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Abstract 

Proper management of military training lands is critical to ensure availa-
bility of training lands, and thereby ensure mission readiness. However, 
installation land management practices often support a broader mission 
than simply maintaining the land in a condition suitable for training; they 
also help installations to meet environmental requirements. The Optimal 
Allocation of Land for Training and Non-Training Uses (OPAL) Program 
was developed to provide a systematic approach to enable military land 
managers and trainers to estimate biomass responses to train-
ing/management scenarios (training, mowing, and burning). This report 
documents a field validation of the OPAL model at Fort Riley, KS, and 
makes recommendations for system improvement. 

DISCLAIMER:  The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Proper management of military training lands is critical to ensure availa-
bility of training lands, and thereby ensure mission readiness. Sustainable 
training land management complements the military mission by minimiz-
ing detrimental environmental impacts of maneuver training. Army Regu-
lation (AR) 350-19 assigns responsibilities and prescribes policies for max-
imizing the capability, availability, and accessibility of ranges through the 
Sustainable Range Program (SRP). A core component of the SRP is the In-
tegrated Training Area Management (ITAM) Program, which provides the 
Army the capability to manage and maintain training lands by integrating 
mission requirements with environmental requirements and appropriate 
land management practices (HQDA 2005). To date, many studies have es-
timated the impacts of military training activities on installation lands 
(Ricci et al. 2012). 

However, installation land management practices often support a broader 
mission than simply maintaining the land in a condition suitable for train-
ing. The Army’s “ecosystem approach” to land management supports mul-
tiple-use activities, when those activities are compatible with mission re-
quirements, including agriculture and grazing outleases (USAEC 2011). As 
a Federal agency, the Army is also required by the US Endangered Species 
Act (ESA) to conserve Federally listed Threatened and Endangered Species 
(TES) on installation lands. The Army often makes proactive management 
efforts to eliminate potential conflicts between Threatened, Endangered, 
Proposed, and Candidate (TEPC) species and military mission and man-
agement efforts (USAEC 2009). Installations’ Integrated Natural Re-
sources Management Plans (INRMPs) include practices that benefit the 
conservation of species of concern, e.g., by incorporating plans to enhance 
or preserve critical habitat through such management practices as con-
trolled burns. 

Generally, military training land management and maintenance practices 
support two primary objectives:  (1) to maintain lands for military training 
and (2) to meet environmental requirements. Proactive land management 
practices that support potentially conflicting land uses must take a sys-
tematic approach that considers, coordinates, and integrates complex land 
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impacts. Development of the Optimal Allocation of Land for Training and 
Non-Training Uses (OPAL) Program was undertaken to provide such a 
systematic approach in the form of modeling software that can provide 
military land managers and trainers with the capability to estimate bio-
mass responses to historical or planned training/management scenarios, 
and that can also function as a research tool that will improve the under-
standing of the influences on military land use (training and non-training) 
on the dynamic and complex nature of above- and below-ground biomass. 
This report documents a field application of the Optimal Programming of 
Army Lands (OPAL) model at Fort Riley, KS. 

1.2 Objectives 

The overall technical objective of the OPAL project is to develop approach-
es to estimate cumulative land disturbance on military training lands 
through above- and below-ground biomass responses by merging current 
biomass disturbance methods/models with OPAL field data to capture dis-
turbance regimes for military land managers.  

The specific objective of this phase of work was to perform and document 
a field application of the OPAL model at Fort Riley, KS. This initial appli-
cation was undertaken to: 

1. Validate the OPAL model under “real world” conditions  
2. Outline required steps to transfer the model to other installations 
3. Promote a common view among military land management and the train-

ing community at multiple levels (e.g., installation and headquarters) of 
training land utilization and interconnectivity of individual land uses and 
their impacts on training land quality.  

1.3 Approach 

The objectives of this project phase were met through th efollowing steps: 

1. A 4-year research study under the OPAL project collected field measure-
ments of above- and below-ground biomass in response to training, con-
trolled burn, and haying treatments. Additionally, above-ground biomass 
data provided by the Fort Riley ITAM program were obtained for calibra-
tion and validation purposes. 

2. These data were used to create a land condition model based on existing 
vegetation growth and soil moisture models.  
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3. The overall modeling approach estimated above- and below-ground bio-
mass growth and death given weather conditions and typical land uses for 
a grassland military installation (training, controlled burn, and mow-
ing/haying).  

4. OPAL simultaneously modeled above- and below-ground biomass for an 
undisturbed condition (no land use impacts) for comparison and then 
used above- and below-ground biomass as an indicator of training land 
condition for use in training land management and planning. 

1.4 Scope 

The scope of this report is to provide a description of the land condition 
model its application at Fort Riley. The report provides a description of the 
site-specific data required to operate the model as well as the calibration 
efforts required. Finally, the report documents the validation effort based 
on field and remote sensing data. 

1.5 Mode of technology transfer 

This report will be made accessible through the World Wide Web (WWW) 
at URLs:  

http://www.cecer.army.mil 
http://libweb.erdc.usace.army.mil 

http://www.cecer.army.mil/
http://libweb.erdc.usace.army.mil/
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2 Materials and Methods 

2.1 Model description 

2.1.1 Fundamental equations 

2.1.1.1 Above-ground biomass 

This section provides an overview of the main functions of the OPAL vege-
tation growth model and their parameters. Myers et al. (2013) describes 
the model and documents the associated NetLogo code more fully. The 
OPAL vegetation growth model is based on components of the CENTURY 
model (NREL 2006, Parton et al. 1993.). CENTURY is a computer model 
of plant-soil ecosystems that simulates the dynamics of grasslands, forest, 
crops, and savannas with a focus on nutrient (carbon, nitrogen, phospho-
rous, and sulfur) cycle estimation. The plant production submodel of the 
CENTURY model was used as the basis for the OPAL biomass modeling 
approach. The CENTURY model calculates potential plant production as a 
function of soil temperature, soil moisture, and a self shading factor:  

 𝑷𝒑 = 𝑷𝒎𝒂𝒙 ∗ 𝑻𝒑 ∗ 𝑴𝒑 ∗ 𝑺𝒑 (1) 

where: 
 Pp = above-ground potential plant production rate (g m-2 month-1) 
 Pmax = maximum potential above-ground plant production rate 
 Tp = effect of soil temperature on growth (unitless) 
 Mp = effect of soil moisture on growth (unitless) 
 Sp = effect of plant shading on growth (unitless) 
Tp and Mp are calculated by equations 2 and 3, respectively. 

𝑻𝒑 = 𝐞𝐱𝐩 ��𝒑𝒑𝒅𝒇(𝟑)
𝒑𝒑𝒅𝒇(𝟒)

� ∗ �𝟏 − � 𝒑𝒑𝒅𝒇(𝟐)−𝒄𝒕𝒆𝒎𝒑
𝒑𝒑𝒅𝒇(𝟐)−𝒑𝒑𝒅𝒇(𝟏)

�
𝒑𝒑𝒅𝒇(𝟒)

�� ∗ � 𝒑𝒑𝒅𝒇(𝟐)−𝒄𝒕𝒆𝒎𝒑
𝒑𝒑𝒅𝒇(𝟐)−𝒑𝒑𝒅𝒇(𝟏)

�
𝒑𝒑𝒅𝒇(𝟑)

 (2) 

where: 
 Tp = effect of soil temperature on growth (unitless) (tempM in 

NetLogo Model) 
 ppdf(1) = optimum temperature for production for parameterization of a 

Poisson Density Function curve to simulate temperature effect 
on growth. (30 for Konza - crop.100) 
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 ppdf(2) = maximum temperature for production for parameterization of 
a Poisson Density Function curve to simulate temperature 
effect on growth. (45 for Konza-crop.100) 

 ppdf(3) = left curve shape for parameterization of a Poisson Density 
Function curve to simulate temperature effect on growth. (1 
for Konza-crop.100) 

 ppdf(4) = right curve shape for parameterization of a Poisson Density 
Function curve to simulate temperature effect on growth. (2.5 
for Konza-crop.100) 

 ctemp = average soil surface temperature (°C). 

𝑴𝒑 = 𝟏.𝟎 + �
�𝒂𝒗𝒉𝟐𝒐(𝟏)+𝒑𝒓𝒄𝒖𝒓𝒓(𝒎𝒐𝒏𝒕𝒉)+𝒊𝒓𝒓𝒂𝒄𝒕

𝒑𝒆𝒕 �−𝒑𝒑𝒓𝒑𝒕𝒔(𝟑)

𝒑𝒑𝒓𝒑𝒕𝒔(𝟑)−𝒑𝒑𝒓𝒑𝒕𝒔(𝟏)−𝒑𝒑𝒓𝒑𝒕𝒔(𝟐)∗𝒘𝒄
�  (3) 

where: 
 Mp = effect of soil moisture on growth (unitless) – (limited from 

0.0-1.0) 
avh2o(1) = water available to plants for growth in soil profile (cm) 
prcurr(month) = precipitation in current month (cm) 
 irract = amount of irrigation water in the current month (cm) – will 

not need for Riley 
 pet = potential evapotranspiration 9PET) rate for month (cm) (see 

below) 
pprpts(1) = the minimum ratio of available water to PET, which would 

completely limit production assuming water content is equal 
to 0; Valid Range:  0.0 to 1.0. (For Konza = 0, fix.100) 

pprpts(2) = the effect of water content on the intercept, which allows the 
user to increase the value of the intercept and thereby increase 
the slope of the line (For Konza = 1.0, fix.100) 

pprpts(3) = the lowest ratio of available water to PET at which there is no 
restriction on production; Valid Range:  0.0 to 1.0 (For Konza 
= 0.8, fix.100) 

wc = afiel(1) – awilt(1) = field capacity of top soil layer – wilting point of 
top soil layer (unitless fraction 0.0-1.0). 

