑛𝑒𝑎𝑟𝑅𝐺𝐵  are 3 ×  𝑁 matrices where N is the number of patches in 
the calibration target. The ground truth XYZ tri-stimulus values 𝑉𝑔𝑟𝑜𝑢𝑛d truth

𝑋𝑌𝑍  can either 
be the published values specific to that chart, or they could be calculated from measured 
spectra (Ch. 2.7). The RGB values 𝑉𝑙𝑖𝑛𝑒𝑎𝑟𝑅𝐺𝐵  are obtained from the linear RGB image of the 
calibration target. Note that the published XYZ values for color chart patches can be used 
only for the illuminants that were used to construct them (e.g., CIE illuminants D50 or 
D65); for other illuminants a white point conversion (Eq. 2.3&2.4) should first be 
performed on linear RGB images.  

 
The 3 ×  3 transformation matrix T (see (Westland and Ripamonti 2004) for 

other polynomial models) is then estimated from Eq. 2.6: 
 

   𝑇 = 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
𝑋𝑌𝑍 [𝑉𝑙𝑖𝑛𝑒𝑎𝑟𝑅𝐺𝐵 ]+              (2.7) 

 
where the superscript + denotes the Moore-Penrose pseudo-inverse of the matrix 𝑉𝑙𝑖𝑛𝑒𝑎𝑟𝑅𝐺𝐵 . 
This transformation T is then applied to a white-balanced novel image I𝑙𝑖𝑛𝑒𝑎𝑟𝑅𝐺𝐵 : 
 
   𝐼correctedXYZ = 𝑇𝐼linearRGB             (2.8) 
 
to obtain the color-corrected image 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑋𝑌𝑍 , which is the linear, device-independent 
version of the raw camera output. The resulting image 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑋𝑌𝑍  needs to be converted to 
RGB before it can be displayed on a monitor. There are many RGB spaces and one that 
can represent as many colors as possible should be preferred for computations (e.g., 
Adobe wide gamut) but when displayed, the image will eventually be shown within the 
boundaries of the monitor’s gamut.  

In Eq. 2.6, we did not specify the value of N, the number of patches used to derive 
the matrix T. Commercially available color targets vary in the number of patches they 
have, ranging between tens and hundreds. In general, higher number of patches used does 
not guarantee an increase in color transformation accuracy. Alsam and Finlayson (Alsam 

 
Figure 2.8 Chromaticity of Macbeth ColorChecker patches captured by two cameras, 
whose sensitivities are given in Fig. 5 in device-dependent and independent color 
spaces. 
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and Finlayson 2008) found that 13 of the 24 patches of a Macbeth ColorChecker (MCC) 
are sufficient for most transformations. Intuitively, using patches whose radiance spectra 
span the subspace of those in the scene yields the most accurate transforms; we 
demonstrate this in Figure 2.10. Given a scene that consists of a photograph of a MCC 
taken under daylight, we derive T using an increasing number of patches (1-24 at a time) 
and compare the total color transformation error in each case. We use the same image of 
the MCC for training and testing because this simple case provides a lower bound on 
error. We quantify total error using: 

 
e = 1

𝑁
∑ �(𝐿𝑖 − 𝐿𝐺𝑇)2 + (𝐴𝑖 − 𝐴𝐺𝑇)2 + (𝐵𝑖 − 𝐵𝐺𝑇)2𝑁
𝑖=1           (2.9) 

 
where an 𝐿𝐴𝐵 triplet is the representation of an XYZ triplet in the CIE LAB color space 
(which is perceptually uniform); i indicates each of the N patches in the MCC and GT is 

the ground-truth value for the corresponding patch. Initially, the total error depends on 
the ordering of the color patches. Since it would not be possible to simulate 24! (6.2045 × 
1023) different ways the patches could be ordered, we computed error for three cases (see 
Figure 2.9 legend). Initial error is the highest for patch order 3 because the first six 
patches of this ordering are the achromatic and this transformation does poorly for the 
MCC, which is composed of mostly chromatic patches. Patch orderings 1 and 2 on the 
other hand, start with chromatic patches and the corresponding initial errors are roughly 
an order of magnitude lower. Regardless of patch ordering, the total error is minimized 
after the inclusion of the 18th patch.  
  

 
 

Figure 2.9 Using more patches for a color transformation does not guarantee increased 
transformation accuracy. In this example, color transformation error is computed after 1-24 
patches are used. There were many possible ways the patches could have been selected, only three 
are shown here. Regardless of patch ordering, overall color transformation error is minimized 
after the inclusion of the 18th patch. First six patches of orders 1 and 2 are chromatic and for order 
3, they are achromatic. The errors associated with order 3 are higher initially because the scene, 
which consists of a photo of a Macbeth ColorChecker, is mostly chromatic. Note that it is not 
possible to have the total error be identically zero even in this simple example due to numerical 
error and noise. 
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2.8 Scene-specific color calibration (SSCC) 
In Ch. 2.7, we outlined the process for building a 3 × 3 matrix T that transforms 

colors from a camera color space to the standard CIE XYZ color space. It is apparent 
from this process that the calibration results are heavily dependent on the choice of the 
calibration target, or 
the specific patches 
used. Then, we can 
hypothesize that if 
we had a calibration 
target that contained 
all the colors found 
in a given scene, 
and only those 
colors, we would 
obtain a color 
transformation with minimum error. In other words, if the colors used to derive the 
transformation T were also the colors used to evaluate calibration performance, the 
resulting error would be minimal – this is the goal of scene-specific color calibration.  

The color signal that reaches the eye, or camera sensor, is the product of 
reflectance and irradiance (Figure 2.5), i.e. radiance (Eq. 2.1&2.2). Therefore, how well a 
calibration target represents a scene depends on both the chromatic composition of the 
features in the scene (reflectance) and the ambient light profile (irradiance). For example, 
a scene viewed under daylight will appear monochromatic if it only contains different 
shades of a single hue, even though daylight is a broadband light source. Similarly, a 
scene consisting of an MCC will appear monochromatic when viewed under a narrow-
band light source even though the MCC patches contain many different hues.  

Consumer cameras carry out color transformations from camera-dependent color 
spaces (i.e. raw image) to camera-independent color spaces assuming that a scene 
consists of reflectances similar to those in a standard color target, and that the ambient 
light is broadband (e.g., daylight or one of common indoor illuminants), because most 
scenes photographed by consumer cameras have these properties. We call scenes that can 
be represented by the patches of a standard calibration target ordinary. Non-ordinary 
scenes, on the other hand, have features whose reflectances are not spanned by 
calibration target patches (e.g. in a forest there may be many shades of greens and browns 
that common calibration targets do not represent), or are viewed under unusual lighting 
(e.g. under monochromatic light). In the context of scientific imaging non-ordinary 
scenes may be encountered often; we give examples in Ch 2.9.  

For accurate capture of colors in a non-ordinary scene, a color calibration target 
specific to that scene is built. This is not a physical target that is placed in the scene as 
described in Ch. 2.7; instead, it is a matrix containing tri-stimulus values of features from 
that scene. Tri-stimulus values are obtained from the radiance spectra measured from 
features in the scene. In Figure 2.10 we show features from three different underwater 
habitats from which spectra, and in turn tri-stimulus values, can be obtained.  
Spectra are converted into tri-stimulus values as follows (Reinhard et al. 2008): 
 

𝑋𝑗 =  1
𝐾
∑ 𝑥𝚥,𝚤����𝑅𝑖𝐸𝑖𝑛
𝑖                     (2.10) 

 
Figure 2.10 Features from three different dive sites that could be used for 
scene-specific color calibration. This image first appeared in the December 
2012 issue of Sea Technology magazine. 

 30 



 
where 𝑋1 = 𝑋,𝑋2 = 𝑌,𝑋3 = 𝑍, and 𝐾 = ∑ 𝑦�𝐸𝑖𝑛

𝑖 . Here, 𝑖 is the index of the wavelength 
steps at which data were recorded, 𝑅𝑖 is the reflectance spectrum and 𝐸𝑖 the spectrum of 
irradiance; 𝑥𝚥,𝚤���� are the values of the CIE 1931 color matching functions 𝑥,𝑦, 𝑧 at the ith 
wavelength step, respectively.  

Following the calculation of the XYZ tri-stimulus values, Eq. 2.6-2.8 can be used 
as described in Ch. 2.7 to perform color transformation. However, for every feature in a 
scene whose XYZ values are calculated, a corresponding RGB triplet that represents the 
camera color space is needed. These can be obtained in two ways: by photographing the 
features at the time of spectral data collection, or by simulating the RGB values using the 
spectral sensitivity curves of the camera (if they are known) and ambient light profile. Eq. 
2.10 can be used to obtain the camera RGB values by substituting the camera spectral 
sensitivity curves instead of the color matching functions. In some cases, this approach is 
more practical than taking photographs of the scene features (e.g., under field conditions 
when light may be varying rapidly), however spectral sensitivity of camera sensors is 
proprietary and not made available by most manufacturers. Manual measurements can be 
done through the use of a monochromator (Nakamura 2005), a set of narrowband 
interference filters (Mauer and Wueller 2009), or empirically (Finlayson et al. 1998; 
Hong et al. 2001; Barnard and Funt 2002; Cheung et al. 2005; Jiang et al. 2013). 

 
 
 
 
  

 
Figure 2.11 Scene-specific color transformation improves accuracy. (a) A “non-ordinary” scene 
that has no chromaticity overlap with the patches in the calibration target. (b) Mean error after 
scene-specific color calibration (SSCC) is significantly less than after using a calibration chart. 
(c) An “ordinary” scene in which MCC patches span the chromaticities in the scene. (d) 
Resulting error between the MCC and scene-specific color transformation is comparable, but on 
average, still less for SSCC. 
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2.8.1 Scene-specific color calibration for non-ordinary scenes  
To create a non-ordinary scene, we used 292 natural reflectance spectra randomly 

selected from a floral reflectance database (Arnold et al. 2010), and simulated their 
radiance with the underwater light profile at noon shown in Figure 2.11a (scene 1). While 
this seems like an unlikely combination, it allows for the simulation of chromaticity 
coordinates (Figure 2.11a, black dots) that are vastly different than those corresponding 
to an MCC under noon daylight (Figure 2.11a, black squares), using naturally occurring 
light and reflectances. We randomly chose 50% of the floral samples to be in the training 
set for SSCC, and used the other 50% as a novel scene for testing. When this novel scene 
is transformed using an MCC, the mean error according to Eq. 2.9 was 23.8 and with 
SSCC, it was 1.56 (just noticeable difference threshold is 1). We repeated this 
transformation 100 times to ensure test and training sets were balanced and found that the 
mean error values remained similar. Note that the resulting low error with SSCC is not 
due to the high number of floral samples used (146) in training for SSCC, compared to 
only 24 patches in a MCC. Repeating this analysis with a training set of only 24 
randomly selected floral samples did not change results significantly. 
 
2.8.2 Scene-specific color calibration for ordinary scenes  

We used the same spectra from scene 1 to build an ordinary scene (scene 2), i.e. a 
scene in which the radiance of the floral samples (Figure 2.11c, black dots) are spanned 
by the radiance of the patches of an MCC (Figure 2.11c, black squares). In this case, the 
average color transformation error using an MCC was reduced to 2.3; but it was higher 
than the error obtained using SSCC (Figure 2.11d), which was 1.73 when 24 patches 
were used for training, and 1.5 with 146 patches. 
 

Table 2 Summary of post-processing steps for raw images 

 
  

# Camera, Light Demosaic White balance Color transformation 

I Sony A700, Incandescent indoor 
light Adobe DNG 

converter 
Version 6.3.0.79 
(for list of other 
raw image 
decoders, see  
http://www.cyber
com.net/~dcoffin/
dcraw/) 
 

4th gray & black in 
MCC 
Eq. 5 

None - analysis in the 
camera color space 

II Canon EOS 1Ds Mark II, 
Daylight MCC and SSCC 

III Canon Rebel T2, Low-pressure 
sodium light 

White point of 
ambient light 
spectrum 
Eq. 5&10 
 

None - analysis in the 
camera color space 

IV 
 
 

Canon EOS 1Ds Mark II, 
Daylight SSCC 

V Canon EOS 5D Mark II, Daylight 
+ 2 DS160 Ikelite strobes 

4th gray& black in 
MCC 
Eq. 5 

MCC 
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2.9 Examples of the use of COTS cameras for scientific imaging 
Imaging and workflow details for the examples in this section are given in Table 2. 
 
Example I – Using colors from a photograph to quantify temperature distribution on a 
surface (Figure 2.3 Steps: 1-3) 
With careful 
calibration, it is 
possible to use 
inexpensive cameras 
to extract reliable 
temperature readings 
from surfaces painted 
with temperature-
sensitive dyes, whose 
emission spectrum 
(color) changes when 
heated or cooled. 
Gürkan et al. (Gurkan et al. 2012) stained the channels in a microchip with thermo-
sensitive dye (Edmund Scientific, Tonawanda, NY; range 32°C - 41°C) and locally 
heated it one degree at a time using thermo-electric modules. At each temperature step a 
set of baseline raw (linear RGB) photographs were taken. Then, novel photographs of the 
chip (also in raw format) were taken for various heating and cooling scenarios. Each 
novel photograph was white balanced using the calibration target in the scene (Figure 
2.12). Since all images being compared were acquired with the same camera, colors were 
kept in the camera color space and no color transformation was applied. To get the 
temperature readings, colors along the microchip channel were compared to the baseline 
RGB values using the ∆𝐸2000 metric (Luo et al. 2001) and were assigned the temperature 
of the nearest baseline color. 
 
Example II: Use of inexpensive COTS cameras for accurate artwork photography  
(Figure 2.3 Steps 1-4) 
Here, we quantify the error associated with using a standard calibration target (vs. SSCC) 
for imaging an oil painting (Figure 2.13). Low-cost, easy-to-use consumer cameras and 
standard color calibration targets are often used in artwork archival; a complex and 
specialized application to which many fine art and cultural heritage institutions allocate 
considerable resources. Though many museums in the Unites States have been using 
digital photography for direct capture of their artwork since the late 1990s (Rosen and 
Frey 2005), Frey and colleagues (Frey and Farnand 2011) found that some institutions 
did not include color calibration targets in their imaging workflows at all. For this 
example, radiance from 36 points across the painting were measured, and it was found 
that their corresponding tri-stimulus values were within the span of the subspace of the 
MCC patches under identical light conditions, i.e. an ordinary scene. The MCC-based 
color transformation yielded an average ∆𝐸2000 value of 0.21, and 0.22 for SSCC, both 
below the just noticeable difference threshold of 1. However, the average error was 31.77 
for the jpg output produced by the camera, used in auto setting. For this ordinary scene, 
there was no advantage to be gained from SSCC and the use of a standard calibration 

 
Figure 2.12 Temperature distribution along the microchip channel which is 
locally heated to 39°C (colored region) while the rest was kept below 32°C 
(black region). 

 33 



target with the workflow in Figure 2.3 significantly improved color accuracy over the in-
camera processed image.  
 

Example III – Capturing photographs under monochromatic low pressure sodium light 
(Figure 2.3 Steps 1-3) 
A monochromatic light spectrum E can be approximated by an impulse centered at the 
peak wavelength 𝜆𝑝 as 𝐸 =  𝐶 ∙ 𝛿 (𝜆 − 𝜆𝑝) where C is the magnitude of intensity, and 𝛿 
is the Dirac delta function whose value is zero everywhere except when λ =  𝜆𝑝. When 
𝜆 =  𝜆𝑝, 𝛿 = 1. It is not trivial to capture monochromatic scenes using COTS cameras 
accurately, because they are optimized for use with indoor and outdoor broadband light 
sources. We used low-pressure sodium light (𝜆𝑝 = 589 𝑛𝑚) to investigate the effect of 
color (or lack of) on visual perception of the material properties of objects. Any surface 
viewed under this light source appears as a shade of orange because 𝑥3 =  𝑧 = 0 at 
𝜆 = 589 𝑛𝑚 for the CIE XYZ human color matching functions (also for most consumer 
cameras), and in turn, 𝑋3 =  𝑍 = 0 at 𝜆 = 589 𝑛𝑚  (Eq. 2.10). Subjects were asked to 
view real textiles once under sodium light and once under broadband light and answer 
questions about their material properties. The experiment was then repeated using 
photographs of the same textiles. To capture the appearance of colors under sodium light 
accurately, its irradiance was recorded using a spectrometer fitted with an irradiance 
probe. Then, the tri-stimulus values corresponding to its white point were calculated and 
used for RGB-equalization of linear novel images. Due to the monochromatic nature of 
the light source, there was no need to also apply a color transformation; adjusting the 
white point of the illuminant in the images ensured that the single hue in the scene was 
mapped correctly. The white point of the illuminant was indeed captured incorrectly 
when the camera was operated in auto mode, and the appearance of the textiles was 
noticeably different (Figure 2.14). 
 

 
Figure 2.13 Example II: Use of inexpensive COTS cameras for accurate artwork photography.  
(a) An oil painting under daylight illumination. (b) Thirty-six points from which ground truth 
spectra were measured. (b) Chromatic loci of the ground truth samples compared to Macbeth 
ColorChecker patches, under identical illumination. (d) sRGB representation of the colors used 
for scene-specific calibration. Artwork: Fulya Akkaynak. 
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Example IV: In situ capture of a camouflaged animal and its habitat underwater (Figure 
2.3 Steps 1-4) 
Imaging underwater is challenging because light is fundamentally different from what we 
encounter on land (Figure 
2.5) and each underwater 
habitat is different from 
another in terms of the 
colorfulness of substrates 
(Figure 2.10). Thus, there 
is no global color chart 
that can be used across 
underwater environments, 
making underwater 
scenes (except for those 
very close to the surface) 
non-ordinary scenes. The 
majority of underwater 
imaging falls into three 
categories motivated by 
different requirements: 
(1) using natural light to 
capture a scene exactly 
the way it appears at a 
given depth (2) using 
natural light to capture an underwater scene but post-processing to obtain its appearance 
on land and (3) introducing artificial broadband light, (e.g., (Vasilescu 2009), in situ to 
capture the scene as it would have appeared on land (Example V). Here we give an 
example for case (1): capture of the colors of the skin of a camouflaged animal exactly 
the way an observer in situ would have seen them. For this application, we surveyed a 
dive site and built a database of substrate reflectance and light spectra (Akkaynak et al. 
2013). Novel (raw) images taken at the same site were white balanced to match the white 
point of the ambient light. We then used the spectral database built for this dive site for 
SSCC (Figure 2.15). The green hue in the resulting images may appear unusual for two 

 
Figure 2.15 Example IV In situ capture of (a) an underwater habitat and 
(b) a camouflaged cuttlefish using scene-specific color calibration with 
features similar to those shown in Fig. 10 for Urla, Turkey. (c) and (d) 
are jpg outputs directly from the camera operated in auto mode and have 
a visible red tint as a consequence of in-camera processing. 

 
 

Figure 2.14 Example III Capturing photographs under monochromatic low-pressure 
sodium light. (a) A pair of fabrics under broadband light. (b) A jpg image taken with the 
auto settings of a camera, under monochromatic sodium light. (c) Image processed using 
scene-specific color calibration according to the flow in Figure 2.3. 
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reasons. First, a light-adapted human diver may not have perceived that green color in 
situ due to color constancy and therefore may not remember the scene to appear that way. 
Second, most professional underwater photographs we are familiar with are either post-
processed to appear less green (case 2), or they are taken with strobes that introduce 
broadband light to the scene to cancel the green appearance before image capture (case 
3). This kind of processing is indeed similar to the processing that may be performed by a 
COTS camera; the camera will assume a common land light profile (unless it is being 
operated in a pre-programmed underwater mode), ignorant of the long-wavelength 
attenuated ambient light, and this will result in boosting of the red channel pixel values.  
 
Example V: Consistent underwater color correction across multiple images (Figure 2.3 
Steps: 1-4) 
Repeated consistent 
measurements are the 
foundation of ecological 
monitoring projects. In 
the case of corals, color 
information can help 
distinguish between 
different algal functional 
groups, or even establish 
coral health change 
(Siebeck et al. 2006). 
Until now, several color 
correction targets were 
used for coral monitoring 
(Winters et al. 2009), but 
not tested for consistency. To test our method’s performance for consistent color capture, 
we attached one color chart to the camera using a monopod, and placed another one 
manually in different locations in the field of view (Fig. 17). We tested several correction 
algorithms: automatic adjustment, white balancing and the algorithm presented in this 
paper (Fig. 3) and defined the error as consistency of the corrected color. For each of the 
M=35 patches in the N=68 corrected images, we calculated mean chromaticity as: 
𝑟𝑚��� = 1

𝑁
∑ 𝑟𝑚,𝑛
𝑁
𝑛=1   , 𝑔𝑚���� = 1

𝑁
∑ 𝑔𝑚,𝑛
𝑁
𝑛=1   ,   𝑚 = 1 …𝑀 where 𝑟 = 𝑅/(𝑅 + 𝐺 + 𝐵),𝑔 =

𝐺/(𝑅 + 𝐺 + 𝐵) and defined the patch error to be 𝐸𝑚 = 1
𝑁
∑ �(𝑟𝑚,𝑖,𝑔𝑚,𝑖) − (𝑟𝑚���,𝑔𝑚����)�𝑁
𝑖=1  

with total error as the average across all M patches. Our algorithm yielded the most 
consistent colors, opening the possibility for the use of color targets designed for land 
photography in marine ecology images. 
 
  

 
Figure 2.16 Example V Consistent underwater color correction. (a) Top 
row: six of the 68 raw images taken in clear water in Totoya reef, Fiji, 
before color correction; bottom row: after.  In each frame, the color 
chart on the left was used for calibration, and the one on the right for 
testing. (b) Average error for several color correction method for the 
calibration (blue) and the test (red) chart. Our method achieves the 
lowest error and is the only method to improve over the raw images of 
the test chart. 
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2.10 Conclusion 
Concepts discussed in this work are central topics in research fields such as 

applied optics, computational photography, optical imaging and colorimetry. While 
professional photographers and researchers in fields like computer vision frequently use 
raw images and calibration targets to transform device-dependent colors to a device-
independent space, the importance of manually calibrating consumer camera images has 
only recently become understood by animal biology scholars. We streamlined these 
calibration steps in a simple and direct manner to make them accessible to researchers 
from all areas, without assuming familiarity with imaging-related sciences or the 
technology behind consumer cameras.  

Four steps are necessary for the use of consumer cameras as consistent and 
accurate data acquisition instruments: raw image capture, demosaicing of the raw image, 
white balancing and color transformation (Figure 2.3). How each step of processing 
should be executed depends on the particular application; we have given examples in 
Chapter 2.9. When pixel intensity values are to be used as scientific data, at the very least 
an off-the-shelf calibration target should used to obtain consistent colors to allow for 
reproducibility of work by other researchers with no knowledge of the particular imaging 
instrument. If accurate color capture is also desired in addition to consistency, reflectance 
and irradiance spectra (the product of which yields radiance) collected from features from 
the scene can be used to obtain tristimulus values, forming the baseline for a scene-
specific calibration target. A scene-specific approach to color transformation is especially 
important when the scene contains objects whose chromaticities are vastly different from 
those in an average scene we encounter on land, or if it was viewed under a narrow-
broadband light, or both. In the case of a simulated underwater scene, we showed that 
color transform could be achieved with approximately a 20-fold reduction in error with 
scene-specific color calibration. 

We recognize that the methodology described here adds some complication to the 
very feature that makes COTS cameras popular – ease of use. To allow for easier 
adoption of the extra steps required and their seamless integration into research projects, 
we provide a toolbox of functions written in MATLAB programming language 
(Mathworks, Inc. Natick MA) available for download at the following link: 
http://www.mathworks.com/matlabcentral/fileexchange/42548 . For some steps in our 
workflow, knowing the spectral sensitivities of a specific camera is advantageous. 
Camera manufacturers do not provide these curves and the burden falls on the users to 
derive them. Carrying out a survey to collect spectral data from a site to perform scene-
specific color calibration requires the use of a spectroscopic imaging device, which adds 
to the overall cost of the study and may extend its duration. Yet, despite the extra effort 
required to calibrate them for scientific purposes, COTS cameras can have more utility 
than hyper-spectral imagers or spectrometers depending for applications requiring image 
capture in the visible range. 
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Chapter 3 

Unbiased data acquisition: Spectrometers2 

3.1 Introduction 
 In the field of animal coloration and camouflage, spectrometers with optical fibers 
are frequently used to measure colors from an animal’s habitat, nest, eggs, body parts, 
skin, fur and plumage (Table 3). Spectra measured from these features are then used in 
models that quantify color discriminability according to human or non-human visual 
systems. In terms of color capture, spectrometers have a clear advantage over consumer 
cameras (see Chapter 2) because they densely sample the electromagnetic spectrum, 
typically imaging between 70-100 bands, but often a thousand or more. In addition, they 
image outside the visible range, which most consumer cameras cannot. However, 
spectrometers collect data in a point-by-point fashion which means that they are not 
suitable for recording colors from textured surfaces, i.e. those with high frequency color 
or pattern elements. Even in the case of surfaces with solid colors and a carefully gridded, 
sequential data collection setup, the distance of the optical fiber to the sample, its 
diameter, numerical aperture and the measurement angle could affect the purity of the 
color signal recorded. If a spectral measurement is contaminated with neighboring colors, 
our assessment of the discriminability of that spectrum from another will no doubt be 
inaccurate. Given an optical fiber of known diameter and numerical aperture, and a body 
pattern feature of certain size, how can we quantify the degree of spectral contamination 
of our measurements?  

