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ABSTRACT 

Data has been collected on acoustic vector sensors mounted on autonomous underwater 

gliders in the Monterey Bay during 2012–2013. Previous processing work computed the 

acoustic vector intensity to estimate bearing to impulsive sources of interest.   

These sources included small explosive shots deployed by local fishermen and 

humpback whale vocalizations. While the highly impulsive shot data produced 

unambiguous bearing estimations, the longer duration whale vocalizations showed a 

fairly wide spread in bearing.   

In this work, causes of the ambiguity in bearing estimation are investigated in the 

context of the highly variable bathymetry of the Monterey Bay Canyon, as well as the 

coherent multipath interference in the longer duration calls. 

Sound speed data collected during the previous experimental effort, along with a 

three-dimensional bathymetric relief of the Monterey Bay Canyon, are incorporated into 

a three-dimensional version of the Monterey-Miami Parabolic Equation Model. 

Propagation results are computed over a frequency band from 336–464 Hz in order to 

provide predictions of pulse arrival structure. This data is analyzed using conventional 

pressure plane-wave beamforming techniques in order to highlight horizontal coupling 

caused by the canyon bathymetry. The data is also analyzed using the previously 

developed acoustic vector intensity processing string and shown to exhibit a qualitatively 

similar spread in the estimated bearing. 
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I. INTRODUCTION 

Passive detection of underwater acoustic signals is critical to maintaining 

dominance in the Undersea Warfare (USW) domain. As the Navy looks to develop and 

employ new technologies, the acoustic vector sensor has been utilized in recent research. 

The research conducted for this paper is based on the data processing of an acoustic 

vector sensor with an omnidirectional pressure sensor and three orthogonal 

accelerometers.  

A typical towed array is a straight line array that uses multiple, spatially 

distributed omnidirectional pressure sensors to determine the direction of arrival (DOA) 

for an acoustic source. The straight line array is known to be limited by its broadside 

port/starboard ambiguity and ambiguity from its front and back lobes [1]. An array of 

acoustic vector sensors, however, does not experience this ambiguity. An additional 

advantage of the acoustic vector sensor is that a single sensor can determine DOA while 

providing a directivity gain equivalent to that of a four-element line array [1]. 

Single sensor operation is ideal in littoral regions where deployment of straight 

line arrays is impractical. Using acoustic vector sensors deployed on small unmanned 

underwater vehicles (UUVs), such as the Exocetus Littoral Glider, the Navy could 

perform local area monitoring for the presence of marine mammals, unfriendly tonals, or 

other signals of interest. Multiple UUVs deployed in the same operating area would be 

able to triangulate the location of an acoustic source. 

This paper demonstrates the ability to determine DOA for different broadband 

sources in the presence of highly variable bathymetry. In support of future 

experimentation, the effects of horizontal and vertical multipath interference are 

addressed to determine if sources with broader bandwidth or tonals of shorter duration 

are required to improve source bearing estimation. 
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The remainder of this paper is organized as follows: 

 Chapter II: Theoretical background and previous research 

 Chapter III: Three-Dimensional Monterey-Miami Parabolic Equation 

Model 

 Chapter IV: Environmental description and data processing 

 Chapter V: Results and analysis 

 Chapter VI: Conclusions and recommendations 
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II. BACKGROUND 

DOA can be determined by combining the pressure and the particle velocity of an 

acoustic wave. Leveraging the relationships between these two measurements, intensity 

processing is an incoherent processing approach that can be used to estimate the direction 

of the source of interest [2]. While intensity processing does not provide the gain that 

conventional additive or adaptive processing yield, it is a very simple technique for 

combining acoustic vector sensor data into a directional vector. 

A. ACOUSTIC VECTOR FIELDS 

1. Euler’s Equation 

For a fluid element with differential volume dV dxdydz and mass dm  that is 

acted upon by a force f in the x-direction, Newton’s Second Law is applied in  

Equation (2.1) and the force experienced by the fluid element is shown in Equation (2.2).  

p represents  acoustic pressure. 

 df adm , (2.1) 

 d
p

f x
x

d p p dydz
  

    
  




 (2.2) 

In three dimensions, we can formulate equations for the y- and z-directions and combine 

them as shown in Equation (2.3).  

 df pdV   (2.3) 

From the velocity defined in Equation (2.4), the fluid element’s acceleration, a, is 

expressed in Equation (2.5) which then reduces to Equation (2.6). 

 ˆˆ ˆ( )
d

u xi yj zk
dt

     (2.4) 

 
x y z

u u u u
a u u u

t x y z

   
   
     (2.5) 
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 

u
a u u

t


  
  (2.6) 

In small amplitude acoustic processes, the assumption that  
u

u u
t


 


is applied. 

Following the preceding assumption, and with ρ as the density of the fluid, ρdV is 

substituted for dm. The combination of Equations (2.1), (2.3), and (2.6) produces the 

linear Euler’s equation in Equation (2.7) [3].   

 
0

u
p

t



 


 (2.7) 

2. Linear Wave Equation 

For the same element used to derive Euler’s Equation (2.7), conservation of mass 

requires the fluid flow rate into the volume dV must equal the rate at which the mass dm 

increases. The Mass Continuity Equation is formed to first order and shown in Equation 

(2.8).  

 u
t





  


 (2.8) 

The divergence of Euler’s Equation (2.7) is combined with the time derivative of the 

Mass Continuity Equation (2.8) to resolve the differential relationship of pressure pof  

and density ρ. This relationship is shown in Equation (2.9).  

 

2
2

2t
p


 


 (2.9) 

For small perturbations, Equation (2.9) is rewritten with a single independent 

variable in Equation (2.10) where c is the speed of sound in water. This equation is 

known as the linear wave equation.  

 

2
2

2 2

1 p
p

c t


 


 (2.10) 
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3. Acoustic Intensity 

From Kinsler, et al., the instantaneous intensity associated with a sound wave can 

be described as the “instantaneous rate per unit area at which work is done by one fluid 

element on an adjacent element” [3].  The energy flux in the direction of sound 

propagation is found from the time average of the instantaneous intensity. Thus, the 

intensity vector yields a magnitude and direction for the associated wave. 

With acceleration data provided by the vector sensors, it is necessary to expand 

Equation (2.6) and apply the relationship between the complex acceleration and particle 

velocity as shown in Equation (2.11).  

    ˆ ˆ ˆ ˆ( ) ( )
d i

u t a t u t a t
dt 
    
 

 (2.11) 

After taking the dot product of Euler’s Equation (2.7) with the complex conjugate 

of the particle velocity, u  in Equation (2.12) and combining the result with the conjugate 

of the mass continuity equation (2.8) multiplied by the complex pressure as shown in 

Equation (2.13), the differential of Equation (2.14) can be found.  

 *

0
ˆ

u
u u p

t



  


  (2.12) 

 
*

*

2

0

1
ˆ ˆ

p
p p u

c t


  


  (2.13) 

  
2

2

0 2

0

ˆ
ˆ

1
ˆ

2
0

1

2

p
u

t
pu

c




 
  

  
   (2.14) 

 

The rate of change in the energy density of the acoustic field is given by the first term of 

Equation (2.14). The energy density is composed of the kinetic energy due to fluid flow 

and the potential energy due to pressure perturbations. The acoustic energy flow is given 

by the second term of Equation (2.14) and defines the acoustic intensity vector. 

From the acoustic energy flow given by the second term in Equation (2.14), the 

acoustic intensity is shown in Equation (2.15).   
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  (2.15) 

B. INTENSITY PROCESSING 

Intensity processing is a common method for determining DOA using individual 

vector sensors. Formally, we measure the real, instantaneous acoustic intensity as defined 

in Equation (2.16). 

        ˆ ˆRe ReI t p t u t   (2.16) 

To resolve DOA, the time average of the instantaneous acoustic intensity must be found. 

It can be shown, however, that the real portion of the complex acoustic intensity in 

Equation (2.15) yields the time average of the instantaneous intensity in Equation (2.16) 

[4].   

The real portion of the complex acoustic intensity is a vector normal to constant 

phase surfaces while the imaginary portion is a vector normal to constant pressure 

surfaces. Also known as reactive intensity, the imaginary portion goes to zero when it is 

averaged over time [4]. Therefore, only the real portion is used to determine DOA.  

C. PREVIOUS RESEARCH 

In March 2012 and September 2013, the Naval Postgraduate School deployed a 

UUV with an integrated acoustic vector sensor to observe ambient noise conditions in the 

Monterey Bay area of California. The vector sensor provided four channels of data, one 

from the omnidirectional hydrophone and one each from the three orthogonal 

accelerometers. The acoustic channels were sampled at 39.0625 kHz. Numerous 

broadband signals were collected, including boat noise, marine mammal vocalizations, 

and even several impulsive signals that were transmitted from “seal bombs” used by local 

fisherman to discourage harbor seals and sea lions from taking their catch. These “seal 

bombs” are referred to as “shots” in this paper. Figure 1 shows a UUV (LG-16) being 

deployed from the R/V Fulmar during the data acquisition for this paper.  

1

2
c pI u
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Figure 1.  Glider deployment. 

In 2013, research by LT James Upshaw processed numerous signals using two 

different approaches to determine DOA [5]. The research for this paper was prompted by 

the results from the intensity processing which revealed interesting behavior for different 

noise sources. Short duration shots recorded in 2012 were analyzed along with humpback 

whale vocalizations recorded in 2013. Figure 2 shows a significant difference in the 

signals when analyzing their respective spectrograms. The spectrogram for a string of 

five whale vocalizations displayed in the left panel shows that the signals had a 

bandwidth of approximately 450–550 Hz, duration of about 1 sec, and a signal-to-noise 

ratio (SNR) of only 10 dB at best. The spectrogram for two shots displayed in the right 

panel shows broadband signals covering the entire processing band (350-650 Hz), short 

duration of approximately 50 msec, and SNRs of about 30 dB. 
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Figure 2.  Pressure spectrograms of impulsive signals; five whale vocalizations 

(left panel) and two explosive shots (right panel), after [5]. 

To examine the vector intensity bearing estimation, a bubble plot was created in 

MATLAB as a function of time that displayed the relative amplitude of the intensity 

vector proportional to the bubble size, centered at the bearing of the signal relative to the 

glider’s position. These plots are shown in Figure 3 with the whale vocalizations again in 

the left panel and the shots in the right panel. 
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Figure 3.  Bubble plots of intensity vector response; 5 whale vocalizations (left 

panel) and 2 explosive shots (right panel), after [5]. 