2.1.1.2 Below-ground biomass 

The CENTURY model estimates bel0w-ground biomass according to a 
root-to-shoot ratio estimated from the cumulative rainfall to that point 
(NREL 2006) (Equation 4). However, the above-ground biomass model 
described in the previous sub-section estimates live above-ground bio-
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mass. While above-ground biomass may die during senescent periods, be-
low-ground biomass of most grassland species remains dormant during 
this period. To model this behavior, the OPAL NetLogo model assumes be-
low-ground biomass temporarily remains unchanged if estimated below-
ground biomass (from the root-to-shoot ratio) is lower than the previous 
time step below-ground biomass. Following the estimation of a below-
ground biomass due to root-to-shoot ratio, root death is calculated based 
on available soil moisture. As modeled, above-ground biomass growth es-
sentially drives below-ground biomass growth while soil moisture condi-
tions drive below-ground biomass death: 

𝑅𝑆𝑅𝑎𝑡𝑖𝑜 = (100+𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛∗7)
−40+𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛∗7.7

 (4) 

2.1.1.3 Soil temperature and moisture 

Soil temperature is calculated from the maximum and minimum air tem-
peratures for the week and above-ground biomass cover (NREL 2006). 
Calculated soil temperature is an average of the maximum and minimum 
calculated from the air temperatures. The soil temperature is calculated in 
degrees Celsius (°C) and is assumed to be uniform across the root depth. 

𝑡𝑠𝑜𝑖𝑙𝑚𝑖𝑛 = 𝑡𝑎𝑖𝑟𝑚𝑖𝑛 + 0.004 ∗ 𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 1.78  (5) 
𝑡𝑠𝑜𝑖𝑙𝑚𝑎𝑥 = 𝑡𝑎𝑖𝑟𝑚𝑎𝑥 + � 25.4

1+18∗𝑒�−0.2∗𝑡𝑎𝑖𝑟𝑚𝑎𝑥�
� ∗ (𝑒−0.0035∗𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 0.13) (6) 

𝑡𝑠𝑜𝑖𝑙 =  𝑡𝑠𝑜𝑖𝑙𝑚𝑖𝑛+𝑡𝑠𝑜𝑖𝑙𝑚𝑎𝑥
2

 Eq. 7 

Soil moisture is then calculated by the following moisture balance model: 

𝜽𝒕 = 𝜽𝒕−𝟏 +
�𝒊∗ 𝟏𝟏𝟎�

𝒄𝒎
𝒎𝒎�−𝑬𝑻𝒐𝒃𝒔−𝑲𝒔𝒂𝒕∗𝑲𝒓∗𝟕�

𝒅𝒂𝒚
𝒘𝒆𝒆𝒌�∗𝟐𝟒�

𝒉𝒓
𝒅𝒂𝒚��

𝑳
  (7) 

where: 
 θt = soil moisture (m/m) 
 θt-1 = soil moisture from previous week (m/m) 
 ETobs = observed or actual evapotranspiration (cm/week) 
 Ksat = saturated hydraulic conductivity (cm/hr) 
 Kr = relative hydraulic conductivity (unitless) calculated using Van 

Genuchten’s closed-form equation for estimating unsaturated 
hydraulic conductivity (Van Genuchten 1980). 

 L = depth of soil layer. 
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Potential evapotranspiration is estimated using the Blaney-Criddle Meth-
od (Brouwer and Heibloem 1986, Schwab et al. 1993). The Blaney-Criddle 
Method is a simple, empirical evapotranspiration model and is a function 
of average temperature and mean daily percentage of annual daytime 
hours. 

𝐸𝑇𝑂 = 𝑝 ∗ (0.46 ∗ 𝑡𝑚𝑒𝑎𝑛 + 8) (8) 

where: 

 ETO = potential evapotranspiration rate (mm/day) 
 p = mean daily percentage of annual daytime hours 
 tmean = mean weekly temperature (°C). 

As described by Dyck (1983), potential evapotranspiration does not accu-
rately describe the actual evapotranspiration observed. If soil moisture is 
lower, associated actual evapotranspiration rates for soil water balance 
calculations will be lower. A simple method for estimating actual evapo-
transpiration using relative soil moisture does not require any additional 
parameters and models the reduction of actual evaporation with the re-
duction of available soil moisture: 

𝑬𝑻𝒐𝒃𝒔 = 𝑬𝑻𝒑𝒐𝒕 ∗ �𝜽𝒊 − 𝜽𝒘𝒑�/�𝜽𝒔𝒂𝒕 − 𝜽𝒘𝒑�  (9) 

where: 
 ETobs = observed or actual evapotranspiration 
 ETpot = potential evapotranspiration 
 Θi  = soil moisture (m/m) 
 Θwp = soil moisture at wilting point (m/m) 
 Θsat = soil moisture at saturation (m/m) 

2.1.1.4 Training distribution and impacts. 

Historically, military land management has had a critical (and unmet) 
need to estimate training distribution and impacts. Generally, the installa-
tions’ Range Facility Management Support System (RFMSS) databases are 
used to attempt to quantify training impacts (Davis 2005). While imple-
mented by Army installations, RFMSS is lacking in several aspects: 

1. There is a paucity of detailed training intensity information. 
2. The spatial scale, which is usually at a training area level, leads to an over-

estimation of the spatial distribution of training impacts. 
3. Data are often not recorded as thoroughly as necessary. 
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The US Army Training and Testing Area Carrying Capacity (ATTACC) was 
developed and implemented as part of the ITAM program (USAEC 1999). 
The overall objective of the ATTACC methods is to estimate training land 
carrying capacity by estimating training impacts. The ATTACC methodol-
ogy, which links training impacts to the RFMSS database to estimate over-
all training impact, may be used to estimate the number of “maneuver im-
pact miles” (MIMs), the equivalent damage of one M1A2 traveling 1 mile, 
trained in that training area by: 

𝑀𝐼𝑀 = ∑ (𝑁𝑢𝑚𝑏𝑒𝑟𝑉 ∗ 𝑀𝑖𝑙𝑒𝑎𝑔𝑒𝑉 ∗ 𝑉𝑆𝐹𝑉 ∗ 𝑉𝑂𝐹𝑉 ∗ 𝑉𝐶𝐹𝑉 ∗ 𝐿𝐶𝐹)𝑣
𝑉=1  (10) 

where: 
 MIM = maneuver impact mile  
 V = vehicle type (Dimensionless) 
 v = number of types of vehicles training in area for the week 
NumberV = number vehicles of type, V, training in area 
MileageV = average mileage driven per vehicle, V 
 VSFV = vehicle severity factor 
 VCFV = vehicle conversion factor 
 VOFV = Vehicle off-road factor 
 LCF = Land condition factor (Sullivan and Anderson 2000). 

Two levels of training data fidelity can be used as inputs to the model:  
(1) RFMSS level data including all of the information described in Equa-
tion 11 except for the vehicle mileage, or (2) a generic indication of training 
intensity, quantified as the “average number of MIMs per training area,” 
which ranges from 1 to 3. 

Using methodologies described by Svendsen et al. (2012), the change in 
vegetation to each patch given the training load was estimated as:  

𝚫(𝑨𝑮𝑩) =
𝑴𝑰𝑴[𝒎𝒊]∗𝑴𝑪𝑭�𝒎

𝟐
𝒎𝒊�∗𝑨𝑮𝑩�

𝒈
𝒎𝟐

�

𝑨�𝒎𝟐�
 (11) 

where:  
 AGB = above-ground biomass [g/m2] 
 MIM = maneuver impact miles [mi] 
 MCF = MIM conversion factor = area impacted by one MIM [m2/mi] 
 A = total area of patch [m2]. 
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Estimates of training impact on below-ground biomass were made based 
on literature review and field data. The LCF, which accounts for different 
in training impact due to moisture condition, is calculated by taking a ratio 
of a reference soil moisture rating cone index (RCI) to the actual soil mois-
ture RCI to the 5/3rds power (Sullivan and Anderson 2000). 

As documented in ATTACC methodologies, the distribution of training 
across maneuver areas is difficult to estimate. Ayers et al. (2000) and 
Koch et al. (2012) have discussed methods to obtain high spatial and tem-
poral resolution training distribution and impact data through global posi-
tioning system (GPS) based vehicle tracking systems; however this is likely 
not economically or practically feasible for a large number of training 
events across many installations. As such, methods to estimate a distribu-
tion of training within a training area (e.g., lowest resolution data widely 
available through RFMSS) are desired. 

An approach developed by Guertin (2000) for Fort Hood estimated a 
probability surface that defines areas more likely to be impacted by train-
ing maneuvers. This approach is based on a logistic regression of observed 
disturbance data on a set of independent variables that appeared to influ-
ence training distribution (slope, vegetation type, installation region, and 
distance from maintained roads). Fang et al. (2002) performed an uncer-
tainty analysis of the disturbance model developed by Guertin and con-
cluded that the error and uncertainty in the vegetation map were the dom-
inant sources of mapping uncertainty. This approach provides a better 
solution than assuming an even distribution across each training area. 

2.1.1.5 Burning and haying/mowing land management impacts 

A burning component to the above-ground biomass was added based on 
CENTURY model assumptions (NREL 2006). The CENTURY model as-
sumes three levels of fire intensity that remove between 60 and 80% of the 
above-ground biomass. For the initial OPAL model development and 
demonstration, a medium fire intensity (70% reduction) was assumed 
since fire intensity was not an attribute of the documented proscribed 
burn/wildfire dataset. As such, if the burning data state that a particular 
patch was burned during the week, the above-ground biomass component 
was reduced by 70% from the non-burned calculated value. Below-ground 
biomass was determined based on a mixed linear model where given soil 
conditions, percent increases, or decreases in below-ground biomass are 
estimated by treatment conditions (Fulton 2013). 
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A haying component (similar to the previously described burning compo-
nent) was also added. The model assumes that 90% of the above-ground 
biomass is removed if the haying schedule predicts that the referenced 
patch was hayed during that time schedule. The impact on below-ground 
biomass was obtained from field data and a literature review. 

