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ABSTRACT 

In this thesis, we present a two-receiver underwater acoustic communications system. It 

is based on a Kalman filter for equalization and tracking of acoustic channels 

characterized by considerable multipath. To model this channel and its dependency on 

the ocean environment we use the Bellhop acoustic ray tracing model. Error-correction 

coding is applied to the source data. Recursively updated channel estimates are used to 

update the state filters and tracking of the channel. It is shown that, under moderate 

conditions of Doppler shift and signal-to-noise (SNR) ratio, this algorithm is effective in 

tracking the channel and reconstructing the transmitted data. 
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EXECUTIVE SUMMARY 

The purpose of this thesis is to design a robust underwater communications system that 

addresses the constraints of the environment and is suitable to a changing environment. It 

is well known that the underwater medium is particularly challenging to wireless 

communications, more than the air medium itself. This is due to the slower speed of 

propagation and the sensitivity to environmental conditions such as boundaries which 

result in multipath reflections, changing sound speed due to temperature, salinity, and 

pressure gradients in the water column, wave actions and bottom characteristics.  

In this thesis, a combination of optimal filtering, channel estimation and error 

correction coding are the basis of the proposed approach.  

In particular, the main approach presented is based on the application of the 

Kalman filter to the processing of a two-receiver underwater acoustic communications 

system. The Kalman filter provides for equalization and tracking of the acoustic channels 

characterized by considerable multipath due to reflections and varying sound speed. A 

multiple-receiver approach provides an estimation of the transmitted sequence by 

interpreting the transmitted data as the state of the dynamic system.  

In conjunction with a Kalman filter, error-correction coding (ECC) provides a 

reliable sequence for channel tracking. In particular, the ECC approach is used to cope 

with the noise and the distortion problem in the communications environment. Forward 

error correction (FEC) is used in the simulation, and the convolutional code rate of 1/ 2   

is applied. The modulation scheme proposed for this thesis is the standard single carrier 

quadrature phase-shift keying (QPSK).  

In order to model the acoustic channel, an artificial channel is created using the 

Bellhop ray tracing model. The dependencies of the ocean environment are computed and 

depicted with graphs by this model. Data taken from the Bellhop model are used to 

capture the Rayleigh fading nature of the underwater channel, which is a representative 

model for underwater communications. Two different channel receptions are used to 

estimate the transmitted data sequence, and the channel impulse response coefficients are 



 xiv 

predicted by using the least mean squares (LMS) algorithm. Based on the expected 

Doppler-shift, the estimated channel coefficients are used to recursively generate the 

Kalman state filters for different values of the signal-to-noise ratio (SNR). 

In order to verify the effectiveness of the proposed system, the performance of the 

Kalman estimator is first tested on static channels and is then evaluated for time-varying 

channels. Performance of the system is measured by calculating the mean squares error 

measurements of the channel estimations, and the estimation errors are depicted on a 

graph for different values of Doppler shift and SNR. 
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I. INTRODUCTION 

A. THESIS OBJECTIVES 

Underwater acoustic communication has a very important role in many 

applications. In this environment, information is carried by sound waves which propagate 

in the ocean. This cannot be done effectively by electromagnetic waves, since they are 

strongly attenuated by water. 

The medium for underwater communications is particularly challenging due to a 

number of factors such as the speed of propagation varying with the water depth. In most 

channel geometries, there exists multipath propagation, so that the transmitted waveform 

reaches the receiver through different channels at different times. In addition, acoustic 

noise generated by marine life and vessel traffic is a factor in the design of a reliable 

communications system. In numerous studies, a number of underwater communications 

systems have been investigated, and some approaches have been developed in order to 

overcome the channel impairments in the underwater environment. One of the important 

issues to be addressed is channel equalization, which lessens the impact of multipath on 

inter-symbol interference (ISI).  