In general, it is known to researchers that measurements should be taken as close 
to the surface being measured as possible. For laboratory measurements, optical fibers are 
fixed inside probe holders that have machined 45 and 90-degree slots, securing the fiber 
at a distance that is nearly touching the sample at the desired angle. For spectroscopic 
measurements in the field, this is very difficult to establish; recording spectra closely 
from live animals is very challenging (Figure 3.1). In addition, ambient light conditions 
may change before a measurement is completed. The current standard for researchers 
conducting spectroscopic studies in the field is to report an estimate of the distance and 
angle of the optical fiber in their publications (Table 3). Inadvertently, not being able to 
get close enough to the animals, and then having to estimate the measurement distance 
results in errors regarding discriminability of colors for camouflage assessment. In this 
chapter, I develop an equation using geometrical optics that quantifies what these errors 
may be in the context of animal coloration. This equation depends only on the diameter 
and the numerical aperture of the optical fiber. Using the visual systems of a dichromatic 
ferret (Mustela putorious furo) and a trichromatic frog (Dendrobates pumilio), I test this 
equation on a pair of colors: (1) that have little spectral overlap simulating a conspicuous 
appearance, and (2) that have high spectral overlap simulating a camouflage pattern. 
Modeling a visual system that has one more photoreceptor than the di-chromat will help 
investigate how potential errors contaminated spectra cause translate into different 
assessments of color discriminability. 

2 Parts of this chapter was previously published. See (Akkaynak 2014) for full reference. 
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3.2 Background and related work 
One aspect of color vision is the ability to distinguish surfaces based on their 

spectral properties (Brainard 2001). In the field of animal biology, understanding animal 
color vision helps answer important scientific questions. For example, Maan and 
Cummings (Maan and Cummings 2008) found that for female poison frogs, the male’s 
dorsal color is the only factor determining their choice of a mate. In addition to sexual 
selection, animals use color vision for behavioral tasks including finding food, 
recognizing objects and communicating with members of the same species (Kelber et al. 
2003). To accurately capture and interpret how color signals are received, we must have a 
model of the observer animal’s visual system. Analyzing color signals from the point-of-
view of humans and making inferences about their appearances to animals often produces 
erroneous conclusions. For example Stoddard and Stevens (Stoddard and Stevens 2011) 
showed that some common cuckoo eggs (which are laid in nests of other species and 
often hatched and raised by unsuspecting host birds) appeared to have a good color match 
to the host eggs when viewed by humans, but had clear and quantifiable differences when 
modeled in avian color space. A detailed summary of how color signals can be modeled 
from the perspective of animals can be found in (Endler and Mielke Jr 2005). In this 
work, my focus is not on these models, but on the measurement of the color signals. 
Color is inherently difficult to measure objectively, because it is a sensation defined 
relative to the human visual system (Wyszecki and Stiles 2000). Visual systems of most 
other animals are different from our, and analyses from the perspective of other systems 
must start with unfiltered spectral data, encompassing the segment of the electromagnetic 
spectrum to which the animal is sensitive (see Chapter 2). Spectral information in a scene 
can most comprehensively be captured using a hyperspectral imager (Akkaynak et al. 
2014), which, for each pixel in its sensor, records a densely sampled portion of the 
electromagnetic spectrum. Despite providing spectral data for every pixel in an image, 
hyperspectral imagers are not commonly used in studies of animal coloration (or most 
other research fields). This is because they are still expensive, physically bulky, have low 
resolution, create large digital files and are not fast enough for imaging moving objects 
(i.e. animals in the wild). Although consumer digital cameras are inexpensive, fast, 
compact and widely available, they cannot serve as substitutes for hyperspectral imagers 
because they record spectral information with limited spectral resolution (Akkaynak et al. 
2014). Thus, spectrometers, which are effectively single-pixel hyperspectral imagers, 
provide a compact and affordable solution for animal coloration studies; some examples 
of recent studies measuring animal or habitat spectra and then modeling discriminability 
in the eyes of animal visual systems are given in Table 3. 

Most spectroscopic studies are conducted in laboratory settings using carefully 
designed optical benches. Key elements of these setups are fiber holders, which are 
essentially guides that ensure spectra from the sample are measured as close to its surface 
as possible without making contact. For free-hand spectroscopic measurements, how 
close the optical fiber should be held at, and at what angle, for a feature of known size 
has not previously been quantified; that is described next. 
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Table 3 Recent publications that assess the discriminability of colors relative based on 

measurements taken by spectrometers (partial list).  

Publication Fiber Distance & 
Angle 

Spectra Measured Visual 
System 
Modeled 

(Chiao et al. 2011)  Hyperspectral  
N/A 

European cuttlefish Fish 
 

(Isaac and Gregory 2013)  Spectrometer 
100 µm  
2 mm / 90∘ 

Western terrestrial 
garter snake 

Ferret, 
human, birds 

(Akkaynak et al. 2013) Spectrometer 
50 and 100 µm 
< 3 cm 

European cuttlefish Fish, human 

(Hanlon et al. 2013) 
  

Spectrometer 
400 µm 
2 cm  

Giant Australian 
cuttlefish 

Fish 

(Finkbeiner et al. 2012) 
  

Spectrometer 
400 µm 
45∘ 

Passion-vine 
butterflies 
 

Birds 
 

(Lind et al. 2013) Spectrometer 
1000 µm 
45∘ 

Blue tit  Birds 

(Maan and Cummings 2012) 
 

Spectrometer 
400 µm  
3mm/90∘  

Strawberry, poison 
frog 
 

Birds, crabs, 
snakes, frogs 

(Bybee et al. 2012) 
 

Spectrometer 
400 µm  
45∘ 

Heliconius butterfly Birds, 
butterflies 
 

(Cortesi and Cheney 2010) 
 

Spectrometer 
200 µm  
45∘ 

Marine opisthobranchs Fish 

(Langmore et al. 2009)  Spectrometer 
N/A 
45∘ 

Cuckoo eggshell Birds 

(Baldwin and Johnsen 2012) 
 

Spectrometer 
400 µm  
45∘ 

Blue crab Blue crab 
 

(Nokelainen et al. 2012) 
 

Spectrometer 
N/A 
45-90∘  

Wood tiger moth Blue tit 
 

(Stoddard et al. 2011) 
 

Spectrometer 
N/A 
45∘ 

Cuckoo eggs Birds 

(Siddiqi et al. 2004) 
 

Spectrometer 
N/A 
N/A 

Strawberry poison 
frogs 

Strawberry 
poison frogs 
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3.3 Finding optimal measurement distance and angle 
 An optical fiber is a waveguide that propagates rays through total internal 
reflection (Bass et al. 2009). It is a cylindrically symmetric cable with a core that has high 
refractive index, 𝑛𝑐𝑜𝑟𝑒, surrounded by cladding with low refractive index, 𝑛𝑐𝑙𝑎𝑑 (Figure 
3.2). Fibers are characterized by their numerical aperture (𝑁𝐴), which is defined relative 
to the refractive index of the medium of operation (𝑛𝑚𝑒𝑑) and the acceptance angle (𝜃0) 

as:  
 

𝑁𝐴 =  𝑛𝑚𝑒𝑑 ∙ sin𝜃0               (3.1) 
 
Acceptance angle is the largest incidence angle for incoming rays to undergo total 
internal reflection. The locus of all such rays is the cone of acceptance (shown in light 
gray in Figure 3.2). For most animal biology applications, the optical fiber is used in air 
(𝑛𝑚𝑒𝑑 ≈ 1), or water (𝑛𝑚𝑒𝑑 ≈ 1.33); the difference between fresh and salt water is 
usually ignored for practical purposes. 
 When the fiber is oriented along the Z-direction and is held at distance of d from a 
surface tilted at an angle α relative to the XY plane, the cross-section of the acceptance 
cone on the surface is an ellipse (Figure 3.2). In the trivial case when 𝛼 = 0, the plane 
will be parallel to the base of the cone, and intersection of the cone and the plane will be 
a circle. In the general case (derivation is given in Appendix), for a fiber with diameter 𝑑𝑓 
and NA, the elliptical cross section is in the form 
 

(𝑥−𝑥𝑐)2

𝑎2
+ (𝑦−𝑦𝑐)2

𝑏2
= 1,              (3.2) 

 
where  

(𝑥𝑐,𝑦𝑐) =  (0, 𝐻𝑆 tan𝛼
1/𝑡2−(tan𝛼)2

)       (3.3) 
  

 
Figure 3.1 (a) A SCUBA diver extending the optical fiber attached to a spectrometer (in 
water and pressure proof housing) to record the spectrum of light reflected from the skin 
of a cuttlefish, in Urla, Turkey. Getting the optical fiber close enough to take accurate 
measurements from freely behaving animals in the wild is challenging. Photo credit: 
Derya Akkaynak. (b) Spectral measurements of a specimen can be recorded in a 
laboratory by getting the fiber as close to the specimen as possible without touching it. 
Photo courtesy of M.C. Stoddard & K. Zyskowski, taken at the Ornithology Collections of 
the Peabody Museum of Natural History, Yale University, New Haven CT. 
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are the coordinates of the center of the ellipse, and 
 
𝑎2 =  𝐻𝑠2𝑡2

� 1
𝑡2
−(𝑡𝑎𝑛𝛼)2�

2        (3.4) 

 
and 

𝑏2 = 𝑎2
1
𝑡2
−(𝑡𝑎𝑛𝛼)2

.         (3.5) 

 
are the squares of the semi-major and semi-minor axes, respectively. Here, it can be 
shown from geometry that 𝑡 = 𝑅

𝐻
= tan(sin−1(𝑁𝐴/𝑛𝑚𝑒𝑑)). The height 𝐻𝑆 is measured 

from the apex of the cone to the intersection of the surface and the axis of the optical 
fiber (Figure 3.2) and is given by: 
 

𝐻𝑆 = 𝑑 + 𝑑𝑓
2 tan (sin−1(𝑁𝐴/𝑛𝑚𝑒𝑑))

                          (3.6) 
 

3.4 Application to animal color discrimination 
In this section, the 

effect of measurement distance 
and angle on the quality of the 
recorded spectral signals is 
investigated using the visual 
systems of a dichromatic ferret 
(Mustela putorious furo) and a 
trichromatic frog (Dendrobates 
pumilio). Fibers are assumed to 
have diameters 100, 400 and 
1000 𝜇𝑚 based on those 
commonly used (Table 3), with 
𝑁𝐴 = 0.22. The operation 
medium is air (𝑛𝑚𝑒𝑑 = 1) and 
the illuminant is CIE D65, 
which is a theoretical light 
spectrum that approximates noon daylight. Solid color patches of dimensions 4.1 𝑐𝑚 ×
4.1 𝑐𝑚 (the actual size of patches on a Macbeth ColorChecker, Xrite, Inc.) on a synthetic 
test target are used to simulate two test cases relevant to animal coloration: (1) colors 
expected to yield high contrast (i.e. a conspicuous animal) and (2) colors expected to 
yield low contrast (i.e. a camouflaged animal).  
 
 
 
  

 
Figure 3.2 Field of view of an optical fiber. 
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3.4.1 Synthetic test stimuli 
A synthetic multi-spectral test target was created to show the effect of sampling 

colors erroneously. The target was designed to have the same arrangement and patch size 
as a Macbeth ColorChecker, a standard in color calibration. Since Macbeth charts only 
provide tristimulus values, complete spectra from the METACOW project (Fairchild and 
Johnson 2004) were substituted for matching colors. The spectra were obtained by 
averaging the reflectance spectra of a 50 × 50 pixel region from the left half of each 
METACOW sample. The resulting stimulus is a hyperspectral calibration target with 
square patches of solid colors, each of which has reflectance spectra in the interval 400-
700 nm in 5 nm steps (Figure 3.3). 

For case (1), spectra from patches A and B (Figure 3.3) were chosen to represent 
a conspicuous animal’s pattern. The red and blue patches are expected to contrast highly 
for any visual system because they have little spectral overlap. To create a camouflaged 
animal that perfectly matches the colors of its background for case (2), the reflectance 
spectrum of patch A was copied onto the location of patch B, creating two neighboring 
patches that are identical. These patches would be expected to have minimal color 
contrast if the color was sampled without contamination from neighboring colors. Note 
that in both cases, there is black border between color patches (similar to the original 
Macbeth ColorChecker), which can affect the quality of the recorded signal. 

 
3.4.2 Mathematical similarity of two spectra 
 It is often useful to assess the similarity (or, dissimilarity) of two spectra without 
referencing a biological visual system (Akkaynak et al. 2013). In this paper, the 
mathematical dissimilarity between the pure and recorded version of a spectrum is used 
as an objective measure of contamination, which is quantified using the Spectral Angle 
Mapper (SAM) metric (Yuhas et al. 1992): 
 

𝜃𝑆𝐴𝑀 =  cos−1 𝑆𝐴
𝑇𝑆𝐵

‖𝑆𝐴‖‖𝑆𝐵‖
         (3.7) 

 
Here, spectra are treated as two high dimensional vectors (𝑆𝐴,𝑆𝐵). The angle between the 
vectors can be thought of a measure of alignment; the smaller the angle, the more similar 
the two spectra are in shape. This metric is insensitive to differences in magnitude. 
3.4.3 Modeling of color discriminability 

 
Figure 3.3 Test stimuli used for assessment of color discrimination for a conspicuous animal 

(case 1), and a camouflaged animal (case 2). (a). The synthetic hyperspectral test target has the 
same layout as the Macbeth ColorChecker shown here. Patches A and B are those selected to be 
highly contrasting with each other for case (1). For case (2), the reflectance of patch A is copied 

to the location of patch B, creating two patches with identical spectra next to each other, 
separated by a black border. (b) Reflectance spectra of patches A and B. 
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One of the methods frequently used to assess discriminability of colors in animal 
vision is the receptor noise model developed by Vorobyev and Osorio (Vorobyev and 
Osorio 1998). In the absence of perceptual thresholds for the visual systems of most 
animals, this model predicts color discriminability by assuming that thresholds are set by 
color opponency mechanisms whose performance is limited by receptor noise. For a 
visual system with n receptor channels, color is encoded with n-1 opponent mechanisms; 
the achromatic signal is disregarded and the relative proportion of each receptor 
determines the receptor noise. Similar to the CIE LAB-based distance metrics, two color 
stimuli are indistinguishable if the distance between them is one just noticeable difference 
(JND) or less. According to this model, color contrast (Δ𝑆) for a dichromat visual system 
is computed as follows (Chiao et al. 2011): 

 
(Δ𝑆)2 =  (Δ𝑄1−Δ𝑄2)2

𝑒12+𝑒22
       (3.8) 

and for a trichromat: 
 

(Δ𝑆)2 =  𝑒1
2(Δ𝑄3−Δ𝑄2)2+𝑒22(Δ𝑄3−Δ𝑄1)2+𝑒32(Δ𝑄1−Δ𝑄2)2

(𝑒1𝑒2)2+(𝑒1𝑒3)2+(𝑒2𝑒3)2       (3.9) 
 
where Δ𝑄𝑖 =  𝑄𝑖,𝑎 − 𝑄𝑖,𝑏 is the difference between the quantum catch 𝑄𝑖 of a stimuli a 
and b in the ith photoreceptor type. Quantum catch is found by  
 

𝑄𝑖 = 𝑘 ∫ 𝐼(𝜆)𝑅(𝜆)𝑆𝑖(𝜆)𝑑𝜆𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛 ,       (3.10) 

 
where 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 are the bounds of the light spectrum of interest, 𝐼(𝜆) is the 
spectrum of the incident light, 𝑅(𝜆) is the reflectance spectrum of the surface being 
measured, 𝑆𝑖(𝜆) is the spectral sensitivity of receptor type i, and k is the von Kries 
adaptation constant, which is set to unity for this paper. The 𝑒𝑖 in Eq. 3.8&3.9 represents 
noise in receptor type i and can be approximated using the Weber fraction (𝑤𝑖) (Chiao et 
al. 2011):  
 

𝑤𝑖 =  �0.05
�𝑛𝑖

��𝑛𝑙𝑤𝑠       (3.11) 

 
where 𝑛𝑖 is the estimate of the proportion of the ith wavelength sensitive cone (i.e. short, 
medium, or long) and 𝑛𝑙𝑤𝑠 is the estimate of the proportion of the long wavelength 
sensitive cones (Chiao et al. 2011).  

For the visual system parameters for the poison dart frog are taken from (Siddiqi 
et al. 2004)  (𝜆𝑚𝑎𝑥,𝑆,𝑀,𝐿 = 470, 489, 561 𝑛𝑚;  𝑛𝑙𝑤𝑠 = 4,𝑛𝑚𝑤𝑠 = 3,𝑛𝑠𝑤𝑠 = 1) and those 
for the ferret are from (Isaac and Gregory 2013)�𝜆𝑚𝑎𝑥,𝑆,𝐿 = 430, 558 𝑛𝑚;  𝑛𝑙𝑤𝑠 =
14,𝑛𝑠𝑤𝑠 = 1�. The spectral sensitivities corresponding to the 𝜆𝑚𝑎𝑥 values were 
calculated as described in (Akkaynak et al. 2013). 
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3.5 Results 
In this section, the effect of d and 𝛼 on the spectral content of a signal is 

investigated by comparing the signal to its uncontaminated reflectance spectrum 
mathematically and then perceptually relative to two visual systems. For simplicity, it is 
assumed that the spectral measurements for the test stimuli are taken with the tip of the 
fiber pointing to the center of each patch, and that when measurements for two patches 
are being compared, they were recorded at the same d and 𝛼.  
 
3.5.1 Mathematical similarity of spectra 

In Figure 3.4a cross-sections of the cone of acceptance are shown for two 
measurement angles that are commonly used in animal coloration measurements, 90° 
(cross-sections are circles) and 45° (cross-sections are ellipses), respectively, with 
measurement distance varying from 0 to 20 cm.  The upper limit of 20 cm was chosen 
based on the author’s experience – in general measurements taken from distances further 
than this are excluded from scientific analyses. In each case, it is assumed that the tip of 
the fiber is pointed at the center of patch A. Results vary little by fiber size, therefore they 
are only shown for the 100-micron fiber in the rest of the paper. In Figure 3.4b the 
similarity of the “contaminated” spectra of patches A and B relative to their 
“uncontaminated” versions (from Figure 3.3b) are shown using SAM (Eq. 3.7), for both 
measurement angles. The simulated patches are squares of 4.1 cm, with a black boundary 
separating them, and in both the conspicuous and camouflaged case, the signal remains 
uncontaminated up to a measurement distance of about 10 cm. Beyond that, the cross-
sectional sampling area expands into neighboring patches and there are two points to 
note. First, for a given measurement distance the degree of signal contamination depends 
on the measurement angle; the 45° measurement has higher SAM values (i.e., more 

 
Figure 3.4 (a) When the optical fiber (NA = 0.22) is held at 𝟗𝟎° to the surface being measured, 
the cross section of the cone of acceptance is a disk. As the measurement distance increases, 
the radius of the disk also increases. For a measurement at 𝟒𝟓°, the cross section is an ellipse. 
The concentric curves show cross-sections at distances 0-20 cm, in 10 equal steps. (b) 
Mathematical similarity of patches A (black lines) and B (gray lines) to their uncontaminated 
versions. Note that SAM only measures the similarity of the shape of the two spectra, 
disregarding magnitude. Results for different fiber diameters were similar and so only those 
for 100 µm are shown here. 
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dissimilarity) then the 90° measurement at any given distance. Second, the degree of 
contamination of spectra is not just a function of 𝑑 and 𝛼, but also of the neighboring 
colors. Patches A and B have different neighboring patches. The reflectance spectrum of 
patch B is more similar to the spectra of the patches that happen to be immediately 
adjacent to it than patch A is to its neighbors. This is purely a result of the arrangement of 
color patches on the synthetic test target and affects the overall SAM scores for the self-
similarity of patches A and B. 

The same analysis is repeated with the spectra in patch B replaced with a copy of 
patch A to simulate an example where an animal might be trying to match the colors of 
its background to fool predators. Originally, patch A had little spectral similarity to patch 
B. Now, patch A has a neighbor with an identical spectrum, and its overall level of 
contamination falls compared to that in the conspicuous case. The new patch B (blue), 
however, has less spectral overlap with its neighbors than did the old patch B (red, case 
1), and its overall level of contamination increases. This demonstrates that the 
measurement distance and angle alone are not enough to predict the level of 
contamination of a color signal recorded with a certain optical fiber, and that the 
neighboring colors, which are often difficult to predict in a biological application, also 
play a role. 

 

 
Figure 3.5 (a) Cross-section of the cone of acceptance when the fiber is held at an angle 
perpendicular to the surface, at measurement distances 5, 10, 15 and 20 cm (the dimension 
of each square is 4.1 cm). The signals measured from patches A and B are expected to 
remain pure up to d = 10 cm.  (b) In the conspicuous case, patches A and B have little 
spectral overlap, and that translates to a high color contrast (∆S) value for both the frog and 
the ferret. Beyond d = 10cm, the color contrast decreases (the signals become more similar) 
with both distance and measurement angle. (c) In the camouflaged case, the spectrum of 
patch A is copied to the location of patch B. The color contrast is zero until d = 10 cm and 
after that, the spectra quickly get contaminated. The signals measured at α=90° remain 
slightly more pure than at α=45°. The dashed line indicates the just noticeable difference 
(JND) threshold of 1. 
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3.5.2 Perceptual similarity of spectra 
Case (1): Conspicuous animal 
 Patches A and B were chosen to represent the pattern of a conspicuous animal 
because they have little spectral overlap. The receptor noise model would be expected to 
predict a high color contrast between these patches in the eyes of both the dichromatic 
ferret and the trichromatic frog. Figure 3.5a shows the cross sections of the cone of 
acceptance for the measurement of patches A and B, at distances 𝑑 = 5, 10, 15 and 
20 𝑐𝑚. Beyond d = 10 cm, the disks outgrow the square patches and we expect the 
spectral content of each patch to become contaminated with spectra from neighboring 
patches. This in turn affects the color contrast between the patches. This is indeed the 
case as seen in Figure 3.5b; the color contrast (∆𝑆) values for both animals are well above 
the just noticeable difference (JND) threshold of 1 (indicated by the dashed horizontal 
line) until d = 10 cm, but the two spectra become increasingly similar (for both the frog 
and the ferret) after that point. If these measurements were taken at a distance of 15 cm, 
the data could have led to an incorrect conclusion that the blue and red colors were 
indistinguishable (JND<1) to the ferret. Note that the ∆𝑆 for the frog never falls below 
the JND = 1 line, meaning that these two patches, despite their spectral contamination, 
remain distinguishable to the trichromatic animal, which has the advantage of having an 
extra photoreceptor compared to the dichromate. 
 
Case (2): Camouflaged animal 
 For the case of a perfectly camouflaged animal, patches A and B have identical 
reflectance spectra, but they have different neighboring colors (see Figure 3.4b inset). As 
expected, the spectra of patches remain identical when the measurements are 
uncontaminated, up to d = 10 cm, and for both animals the color contrast is zero (Figure 
3.5c). Beyond that point, the contrast between spectra measured at 𝛼 = 90° remains 
lower for a slightly higher d value than it does for 𝛼 = 45°. Note that for this example, 
the magnitude of color contrast for both visual systems are comparable implying that the 
measurements of patch spectra (even though they were identical) are contaminated 
enough beyond d = 11 cm that the colors become distinguishable (JND>1) to both the 
ferret and the frog. 
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3.6 Discussion 
Observations made in situ are key elements for understanding predator-prey 

interactions in the context of animal coloration and camouflage because our abilities to 
reproduce field conditions in the lab are limited. Thus, spectral data collected in situ from 
freely behaving animals in the wild and their habitat substrates contributes significantly 
towards our interpretation of camouflage patterns. However, these data are subject to 
quality issues not encountered in the lab. In laboratory setups, spectroscopic 
measurements are made through optical benches, which often contain vises and fiber 
holders fixing the positions of the sample and the measurement probes for consistent and 
accurate measurements. For field-based studies, standardizing data collection distance 
and angle is often impossible. Thus, spectral measurements of the same sample taken in 
the lab and in the field could be different because of variations in the measurement 
distance and angle, which depends on how close the surveyor can get to the animal whose 
colors are being measured. The equations presented in this chapter aim to provide a 
guideline for researchers so measurement errors made in the field could be quantified. 
The use of these equations are not limited to the field of animal coloration and 
camouflage since the ellipse representing the intersection of the acceptance cone and a 
surface only depends on fiber diameter and numerical aperture, which are provided by 
manufacturers, this method is generalizable to applications of spectroscopy in other 
fields. 