2.1.2 Use of OPAL NetLogo model 

NetLogo is a multi-agent programmable modeling environment with a 
simple user interface. Its large dictionary of functions and extensions, in-
cluding a Geographic Information System (GIS) extension, make NetLogo 
a powerful platform for natural resources modeling applications. The 
OPAL vegetation condition model uses a simple user interface that con-
tains the scenario selector tools, a graphic display of the area modeling, 
and data output plots (Figure 1). Sections 2.2 and 2.3 of this document 
outline the site-specific data and parameters for a given location.  

Once the model is set up for a given area, users can model and test various 
alternative management or training schedules with different weather in-
puts to compare the resulting impacts to training land resources (Figure 
2). The OPAL Vegetation Condition Model User Manual (Westervelt et al. 
2013) describes OPAL model use more completely. 

Figure 1.  OPAL vegetation condition model user interface. 
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Figure 2.  Schematic of OPAL vegetation condition model user process. 

 

2.2 Site description 

2.2.1 Fort Riley, KS site description 

Fort Riley is situated in the Bluestem Prairie region of northeastern Kansas, 
within a 1.6 million ha region in eastern Kansas containing the largest un-
tilled tallgrass prairie landscape in the world (Knapp and Seastedt 1998). 
The installation encompasses a land area of 41,154 ha, which contains a mix 
of native prairie and introduced vegetation. Tall grasses dominate this area, 
and wood and shrub lands occur mainly in the stream valleys (Althoff and 
Thien 2005). Fort Riley is located approximately 25 km northwest of the 
Konza Prairie Biological Station, a long-term tallgrass prairie ecological re-
search center. The proximity to the Konza Prairie makes Fort Riley an ideal 
location for model development as the CENTURY model was parameterized 
for the Konza Prairie (Parton et al. 1993). 

Grasslands (ca. 32,200 ha), shrublands (ca. 1600 ha), and woodlands (ca. 
6000 ha) form the three major vegetation communities on Fort Riley. Big 
bluestem (Andropogon gerardii), Indiangrass (Sorghastrum nutans), 
switchgrass (Panicum virgatum), and little bluestem (Schizachyrium 
scoparium) dominate the grasslands with other grasses and forbs occur-
ring in lesser abundance. Buckbrush (Symphoricarpos orbiculatas), 
smooth sumac (Rhus glabra), and rough-leaved dogwood (Cornus 
drummondii) dominate the shrublands vegetation community. These 
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shrublands communities generally occur along woodland edges and in iso-
lated patches in grassland areas while woodlands typically occur along ri-
parian lowlands. The woodlands are characterized by chinquapin oak 
(Quercus muhlenbergii), bur oak (Quercus macrocarpa), American elm 
(Ulmus americana), hackberry (Celtis occidentalis), and black walnut 
(Juglans nigra) (Koch et al. 2012). 

Since the early 1940s, Fort Riley has been home to a variety of military 
training activities including field maneuver training mechanized/armored 
vehicles, combat vehicle operations, mortar and artillery fire, and small-
arms fire. Currently, Fort Riley is home to three brigade combat teams, a 
Combat Aviation brigade, a Sustainment Brigade, and Division Headquar-
ters for the 1st Infantry Division (HQDA 2010). The majority of mecha-
nized maneuver activities has occurred on the northern 75% portion of 
Fort Riley (17 of the 18 designated training areas ranging from 577–3,024 
ha) for the past 4 decades. The most heavily used maneuver areas are oc-
cupied up to 210 days out of the year. Typical maneuvers by large tracked 
and wheeled vehicles that traverse thousands of hectares in a single train-
ing exercise can cause impacts ranging from minor soil compaction and 
lodging of standing vegetation to severe compaction and complete loss of 
vegetative cover in areas with concentrated training use. 

Fort Riley uses prescribed burning as a mechanism to sustain training 
mission by enhancing native prairie (HQDA 2010). The objectives of pre-
scribed burning are to maintain open space for training, reduce wildfire 
risk, reduce woody plant encroachment, maintain wildlife cover, and con-
trol sericea lespedeza. Most often, prescribed burns are conducted from 1 
September to 30 April annually. Despite precautions to minimize fire risk, 
wildfires resulting from training activities may occur during any season on 
the installation. 

Fort Riley leases over 19,000 ha of warm and cool season grasslands for 
hay harvesting as 5-year agricultural outleases (HQDA 2010). The objec-
tives of hay outleases are to maintain the open space for military training, 
reduce the risk of wildfires by reducing the accumulation of standing dead 
vegetation, reduce woody plan encroachment, enhance wildlife cover, con-
trol sericea lespedeza, and reduce the expense for ground maintenance 
mowing. Warm season grasses are cut during the period of 15 July to 15 
August each year while cool season grasses are cut during the period 1 May 
to 30 September (Dix 2010). 
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2.2.2 Fort Riley, KS input data 

2.2.2.1 Maps and spatial data 

The NetLogo modeling environment has a GIS extension to provide the 
ability to load vector and raster GIS data into a model. Site geospatial data 
is loaded into the OPAL NetLogo vegetation condition model to establish 
model boundaries and apply attributes to the areas being modeled. The 
geospatial data used in the model include the site boundary, training are-
as, and soils map. For display purposes, road and stream maps were used. 
The training area vector file contains training area names as an attribute. 
Due to the nature of the model, the soils vector file requires a number of 
attributes, including: 

• soil depth 
• soil permeability 
• soil water holding capacity 
• soil texture 
• wilting point 
• saturation point 
• bulk density 
• average biomass production 
• soil texture abbreviation.* 

This data can be obtained from county soil surveys based on the soil tex-
ture or can be downloaded from SSURGO. 

2.2.2.2 Weather 

Weekly weather data are used to calculate total precipitation, maximum, 
minimum, and average temperature for each weekly time step. Weather 
data for Fort Riley were obtained using the Applied Climate Information 
System (ACIS) Web Services distributed data system. This system weather 
data may be obtained through an http request from a web browser with a 
properly formatted URL (ACIS 2012). For Fort Riley, data from US Histor-
ical Climatology Network (USHCN) ID 144972 located in Manhattan, KS 
were used. For example, a comma separated variable text file for the daily 

                                                                 
* According to the US Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) 

Soil Survey Geographical Database (SSURGO) Standard (e.g., Silty Clay Loam is SICL, Sandy Clay Loam 
is SCL, etc), and Unified Soil Classification System (USCS) group symbol (e.g., CH, SP-SM, etc.) 
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maximum temperature, minimum temperature, average temperature, and 
precipitation at Manhattan, KS for 2009 is available for download from: 

http://data.rcc-acis.org/StnData?sId=144972&sDate=2009-01-01&eDate=2009-12-
31&elems=maxt,mint,avgt,pcpn&output=csv 

2.2.2.3 Schedules 

2.2.2.3.1 Training 

Training data from 2000–2011 were obtained from the RFMSS database 
for Fort Riley. This data contained the date and location each training area 
was used, the number and type of vehicles using the area, and the Vehicle 
Severity Factor (VSF) and Vehicle Conversion Factor (VCF) for each vehi-
cle used. This level of data allows for an estimation of MIMs using the 
ATTACC methodology described above with an assumption of distance 
traveled. However, the quality and accuracy of this data depends on the 
level of detail input at the installation level. The data quality and accuracy 
varies by installation and by year. 

In addition to past impacts, this model was created to assess future im-
pacts given different land management scenarios. As such, a simple esti-
mation of training intensity was desired. The OPAL NetLogo schedule cre-
ator software allowed the creation of simplistic training schedules on a 
weekly interval. The schedule applies a generic training intensity, rated 
from Level 0 to Level 3. Depending on the application, these generic inten-
sities can be associated with an average level of MIMs. Schedules were 
created using this method based on the RFMSS data from 2000–2011. 

2.2.2.3.2 Burning 

Fort Riley maintains a geospatial dataset that delineates controlled burn 
and wildfire burn events (Figure 3). Fort Riley specifies each burn polygon 
according to the burn date, burn priority, and area burned. The dataset al-
so defines whether the burn was a controlled burn or wildfire. This dataset 
was used to create yearly burn schedules at a weekly time step using the 
OPAL NetLogo schedule creating program. 

http://data.rcc-acis.org/StnData?sId=144972&sDate=2009-01-01&eDate=2009-12-31&elems=maxt,mint,avgt,pcpn&output=csv
http://data.rcc-acis.org/StnData?sId=144972&sDate=2009-01-01&eDate=2009-12-31&elems=maxt,mint,avgt,pcpn&output=csv
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Figure 3.  Fort Riley 2000–2011 Burn Map. Note:  Most polygons are burned more than once 
in the 12-year period. The map depicts the most recent burn year for each polygon. 

 

2.2.2.3.3 Haying 

Under Fort Riley’s agricultural outlease program, 21 areas ranging in area 
from approximately 130 –1900 ha are leased in 5-year terms (Figure 4). 
These leases are specified by cool or warm season grasses. Warm season 
grasses are cut during the period of 15 July to 15 August each year while 
cool season grasses are cut during the period 1 May to 30 September. 
However, actual harvest dates are not available as the level of detail con-
tained in the haying geospatial databases is lower than that obtained for 
the burning map. 
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An interview with the Fort Riley outlease manager revealed that, with cer-
tain exceptions, approximately 10 to 20% of each lease is hayable (Spohn 
2012). These limitations are due to slope, vegetation type, streams, and 
conservation practices such as buffer strips, grassed water ways, and field 
plots. The most suitable haying areas in each lease area were identified 
based on the percentage hayable, slope, and land cover class (grassland 
versus wooded, streams, etc.) (Figure 4). From these estimations, the lease 
areas and their requirements, the OPAL NetLogo schedule creating pro-
gram was used to create a yearly hay schedule in weekly time steps. 

Figure 4.  Fort Riley agricultural outlease areas with suitable haying areas delineated. 
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2.2.2.4 Site-specific parameters 

While developing the OPAL NetLogo vegetation condition model, every 
effort was taken to minimize the number of site-specific parameters re-
quired to input into the model. For example, soil specific variables were 
chosen that could be easily obtained from the SSURGO database for a vast 
majority of the continental United States. However, some of the vegetation 
growth parameters and other model parameters could not be obtained 
from widely available datasets. Additionally, the use of the CENTURY bi-
omass growth model required the use of certain site or crop specific pa-
rameter estimations (Parton et al. 1993). Table 1 lists the required site-
specific parameters, the parameter definition, Fort Riley parameter esti-
mate, and the source for each parameter estimate. Most of these parame-
ters can be estimated from CENTURY documentation, soils data, or the 
PET process described in Appendix A. 