Previous work by Desselarmos [1] has yielded an estimator that handles the 

variations in the channel adaptively, and a Kalman filter approach was used to estimate 

the transmitted sequence and update the state filters adaptively. The demodulation of a 

signal, assuming the channel is initially estimated using a training sequence and then 

tracked with an adaptive algorithm, is investigated in this thesis. The demodulation itself 

is carried out by combining the reception of two receivers using a Kalman filter. In this 

thesis, the acoustic channel parameters are simulated using the Bellhop ray tracing model. 

The impulse response produced by the model is used to represent the time-varying 

channel as a Rayleigh fading channel.  

The objective of this thesis is to investigate a communications system in a time-

varying underwater acoustic channel by using error correction coding, single carrier 

modulation and a Kalman filter to estimate past channel values and track variations.       
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A two-receiver underwater acoustic communications system is proposed, and its 

performance in tracking channel variations is investigated.  

B. THESIS ORGANIZATION 

The thesis is organized into seven chapters including the introduction. Underwater 

networks as the motivation for this work are introduced, and some important 

developments in the recent years in underwater communications are described in Chapter 

II. Some fundamental definitions of the underwater environment and some challenges 

related to underwater communications are discussed in Chapter III. In Chapter IV, the 

description of the Bellhop ray tracing model, the input file to run the program, and some 

of the output files used in this thesis are presented. Theoretical development and the 

experimental setup of the communications system are explored in Chapter V, and results 

are presented in Chapter VI. Finally, the conclusion of the research and recommendations 

for future work are discussed in Chapter VII.  
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II. MOTIVATION AND BACKGROUND 

A. UNDERWATER NETWORKS 

Underwater communications systems are gaining importance in both civilian and 

military applications. It is well known that the underwater channel is particularly 

challenging, and its characteristics differ considerably from the air medium. Since 

seawater attenuates electromagnetic waves preventing their propagation in underwater 

environments, the information is sent using acoustic waves. A good understanding and 

physics-based modeling of the underwater environment is very important for the design 

and implementation of a reliable underwater communications system. The differences in 

electromagnetic and acoustic channels require differences in networking protocols in 

underwater environments compared to radio networks [2]. 

Sound wave propagation in the ocean is characterized by multipath, Doppler 

spread, and shadow zones. Due to these channel impairments, underwater 

communications require an appropriate modulation scheme to have robust 

communications [3].   

One of the major differences for underwater communications with respect to that 

of the air medium is the propagation velocity. Information sent through radio channels in 

the air medium propagates at the speed of light, which is relatively constant. On the other 

hand, the propagation velocity of the acoustic waves through the underwater channel is 

strongly influenced by environmental conditions such as temperature, salinity, and 

pressure. The fact that velocity of propagation is on the order of ~1500 m/s, and 

transmission frequencies are on the order of 10 KHz, implies that Doppler shifts resulting 

from motion of currents, surface waves, and transmitter and/or receiver have to be taken 

into account [4]. 

Radio networking protocols require certain adaptations for effectiveness in the 

underwater acoustic channel. For underwater environments, most aspects of the protocol 

have to be reconsidered, including modulation of the transmitted signal, packet 
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formatting, error correction coding (ECC), error detection methods, medium access 

control, addressing, and routing.  

Under these considerations, a number of methods have been proposed for 

underwater communications protocols. The Open Systems Interconnection (OSI) model 

has been followed in the design of underwater networks [2]. For a few decades, various 

communications and network schemes have been proposed and implemented with some 

measure of success. In Figure 1, a representative network of underwater nodes is 

illustrated. 

 

Figure 1.  Underwater nodes (from [5]). 

B. CHALLENGES OF UNDERWATER ACOUSTIC COMMUNICATIONS 

In order to design a robust underwater acoustic communication link, the features 

of the underwater channel and physical impairments that constrain the channel must be 

well understood.   

The most important constraints that must be taken into account include [1]: 

 Propagation latency is much greater than in radio frequency channels 

because of the relatively slow speed of sound through water. 

 The acoustic bandwidth is limited under water, so the communications 

bandwidth is correspondingly limited. 