3.7 Conclusion 
Signal contamination varies based on the spectral content of the neighboring 

colors of a patch in addition to the measurement distance. Measurement distance was 
more important than measurement angle for the two angles considered (45° and 90°). 
The measurement angle simulated (45 versus 90 degrees) does not appear to have a large 
effect on color measurement but 90° may be preferable if the shape being measured has a 
1:1 aspect ratio. Fiber size, at least in the range of 100-1000 micrometers, has a negligible 
effect on the field of view of the fiber. The patches used in this example were squares of 
4.1 cm, and for a feature of that size and shape, the maximum measurement distance that 
produced pure colors was approximately 10 cm. Most features measured in the context of 
animal coloration are smaller than 4.1 cm; for example the poison frog is only 1-2 cm in 
size (Siddiqi et al. 2004) and the largest body component of a European cuttlefish of 
mantle length 20 cm is around 3 cm (Akkaynak et al. 2013). Animals often have splotchy 
patterns with irregular shapes and non-Lambertian skins, and even though it may be 
possible to know the size of a feature that will be measured, there may be no a priori 
information regarding its neighboring colors. Equations 3.2-3.6 presented in this work 
could be used as guidelines before spectral measurements from animals or their habitats 
are made.  
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Chapter 4 

Quantification of cuttlefish camouflage (S. officinalis): a study of 
color and luminance using in situ spectrometry3 

4.1 Introduction 
Coleoid cephalopods are unrivaled in the animal kingdom in their ability to 

quickly and dynamically change their body patterns for signaling and camouflage (e.g., 
(Hanlon and Messenger 1988; Hanlon and Messenger 1996). Pattern and color change 
are achieved through the physiological control of chromatophore organs (Florey 1969; 
Messenger 2001a), and structural reflectors (iridophores and leucophores, (Mäthger et al. 
2009; Wardill et al. 2012). Many laboratory and field studies have shown that 
camouflage behavior in cuttlefish is visually driven (e.g. (Chiao and Hanlon 2001b, a; 
Chiao et al. 2005; Barbosa et al. 2008a; Barbosa et al. 2008b; Barbosa et al. 2007; Chiao 
et al. 2007; Kelman et al. 2007; Allen et al. 2009; Chiao et al. 2009; Zylinski et al. 2009c, 
b, a; Chiao et al. 2010). Counterintuitively, these animals adaptively tune the colors of 
their body patterns in response to their visual backgrounds without the use of color vision 
(Marshall and Messenger 1996; Mäthger et al. 2006). It is natural to wonder how well 
cuttlefish can match the colors of substrates in their natural habitats if they cannot sense 
color with their eyes. Our observations in the laboratory and in the wild suggest cuttlefish 
color match is good enough to fool the human eye; but does it also fool the visual 
systems of predators?  

In this work, we investigated how well the colors of cuttlefish skin matched the 
colors of substrates found in their natural habitats. Specifically, we quantified whether 
colors from cuttlefish camouflage patterns were discriminable from those of the 
background substrates in the eyes of predators. To do so, we developed a systematic 
analytical tool to compare the luminance and color contrast between animal and substrate 
spectra in the eyes of hypothetical di- and trichromatic fish predators and supplemented 
our spectral comparison by further analyzing cuttlefish color matching in human color 
space using the International Commission on Illumination (CIE) 1931 XYZ model 
(Wyszecki and Stiles 2000). In addition, we also used an auxiliary methodology because 
sometimes it may be necessary to assess the similarity of two spectra independently of 
the perception of a particular visual system. For example, there may not be enough 
information about the photoreceptor types or ratios of a certain predator, or a result that 
can be generalized across visual systems may be desired. In such cases, purely 
mathematical measures of spectral similarity can provide a rough approximation. For this 
reason, we used Spectral Angle Mapper (SAM), a technique commonly used to assess 
spectral shape similarity in the field of remote sensing (Yuhas et al. 1992), to quantify the 
similarity of cuttlefish and substrate spectra. We found that SAM correlated moderately 
with our biological measures of color contrast, making it comparable to a traditional 
chroma and hue based measure of spectral shape similarity (Endler 1990). This study is 
the first to collect in situ spectral data for color match assessment of European cuttlefish 
(S. officinalis).  

3 Parts of this chapter was previously published. See (Akkaynak et al. 2013) for full 
reference. 
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4.2 Background and related work 
Until now, spectrophotometric 

quantification of cuttlefish camouflage 
had only been performed using data 
collected in the laboratory (Mäthger et 
al. 2008;Chiao et al. 2011). Mäthger 
and colleagues (2008) were to first to 
quantitatively analyze the color 
matching abilities of cuttlefish. They 
measured reflectance spectra from 10 
random points on animals (N = 8) and 
background substrates in the 
laboratory and used normalized 
Euclidean distance to quantify spectral 
difference. They found that cuttlefish 
showed a better spectral match to the 
11 natural substrates tested, than they 
did for the 2 artificial substrates, but 
did not analyze the discriminability of 
colors according to the visual systems 
of predators. Chiao and colleagues 
(2011) also performed a color match 
assessment in the laboratory, but they 
used a hyper-spectral imager to image 
body patterns. In addition, they 
modeled the visual systems of 
hypothetical predators and found that 
the colors cuttlefish produced were 
indistinguishable in the eyes of 
predators. Both studies found that 
cuttlefish colors showed a good 
mathematical and perceptual match to 
the substrates tested in the laboratory. 
However, substrates found in the 
natural habitats of cuttlefish show a 
more variation in terms of color and 
structure than those tested in the 
laboratory. Therefore, in situ 
measurements of cuttlefish skin radiance spectra under natural illumination and in natural 
habitats are crucial to provide empirical evidence to assess the degree of color matching.  

In this study, we collected radiance spectra from the common European cuttlefish, 
Sepia officinalis, and their visual surrounds (sand, gravel, pebbles, algae-covered rocks, 
peacock’s tail alga, hydrozoans, Pinna mollusc shells, etc., hereafter, “substrates”) 
underwater on the Aegean Coast of Turkey. We describe the details of data collection, 
calibration and analysis next. 

 
Figure 4.1 (a) Spectral data were collected by two divers 
(DA and JJA). One diver operated the spectrometer 
while the other took still photographs and video to 
document the sequence of measurements. All 
measurements were taken under natural daylight after 
the cuttlefish had habituated to the presence of divers. 
(b) Cuttlefish body pattern components measured in this 
study, numbered and capitalized according to their 
description in Hanlon and Messenger (1988). 1 = white 
posterior triangle; 2 = white square; 3 = white mantle 
bar; 13 = white head bar; 14 = white arm triangle; 17 = 
anterior transverse mantle line; 18 = posterior 
transverse mantle line; 19 = anterior mantle bar; 20 = 
posterior mantle bar; 21 = paired mantle spots; 22 = 
median mantle stripe; 29 = anterior head bar; 39 = white 
square papillae. 
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4.3 Methods 
Study site, animal & substrate measurements 

Seven cuttlefish (mantle lengths between 15 and 22cm) were studied off the 
village of Çeşmealtı (İzmir) on the Aegean coast of Turkey in spring, 2011. Fifteen 
radiance datasets were collected; each data set consisted of one animal, one location and 
one body pattern. Radiance measurements were taken using a USB2000 spectrometer 
(sensitivity range: 200-850nm; Ocean Optics, Dunedin, FL) coupled with a Compaq iPaQ 
handheld computer in a custom underwater housing (Wills Camera Housings, Victoria, 
Australia). Optical fibers (50 and 100-micron diameter) were used to collect data from 
cuttlefish and surrounding substrates (Figure 4.1a). We used a Spectralon (Labsphere, 
UK) target as a white reflectance standard. A CC3 cosine corrector (Ocean Optics, 
Dunedin, FL) was attached to the optical fiber for collection of irradiance data and an LS-
1-CAL tungsten light source (Ocean Optics) was used to obtain absolute intensity values. 
This calibration was done in a dark room to minimize stray light. Our equipment design 
is documented in (Roelfsema et al. 2006) and has been used for fieldwork by many others 
(Leiper et al. 2012; Hedley et al. 2012; Lim et al. 2009; Cheney et al. 2008; Matz et al. 
2006; Cheney and Marshall 2009). 

Photographs were taken with a 24-70 mm lens on a Canon EOS 1-Ds Mark II 
digital camera in a Subal housing equipped with a dome port. Videos recorded with a 
compact FlipCam (Irvine, CA) documented the underwater data collection.  
Measurements were taken under natural light, at depths shallower than 5 meters. Animals 
were carefully approached by two divers (DA & JJA) until they habituated to the divers’ 
presence and did not show any signaling behavior (e.g., unilaterally expressed pattern 
components or Paired Mantle Spots as part of a Deimatic display; see (Hanlon and 
Messenger 1988). 

Animals were allowed to settle in a location of their choice and substrates were 
not altered, with one exception: before data acquisition, white rocks were placed near one 
cuttlefish to evoke a weak pattern (Figure 4.2g). This pattern is known to be the 
camouflage response to white cues in a cuttlefish’s visual surrounds (S. pharaonis, 
(Chiao and Hanlon 2001a); S.officinalis, e.g., (Barbosa et al. 2007; Mäthger et al. 2007).  

In each case, ten to fifteen radiance measurements were recorded for each body 
component (Figure 4.2b), background element, or irradiance measurement and their 
average was used for the data analysis. If the cuttlefish moved or changed body patterns 
during data acquisition, the animal was allowed to re-habituate and measurements from 
the new location/body pattern were recorded as a new data set. Similarly, if lighting 
conditions changed significantly (e.g., in response to passing clouds), a new set of 
irradiance and white standard measurements was recorded. In both cases, we only 
analyzed datasets that were taken under consistent lighting conditions. In all cases, the 
probe head of optical fiber was less than 3 cm away from the feature whose spectrum was 
being recorded (see Chapter 3). We ensured that the diver’s hand did not shadow the area 
of interest. 
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Figure 4.2 (a-g) Presentation of seven datasets; in (i) we present a photograph of the scene, an outline of the 
scene showing the spots radiance spectra were recorded from and normalized radiance spectra we 
measured; in (ii) the Spectral Angle Mapper score computed between the spectra of each animal component 
and background substrate are shown. For example, for the animal in (a), the bars represent the SAM score 
between pairs of features: (“a”) & (“1”), (“a”) & (“2”), (“a”) & (“3”), (“a”) & (“19”), (“a”) & (“20”), (“b”) 
& (“1”), (“b”) & (“2”), (“b”) & (“3”), (“b”) & (“19”), (“b”) & (“20”) and so on. They are sorted in 
descending order. See text for details. We repeat here the pattern names we have used in text for each photo: 
(a) uniform/stipple, (b) dark uniform with weak zebra stripes, (c) mottle/weak weak, (d) mottle, (e) mottle, 
(f) weak zebra, and (g) weak. See supplementary online resource 2 for larger, high resolution images. 
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Assessment of chromatic similarity between animal and background spectra using a non-
biological measure (Spectral Angle Mapper) 
 In the field of remote sensing, automated spectral library search algorithms 
developed for hyper-spectral images (Chang 2003; Sweet 2003; Freek 2006; Nidamanuri 
and Zbell 2011) are used to compare reflectance spectra of known targets to those of 
novel spectra by computing a scalar similarity score between them. For these algorithms, 
stochastic methods are more frequently used than deterministic methods because imaging 
conditions can be imperfect and because the high spectral resolution of a hyper-spectral 
sensor often results in more than one material spectral signature in a given pixel. In our 
study, spectral data were point-by-point measurements of solid color patches where the 
area of the patch was much wider than the diameter of the spectrometer fiber. Hence, we 
use a deterministic method, Spectral Angle Mapper (SAM), from the field of hyper-
spectral image classification in our assessment of spectral shape similarity. SAM is the 
most commonly used spectral angle-based similarity measure ((Yuhas et al. 1992); 
(Kruse et al. 1993) and it is the normalized inner product of two vectors. It is computed 
as follows:  
 

𝜽 =  𝐜𝐨𝐬−𝟏 �
𝑺𝟏𝑻𝑺𝟐

‖𝑺𝟏‖‖𝑺𝟐‖
� (4.1) 

 
where “S1” and “S2” are the two spectra vectors being compared. Each continuous 
radiance spectrum is vectorized (denoted) into 31 dimensions by taking its value every 10 
nm in the visible range (400-700nm). “T” denotes the transpose of a matrix and the ||.|| 
symbol denotes Euclidian norm; the division by the vector norms indicates that SAM is 
indifferent to the magnitude of the vectors (brightness) and only calculates similarity of 
spectral shape (color). A small angle between two vectors indicates that the spectra are 
similar in shape. 
 
 Calculation of color difference using chroma and hue 

A common way to assess the similarity of two spectra independent of a visual 
system is to compute their chroma (C), hue (H) and brightness (B) values, and calculate 
the Euclidean distance between them (D). A small Euclidean distance means that the two 
colors are similar. Here, we used the segment classification analysis of spectra from 
(Endler 1990) to calculate hue and chroma. Our goal is to compare the performance of 
this method to that of SAM. SAM metric does not take brightness into account and for a 
fair comparison, before chroma and hue values are calculated each spectra should be 
multiplied with a constant to equalize their overall brightness (see (Endler 1990) for 
further details). Following this, the distance between the two colors are found from: 

 
𝑫 =  �(𝑯𝟏 − 𝑯𝟐)𝟐 + (𝑪𝟏 − 𝑪𝟐)𝟐 + (𝑩𝟏 − 𝑩𝟐)𝟐  (4.2) 

  
where 𝐵1 = 𝐵2 due to the brightness equalization step carried out.  
 
  

 53 



Assessment of spectral similarity between animal and background in the eyes of 
hypothetical di-and trichromatic fish predators: luminance and color contrast 

Although the details of visual systems of cuttlefish predators are not known 
(Serranus cabrilla is the only fish species observed directly to prey on S. officinalis in the 
Mediterranean sea), we may speculate that cuttlefish are preyed upon by a variety of 
vertebrate and invertebrate predators with different visual systems ((Hanlon and 
Messenger 1988; Hanlon and Messenger 1996). Thus, we chose one dichromatic fish and 
one trichromatic fish as their potential predators to simulate their views of these 
camouflaged cuttlefish. In dichromatic fish, the λmax of S and M cones was 460 and 570 
nm. In trichromatic fish, the λmax of S, M, and L cones was 460, 540, and 570 nm. N.B., 
although the choice of these λmax of dichromatic and trichromatic cones was arbitrary, 
shifting the λmax of these cones up or down 10-20 nm did not visibly affect the results.  

We carried out this analysis for photoreceptor ratios 1:1:1 and 1:2:2 for 
trichromats and 1:1 and 1:2 for dichromats; these are typical fish retina cone mosaic 
patterns (Shand et al. 1999; Cheney and Marshall 2009). The results of our analysis in 
both cases were similar, and we only present results for the ratios 1:1:1 for trichromats 
and 1:1 for dichromats. 

Luminance contrast (Δ𝐿) is calculated as 𝐿1 − 𝐿2, where 𝐿 = ln(𝑘𝑄); k is the 
von-Kries adaptation coefficient and Q is the quantum catch value. Spectra were 
collected under the same ambient conditions for each dataset, therefore the same von-
Kries coefficient was applied to both luminance values (𝑘1 = 𝑘2). Thus, Δ𝐿 =
𝑙𝑛 𝑘1𝑄1

𝑘2𝑄2
= 𝑙𝑛 𝑄1

𝑄2
. Quantum catch value is computed as follows: 

 

𝑸𝒊 = � 𝑹(𝝀)𝑰(𝝀)𝑺𝒊(𝝀)𝒅𝝀
𝝀𝒎𝒂𝒙

𝝀𝒎𝒊𝒏
        (4.3) 

 
where 𝑅(𝜆)is the reflectance spectrum of the feature of interest, 𝐼(𝜆) is the spectrum of 
the light source, 𝑆𝑖(𝜆) is the spectral sensitivity of the 𝑖𝑡ℎ photoreceptor (i = S,M,L), 
𝜆𝑚𝑖𝑛and 𝜆𝑚𝑎𝑥 are the bounds of the visible spectrum, respectively. 𝑆𝑖(𝜆) was based on 
the visual pigment template of Stavenga et al. (1993) with beta-peak shifted linearly, after 
Palacios et al. (1996) using the equation generated by Hart (1998). For calculating 
luminance contrast, we only used the long wavelength receptors since they are thought to 
be responsible for luminance contrast in fish (Marshall et al. 2003a). We computed 
luminance contrast between the cuttlefish body parts, as well as between cuttlefish parts 
and background substrates. For color contrast, we used the metric ∆𝑆 (with Weber 
fraction 0.05) as defined by the Vorobyev-Osorio Receptor Noise Model (Vorobyev and 
Osorio 1998). 
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Figure 4.3 (a-g) In (i), luminance contrast is shown for two cases: (1) amongst the spectra of the cuttlefish 
body components; (2) between the spectra cuttlefish components and the background substrates. In (ii), 
color contrast calculated between spectra of cuttlefish components and substrates are presented for 
hypothetical di and tri-chromats we modelled. Luminance contrast values shown are for trichromats only 
and are identical for dichromats. See text for details. In all plots, the green line indicates a “just noticable 
difference” of 1; pairs of features that fall below this value cannot be distinguished by the visual system 
under consideration. 
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Visualization of spectral similarity between cuttlefish and backgrounds in human and 
hypothetical fish predator color spaces  
 It is helpful to visualize the spectral match between a cuttlefish and its 
surroundings as a human would have seen it. We used the CIE 1931 (2 degree observer) 
color matching functions to obtain XYZ tri-stimulus values from radiance spectra. We 
then plotted the xy-coordinates of the tri-stimulus values of cuttlefish body components 
and substrates on a CIE 1931 Chromaticity Diagram; see (Wyszecki and Stiles 2000) for 
details. For comparison, we included the xy-coordinates corresponding to the radiance 
spectra of the 24 patches of a Macbeth ColorChecker (Xrite, Inc. Grand Rapids, MI), 
assumed to be viewed under a CIE D65 illuminant (noon daylight, 6504K). Patches of a 
Macbeth ColorChecker are designed to represent colors humans encounter on a daily 
basis. N.B.: the CIE XYZ chromaticity diagram is not perceptually uniform; therefore, 
the same distance between two pairs of colors on the XYZ diagram may correspond to 
different perceptual distances. The XYZ tri-stimulus values cannot be visualized directly; 
to offer a visual comparison of the variety of cuttlefish and habitat colors at our field site, 
we converted the XYZ tri-stimulus values into the sRGB space and created color patch 
assemblies for both animal and substrate data. For details on converting XYZ tri-stimulus 
values to RGB color spaces, see (Reinhard et al. 2008)). 

Chromaticity diagrams are also used in the studies of animal color vision (see 
(Pike 2011a) and (Kelber et al. 2003) as graphical representations of perceived colors. 
We followed the methodology described in (Kelber et al. 2003) to plot the loci of colors 
measured from cuttlefish and surrounding substrate on the Maxwell triangle for a 
hypothetical trichromatic observer with λmax values for S, M, and L cones 460, 540, and 
570 nm.  
 
Simulation of color and luminance contrasts at depth 

Underwater, the available light field changes in intensity and spectral 
composition, changing the appearance of objects in response to factors such as: depth, 
time of day, weather conditions and the amount of suspended particles in the water 
column. To illustrate the effect of this change on camouflage, data from a uniform dark 
animal collected at 1 m depth (an animal that did not appear well color matched to its 
surroundings) were used to simulate the appearance of its colors at a depth of 10 m using 
irradiance spectra collected at 10 m at our study site. The simulation was done as follows. 
First, the radiance spectra from the original dataset were converted into reflectance by 
dividing the difference of radiance of the feature of interest and dark noise by the 
difference of white standard radiance and dark noise. Second, these reflectance spectra 
were multiplied with irradiance spectra we recorded in situ at 10 meters depth. Third, 
simulated animal and substrate radiance spectra were assessed for similarity and 
discriminability using methodology described above. Color patches were simulated in 
sRGB space using the tri-stimulus values obtained from the CIE 1931 XYZ model. 

4.4 Results 
 In Figure 4.3i radiance measurements taken in the field are summarized. 
Measurements taken from cuttlefish components are labeled on the outlines of 
photographs with black numbers, those taken from substrates are labeled with blue 
letters. The same color convention is used in spectral curves and each curve is normalized 
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by its maximum value to emphasize similarity of shape. The red curve in each plot is the 
(normalized) spectrum recorded from a Spectralon target and represents the shape of 
“white” under ambient light conditions. 
 
Use of Spectral Angle Mapper for assessing spectral shape similarity between animal 
and background 

Figure 4.3ii shows the Spectral Angle Mapper scores computed between each 
cuttlefish component and background substrate measured. The limits of each plot were 
adjusted to the minimum and maximum values of SAM encountered across all datasets (0 
and 0.4508, respectively). The score computed by SAM is a measure of how well two 
multi-dimensional vectors are aligned and does not carry a biological meaning. 
Therefore, while the SAM scores cannot give any information regarding the 
discriminability of two colors from the perspective of any visual system, they are 
informative about how similar the shapes of two spectra are, which can be compared to 
chromaticity. In general, the lower the SAM score, the more similar the colors. For 
example, in Figure 4.2a, the cuttlefish has a uniform body pattern, which appears well 
matched to the surrounding substrates in color. The corresponding SAM plot has low 
scores throughout. The animal in Figure 4.2b also has a uniform pattern but, unlike 
Figure 4.2a, it does not match the surrounding sand. This difference is captured in the 
magnitude of the values displayed in the SAM plots.  
 
Assessment of luminance and color contrasts in the eyes of hypothetical di- and 
trichromatic fish predators 

In Figure 4.3i, we present luminance contrast among cuttlefish components and 
luminance contrast between cuttlefish components and substrates. Contrast among 
cuttlefish components is an indicator of whether the cuttlefish pattern is uniform or non-
uniform (i.e. mottle, zebra or weak), and contrast between animal and substrate is an 
indicator of how similar the cuttlefish components are from the substrate in brightness. 
Figure 4.3ii shows color contrast between cuttlefish and substrates as seen by 
hypothetical di- and trichromats. In both (i) & (ii), a value of 1 is a “just noticeable 
difference” (JND) and is marked with a green line.  

 
Pattern 1 (Figure 4.3a). Luminance contrast values below the JND = 1 line suggest this 
animal has a uniform pattern, and matches the substrates in intensity. The photograph in 
Fig. 2a confirms these observations. Low color contrast values suggest that this animal is 
difficult for both di- and trichromats to distinguish from its background. 
 
Pattern 2 (Figure 4.3b). Low luminance contrast among animal components indicates a 
uniform pattern. Almost all cases of luminance contrast between animal and substrates 
are above the visual threshold, indicating this animal did not match the substrate in 
luminance. Color contrast values suggest this animal can be distinguished from its 
background by both di- and trichromats, but note that color contrast values, overall, are 
lower for the dichromat (on average, ∆𝑆𝑡𝑟𝑖 − ∆𝑆𝑑𝑖 ≈ 0.7) indicating that it is harder for 
the dichromat to detect this animal when compared to a trichromat. Indeed, there was a 
mismatch between this cuttlefish in a dark uniform body pattern (with weak zebra stripes) 
and the sand in its immediate surroundings as confirmed by Figure 4.2b.  
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Pattern 3 (Figure 4.3c). In this dataset, we observed that cuttlefish components had high 
and low luminance contrast values among themselves indicative of a non-uniform 
(mottle, zebra or weak pattern). The photograph in Figure 4.3c shows a mottle/weak 
weak body pattern. In both color and luminance contrast, when compared to the dark 
green Posedonia seagrass (“b”), all cuttlefish components scored above the visual 
threshold. In response to visual cues from a nearby three-dimensional structure with 
projections approximately the width of its arms, this animal raised its first pair of arms, a 
postural component of cuttlefish camouflage (Barbosa et al. 2012).  Although some body 
components matched the gravel in luminance and color contrast, the arm posture and 
overall body pattern suggested this animal may have performed masquerade camouflage 
in response to visual cues from the three dimensional Posedonia seagrass (for discussions 
of masquerade camouflage, see (Stevens and Merilaita 2009; Skelhorn et al. 2010; 
Buresch et al. 2011; Skelhorn and Ruxton 2011).  
 
Pattern 4 (Figure 4.3d).  Luminance contrast plots suggest this animal has a uniform 
pattern and matches the substrate in intensity. The photograph in Figure 4.3d shows that 
this animal had a uniform body pattern with some aspects of a mottle. While this animal 
is well matched to its surroundings in luminance, its overall pattern is detectable in terms 
of color contrast to both di- and trichromats (Figure 4.3d,ii). It was difficult to distinguish 
this cuttlefish from nearby 3D objects, suggesting this animal might have performed 
masquerade camouflage instead of background matching (e.g., (Buresch et al. 2011). 
Note that the radiance spectra measured from the components of this animal were similar 
to those measured from a dark brown hydrozoan roughly two mantle lengths away 
(Figure 4.3d, inset).  
 
Pattern 5 (Figure 4.3e).  The luminance contrast values suggest a mottle, zebra, or weak 
pattern and the mostly high color contrast values in (ii) suggest this animal may be easy 
to spot against the background. The photo shows that this animal had a mottle pattern 
with weak expression of the White square and Median mantle stripes, components often 
seen in weak body patterns. All animal body components closely matched the nearby 
Pinna mollusc shell (“a”) in luminance contrast but had high contrast when compared to 
the gravel (“b”). Overall, this animal could be detected by a hypothetical di-or tri-
chromatic predator. 
 