Table 1.  OPAL NetLogo vegetation condition model site-specific parameters. 

Site-Specific 
Parameter Parameter Definition 

Fort Riley 
Parameter 
Estimate 

Parameter Estimation 
Source 

ppdf_1 Optimal temperature for vegetation production 
for parameterization of temperature effect on 
growth curve. 

30 NREL (2006); crop.100 
parameter file 

ppdf_2 Maximum temperature for vegetation production 
for parameterization of temperature effect on 
growth curve. 

45 NREL (2006); crop.100 
parameter file 

ppdf_3 Left curve shape for parameterization of a 
Poisson Density Function curve to simulate 
temperature effect on growth. 

1 NREL (2006); crop.100 
parameter file 

ppdf_4 Right curve shape for parameterization of a 
Poisson Density Function curve to simulate 
temperature effect on growth. 

2.5 NREL (2006); crop.100 
parameter file 

pprpts_1 The minimum ratio of available water to monthly 
PET, which would completely limit production. 

0 NREL (2006); fix.100 
parameter file 

pprpts_2 The effect of water content on the intercept, 
allows the user to increase the value of the 
intercept and thereby increase the slope of the 
line. 

1.0 NREL (2006); fix.100 
parameter file 

pprpts_3 The lowest ratio of available water to PET at 
which there is no restriction on production. 

0.8 NREL (2006); fix.100 
parameter file 

pmax Maximum potential plant production rate per 
week (g m-2 month-1). 

58.0 NREL (2006); crop.100 
parameter file 

AveProdGmSq Average maximum biomass production for year 
from SSURGO or soil survey for Fort Riley area. 

622.4 SSURGO database 
(NRCS) 
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Site-Specific 
Parameter Parameter Definition 

Fort Riley 
Parameter 
Estimate 

Parameter Estimation 
Source 

Modifies pmax by soil type according to the soil 
capacity to support vegetation growth (g m-2 
year-1). 

PETfunc_1 3rd degree polynomial coefficient for equation 
estimating mean daily percentage of daytime 
hours for given latitude (See Appendix A for 
calculation).  

0.000001 Brouwer, C. and M. 
Heibloem (1986) 

PETfunc_2 2nd degree polynomial coefficient for equation 
estimating mean daily percentage of daytime 
hours for given latitude (See Appendix A for 
calculation).  

0.0003 Brouwer, C. and M. 
Heibloem (1986) 

PETfunc_3 1st degree polynomial coefficient for equation 
estimating mean daily percentage of daytime 
hours for given latitude (See Appendix A for 
calculation). 

0.013 Brouwer, C. and M. 
Heibloem (1986) 

PETfunc_4 Constant term for polynomial equation 
estimating mean daily percentage of daytime 
hours for given latitude (See Appendix A for 
calculation). 

0.18 Brouwer, C. and M. 
Heibloem (1986) 

2.3 Model calibration 

2.3.1 Land management and training impacts on below-ground biomass 

For this modeling effort, estimates of below-ground biomass dynamics in 
response to disturbances such as surface perturbation (military training), 
burning, and haying/mowing in tallgrass prairie ecosystems was required. 
The treatments of interest included three levels of disturbance/impact 
(control, light, heavy) in a factorial arrangement with three types of man-
agement practices (control, burning, haying). Because the initial modeling 
efforts were focused on Fort Riley, KS, obtaining root biomass data from 
Tallgrass, Flinthills, or Konza Prairies was the primary driver as these eco-
systems are most similar to those at Fort Riley. Therefore, a comprehen-
sive literature review was conducted whereby data from as many different 
sources, seasons, and years as possible were collected. 

Collection of root biomass data is very difficult and time consuming and 
often requires specialized sampling equipment and supplies, which results 
in significant additional expense to the experimental study. As such, scien-
tific literature reporting root biomass data is relatively rare compared to 
that reporting above-ground biomass. Therefore, this effort focused the 
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literature searching efforts on locating any data that might pertain to root 
biomass in Tallgrass Prairies.  

Some of the root biomass data came from studies that used field plots 
where disturbance treatments were imposed and plant roots subsequently 
harvested using soil cores, soil monoliths, soil blocks, or soil trenches. 
Other root biomass data were inferred using field studies that measured 
changes in microbial biomass due to burning or haying/mowing. Since mi-
crobial biomass is considered a sensitive indicator of changes in quality 
and quantity of organic matter inputs from root systems, any change in 
microbial biomass can be used as a surrogate to estimate the effects of 
burning or mowing/haying on below-ground root biomass. Still other root 
biomass data were derived from studies where soil respiration measure-
ments were taken from field plots that had been burned or hayed/mowed. 
Because roots are one of the major sources of carbon dioxide within the 
soil and serve to stimulate soil respiration, it can be an excellent surrogate 
for estimating changes in root system biomass. Measurements of soil res-
piration can therefore provide useful data relative to root biomass re-
sponse to some type of disturbance. 

Management and training impacts on below-ground biomass estimated from 
the metadata analysis were supplemented with impacts derived from field da-
ta. Fulton (2013) describes a 4-year field study at Fort Riley, KS that attempted 
to delineate the complex interactions between biomass and anthropogenic im-
pacts including training and land management (i.e., burning and haying). A 
series of four 100 m x 100 m plots. created at two representative soil types for 
Fort Riley (clay upland loam soil and loam upland soils) (Figure 5), were di-
vided into a modified 32 factorial design and subjected to a series of yearly land 
management and training impacts including light/heavy tracked vehicle im-
pacts, controlled burning, and mowing/haying. Above and below-ground bio-
mass samples were taken annually along with a set of soil moisture, strength, 
and condition parameter estimates. 

A mixed linear model describing below-ground biomass estimates for each 
treatment condition was developed using the SAS Mixed Procedure (SAS 
Institute 2009). Estimates for each treatment condition were compared 
against the control condition (no land management or training impacts) to 
determine a percent increase or decrease from the control. The percent in-
crease or decrease estimated by the treatment condition was then applied 
to the model by modifying the below-ground biomass according to the 
patch training and land management history. 
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Figure 5.  Schematic illustrating Fort Riley land management/training impact study. 

 

2.3.2 Land management and training impacts on above-ground biomass 

The influence of land management and training on above-ground biomass 
was estimated from literature derived values and from the CENTURY 
model documentation. Conceptually, the above-ground biomass model 
was developed to represent the increase in production rate following bio-
mass removal from burning or haying events due to increase in available 
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soil solar radiation (Knapp 1984). The above-ground biomass model re-
moves a proportion of the above-ground biomass according to the combi-
nation of management or training activities. The rate of vegetation re-
growth following the impact is then modified depending on the sites train-
ing and management history during the time period modeled. The rate of 
vegetation re-growth following the impact was estimated from Knapp et al. 
(1998) and Turner et al. (1993) for burning and haying, respectively. 

2.3.3 Training attractiveness map 

An approach developed by Guertin (2000) for Fort Hood estimated a 
probability surface that defines areas more likely to be impacted by train-
ing maneuvers. This approach is based on a logistic regression of observed 
disturbance data on a set of independent variables that appeared to influ-
ence training distribution (slope, vegetation type, installation region, and 
distance from maintained roads). Fang et al. (2002) performed an uncer-
tainty analysis of the disturbance model developed by Guertin and con-
cluded that error and uncertainty in the vegetation map were the domi-
nant sources of mapping uncertainty. Fang et al. (2010) later employed 
this approach to identify areas more likely to be impacted by training ma-
neuvers at Fort Riley, KS. This approach provides a better solution than 
assuming an even distribution across each training area. 

A modified process based on the previously described logistic regression 
approach was taken to develop a training attractiveness map based on 
higher resolution, higher accuracy input data, including a 3m Digital Ele-
vation Model (DEM) derived from Light Detection and Ranging (LIDAR) 
data and a vegetation map derived from aerial photography (Eq. (12). This 
analysis used a set of independent variables proposed by Guertin (2000) 
and Fang et al. (2002) that were perceived to be important predictor vari-
ables for estimating the probability of disturbance, or “training attractive-
ness.” Land Condition-Trend Analysis (LCTA) data describing vegetation 
disturbance at Fort Riley from 1989–2001 were used as an observed dis-
turbance dataset: 

𝑦 = 𝑒�𝑏°+∑ 𝑏𝑖𝑥𝑖
7
𝑖=1 � ÷ 1 + 𝑒�𝑏°+∑ 𝑏𝑖𝑥𝑖

7
𝑖=1 � (12) 

Maximum disturbance recorded at 109 LCTA transects over this 13-year 
time period was used as the dependent variable in the logistic regression. 
Similar to previous studies, slope, vegetation type, installation region, and 
distance from maintained roads were determined for each LCTA plot loca-
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tion using geospatial data layers and used as independent variables in the 
logistic regression model. 

Mean slope and vegetation type was determined using a polygon repre-
senting a 30m buffer around each plot location. A low pass filter using a 
kernel size approximately the same size as the area of the buffer polygons 
was applied to the slope map derived from the 3m DEM to reduce local 
variation prior to extracting mean slope. Five dummy variables were used 
to represent four different landcover types (shrub, forest, tall grass and 
short grass) and one specific training region (central corridor) of the in-
stallation. Distance to paved roads and all roads were considered as ex-
planatory variables, but similar to the results reported in Wang et al. 
(2010), distance to roads was not a significant predictor of training dis-
turbance. 