 There are a number of ambient noise sources which behave generally in a 

non-Gaussian manner. 
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 Water currents and tidal currents create instability in the position of nodes, 

which can make the topology dynamic. 

 Multipath propagation causes time-spreading of the received signal with 

implications for fading and ISI.  

 Motion of the transmitter and the receiver causes a Doppler shift effect 

which must be taken into account.  

 The battery-powered underwater nodes cannot be recharged easily like 

their counterparts in terrestrial networks. Except for nodes at the sea 

surface, solar energy is not available [1], [6], [7]. 

 

Multipath propagation and the Doppler shift are fundamentally important for 

underwater communications quality compared to other constraints and robust systems 

have to be designed to handle these impairments. 

C. APPROACHES TO UNDERWATER ACOUSTIC COMMUNICATIONS 

 There have been important developments for underwater acoustic 

communications systems in order to achieve higher data rates. Some of these 

developments are explained below. 

1. Multiple-Input Multiple-Output (MIMO) 

A Multiple-Input Multiple-Output (MIMO) system is a structure involving 

multiple transmitters and multiple receivers in support of a single communications link. 

Its main principle is based on transmitting digital data from a number of transmitters to a 

number of receivers within the same frequency band [8]. The MIMO principle is gaining 

importance in underwater applications, and one implementation is shown by Bouvet and 

Loussert in [8]. Quantification of the improvement obtained by using MIMO is shown in 

Bouvet’s and Loussert’s research. In addition, medium-range transmissions over shallow-

water channels improve considerably with respect to a single-input single-output (SISO) 

approach. The spatial diversity of channels generated by multiple-antenna systems 

considerably lowers the probability that the transmitted waveform is attenuated due to 

destructive interference due to multipath. In Figure 2, an example of MIMO structure is 

shown. Multiple transmitting and receiving devices are shown in Figure 2.  



 6 

 

Figure 2.  Illustration of MIMO system structure (from [9]). 

2. Modulation Scheme in Underwater Communications 

It is well known that what limits the achievable data rate in a wireless 

communications system are bandwidth, the time spread of the channel which can cause 

ISI, and time variation of the channel due to Doppler spread effects. These issues are 

particularly important in acoustic communications systems in the water [10]. 

To transmit data most efficiently, a number of modulation techniques have been 

proposed. In particular, direct-sequence spread-spectrum (DSSS) systems are capable of 

resolving multipath propagation and exploiting delay diversity. In their research, Qu and 

Yang [11] developed a receiver with low complexity based on matched filtering, where 

multiple symbols are transmitted in each sequence period simultaneously. In addition, the 

high-reliable (HR) DSSS method provides both higher reliability and higher data rates. 

The high reliability and high rate are achieved with negligible self and co-channel 

interference [11]. 

Orthogonal Frequency-Division Multiplexing (OFDM) is another technique that 

has been gaining importance. Trung and Nguyen [10] analyze OFDM with MIMO by 

comparing the bit-error ratio (BER) performances for underwater communications. The 

main principle of this technique is based on dividing the bandwidth into subcarriers. The 

subcarriers are orthogonal to each other, and the processing is done by using fast Fourier 

transforms (FFT). 
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Simulation results in [10] show that the quality of signal transmission decreases 

from binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-

quadrature amplitude modulation (QAM), and 16-phase-shift keying (PSK), respectively. 

This is due to the fact that when the modulation alphabet increases, the distance between 

points in the modulation constellation decreases. The decrease in the distance increases 

the likelihood of a wrong estimation of the signal. When Doppler shift causes a change in 

apparent frequency, it degrades the synchronization of the MIMO-OFDM system and the 

transmission quality as well [10]. 

Standard single-carrier modulation is still viable in underwater acoustic 

communications, provided the channel is well estimated and tracked. To initialize the 

receiver, a known training sequence can be inserted into the transmission. With this 

technique, ISI is reduced compared to the minimum mean-square error (MMSE) 

technique [12]. It is shown in the experiment results of [12] that BPSK and QPSK 

modulation techniques are effective and Doppler estimation of the channel works well in 

a long-range, shallow-water acoustic channel.   