Pattern 6 (Figure 4.3f). The low values of luminance contrast among animal components 
suggest a uniform pattern. The photograph shows that the animal actually had a weak 
zebra pattern, showing low overall contrast. This animal allowed us to collect data from 
individual light and dark stripes within two body pattern components: the Posterior 
mantle bar (“20”) and the White mantle bar (“3”). As in the case of pattern 3, the 
cuttlefish components better matched the green Posedonia seagrass in luminance than in 
color contrast (substrates “a” and “b”). This result is intuitive as the cuttlefish is not 
capable of producing a green color with its pigmented chromatophores, but can alter the 
intensity of skin to appear light or dark. Overall, this animal could be detected by a 
hypothetical di-or tri-chromatic predator. 
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Pattern 7 (Figure 4.3g). Luminance 
contrast among cuttlefish components 
suggest that this animal has a uniform 
body pattern; however from Figure 4.2g, 
we see that it had a weak pattern. Its 
weak pattern was turned on after white 
rocks were placed nearby. When 
compared among cuttlefish components 
and substrates, luminance contrast 
values were high; indicating the animal’s 
components are darker than the 
surrounding white rocks, with the 
exception of its White square. The 
luminance of the White Square (“2”) 
was similar to the luminance of the other 
components. The cuttlefish components 
were most similar to substrates (“c” and 
“d”) in luminance contrast, and nearly 
indistinguishable in the eyes of both di- 
and trichromats in terms of color 
contrast. Note that the White square was 
not pure white, rather, closer to a light 
brown color. White square luminance 
and color are modulated by pigmented 
brown, orange and yellow 
chromatophore organs overlying the 
structural reflectors (lecuophores) 
responsible for whiteness in this animal 
(Mäthger et al. 2009).  
 
Comparison across all patterns 

Figure 4.4a summarizes the 
mean JND values across all datasets. In 
almost all cases, the dichromat JND 
values were equal to or smaller than the 
trichromat JND values, suggesting that it 
was more difficult for the dichromats to 
distinguish the cuttlefish components 
from the substrates. Similarly, the mean 
luminance contrast of the cuttlefish components, when compared to the surrounding 
substrate, was less than or slightly higher than 1 JND; the cuttlefish generally did a good 
job matching the luminance of the substrates. For datasets “b” and “b10m” (the latter is 
the animal whose appearance is simulated at 10 meters, described in the “Simulation of 
spectra at depth” subsection), the luminance contrast was nearly unchanged, while the 
mean color contrast fell to the JND = 1 limit. The mean values in dataset “e” are likely to 

 
Figure 4.4 (a)  Mean just noticable difference (JND) 
values shown for each dataset and (b) the percent of 
cuttlefish components that are below 1 JND for each 
dataset. (b) We found that SAM has moderate 
correlation (0.5<|r|<0.7) to ∆𝑺, a biological measure of 
color contrast for the data we present. Note that variance 
in the predicted color conrtrast score increases with 
increasing spectral angle scores (heteroscedasticity). This 
level of correlation did not change when we varied the 
photoreceptor ratios, and shifted peak wavelengths of 
S,M and L cone types by 10-20 nm for the visual systems 
we tested. This is comparable to D, a chroma and hue 
based spectral similarity metric which is independent of 
a particular observer’s visual system. For the data we 
present, D values were also moderately correlated with 
∆𝑺. Data shown above for 𝝀𝑺 = 𝟒𝟓𝟎,𝝀𝑴 = 𝟓𝟑𝟎 and 
𝝀𝑳 = 𝟓𝟔𝟎 nm; 𝒓𝑺𝑨𝑴,𝚫𝑺 = 𝟎.𝟔𝟏𝟖 and 𝒓𝑫,𝚫𝑺 = 𝟎.𝟔𝟎𝟖 (not 
plotted). 
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be affected by the measurement of the dark eyespots; these spots do not usually appear as 
a part of a camouflage pattern and were displayed as a warning to the divers.  

Figure 4.4b shows the percentage of pairs of components that had JND values 
less than 1. Animals in datasets “a” and “c” appear to have the best overall color and 
luminance match in the eyes of both di- and trichromatic predators, and those in “d”, “e” 
and “f” seem to have done a better job matching luminance than color. Overall, the 
animal in dataset “b” was the worst color matched animal. Its simulated appearance at 10 
meters depth was more conspicuous than the animal at 1-meter depth.  

 
The relationship between SAM, chroma and hue based color difference (D), and color 
contrast (∆𝑆) 

 The SAM scores computed between cuttlefish components and substrates for all 
datasets showed moderate correlation to the color contrast values computed using the 
(∆𝑆) metric; the absolute value of the correlation coefficient varied between 0.5 and 0.7 
(𝑝 ≈ 0) for all cases of 𝜆𝑚𝑎𝑥 and photoreceptor ratios we tested (Figure 4.4c). Note that 
the data appear to be heteroscedastic. D, the color difference computed using chroma and 
hue values, also correlated moderately with ∆𝑆. When compared against each other 
however, SAM and D had a weak a correlation (on average, 𝜌 ≈ 0.4). When assessed 
individually, on average SAM was moderately correlated with hue, and weakly correlated 
with chroma. 
 
Visualization of spectral similarity between cuttlefish and backgrounds in human color 
space 
 We plotted the loci of xy values for each animal component and substrate on a 
Chromaticity Diagram (Figure 4.5a). Cuttlefish body components and substrates were 
constrained to a general area around the point x≈0.4 & y≈0.35 near the locus of gray 
colors at x = 0.33, y = 0.33 (the “white point” or the “achromatic point”). All spectra 
measured from cuttlefish body pattern components, and spectra, were converted to sRGB 
colors and are shown with a corresponding plot of “white” (a highly reflective Spectralon 
white standard) under ambient light conditions (Figure 4.5b). This visualization revealed 
that the colors of both the animals and substrates at our study site were limited to a 
narrow range within the gamut of colors visible to humans.  
 
Simulation of spectra at depth 

One cuttlefish (see Figure 4.2b; data taken at 1m depth) poorly matched its 
surrounding sandy substrate. We used the irradiance profile we recorded at our study site 
at a depth of 10 meters to obtain a theoretical ambient light field and simulate this 
animal’s radiance spectra had they been collected at that location (see Methods for 
details). Simulated spectra, SAM, luminance and color contrast results are presented in 
Figure 4.4a. At this depth, the shapes of all spectra become similar in shape due to the 
ambient light conditions as shown by the spectral curves. Overall, the SAM scores 
decreased by about 50%; indicating that the spectra became more similar in shape at 
depth. Luminance contrast remained nearly the same. This is expected, as luminance 
contrast is a ratio of the quantum catches, and remains unchanged when the same process 
attenuates both spectra. The color contrast plots show that in the eyes of both di- and 
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trichromat, the color match at 10 m depth has gotten better, and it is now harder to 
distinguish this animal from its background. 

In Figure 4.6b Maxwell triangles show the change in the appearance of colors 
from 1 m to 10m. At 10 meters, cuttlefish and substrate colors form tighter clusters than 
they did at 1-meter depth. The sRGB appearance of colors shows that at 10 meters, the 
cuttlefish and substrate colors are indistinguishable. 

4.5 Discussion  
 
The utility of in situ spectrometry in studying animal camouflage 

Here we presented spectrophotometric field data collected from camouflaged 
cuttlefish (Sepia officinalis) and some of their surrounding substrates. We have advanced 
previous studies by collecting data in the cuttlefish’s natural benthic, near-shore 
environment where the daylight spectrum is affected by atmospheric conditions, water 
quality and depth (Jerlov 1968, Jerlov, 1976 #205; Tyler and Smith 1970). Studying 
cuttlefish camouflage under natural conditions is essential for the study of animal and 

background luminance and color because it is under these conditions that cuttlefish 
camouflage body patterns have evolved to successfully deceive the eyes of predators. 

 
Figure 4.5 Analysis of cuttlefish color matching with respect to the human visual 
system. (a) Chromaticity plot showing the loci of cuttlefish and substrate xy 
chromaticity coordinates obtained from radiance spectra measured in the field. 
Black squares show the xy coordinates of the patches of a Macbeth ColorChecker. 
(b) Color assemblies of all cuttlefish components measured. Each color patch in an 
assembly is accompanied by a corresponding white patch, representing the way 
“white” looked under the ambient conditions. Depending on depth, time of day, 
visibility etc., white may appear as shades of green and blue. 
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Recently, field spectrometry data collected by Hanlon et al. (2013) were analyzed for a 
different species, the giant Australian cuttlefish (Sepia apama), using a similar approach 
to quantify camouflage in the eyes of potential fish predators. Studies assessing the color 
signals of animals through the visual systems of their known predators have been done 
for chameleons (Stuart-Fox and Moussalli 2008), spiders (Heiling et al. 2003), (Théry 
and Casas 2002), fish (Marshall and Vorobyev 2003) and birds (Endler and Mielke Jr 
2005). Spectrometers, however, are not ideal instruments for the assessment of overall 
animal patterns because they only record point-by-point samples. This makes it difficult, 
if not impossible, to collect spatial information from high-frequency textures, i.e. textures 
that are not solid color patches. In addition, animal coloration studies using spectrometers 
require getting the optical fiber very close to the skin of the animal; this is challenging 
while studying freely behaving animals in their natural habitats. The use of such 
equipment underwater further complicates the data collection process due to the rapidly 
changing light field from the undulations of the sea surface, limited light penetration at 
depth, particles suspended in water that affect visibility. Furthermore, wave surge, 
currents, and practicality issues such as bulky watertight housings affect the speed and 
maneuverability of divers, and the corrosion of equipment from seawater and reduced 
performance from most batteries due to low operating temperatures also distinguish such 
marine studies from terrestrial endeavors.  

Imagers that record continuous spectra for every pixel in an image, namely multi- 
and hyper-spectral cameras, are becoming common in many fields of science, and their 
use has been pioneered by (Chiao et al. 2011) in the field of animal coloration. While the 
costs of such imagers are still prohibitive, rapid developments in technology are making 
their deployment in the field as fast as commercial off-the-shelf digital cameras, and they 
will likely replace spectrometers to become the standard in studies of coloration in the 
next decade.    
 
A non-biological measure, SAM, is a rough estimate of color contrast, 𝛥𝑆 

Little is known about the predators of S. officinalis and their visual systems. 
While retinal properties of most fish eyes are known, this information does not 
necessarily represent how they perceive scenes; and it most cases, it is difficult to do 
psychophysics experiments with fish to develop better models of their visual systems. 
Here, we show that a purely mathematical spectral shape similarity measure, SAM, is 
moderately correlated to the biological models of color contrast we used. This level of 
correlation holds for di- and trichromats, as well as the range of photoreceptor ratios and 
S, M, L peak wavelengths we tested for. In cases where there may not be enough 
information about the visual system of a particular observer, or a result that can be 
generalized across observers is desired, SAM could be used to score the similarity of 
shape between two spectra (shape similarity roughly corresponds to a similarity in 
chromaticity). Traditionally an observer-independent color difference metric D (Eq. 4.2) 
based on hue and chroma is used to estimate similarity of spectral shape (Endler 1990). 
We found that this measure also has a moderate degree of correlation to the color contrast 
values computed here. SAM could be computed alongside hue and chroma whenever a 
rough and objective spectral similarity score needs to be calculated. For our datasets, 
SAM and hue were better correlated than SAM and chroma; SAM and D were weakly 
correlated. SAM and D individually correlate moderately with color contrast while they 
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are weakly correlated with each other; this may be because of their different working 
mechanisms. The segment classification method takes advantage of the opponency of 
color channels while SAM is only mathematical measure of shape. These results should 
be interpreted with caution since they do not relate to any biological system and most 
terms such as luminance, color, chromaticity etc. are meaningful with respect to visual 
systems. More specifically, they don’t refer to the visibility of colors. We expect a more 
solid understanding of the relationship between mathematical and biological measures of 
color contrast to emerge as future studies adopt the calculation of a SAM score along 
with their biological analysis.  

 
 
Assessment of spectral similarity between cuttlefish and background in human and 
theoretical fish predator color space 

The spectral similarity between cuttlefish and their surroundings was analyzed 
from the perspective of the human visual system. We calculated the tri-stimulus values of 
each spectrum using CIE 1931 XYZ color space and plotted these tri-stimulus values of 
cuttlefish body pattern components and surrounding substrates on an iso-luminant 

 
Figure 4.6 Simulation of the spectra of the animal and nearby substrate from Fig. 2&3b, at a depth of 
10m: (a) Normalized radiance spectra of cuttlefish components and substrates; red line indicates 
normalized spectra from of a Spectralon white target; SAM scores are almost halved when compared 
to Fig. 3b; luminance contrast remains unchanged and color contrast has decreased significantly. (b) 
Visualization of the colors of cuttlefish and substrate patches on a Maxwell triangle. In the 1 m case 
the loci of colors are relatively widespread, but they become almost coincident at 10 m. sRGB 
representation of color appearance suggests colors are indistinguishable to the human visual system 
at 10 meters depth. 

 63 



chromaticity diagram tuned for the human visual system. This visual representation 
provided a way to assess the similarity of spectral properties between animal and 
background. Cuttlefish body components and substrates, were constrained to a general 
area around the point x ≈0.4 & y≈0.35 near the locus of the “white point” at x = 0.33, y = 
0.33 (Figure 4.5a). Colors close to this point would appear gray under most lighting 
conditions. This narrow distribution implies that while cuttlefish chromaticity values are 
remarkably close to those of substrates, our study site was not very colorful, at least in 
comparison with terrestrial colors that humans are used to (see black squares that show 
colors from a Macbeth ColorChecker, representative of colors that a human might 
observe terrestrially on a daily basis). 

In our analysis of luminance contrast, we only presented results for trichromats. 
Since long- wavelength receptors are thought to be responsible for luminance contrast in 
fish (Marshall et al. 2003b) and we used 𝜆𝑚𝑎𝑥 = 570 𝑛𝑚 for both the L cone for the 
hypothetical trichromatic predator and the M cone for the dichromat, no differences were 
expected. Point-by-point spectrometer data do not give any spatial information; therefore 
luminance contrast derived from spectral data between cuttlefish components alone 
cannot be used to assess the overall body pattern of a cuttlefish. However, it is a strong 
indicator of whether the body pattern is uniform or non-uniform.  

 While luminance contrast remained the same at depth for di- and trichromats in our 
analysis, color contrast (ΔS) showed some differences. The advantage of having a third 
visual pigment is best exemplified for the animal that does not have a good color match 
to the surrounding substrate (Figure 4.2b&Figure 4.3b).  
 
The effect of water depth on color matching of camouflaged animals 

Broad-spectrum sunlight can be available under clear water at shallow depths on a 
cloudless day, especially in kelp or coral reef habitats. Under those conditions, colored 
objects (e.g., sand, rocks, algae, coral, tunicates, sponges, etc.) will appear colorful 
(Jerlov 1976; Chiao et al. 2000; Marshall et al. 2003a, b; Hochberg et al. 2004). 
However, many underwater light fields are not made up of broad-spectrum sunlight 
because light is scattered by particles suspended in water (e.g., plankton, sediment, algae, 
etc.) and attenuates non-uniformly with depth and wavelength (Tyler and Smith 1970). 
Therefore, many marine habitats do no appear particularly colorful, even if the substrate 
contains colorful objects. In shallow coastal areas, such as our dive site, water turbidity is 
key in limiting the spectral composition of daylight. At great depths, it is thought that 
camouflage by intensity matching is more effective than color matching, since the 
appearance of most objects become blue-green (see references in (Mäthger et al. 2006).At 
a depth of 10 m, color contrast between the simulated animal spectra and substrate 
spectra was less substantial than differences between actual animal and substrate spectra 
collected at a depth of 1 m. Luminance contrast, however, remained practically 
unchanged, as the ratios of quantum catches using attenuated spectra did not change 
significantly. This result suggests that the animal would have been less distinguishable 
from its background in terms of color had the spectra been measured at this depth (Figure 
4.4), but would have appeared to have the same luminance contrast relative to the 
surrounding substrate despite attenuated ambient light. Mäthger et al. (2008) performed a 
similar simulation using laboratory data and showed that color match differences adjusted 
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for a depth of 10 m were half as substantial as differences measured in a few centimeters 
of water.  

To visualize this attenuation further, we used Maxwell triangles to represent 
colors from the visual system of a hypothetical trichromat predator (data only shown for 
one case, see Figure 4.6b). In the case of one animal that appeared to have a bad color 
match to its surroundings (Figure 4.2b&Figure 4.3b) at 1 m, the cuttlefish and substrate 
colors were relatively widely dispersed on the Maxwell triangles (Figure 4.6b). When the 
appearance of this animal was simulated at a depth of 10 meters, the loci of colors on the 
Maxwell triangle almost completely overlapped, indicating that this animal’s body 
pattern would be better camouflaged in the eyes of trichomatic predators at a depth of 10 
meters. 

 
Color matching in colorblind cuttlefish 

Researchers have been puzzled by the color-matching aspect of cuttlefish 
camouflage because cuttlefish are known to be colorblind (Brown and Brown 1958; 
Marshall and Messenger 1996; Mäthger et al. 2006). Mäthger et al. 2008 suggested that 
the spectral properties of S. officinalis body patterns and many natural objects are 
generally similar, thereby rendering color match less difficult. Our field data confirm 
their speculation for S. officinalis, at least for this particular study site. S. officinalis 
encounters a wide range of habitats including temperate rock reef environments 
throughout the Mediterranean and coral habitats off the west-central African coast. 
Certainly, some colors are not in the color repertoire of cuttlefish skin as Mäthger et al. 
(2008) showed in laboratory studies.  

As cuttlefish approach sexual maturity, their skin undergoes a physiological and 
morphological change where iridophores and leucophores develop to form White zebra 
bands (Hanlon and Messenger 1988), an important component of body patterns used for 
sexual signaling. Although the White zebra bands can be masked by the overlying 
chromatophores, they are permanent and are often partially visible while a mature 
cuttlefish is camouflaged. One cuttlefish (Figure 4.2f) showed a weak zebra pattern and 
spectral measurements from individual light and dark bands had low luminance and color 
contrast relative to some of the surrounding substrates. This result supports the 
speculation of Hanlon and Messenger (1988) that, in addition to their role in signaling, 
the White zebra bands can contribute to camouflage when their bright contrast is 
modulated by actively masking them to varying degrees by overlying chromatophores. 
Overall, cuttlefish skin pattern components for camouflage closely resembled the 
luminance and color of surrounding substrates in the eyes of hypothetical di- and 
trichromatic fish predators we modeled, but the range of colors found in this particular 
habitat on both cuttlefish and substrates was narrow. Nevertheless, our light-field and 
animal/substrate measurements corroborate that the spectral properties of chromatophores 
and natural objects are similar, thus facilitating color matching by cuttlefish. Moreover, 
cuttlefish can neurally control the expression of chromatophores thus selectively reveal 
underlying reflector cell types such as leucophores, which also have some capability to 
tone match and perhaps reflect ambient wavelengths (Messenger 1974). Despite apparent 
colorblindness in cuttlefish, the tone and color matches between animal and background 
make cuttlefish camouflage superb in the animal kingdom (see selected images in 
(Hanlon et al. 2009). It remains a future challenge to discover how cephalopods achieve 
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color resemblance to multiple backgrounds, and to what degree this is an active vs. 
passive process. This can be approached in the near future by testing the color matching 
abilities of cuttlefish in more chromatically diverse habitats (e.g., a coral reef) with 
hyper-spectral imagers and fuller characterization of the light field; currently, little is 
known about the color matching abilities of cuttlefish that live different habitats. Another 
approach, albeit logistically difficult, would be to transport cuttlefish native to a 
chromatically poor habitat to a chromatically rich habitat. Many such challenges remain 
in the field of sensory ecology, not just of cephalopods in marine habitats but many taxa 
involved in visual predator/prey camouflage interactions. 
 

4.6 Conclusion 
 Although cuttlefish body pattern spectra were remarkably similar to many of the 
natural substrates at the Aegean study site, the color spectra of those particular 
background substrates and objects were limited (Fig. 4.4) and natural substrates that 
cuttlefish cannot match undoubtedly exist within its geographical range. For example, 
none of the parts of the animals in Figure 4.2c & f closely matched the dark green 
Posedonia in color contrast while many of the measured body pattern components closely 
matched tan and brown sand and gravel substrates. From our study, it can be concluded 
that there is more to the discrimination of colors than simply a spectral shape mismatch. 
For example CIE Δ𝐸2000 (Luo et al. 2001; Sharma et al. 2005) is a highly refined 
measure of how similar two colors appear to a human observer and contains weighting 
functions for lightness, hue and chroma and compensation factors for blue hue non-
linearity that previous CIE color difference formulations did not have. The correlation 
between SAM and Δ𝐸2000 for the data we present here is much weaker (|r| ~ 0.3) than the 
correlation between SAM and ∆𝑆 (when this model is used with parameters that match 
those of the human visual system); this is not because SAM is better matched to animal 
visual systems but rather we know more about the human visual system and thus have 
derived a highly specialized color difference model. Regardless of how well an animal 
matches its background chromatically; its camouflage pattern becomes more effective at 
deeper depths due to the limited dynamic range, and uneven spectral attenuation 
underwater.  
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Chapter 5 

Image-based quantification of cuttlefish (S.officinalis) 
camouflage patterns 
 
5.1 Introduction 

The study of animal body patterning intertwines with many important questions in 
behavioral and evolutionary biology related to mate selection, communication, signaling 
and camouflage. For example, Hauglund et al. (Hauglund et al. 2006) found that the color 
and stripes of wasp patterns are visual signals that differentially affect the behavior of 
domestic chicks that hunt them; the yellow has an aversive effect on inexperienced 
predators while the stripes increase the speed of avoidance learning. While most animals 
have a pattern that undergoes little or no change throughout their lifetimes, cuttlefish are 
able to quickly change their appearance in response to visual stimuli (Hanlon and 
Messenger 1988; Hanlon and Messenger 1996; Messenger 2001a). In this work, we use 
image processing and computer vision tools to quantify cuttlefish camouflage patterns. 
We built an extensive database of calibrated photographs taken in the laboratory of 
camouflaged cuttlefish on 72 different backgrounds. Based on the images in our database, 
we asked the following questions: (1) What is the relationship between the levels of 
expression of chromatic body components? (2) Does the space of camouflage patterns 
form a continuum, or are there a discrete number of clusters? If so, how many? (3) Do 
cuttlefish express all possible patterns their components are capable of forming, or do 
they only show a subset?  

Animal patterns are used for inter- and intra-specific communication, and for 
camouflage. Camouflage is an umbrella term that describes all strategies used for 
concealment, including body patterning and coloration, mimicking behavior, and motion 
(Stevens and Merilaita 2009). While there is no widespread consensus on the definitions 
of camouflage, Stevens and Merilaita make the distinction between function and strategy 
to describe them: i.e. the function of the evolutionary adaptation, such as breaking up 
form; as opposed to the strategy, the specific perceptual processes targeted, e.g. does the 
pattern disrupt normal edge detection mechanisms? In this work, we are most concerned 
with the crypsis function, which aims to initially prevent detection and includes strategies 
of background matching, distractive markings, disruptive coloration, self-shadow 
concealment, obliterative shading and flicker-fusion camouflage. Background matching 
works through blending in with the color, lightness or pattern of a background. 
Distractive markings might stand out in a way that direct the attention of an observer 
away from the true shape of the animal, where disruptive coloration creates false edges 
and boundaries to hinder the detection or recognition of parts or the whole of an animal 
(Stevens and Merilaita 2009). Among so many possibilities, how can we determine which 
particular strategy an animal is employing? Stripes could disrupt an animal’s outline, or 
could form distractive markings (Stevens and Merilaita 2009). How can we decide what 
their function is? 

It has often been stated that our lack of knowledge of the perceptual mechanisms of 
the relevant observers hinders full understanding of camouflage strategies (Stevens and 
Merilaita 2009). An additional obstacle, which has received little attention in cuttlefish, is 
the lack of quantification of the limits to the cryptic coloration and patterns which can be 

 67 



produced by the animals. If the animal does not perfectly match the background, is this 
because it cannot, due to limits in its body patterning system?  Or might the animal be 
implementing an alternative camouflage strategy, such as disruptive coloration? 
Camouflage only needs to deceive the visual system of the receiver – if there are limits to 
the patterns that can be produced, does that give us any insights about the vastly different 
visual systems of cuttlefish predators?  

Cuttlefish skin exhibits great versatility through the display of attention-getting 
patterns for signaling, and highly cryptic patterns for camouflage. This makes it difficult 
to infer what kind of physiological limitations might exist amongst body components. For 
example, while the nervous control system of the cuttlefish allows for unilateral 
expression of patterns in a conspicuous appearance, we always observe a high degree of 
bilateral symmetry in camouflage patterns (Hanlon and Messenger 1988; Langridge 
2006; Allen et al. 2010b); clearly, correlation between right and left side components is 
not a physiological limitation. If there were no limitations and all of the cuttlefish’ body 
parts were independent of each other, cuttlefish could theoretically express every possible 
combination of pattern components. Based on our observations in the lab and in the field, 
some patterns are not common; a pattern with a White Square darker than all other 
components has not been reported. Curiously, based on our observations, cuttlefish can 
make very dark Uniform patterns, which means every component – including the White 
Square – can be made very dark. Why, then, does the White Square never go dark by 
itself? Understanding the limitations of components could lend insight into camouflage 
strategies, mechanisms, and physiology, as well as into the visual systems of their 
predators. 