2.4 Model validation 

2.4.1 OPAL field data for treatment validation 

2.4.1.1 Field data collection description 

Data from a 4-year field study at Fort Riley, KS were used as a validation 
of the training and land management impacts incorporated in the OPAL 
model. More specifically, this data allowed the testing of multiple land 
management and training scenarios at two locations within the area mod-
eled on above- and below-ground biomass. Additional validation efforts 
described in Section 2.4.2 tested the ability of the model to accurately es-
timate above-ground biomass across the entire installation. 

 A series of four 100 m x 100 m plots were created at two representative 
soil types for Fort Riley (clay upland loam soil and loam upland soils) 
(Figure 5). These plots divided into a modified 32 factorial design and were 
subjected to a series of yearly land management and training impacts in-
cluding light heavy tracked vehicle impacts, controlled burning, and mow-
ing/haying. Above and below-ground biomass samples were taken annual-
ly along with a set of soil moisture, strength, and condition parameter 
estimates. 

No above-ground biomass data from this study were used in the develop-
ment of the algorithms incorporated in the OPAL model. However, due to 
the limited nature of below-ground biomass data, mean below-ground bi-
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omass values were used to supplement the missing treatment impacts 
identified through the metadata analysis (described in Section 2.3.1). Since 
some of the below-ground biomass data were used in the model develop-
ment, this is not a true validation of the below-ground biomass algorithms. 
However, this analysis will still provide an initial estimate of the ability for 
the OPAL model to estimate below-ground biomass given training and 
land management schedules. 

2.4.1.2 Treatment schedules 

The series of 100m x 100m plots were established in the spring of 2010. 
These plots were broken into sub-plots that were treated according to the 32 
factorial design (Figure 5). Simulated vehicle training was performed with 
an M1A1 Abrams Main Battle Tank in the fall of 2010 and with a M88A2 
Armored Recovery Vehicle in the spring 2012. Mowing/haying treatments 
were performed on the appropriate plots in September of 2010 and 2011. 
The controlled burn treatments were applied in the spring of 2011 and 2012. 
Additionally, at one site a wildfire burned the plots on 3 March 2012. 

Management schedules were then created based on these actual treatment 
dates to simulate the impacts with the OPAL NetLogo model. Separate 
schedules were created for each unique treatment scenario (Table 2). 
Above- and below-ground biomass estimated values were exported to a 
GIS raster grid on the weeks when samples were obtained in the field 
(Weeks 23 and 29 in 2010, Week 27 in 2011, and Week 26 in 2012). The 
model was run for each of these scenarios from 2010–2012. Predicted val-
ues for each scenario were then compared with the field collected values 
from each corresponding plot. 

2.4.2 Fort Riley Range and Training Land Assessment (RTLA) above-
ground biomass sampling data for spatial validation 

The approach described in Section 2.4.1 was used to assess the ability of 
the model to accurately predict above- and below-ground biomass given 
land management and training impacts. However, since the data used as 
the validation dataset were collected at only two locations, this approach 
does not assess how well the model spatially predicts vegetation condi-
tions. Above-ground biomass data from 2010–2011 were obtained from 
the Fort Riley RTLA program. These data represent only the live vegeta-
tion component of the above-ground cover. 
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Table 2.  Training and land management treatment schedules modeled in the OPAL NetLogo 
model. The scenarios exactly match the dates the field plots were treated. 

Treatment Plot 

Track2010 Track2012 Mow2010 Mow2011 Burn2010 Burn2011 Burn2012 

Date Date Date Date Date  Date Date 

Control_Burned BB NA NA NA NA NA 4/22/2011 3/3/2012 

Control_Burned EE NA NA NA NA NA 5/15/2011 4/21/2012 

Control_Control BB NA NA NA NA NA NA 3/3/2012 

Control_Control BB NA NA NA NA NA 4/22/2011 3/3/2012 

Control_Control EE NA NA NA NA NA NA NA 

Control_Mowed BB NA NA 9/28/2010 9/30/2011 NA NA 3/3/2012 

Control_Mowed BB NA NA 9/28/2010 9/30/2011 NA 4/22/2011 3/3/2012 

Control_Mowed EE NA NA 9/28/2010 9/30/2011 NA NA NA 

Track Heavy_Burned BB 10/27/2010 3/27/2012 NA NA NA 4/22/2011 3/3/2012 

Track Heavy_Burned EE 10/27/2010 3/27/2012 NA NA NA 5/15/2011 4/21/2012 

Track Heavy_Control BB 10/27/2010 3/27/2012 NA NA NA 4/22/2011 3/3/2012 

Track Heavy_Control BB 10/27/2010 3/27/2012 NA NA NA NA 3/3/2012 

Track Heavy_Control EE 10/27/2010 3/27/2012 NA NA NA NA NA 

Track Heavy_Mowed BB 10/27/2010 3/27/2012 9/28/2010 9/30/2011 NA 4/22/2011 3/3/2012 

Track Heavy_Mowed BB 10/27/2010 3/27/2012 9/28/2010 9/30/2011 NA NA 3/3/2012 

Track Heavy_Mowed EE 10/27/2010 3/27/2012 9/28/2010 9/30/2011 NA NA NA 

Track Light_Burned BB 10/27/2010 NA NA NA NA 4/22/2011 3/3/2012 

Track Light_Burned EE 10/27/2010 NA NA NA NA 5/15/2011 4/21/2012 

Track Light_Control BB 10/27/2010 NA NA NA NA 4/22/2011 3/3/2012 

Track Light_Control BB 10/27/2010 NA NA NA NA NA 3/3/2012 

Track Light_Control EE 10/27/2010 NA NA NA NA NA NA 

Track Light_Mowed BB 10/27/2010 NA 9/28/2010 9/30/2011 NA 4/22/2011 3/3/2012 

Track Light_Mowed BB 10/27/2010 NA 9/28/2010 9/30/2011 NA NA 3/3/2012 

Track Light_Mowed EE 10/27/2010 NA 9/28/2010 9/30/2011 NA NA NA 

Training and land management schedules obtained from Fort Riley were 
used to create scenarios for simulation with the model. The land manage-
ment scenarios were created from actual controlled and wildfire burn 
maps and the hay leasing database map. Section 2.2.2.3 describes the de-
velopment of training and land management simulation schedules based 
on the actual management databases. The above-ground biomass esti-
mates at the sampling dates were then exported for comparison with the 
58 composite above-ground biomass observations across the installation 
from the 2 years. 
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3 Results and Discussion 

3.1 Calibration Results 

3.1.1 Land management and training impacts on above- and below-ground 
biomass 

A metadata analysis was performed to estimate below-ground biomass dy-
namics in response to disturbances such as surface perturbation (military 
training), burning, and haying/mowing in tallgrass prairie ecosystems. 
The treatments included in the analysis included three levels of disturb-
ance/impact (control, light, heavy) in a factorial arrangement with three 
types of management practices (control, burning, haying). The analysis 
was focused on obtaining biomass responses for the Tallgrass, Flinthills, or 
Konza Prairie ecosystems. Table 3 lists the results of the comprehensive 
literature review of available sources, seasons, and years. 

Data in Table 3 are expressed as percent increase or percent decrease in 
root biomass when compared to the specific impact and/or management 
practice control and are from Tallgrass, Flinthills, or Konza Prairies unless 
otherwise noted. This exercise served to capture the significant expected 
variability in root biomass due to differences in soil types, precipitation 
amounts, level and seasonality of disturbance, and plant community com-
position. Data in Table 3 reflect a combination of values derived from field 
studies involving directly collected root biomass, microbial biomass, or 
soil respiration. Treatments consist of three levels of disturbance/impact 
(control, light, heavy) in a factorial arrangement with three types of man-
agement practices (control, burning, and haying/mowing). Note:  some 
disturbance/impact:management practice combinations do not have root 
biomass values associated with them due to the inability to locate data 
specific to these combinations. The manuscripts referenced in Table 3 pro-
vide more information regarding these data and how they were acquired. 
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Table 3.  Root biomass expressed as percent increase or percent decrease in root biomass 
when compared to the specific impact and/or management practice control. 

Change Notes Source 

1) No Impact x No Management 

NA   

2) No Impact x Burning 

+25% In spring Johnson and Matchett (2011) 

+15% In spring Tufekcioglu et al. (1999) 

–15% In summer Heath (1985) 

+40% Initially, but declines with increasing fire frequency Ojima et al. (1994) 

–1 to 2% Per year if burned annually Ojima, (1987 

–3 to 5% If followed by dry (50–75% of avg ppt) summer Garcia et al. (1994) 

+5 to 8% If followed by wet (125–150% of avg ppt) summer Garcia et al. (1994) 

+1%  Benning and Seastedt (1997) 

+48%  Kitchen et al. (2009) 

+7%  Gibson et al. (1993) 

+22%  Kucera and Dahlman (1968) 

+68%  Kucera and Dahlman (1968) 

+3%  Bremer et al. (2002) 

+7%  Mielnick and Dugas (2000) 

+102%  Collins (1987) 

+33%  Collins (1987) 

+6%  Callaham et al. (2003) 

3) No Impact x Haying/Grazing 

–20% In short and mixed grass prairies  Richards et al. (1984) 

–30% In short and mixed grass prairies  Detling et al. (1984) 

–18% In spring/summer  Vogel and Moser (1982) 

–22% In summer/fall  Vogel and Moser (1982) 

–16% In mixed grass prairie  Biondini et al. (1998) 

–15% If followed by dry (50–75% of avg ppt Fiala et al. (2009), Gwyer et al. (1996) 

–11 to –18% In summer  Garcia et al. (1994), Garcia (1992) 

–2%  Benning and Seastedt (1997) 

+7%  Kitchen et al. (2009) 

–17%  Gibson et al. (1993) 

–28%  Todd et al. (1992) 

–17%  Bremer et al. (1998) 

–15%  Wilsey et al. (1997) 

–8%  Bremer et al. (2002) 

+11%  Collins (1987) 

–20%  Collins (1987) 

–33%  Callaham et al. (2003) 

–14 to –33% As defoliation frequency increases from 1 to 5 Engel et al. (1998) 

–30%  Polley and Detling (1989) 
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Change Notes Source 

4) Light Impact x No Management 

NA   

5) Light Impact x Burning 

NA   

6) Light Impact x Haying/Grazing 

NA   

7) Heavy Impact x No Management 

–45% In shortgrass prairie scraping experiments Williams and Munns (1979) 

8) Heavy Impact x Burning 

NA   

9) Heavy Impact x Haying/Grazing 

–65% In shortgrass prairie experiments Williams and Munns (1979) 

In some instances, the study reported the specific parameters for which 
the below-ground biomass response was documented. For example, Garcia 
et al. reported a 5–8% increase in below-ground biomass in response to 
controlled burning when followed by a wet summer (i.e., 125–150% of av-
erage precipitation), but documented a 3–5% decreases in below-ground 
biomass when the burn was followed by a dry summer (i.e., 50–75% of av-
erage precipitation). In this instance, these differences reflect the ability 
for above-ground vegetation and cover to preserve soil moisture in dry 
conditions. In wet years, the extra cover experienced in the unburned plot 
decreased productivity by reducing sunlight and decreasing initial soil 
temperatures. However in dry years when soil moisture was scarce, the 
same cover preserved soil moisture, which increased overall productivity. 