S. Kim, et al. [13] showed that by using a single-carrier modulation technique for 

shallow-water communications, channel bit-error rates in amplitude-shift keying (ASK) 

and BFSK can be on the order of 0.0088 and 0.0058 for a data rate of 1.0 kbps, 

respectively. They also showed that with QPSK modulation, the estimate of BER at 1.0 

kbps is 0.0062, and the BER at 3.0 kbps is 0.0084. For the modulation techniques other 

than 16-QAM, it was shown that the experiment gave successful results with a BER on 

the order of 10
-3

 under normal environmental conditions [13]. 

3. Inter-symbol Interference Phenomenon and Channel Equalization 

One of the effects of multipath in the channel is ISI. As illustrated in Figure 3, it 

is caused by the arrival of delayed copies of the signal. This causes the symbols to spread 

in time and overlap each other. Usually, this is remedied by channel equalization, which 

reduces the effects of ISI. There are different kinds of equalizers such as the linear 

equalizer, the decision-feedback equalizer, the blind equalizer, the turbo equalizer, the 

adaptive equalizer and the Viterbi equalizer [14]. In Figure 3, the dark-green line is the 
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first multipath arrival, which is typically the direct path between transmitter and receiver. 

The light green line is the second multipath, which arrives with some delay behind the 

first arrival and causes ISI. 

 

Figure 3.  Illustration of inter-symbol interference (after [15]). 

Zhong and Xiao-ling [16] compared some of the equalizer algorithms. According 

to their results, the decision-based feedback equalization (DFE) algorithms have better 

convergence in sparse multipath channels. Modified least mean squares (LMS) 

algorithms are more robust than the recursive least squares (RLS) algorithms in terms of 

convergence time. When the blind and adaptive algorithms are compared, it is shown that 

convergence is faster for the adaptive algorithm as compared to the blind algorithm. DFE 

algorithms were found to have very good phase tracking [16].  

Another way of reducing the ISI effect in digital communications is to use a 

Kalman Equalizer Algorithm. The aim of this type of equalizer is to reconstruct the 

transmitted signal at the receiver. The tracking behavior of the Kalman equalizer with 

channel-coefficient estimation by LMS and RLS adaptive filters is compared in [17], and 

it is shown that Kalman equalization with RLS (K-RLS) has better performance than 
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Kalman equalization with LMS (K-LMS) in time-varying channels due to the rapid 

convergence of RLS in non-stationary environments. 



 10 

THIS PAGE INTENTIONALLY LEFT BLANK 



 11 

III. UNDERWATER ACOUSTIC CHANNEL AND 

COMMUNICATIONS 

A. SOUND PROPAGATION 

Sound propagates in a waveguide bounded by the sea surface and the sea floor in 

the ocean. Propagation of the sound is governed by the speed of sound, and rays refract 

toward regions of lower speed. Sound speed varies in the water according to the changing 

pressure, salinity, and temperature. Speed of sound can be expressed in terms of three 

independent variables: temperature T , salinity S , and depth z . It can be approximated 

as [18]: 

 2 31449.2 4.6 0.055 0.00029 (1.34 0.01 )( 35) 0.016c T T T T S z         (3.1) 

where c is the speed of sound in meters per second, T  is the temperature in Celsius, S  is 

the salinity in parts per thousand, and z  is the depth in meters. 

Propagation of sound in the ocean can be modeled given the measured vertical 

sound-speed profile of the environment. According to ray theory, by using the launch 

angle of the ray and the speed of the sound at that depth, refraction is governed by Snell’s 

Law,  

 
cos( )

( )
const

c d


   (3.2) 

where   is the horizontal angle of the ray and ( )c d  is the speed of sound at depth d . 