One of the most debated questions relating to cuttlefish camouflage is whether 
cuttlefish camouflage patterns produce a discrete set of patterns, as opposed to a 
continuum of patterns.  If discrete classes, it becomes interesting to ask how many 
classes. A continuum of patterns may hint that cuttlefish might have only a single 
mechanism or strategy for producing camouflage patterns. On the other hand, if the 
animal sometimes implements a background matching strategy, and sometimes a strategy 
of producing distractive markings, then one might expect that the resulting patterns 
would appear to form well-defined and separated pattern classes.  In that case, one could 
ask whether a given class serves a background matching or a disruptive coloration 
strategy.  

These questions can be asked about the overall luminance changes produced by the 
larger scale body parts, and can also be asked of the small-to-medium scale “mottle” 
patterning.  Is mottle patterning expressed at equal strength by each component or are 
some components not wired to show strong mottle spots? Is mottle expression correlated 
across the body of the cuttlefish? What are the limits to mottle spot sizes that can be 
produced by the cuttlefish skin? 

In order to explore the gamut of body patterns, we must expose cuttlefish to a 
maximally diverse and unbiased collection of patterns.  Collecting images of camouflage 
patterns is a time-consuming process, as time to realize a stable pattern ranges from a 
couple of minutes to sometimes an hour or more, and the number of trials each animal 
can be exposed to in a given day is limited to prevent stress to the animal. To observe as 
many unique patterns as possible, we surveyed the S. officinalis literature for background 
substrates used to evoke camouflage, and carried out an extensive project to build a 
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database of raw (linear) images of cuttlefish camouflaged on these substrates, as well as 
additional ones designed de novo.  

Consistent and controlled photographic data acquisition is essential for the success of 
this study, as it requires quantitative comparison of a large number of body patterns. We 
placed photographic calibration targets in each frame for dynamic range adjustment, and 
ensured all image intensities were scaled according to the same standard. We call the 
resulting set of images, composed of 5 animals placed on 72 different background 
combinations, the Cuttlefish72x5 database.  

Using the images in this database, we measured body component intensity and 
“mottleness”, and derived a high-dimensional feature matrix. We found that the 
intensities of the head and body components are weakly negatively correlated, indicating 
that these parts may be used as two different elements of a pattern. In high-contrast 
patterns, the expression of the White Square and the White Triangle are highly correlated. 
We derived a map of physiological chromatophore units that control mottleness, and 
found that for the White Square and the White Triangle, both of which are on the axis of 
bilateral symmetry, have the least number and total area of dark spots, suggesting that 
one of their functions might be to create a visual low-frequency barrier, disrupting the 
animal’s shape. Our findings support the qualitative statement made by Chiao et al (2010) 
that there are two sizes of spots cuttlefish can produce mottleness with, and that the areas 
of small light and dark mottle spots are approximately equal in every pattern they are 
expressed. We found that there was no optimal number of clusters that represented the 
patterns in our database. Finally, based on principal components analysis of the images in 
our database, cuttlefish show a small subset of the body patterns they could theoretically 
display, if their components all acted independently. 
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5.2 Background and related work 

Brief summary of animal pattern quantification techniques  
In this section, we provide a brief overview of commonly used animal pattern 

quantification techniques, and then describe those used for cuttlefish patterns in detail. 
For cuttlefish, the quantitative relationship between the levels of expression of body 
components, and their capabilities, has not previously been studied. Addressing this 
question is important because understanding the relationships between components is key 
to evaluating the space of all possible patterns that can be shown. Numerous studies have 
investigated, qualitatively and quantitatively, what the total number of camouflage 
patterns available to cuttlefish might be (e.g., Hanlon and Messenger 1988; Crook et al. 
2002; Anderson et al. 2003). However, most of these studies suffer from two principal 
shortcomings. First, it often includes steps of scoring done by humans. While manual 
scoring is quick and does not require any specialized instruments, it is inherently 
subjective and assigned grades often vary between observers, causing low repeatability 
(Stevens 2011). Second, in some cases patterns from different photographs are warped 
onto a template so certain features can be compared locally when analyzing multiple 
images of the same animal (Shohet et al. 2007; Anderson et al. 2003; Barbosa et al. 
2008b). This step is error-prone and might produce blurring and aliasing artifacts 
compromising data quality (Szeliski 2010); such problems have already been reported in 
the context of cuttlefish patterning (Shohet et al. 2007; Anderson et al. 2003). But more 
importantly, these studies assume that well-defined, discrete clusters of body patterns 
exist and attempt to determine their number. Here, we will question the validity of this 
assumption and take existing work further through the use of methodologies that 
investigate the structure of the space of camouflage patterns, while ensuring that 
subjective human input, data acquisition and post-processing artifacts are minimized. 
 Allen and Higham (Allen and Higham 2013) describe animal patterns as the parts of 
skin, fur or plumage visible to others, containing spatial variations of color and structure, 
forming spots, stripes, blotches and gradients, often with repetitions. Before the 
widespread use of computers and digital images, patterns and backgrounds were often 
analyzed by taking 1-D transects across (digitized) images and deriving parameters 
describing color, intensity or pattern across these transects. This process is still frequently 
used (e.g., for water snakes (King 1992); bowerbird ornaments (Endler and Day 2006); 
and for cuttlefish component intensity (Chiao et al. 2009)), and is detailed in (Endler 
1984)). With the advent of faster computers, researchers have adopted frequency domain 
methods for the analysis of 2-D patterns. These methods assess how much information 
patterns carry at various spatial scales and orientations e.g., tiger and zebra stripes 
(Godfrey et al. 1987); cuttlefish patterns (Shohet et al. 2006; Barbosa et al. 2008b; Chiao 
et al. 2009; Zylinski et al. 2011); and avian eggs (Stoddard and Stevens 2011; 
Spottiswoode and Stevens 2012), and are well suited to most patterns. The biggest 
drawback of frequency-domain methods is that spatial information is discarded, which is 
important for many research questions. For example, detecting only the energy carried by 
mottle spots in cuttlefish patterns and discarding their location prevents the understanding 
of whether their expression is correlated among components, or how it varies between 
patterns.  
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Existing body of work on cuttlefish patterns 
There has been significant previous work describing cuttlefish patterns and 

coloration, yet much of that work has focused on different questions such as the 
effectiveness of camouflage in the eyes of predators (e.g., (Akkaynak et al. 2013; Chiao 
et al. 2011; Zylinski et al. 2009c; Mäthger et al. 2008; Hanlon et al. 2013) and the 
identification of camouflage strategy facilitated by the pattern shown (e.g., (Zylinski et al. 
2012; Buresch et al. 2011; Allen et al. 2010b; Allen et al. 2010a; Barbosa et al. 2008b; 
Kelman et al. 2008; Barbosa et al. 2008a; Kelman et al. 2007; Shohet et al. 2006; 
Mäthger et al. 2006; Chiao et al. 2005; Grable et al. 2002), or determining which 
elements in a given background influence final pattern expressed (e.g., (Ulmer et al. 
2013; Chiao et al. 2013; Hanlon et al. 2013; Chiao et al. 2010; Lee et al. 2010; Hanlon et 
al. 2009; Zylinski et al. 2009c, a; Barbosa et al. 2008b; Mäthger et al. 2007; Barbosa et 
al. 2007; Kelman et al. 2007; Chiao et al. 2007; Chiao et al. 2005; Grable et al. 2002; 
Chiao and Hanlon 2001a, b; Marshall and Messenger 1996). 

Previous studies most relevant to our research questions seek to identify quantifiable 
differences between patterns, and determine the number of existing camouflage patterns. 
Hanlon and colleagues (Hanlon and Messenger 1988) were the first to describe 13 overall 
body patterns, 5 of which were used for camouflage, based on visual observations in the 
lab and in the sea. The five camouflage patterns are generally sorted into three broad 

 

 
Figure 5.1 We number components differently than the convention used by Hanlon 
and Messenger (Hanlon and Messenger 1988), in which Sepia officinalis body 
patterns and their components were first described. We do not consider some of the 
small chromatic components (e.g., White Fin Spots, White Fin Line, Pink Iridophore 
Arm Stripes etc.) and therefore a top-down, left-to-right numbering convention 
utilizing consequent numbers allows for more intuitive interpretation of results. The 
light (1,3,6-8,10) and dark (2,4,5,9,11-14) chromatic components, as described in 
(Hanlon and Messenger 1988) are color coded here for completeness. Throughout the 
text, we will prefix components with “C”. Unless noted otherwise, C6&C8, C9&C11 
and C13&C14 will be assumed to exhibit bilateral symmetry and only one of each 
pair will be shown in results. 
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classes called Uniform (U), Mottle (M) and Disruptive (D), allowing some variation 
within each. These three classes differ from each other in contrast and granularity (spatial 
scale): Uniform patterns have low contrast and fine spatial scale, whereas Mottle patterns 
have coarser elements of moderate contrast, and Disruptive patterns have large elements 
of high contrast.  

 
Contrast quantification 

Chiao and colleagues introduced a manual scoring system that assessed the level 
of expression of each chromatic body component (Chiao and Hanlon 2001a, b), to 
describe a body pattern. Further developed by Mäthger and colleagues (Mäthger et al. 
2006), this method is known as disruptive scoring. The term component expression in the 
context of disruptive scoring requires some clarification. Chromatic components are 
divided into two classes: dark and light as defined in (Hanlon and Messenger 1988). Dark 
components on the dorsal side are produced by expanded chromatophores (Figure 5.1, 
components shown in black, 2,4-5,9,11,12-14), while light components result from 
retracted chromatophores revealing underlying leucophores, translucent skin or the 
cuttlebone (Figure 5.1, components shown in light gray, components 1, 3, 6-8, 10). 
Generally (somewhat confusingly), for disruptive scoring, a light chromatic component is 
considered expressed when it is brighter than a threshold, and a dark component is 
considered expressed when it is darker than a threshold. Often, this threshold is chosen to 
be the mean intensity of the pattern. When all components are minimally expressed  
(score of 0), the body pattern is Uniform; when all are maximally expressed (score of 3), 
the body pattern is the Disruptive pattern as described in (Hanlon and Messenger 1988). 
Mathger et al used only 11 components for scoring, yielding a maximum score of 11 x 3 
= 33 when light components were maximally light, dark components were maximally 
dark (Mäthger et al. 2006). This method was automated partially by Chiao et al. (Chiao et 
al. 2009), by warping the cuttlefish image to a standard template through user-marked 
correspondence points and summing Weber contrast of components relative to the image 
mean, along transects. Chiao and colleagues found that semi-automatic disruptive scores 
predicted human assigned scores well (𝜌2 = 0.9683), suggesting that this method could 
effectively replace human observers (Chiao et al. 2009).  
 
Mottleness quantification 

Uniform, Mottle and Disruptive pattern types differ in contrast and the spatial scale of 
their mottle spots; and while the disruptive score captures contrast differences quite well, 
it does not describe differences in spatial scale. To quantify elements that vary in spatial 
scale, or mottleness, Barbosa et al. introduced granularity analysis (Barbosa et al. 
2008b). This method filters cropped and warped cuttlefish images using 6 octave-wide 
bandpass filters and retains the sum of the squared filter outputs (i.e., energy) for each 
filter. Two parameters then describe the pattern: total energy (TE), which is an indicator 
of overall contrast, and mean granularity (MG), which measures the average spatial 
frequency of the body pattern (Chiao et al. 2009). 
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Other methodology 
Zylinski et al. (Zylinski et al. 2009a) used principal components analysis (PCA) on 

the manually graded expression of body components (plus, additional features such as 
mottle spots) and equated principal components to body patterns to quantify patterns 
cuttlefish showed during motion vs. when stationary. They found that motion patterns 
were lower contrast than static patterns. Investigating the total number of cuttlefish body 
patterns, Crook et al. (Crook et al. 2002) used AutoClass, (Cheeseman et al. 1993) a 
Bayesian clustering algorithm, and found that 12-14 body patterns were most likely. They 
used a generative model approach to propose a large set of models that might explain 
how the body patterns were generated from components, and then used Bayesian 
statistics to estimate the posterior probability of these signals having been generated by a 
particular model. In addition to the 34 chromatic components identified for S. officinalis 
in (Hanlon and Messenger 1988), 
they included six textural, eight 
postural and six locomotor 
components (total of 54 
components, N = 808 
photographs). The inputs to the 
AutoClass algorithm were the 
human assigned scores of the 
level of expression of each of the 
54 components. While their 
findings agreed in quantity with 
the 13 patterns identified in 
(Hanlon and Messenger 1988), 
their study made no judgment 
about which or how many of 
these might be camouflage 
patterns because they analyzed 
behaviors that included feeding, 
foraging and social 
communication in addition to 
camouflage. Using photographs 
of cuttlefish hunting and eating 
as well as of camouflaged 
individuals, Anderson and colleagues (Anderson et al. 2003) identified three temporal 
and three spatial components, but the small sample size (30 cuttlefish photographs) limits 
the effectiveness of their study. 

Next, we describe the construction of the Cuttlefish72x5 database. 

5.3 Experimental Setup 
 
Animals Five adult (mantle length: 6.2-7.2 cm) European cuttlefish (Sepia officinalis) 
hatched, reared and maintained at the MBL Marine Resources Center (Woods Hole, MA, 
USA) were used for the experiments. Animals were housed separately for the duration of 
the study. 

 
Figure 5.2 Experimental and photographic setup. The circular 
cuttlefish arena was placed in a rectangular tank supplied with 
seawater circulation. The setup was illuminated with a ring-
shaped LED light, above which the camera was mounted looking 
down (not shown in photo). Black and white calibration targets 
were placed inside the rectangular tank (shown here on the left), 
out of the field of view of the animal in the circular arena and 
remained in the same location throughout the duration of the 
study. 
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Experimental setup Each test animal was placed in a circular arena, (23 cm in diameter, 
walls 14 cm high), inside a rectangular tank (55x40x15 cm) with flow-through seawater 
(Figure 5.2). Experiments ran over a period of three months (September-December 
2012), during which animals performed one trial for every different substrate, and no 
more than two trials in a single day to minimize any stress on animals. To avoid 
disturbance to the animals and control lighting, the experiments were conducted inside a 
closed tent of black sheeting and the test animal was observed using an external video 
monitor. Each individual was given a minimum of 20 minutes to settle on the substrate; 
thereafter, trials were ended when the animal was seen to have maintained a stable 
position and pattern for a period of 2 minutes. 
 
Photographic setup Black (Digital Kolor Kard) and white (Spectralon; Labsphere, NH) 
photographic calibration targets, which remained in the same position throughout the 
entire study, were placed in the experimental setup in order to allow for careful 
calibration of the dynamic range in each photograph (Figure 5.2). These targets were not 
visible to the animals. To reduce shadows cast inside the arena and minimize lighting 
variation, the tank was illuminated by a ring of LED lights (40 cm diameter), suspended 5 
cm above the tank. Photographs were taken every 10s for the duration of each trial with a 
Canon EOS 1000D, fixed 50cm above the tank and triggered remotely by a TimeMachine 
(Mumford Micro Systems) device. The tank, lights and camera remained in a constant 
position throughout the experimental period.  
 
Substrates Substrates presented to the animals on the floor and walls of the arena were 
chosen to capture the range of backgrounds previously tested in psychophysics 
experiments performed with cuttlefish in both our laboratory and others (Figure 5.3). To 
elicit a variety of camouflage body patterns, we also designed novel substrates to test 
specific characteristics of the cuttlefish visual system. In total, we used 50 substrates, 
natural and artificial, two-dimensional and textured, which were presented to the animals 
in random order. In experiments with natural or artificial substrates, as well as with 
photographs of natural substrates, the walls were uniform grey 50% (RGB 122), while 
computer-generated backgrounds were paired with both matching and uniform grey 
walls. As a result, 72 different background pattern combinations were tested. Substrate 
order was randomized, but remained the same for each of the five individuals. 
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Image pre-processing Camera raw images (𝐼) were processed using black (B) and white 
(W) calibration targets to obtain the white balanced image 𝐼𝑖WB as follows: 
 

   𝐼𝑖WB =  𝐼𝑖−𝐵𝑖
𝑊𝑖− 𝐵𝑖

      i  =  R, G, B                            (5.1) 
 
White balanced RGB images were then converted to the LAB color space (Wyszecki and 
Stiles 2000), and only the L (luminance) channel was retained. Since all images were 
captured with the same sensor, the analysis was done in the camera color space and no 
color transformation was applied (see (Akkaynak et al. 2014).  The intensity images were 
then presented to an experienced user (DA) through custom-made software written in 
MATLAB (Mathworks, Inc., Natick MA) language, who marked the orientation the 

 

Figure 5.3 Stimuli from existing studies (e.g., (Hanlon et al. 2013; Chiao et al. 2010; Lee et al. 2010; 
Hanlon et al. 2009; Zylinski et al. 2009c, a; Chiao et al. 2009; Barbosa et al. 2008b; Mäthger et al. 
2007; Barbosa et al. 2007; Kelman et al. 2007; Chiao et al. 2007; Chiao et al. 2005; Grable et al. 2002; 
Chiao and Hanlon 2001a, b; Marshall and Messenger 1996; Shohet et al. 2007)) form the basis of the 
images in the Cuttlefish72x5 database 1 - Light brown sand, 2- White sand, 3- Gravel, 4-Dark gravel, 
5-Shell bits dark,6-Shell bits light, 7-Pink coralline, 8-Gray shells, 9-Pebbles, 10-Brown pebbles, 11-
Black and white sand, 12-Black and white gravel, 13-Black and white pebbles, 14-Uniform gray RGB 
122, 15-Uniform dark gray, RGB 61, 16-Black RGB 0, 17-Checkerboard 4mm, 18-Checkerboard 
5mm, 19-Checkerboard 12mm, 20-Checkerboard 20mm, 21-Scramble P1 5x5 (1.27mm), 22-Scramble 
P1 5x5 (5.5mm), 23-Tiled checks 10mm, 24- Tiled checks (5x7mm), 25-Horizontal stripes, 26-Vertical 
30° stripes, 27-Vertical 45° stripes, 28-Frequency sweep, 29-Sine wave 1, 30-Sine wave 2, 31-Sine 
wave 3, 32-Cow BP72_pt5, 33-Cow BP36_pt5, 34-Cow BP18_pt5, 35-Photograph of sand, 36-
Photograph of gravel, 37-Photograph of gray shells, 38-Photograph of pebbles, 39-Round black 
beads, uniform black background, 40-Round black beads, black and white spotted beads, uniform 
black background, 41-Round black beads, black and white striped beads, uniform black background, 
42-Round black beads, white and gold beads, uniform black background, 43-Black and white spotted 
beads, uniform black background, 44-Black and white striped beads, uniform black background, 45-
White and gold beads, uniform black background, 46-Black and white large beads, uniform black 
background, 47-Black and white spotted beads, uniform white background, 48-Black and white 
striped beads, uniform white background,49-White and gold beads, uniform white background, 50-
Black and white large beads, uniform white background. 
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cuttlefish and labeled the body pattern components. Component-level labeling was done 
based on the definition of chromatic components in (Hanlon and Messenger 1988) but 
components were numbered differently (Figure 5.1). To speed up processing for certain 
tasks, images were automatically registered based on the intersecting reference strings in 
the lower left corner of each frame (Figure 5.2). With the user-made masks, average 
intensity for each component in the L image was calculated, forming a 360 × 14 
intensity matrix for all the images in the Cuttlefish72x5 database. 
 
Shadow removal Even though we designed our photographic setup to minimize shadows 
cast over the arena, cuttlefish showed high preference for settling near arena walls. In 
those instances, one side of the cuttlefish was darker than the other in the captured 
photographs (Figure 5.4a). We remedied this situation by taking advantage of cryptic 
pattern symmetry (Langridge 2006), and matching the smoothed pixel intensity 
histogram of the shadowed half to that of the unshadowed half. This operation resulted in 
a visible seam in the middle (Figure 5.3c), which we concealed by blending the two 
image halves at multiple sub-bands using Laplacian pyramids combined with spatial 
feathering (Figure 5.4d) (Burt and Adelson 1983). While this approach only 
approximates intensity values for the shadowed pixels, it maintains local contrast, 
allowing us to find local extrema. 
 

Next, we investigate our three main research questions using the imagery in the 
Cuttlefish72x5 database. 
  

 
Figure 5.4 Example of shadow removal results. For each original image, the histogram of 
the shadowed lateral half was adjusted to match that of the unshadowed half, which was 
repeated at four different scales. (a) Original image (b) User-made right and left-half masks. 
The shadow removal operation left a visible seam between the two halves (c), which was 
blended through feathering (d). (e) Intensities of pixels along a horizontal transect across 
the image (red line) before and after shadow removal. 
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5.4 What is the relationship between the levels of expression of 
chromatic components? 

The appearance of a cuttlefish’s body pattern is a combination of three different 
kinds of components: chromatic, textural, postural and locomotor; which can be 
recombined at any time to make a new pattern (Hanlon and Messenger 1996). 
Components are made of units (e.g., morphological organization of cells in the skin into a 
circular patch), which are in turn composed of elements (e.g., chromatophores, 
idirophores, etc.). The physiological hierarchy between the elements, units and 
components of a cephalopod’s body pattern is well established (Packard and Hochberg 
1977; Hanlon and Messenger 1988). Generally parallel to this physiological hierarchy is 
a neural hierarchy, in which body patterns are organized at higher levels in the brain (i.e., 
the optic lobes), and chromatophores in the lower motor centers (Hanlon and Messenger 
1996). Here, we are interested in the functional hierarchy between chromatic 
components: Does the expression of one component tend to trigger the expression of 
other(s)? Is the appearance of component A correlated with that of component B? Is 
component A only expressed above a certain threshold when component B is? Identifying 
such relationships will enable accurate quantification of body patterns, which in turn will 
help answer more complex questions like ‘How many body patterns are there?” and give 
us insights into what aspects of predator vision the expression of a particular combination 
of components might deceive. 

 
 
 

 
Figure 5.5 Minimum and maximum intensities shown by each component in the Cuttlefish72x5 
database. (Note: we only present results for one of symmetric component pairs 6&8, 9&11 and 
13&14, because of imposed bilateral symmetry during the shadow removal process.) All 
components showed a similar range of intensities, within the imposed dynamic range limits of 0 
and 255. The White Square (component 7) has lighter minimum and maximum values compared 
to other components. Dashed lines indicate the upper and lower values of intensities each 
component showed; the darkest maximum intensity shown had a value of 206 (on a scale of 0-
255), while the lightest was 238. The lightest minimum intensity shown was 14, and the darkest 
was 3 (not labeled). Inset: visualization of the minimum, maximum and mean grayscale intensity 
of each component. 
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Intensity 
Figure 5 shows the minimum and maximum intensities displayed by each component 

across the 360 images in our database. Even though components are historically 
classified as “light” and “dark”, every component expressed a similar range of intensities. 
The White Square (C7) was the only (though modest) exception; its extrema were lighter 
than those for all other components. A principal components analysis done on all the 
images in our database reveals that the first principal component of body part intensities 
is the average pattern luminance, which explains over 87% of the variance. This is not 
surprising, because cuttlefish can show the same pattern (e.g., a dark Uniform and a light 
Uniform) with varying levels of intensity (Buresch et al, under review). Thus, to observe 
the other interesting aspects of component relationships more clearly, we subtracted the 
mean luminance from each image to obtain zero-mean image 𝑰𝑧𝑚 = (𝑰𝒊𝒏𝒕 − 𝜇)/𝜇 , where 
𝑰𝒊𝒏𝒕 is the 14-long pattern intensity vector for a given pattern, and 𝜇 is its mean intensity. 
The distribution of zero-mean intensities for each component is given in Figure 5.6.  

  
 To get an understanding of component relationships, we first look at pairwise 
correlations between their zero-mean intensities (Figure 5.7a). We observe the strongest 
positive correlation between components 12 & 13, which are the thin, linear, dark 
chromatic components on the body. This indicates that when they are expressed, they 

 
Figure 5.6 Distribution of zero-mean intensities per component; red curve shows the 
kernel density estimate; vertical red line shows x=0. While every component has 
taken on values brighter and darker than the pattern’s overall mean intensity, the 
White Square (C7) has overwhelmingly taken lighter values. In other words, the 
White Square was almost never expressed darker than the mean intensity of the 
pattern (𝒑(𝑪𝟕 < 𝟎) ≤ 𝟎.𝟎𝟐𝟕) based on the cumulative density function of its kernel 
density estimate. For other light components these probabilities were: 𝒑(𝑪𝟏 < 𝟎) ≤
𝟎.𝟒𝟖𝟓𝟒, 𝒑(𝑪𝟑 < 𝟎) ≤ 𝟎.𝟏𝟎𝟏𝟒, 𝒑(𝑪𝟔 < 𝟎) ≤ 𝟎.𝟒𝟎𝟕𝟗, 𝒑(𝑪𝟏𝟎 < 𝟎) ≤ 𝟎.𝟕𝟗𝟏; and for 
dark components: 𝒑(𝑪𝟐 > 𝟎) ≤ 𝟎.𝟓𝟏𝟒𝟔, 𝒑(𝑪𝟒 > 𝟎) ≥ 𝟎.𝟗𝟕𝟑𝟎, 𝒑(𝑪𝟓 > 𝟎) ≥
𝟎.𝟔𝟏𝟏𝟖, 𝒑(𝑪𝟗 > 𝟎) ≤ 𝟎.𝟏𝟕𝟒𝟗, 𝒑(𝑪𝟏𝟐 > 𝟎) ≤ 𝟎.𝟏𝟔𝟖𝟒 and 𝒑(𝑪𝟏𝟑 > 𝟎) ≤ 𝟎.𝟎𝟔𝟑𝟐. 
Note that the components on the head (1-3) showed a wider range of relative 
intensities compared to all other components, which was significant (F = 0.75-4.7199, 
p < 0.05). 
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have roughly the same intensity, perhaps either blending in as a part of a low-contrast 
pattern, or standing out as linear structures in a high-contrast pattern. The strongest 
negative correlations are observed between components 2&10 and 3&9. These are 
opposite polarity (i.e., light/dark) pairs and the negative correlation between them 
indicates that they are used as contrast-building elements. Components on the head (1-3) 
are positively correlated with each other, but generally negatively correlated, or 
uncorrelated, with the other components on the body (6-13). The expression of the head 
and mantle components at contrasting mean intensities might suggest the simultaneous 
use of two different strategies; through one body part blending in with the background 
and other standing out, the animal’s shape might be disrupted. We have observed patterns 
with head/mantle component contrast in our database (Figure 5.7b), this result may be 
partially attributable to the illumination differences across the experimental arena (Figure 
5.7c) because cuttlefish often positioned themselves at a right angle to the arena walls, 
which might have cast a laterally uneven shadow on them. Based on photographs alone, 
we cannot determine whether cuttlefish actually detected these shadows and intentionally 
displayed contrasting intensities between their heads/bodies to match the varying light 
pattern, or whether the head and mantle simply registered different pixel intensities in the 
photographs due to shadows. 