While these effects are obviously important to an explaination of the dy-
namics of the soil-vegetation systems, an attempt to generalize these re-
sults was made for modeling purposes. While this generalization may re-
duce accuracy on a case-by-case basis, by incorporating the body of 
observations the model should improve its overall accuracy over a large 
number of years and over a larger area. Table 4 lists the distribution of be-
low-ground biomass responses described for burning and haying treat-
ments; Figure 6 shows the observed trends. This analysis was only per-
formed on the Burning and Haying/Grazing vs. Control conditions as 
these were the only treatments with a large number of observations (litera-
ture derived biomass responses). 
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Table 4.  Summary statistics of below-ground biomass responses to burning and 
haying/grazing. 

Statistic Burning vs. Control Haying/Grazing vs. Control 

Number of samples 17 19 
Mean (% Increase or Decrease) 21.4 –15.2 
Variance 877.1 183.2 
standard dev (%) 29.6 11.8 

Figure 6.  Distribution of percent change in below-ground biomass derived from literature to 
illustrate the uncertainty and variability below-ground biomass response to management 

regimes. 

 

Figure 6 shows the general range and frequency of observations found in 
literature. Across 19 studies, haying/grazing reduced below-ground bio-
mass compared to the control condition by an average of 15.2%. The 
standard deviation was 11.8%. Burning on the other hand, increased the 
below-ground biomass by an average of 21.7% with a standard deviation of 
29.6%. This reflects the large differences in response due to burning tim-
ing or frequency and soil moisture conditions. 
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While this approach estimates the general response in below-ground bio-
mass due to haying and burning treatments, the literature review did not 
identify studies that had investigated all of the treatment combinations re-
quired for the model. These values were supplemented by below-ground 
biomass responses observed in the Fort Riley plot study (Fulton 2013). 
Figure 7 shows the below-ground biomass estimates of the mixed linear 
model created based on the field data. The treatments are named by land 
management treatment + training treatment. The land management 
treatments are control (CTRL), burning (BURN), and mowing (MOW). 
The training treatments are no training (CTRL), light tracking (LT), two 
light tracking treatments in consecutive years (LT+L), and light tracking 
followed by a year of recovery (LT+R). 

An increase or decrease factor was then calculated by adding the percent 
change from the CTRL+CTRL condition to 1 (Figure 8). For example, to 
estimate the below-ground biomass for each management-training condi-
tion, multiply the condition factor by control condition. The treatments are 
named by the convention defined above. This provides a change factor that 
could be multiplied by the control condition in the model to estimate the 
treated pixel. These change factors supplemented the missing biomass re-
sponses identified in the metadata analysis. 

Figure 7.  Below-ground biomass estimates given management/training scenario from Fort 
Riley plot data (Fulton 2013). The error bars represent the standard deviation of the estimate.  
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Figure 8.  Below-ground biomass condition factors estimated from Fort Riley plot data (Fig. 7). 

 

Above-ground biomass responses to burning and haying were estimated 
from the literature. Knapp et al. (1998) reported a mean annual productiv-
ity of 527.5 g/m2 with annual burns and 406.7 g/m2 with no burn. Since 
the model requires a weekly rate, the difference was divided by the num-
ber of weeks after burning reported in the paper. This resulted in an 
8.29 g/m2 increase in production per week following a burning event. 
Turner et al. (1993) reported a mean yearly above-ground production of 
544 g/m2 with one mowing event and 450 g/m2 for the control condition 
(no mowing). Using the same methods as the burning calculation, this re-
sulted in a 1.8 g/m2/week increase in above-ground biomass due to hay-
ing. While the difference between treatments and controls were similar, 
the time between treatment and sampling was much larger for the haying 
study resulting in the lower weekly rate. While this method provides esti-
mates for the change in biomass growth, the overall approach is highly de-
pendent on the timing between treatments and sampling. Over an entire 
year, this approach likely overestimates the response due to treatment 
while it likely underestimates the response due to treatment in a shorter 
time-scale. 

3.1.2 Training attractiveness map 

A procedure modified from previous work (Guertin 2000, and Fang et al. 
2002) was performed to create a layer depicting the relative frequency 
training land would be used based on historic LCTA data (Figure 9).  
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Figure 9.  Map of Fort Riley’s relative training attractiveness based on LCTA data from 1989–
2001. Note:  Darker colors indicate areas more likely to be used for training based on historic 

data. White areas were not included in the estimation as the areas depict impact areas or 
installation cantonment. 

 

The overall model had good agreement with the field disturbance data 
with the model predicting 61% of the variation (R2 =0.61) in observed dis-
turbance. The model found that mean slope and installation region (within 
vs. outside the central corridor) were significant in predicting disturbance 
patterns (Table 5). Additional variables related to vegetation type were not 
significant, but were retained in the final model based on knowledge of 
their influence on training preferences at Fort Riley, KS 
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Table 5.  Predictive disturbance model parameter estimates. 

Parameter Estimate p-value 

𝑏°  –1.60242 0.5734 

𝑏1 –0.21104 0.0001 

𝑏2 1.665222 0.8768 

𝑏3 1.569357 0.5846 

𝑏4 2.612649 0.3594 

𝑏5 3.135057 0.2719 

𝑏6 1.024429 <0.0001 

Previous attempts to estimate disturbance patterns using a predictive 
model accounted for 46% of the spatial variation in observed disturbance 
at Fort Hood, TX (Fang et al. 2002). Fang et al. (2007) later introduced 
interaction terms between dependent variables and demonstrated that the 
type and amount of input data affected model predictions, which predicted 
from 39 to 54% of observed disturbance at Fort Hood, TX. Wang et al. 
(2010) applied a similar approach for predicting the spatial variation of 
disturbance at Fort Riley, KS using 90m spatial resolution geospatial data. 
Predictive models were developed annually from 1989–2001 with models 
accounting for 34 to 57% of the spatial variation in observed disturbance. 
The slight improvement in predictive capability of the current model is 
likely due to the improved spatial resolution of the DEM derived from 
LIDAR, which was used to assess slope as a predictive variable. 

Overall, the training attractiveness layer seems to match how the training 
lands have typically been used. For example, the dark area down the cen-
ter of the installation has historically been an area with high training in-
tensity. However, with the new Digital Multi-Purpose Range Complex 
(DMPRC), the safety fan now includes much of the training areas south-
east of the range, which will significantly reduce the training loads in this 
area. The historic LCTA data would not reflect this change. In considera-
tion of this, and for the purposes of this model, training is still allocated 
according to RFMSS-based training areas and is then divided among the 
area according to the training attractiveness map so this overall change in 
training areas used will not have a large impact. 
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3.2 Validation results 

3.2.1 Comparison against OPAL field data 

3.2.1.1 Above-ground biomass validation 

Data from a 4-year field study at Fort Riley, KS were used to validate the 
training and land management impacts incorporated in the OPAL model. 
These data allowed the testing of multiple land management and training 
scenarios at two locations within the area modeled on above- and below-
ground biomass. The treatment schedules for the field study were used to 
develop the impact scenarios in the model simulation as discussed in Sec-
tion 2.4.1.2. This validation section groups the results of both the model 
and field collected values by land management treatment and vehicle 
training treatment. The results are illustrated with both boxplots and scat-
terplots. 

Figure 10 shows the predicted and measured above-ground biomass values 
grouped by land management treatment. Plot 10a illustrates that the mod-
el predicted little difference in the above-ground biomass under the differ-
ent land management scenarios tested with mean values across all plots of 
286.8, 292.7, and 306.1 g/m2 for burn, control, and mow treatments, re-
spectively. However, the measured above-ground biomass values for the 
treatments were 543.8, 264.5, and 344.2 g/m2 for burn, control, and 
mowed treatments, respectively. While the mowing and control predic-
tions were fairly accurate, the burn treatment prediction average was ap-
proximately 250 g/m2 lower than the measured values. 

The reason the predicted values are so much lower than the measured val-
ues is because this prediction uses an increase in growth/week for burned 
conditions. However, it appears that, even with this increased growth rate 
(+8 g/m2/week), the biomass is still not increasing to amounts greater 
than that removed in the time between burning and sampling. Over larger 
time intervals, the burned plots would increase above the control due to 
the increased growth rate. One solution would be to just base the burned 
plot AGB on a percent increase over a controlled condition. Another would 
be to develop a growth rate function that is much larger than g/m2/week 
initially and then to reduce the growth rate later. However, without firm 
biomass growth data, many assumptions would be required to estimate 
that function. 
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Figure 10.  Boxplots of (a) predicted and (b) measured above-ground biomass by land 
management treatment. 

  

a. b. 