As shown in Figure 3, the bearing estimation of the 5 whale vocalizations showed 

a directional ambiguity of 40 degrees or larger. The shot data, however, showed 

unambiguous bearing estimations with a spread of 10  degrees or less. The lower SNR of 

the whale vocalizations may be a factor, but examination of the bearing ambiguity 

showed that the evolution of the intensity vector was not random. The bearing ambiguity 

seemed to sweep continuously over the range of bearing uncertainty. This suggests that 

the ambiguity could be caused by something fundamental in the signal propagation. 

After displaying the glider locations at the time of the data recording and 

illustrating the general directions toward the sources, as shown in Figure 4, it was noted 

that there was a significant difference in the bathymetry along the propagation paths. The 

whale vocalizations were transmitted across the highly variable bathymetry of the 

Monterey Bay Canyon while the shots were transmitted across a relatively stable shelf 
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region to the north of the canyon. The impact of this 3-dimensional (3D) variable 

bathymetry, which may be combined with the effects of more narrow band or longer 

duration signals, are potential causes of the horizontal bearing ambiguity. 

 

Figure 4.  Geospatial direction of intensity vector bearing results relative to 

glider position in Monterey Bay; 5 whale vocalizations (left panel) and 

2 explosive shots (right panel), after [5]. 

D. DATA PROCESSING 

The intensity processing for this paper was conducted by modifying the method 

employed during LT Upshaw’s research. The signals of interest in this case were centered 

at 400 Hz with a bandwidth of 127.75 Hz. All four acoustic signals (pressure and particle 

velocity (3)) were simulated using the Monterey-Miami Parabolic Equation (MMPE) 

Model at NPS. This model is described in more detail in a subsequent section. In order to 

facilitate the use of LT Upshaw’s previous processing string, the MMPE model data was 

extracted at various spatial locations of interest and processed to produce arrival time for 

different signal types (i.e., impulsive or chirp-like signals). The data was then treated as 

measured sensor data to determine acoustic intensity vectors.  
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All four acoustic channels were transformed from the time domain to the 

frequency domain using a fast Fourier Transform (FFT) and any data outside the 

frequency band would then be discarded. This transformation was performed over a user 

defined Hanning window (research for LT Upshaw’s paper used a 0.3 second processing 

window and 0.1 second overlap time) that advanced incrementally throughout the sample 

being analyzed. 

For each time step, the intensity vector’s x-, y-, and z-components were calculated 

along with the magnitude of the vector. Prior to calculating the magnitude, each vector 

component was averaged over the frequency bandwidth being analyzed. The calculations 

for the vector components and magnitude were then completed with Equation (2.17) and 

(2.18), respectively. 

 
*

, , , ,

1
ˆRe

2
x y z x y zI pu

 
  

 
 (2.17) 

  2 2 2

x y zI I I I       (2.18) 

The complex pressure and particle velocity were derived from the frequency domain 

response. 

Next, the horizontal bearing angle of the intensity vector was. Since the intensity 

vector points in the direction of wave propagation, the bearing was rotated 180 degrees to 

point in the DOA. The DOA was then plotted on a bearing versus time plot using markers 

that were sized proportional to the magnitude of the intensity for each time step. The 

scaling of the marker size was determined by the ratio of the intensity magnitude for each 

time step to the maximum magnitude for the sample. A sensitivity factor could also be 

adjusted by the user to enhance or reduce the scaling. 
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III. 3D MONTEREY-MIAMI PARABOLIC EQUATION MODEL 

This section has been adapted from reports by Smith [6], Smith and Colosi [7], 

and Smith and Tappert [8]. The following sub-sections describe the fundamentals of the 

MMPE Model approximation and its implementation. 

A. PARABOLIC EQUATION MODEL 

To begin, the time-harmonic acoustic field is represented in a Cartesian 

coordinate system (x,y,z) in Equation (3.1) where P is the pressure in the time-domian 

and p represents the spatially varying pressure. 

 ( , , , ) ( , , ) i tP x y z t p x y z e    (3.1) 

Substituting Equation (3.1) into the linear wave equation (2.9) gives the Helmholtz 

equation in Equation (3.2). 

 2 2 2

0( , , ) ( , , ) ( , , ) 0p x y z k n x y z p x y z    (3.2) 

The reference wavenumber 0

0

k
c


 , the index of refraction is n , and the reference sound 

speed is 0c . The starting field is modeled as a point source at coordinates 

( 0, 0, )sx y z z    with reference source level 0P  defined as the pressure amplitude at a 

distance of 0 1R m .   

By introducing the operator notation in Equations (3.3) through Equation (3.7), 

the homogeneous form of the Helmholtz equation becomes Equation (3.8). 

 
opP

x





 (3.3) 

 ( 1)opQ        (3.4) 

  
2 1n     (3.5) 

 
2

2 2

0

1

k z






  (3.6) 
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2

2 2

0

1

k y






  (3.7) 

  2 2 2

0 0op opP k Q p   (3.8) 

Defining the x-axis as the primary “forward” direction we can write Equation (3.9) 

 00 ik x

op

P
p e

Q
    (3.9) 

With proper factorization the outward propagating field is obtained by defining Equation 

(3.10) [9]. 

 
0 0( 1)op opik Q ik H

x


     


 (3.10) 

opH  is a Hamiltonian-like operator defined in Equation (3.11). 

 
1op opH Q 

 (3.11) 

B. SPLIT-STEP FOURIER ALGORITHM 

The split-step Fourier (PE/SSF) method is one of three common methods for 

computing PE solutions [10]. The speed and simplicity of the PE/SSF method make it 

advantageous over other methods in range-dependent media [11]. Generating solutions to 

the PE is largely dependent on approximations of the pseudo-differential operator opQ . If 

the Thomson-Chapman Wide Angle PE approximation is made, the operator takes the 

form of Equation (3.12). 

 
21 1 1 1op DTCWAPE TCWAPEQ T U            (3.12) 

 
2 2

2 2 2 2 2

0 0

1 1
1 1 1 1DTCWAPET

k z k y
 

 
       

 
 (3.13) 

 1 1 ( 1)TCWAPEU n       (3.14) 
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opU  is a multiplication operator in z-space and, therefore, a diagonal matrix. Since

opT is a differential operator, different depth and horizontal eigenfunctions are coupled. 

However, in the vertical and horizontal wavenumber space, opT is a diagonal symmetric, 

constant matrix. Thus, we separate the application of each operator. The PE/SSF 

algorithm in Cartesian coordinates now takes the form of Equation (3.15).  

0 00
ˆ( ) ( )( , )2 22 2( , , ) ( , , )

op opop y z

x x
ik U x x ik U xik x T k kD Dx x y z e F e F e x y z

 
      

   
      

   
(3.15) 

 

2 2

22
0

ˆ ˆ( ) ( ) 1 1
z y

op z op y
DTCWAPE

k k
T k V k

k

 
        

 

 (3.16) 

The general algorithm for the PE/SSF implementation can be summarized as 

follows. The PE field function is specified at a range x in the x-domain. Multiplication 

of the ( , )y z -space operator
(x)0

2

x
ik Uop

e




defined at the beginning of the range step is applied. 

Then a transformation into the ( , )y zk k -domain is made before a multiplication of the

( , )y zk k -space operator 
0

ˆ ( , )op y zik x T k k
e

  
   is applied. The solution is transformed back to the 

( , )y z -space then multiplied by the ( , )y z -space operator 
0 ( )

2
op

x
ik U x x

e


 

defined at the end 

of the range step. Our final result is a field function at x x . The discrete FFT 

subroutine in the numerical code assumes the convention of Equation (3.17) and (3.18). 

 ( , ) ( ( , ))y zy z FFT k k    (3.17) 

 ( , ) ( ( , ))y zk k IFFT y z    (3.18) 

C. GRID SIZES 

To complete the PE model, we select grid sizes with steps in range, x , cross-

range, y , and depth, z . Accurate solutions can be obtained when the steps are on the 

order of a few acoustic wavelengths. The mesh size is much larger than that needed by 
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other numerical algorithms based on finite differences or finite approximations to the 

differential operators in range-dependent environments.   

D. IMPLEMENTATION 

1. Broadband Parameters 

To estimate the broadband, impulsive arrival structure, the model was run for 512 

frequencies over a bandwidth of 127.75 Hz centered at 400 Hz. This resulted in a 

frequency bin size of 0.25 Hz and a total time window of 4 sec. The source depth, 

consistent with the depth of the glider at the time of the whale vocalizations, was 92 m. 

Reciprocity allows for the acceptance of calculations outward from the receiver location. 

While this time window is long enough to capture the primary structure of the measured 

impulse response, the smaller bandwidth was chosen to reduce computational run time. 

To further reduce the computational run time, the frequency band was divided into four 

equally sized parts, and each sub-band was processed on a separate computer processor. 

The output data was combined into a single file using the “Combine Frequencies” script 

found in Appendix A: PE output code. 

2. Boundary Filters 

An important tactic in employment of the MMPE model relates to undefined 

filters, or “sponges” to remove acoustic energy from very deep depths in the bottom 

(from which no energy is expected to return) and from very high angles of propagation. 

First, we recognize the radiation condition ( ) 0 as z z   . Since the 

computational depth is finite, however, we must force the field amplitude to zero at the 

maximum depth. The MMPE model applies a sine-squared filter function, designed to 

range from unity down to 0.5, to the bottom third of the computational depth. After 

multiple applications of such a filter, the deepest part of the signal is greatly reduced. A 

similar filter is applied in the cross-range dimension to force ( ) 0 as y y      

Additionally, some type of filtering may be needed in the kz- and ky-domain to 

remove angles beyond 90 degrees. The wavenumber domain propagator function of 
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Equation (3.16) naturally provides a filter for these angles by making them evanescent. 

Therefore, energy is attenuated beyond this limit. 
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IV. ENVIRONMENTAL DESCRIPTION AND DATA 

PROCESSING 

A. BATHYMETRY EXTRACTION 

Additional analysis conducted for this paper was completed in MATLAB 

R2012b. 

Bathymetry data for the Monterey Bay Canyon was extracted from the Southern 

California Coastal Ocean Observing System [12], and gridded at roughly (1/20) min in 

latitude and longitude. The bathymetry extraction code can be found in Appendix B: 

Bathymetry extraction code. 