Figure 5.7 combines data from all observed patterns. Including a large number of 
patterns which are nearly uniform may obscure interesting relationships present in the 
higher-contrast patterns. In Fig. 8, we focus only on high contrast patterns. We select 
high contrast patterns as those in or above the 90th percentile of ∑ 𝜎(𝑰𝑧𝑚)14

𝑖=1  for each 
pattern where 𝜎 is the standard deviation, and i is the index of each of the 14 components; 
this yields a total of 36 patterns. In this subset of patterns, components 1&2 and 7&10 
showed the strongest positive correlation; and C12&C13 remain moderately positively 
correlated. Components 1&2 are commonly labeled as having opposite polarity (light 
expressed vs. dark expressed, respectively), but they can show intensities ranging from 
light to dark (Figure 5.6); and amongst the high contrast patterns in our database, they 
showed similar, not contrasting intensities. A newly emerged high correlation between 
C7&10 is more interesting because while C10 showed both light and dark intensities 
(Figure 5.6), C7 overwhelmingly showed intensities lighter than the pattern mean. Thus, 
the high correlation between C7&10 indicates that in high contrast patterns, C10 is 
exclusively expressed at mean pattern intensity or lighter, making it a key element for 
contrast. Component 10 expression is also strongly negatively correlated with all head 
components (1-3), indicating that often, but not always, a high-contrast pattern has a dark 
head. The lack of very strong correlations amongst components indicates that there is not 
a single high-contrast pattern and components can combine in different ways to make 
many such patterns; four examples are shown in Figure 5.8b. 

While looking at component correlations is informative, it is difficult to infer what the 
relationships between more than two components may be from pairwise plots. To remedy 
that, we used a dendrogram to visualize the same data from Figure 5.7&Figure 5.8 in a 
hierarchical layout. In Figure 5.9a, we see three main clusters; components on the head 
(1-3) along with the mantle component nearest to the head (4, cluster1); thin, linear, dark 
components on the body (5, 12, 13&14, cluster2); and the remaining, larger components 
on the body (6-11, cluster3). Cluster1 appears to be weakly negatively correlated with 
clusters2&3; which are uncorrelated with each other; these relationships parallel the 
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observations we made for pairwise correlations in Figure 5.7. The same three clusters 
remain in the high-contrast subset of patterns (Figure 5.9b) with one important difference 
in cluster3: C7 becomes less correlated with all the other components in this cluster. This 
is likely because the White Square may or may not be fully expressed in a high contrast 
pattern (Figure 5.7b). Component 10 has a positive correlation with its neighboring 
components 9&11; this behavior can be seen in all of the examples given in Figure 5.7b.  
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Figure 5.7 Here we show the pairwise correlations of zero-mean intensities between components for 
all patterns in the Cuttlefish72x5 database. Axes of each plot have been adjusted to [-3,3]. (b) 
Examples of photographs with contrasting head/body pattern intensities. (c) Examples of 
photographs where the recorded head/body intensity difference is likely due to shadowing from arena 
walls.  
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Figure 5.8 (a) Pairwise correlations of zero-mean intensity between components for 36 high-
contrast patterns, that were selected as those in the 90th percentile of ∑ 𝝈(𝑰𝒛𝒎)𝟏𝟒

𝒊=𝟏  for each pattern 
where 𝝈 is the standard deviation, and i is the index of each of the 14 components. Low contrast 
patterns were selected as those in the 10th percentile or less. Axes of each plot have been adjusted to 
[-3,3]. (b) Examples of high and (c) low contrast patterns from our database. 
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Mottleness 
Up to this point, we investigated the functional hierarchy between components only 

considering their mean intensities. However cuttlefish camouflage patterns are often 
mottled; that is, they contain small- and large-scale light and dark spots. These spots -are 
expanded chromatophores, or physiological units of chromatophore patterns (Packard 
1972) (Chiao et al. 2010). Chiao and colleagues explain the physiological breakdown of 
light and dark spots as follows: 

“...The large scale component is mainly composed of four sets of Paired Mantle 
Spots, that surround the white square, whereas the small-scale mottle component is 
represented by dark splotches of chromatophore aggregations, interspersed with light 
patches throughout the mantle and arms (resulting from the retraction of 
chromatopores). By varying the expression strength and frequency of these large and 
small-scale mottle components, cuttlefish are able to produce a variety of mottle patterns. 
The size is limited: they only have two sizes, small and large.”   

We used the images in our database to identify these small and large size mottle 
spots. After carefully registering the images and warping them onto a template, we 
manually marked pixels that were consistently dark. Even though warping is potentially 
an error-prone operation, it was suitable in this case because we only used the warped 
images to obtain the map in Figure 5.10a, visually verifying the result against the original 
photographs, and did not use the warped images as inputs into further processing. We 
were able to obtain the map in Figure 5.10a because the dark spots were approximately in 
the same locations in the bodies of all five animals used in our experiments. Through 

 
Figure 5.9 We implemented hierarchical clustering (Duda et al. 2012) for (a) all patterns and 
(b) high contrast patterns using MATLAB (version 8.2.0.701, R2013b, Mathworks, MA) and 
used as parameters correlation distance and Ward linkage. Left-to-right placement of 
components is arbitrary. The vertical height of each leaf indicates the level of correlation 
between the components on that leaf. The horizontal dashed line indicates the point of no 
correlation, below which correlations are positive, and above, negative.Components 9&11, 
6&8 and 13&14 have perfect correlation since we enforced bilateral symmetry.  
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visual inspection this appears to be true for animals from completely different colonies; 
e.g., see Fig. 2 in Chiao et al. (2010), or Fig. 2 in Allen et al (2010). 

There are a few things to note about Figure 5.10. The ratio of the number of dark 
spots to component area is roughly equal for all components other than C7&C10, which 
also have the smallest ratio of total spot area to component area (i.e., dark spot density). 
These are light components, which are weakly positively correlated (Figure 5.9a), located 
on the axis of bilateral symmetry. Their limited mottleness capability might indicate that 
one of their functions might be to provide a low frequency visual barrier between the 
right and left halves of a pattern, disrupting the body shape, or may simply be facilitating 
better background matching against substrates with linear (or, elongated) elements. 
Components surrounding C7&C10, namely C4, C6&C8, C9&C11, C13&C14, on the 
other hand, exhibit the highest ratio of dark spot area-to-component area, which suggests 
that at least for some patterns, the visual effect of separating C7&C10 from the rest of the 
body might be enhanced. Looking at Figure 5.10, it is possible to imagine a pattern with a 
“ring” of highly mottled components surrounding white and non-mottled components C7 
& C10. But is it possible for cuttlefish to actually show a pattern in which components 
have different levels of mottleness? In other words, is the mottleness of a given 
component correlated with, or independent of mottleness of other components? To 
answer this question, we built a mottleness detector (Figure 5.11) and quantified 
expression of the mottle spots for each image in our database, at the component level. 
Our detector is similar to the granularity analysis method of Barbosa et al. (2008b) and 
Chiao et al. (2010) but differs in that our processing takes place in the spatial domain, and 
retains the exact locations of the found mottle spots. Chiao and colleagues summed the 
energy of patterns in 4-6 frequency bands, representing different scales of mottleness 
with a scalar at each scale. Their work entirely focused only on mottle patterns, and 
therefore they used background substrates that only evoked mottle patterns; which 
formed a subset of the patterns used in our study as our goal was to generate as many 
camouflage patterns as possible. We search for mottle spots at four different spatial 

 
Figure 5.10 (a) The map of dark mottle spots, or physiological chromatophore units that control 
the mottleness of patterns, derived by overlaying all images in our database and marking spots 
that were consistently dark. C5 & C12 were omitted from this analysis. (b) The ratio of the 
number of dark spots (# spots) per component area (𝑨𝒄𝒐𝒎𝒑) is approximately equal for all 
components, except C7&C10. (c) The ratio of the total spot area within a component (𝑨𝒔𝒑𝒐𝒕) to 
that component’s area (𝑨𝒄𝒐𝒎𝒑) shows some variation. Specifically, C7&C10 have the smallest 
ratio of spot area per component area, followed by the components on the head (C1-3). 
Components adjacent to C7&C10 have the highest ratio (C4, 6, 9, 13).  
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scales; the finest scale (Figure 5.11b, scale 1) was selected based on the size smallest 
dark spot we have observed, and the coarsest scale (Figure 5.11b, scale 4) was sized to be 
just smaller than the animal’s White Square (C7). This ensures detection of only light and 
dark features smaller than C7 and prevents the expressed White Square from being 
identified as a large, light mottle spot. 

Using the images in our database, we first look for evidence of the two sizes of 
mottle spots hypothesized by (Chiao et al. 2010). Our mottleness detector used four 
spatial scales to search for spots rather than assuming that the spots occurred at particular 
scales. We standardized the area of each dark spot relative to the actual size of the 
cuttlefish image, and tested whether the spots come from the same distributions. Through 
visual inspection, we determined that the features identified at scale1 were the same order 
of magnitude of image noise and excluded this scale from our analysis. We found that the 
area of spots at scales2&3 were log-normal distributed and a two-sample Kolmogorov-
Smirnov test confirmed they were from the same distribution (p<0.05). This distribution, 
in turn, was different than that of scale4 (Wilcoxon rank sum, p<0.05); indicating that 

 
Figure 5.11 (a) Block diagram for detection of mottle features. Images are first smoothed using a 
Gaussian filter with 𝝈 = 𝟓 pixels (average size of a cuttlefish image is 900 x 400 pixels) and then 
decomposed into a four-layer Gaussian pyramid. At each scale, they are processed by a center-
surround filter composed of two concentric discs (inner disc diameter varied from 3 to 9 pixels, 
outer disc kept at 11 pixels). Filtered results are averaged over all inner diameter sizes, yielding a 
single filtered image at each pyramid level. [Is there a non-linearity before the second filtering?  If 
not you are effectively running a big, weird, linear filter.] The number of Gaussian pyramid levels 
is chosen such that the inner disk at the coarsest scale is slightly smaller than the dimensions of the 
cuttlefish’s White Square; ensuring the detection of features smaller than the White Square. As the 
final step, filtered images at each scale are normalized to fall within the range [0,1] (for display 
purposes only), and thresholded to eliminate noise components. (b) Examples of some light and 
dark spots found at different scales. 
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there were two scales of spots in our database images. The mean value of small and large 
spot areas differed roughly by an order of magnitude (𝜇2 ≈ 𝜇3 =  −5.01, 𝜇4 = −3.25). 
 Next, we used 
hierarchical clustering to 
investigate whether mottle 
spot expression was 
correlated across 
components. We used scale 2 
to represent the small-scale 
mottle spots and scale 4 for 
large scale. We found that 
certain components 
consistently clustered 
together at small and/or large 
scales, but the correlations 
within them were weak (0.2 
≤ρ≤0.55). Visualizations of 
these correlations are shown 
in Figure 5.12. Components 
around the White Square 
(C7), namely 6&8, 9&11 and 
13&14 clustered together for 
small and large scale mottle 
spot expression, while C4, C7 
& C10 formed one cluster for 
expressing small scale spots. 
Components on the head (1-
3) expressed large-scale 
mottle spots together, while 
their small-scale expression 
was clustered with the large-
scale expression of C4, 
C7&C10. The relationship 
between C7&C10 in the 
expression of mottleness 
parallels that of intensity. 
 Finally, we found that 
the difference between the mean areas of small dark and light spots is on the order of 
10−6, supporting the qualitative observations of Chiao et al 2010 that at that scale, the 
areas of light and dark spots are roughly equal (see Fig. 2 in (Chiao et al. 2010).  
  

 
Figure 5.12 Visualization of clusters of small and large-scale 
mottle spot correlations across components, based on hierarchical 
clustering (with parameters correlation distance and Ward 
linkage) of component dark spot densities. Small and/or large-
scale spots were expressed in a weakly positively correlated way 
(0.2 ≤ρ≤0.55) in the color coded-clusters. In one case (lower right), 
the small-scale spots of the head components were correlated with 
the large-scale spots located on the components on the axis of 
symmetry (C4, 7,10). 
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5.5 Do the space of camouflage patterns form a continuum, or are 
there a discrete number of clusters? If so, how many? 

Previous attempts to answer these questions have often used subjective judgments by 
human observers.  The human visual system is a powerful pattern analysis machine, 
however a fundamental disadvantage of determining pattern classes based on human 
visual texture perception is that inadvertently those properties that are more salient for the 
human visual system receive more weight, regardless of how they may be perceived by 
non-human visual systems. But more importantly, our words to describe textures (i.e. 
lexical texture space) are limited in part because there are more features in textures than 
those that are important for human visual texture perception (Ravishankar Rao and Lohse 
1996). For example, two textures with similar statistics can be found such that it might be 
very hard for humans to tell them apart even if the patterns in the textures are quite 
different (Julesz 1962). This discrepancy between visual and semantic spaces arises from 
the existence of low-level features that computers can extract, but which are not easily 
perceivable by humans. Thus, limits on human texture perception and texture naming 
may bias our assessment of the number and type camouflage patterns, if not also 
supported by objective methods of analysis. Indeed, in their book describing cuttlefish 
behavior, Hanlon & Messenger noted that it was difficult to name the body patterns 
because “they are dynamic and subject to immediate change and countless gradations” 
(Hanlon and Messenger 1996). 

To quantitatively represent camouflage patterns, we derived an 18-dimensional 
feature matrix encoding intensity and texture of each pattern. Four of these dimensions 
carry information about the texture properties (i.e., mottleness) of the overall body 
pattern, and the remaining 14 are the zero mean intensities of each component. Due to 
enforced bilateral symmetry, three of these intensities are redundant (components 6,9 and 
13 are symmetric with 8, 11 and 14, respectively), which reduces the dimensionality of 
the feature matrix to 15. Fifteen dimensions sufficiently represent the properties of each 
pattern, but pose a visualization challenge. In the simple case of two or three dimensions, 
we can get intuition about the structure of the data (i.e. whether there are distinct clusters 
or not) simply by visual inspection (Figure 5.13), but this is impractical when data have 

 
Figure 5.13 A hypothetical example with bivariate data showing well-separated, discrete 
clusters in (a) and a continuum in (b).  
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more than three dimensions. Dimensionality reduction techniques (e.g., principal 
components or linear discriminant analysis) can be used to project data onto fewer 
dimensions- usually those retaining the highest variance- making visualization easier and 
computing faster. However, the retained dimensions may not be optimal for 
discriminating between clusters and may obscure discrete clusters present in the data. To 
avoid such manipulation, we investigated the structure of our data directly in 15-
dimensional space using hierarchical clustering. In general, hierarchical clustering 
algorithms have complexity 𝒪(𝑛3) and are computationally prohibitive for high-
dimensional datasets. However, for a small number of samples as in our case (360) and 
much smaller number of dimensions (15), this cost is easily manageable (0.14 seconds on 
a 2.3 GHz Intel Core i7 processor).  

Figure 5.14a shows that depending on how the dendrogram is partitioned 
(horizontally); there might be 2-14 well-separated clusters. But closer inspection of 
patterns shows that none of these clusters are necessarily meaningful because there is 
great variation within each. We color-coded the branches of the dendrogram to match the 
ordered thumbnails in Figure 5.14b. Visual inspection shows that within a color-coded 
clade, patterns have high similarity, but these patterns differ from those in other branches 
in subtle or significant ways. However, it is clear that if we had chosen a lower threshold 
to partition the dendrogram horizontally we would have obtained fewer samples in each 
cluster, but more agreement within clusters.  

What, then, is the optimal number of clusters? In the field of pattern classification, it 
is standard to vary the number of classes the data can be partitioned into, and then assess 
the stability of each solution. Here, we tested all possible numbers of clusters (ranging 
between 1 and 360), and looked for a stable solution using the Davies-Bouldin (DB) 
index (Davies and Bouldin 1979). A stable clustering solution has low within-cluster 
distances, and high between-cluster distances, yielding a low DB value. Figure 5.14c&d 
shows that there is no optimal number of clusters for our data because the DB value 
keeps falling until every image is in a cluster of its own; i.e. k = 360.  

At this point it is important to note that computational methods like hierarchical 
clustering will produce clusters for any set of input data. Thus, the interpretation of their 
outputs is best done based in the context of the research questions asked. For example, 
are the low-level differences that separate cluster i from cluster j perceivable to a 
particular visual system? If not, they might safely be considered to be a single cluster. For 
example, a particular predator might be highly sensitive to low spatial frequency contrast, 
but not as sensitive to contrast in high spatial frequencies.  This sensitivity on the part of 
the observer will affect the distance between patterns and between clusters. The analysis 
above essentially applies for a visual system as sensitive as our image processing 
algorithms. Rather than providing a final answer, our methodology and results provide a 
first-level basis upon which researchers can build.  
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Figure 5.14 (a) Clustering of the 360 images in our database using intensity and mottleness 
features. We found the optimal distance (Euclidean distance) and linkage (Ward) parameters 
using the cophenetic correlation coefficient, which is a validation measure to gauge how 
faithfully the chosen distance and linkage combinations used for dendrograms represents 
pairwise distances between the original data points (da Fona Costa and Cesar 2012). (b) Each 
thumbnail is ordered from left to right, top to bottom, and color-coded to match its location in 
the dendrogram. Note that mean image intensity was removed from the data used for clustering, 
while the thumbnails do show variations in absolute mean. This figure can be seen in higher 
resolution in the supplementary materials. (c) A stable clustering solution should have a low 
Davies-Bouldin (DB) index. Selecting 2 or 14 clusters has the same DB value, and there is no 
global minimum. The lowest index is obtained when every image is in a cluster of its own 
(k=360), indicating that there is no optimal number of clusters. 
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5.6 Do cuttlefish express all possible patterns their components 
are capable of forming, or do they only show a subset? If so, which 
ones? 

Body components of cuttlefish are the building blocks of body patterns. This 
modular structure allows us to enumerate all possible permutations of components to 
explore the space of all (theoretically possible) body patterns. How many such patterns 
exist? The answer depends on how body patterns are defined. In the Cuttlefish72x5 
database image intensities are encoded as 8-bit values; that is, each component is 
represented using the 256 intensity values between 0 and 255. If, for simplicity, we omit 
mottleness altogether, and assume that each of the 11 components expressed intensity 
independently, a total of 25611 = 3.1 × 1026 patterns would be possible-- a thousand 
times more than the ratio of atoms per molecules in one mole! Are those patterns all 
unique? For our research interests, we define a unique pattern to be one that has a distinct 
spatial layout of elements. In other words, we consider two patterns to be the same even 
if they vary in mean intensity, as long as they have the same design (i.e., the same 𝑰𝑍𝑀). 
One way to investigate if cuttlefish can make all the patterns their components are 
capable of making, or just a subset, is to look at the principal components (PC) of 𝑰𝑍𝑀. 
For the images in our database, the first six PCs cumulatively explain 96% of the 
variance. This suggests that the observed patterns fall in a fairly low-dimensional 
manifold within the space of all possible patterns; far lower, even, than we would expect 
if the 360 patterns in our database were each unique. 

If cuttlefish cannot show all or most of the patterns they are (theoretically) capable 
of making, which ones do they make? When mean intensity variations are taken out and 
only zero-mean images are considered, the number of theoretically possible patterns is 
reduced significantly by considering only the set of patterns with components at their 
extreme values; effectively, with each component “On” or “Off”. In Figure 5.15a, we 
give an example of this for the 2-dimensional case; we call the resulting four patterns 
templates. The observed patterns, which do contain intensity variations, are plotted in the 
space defined by these four templates; we plotted 360 such hypothetical patterns in 
Figure 5.15b (black dots). Next, we’d like to determine to which templates the patterns in 
our database are most similar. One way to do so is to fit a statistical distribution to the 
observed patterns (for the hypothetical example in Figure 5.15b, a one-component 
bivariate Gaussian), and compute the Mahalanobis distance (MD) from this distribution 
to each of the four templates. The magnitude of the MD is an indication of how likely a 
particular template might have come from that distribution; the smaller the MD, the more 
likely. 

We extended this approach to the images in our database, obtaining the “On” and 
“Off” values of each component using their maximum and minimum intensities from 
Figure 5.5 (adjusted to zero-mean), respectively. This yielded a total of 211 = 2048 
unique pattern templates (Figure 5.16). Based on their MD values of the 2048 templates 
to the distribution that represents our data, we considered patterns in the lowest 5 
percentile “most likely”, and those in the top 5 percentile “most unlikely” to be produced 
(Figure 5.17), which coincidentally yielded 102 patterns in both groups.  
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It is useful to study the patterns in Figure 5.17, but grasping the quantitative 
differences between likely and unlikely patterns and gauging why some patterns were 
more likely than others this way is difficult. To make this assessment easier, in Figure 
5.18a&b we present visualizations of the PCs of the most likely and unlikely patterns. At 
a glance, these visualizations show that the first PC of the “most likely” set effectively 
facilitates high contrast between the White Square and the components on the head. 
Patterns with such combinations account for the biggest chunk of the variance in our 
dataset. In complement, the first PC of the “most unlikely” set is the lack of contrast 
between the White Square and the head components, i.e., their correlated expression. We 
study this PC in more detail to see if we can gain any insights towards understanding 
what made the patterns in Figure 5.17 likely or unlikely. In Figure 5.18c, we re-plot the 
pairwise correlations between C1-3 and C7 from Figure 5.7a, and overlay on top all 
likely and unlikely templates (red x’s). From this visualization, it becomes clear that 
throughout the likely templates, the White Square is expressed almost entirely within its 
limits observed in our database; specifically, we have observed that C1-3 can be 
expressed dark when C7 is light, and C1-3 can be expressed dark when C7 is dark. The 
likely templates follow this pattern. Throughout the unlikely templates, we notice the 
opposite: with the exception of outlier points, we did not observe C1-3 to be expressed 
light when C7 is light; and we did not observe C1-3 to be light when C7 is dark. The 
“most unlikely” templates capture these relationships. In fact, the relationship between all 
other components and C7 in the likely and unlikely templates mirror the pattern shown in 
Figure 5.18c. 

 
Figure 5.15 (a) A simple cuttlefish with two components. If each component can 
only be “On” (light) or “Off” (dark), there are four possible patterns; we call these 
templates. (b) The four templates form the boundaries of the space in which 
hypothetical pattern observations (black dots, N=360) fall; these patterns show 
variations in intensity between [0,1]. In this example, a bivariate Gaussian 
distribution is fit to these points. Mahalanobis distances between each template 
and this distribution are as follows: 0 to (0,0), 6 to (0,1), 3 to (0,1), and 1 to (1,1). 
Based on these distances, the all-dark template (0,0) is most likely and (0,1) is most 
unlikely. 
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We should note here that a pattern ranked unlikely by our analysis does not mean 
that it is an impossible pattern. A pattern may have been assigned to the unlikely pile for 
two reasons: it had a very low likelihood of being produced based on the component 
relationships in our dataset, or it was not observed in our database at all. Thus, it is 
possible to refine the space of all possible patterns cuttlefish can make by designing 
background substrates that might evoke the unlikely patterns, or by considering images 
from the wild where cuttlefish are subject to complex habitats and in turn may show 
different patterns. 

5.7 Discussion 
In this work, we quantified cuttlefish camouflage patterns from photographs, ensuring 

that our data acquisition process and methodology were maximally objective. To do so, 
we minimized involvement from human observers, used calibrated linear photographs, 
and avoided image-processing steps that might introduce artifacts. Our goal was to derive 
an objective feature matrix that represents cuttlefish body patterns, which could then be 
used to answer more complex questions. We focused on three such questions in 
particular; the relationship between the level of expression of components, the structure 
of the camouflage pattern space, and the total number of patterns that might be possible 
for cuttlefish to produce. We found that C7&C10, which are on the axis of bilateral 
symmetry, are correlated for both intensity and mottleness expression. In addition, these 
light components have the smallest number are area density of dark mottle spots, 
indicating that one of their functions might be to be expressed lighter and less mottled 
than the surrounding components, forming a vertical stripe between the right and left 
sides, visually disrupting the animal’s body outline. This result may be considered to be 
the first computational evidence towards determining whether cuttlefish utilize two 
camouflage strategies: background matching and disruptive coloration. 