Figure 11 shwos the scatterplot of predicted vs. measured points. As illus-
trated, the model was not capable of predicting some of the extreme values 
observed in the burning treatment. In certain instances, the measured 
above-ground biomass was greater than 1500 g/m2 while the maximum 
predicted value was only around 375 g/m2. This could be a function of the 
burn and sampling timing in the field study. As described in Section 2.3.2, 
by assuming a constant weekly increase (or decrease) in treat-
ments based on a yearly average observation, the model is not 
as sensitive to land management treatments in the short-term, 
but is more sensitive to treatments in longer time-scales. Since 
the interval between burning and sampling in the field study was less than 
2 months, the increase in growth rate according to the annual increase still 
did not increase the above-ground biomass amount compared to the con-
trol condition due to the loss of biomass during the burning event. 

Figures Error! Reference source not found.a and Error! Refer-
ence source not found.b, respectively, show the predicted and meas-
ured above-ground biomass grouped by training treatment. The mean 
above-ground biomass values were 293.5, 345.7, 236.4, and 256.1 g/m2, 
respectively, for the control (CRTL), 1 year light traffic (LT), 2 years of re-
peated light traffic (LT+LT), and 1 year of light traffic followed by 1 year of 
recovery (LT+R). The measured values for these same treatments were 
552.9, 327.6, 74.6, and 325.4 g/m2 respectively. 



ERDC/CERL TR-14-12 35 

 

Figure 11.  Scatterplot of predicted vs. measured above-ground biomass by land 
management treatment. 

 

Figure 12.  Boxplots of (a) predicted and (b) measured above-ground biomass by 
training treatment. 

  

a. b. 
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Due to the field study design, the LT treatment was measured only in 2011, 
whereas the LT+LT and LT+R treatments were measured in 2012. The 
CRTL treatment was measured in both 2011 and 2012. Figure 13a shows 
the above-ground biomass by year. The moisture or temperature condi-
tions in 2012 limited the simulated vegetation production compared with 
the previous year. This is observed slightly in the field data (Figure 13b), 
but not to the same extent.  

Since the LT treatment was conducted only in 2011, this results in a higher 
above-ground biomass compared with the other treatments in the model 
results. However, despite the explanation for this increase in above-
ground biomass in the LT the same trend should be apparent in the meas-
ured data. Comparison between the two datasets indicates the model 
underestimates the impact of training on the above-ground bi-
omass. This is apparent in the change in biomass from the CRTL to 
LT+LT of 478.3 g/m2 in the field data. This difference was only 57 g/m2 in 
the model results. This indicates the training impact outweighed the dif-
ferences between years in the field data while the differences in years out-
weighed the training impact in the model results. 

Figure 13.  Boxplots of (a) predicted and (b) measured above-ground biomass by training 
treatment. 

  

a. b. 
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Figure 14 and the described land management treatment effects on above-
ground biomass both show that the model does not predict the extreme 
above-ground biomass measurements observed in the field. A histogram 
of the absolute value of the error between the measured and predicted val-
ues was created to illustrate the ability for the model to accurately predict 
the measured values (Figure 15). Again, this figure indicates there are cer-
tain conditions that result in high observed above-ground biomass meas-
urements that are not accounted for in the model. Generally, the model 
tended to predict above-ground biomass values lower than the 
observed field plot data. The field study collected all cover within a 
0.25 m2 frame while the model only predicts live vegetation cover. This 
would result in an underestimation of above-ground biomass compared 
with the field data. 

Figure 14.  Scatterplot of predicted vs. measured above-ground biomass by training 
treatment. 
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Figure 15.  Histogram of model-predicted above-ground biomass 
error compared to measured above-ground biomass. 

 

3.2.1.2 Below-ground biomass validation 

Below-ground biomass data from the same 4-year field study at Fort Riley, 
KS were used to test the accuracy of the model in predicting below-ground 
biomass responses to training and land management treatments. As dis-
cussed in the methods section, since the differences between treatments in 
the below-ground biomass data were used in the development in some of 
the model components, this is not a true validation. The treatment sched-
ules for the field study were used to develop the impact scenarios in the 
model simulation as discussed in Section 2.4.1.2. Figure 16 shows the pre-
dicted and measured below-ground biomass results. The field data result-
ed in no significant difference between treatments. This was also observed 
in the model-predicted data. As in the case of above-ground biomass, the 
model-predicted values (average = 240.7 g/m2) were lower than the field 
observations (average = 549.2 g/m2). 

As below-ground biomass is predicted in the model based on a root-to-
shoot ratio, this would be expected based on the above-ground biomass 
error. As discussed in Fulton (2013), there are few observed differ-
ences in below-ground biomass between land management 
treatments over the study in both the predicted and observed 
data. This is due in part to the short duration of the study relative to the 
time-scale of below-ground biological processes. 
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Figure 16.  Boxplots of (a) predicted and (b) measured below-ground biomass by land 
management treatment. 

  

a. b. 

When grouped by vehicle training treatments, differences between treat-
ments are apparent (Figure 17). The mean model-predicted below-ground 
biomass values by treatment are 270.1, 265.8, 163.3, and 179.6 g/m2, re-
spectively, for the CRTL, LT, LT+LT, and LT+R treatments. These same 
treatments resulted in mean observed below-ground biomass values of 
628.0, 534.3, 371.6, and 528.5 g/m2, respectively. While the same trends 
in impacts are observed, the LT treatment is slightly elevated compared 
with the control due to the differences in yearly conditions as discussed 
with above-ground biomass. 

Figures 17 and 18 show plots of the predicted vs. observed below-ground 
biomass values. The range in model-predicted values is only 239 g/m2 

while it is around 1400 g/m2 (excluding two outliers) for the observed da-
ta. While the below-ground biomass model adequately predicts 
the trends between treatments, it is not nearly sensitive enough 
to predict the wide range in values in the observed data (Figure 
18). The model includes a productivity index given in the USDA soil sur-
vey. Other possible variables that could be incorporated in the model to 
increase the sensitivity of the model to actual conditions are soil nutrient 
levels, a higher resolution soil moisture model, plant species data, slope, 
and aspect. Across all samples, the model predicted below-
ground biomass ~300 g/m2 below observed values (predicted 
mean = 241.8 g/m2, observed mean = 545.3 g/m2, see Figure 19). This is 
also observed in the histogram of model error (Figure 20). 
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Figure 17.  Scatterplot of predicted vs. measured below-
ground biomass by land management treatment 

 

Figure 18.  Scatterplot of predicted vs. measured below-
ground biomass by training treatment. 
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Figure 19.  Boxplots of (a) predicted and (b) measured below-ground biomass by training 
treatment. 

  

a. b. 

Figure 20.  Histogram of model-predicted below-ground biomass error compared to measured 
below-ground biomass. 
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3.2.2 Comparison with Fort Riley ITAM historic above-ground biomass 
data. 

While the validation discussed in the previous section tested the accuracy 
of the model in predicting land management and training impacts on 
above- and below-ground biomass, it did not test the ability of the model 
to predict biomass across a large spatial area. Additionally, the field plot 
data included all above-ground cover, while the model only predicts live 
vegetation. This partially explains the lower biomass rates predicted by the 
model compared with the field data. 

Above-ground biomass clipping data from 2010–2011 were obtained from 
the Fort Riley RTLA program. These data represent only the live vegeta-
tion component of the above-ground cover. Each of the 58 data points is a 
composite sample that reduces some of the variability observed in the 
measured data from the field plots. Training and land management sched-
ules obtained from Fort Riley were used to create scenarios for simulation 
with the model. The land management scenarios were created from actual 
controlled and wildfire burn maps and the hay leasing database map. 

Figure 21 shows a plot of the predicted vs. measured values for 2010–2011. 
The mean model-predicted above-ground biomass across all sample sites 
was 402.1 g/m2 with a standard deviation of 80 g/m2. The mean measured 
above-ground biomass across all above-ground composite samples was 
308.6 g/m2 with a standard deviation of 61.3 g/m2 resulting in a mean 
model error of 93.5 g/m2. This is also observed in the histogram of model 
error Figure 22. While the model-predicted values smaller than 
observed values compared the OPAL field plot data, it predicted 
values slightly larger than the Fort Riley RTLA plot data from 
2010–2011. 

The correlation coefficient between measured and predicted 
above-ground biomass was 0.34 (Table 6). Fort Riley RTLA creates a 
calibrated biomass image from the sampling date based on a regression 
between Normalized Difference Vegetation Index (NDVI) and the RTLA 
above-ground biomass used for this validation effort. The correlation be-
tween biomass values based on the NDVI correlation and the actual meas-
ured data is only slightly higher (0.41 compared to 0.34) than the model-
predicted values. This indicates that the variability in above-ground bio-
mass observed across the landscape is difficult to quantify, even with a 
high resolution remote sensed image. 
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Figure 21.  Scatterplot of predicted vs. measured above-ground biomass from 2010–2011 
compared with Fort Riley RTLA data. 

 

Table 6.  Correlation coefficients matrix for predicted above-ground biomass, measured 
above-ground biomass, and biomass calibrated Landsat image.  

 
AGB_Predicted AGB_Measured AGB_Calibrated_RS 

AGB_Predicted 1 0.34 0.41 
AGB_Measured 0.34 1 0.61 
AGB_Calibrated_RS 0.41 0.61 1 

Section 3.2.1 identified areas in which the model could be improved to more 
accurately reflect biomass responses to training and land management prac-
tices. Additional sources of error in this validation are the actual inputs used 
to determine historical land management and training practices (Figure 22). 
Quantifying training loads has historically been a difficult issue for training 
land management (Koch et al. 2012). RFMSS was used to develop historical 
training loads. However, RFMSS is often used only as a planning database 
and does not always accurately depict training loads on the landscape. Addi-
tionally, the only haying data available were drawn from the 5-year agricul-
tural outlease map with a training area resolution. 
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Figure 22.  Histogram of model-predicted above-ground biomass error compared to measured 
above-ground biomass RTLA data. 
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4 Conclusions and Recommendations 

4.1 Conclusions 

This work developed the Optimal Allocation of Land for Training and Non-
Training Uses (OPAL) Program to model and estimate the influences on 
military land use (training and non-training) on the dynamic and complex 
nature of above- and below-ground biomass. Specifically, this tool pro-
vides military land managers and the training community with the capa-
bility to estimate above- and below-ground biomass condition given dif-
ferent military training and land management impacts.  