The bathymetry extraction produced a MMPE input file that was used in the 3D-

MMPE model. The SSP and geoacoustical properties were defined as independent of 

range and bearing while the bottom was assumed to be a fluid-like homogeneous half-

space with typical coastal sediment values: sound speed 1700 m/s, density 1.8 g/cm
3
, and 

attenuation of 0.2 dB/m/kHz. The surface was assumed to be a flat, pressure release 

boundary. The SSP was based on average profiles collected in the upper water column 

during the September 2013 experiment, and extrapolated to depth using historical data. 

The SSP is shown in Figure 5.   

Figure 6 and Figure 7 show the bathymetry profile for the northern and 

southwestern runs referenced in Figure 4. The bathymetry was extracted on a square grid 

of approximate size 10 km x 10 km, sampled at 40 m in range and 40 m in cross-range 

for a gridded bathymetry of 250 points in range and 250 points in cross-range. The 

calculations were performed with the starting field at a range of x = 0 and cross-range of 

y = 0, in the lower center portion of each figure. The bathymetry utilized in the 

calculations was a subset of the gridded bathymetry shown, based on the maximum range 

of the calculation and a total cross-range of 8192*∆y, where ∆y was the computational 

cross-range grid size. For the frequencies investigated in this thesis, the cross-range grid 

size was defined as ∆y = 0.83m. All of the calculations were done out to a maximum 

range of 5 km for a computational region that was 5 km in range by 6.825 km in cross-

range. The computational region is boxed in Figures 6 and 7. 
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Figure 5.  September 2013 Sound Speed Profile for the Monterey Bay Canyon 

 

Figure 6.  Northern bathymetry profile for the Monterey Bay Canyon (DOA 

Sample 3); canyon present in negative cross-ranges with canyon wall in 

positive cross-ranges. 
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Figure 7.  Southwestern bathymetry profile for the Monterey Bay Canyon 

(DOA Sample 2); canyon present in positive cross-ranges with canyon 

wall and shelf in negative cross-ranges. 

B. INTENSITY PROCESSING 

The binary output from the 3D-MMPE Model was then post-processed with an 

MMPE script that allows a user to extract field data for range (fixed x), single cross-range 

(fixed y), single depth, or single interface. For most of this paper, acoustic pressure and 

particle velocity calculations were made for single ranges of x = 2.5 and 5 km. For single 

range calculations, the user may select from single frequency, single cross-range, or 

single depth options. A depth of 50 m was used for this paper. 

Intensity processing was then used to determine DOA, as previously developed by 

LT Upshaw. This technique processes time-domain acoustic wave pressure and particle 

velocity to resolve the direction of wave propagation. The time-domain arrival structure 

generated by the MMPE model was user selected as a short-duration impulsive signal 

(based on a simple Hanning window in the frequency domain) or a longer duration chirp-

like signal, as described below. The analysis was conducted by applying a user selected 

Hanning window or Chirp window before using an FFT with a user defined sliding 

processing window (0.1 seconds) that advanced at user defined time steps (0.05 seconds) 

throughout the sample.  
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  After the signals were transformed into the frequency domain, they were used to 

compute the DOA. The “intensity” script was used to calculate and display the bearing 

information. To examine the vector intensity bearing estimation, a bubble plot was 

created in MATLAB as a function of time that displayed the relative amplitude of the 

intensity vector proportional to the bubble size, centered at the true bearing of the signal 

relative to the glider’s position. The code used in this research can be found in Appendix 

C: Processing code.   

C. SIGNAL TYPE 

The intensity processing code allows the user to examine the response of two 

different signal types: an impulsive signal (similar to the shots) or a chirp signal (similar 

to the whale vocalizations). To generate the impulsive signal, the frequency domain 

output of the MMPE Model was filtered with a simple Hanning window over the 

frequency bandwidth. This frequency data is then defined as the response of the field at 

the positive frequency bins corresponding to the bandwidth 336 – 464 Hz. The total 

number of frequency bins is then scaled up to a power of 2 above the maximum 

frequency (464 Hz), and zero-padded everywhere except in the computational band. This 

results in a frequency domain vector of length 4096, which corresponds to a sample 

frequency of 1024sf  Hz. After transforming to the time-domain and removing the 

imaginary part of the signal, the real time series used for subsequent analysis was a 4 sec 

long time series sampled at 1024 Hz.   

The synthetic chirp signal is generated in the time-domain over a user defined 

time. The chirp rate is found by dividing the signal bandwidth by the chirp time as shown 

in Equation (4.1). 

 max min
chirp

chirp

f f
r

t


   (4.1) 

The chirp signal is created as a sinusoid of the phase defined in Equation (4.2). 

 
2

min min min2 *( ) ( )
2

chirp

chirp

r
f t t t t 

 
    

 
  (4.2) 
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A Hanning window is applied to the generated time-domain chirp signal such that at all 

other times outside the processing window, the signal is set to 0. It is then transformed to 

the frequency domain. The chirp signal is then normalized to the maximum value in the 

frequency domain and becomes the complex amplitude spectrum of the chirp signal, 

which may be applied to the MMPE frequency domain data to create the response of such 

a signal. This data is then transformed back to the time domain before applying the 

intensity processing algorithm. 

D. PLANE-WAVE BEAMFORMING 

Plane-wave beamforming is a form of spatial processing which assumes the 

acoustic signal can be decomposed into simple plane waves [13]. This type of processing 

requires an extended spatial sampling which is usually accomplished with a linear array 

of receivers. Although not utilized in the experimental tests, the numerical analysis of the 

response on a linear array will help separate the multipath structure and aid in the 

interpretation of any observed bearing ambiguity at the location of a single vector sensor 

receiving element. 

For this paper, a 400 m array of pressure elements, corresponding to 128 points in 

cross-range, was selected for use in a FFT beamforming script in MATLAB. The use of 

an FFT beamformer was ideal for the broadband signals of interest. The code for the 

plane-wave beamformer can be found within the intensity processing script in Appendix 

C: Processing code. 
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V. RESULTS AND ANALYSIS 

Whale vocalizations were analyzed in two regions with varying bathymetry. The 

bathymetry for the northern and southwestern regions is shown in Chapter IV.A.   

A. NORTHERN RUN 

Before investigating the presence of horizontal coupling, the time-domain 

response as a function of depth is shown along the central cross-range at a range of 1 km, 

2.5 km, and 5 km in Figure 8, Figure 9, and Figure 10, respectively. At a range of 1 km, 

the observed arrival is the combination of the direct and surface-reflected paths. At this 

distance and these depths, there is not enough temporal resolution in the signal to clearly 

discriminate the two arrivals (although some separation can be noted at 500 m depth). In 

addition, because the bottom depth was approximately 1km at the source location, any 

bottom-reflected energy would correspond to reflections at grazing angles of roughly 60 

deg, well above the critical angle. Because such angle of propagation are not expected to 

contribute significantly to the solution, the model does not incorporate angles much 

above 45 degrees. Thus, no bottom-reflected energy is observed at this short distance. 

However, at ranges of 2.5 km and 5 km, later arrivals are observed from bottom 

interactions. Specifically, in Figure 9 the bottom-reflected energy is observed to arrive 

roughly 10 msec behind the direct/surface-reflected paths. In Figure 10, the first bottom-

reflected energy arrives shortly behind the direct/surface-reflected paths, and a secondary 

bottom-reflected path is seen to arrive roughly 1.5 sec after the initial arrival.   

It is also worth noting that at ranges of 2.5 km and 5 km, the direct and surface-

reflected paths are completely indistinguishable. More importantly, due to the downward 

refracting nature of the sound speed profile at these depths, a direct/surface-reflected  

path shadow zone is being formed at the shallowest depths, above about 10 m at a range 

of 2.5 km and above about 25 m at a range of 5 km. Because our analysis presented here 

is at a depth of 50 m, the results will always include the influence of the strong 

direct/surface-reflected paths. 



 26 

 

Figure 8.  Time-domain response as a function of depth for northern run, range 

= 1 km, cross-range = 0m, for the impulsive source. 

 

Figure 9.  Time-domain response as a function of depth for northern run, range 

= 2.5 km, cross-range = 0m, for the impulsive source. 

 

Figure 10.  Time-domain response as a function of depth for northern run, range 

= 5 km, cross-range = 0m, for the impulsive source. 
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After running the post-script to obtain data at a range of 2.5 km and depth of 50 

m, the broadband processing for the impulsive signal provided the time structure shown 

in Figure 11. This is pre-processing within the intensity processing script. 

 

Figure 11.  Time-domain response as a function of cross-range for northern run, 

range = 2.5 km, depth = 50 m, for the impulsive source. 

This structure illustrates varying bottom-bounce interactions as a function of 

cross-range. The initial arrival is seen to be well-defined, and corresponds to the 

direct/surface-reflected path. Because the model assumes the surface to be perfectly flat, 

there is no degradation in signal structure for this path. At positive cross-ranges, 

significantly more scattering is observed, and bottom-reflected paths enter the image for 

negative cross-ranges. This is expected from the canyon wall present on the right and 

greater depths to the left of the central cross-range in Figure 6. The multipath structure 

appears to illustrate multiple angles of arrival which suggests the presence of horizontal 

coupling. 

For this data set and each subsequent set to be processed, analysis is conducted 

for data at the central cross-range, corresponding to y = 0 km, and cross-ranges off-center 

at y = ± 1 km. 

The plane-wave beamforming output for each cross-range assessed in this region 

is shown in Figures 12 through 14. 
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Figure 12.  Beamformer output for northern run, range = 2.5 km, cross-range = 0 

km, depth = 50 m, for the impulsive source. 

 

Figure 13.  Beamformer output for northern run, range = 2.5 km, cross-range = -

1 km, depth = 50 m, for the impulsive source. 

 

Figure 14.  Beamformer output for northern run, range = 2.5 km, cross-range = 

+1 km, depth = 50 m, for the impulsive source. 
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The output centered at y = 0 km is dominated by the strong direct/surface-

reflected path arrival at 0 degrees (broadside). The subsequent arrival is more diffuse but 

remains concentrated near broadside. There are weaker subsequent arrivals that occur at 

negative angles on the array (going from positive to negative cross-ranges), which are 

consistent with the general features observed in Figure 11. Finally, the weak arrival at 

around +50 degrees indicates a large horizontal scattering feature to the left of the source. 

This feature should be considered with caution due to its lower intensity compared to 

other arrival structures as numerical noise may play a role at these levels.   