Based our analyses, we propose two updates to the terminology currently used to 
describe cuttlefish camouflage patterns. First, we found that mottle features can be 
present on every pattern, suggesting that mottleness is a pattern feature, rather than 
Mottle being a unique pattern type. Second, the lack of strong correlations between all 
“light” and “dark” components suggests that there is no single high-contrast pattern, and 
components can combine in numerous ways to make such patterns. High contrast patterns 
have historically been termed Disruptive; yet as we have shown in in Figure 5.8b, there 
exist high-contrast patterns in which components like C7&C10 that likely disrupt body 
outline are not expressed as disruptive elements. Even when they are expressed, the term 
Disruptive more appropriately describes a subset of high-contrast patterns rather than one 
unique design. 

The body patterns in our data do not clearly group into discrete and well-
separated clusters. The space of patterns observed in our database, based on the features 
we have derived, appear to form a continuum. In many ways, this result is not surprising 
because both intensity and mottleness are features that can be expressed at varying levels, 
in an intertwined fashion, suggesting that many subtly different patterns can be made. 
Furthermore, our work only serves as the first step towards understanding whether the 
continuum-like behavior of cuttlefish patterns implies that cuttlefish have only one 
mechanism of producing camouflage patterns, and therefore may (or may not) employ 
only one type of camouflage strategy. Future work involves the perception of patterns 
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through observer-specific visual systems, which may reveal that with respect to a 
particular observer’s visual system some differences between patterns may not be 
discriminable, and patterns may be grouped into fewer classes for that observer. 

The number of images in our database (360) was an order of magnitude smaller than 
the number of theoretically possible patterns we hypothesized cuttlefish could show 
(2048). Since we used as basis the images in our database, the properties of patterns that 
were unlikely to be made reflect what might be underrepresented in our database. A 
future task would be to design substrates that will specifically evoke some of the unlikely 
patterns and/or use photographs of cuttlefish patterns from the wild, which may show 
differences than those captured in the lab. 

While our work was based entirely on images, it should be noted that the biological 
and evolutionary constraints on the design of the nervous system and the skin of 
cuttlefish must be considered. In any biological system that can produce more than a 
single camouflage pattern, there must be a sensory system to assess the background, a 
brain to integrate and synthesize the information, and a motor control system that 
produces the patterns in the skin. These are major constraints that might help explain why 
relatively few animals have evolved such a capability. A key question that has guided 
much of the biological investigation of rapid adaptive camouflage in cephalopods is: how 
do they so rapidly assess and implement their pattern on such diverse backgrounds such 
as coral reefs (Hanlon 2007)? There must be some parsimonious solution involved 
because there is too much visual information available to them, and too many variations 
of patterns that they could produce with so many chromatophores and iridophores 
(millions of each in a single cuttlefish); controlling such a vast amount of information 
would take a truly enormous brain, presumably much larger than what they actually have. 
We hope that our work will inspire more biological and neuro-physiological research to 
understand the body component relationships and constraints, which could then lend 
insights to evolution of cuttlefish’s camouflage patterns. 

 

5.8 Conclusion 
We derived intensity and mottleness features from photographs of S. officinalis 

camouflage patterns and used these to answer three main research questions. We used 72 
different background combinations and 5 adult cuttlefish to build the Cuttlefish72x5 
database that contains 360 calibrated images. Through the analysis of these images, we 
showed that every body component showed a wide range of (light-to-dark) intensities, 
despite being labeled as “light” or “dark”, except for the White Square, which was 
dominantly light. We found that the components on the head and body were often 
expressed in contrasting intensities suggesting that the head and the mantle may be used 
as two different parts of a pattern employing different strategies. We also found that C10 
had high correlation with C7 in high-contrast patterns, making those components 
essential for the creation of contrast.  

We custom built a mottleness detector to quantify the expression of light and dark 
spots present in pattern at the component level. Through the analysis of all the images in 
our database, we made a map of the chromatophore units that control the expression of 
dark spots. These spots appear to be in the same locations for all animals. Dark spots 
identified by our mottleness detector quantify the descriptive statement by Chiao et al 
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(2010) that the cuttlefish skin only has two sizes of mottle; small and large. We found 
that each component has approximately the same number of dark spots per its area, with 
the exception of C7&C10, which have less. Similarly, C7&C10 have the least total dark 
spot area per component area when compared to other components. This relationship 
between C7&C10 parallels a similar one in intensity, suggesting that perhaps these light 
components, located on the axis of bilateral symmetry, function as a visual barrier 
between the right and left halves of a pattern, disrupting the animal’s shape, or help blend 
in better with the elongated features of a background. We also found that the total area of 
small light and dark spots are roughly equal, confirming the visual observation made by 
Chiao et al (2010). 

Using an 11-dimensional feature vector composed of intensity and mottleness, we 
found that the 360 patterns in our database did not discrete, well-separated clusters. 
Finally, based on the inter-component correlations we observed, we conclude that 
cuttlefish are likely to have physiological limitations that prevent them from producing 
every theoretically possible body pattern. 
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Figure 5.16 Binary cartoons of 1024 of the 2048 patterns cuttlefish can theoretically make 
through permutation of component expressions. The remaining 1024 patterns are the opposite 
polarity versions of those shown here. 
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Figure 5.17 The Mahalanobis distance (MD) between the multivariate distribution fit to 𝑰𝒁𝑴 
and each of the 2048 theoretically possible patterns is a measure of how likely these patterns 
were observed in our database. We defined those in the 5th percentile, having the smallest 
MD, as “most likely”, and those in the 95th percentile, having the largest MD, as “most 
unlikely”.  
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Figure 5.18 Visualization of the features each principal component (PC) controls in the (a) most 
likely and (b) unlikely templates; 8 principal components retained 89% and 72% of the variance, 
respectively. Note that these cartoons do not represent actual body patterns, and only show the 
positive and negative contributions of each principal component relative to the average pattern; 
e.g., a dark White Square does not imply that the White Square can be expressed that way. The 
1st PC of the “most likely” set facilitates high contrast between the C7 and C1-3, and the 
opposite in the “most unlikely” set; their correlated expression. We study this PC in detail in (c). 
The pairwise correlation plots from Fig. 36a are re-plotted here for C1-3 and C7 and the red x’s 
show where in this these distributions the templates fall. The C1-3 and C7 relationships in the 
likely templates parallel those observed in our database well; while those in the unlikely set 
represent relationships we did not observe in our database; such as C1-3 being expressed light 
when C7 is light, and C1-3 being light when C7 is dark. 
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Chapter 6 
Contributions  
 

• Established a framework for the use of commercial-off-the-shelf cameras as 
scientific data acquisition tools including, but not limited to, their use in the field 
of animal coloration and camouflage. This framework ensures consistent color 
capture and can be used on land or underwater. 
 

• Established “scene-specific color calibration” to maximize color capture accuracy 
of commercial-off-the-shelf cameras, applicable in every field of science 
including, but not limited to, animal coloration and camouflage. This method can 
be used on land or underwater; its use for underwater scenes can offer up to 20-
fold decrease in color transformation errors. 

 
• Derived the equations governing the freehand use of optical fibers that determine 

the optimal measurement distance and angle from the surface of a sample. These 
equations can serve as guidelines for determining how close a surveyor should 
expect to get to the surface being measured; e.g., skin of an animal, to record 
uncontaminated spectra from a feature of known size. Alternatively, for existing 
measurements, they could quantify the degree of contamination if measurement 
angle and distance were recorded as a part of the field study. 

 
• Quantified the effect of contaminated spectra on discriminability of colors in the 

eyes of non-human animals for the assessment of camouflage effectiveness. 
Showed that the use of contaminated spectra for camouflage assessment could 
lead to (incorrectly) concluding that two colors with minimal spectral overlap 
were indistinguishable to a particular visual system. 

 
• Quantified, for the first time, the color match of European cuttlefish in the eyes of 

its predators using reflectance and irradiance spectra measured in situ. Showed 
that cuttlefish matched colors in their habitats closely; but the particular habitat 
studied in the Aegean Sea was not colorful. 

 
• Built reflectance and irradiance spectra databases characterizing underwater 

habitats in Urla (Turkey), Kona (Hawaii) and Woods Hole, (MA). These 
databases can be used for future color matching studiesd, as well as bio-diversity 
and ecological surveys, and color-sensitive underwater imaging applications. 

 
• Built the first database (to be made publicly available) containing calibrated linear 

photographs of five adult camouflaged cuttlefish, taken against 72 backgrounds; a 
comprehensive superset that included all backgrounds used for previous studies as 
well as new ones. This database also contains time-lapse photographs of 
cuttlefish’s settling behavior until a stable camouflage pattern is shown.  
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• Designed a “mottleness detector” for cuttlefish body patterns (also applicable to 
other animal patterns): a spatial filter that identifies dark and light spots at four 
different scales. This detector offers an advantage over existing ways of 
quantifying mottleness through capturing the spatial locations of dark and light 
spots, as well as their size and shape. This enables the study of more advanced 
questions, such as which elements form physiological units in the skin of the 
cuttlefish that contribute to the consistent expression of mottleness. 

 
• Derived a high-dimensional feature vector representing cuttlefish camouflage 

patterns, consisting of both intensity and mottleness features. This feature vector, 
which was derived using objective and repeatable computational tools, facilitates 
the study of complex questions regarding cuttlefish camouflage, such as how 
patterns differ from each other or how many patterns there might be. 

 
• Quantified correlations between chromatic body components of European 

cuttlefish in terms of their levels of expression of intensity and mottleness. Most 
recent physiological studies do not address how cuttlefish body components 
function to generate overall patterns. Our data-driven approach forms a baseline 
for future physiological studies that might investigate component relationships 
using state-of-the-art techniques. 

 
• Employed pattern recognition techniques to investigate the structure of the high-

dimensional space of cuttlefish patterns and found they formed a continuum 
rather than well-separated discrete clusters. 

 
• Used an image-based approach to perform a preliminary analysis regarding 

physiological limitations cuttlefish may have when combining chromatic body 
components to create overall camouflage patterns. Found that there appear to be 
constraints to the patterns cuttlefish can show, providing a baseline for future 
electro-physiological studies. 
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Chapter 7 
Future Work  

In this thesis, we focused on visual camouflage based on animal patterns, specifically 
those of cuttlefish (S. officinalis). In biology, there is no widespread consensus on the 
definitions of camouflage strategies, which partly stems from our lack of knowledge of 
the perceptual mechanisms of the relevant observers, but also from lack of publicly 
available data (e.g., RGB or multi-spectral photographs or point-by-point spectral 
measurements) that is free of instrument bias. The establishment of the Cuttlefish72x5 
database (Chapter 5) will facilitate deeper analyses of camouflage strategies, as well as 
biological questions related specifically to European cuttlefish. In particular, using the 
Cuttlefish72x5 database, we will be able to analyze the time-dependent settling behavior 
of cuttlefish and gain insights into how the final camouflage pattern may be chosen. This 
behavior will also be integrated with the statistics and spatial layout of the background 
substrates. 

Through quantifying the dark mottle spot distribution across each body component, 
and investigating their correlated expression, we found evidence that cuttlefish might be 
physiologically wired to utilize two camouflage strategies- background matching and 
disruptive coloration. Our feature matrix consisting of intensity and mottleness provides a 
first-level basis upon which researchers can build. For example, we found that using 
these features extracted from our dataset, we cannot classify cuttlefish patterns into well-
separated classes. For future work, a predator’s visual system can be taken into account. 
Certain patterns that showed quantifiable differences might become indistinguishable 
because that predator may not be sensitive to those features. Then, from the point of view 
of that visual system, it would be possible to classify patterns into discrete groups. We 
also examined what the theoretical number of patterns cuttlefish can produce might be, 
and found that cuttlefish likely show a much smaller subset of what their components are 
capable of showing. Given the theoretical space of all possible patterns, and those 
patterns we actually observed in our database, we found that some patterns more likely to 
be produced than others. An important task for future work would be to design 
background substrates that might evoke some of the patterns that were classified as 
unlikely.  

As a part of our work investigating biological questions related to cuttlefish 
camouflage, we have made contributions towards the acquisition of unbiased data using 
conventional optical instruments. In Chapter 2, we presented a framework that enables 
consistent and accurate color capture using commercial-off-the-shelf digital cameras. 
These cameras have applications in all fields of science and following this framework to 
obtain properly calibrated photographs can open up new uses for them. For example, 
some applications of the scene-specific color calibration method described here can be in 
producing color-corrected photomosaics (underwater, or land); in mineralogy where 
minerals in soil could be classified from photographs; in medical imaging when foot sore, 
or ulcers could be imaged by patients at home and communicated to medical 
professionals digitally, or for ecological monitoring projects similar to the coral health 
example we have used in Chapter 2.  
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In Chapter 3, we derived an equation that determines the degree of spectral 
contamination when the spectrometer fiber is held too far away from the object being 
measured, or at too steep of an angle. This equation depends only on the numerical 
aperture and diameter of the optical fiber, which are always known, therefore it can be 
used as a guideline to come up with a measurement distance and angle estimate before 
carrying out fieldwork (e.g., relative to the size of spots that will be measured on an 
animal) or any kind of study that requires free-hand use of an optical fiber. Since this 
equation only depends on geometrical optics, it is applicable for spectroscopic 
measurements in every field. 

In Chapter 4, we presented the first study that used unbiased spectrometer 
measurements taken in situ in the Aegean Sea, comparing S. officinalis pattern colors to 
those of its natural habitat (Akkaynak et al. 2013). We found that cuttlefish showed a 
good match to colors in their habitats but the range of colors in the particular Aegean 
habitat we studied was indeed limited. For future work, it would be an interesting 
experiment to transport cuttlefish from one habitat, e.g., the Aegean, to a more colorful 
habitat, such as a coral reef, to examine whether their ability to match color is affected 
when the gamut of their habitat colors changes noticeably. In addition, based on 
spectroscopic measurements made from cuttlefish skin, including microscopic 
measurements of chromatophores previously done by Mäthger et al. (2008), the gamut of 
all colors cuttlefish can (theoretically) produce can be derived, establishing a basis of 
comparison with the chromatic properties of natural habitats. 

Quantification and interpretation of animal camouflage patterns have significance and 
applications beyond behavioral and evolutionary biology. For example, understanding 
what features of a background an animal’s pattern matches, successfully deceiving the 
observer’s visual system, would give us the ability to replicate it with an option to tune 
the degree of camouflage, making the target better or worse camouflaged. For example, 
such control could be used to magnify or reduce how well a feature blends in with a 
digital artwork, like a company logo on a poster. Furthermore, understanding the 
dimensions that control camouflage would give us insights to reverse engineer patterns 
and use that knowledge expose hidden target(s) in images. In addition to defense, 
camouflage-breaking techniques have natural applications in medical imaging, where 
cancerous tissue is often difficult to segment from healthy tissue, e.g., in mammograms, 
endoscopy or colonoscopy images.  
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Appendix 
 
In 3-space, 𝑥

2+𝑦2

(𝑅/𝐻)2
= 𝑧2 defines a right cone with its apex on the origin 𝑂(0,0,0), whose 

base is a circle with radius R in the XY plane, located at a distance H away from the apex 
along the z-direction. A plane that intersects this cone at height 𝐻𝑠, at an angle 𝛼  is 
defined by 𝑧 =  tan𝛼 ∙ 𝑦 + 𝐻𝑠. These two equations are solved together to find their 
intersection: 
 

𝑥2 + 𝑦2

(𝑅/𝐻)2
= (tan𝛼 ∙ 𝑦 + 𝐻𝑠)2 

 
Expanding the terms on the right hand side and re-arranging gives 
 

𝑥2

(𝑅/𝐻)2
+ 𝑦2 �

1
(𝑅/𝐻)2

− tan2 𝛼� − 2 tan𝛼𝐻𝑠𝑦 = 𝐻𝑠2 

 
Defining 𝑡 = 𝑅/𝐻 and 𝑀 =  1

𝑡2
− tan2 𝛼 yields: 

𝑥2

𝑀𝑡2
+ 𝑦2 −

2 tan𝛼 𝐻𝑠
𝑀

𝑦 =
𝐻𝑠2

𝑀
 

 
Completing the square, the last equation reduces to 

𝑥2

𝑀𝑡2𝐶
+
�𝑦 − 𝐻𝑠tan𝛼

𝑀 �
2

𝐶
= 1 

where 𝐶 =  𝐻𝑠
2

𝑀
�1 + tan2 𝛼

𝑀
�. From this, we obtain the center of the ellipse as (𝑥𝑐,𝑦𝑐) =

 (0, 𝐻𝑆 tan𝛼
1/𝑡2−(tan𝛼)2

), with semi-major axis 𝑎 = �𝐶 (1 − 𝑡2(tan𝛼)2) and semi-minor axis 

𝑏 = √𝐶. A quick check shows that when 𝛼 = 0 (𝑥𝑐,𝑦𝑐) =  (0,0) and 𝑎 =  𝑏 = √𝐶, 
making a circle parallel to the base of the cone∴ 
  

 102 



Bibliography 
Åhlén J (2005) Colour correction of underwater images using spectral data. Thesis, 

Uppsala University. 
Akkaynak D (2014) Use of spectroscopy for assessment of color discrimination in animal 

vision. J Opt Soc Am A 31 (4):A27-A33. doi:10.1364/josaa.31.000a27 
Akkaynak D, Allen J, Mäthger L, Chiao C-C, Hanlon R (2013) Quantification of 

cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in 
situ spectrometry. J Comp Physiol A 199 (3):211-225. doi:10.1007/s00359-012-
0785-3 

Akkaynak D, Chan E, Allen JJ, Hanlon RT (2011) Using spectrometry and photography 
to study color underwater. Proceedings of IEEE OCEANS, Kona, HI USA, pp 1-8 

Akkaynak D, Treibitz T, Xiao B, G¸rkan UA, Allen JJ, Demirci U, Hanlon RT (2014) 
Use of commercial off-the-shelf digital cameras for scientific data acquisition and 
scene-specific color calibration. J Opt Soc Am A 31 (2):312-321. 
doi:10.1364/josaa.31.000312 

Allen JJ, Mäthger LM, Buresch KC, Fetchko T, Gardner M, Hanlon RT (2010a) Night 
vision by cuttlefish enables changeable camouflage. The Journal of Experimental 
Biology 213 (23):3953-3960 

Allen JJ, Mäthger LM, Barbosa A, Buresch KC, Sogin E, Schwartz J, Chubb C, Hanlon 
RT (2010b) Cuttlefish dynamic camouflage: responses to substrate choice and 
integration of multiple visual cues. Proceedings of the Royal Society B 277:1031-
1039. doi:FirstCite doi:10.1098/rspb.2009.1694 

Allen JJ, Mäthger LM, Barbosa A, Hanlon RT (2009) Cuttlefish use visual cues to 
control three-dimensional skin papillae for camouflage. J Comp Physiol A 195 
(6):547-555 

Allen WL, Higham JP (2013) Analyzing Visual Signals as Visual Scenes. American J of 
Primatology 75(7):664-682 

Alsam A, Finlayson G (2008) Integer programming for optimal reduction of calibration 
targets. Color Research & Application 33 (3):212-220 

Anderson J, Baddeley R, Osorio D, Shashar N, Tyler C, Ramachandran V, Crook A, 
Hanlon R (2003) Modular organization of adaptive colouration in flounder and 
cuttlefish revealed by independent component analysis. Network: Computation in 
Neural Systems 14 (2):321-333 

Aristotle (1910) Historia Animalium  (trans: Thompson DAW). Clarendon Press, Oxford 
Arnold SE, Faruq S, Savolainen V, McOwan PW, Chittka L (2010) FReD: the floral 

reflectance database‚A web portal for analyses of flower colour. PloS one 5 
(12):e14287 

Baldwin J, Johnsen Sn (2012) The male blue crab, Callinectes sapidus, uses both 
chromatic and achromatic cues during mate choice. The Journal of Experimental 
Biology 215 (7):1184-1191 

Barbosa A, Allen JJ, Mӓthger LM, Hanlon RT (2012) Cuttlefish use visual cues to 
determine arm postures for camouflage. Proceedings of the Royal Society B: 
Biological Sciences 279 (1726):84-90 

Barbosa A, Litman L, Hanlon RT (2008a) Changeable cuttlefish camouflage is 
influenced by horizontal and vertical aspects of the visual background. J Comp 
Physiol A 194:405-413 

 103 



Barbosa A, Mäthger LM, Buresch KC, Kelly J, Chubb C, Chiao C-C, Hanlon RT (2008b) 
Cuttlefish camouflage: The effects of substrate contrast and size in evoking 
uniform, mottle or disruptive body patterns. Vision Research 48:1242-1253 

Barbosa A, Mäthger LM, Chubb C, Florio C, Chiao CC, Hanlon RT (2007) Disruptive 
coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic 
adjustment of skin patterning. Journal of Experimental Biology 210:1139-1147 

Barnard K, Funt B (2002) Camera characterization for color research. Color Research & 
Application 27 (3):152-163 

Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, Macdonald C, Mahajan V, 
Van Stryland E (2009) Handbook of optics, Volume II: Design, fabrication and 
testing, sources and detectors, radiometry and photometry. McGraw-Hill, Inc.,  

Boggs CL, Watt WB, Ehrlich PR (2003) Butterflies: ecology and evolution taking flight. 
University of Chicago Press 

Boycott, BB (1961) The functional organization of the brain of the cuttlefish Sepia 
officinalis, Proceedings of the Royal Society of London, Series B, Biological 
Sciences, Vol. 153, No. 953, 503-534. 

Brainard D (2001) Color vision theory. International Encyclopedia of the Social and 
Behavioral Sciences, vol 4. Elsevier 

Buresch KC, Mӓthger LM, Allen JJ, Bennice C, Smith N, Schram J, Chiao CC, Chubb C, 
Hanlon RT (2011) The use of background matching vs. masquerade for 
camouflage in cuttlefish Sepia officinalis. Vision Research 

Burt PJ, Adelson EH (1983) A multiresolution spline with application to image mosaics. 
ACM Trans Graph 2 (4):217-236. doi:10.1145/245.247 

Bybee SM, Yuan F, Ramstetter MD, Llorente-Bousquets J, Reed RD, Osorio D, Briscoe 
AD (2012) UV photoreceptors and UV-yellow wing pigments in Heliconius 
butterflies allow a color signal to serve both mimicry and intraspecific 
communication. The American Naturalist 179 (1):38-51 

Chakrabarti A, Scharstein D, Zickler T An empirical camera model for internet color 
vision. In: Proc. British Machine Vision Conference, 2009. BMVA Press, pp 
51.51-51.11 

Chang CI (2003) Hyperspectral Imaging. Kluwer Academic/Plenum Publishers,  
Cheeseman P, Kelly J, Self M, Stutz J, Taylor W, Freeman D (1993) Autoclass: A 

bayesian classification system. In: Readings in knowledge acquisition and 
learning. Morgan Kaufmann Publishers Inc., pp 431-441 

Cheney KL, Grutter AS, Marshall NJ (2008) Facultative mimicry: cues for colour change 
and colour accuracy in a coral reef fish. Proceedings of the Royal Society B: 
Biological Sciences 275 (1631):117-122 

Cheney KL, Marshall NJ (2009) Mimicry in coral reef fish: how accurate is this 
deception in terms of color and luminance? Behavioral Ecology 20 (3):459-468 

Cheung V, Westland S, Connah D, Ripamonti C (2004) A comparative study of the 
characterisation of colour cameras by means of neural networks and polynomial 
transforms. Coloration technology 120 (1):19-25 

Cheung V, Westland S, Li C, Hardeberg J, Connah D (2005) Characterization of 
trichromatic color cameras by using a new multispectral imaging technique. 
JOSA A 22 (7):1231-1240 

 104 



Chiao C-C, Chubb C, Buresch K, Siemann L (2009) The scaling effects of substrate 
texture on camouflage patterning in cuttlefish. Vision Research 49:1647-1656 

Chiao C-C, Chubb C, Buresch KC, Barbosa A, Allen JJ, Mäthger LM, Hanlon RT (2010) 
Mottle camouflage patterns in cuttlefish: quantitative characterization and visual 
background stimuli that evoke them. Journal of Experimental Biology 213:187-
199 

Chiao C-C, Chubb C, Hanlon RT (2007) Interactive effects of size, contrast, intensity and 
configuration of background objects in evoking disruptive camouflage in 
cuttlefish. Vision Research 47:2223-2235 

Chiao C-C, Ulmer KM, Siemann LA, Buresch KC, Chubb C, Hanlon RT (2013) How 
visual edge features influence cuttlefish camouflage patterning. Vision Research 
83, 40-47 

Chiao CC, Hanlon RT (2001a) Cuttlefish camouflage: visual perception of size, contrast 
and number of white squares on artificial substrata initiates disruptive coloration. 
Journal of Experimental Biology 204:2119-2125 

Chiao CC, Hanlon RT (2001b) Cuttlefish cue visually on area-not shape or aspect ratio-of 
light objects in the substrate to produce disruptive body patterns for camouflage. 
Biological Bulletin 201:269-270 

Chiao CC, Kelman EJ, Hanlon RT (2005) Disruptive body patterning of cuttlefish (Sepia 
officinalis) requires visual information regarding edges and contrast of objects in 
natural substrate backgrounds. Biological Bulletin 208:7-11 

Chiao CC, Osorio D, Vorobyev M, Cronin TW (2000) Characterization of natural 
illuminants in forests and the use of digital video data to reconstruct illuminant 
spectra. JOSA A 17 (10):1713-1721 

Chiao CC, Wickiser JK, Allen JJ, Genter B, Hanlon RT (2011) Hyperspectral imaging of 
cuttlefish camouflage indicates good color match in the eyes of fish predators. 
Proceedings of the National Academy of Sciences 108 (22):9148-9153 

Cortesi F, Cheney K (2010) Conspicuousness is correlated with toxicity in marine 
opisthobranchs. Journal of Evolutionary Biology 23 (7):1509-1518 

Crook AC, Baddeley R, Osorio D (2002) Identifying the structure in cuttlefish visual 
signals. Philosophical Transactions of the Royal Society of London B 357 
(1427):1617-1624 

da Fona Costa L, Cesar RM (2012) Shape Classification and Analysis: Theory and 
Practice, Second Edition. Taylor & Francis 

Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, (2):224-227 

De La Barrera E, Smith WK (2009) Perspectives in Biophysical Plant Ecophysiology: A 
Tribute to Park S. Nobel. 