The sound ray always bends toward the low sound speed region. For the sound-speed 

profile in Figure 4, the rays originating at a transmitter at depth 9z   m follow the paths 

depicted in Figure 5. Refraction of rays towards regions of lower speed is exhibited in 

Figure 5. 
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Figure 4.  Measured sound-speed profile in a representative shallow-water channel. 
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Figure 5.  Illustration of the rays bending toward the lower speed of region in shallow 

water. 
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In underwater environments, there are two mechanisms that cause attenuation. 

The first one is geometrical spreading, and the second one is absorption by seawater. 

These mechanisms cause an intensity loss in the sound energy, and the term transmission 

loss ( )TL  is used to quantify it. TL is the ratio between the acoustic intensity ( )I r  at the 

receiver location to the intensity (1)I  one meter away from the transmitter in dB [19]: 

 
10

( )
10log   dB

(1)

I r
TL

I
 .  (3.3) 

Spherical spreading is dominant at closer distances, and the intensity of the sound 

is inversely proportional to the surface area of the sphere as 

 
2

1
( )

4
I r

r
 . (3.4) 

This situation can be visualized as a point source in a homogeneous medium, and the 

power radiated by the source is uniformly distributed over the surface area of the 

expanding sphere [1], [19]. 

For larger distances where the medium is bounded by sea surface and sea floor, 

cylindrical spreading approximates sound propagation. Intensity of the sound decreases 

with distance, so it is inversely proportional to the range in cylindrical spreading loss 

[19]. This relation can be stated as 

 
1

( )I r
r

 .  (3.5) 

The other mechanism that causes attenuation is absorption. Acoustic energy of the 

sound is absorbed as the sound propagates in the ocean. This depends on several factors 

like salinity, pH of water, temperature, pressure, and frequency. Additionally, sound is 

scattered by inhomogeneities, which contribute to the decay of sound intensity with 

range. It is hard to distinguish between absorption and scattering effects. Generally, both 

absorption and scattering increase as the frequency increases [18]. 

Transmission loss due to absorption and the frequency-dependent absorption 

coefficient are shown by 
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  (3.6) 

 

where a  is the absorption coefficient in dB/km and f  is the frequency in kHz. 

In Figure 6, the absorption coefficient in the units of dB/km is seen to be 

dependent on frequency.  

 

Figure 6.  Absorption of sound in sea water at 20 C (from [20]). 
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B. NOISE IN THE OCEAN AND EFFECTS ON UNDERWATER 

COMMUNICATIONS 

In addition to self-noise sources like electronic and thermal noises in the 

receivers, ambient noise limits the receiver capability in underwater  

communications [19].   

Ambient noise is the noise in the environment at the receiver. At different 

frequencies, it depends on various factors like wind, wave actions, shipping, rainfall, 

marine animals, and seismic activities. For the frequency band of 20–30 Hz to a few 

hundred Hz, the dominant source of ambient noise is shipping activity. For the band of a 

few hundred Hz to 50 kHz, the frequency band for most acoustic modems, wave actions 

dominate. In this frequency interval, the noise depends on the wind and sea state as they 

affect the wave action. For the higher frequencies, thermal noise is the dominant source 

for an ambient noise [19], [21]. 

In the ocean, the ambient noise is not Gaussian and is represented as colored 

noise. On the other hand, for communications theory, it is standard to use additive white 

Gaussian noise (AWGN), whose power spectral density (PSD) is uniform over the range 

of frequencies [1].  

C. MULTIPATH PROPAGATION IN THE UNDERWATER CHANNEL AND 

ITS EFFECTS ON COMMUNICATIONS 

One of the most challenging underwater issues is multipath propagation. This 

phenomenon gives rise to frequency-selective fading in the acoustic channel due to 

destructive interference. The received signal is calculated by summing up the constant 

component and a random component that is time-varying in both phase and amplitude. 