The outputs centered at y = ± 1 km demonstrate similar behavior with even 

greater angular spread for the secondary arrivals at + 1 km. The secondary arrivals tend 

toward negative angles, consistent with the earliest bottom reflections to the right of the 

source and generating horizontal scattering toward the negative cross-ranges. In both 

cases, there are late, weak arrivals observed at positive angles. As before, the late arrivals 

are considered with caution based on their relatively weak strength.  

Bubble plots generated by the intensity processing produced similar results with 

the greatest horizontal spread found in the +1 km cross-range as shown in Figure 15. 

Because the bubbles are proportional to the magnitude of the intensity vector, only the 

surface-reflected path and stronger secondary arrivals are observed. There is 

approximately 30 degrees of bearing ambiguity from the secondary arrival which 

coincides with that observed in the beamformer output at this cross-range. 
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Figure 15.  Bubble plot for northern run, range = 2.5 km, cross-range = +1 km, 

depth = 50m, for the impulsive source; bearing ambiguity is shown to 

be approximately 30 degrees. 

Figure 16 displays the arrival time structure for the impulsive source at a range of 

5 km. Again, the earliest arrival corresponds to the direct/surface-reflected path and 

shows no degradation in the structure. Compared to the response at a range of 2.5 km, 

there is even more defined scattering at positive cross-ranges and bottom-reflected paths 

for negative cross-ranges.  

 

Figure 16.  Time-domain response as a function of cross-range for northern run, 

range = 5 km, depth = 50m, for the impulsive source. 
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With a similar response to that observed at a range of 2.5 km, we expect the 

beamformer outputs shown in Figure 17 through 19 to illustrate arrival patterns consistent 

with those observed at 2.5 km. The secondary arrivals tend toward negative angles, 

generating horizontal scattering toward negative cross-ranges and there are weaker, late 

arrivals at large positive angles.  

 

Figure 17.  Beamformer output for northern run, range = 5 km, cross-range = 0 

km, depth = 50 m, for the impulsive source. 

 

 

Figure 18.  Beamformer output for northern run, range = 5 km, cross-range = -1 

km, depth = 50 m, for the impulsive source. 
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Figure 19.  Beamformer output for northern run, range = 5 km, cross-range = +1 

km, depth = 50 m, for the impulsive source. 

The bubble plots for each data set produced similar results in bearing and the 

bubble plot shown in Figure 20 demonstrates the ambiguity of over 20 degrees that is 

consistent with the horizontal angle spread observed in Figure 19. 

 

Figure 20.  Bubble plot for northern run, range = 5 km, cross-range = +1 km, 

depth = 50 m, for the impulsive source; bearing ambiguity is shown to 

be approximately 20 degrees. 
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For further comparison, a 0.5 sec chirp signal was processed at the +1 km cross-

range for the 2.5 km and 5 km ranges. The time structures and bubble plots for each 

range are shown in Figures 21 through 24. 

 

Figure 21.  Time-domain response as a function of cross-range for northern run, 

range = 2.5 km, depth = 50 m, for the chirp signal. 

 

Figure 22.  Time-domain response as a function of cross-range for northern run, 

range = 5 km, depth = 50 m, for the chirp signal. 
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Figure 23.  Bubble plot for northern run, range = 2.5 km, cross-range = +1 km, 

depth = 50 m, for the chirp signal; bearing ambiguity is shown to be 

approximately 20 degrees. 

 

Figure 24.  Bubble plot for northern run, range = 5 km, cross-range = +1 km, 

depth = 50 m, for the chirp signal; bearing ambiguity is shown to be 

approximately 30 degrees. 

The chirp signals, expectedly, have a broader arrival structure. It was originally 

anticipated that the interfering multi-path structure of the surface and bottom-reflected 

paths might be the cause of the intensity bearing ambiguity. However, the ambiguity 

observed in Figures 23 and 24 does not appear to increase from the previous observations 

of the impulsive signal response. While further analysis may be warranted, these results 

suggest it is the direct spread of the horizontal arrival angles by up to 30 degrees that is 

causing the intensity bearing ambiguity, and not the coherent interference of the 

horizontal multipath structure. 



 35 

B. SOUTHWEST RUN 

In contrast to the bathymetry in the northern run, the southwest run has a canyon 

wall to the left and deeper depths to the right of the central cross-range. From the results 

of the northern run, we now anticipate scattering in the negative cross-ranges and bottom-

reflected paths entering the image in the positive cross-ranges of the southwestern run. 

The time structure for a range of 2.5 km is shown in Figure 25. 

 

Figure 25.  Time-domain response as a function of cross-range for southwestern 

run, range = 2.5 km, depth = 50 m, for the impulsive source. 

Because the canyon wall to the left of the central-cross range runs near the 

surface, the direct/surface-reflected arrival structure becomes scattered in the negative 

cross-ranges.   The bottom-reflected arrivals do appear in the positive cross-ranges as 

predicted.   

To investigate the horizontal coupling, the beamforming outputs for this range are 

shown in Figure 26 through 28. 
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Figure 26.  Beamformer output for southwestern run, range = 2.5 km, cross-

range = 0 km, depth = 50 m, for the impulsive source. 

 

Figure 27.  Beamformer output for southwestern run, range = 2.5 km, cross-

range = -1 km, depth = 50 m, for the impulsive source. 

 

Figure 28.  Beamformer output for southwestern run, range = 2.5 km, cross-

range = +1 km, depth = 50 m, for the impulsive source. 
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Along the central cross-range, we again have a strong, direct/surface-reflected 

signal that is broadside to the array. The secondary arrivals now tend toward positive 

angles (going from negative to positive cross ranges) as compared to the northern run, but 

are consistent with the features of the time structure in Figure 25. The presence of late, 

weaker arrivals at large negative angles indicate a horizontal scattering feature to the 

right of the source in this run. While the off-center cross-ranges demonstrate similar 

patterns, a significant angular spread for the secondary arrivals at -1 km is observed. This 

indicates strong, horizontal coupling in the vicinity of the canyon wall. 

The bubble plots continued to track with the bearing results from the beamformer 

output. Figure 29 is the bubble plot for the -1 km cross-range which had nearly 30 

degrees of bearing ambiguity. 

 

Figure 29.  Bubble plot for southwestern run, range = 2.5 km, cross-range = -1 

km, depth = 50 m, for the impulsive source; bearing ambiguity is shown 

to be approximately 30 degrees. 

Looking at a range of 5 km we begin again with the time response of the 

impulsive signal in Figure 30. 
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Figure 30.  Time-domain response as a function of cross-range for southwestern 

run, range = 5 km, depth = 50 m, for the impulsive source. 

Similar to the response at a range of 2.5 km, the direct/surface-reflected arrival 

becomes scattered at cross-ranges to the left of -1 km. We now observe significant 

scattering in the secondary arrivals from negative to positive cross-ranges. Also 

significant at this range is the bottom-reflected arrivals that appear from both the right 

and the left. As shown in beamforming outputs in Figure 31 through 33, this introduces 

secondary arrivals with stronger intensity and greater bearing ambiguity. 

 

Figure 31.  Beamformer output for southwestern run, range = 5 km, cross-range 

= 0 km, depth = 50 m, for the impulsive source. 
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Figure 32.  Beamformer output for southwestern run, range = 5 km, cross-range 

= -1 km, depth = 50 m, for the impulsive source. 

 

Figure 33.  Beamformer output for southwestern run, range = 5 km, cross-range 

= +1 km, depth = 50 m, for the impulsive source. 

Beginning with the array at the central cross-range, the direct/surface-reflected 

arrival is broadside with secondary arrivals tending toward positive angles. The 

secondary arrivals are relatively stronger than at a range of 2.5 km and also demonstrate a 

greater spread in angular ambiguity for the central cross-range and subsequent off-center 

cross-ranges. At cross-ranges of 0 and – 1 km, we observe the late, weaker arrivals at 

large negative angles, consistent with the earliest bottom reflections on the left. 

The impact of the bottom-path reflections from the left and right at this range are 

demonstrated by the greatest bearing ambiguity along the +1 km cross-range. Following 
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the trends observed in both northern run samples and the southwestern run at 2.5 km, the 

-1 km cross-range was expected to have the greatest spread in angular ambiguity. 

However, the influence of bottom-path arrivals crossing the central cross-range and into 

the positive cross-ranges creates secondary signals of greater intensity and spread in 

bearing.   

The bubble plot for the +1 km cross-range in Figure 34 shows approximately 30 

degrees of bearing ambiguity which is consistent with the angular spread observed in 

Figure 31. Compared to the bubble plots of the other impulsive sources, we note the 

greater relative magnitude for this sample. 

 

Figure 34.  Bubble plot for southwestern run, range = 5 km, cross-range = +1 

km, depth = 50 m, for the impulsive source; bearing ambiguity is shown 

to be approximately 40 degrees. 

For the southwestern run, the -1 km cross-range is of interest at a range of 2.5 km 

while the +1 km cross-range is of interest at 5 km. Thus, a 0.5 sec chirp signal was 

processed for each combination of range and cross-range with the time structures and 

bubble plots shown in Figures 35 through 38.   
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Figure 35.  Time-domain response as a function of cross-range for southwestern 

run, range = 2.5 km, depth = 50 m, for the chirp signal. 

 

Figure 36.  Time-domain response as a function of cross-range for southwestern 

run, range = 5 km, depth = 50 m, for the chirp signal. 

 

Figure 37.  Bubble plot for southwestern run, range = 2.5 km, cross-range = -1 

km, depth = 50 m, for the chirp signal; bearing ambiguity is shown to 

be approximately 20 degrees. 
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Figure 38.  Bubble plot for southwestern run, range = 5 km, cross-range = +1 

km, depth = 50 m, for the chirp signal; bearing ambiguity is shown to 

be approximately 30 degrees. 

The chirp signals, as in the northern run, have a broader arrival structure. Again, 

the bearing ambiguity for the chirp signals does not appear to increase from the 

observations of the impulsive signal response in the southwestern run. This further 

suggests that the spread of the horizontal arrival angles is the cause of the intensity 

bearing ambiguity vice the coherent interference of the horizontal multipath structure. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

Analysis of the data generated by the 3D-MMPE model, extracted at a 

combination of ranges and cross-ranges, illustrated significant horizontal coupling effects 

as a result of the varying bathymetry within the Monterey Bay Canyon. In the time arrival 

structures from impulsive signals in both the northern and southwestern runs, 

significantly stronger scattering was observed in regions of shallow depth within the 

respective sample.   