This phase of the project validated the OPAL tool by modeling and predict-
ing below-ground biomass responses to training and land management 
practices at Fort Riley, KS. Data from a 4-year field study at Fort Riley, KS 
were used to estimate the model accuracy in predicting above- and below-
ground biomass response to training and land management practices. The 
validation effort determined that the model-predicted values were fairly 
accurate for mowing and control conditions, but approximate 250 g/m2 

lower than measured values for burning conditions. This work concluded 
that the model generally underestimated the above-ground biomass com-
pared with the plot data. Summarized across all samples, the mean above-
ground biomass predicted by the model was 295 g/m2 compared with a 
mean value of 375 g/m2 for the observed plot data. The model was ob-
served to be less sensitive to land management treatments in the short-
term (weeks to months), but more sensitive to land management treat-
ments in longer time-scales (months to years). When tested against train-
ing impacts, it was apparent that the model underestimated the impact of 
training on above-ground biomass compared with the field plot data. 

In both above- and below-ground biomass estimations compared with the 
field plot data, the model did not predict instances where very large bio-
mass values were observed in the field. The model correctly estimated only 
slight observed differences in below-ground biomass due to land manage-
ment treatments over the short validation duration. However, the below-
ground biomass estimates were approximately 300 g/m2 lower than the 
measured data. The below-ground biomass model adequately predicted 
the trends between vehicle training treatments; however, it was not sensi-
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tive enough to conditions that resulted in a wide range in values observed 
in the measured data. 

A second validation was performed based on historic Fort Riley RTLA bi-
omass data. While the field plot validation tested the accuracy of the model 
in predicting biomass responses to training and land management practic-
es, it did not test the ability of the model to predict biomass across a large 
spatial area. While the model predicted smaller than observed values 
compared with the OPAL field data, it predicted values slightly larger than 
the Fort Riley RTLA data. On average, the model-predicted estimates 
93.5 g/m2 higher than the observed data.  

Since the observations were composite samples, there were fewer extreme 
above-ground biomass measurements in the observations reducing the 
overall error of the model. The correlation coefficient of the predicted 
above-ground biomass and measured RTLA data was 0.34. The Fort Riley 
RTLA program had created an above-ground biomass map for the same 
sampling dates with a regression model of the RTLA vegetation data on 
NDVI measurements from Landsat imagery. The points extracted from the 
above-ground biomass map created by this method and the RTLA vegeta-
tion data points only had a correlation coefficient 0.07 higher (0.41) than 
the OPAL model output. This indicates that, even with a high resolution 
remote sensed image, the variability of the above-ground biomass is diffi-
cult to quantify. 

The OPAL modeling tool successfully models and estimates the relative 
effects of different management scenarios on above- and below-ground 
biomass. For this purpose, absolute accuracy is not as critical as long as 
the model accurately predicts relative responses given management sce-
narios. With a minimal amount of inputs, the OPAL tool gives installation 
land managers the ability to estimate the response of the system to multi-
ple management scenarios, and provides them with a common interface 
for discussions with range managers to minimize the maintenance re-
quirements associated with training events.  
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4.2 Recommendations 

To overcome the difficulty of predicting complex parameters and the er-
rors observed in the validation efforts, it is recommended that the model 
be improved to more accurately reflect biomass responses to military and 
non-military practices by: 

• Improving the accuracy of installation land management models and 
reducing the assumptions required to create those models by imple-
menting higher level training and more rigorous land management 
schedules. This will reduce the large uncertainties and assumptions 
currently made in the schedules used to model the vegetation condi-
tion.  

• Collect required data that monitor above- and below-ground biomass 
on a weekly or monthly interval (as opposed to annual sampling). This 
will help to overcome the lack of dynamic vegetation growth and death 
data, and will simplify the many assumptions currently required to cre-
ate a weekly vegetation condition models.  

It is further recommended that the OPAL tool be further developed to in-
corporate a remote sensing imagery capability and additional vegetation 
and soil condition indices (e.g., bulk density, vegetation quality, specific 
vegetation species monitoring, etc.). 

It is also recommended that the OPAL modeling tool be adapted to esti-
mate the cost of different scenarios to reach a desired vegetation condi-
tion. 
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Acronyms and Abbreviations 
Term Definition 
ACIS Applied Climate Information System 
AGB Above-Ground Biomass 
ATTACC Army Training and Testing Area Carrying Capacity 
CEERD US Army Corps of Engineers, Engineer Research and Development Center 
CERL Construction Engineering Research Laboratory 
DEM Digital Elevation Model 
DMPRC Digital Multi-Purpose Range Complex 
ERDC Engineer Research and Development Center 
ESA US Endangered Species Act 
FY Fiscal Year 
GIS Geographic Information System 
GPS Global Positioning System 
ID Identification 
INRMP Integrated Natural Resources Management Plans 
ISTVS International Society for Terrain-Vehicle Systems 
ITAM Integrated Training Area Management 
LCF Land Condition Factor 
LCTA Land Condition-Trend Analysis 
LIDAR Light Detection and Ranging 
LT Light Tracking 
MCF MIM Conversion Factor 
MIM Maneuver Impact Mile 
NA Not Applicable 
NDVI Normalized Difference Vegetation Index 
NRCS Natural Resources Conservation Service 
NREL National Renewable Energy Laboratory 
OPAL Optimal Programming of Army Lands 
PET Potential Evapotranspiration 
RCI Rating Cone Index 
RFMSS Range Facility Management Support System 
RTLA Range and Training Land Assessment 
RUSLE Revised Universal Soil Loss Equation 
SCL Sandy Clay Loam 
SICL Silty Clay Loam 
SRP Sustainable Range Program 
SSURGO (USDA-NRCS) Soil Survey Geographical Database 
T&E Threatened and Endangered 
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Term Definition 
TEPC Threatened, Endangered, Proposed, and Candidate 
TR Technical Report 
URL Universal Resource Locator 
USCS Unified Soils Classification System 
USDA US Department of Agriculture 
USDA-NRCS US Department of Agriculture-Natural Resources Conservation Service 
USHCN US Historical Climatology Network 
VCF Vehicle Conversion Factor 
VDMTS Vehicle Dynamics Monitoring and Tracking System 
VSF Vehicle Severity Factor 
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Appendix A: Estimation of Mean Weekly PET 

Evapotranspiration calculations are made based on the Blaney-Criddle 
Method. The Blaney-Criddle Method is a simple, empirical evapotranspi-
ration model and is a function of average temperature and mean daily per-
centage of annual daytime hours (Brouwer Heibloem 1986, Schwab et al. 
1993, see Table A-1): 

 𝐸𝑇𝑂 = 𝑝 ∗ (0.46 ∗ 𝑡𝑚𝑒𝑎𝑛 + 8) (A1) 

where: 
ETO = Potential Evapo-transpiration rate (mm/day) 
 P = mean daily percentage of annual daytime hours 
tmean = mean weekly temperature (°C) 

For the initial efforts a simplistic evapotranspiration model was used. For 
more accuracy, more complex models that take into account energy bal-
ances or solar radiation could be substituted. 

Table A-1.  The mean daily percentage of Annual Daytime Hours (p) for different latitudes.  

Latitude 

North Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

South July Aug Sept Oct Nov Dec Jan Feb Mar Apr May June 

60°  0.15 0.20 0.26 0.32 0.38 0.41 0.40 0.34 0.28 0.22 0.17 0.13 

55°  0.17 0.21 0.26 0.32 0.36 0.39 0.38 0.33 0.28 0.23 0.18 0.16 

50°  0.19 0.23 0.27 0.31 0.34 0.36 0.35 0.32 0.28 0.24 0.20 0.18 

45°  0.20 0.23 0.27 0.30 0.34 0.35 0.34 0.32 0.28 0.24 0.21 0.20 

40°  0.22 0.24 0.27 0.30 0.32 0.34 0.33 0.31 0.28 0.25 0.22 0.21 

35°  0.23 0.25 0.27 0.29 0.31 0.32 0.32 0.30 0.28 0.25 0.23 0.22 

30°  0.24 0.25 0.27 0.29 0.31 0.32 0.31 0.30 0.28 0.26 0.24 0.23 

25°  0.24 0.26 0.27 0.29 0.30 0.31 0.31 0.29 0.28 0.26 0.25 0.24 

20°  0.25 0.26 0.27 0.28 0.29 0.30 0.30 0.29 0.28 0.26 0.25 0.25 

15°  0.26 0.26 0.27 0.28 0.29 0.29 0.29 0.28 0.28 0.27 0.26 0.25 

10°  0.26 0.27 0.27 0.28 0.28 0.29 0.29 0.28 0.28 0.27 0.26 0.26 

5°  0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.27 0.27 0.27 

0  0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

For implementation into the NetLogo model for Fort Riley, the values for 
35° Latitude were plotted against the week of the year (Figure A-1).  
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Figure A-1.  Regression of mean daily percentage of annual daytime hours by week of the year 
for PET estimation. 

A polynomial line was created from this data to develop a function esti-
mating mean daily percentage of annual daytime hours using the week of 
the year: 

 𝑝 = 10−6 ∗ 𝑤𝑦𝑟^3 − 0.0003 ∗ 𝑤𝑦𝑟^2 + 0.013 ∗ 𝑤𝑦𝑟 + 0.18  (A1) 

Using this regression, estimated weekly evapotranspiration per week can 
be calculated as: 

𝐸𝑇𝑤𝑒𝑒𝑘 = �10−6 ∗ 𝑤𝑦𝑟3 − 0.0003 ∗ 𝑤𝑦𝑟2 + 0.013 ∗
𝑤𝑦𝑟 + 0.18� ∗ (0.46 ∗ 𝑡𝑚𝑒𝑎𝑛 + 8) ∗ 7/10  (A2) 

where: 
 ETweek = Potential weekly evapotranspiration rate in cm 
 wyr = week of year from 1–52 (can get this number from the cumulative # 

of steps) 
 Tmean = Mean weekly temperature (°C) = (Tmax+Tmin)/2 
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