Duda RO, Hart PE, Stork DG (2012) Pattern classification. John Wiley & Sons,  
Endler JA (1984) Progressive background in moths, and a quantitative measure of 

crypsis. Biological Journal of the Linnean Society 22 (3):187-231 
Endler JA (1990) On the measurement and classification of colour in studies of animal 

colour patterns. Biological Journal of the Linnean Society 41 (4):315-352 
Endler JA, Day LB (2006) Ornament colour selection, visual contrast and the shape of 

colour preference functions in great bowerbirds Chlamydera nuchalis Animal 
Behaviour 72 (6):1405-1416 

 105 



Endler JA, Mielke Jr PW (2005) Comparing entire colour patterns as birds see them. 
Biological Journal of the Linnean Society 86 (4):405-431 

Fairchild MD, Johnson GM METACOW: A public-domain, high-resolution, fully-digital, 
noise-free, metameric, extended-dynamic-range, spectral test target for imaging 
system analysis and simulation. In: Color and Imaging Conference, 2004. Society 
for Imaging Science and Technology, pp 239-245 

Farid H (2011) That looks fake! http://www.fourandsix.com/blog/2011/6/29/that-looks-
fake.html.  

Finkbeiner SD, Briscoe AD, Reed RD (2012) The benefit of being a social butterfly: 
communal roosting deters predation. Proceedings of the Royal Society B: 
Biological Sciences 279 (1739):2769-2776 

Finlayson G, Hordley S, Hubel PM Recovering device sensitivities with quadratic 
programming. In: IS&T/SID Sixth Color Imaging Conference: Color Science, 
Systems and Applications, 1998.  

Finlayson GD, Drew MS White-point preserving color correction. In: Color and Imaging 
Conference, 1997. Society for Imaging Science and Technology, pp 258-261 

Florey E (1969) Ultrastructure and function of cephalopod chromatophores. American 
Zoologist:429-442 

Freek Mvd (2006) The effectiveness of spectral similarity measures for the analysis of 
hyperspectral imagery. International Journal of Applied Earth Observation and 
Geoinformation 8 (1):3-17. doi:doi: 10.1016/j.jag.2005.06.001 

Frey F, Farnand S (2011) Benchmarking Art Image Interchange Cycles. Final project 
report.  

Godfrey D, Lythgoe J, Rumball D (1987) Zebra stripes and tiger stripes: the spatial 
frequency distribution of the pattern compared to that of the background is 
significant in display and crypsis. Biological Journal of the Linnean Society 32 
(4):427-433 

Grable MM, Shashar N, Gilles NL, Chiao C-C, Hanlon RT (2002) Cuttlefish body 
patterns as a behavioral assay to determine polarization perception. The 
Biological Bulletin 203 (2):232-234 

Gurkan UA, Tasoglu S, Akkaynak D, Avci O, Unluisler S, Canikyan S, MacCallum N, 
Demirci U (2012) Smart Interface Materials Integrated with Microfluidics for On-
Demand Local Capture and Release of Cells. Advanced healthcare materials 1 
(5):661-668 

Hanlon RT (2007) Cephalopod dynamic camouflage. Current Biology 17 (11):R400-
R405 

Hanlon RT, Chiao C-C, Mäthger LM, Barbosa A, Buresch KC, Chubb C (2009) 
Cephalopod dynamic camouflage: bridging the continuum between background 
matching and disruptive coloration. Philosophical Transactions of the Royal 
Society of London B 364:429-437 

Hanlon RT, Chiao C-C, Mäthger LM, Marshall NJ (2013) A fish-eye view of cuttlefish 
camouflage using in situ spectrometry. Biological Journal of the Linnean Society 
109 (3):535-551. doi:10.1111/bij.12071 

Hanlon RT, Messenger JB (1988) Adaptive coloration in young cuttlefish (Sepia 
officinalis L.): the morphology and development of body patterns and their 

 106 



relation to behaviour. Philosophical Transactions of the Royal Society of London 
B 320:437-487 

Hanlon RT, Messenger JB (1996) Cephalopod Behaviour. . Cambridge University Press, 
Cambridge,  

Hart N, Partridge J, Cuthill I (1998) Visual pigments, oil droplets and cone photoreceptor 
distribution in the European starling (Sturnus vulgaris). The Journal of 
experimental biology 201 (9):1433-1446 

Hauglund K, Hagen SB, Lampe HM (2006) Responses of domestic chicks (Gallus gallus 
domesticus) to multimodal aposematic signals. Behavioral Ecology 17 (3):392-
398 

Hedley JD, Roelfsema CM, Phinn SR, Mumby PJ (2012) Environmental and Sensor 
Limitations in Optical Remote Sensing of Coral Reefs: Implications for 
Monitoring and Sensor Design. Remote Sensing 4 (1):271-302 

Heiling AM, Herberstein ME, Chittka L (2003) Pollinator attraction:Crab-spiders 
manipulate flower signals. Nature 421 (6921):334 

Hochberg EJ, Atkinson MJ, Apprill A, Andrefouet S (2004) Spectral reflectance of coral. 
Coral Reefs 23 (1):84-95 

Hong G, Luo MR, Rhodes PA (2001) A study of digital camera colorimetric 
characterisation based on polynomial modelling. Color Research & Application 
26 (1):76-84 

Isaac LA, Gregory PT (2013) Can snakes hide in plain view? Chromatic and achromatic 
crypsis of two colour forms of the Western Terrestrial Garter Snake (Thamnophis 
elegans). Biological Journal of the Linnean Society 108 (4):756-772 

Jerlov NG (1968) Optical Oceanography. Elsevier 
Jerlov NG (1976) Marine Optics. Elsevier, Amsterdam 
Jiang J, Liu D, Gu J, Süsstrunk S What is the Space of Spectral Sensitivity Functions for 

Digital Color Cameras? In: IEEE Workshop on the Applications of Computer 
Vision, Clearwater Beach, FL USA, 2013. pp 168-179 

Johnson T (1996) Methods for characterizing colour scanners and digital cameras. 
Displays 16 (4):183-191 

Joshi N, Jensen H (2004) Color calibration for arrays of inexpensive image sensors. 
Citeseer 

Julesz B (1962) Visual pattern discrimination. Information Theory, IRE Transactions on 
8 (2):84-92 

Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision‚behavioural tests and 
physiological concepts. Biological Reviews 78 (1):81-118 

Kelman EJ, Baddeley RJ, Shohet AJ, Osorio D (2007) Perception of visual texture and 
the expression of disruptive camouflage by the cuttlefish, Sepia officinalis. 
Proceedings of the Royal Society B 274 (1616):1369-1375. 
doi:10.1098/rspb.2007.0240 

Kelman EJ, Osorio D, Baddeley R (2008) A review of cuttlefish camouflage and object 
recognition and evidence for depth perception. Journal of Experimental Biology 
211:1757-1763 

King RB (1992) Lake Erie water snakes revisited: morph-and age-specific variation in 
relative crypsis. Evolutionary Ecology 6 (2):115-124 

 107 



Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz 
AFH (1993) The spectral image processing system (SIPS)—interactive 
visualization and analysis of imaging spectrometer data. Remote Sensing of 
Environment 44 (2-3):145--163. doi:doi: 10.1016/0034-4257(93)90013-N 

Langmore N, Stevens M, Maurer G, Kilner R (2009) Are dark cuckoo eggs cryptic in 
host nests? Animal Behaviour 78 (2):461-468 

Langridge KV (2006) Symmetrical crypsis and asymmetrical signalling in the cuttlefish 
Sepia officinalis. Proceedings of the Royal Society B 273:959-967 

Lee Y-H, Yan HY, Chiao C-C (2010) Visual contrast modulates maturation of 
camouflage body patterning in cuttlefish (Sepia pharaonis). Journal of 
Comparative Psychology 124 (3):261 

Leiper I, Phinn S, Dekker AG (2012) Spectral reflectance of coral reef benthos and 
substrate assemblages on Heron Reef, Australia. International Journal of Remote 
Sensing 33 (12):3946-3965 

Levin N, Ben-Dor E, Singer A (2005) A digital camera as a tool to measure colour 
indices and related properties of sandy soils in semi-arid environments. 
International Journal of Remote Sensing 26 (24):5475-5492 

Lim A, Hedley JD, LeDrew E, Mumby PJ, Roelfsema C (2009) The effects of 
ecologically determined spatial complexity on the classification accuracy of 
simulated coral reef images. Remote Sensing of Environment 113 (5):965-978 

Lind O, Mitkus M, Olsson P, Kelber A (2013) Ultraviolet sensitivity and colour vision in 
raptor foraging. The Journal of Experimental Biology 216 (10):1819-1826 

Luo MR, Cui G, Rigg B (2001) The development of the CIE 2000 colour-difference 
formula: CIEDE2000. Color Research & Application 26 (5):340-350. 
doi:10.1002/col.1049 

Maan ME, Cummings ME (2008) Female preferences for aposematic signal components 
in a polymorphic poison frog. Evolution 62 (9):2334-2345 

Maan ME, Cummings ME (2012) Poison frog colors are honest signals of toxicity, 
particularly for bird predators. The American Naturalist 179 (1):E1-E14 

Marshall N, Jennings K, McFarland W, Loew E, Losey G (2003a) Visual biology of 
Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Journal 
Information 2003 (3) 

Marshall N, Jennings K, McFarland W, Loew E, Losey G (2003b) Visual biology of 
Hawaiian coral reef fishes. III. Environmental light and an integrated approach to 
the ecology of reef fish vision. Journal Information 2003 (3) 

Marshall NJ, Messenger JB (1996) Colour-blind camouflage. Nature 382:408-409 
Marshall NJ, Vorobyev M (2003) The design of color signals and color vision in fishes. 

Sensory Processing in Aquatic Environments:194-222 
Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast 

perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor 
assay. Vision Research 46:1746-1753 

Mäthger LM, Chiao C-C, Barbosa A, Hanlon RT (2008) Color matching on natural 
substrates in cuttlefish, Sepia officinalis. J Comp Physiol A 194:577-585 

Mäthger LM, Chiao CC, Barbosa A, Buresch KC, Kaye S, Hanlon RT (2007) Disruptive 
coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis. 
Journal of Experimental Biology 210:2657-2666 

 108 



Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT (2009) Mechanisms and behavioural 
functions of structural coloration in cephalopods. Journal of the Royal Society 
Interface 6:S149-S163 

Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochemistry and 
Photobiology 82 (2):345-350 

Mauer C, Wueller D Measuring the spectral response with a set of interference filters. In: 
IS&T/SPIE Electronic Imaging, 2009. International Society for Optics and 
Photonics, pp 72500S-72500S-72510 

McKay BD (2013) The use of digital photography in systematics. Biological Journal of 
the Linnean Society 110 (1):1-13. doi:10.1111/bij.12086 

Messenger J (1974) Reflecting elements in cephalopod skin and their importance for 
camouflage. Journal of Zoology 174 (3):387-395 

Messenger J (2001a) Cephalopod chromatophores: neurobiology and natural history. 
Biological Reviews 76 (4):473-528 

Messenger JB (2001b) Cephalopod chromatophores: neurobiology and natural history. 
Biological Reviews 76:473-528 

Nakamura J (2005) Image Sensors and Signal Processing for Digital Still Cameras. 
Taylor & Francis 

Nidamanuri RR, Zbell B (2011) Normalized Spectral Similarity Score NS3 as an 
Efficient Spectral Library Searching Method for Hyperspectral Image 
Classification. Selected Topics in Applied Earth Observations and Remote 
Sensing, IEEE Journal of 4 (1):226-240 

Nokelainen O, Hegna RH, Reudler JH, Lindstedt C, Mappes J (2012) Trade-off between 
warning signal efficacy and mating success in the wood tiger moth. Proceedings 
of the Royal Society B: Biological Sciences 279 (1727):257-265 

Packard A (1972) Cephalopods and fish: the limits of convergence. Biological Reviews 
47:241-307 

Packard A, Hochberg F (1977) Skin patterning in Octopus and other genera. In: Symp. 
Zool. Soc. Lond. pp 191-231 

Pharr M, Humphreys G (2010) Physically based rendering: From theory to 
implementation. Morgan Kaufmann,  

Pike TW (2011a) Generalised chromaticity diagrams for animals with n-chromatic colour 
vision. Journal of Insect Behavior:1-10 

Pike TW (2011b) Using digital cameras to investigate animal colouration: estimating 
sensor sensitivity functions. Behavioral Ecology and Sociobiology 65 (4):849-858 

Ramanath R, Snyder WE, Bilbro GL, Sander WA (2002) Demosaicking methods for 
Bayer color arrays. Journal of Electronic imaging 11 (3):306-315 

Ravishankar Rao A, Lohse GL (1996) Towards a texture naming system: Identifying 
relevant dimensions of texture. Vision Research 36 (11):1649-1669. 
doi:http://dx.doi.org/10.1016/0042-6989(95)00202-2 

Reinhard E, Khan E, Akyüz A, Johnson G (2008) Color imaging: fundamentals and 
applications. AK Peters, Ltd 

Roelfsema C, Marshall NJ, Hochberg EJ, Phinn S, Goldizen A, Gill T (2006) Underwater 
Spectrometer System (UWSS04).  

 109 



Rosen MR, Frey FS (2005) RIT American museums survey on digital imaging for direct 
capture of artwork. In: Society for Imaging Science and Technology Archiving 
Conference Springfield, VA USA.  

Seon Joo K, Hai Ting L, Zheng L, Su, x, sstrunk S, Lin S, Brown MS (2012) A New In-
Camera Imaging Model for Color Computer Vision and Its Application. Pattern 
Analysis and Machine Intelligence, IEEE Transactions on 34 (12):2289-2302. 
doi:10.1109/tpami.2012.58 

Shand J, Archer MA, Collin SP (1999) Ontogenetic changes in the retinal photoreceptor 
mosaic in a fish, the black bream, Acanthopagrus butcheri. The Journal of 
comparative neurology 412 (2):203-217 

Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: 
Implementation notes, supplementary test data, and mathematical observations. 
Color Research & Application 30 (1):21-30. doi:10.1002/col.20070 

Shirley P, Ashikhmin M, Marschner S (2009) Fundamentals of computer graphics. CRC 
Press 

Shohet AJ, Baddeley RJ, Anderson JC, Kelman EJ, Osorio D (2006) Cuttlefish responses 
to visual orientation of substrates, water flow and a model of motion camouflage. 
Journal of Experimental Biology 209:4717-4723 

Shohet AJ, Baddeley RJ, Anderson JC, Osorio D (2007) Cuttlefish camouflage: a 
quantitative study of patterning. Biological Journal of the Linnean Society 
92:335-345 

Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and 
intraspecific views of color signals in the strawberry poison frog Dendrobates 
pumilio. Journal of Experimental Biology 207 (14):2471-2485 

Siebeck U, Marshall N, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching 
using a colour reference card. Coral Reefs 25 (3):453-460 

Skelhorn J, Rowland HM, Ruxton GD (2010) The evolution and ecology of masquerade. 
Biological Journal of the Linnean Society 99:1-8 

Skelhorn J, Ruxton GD (2011) Mimicking multiple models: polyphenetic masqueraders 
gain additional benefits from crypsis. Behavioral Ecology 22 (1):60-65 

Smith RC, Baker KS (1978) Optical classification of natural waters. Limnology and 
Oceanography 23 (2) 

Spottiswoode CN, Stevens M (2012) Host-parasite arms races and rapid changes in bird 
egg appearance. The American Naturalist 179 (5):633-648 

Stevens M (2011) Avian vision and egg colouration: Concepts and measurements. Avian 
Biology Research 4 (4):168-184 

Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. 
Philosophical Transactions of the Royal Society of London B 364:423-427 

Stevens M, Parraga CA, Cuthill IC, Partridge JC, Troscianko TS (2007) Using digital 
photography to study animal coloration. Biological Journal of the Linnean Society 
90 (2):211-237 

Stoddard MC, Marshall KL, Kilner RM (2011) Imperfectly camouflaged avian eggs: 
artefact or adaptation? Avian Biology Research 4 (4):196-213 

Stoddard MC, Stevens M (2011) Avian vision and the evolution of egg color mimicry in 
the common cuckoo. Evolution 65 (7):2004-2013 

 110 



Stuart-Fox D, Moussalli A (2008) Selection for social signalling drives the evolution of 
chameleon colour change. PLoS biology 6 (1):e25 

Süsstrunk SE, Holm JM, Finlayson GD Chromatic adaptation performance of different 
RGB sensors. In: Photonics West 2001-Electronic Imaging, 2000. International 
Society for Optics and Photonics, pp 172-183 

Sweet JN (2003) The spectral similarity scale and its application to the classification of 
hyperspectral remote sensing data. Advances in Techniques for Analysis of 
Remotely Sensed Data, 2003 IEEE Workshop on:92-99 

Szeliski R (2010) Computer vision: algorithms and applications. Springer,  
Théry M, Casas J (2002) Predator and prey views of spider camouflage. Nature 415 

(6868):133 
Tyler JE, Smith RC (1970) Measurements of spectral irradiance underwater, vol 1. 

Gordon & Breach Publishing Group 
Ulmer KM, Buresch KC, Kossodo M, Mäthger L, Siemann LA, Hanlon RT (2013) 

Vertical visual features have a strong influence on cuttlefish camouflage. The 
Biological Bulletin 224 (2):110-118 

Vasilescu I (2009) Using light underwater: devices, algorithms and systems for maritime 
persistent surveillance. Massachusetts Institute of Technology 

Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. 
Proceedings of the Royal Society B: Biological Sciences 265 (1394):351-358 

Wardill TJ, Gonzalez-Bellido PT, Crook RJ, Hanlon RT (2012) Neural control of 
tuneable skin iridescence in squid. Proceedings of the Royal Society B: Biological 
Sciences 279 (1745):4243-4252 

Wee AG, Lindsey DT, Kuo S, Johnston WM (2006) Color accuracy of commercial 
digital cameras for use in dentistry. Dental materials: official publication of the 
Academy of Dental Materials 22 (6):553 

Westland S, Ripamonti C (2004) Computational Colour Science Using MATLAB. Wiley 
Online Library 

Winters G, Holzman R, Blekhman A, Beer S, Loya Y (2009) Photographic assessment of 
coral chlorophyll contents: Implications for ecophysiological studies and coral 
monitoring. Journal of Experimental Marine Biology and Ecology 380 (1):25-35 

Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data, 
and formulae. 2, illustrated edn. John Wiley & Sons 

Yuhas RH, Goetz AFH, Boardman JW Discrimination among semi-arid landscape 
endmembers using the spectral angle mapper (SAM) algorithm. In, 1992. 
Pasadena, CA: JPL Publication, pp 147-149 

Zylinski S, Darmaillacq A-S, Shashar N (2012) Visual interpolation for contour 
completion by the European cuttlefish (Sepia officinalis) and its use in dynamic 
camouflage. Proceedings of the Royal Society B: Biological Sciences 279 
(1737):2386-2390 

Zylinski S, How M, Osorio D, Hanlon RT, Marshall N (2011) To be seen or to hide: 
visual characteristics of body patterns for camouflage and communication in the 
Australian giant cuttlefish Sepia apama. The American Naturalist 177 (5):681-
690 

Zylinski S, Osorio D, Shohet AJ (2009a) Cuttlefish camouflage: context-dependent body 
pattern use during motion. Proceedings of the Royal Society B 276:3963-3969 

 111 



Zylinski S, Osorio D, Shohet AJ (2009b) Edge detection and texture classification by 
cuttlefish. Journal of Vision 9 (13):1-10 

Zylinski S, Osorio D, Shohet AJ (2009c) Perception of edges and visual texture in the 
camouflage of the common cuttlefish Sepia officinalis. Philosophical Transactions 
of the Royal Society B 364:439-448 

 

 112 



1. REPORT NO.

4. Title and Subtitle

7. Author(s)

9. Performing Organization Name and Address

12. Sponsoring Organization Name and Address

15. Supplementary Notes

16. Abstract (Limit: 200 words)

17. Document Analysis      a. Descriptors

      b. Identifiers/Open-Ended Terms

      c. COSATI Field/Group

18. Availability Statement

REPORT DOCUMENTATION
PAGE

2. 3. Recipient's Accession No.

5. Report Date

6.

8. Performing Organization Rept. No.

10. Project/Task/Work Unit No.

11. Contract(C) or Grant(G) No.

(C)

(G)

13. Type of Report & Period Covered

14.

50272-101

19. Security Class (This Report)

20. Security Class (This Page)

21. No. of Pages

22. Price

OPTIONAL FORM 272 (4-77)
(Formerly NTIS-35)
Department of Commerce

(See ANSI-Z39.18) See Instructions on Reverse

2014-11

June 2014A Computational Approach to the Quantification of Animal Camouflage

Derya Akkaynak

2014-11
MIT/WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering

EY021473
1129897
N0001406-1-02-02

Ph.D. Thesis

Evolutionary pressures have led to some astonishing camouflage strategies in nature. Cephalopods can
rapidly adapt the way their skin looks in color, texture and pattern, blending in with their backgrounds. This
thesis uses a computational and data-driven approach to quantify camouflage patterns of cuttlefish in terms
of color and pattern. First, we assess the color match of cuttlefish to the features in its natural background in
the eyes of its predators. Then, we study overall body patterns to discover relationships and limitations
between chromatic components. We also explore ways for unbiased data acquisition using consumer
cameras and conventional spectrometers. This thesis makes the following contributions: (1) Proposes a
methodology for scene-specific color calibration for the use of RGB cameras for accurate and consistent
data acquisition. (2) Quantifies the degree of spectral contamination by relating the numerical aperture and
diameter of the optical fiber of a spectrometer to measurement distance and angle. (3) Presents the first
study assessing the color match of cuttlefish (S. officinalis) to its background using in situ spectrometry. (4)
Develops a computational approach to pattern quantification using techniques from computer vision,
statistics and pattern recognition; and introduces Cuttlefish72x5, the first database of calibrated linear
images of cuttlefish.

camouflage
color
vision

112Approved for publication; distribution unlimited.

This thesis should be cited as: Derya Akkaynak, 2014. A Computational Approach to the Quantification of Animal Camouflage.
Ph.D. Thesis. MIT/WHOI, 2014-11.

National Science Foundation
Office of Naval Research
WHOI Academic Programs Office

MIT/WHOI

MIT/WHOI


	Chapter 1
	Introduction
	Imaging camouflage patterns
	Quantifying camouflage patterns


	What is camouflage?
	Chapter 2
	Unbiased data acquisition: Commercial-off-the-shelf digital cameras0F
	2.1 Introduction
	2.2 Background and related work
	2.3 Color imaging with COTS cameras
	2.4 Image formation principles
	2.5 Demosaicing
	2.6 White balancing
	2.7 Color transformation
	2.8 Scene-specific color calibration (SSCC)
	2.9 Examples of the use of COTS cameras for scientific imaging
	2.10 Conclusion


	Chapter 3
	Unbiased data acquisition: Spectrometers1F
	3.1 Introduction
	3.2 Background and related work
	3.3 Finding optimal measurement distance and angle
	3.4 Application to animal color discrimination
	3.5 Results
	3.6 Discussion
	3.7 Conclusion


	Chapter 4
	Quantification of cuttlefish camouflage (S. officinalis): a study of color and luminance using in situ spectrometry2F
	4.1 Introduction
	4.2 Background and related work
	4.3 Methods
	4.4 Results
	4.5 Discussion
	4.6 Conclusion


	Chapter 5
	Image-based quantification of cuttlefish (S.officinalis) camouflage patterns
	5.2 Background and related work
	Brief summary of animal pattern quantification techniques
	Existing body of work on cuttlefish patterns

	5.3 Experimental Setup
	5.4 What is the relationship between the levels of expression of chromatic components?
	5.5 Do the space of camouflage patterns form a continuum, or are there a discrete number of clusters? If so, how many?
	5.6 Do cuttlefish express all possible patterns their components are capable of forming, or do they only show a subset? If so, which ones?
	5.7 Discussion
	5.8 Conclusion


	Chapter 6
	Contributions

	Chapter 7
	Future Work

	Appendix
	Bibliography
	Blank Page