Inspection of the plane-wave beamforming output for the impulsive signals found 

secondary arrivals and late, weaker arrivals that tended toward the direction of horizontal 

scattering features in each case. Intensity processing of the impulsive signals was used to 

compare the bearing ambiguity in each case. The bubble plots provided similar results for 

the bearing ambiguity measured in the impulsive signals. 

It was originally anticipated that the interfering multi-path structure of the surface 

and bottom-reflected paths might be the cause of the intensity bearing ambiguity. 

However, the ambiguity observed in the intensity processing of 0.5 sec chirp signals did 

not appear to increase from the observations of the impulsive signal responses. When 

observing the chirp signal response in the southwestern run, the ambiguity appeared to 

decrease with the longer duration signal. Observations in both runs suggest it is the direct 

spread of the horizontal arrival angles that is causing the intensity bearing ambiguity, and 

not the coherent interference of the horizontal multipath structure. Although not directly 

confirmed through modeling, these results suggest that the lack of ambiguity in the 

previously analyzed shot data was due to the benign bathymetry in the region, rather than 

the highly impulsive nature of the source. 

To efficiently generate the MMPE data, a 127.75 Hz bandwidth was processed 

about a center frequency of 400 Hz. Future consideration may be given to analyzing the 

entire processing band (350-650 Hz) used in LT Upshaw’s research. Further, the depth 

grid was limited to 50–150 m to reduce data storage requirements. Longer processing 

runs over a greater range of depths may also be considered. Investigation of depths above 
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50 m would provide insight for whale vocalizations closer to the surface (consider 10 m 

depth).   

The presence of shadow zones created by the direct/surface-reflected paths at 

shallow depths gives cause for investigation of the signal response based only on bottom-

reflected interactions. The arrival structure of bottom-reflected energy alone may increase 

the ambiguity in the bearing estimation. This may suggest that accurate bearing estimates 

require deeper receivers, to insure reception of the direct/surface-reflected paths, as well 

as longer processing windows that would be dominated by the stronger, early arrivals, 

thereby overwhelming the variability introduced in the bottom-reflected arrivals. Finally, 

consideration may be given to investigating ambient noise and any quantifiable effects 

based on SNR. 
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APPENDIX A.  PE OUTPUT CODE 

A. COMBINE FREQUENCIES SCRIPT 

clear 
disp('Combining files'); 
fid1=fopen('352\press_400_1.bin'); 
fid2=fopen('384\press_400_2.bin'); 
fid3=fopen('416\press_400_3.bin'); 
fid4=fopen('448\press_400_4.bin'); 
fid=fopen('press_400.bin','w'); 
% fid1=fopen('352\apvx_400_1.bin');  
% fid2=fopen('384\apvx_400_2.bin'); 
% fid3=fopen('416\apvx_400_3.bin');  
% fid4=fopen('448\apvx_400_4.bin'); 
% fid=fopen('apvx_400.bin','w'); 
% fid1=fopen('352\apvy_400_1.bin'); 
% fid2=fopen('384\apvy_400_2.bin'); 
% fid3=fopen('416\apvy_400_3.bin'); 
% fid4=fopen('448\apvy_400_4.bin'); 
% fid=fopen('apvy_400.bin','w'); 
% fid1=fopen('352\apvz_400_1.bin'); 
% fid2=fopen('384\apvz_400_2.bin'); 
% fid3=fopen('416\apvz_400_3.bin'); 
% fid4=fopen('448\apvz_400_4.bin'); 
% fid=fopen('apvz_400.bin','w'); 

  
% Read in first record of data 
nrecs=fread(fid1,1,'int32'); 
c0=fread(fid1,1,'float32'); 
nf=fread(fid1,1,'int32');cfreq=fread(fid1,1,'float32');freqbw=fread(fid

1,1,'float32'); 
irng=1; 
nrout=fread(fid1,1,'int32');rngmin=fread(fid1,1,'float32')/1000; 
rngmax=fread(fid1,1,'float32')/1000;dr=fread(fid1,1,'float32')/1000; 
nzout=fread(fid1,1,'int32');depmin=fread(fid1,1,'float32');depmax=fread

(fid1,1,'float32'); 
ny=fread(fid1,1,'int32');dy=fread(fid1,1,'float32'); 
bdint(irng)=fread(fid1,1,'float32');dbdint(irng)=fread(fid1,1,'float32'

); 
sd=fread(fid1,1,'float32');itype=fread(fid1,1,'int32'); 
% Read in bathymetry 
fseek(fid1,(4*(2*nzout*(1+(1+nrout)*ny*nf)-18)),0); 
for ir=1:nrout+1, 
    bath1(ir,:)=fread(fid1,ny,'float32'); 
%    bath1(ir,:)=fftshift(bath1(ir,:)); 
end 
% trick for constant interface depths for xyz problem 
dbath1(:,1)=fread(fid1,nrout+1,'float32'); 
surf1(:,1)=fread(fid1,nrout+1,'float32'); 

  
% determine size of new file 
nf=4*nf; 
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nrecs=2*nzout*(1+(1+nrout)*ny*nf)+(nrout+1)*ny+2*(nrout+1); 
% create new file full of zeros (to be overwritten later) 
disp('Generating new file with zeros'); 
temp=zeros(1,2*nzout); 
for it=1:(1+(1+nrout)*ny*nf), 
    fwrite(fid,temp,'int32'); 
end 
temp2=zeros(1,(nrout+1)); 
for it=1:(ny+2), 
    fwrite(fid,temp2,'int32'); 
end 

  
% write new file header 
disp('Writing new file header'); 
frewind(fid); 
nf=512; cfreq=400.; freqbw=127.75; 
fwrite(fid,nrecs,'int32'); 
fwrite(fid,c0,'float32'); 
fwrite(fid,nf,'int32');fwrite(fid,cfreq,'float32');fwrite(fid,freqbw,'f

loat32'); 
fwrite(fid,nrout,'int32');fwrite(fid,rngmin*1000.,'float32'); 
fwrite(fid,rngmax*1000.,'float32');fwrite(fid,dr*1000.,'float32'); 
fwrite(fid,nzout,'int32');fwrite(fid,depmin,'float32');fwrite(fid,depma

x,'float32'); 
fwrite(fid,ny,'int32');fwrite(fid,dy,'float32'); 
fwrite(fid,bdint(1),'float32');fwrite(fid,dbdint(1),'float32'); 
fwrite(fid,sd,'float32');fwrite(fid,itype,'int32'); 

  
% now read from old files and write to new file 
disp('Processing 1st file'); 
header=2*nzout; 
fseek(fid,(4*header),'bof'); 
fseek(fid3,(4*(header+64*(2*nzout*(nrout+1)*ny))),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid3,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 
fseek(fid3,(4*header),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid3,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 

  
disp('Processing 2nd file'); 
fseek(fid4,(4*(header+64*(2*nzout*(nrout+1)*ny))),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
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    for iy=1:ny, 
      data=fread(fid4,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 
fseek(fid4,(4*header),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid4,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 

  
disp('Processing 3rd file'); 
fseek(fid1,(4*(header+64*(2*nzout*(nrout+1)*ny))),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid1,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 
fseek(fid1,(4*header),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid1,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 

  
disp('Processing 4th file'); 
fseek(fid2,(4*(header+64*(2*nzout*(nrout+1)*ny))),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid2,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 
fseek(fid2,(4*header),'bof'); 
for ifr=1:64, 
  for ir=1:nrout+1, 
    for iy=1:ny, 
      data=fread(fid2,2*nzout,'float32'); 
      fwrite(fid,data,'float32'); 
    end 
  end 
end 
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% write new file bathymetry data 
for ir=1:nrout+1, 
    fwrite(fid,bath1(ir,:),'float32'); 
end 
fwrite(fid,dbath1(:,1),'float32'); 
fwrite(fid,surf1(:,1),'float32'); 

  

  
fclose(fid1); 
fclose(fid2); 
fclose(fid3); 
fclose(fid4); 

fclose(fid); 
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APPENDIX B.  BATHYMETRY EXTRACTION CODE 

B. DEGREE TO UTM FUNCTION 

function  [x,y,utmzone] = deg2utm(Lat,Lon) 
% ---------------------------------------------------------------------

---- 
% [x,y,utmzone] = deg2utm(Lat,Lon) 
% 
% Description: Function to convert lat/lon vectors into UTM coordinates 

(WGS84). 
% Some code has been extracted from UTM.m function by Gabriel Ruiz 

Martinez. 
% 
% Inputs: 
%    Lat: Latitude vector.   Degrees.  +ddd.ddddd  WGS84 
%    Lon: Longitude vector.  Degrees.  +ddd.ddddd  WGS84 
% 
% Outputs: 
%    x, y , utmzone.   See example 
% 
% Example 1: 
%    Lat=[40.3154333; 46.283900; 37.577833; 28.645650; 38.855550; 

25.061783]; 
%    Lon=[-3.4857166; 7.8012333; -119.95525; -17.759533; -94.7990166; 

121.640266]; 
%    [x,y,utmzone] = deg2utm(Lat,Lon); 
%    fprintf('%7.0f ',x) 
%       458731  407653  239027  230253  343898  362850 
%    fprintf('%7.0f ',y) 
%      4462881 5126290 4163083 3171843 4302285 2772478 
%    utmzone = 
%       30 T 
%       32 T 
%       11 S 
%       28 R 
%       15 S 
%       51 R 
% 
% Example 2: If you have Lat/Lon coordinates in Degrees, Minutes and 

Seconds 
%    LatDMS=[40 18 55.56; 46 17 2.04]; 
%    LonDMS=[-3 29  8.58;  7 48 4.44]; 
%    Lat=dms2deg(mat2dms(LatDMS)); %convert into degrees 
%    Lon=dms2deg(mat2dms(LonDMS)); %convert into degrees 
%    [x,y,utmzone] = deg2utm(Lat,Lon) 
% 
% Author:  
%   Rafael Palacios 
%   Universidad Pontificia Comillas 
%   Madrid, Spain 
% Version: Apr/06, Jun/06, Aug/06, Aug/06 
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% Aug/06: fixed a problem (found by Rodolphe Dewarrat) related to 

southern  
%    hemisphere coordinates.  
% Aug/06: corrected m-Lint warnings 
%----------------------------------------------------------------------

--- 

  
% Argument checking 
% 
error(nargchk(2, 2, nargin));  %2 arguments required 
n1=length(Lat); 
n2=length(Lon); 
if (n1~=n2) 
   error('Lat and Lon vectors should have the same length'); 
end 

  

  
% Memory pre-allocation 
% 
x=zeros(n1,1); 
y=zeros(n1,1); 
utmzone(n1,:)='60 X'; 

  
% Main Loop 
% 
for i=1:n1 
   la=Lat(i); 
   lo=Lon(i); 

  
   sa = 6378137.000000 ; sb = 6356752.314245; 

          
   %e = ( ( ( sa ^ 2 ) - ( sb ^ 2 ) ) ^ 0.5 ) / sa; 
   e2 = ( ( ( sa ^ 2 ) - ( sb ^ 2 ) ) ^ 0.5 ) / sb; 
   e2cuadrada = e2 ^ 2; 
   c = ( sa ^ 2 ) / sb; 
   %alpha = ( sa - sb ) / sa;             %f 
   %ablandamiento = 1 / alpha;   % 1/f 

  
   lat = la * ( pi / 180 ); 
   lon = lo * ( pi / 180 ); 

  
   Huso = fix( ( lo / 6 ) + 31); 
   S = ( ( Huso * 6 ) - 183 ); 
   deltaS = lon - ( S * ( pi / 180 ) ); 

  
   if (la<-72), Letra='C'; 
   elseif (la<-64), Letra='D'; 
   elseif (la<-56), Letra='E'; 
   elseif (la<-48), Letra='F'; 
   elseif (la<-40), Letra='G'; 
   elseif (la<-32), Letra='H'; 
   elseif (la<-24), Letra='J'; 
   elseif (la<-16), Letra='K'; 
   elseif (la<-8), Letra='L'; 
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   elseif (la<0), Letra='M'; 
   elseif (la<8), Letra='N'; 
   elseif (la<16), Letra='P'; 
   elseif (la<24), Letra='Q'; 
   elseif (la<32), Letra='R'; 
   elseif (la<40), Letra='S'; 
   elseif (la<48), Letra='T'; 
   elseif (la<56), Letra='U'; 
   elseif (la<64), Letra='V'; 
   elseif (la<72), Letra='W'; 
   else Letra='X'; 
   end 

  
   a = cos(lat) * sin(deltaS); 
   epsilon = 0.5 * log( ( 1 +  a) / ( 1 - a ) ); 
   nu = atan( tan(lat) / cos(deltaS) ) - lat; 
   v = ( c / ( ( 1 + ( e2cuadrada * ( cos(lat) ) ^ 2 ) ) ) ^ 0.5 ) * 

0.9996; 
   ta = ( e2cuadrada / 2 ) * epsilon ^ 2 * ( cos(lat) ) ^ 2; 
   a1 = sin( 2 * lat ); 
   a2 = a1 * ( cos(lat) ) ^ 2; 
   j2 = lat + ( a1 / 2 ); 
   j4 = ( ( 3 * j2 ) + a2 ) / 4; 
   j6 = ( ( 5 * j4 ) + ( a2 * ( cos(lat) ) ^ 2) ) / 3; 
   alfa = ( 3 / 4 ) * e2cuadrada; 
   beta = ( 5 / 3 ) * alfa ^ 2; 
   gama = ( 35 / 27 ) * alfa ^ 3; 
   Bm = 0.9996 * c * ( lat - alfa * j2 + beta * j4 - gama * j6 ); 
   xx = epsilon * v * ( 1 + ( ta / 3 ) ) + 500000; 
   yy = nu * v * ( 1 + ta ) + Bm; 

  
   if (yy<0) 
       yy=9999999+yy; 
   end 

  
   x(i)=xx; 
   y(i)=yy; 
   utmzone(i,:)=sprintf('%02d %c',Huso,Letra); 
end 

A. GRID INTERPOLATION SCRIPT 

%R = 6367449; 

  
Lat = reshape(lat.',1,numel(lat)); 
Lon = reshape(lon.',1,numel(lon)); 
%Bat = reshape(bath.',1,numel(bath)); 

  
[x,y,utmzone] = deg2utm(Lat,Lon); 
for ii=1:1201, 
    for jj=1:1321, 
        kk=(ii-1)*1321+jj; 
        X(ii,jj)=x(kk); 
        Y(ii,jj)=y(kk); 
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    end 
end 

  
Lat1=input('Enter starting Lat: '); 
Lon1=input('Enter starting Lon: '); 

  
Lat2=input('Enter ending Lat: '); 
Lon2=input('Enter ending Lon: '); 

  
%crng=input('Enter cross range: '); 
%crng=pi/180*Mr*abs(Lat1-Lat1); 
%crng=R*sqrt((cosd(Lon1)*sind(Lat1)-cosd(Lon2)*sind(Lat2))^2 + 

(sind(Lon1)*sind(Lat1)-sind(Lat2)*sind(Lon2))^2 + (cosd(Lat1)-

cosd(Lat2))^2); 

  
[x0,y0,utmzone] = deg2utm(Lat1,Lon1); 
[x1,y1,utmzone] = deg2utm(Lat2,Lon2); 

  
%x0=755670; y0=4363500; x1=739450; y1=4398700; crng=45000; 

  
rmax=sqrt((x1-x0).^2+(y1-y0).^2); crng=rmax; 
%ang=-atan((x1-x0)./(y1-y0)); 
%ang=atan((x1-x0)./(y1-y0)); 
ang=-atan2((x1-x0),(y1-y0)); 

  
N=250; 
dr=rmax/(N-1); ynew=[0:dr:rmax]; 
dxr=crng/(N-1); xnew=[-(N/2)*dxr:dxr:(N/2-1)*dxr]; 
[xg,yg]=meshgrid(xnew,ynew); 

  
xrot=xg.*cos(ang)-yg.*sin(ang); 
yrot=xg.*sin(ang)+yg.*cos(ang); 
xrot=xrot+x0; yrot=yrot+y0; 

  
zrot=griddata(X,Y,bath,xrot,yrot); 

B. CREATE MMPE INPUT FILE SCRIPT 

icnt=0; 
for iy=1:250, 
for ix=1:250, 
icnt=icnt+1; 
znew(icnt)=zrot(iy,ix); 
end 
end 
figure;plot(zrot(1,:)); 
figure;plot(znew(1:250)); 
data=[250 250 xnew ynew -znew]'; 
save -ascii MBay_MMPE_SW.inp data 
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APPENDIX C.  PROCESSING CODE 

C. CHIRP TIME FUNCTION 

% clear 
% filin=input('Enter a filename to process: ','s'); 
function chirptime(filin,filout) 

  
eval(['load ' filin]); 
if exist('press')==1 
    data=press; 
elseif exist('apvx')==1 
    data=apvx; 
elseif exist('apvy')==1 
    data=apvy; 
elseif exist('apvz')==1 
    data=apvz; 
end 

  
nz=size(data,1); 
nf0=size(data,2); df=freq(2)-freq(1); 
cfreq=freq(nf0/2+1); ncf=floor(cfreq/df); 
freq0=freq; 

  
nf=2*(ncf+nf0/2); 
lnf=floor(log10(nf)/log10(2.)+0.99); nf=2^lnf; 
freq=-nf/2*df:df:(nf/2-1)*df; 

  
dt0=1/(max(freq0)-min(freq0)); 
time0=-nf0*dt0/2:dt0:(nf0/2-1)*dt0; 
DT=1/(max(freq)-min(freq)); 
time=-nf*DT/2:DT:(nf/2-1)*DT; 

  
hanwinf=hanning(nf0+1); 
hanwinf=hanwinf(1:nf0)/sum(hanwinf(1:nf0)); 

  
cr=(max(freq0)-min(freq0))/(max(time0)-min(time0))/2; 
phs=2*pi*(min(freq0)*time0+cr/2*time0.^2); 
chirpwinf=hanwinf.*exp(-1i*phs'); 

  
dataf=zeros(size(data));  
datat=zeros(size(data,1),nf); 

  
for iz=1:nz, 

     
    dataf(iz,:)=data(iz,:).*chirpwinf'; 

  
    datat(iz,(nf/2+ncf-nf0/2+1):(nf/2+ncf+nf0/2))=dataf(iz,:); 

  
    datat(iz,:)=fftshift(fft(fftshift(datat(iz,:)))); 
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end 

  
figure;imagesc(time,dep,20*log10(abs(datat))) 
% filout=input('Enter a filename to save: ','s'); 
if exist('press')==1 
    presst=datat; 
    eval(['save ' filout ' time freq dep presst']); 
elseif exist('apvx')==1 
    apvxt=datat; 
    eval(['save ' filout ' time freq dep apvxt']); 
elseif exist('apvy')==1 
    apvyt=datat; 
    eval(['save ' filout ' time freq dep apvyt']); 
elseif exist('apvz')==1 
    apvzt=datat; 
    eval(['save ' filout ' time freq dep apvzt']); 
end 

  
clear 

  

 

D. CHIRP TIME SCRIPT 

chirptime('pr_xp1km_y0km','prct_xp1km_y0km'); 
chirptime('pr_x1km_y0km','prct_x1km_y0km'); 
chirptime('pr_x2p5km_y0km','prct_x2p5km_y0km'); 
chirptime('pr_x5km_y0km','prct_x5km_y0km'); 
chirptime('vx_xp1km_y0km','vxct_xp1km_y0km'); 
chirptime('vx_x1km_y0km','vxct_x1km_y0km'); 
chirptime('vx_x2p5km_y0km','vxct_x2p5km_y0km'); 
chirptime('vx_x5km_y0km','vxct_x5km_y0km'); 
chirptime('vy_xp1km_y0km','vyct_xp1km_y0km'); 
chirptime('vy_x1km_y0km','vyct_x1km_y0km'); 
chirptime('vy_x2p5km_y0km','vyct_x2p5km_y0km'); 
chirptime('vy_x5km_y0km','vyct_x5km_y0km'); 
chirptime('vz_xp1km_y0km','vzct_xp1km_y0km'); 
chirptime('vz_x1km_y0km','vzct_x1km_y0km'); 
chirptime('vz_x2p5km_y0km','vzct_x2p5km_y0km'); 
chirptime('vz_x5km_y0km','vzct_x5km_y0km'); 

 

E. CHIRP INTENSITY SCRIPT 

% clear 
% filid=input('Enter a filename identifier (e.g., after "prct_" or 

"vxct_"): ','s'); 
filpr=['prct_' filid]; 
filvx=['vxct_' filid]; 
filvy=['vyct_' filid]; 
filvz=['vzct_' filid]; 

  
eval(['load ' filpr]); 
eval(['load ' filvx]); 
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eval(['load ' filvy]); 
eval(['load ' filvz]); 

  
Jx=real(presst).*real(apvxt); 
Jy=real(presst).*real(apvyt); 
Jz=real(presst).*real(apvzt); 

  
theta=atan2d(Jz,sqrt(Jx.^2+Jy.^2)); 
phi=atan2d(Jx,Jy); 

  
filout=['Jct_' filid]; 
eval(['save ' filout ' Jx Jy Jz theta phi time dep']); 

  
clear 

 

F. HANNING TIME FUNCTION 

% clear 
% filin=input('Enter a filename to process: ','s'); 
function hantime(filin,filout) 

  
eval(['load ' filin]); 
if exist('press')==1 
    data=press; 
elseif exist('apvx')==1 
    data=apvx; 
elseif exist('apvy')==1 
    data=apvy; 
elseif exist('apvz')==1 
    data=apvz; 
end 

  
nz=size(data,1); 
nf0=size(data,2); df=freq(2)-freq(1); 
cfreq=freq(nf0/2+1); ncf=floor(cfreq/df); 
freq0=freq; 

  
nf=2*(ncf+nf0/2); 
lnf=floor(log10(nf)/log10(2.)+0.99); nf=2^lnf; 
freq=[-nf/2*df:df:(nf/2-1)*df]; 

  
DT=1/(max(freq)-min(freq)); 
time=[-nf*DT/2:DT:(nf/2-1)*DT]; 

  

  
hanwinf=hanning(nf0+1); 
hanwinf=hanwinf(1:nf0)/sum(hanwinf(1:nf0)); 

  
dataf=zeros(size(data));  
datat=zeros(size(data,1),nf); 

  
for iz=1:nz, 
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    dataf(iz,:)=data(iz,:).*hanwinf'; 

  
    datat(iz,(nf/2+ncf-nf0/2+1):(nf/2+ncf+nf0/2))=dataf(iz,:); 

  
    datat(iz,:)=fftshift(fft(fftshift(datat(iz,:)))); 

     
end 

  
figure;imagesc(time,dep,20*log10(abs(datat))) 
% filout=input('Enter a filename to save: ','s'); 
if exist('press')==1 
    presst=datat; 
    eval(['save ' filout ' time freq dep presst']); 
elseif exist('apvx')==1 
    apvxt=datat; 
    eval(['save ' filout ' time freq dep apvxt']); 
elseif exist('apvy')==1 
    apvyt=datat; 
    eval(['save ' filout ' time freq dep apvyt']); 
elseif exist('apvz')==1 
    apvzt=datat; 
    eval(['save ' filout ' time freq dep apvzt']); 
end 

  
clear 

  

 

G. HANNING TIME SCRIPT 

hantime('pr_xp1km_y0km','prt_xp1km_y0km'); 
hantime('pr_x1km_y0km','prt_x1km_y0km'); 
hantime('pr_x2p5km_y0km','prt_x2p5km_y0km'); 
hantime('pr_x5km_y0km','prt_x5km_y0km'); 
hantime('vx_xp1km_y0km','vxt_xp1km_y0km'); 
hantime('vx_x1km_y0km','vxt_x1km_y0km'); 
hantime('vx_x2p5km_y0km','vxt_x2p5km_y0km'); 
hantime('vx_x5km_y0km','vxt_x5km_y0km'); 
hantime('vy_xp1km_y0km','vyt_xp1km_y0km'); 
hantime('vy_x1km_y0km','vyt_x1km_y0km'); 
hantime('vy_x2p5km_y0km','vyt_x2p5km_y0km'); 
hantime('vy_x5km_y0km','vyt_x5km_y0km'); 
hantime('vz_xp1km_y0km','vzt_xp1km_y0km'); 
hantime('vz_x1km_y0km','vzt_x1km_y0km'); 
hantime('vz_x2p5km_y0km','vzt_x2p5km_y0km'); 
hantime('vz_x5km_y0km','vzt_x5km_y0km'); 
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H. HANNING INTENSITY SCRIPT 

% clear 
% filid=input('Enter a filename identifier (e.g., after "prt_" or 

"vxt_"): ','s'); 
filpr=['prt_' filid]; 
filvx=['vxt_' filid]; 
filvy=['vyt_' filid]; 
filvz=['vzt_' filid]; 

  
eval(['load ' filpr]); 
eval(['load ' filvx]); 
eval(['load ' filvy]); 
eval(['load ' filvz]); 

  
Jx=real(presst).*real(apvxt); 
Jy=real(presst).*real(apvyt); 
Jz=real(presst).*real(apvzt); 

  
theta=atan2d(Jz,sqrt(Jx.^2+Jy.^2)); 
phi=atan2d(Jx,Jy); 

  
filout=['Jt_' filid]; 
eval(['save ' filout ' Jx Jy Jz theta phi time dep']); 

  

C. INTENSITY PROCESSING SCRIPT 

clear;  

figure(95);close(95); 

figure(97);close(97);  

figure(100);close(100); 

 

filin=input('Enter a file designator to process (e.g., "_x1km_y0km"): 

','s'); 

filpr=['press' filin]; 

filvx=['apvx' filin]; 

filvy=['apvy' filin]; 

filvz=['apvz' filin]; 

% filpr=['pr' filin]; 

% filvx=['vx' filin]; 

% filvy=['vy' filin]; 

% filvz=['vz' filin]; 

eval(['load ' filpr]); 

eval(['load ' filvx]); 

eval(['load ' filvy]); 

eval(['load ' filvz]); 

 

disp(' '); 

sigtype=input('Enter 1 for Hanning, 2 for Chirp: '); 

disp(' '); 

 

nf0=size(press,2); df=freq(2)-freq(1); 

cfreq=freq(nf0/2+1); ncf=floor(cfreq/df); 
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freq0=freq; 

 

nf=2*(ncf+nf0/2); 

lnf=floor(log10(nf)/log10(2.)+0.99); nf=2^lnf; 

freq1=[-nf/2*df:df:(nf/2-1)*df]; 

 

dt0=1/(max(freq0)-min(freq0)); 

time0=-nf0*dt0/2:dt0:(nf0/2-1)*dt0; 

DT=1/(max(freq1)-min(freq1)); 

time=[-nf*DT/2:DT:(nf/2-1)*DT]; 

 

hanwinf=hanning(nf0+1); 

hanwinf=hanwinf(1:nf0)/sum(hanwinf(1:nf0)); 

 

if sigtype==2, 

    ctim=input('Enter time extent of chirp (sec): '); 

%     cr=(max(freq0)-min(freq0))/(max(time0)-min(time0))/2; 

    cr=(max(freq0)-min(freq0))/ctim; 

    phs=2*pi*(min(freq0)*(time-min(time))+cr/2*(time-min(time)).^2); 

     

    chirp=sin(phs); 

    chirp(find(time>(ctim+min(time))))=0; 

    chhan=zeros(size(chirp)); 

    chhan(1:floor(ctim/DT))=hanning(floor(ctim/DT))'; 

    chirp=chirp.*chhan; 

    chirpf=fftshift(ifft(fftshift(chirp))); 

    chirpf=chirpf/max(abs(chirpf)); 

     

end 

 

pressf=zeros(size(press));  

prt=zeros(size(press,1),nf); 

apvxf=zeros(size(apvx));  

vxt=zeros(size(apvx,1),nf); 

apvyf=zeros(size(apvy));  

vyt=zeros(size(apvy,1),nf); 

apvzf=zeros(size(apvz));  

vzt=zeros(size(apvz,1),nf); 

 

for ii=1:size(press,1), 

     

    pressf(ii,:)=press(ii,:).*hanwinf'; 

    prt(ii,(nf/2+ncf-nf0/2+1):(nf/2+ncf+nf0/2))=pressf(ii,:); 

    if sigtype==2 

        prt(ii,:)=prt(ii,:).*chirpf; 

    end 

    prt(ii,:)=fftshift(fft(fftshift(prt(ii,:)))); 

     

    apvxf(ii,:)=apvx(ii,:).*hanwinf'; 

    vxt(ii,(nf/2+ncf-nf0/2+1):(nf/2+ncf+nf0/2))=apvxf(ii,:); 

    if sigtype==2 

        vxt(ii,:)=vxt(ii,:).*chirpf; 

    end 

    vxt(ii,:)=fftshift(fft(fftshift(vxt(ii,:)))); 
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    apvyf(ii,:)=apvy(ii,:).*hanwinf'; 

    vyt(ii,(nf/2+ncf-nf0/2+1):(nf/2+ncf+nf0/2))=apvyf(ii,:); 

    if sigtype==2 

        vyt(ii,:)=vyt(ii,:).*chirpf; 

    end 

    vyt(ii,:)=fftshift(fft(fftshift(vyt(ii,:)))); 

     

    apvzf(ii,:)=apvz(ii,:).*hanwinf'; 

    vzt(ii,(nf/2+ncf-nf0/2+1):(nf/2+ncf+nf0/2))=apvzf(ii,:); 

    if sigtype==2 

        vzt(ii,:)=vzt(ii,:).*chirpf; 

    end 

    vzt(ii,:)=fftshift(fft(fftshift(vzt(ii,:)))); 

     

end 

 

if exist('dep','var') 

    jet2=jet; 

    jet2(1,:)=[0 0 0]; 

    figure(95);imagesc(time+2,dep,20*log10(abs(prt))); 

    colmax=max(max(20*log10(abs(prt))));colmin=colmax-60; 

    caxis([colmin colmax]); colormap(jet2);colorbar; 

    xlabel('Time (sec)');ylabel('Depth (m)'); 

     

    disp(' '); 

    dosh=input('Is time shift desired? ','s'); 

    while dosh(1)=='y' | dosh(1)=='Y' 

        timsh=input('Enter time shift (sec): '); 

        binsh=floor(timsh/(time(2)-time(1))); 

        prt=circshift(prt,[0 binsh]); 

        vxt=circshift(vxt,[0 binsh]); 

        vyt=circshift(vyt,[0 binsh]); 

        vzt=circshift(vzt,[0 binsh]); 

        figure(95);imagesc(time+2,dep,20*log10(abs(prt))); 

        colmax=max(max(20*log10(abs(prt))));colmin=colmax-60; 

        caxis([colmin colmax]); colormap(jet2);colorbar; 

        xlabel('Time (sec)');ylabel('Depth (m)'); 

        disp(' '); 

        dosh=input('Shift again? ','s'); 

        disp(' '); 

    end 

     

    depout=input('Enter depth (in meters positive downward) to extract 

data: '); 

    disp(' '); 

 

    nz=size(press,1); 

    if depout < dep(1) | depout > dep(nz) 

        disp('Requested depth not contained in input data file.'); 

        disp(' '); 

    else 

        nzout=find((dep-depout)>=0); 

    end 

    if isempty(nzout) 

        if depout<0 
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          nzout=1; 

        else 

          nzout=nz; 

        end 

    else 

        nzout=nzout(1); 

    end 

    depout=dep(nzout); 

    disp(['Outputting data for depth ' num2str(dep(nzout)) 'm.']); 

    disp(' '); 

 

    pr=prt(nzout,:); 

    vx=vxt(nzout,:); 

    vy=vyt(nzout,:); 

    vz=vzt(nzout,:); 

 

elseif exist('crng','var') 

    jet2=jet; 

    jet2(1,:)=[0 0 0]; 

    figure(95);imagesc(crng,time+2,20*log10(abs(prt'))); 

    colmax=max(max(20*log10(abs(prt))));colmin=colmax-60; 

    caxis([colmin colmax]); colormap(jet2);colorbar; 

    xlabel('Cross-range (km)');ylabel('Time (sec)'); 

     

    disp(' '); 

    dosh=input('Is time shift desired? ','s'); 

    while dosh(1)=='y' | dosh(1)=='Y' 

        timsh=input('Enter time shift (sec): '); 

        binsh=floor(timsh/(time(2)-time(1))); 

        prt=circshift(prt,[0 binsh]); 

        vxt=circshift(vxt,[0 binsh]); 

        vyt=circshift(vyt,[0 binsh]); 

        vzt=circshift(vzt,[0 binsh]); 

        figure(95);imagesc(crng,time+2,20*log10(abs(prt'))); 

        colmax=max(max(20*log10(abs(prt))));colmin=colmax-60; 

        caxis([colmin colmax]); colormap(jet2);colorbar; 

        xlabel('Cross-range (km)');ylabel('Time (sec)'); 

        disp(' '); 

        dosh=input('Shift again? ','s'); 

        disp(' '); 

    end 

         

 

 

    yout=input('Enter cross-range (in km) to extract data: '); 

    disp(' '); 

 

    ny=size(press,1); 

    if yout < crng(1) | yout > crng(ny) 

        disp('Requested cross-range not contained in input data 

file.'); 

        disp(' '); 

    else 

        nyout=find((crng-yout)>=0); 

    end 
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    if isempty(nyout) 

        if yout<0 

          nyout=1; 

        else 

          nyout=ny; 

        end 

    else 

        nyout=nyout(1); 

    end 

    yout=crng(nyout); 

    disp(['Outputting data for cross-range ' num2str(crng(nyout)) 

'km.']); 

    disp(' '); 

 

    pr=prt(nyout,:); 

    vx=vxt(nyout,:); 

    vy=vyt(nyout,:); 

    vz=vzt(nyout,:); 

 

end 

 

% run a sliding Hanning window of length X secs an Y secs steps, and 

% process over a band BW Hz centered at FC Hz 

% (note, overlap is X-Y secs) 

fs=1024.;           % Sampling bandwidth 

Nt0=length(pr);     % Number of pressure samples     

% X=0.25;              % Processing Window 

% Y=X/4.;             % Overlap Time 

X=input('Enter time of processing window in secs (e.g., .5): '); 

Y=input('Enter overlap time in secs (e.g., .25): '); 

FC=400.;            % Center Frequency 

BW=128.;            % Bandwidth 

ntmax=floor(((Nt0-1)/fs-X)/Y);  % Number of Samples 

disp(['Number of samples to average = ' num2str(ntmax)]); 

  

freqlow=FC-BW/2; 

freqhigh=FC+BW/2; 

  

Nt=round(X*fs);  

Hfltr=hann(Nt+1); 

freq=[-fs/2:(1/X):(fs/2)]'; 

  

nt=0;  

ntdisp=1; 

  

nf1=min(find(freq>(FC-BW/2)))-1; 

nf2=min(find(freq>(FC+BW/2)))-1; 

nftot=nf2-nf1+1; 

freqrangets=freq(nf1:nf2); 

 

% Computes the Intensity response to signals.   

% Calculate max(dirmag) 

while ((nt*Y*fs+1+Nt) <= Nt0) 

     

    istrt=round(nt*Y*fs+1); 
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    p=real(pr(istrt:istrt+Nt))'; 

    x=real(vx(istrt:istrt+Nt))'; 

    y=real(vy(istrt:istrt+Nt))'; 

    z=real(vz(istrt:istrt+Nt))'; 

  

    % transform to freq domain 

    pf=fftshift(fft(fftshift(p.*Hfltr))); 

    xf=fftshift(fft(fftshift(x.*Hfltr))); 

    yf=fftshift(fft(fftshift(y.*Hfltr))); 

    zf=fftshift(fft(fftshift(z.*Hfltr))); 

     

    % take only the positive freq values within the bandwidth 

    xf=xf(nf1:nf2); 

    yf=yf(nf1:nf2); 

    zf=zf(nf1:nf2); 

    pf=pf(nf1:nf2); 

             

    nt=nt+1; 

     

    % for I=.5Re(pu*)       

    dirx(nt)=mean(real((pf).*conj(xf))); 

    diry(nt)=mean(real((pf).*conj(yf))); 

    dirz(nt)=mean(real((pf).*conj(zf))); 

    dirmag(nt)=sqrt(dirx(nt).^2+diry(nt).^2+dirz(nt).^2); 

     

    tim(nt)=(istrt+Nt/2)/fs; 

     

end 

 

ntmax=nt; 

dirmagmax=max(dirmag); 

 

for nt=1:ntmax, 

    msize=dirmag(nt)/dirmagmax; 

    msizefac=.8; 

 

    MAP=[dirx(nt);diry(nt);dirz(nt)]; 

    theta_prime(nt)=acosd(max(min(MAP(3)/dirmag(nt),1),-1)); 

    

phi_prime(nt)=acosd(max(min(MAP(1)/(dirmag(nt)*sind(theta_prime(nt))),1

),-1));  

 

    figure(100);%subplot(1,2,1); 

    hold 

on;plot(theta_prime(nt),(tim(nt)),'o','MarkerSize',20*msize^msizefac);v

=axis;v(1)=0;v(2)=180;v(3)=0;v(4)=4;axis(v);axis ij;xlabel('Bearing 

(deg)');ylabel('Time (sec)'); 

    %figure(100);subplot(1,2,2);hold 

on;plot(phi_prime(nt),(tim(nt)),'o','MarkerSize',20*msize^msizefac);v(1

)=0;v(2)=360;v(3)=0;v(4)=4;axis(v);axis ij; 

 

    % Plot arrow graph 

    %qx(nt)=sind(phi_prime(nt))*msize^msizefac*0.9; 

    %qy(nt)=cosd(phi_prime(nt))*msize^msizefac*0.9; 
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    % Record the movie 

    %figure(97);hold on;mfset(nt)=quiver(0,0,qx(nt),qy(nt),'b'); 

    %title(sprintf('Time %2.4f',tim(nt))); 

    %axis([-1 1 -1 1]); 

     

    %pause 

end 

 

 

 

data = press; 

  

nf=nf0;  

freq=freq0; 

ccr=yout; 

al=0.4; 

 

nyc=find((crng-ccr)>=0,1); 

ccr=crng(nyc); 

nymin=find((crng-(ccr-al/2))>=0,1); 

nymax=find((crng-(ccr+al/2))>=0,1); 

ny=nymax-nymin+1; 

pow_y=ceil(log10(ny)/log10(2)); 

ny=2^(pow_y); 

nymin=nyc-ny/2; nymax=nyc+ny/2-1; 

disp(['Computing response of ' num2str(ny) ' element array from ' 

num2str(crng(nymin)) 'km to ' num2str(crng(nymax)) 'km.']); 

 

dtime=1/(max(freq)-min(freq)); 

time=[-nf/2*dtime:dtime:(nf/2-1)*dtime]; 

 

dely=1000*(crng(2)-crng(1));  

delk=2*pi/(1000*(crng(nymax)-crng(nymin))); 

ky=[-ny/2*delk:delk:(ny/2-1)*delk]; 

c0=1500; 

 

hanwinf=hanning(nf+1); 

hanwinf=hanwinf(1:nf)/sum(hanwinf(1:nf)); 

cfreq=freq(nf/2+1); 

phs=2*pi*cfreq*time; 

 

yvsfreq=zeros(ny,nf); 

for iy=nymin:nymax, 

    yvsfreq(iy-nymin+1,:)=data(iy,:).*hanwinf'; 

end 

 

hanwiny=hanning(ny+1); 

hanwiny=hanwiny(1:ny)/sum(hanwiny(1:ny)); 

theta=[-90:0.5:90]*pi/180; 

angvsfreq=zeros(length(theta),nf); 

 

kvsfreq=zeros(ny,nf); 

 

for n=1:nf, 

    kvsfreq(:,n)=fftshift(fft(fftshift(yvsfreq(:,n).*hanwiny))); 
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    kyb=2*pi*freq(n)*sin(theta)/c0; 

    angvsfreq(:,n)=interp1(ky,kvsfreq(:,n),kyb); 

end 

 

%  Transform to time domain 

for m=1:length(theta), 

    

pressbeam(m,:)=fftshift(fft(fftshift(angvsfreq(m,:).*hanwinf'))).*exp(-

j*phs); 

end 

 

theta=theta*180/pi; 

 

disp(' '); 

    dosh=input('Was arrival time shift desired? ','s'); 

    while dosh(1)=='y' | dosh(1)=='Y' 

        timsh=input('Enter first time shift (sec): '); 

        binsh=floor(timsh/(time(2)-time(1))); 

        pressbeam=circshift(pressbeam,[0 binsh]); 

        disp(' '); 

        dosh=input('Shift again? ','s'); 

        disp(' '); 

    end 

 

tlpressbeam=20*log10(max(abs(pressbeam),1.e-20)); 

tlmax=max(max(tlpressbeam));tlmin=tlmax-60; 

 

%figure;imagesc(time,theta,tlpressbeam);caxis([tlmin 

tlmax]);colormap(flipud(jet)); 

jet2=jet; 

jet2(1,:)=[0 0 0]; 

figure;imagesc(theta,time+2,tlpressbeam');caxis([tlmin tlmax]); 

colormap(jet2);colorbar;xlabel('Bearing (deg)');ylabel('Time (sec)') 
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