The randomness of the signal can be described as [22]: 

 
2 2[ ( )/2]

0( ) ( )C DP C Ce I CD    (3.7) 

where C  is the sum of constant component and a random component which has unit 

variance on x  and y  coordinates, D  is the absolute value of the constant coefficient, and 

0 ( )I CD  is a modified Bessel function of zero order with argument CD . When there is 
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only a random component, D  disappears and (3.7) reduces to a Rayleigh distribution 

function [22]: 

 
2[ ( )/2]( ) CP C Ce   . (3.8) 

 

Acoustic transmission of the signal underwater is often characterized by Rayleigh 

fading, because the multipath structure of the underwater channel produces a random 

time-varying phase relationship [22], [23]. 

In underwater communications systems, the geometry of multipath propagation is 

very important because transmission to the receiver depends on the geometry of the 

source and receiver locations [24]. For the locations of the transmitter and the receiver, 

different paths are followed by the rays as illustrated in Figure 7. 
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Figure 7.  Different paths followed by the sound from the source positioned at 1000 m 

and the receiver positioned at 800 m for the 100 km long and 5000 m deep 

acoustic channel. (from [25]). 
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The rays follow the eigenpaths according to the sound-speed profile of the 

environment as governed by Snell’s Law. In the waveguide environment of the acoustic 

channel, the locations of the source and receivers are very important. According to the 

relative positions of the source and receiver, multipath arrivals have variable delays, 

amplitudes, and phases. 

Multipath propagation causes fading in the channel due to the different arrival 

times of the signals. Since they are following different paths, the resultant signal may 

widely vary in amplitude and phase. Multipath propagation causes two types of fading, 

flat fading and frequency-selective fading. Flat fading occurs when the delay spread is 

smaller than the symbol period. Frequency-selective fading occurs when the delay spread 

is larger than the symbol period or when the bandwidth is greater than the coherence 

bandwidth [14].  

D. DOPPLER SPREAD IN THE UNDERWATER CHANNEL 

The Doppler shift is a very important phenomenon in wireless communications 

and is caused by a relative velocity of either the ocean medium or the transmitter and 

receiver [1]. If there is no relative velocity, the received frequency is the same as the 

transmitted frequency. In this situation, there is no Doppler shift. If the distance between 

transmitter and receiver increases or decreases, the apparent frequency changes at the 

receiver. This condition causes the Doppler shift, a perceived change in frequency at the 

receiver relative to the transmitted frequency. 

The expression for frequency of Doppler shift for the wave can be defined as 

 cosn n

v
f 


    (3.9) 

where n  is the arrival angle at the receiver, v  is the speed of the source, and  is the 

wavelength of the signal. 

Doppler spread is the result of time variations in the environment. It is related to 

Doppler shift and can be defined as the measure of frequency shift in the channel. Time 
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variations in the channel cause broadening of the spectral line [1]. Each multipath 

component has an associated Doppler spread. For example, the surface-reflected path 

usually has a larger Doppler spread than the direct path because of the variability caused 

by the rough and moving sea surface. Doppler spread 
sD  is simply approximated as 

 
1

c

s

T
D

 .  (3.10) 

where cT  is the coherence time, defined as the approximate time interval during which 

the channel is almost constant [14]. This definition is important because coherence time 

must be at least one symbol time long for successful processing.   

In Figure 8, Doppler spread is seen to be the bandwidth of frequencies where the 

power spectrum is nonzero, and the value here is measured for the first path of the 

representative multipath channel. The dashed line in red color is a theoretical Doppler 

spectrum and the one with blue dots is a measured Doppler spectrum. 

 

Figure 8.  Illustration of Doppler spread for a measured value and a theoretical value for 

20 Hz Doppler shift. 
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IV. BELLHOP RAY TRACING MODEL 

A. MODEL DESCRIPTION 

Bellhop is a beam tracing model that predicts and plots the acoustic field in the 

underwater environment. Porter and Bucker developed this algorithm in 1987 at the U.S. 

Navy Space and Naval Warfare Systems Center in San Diego [26]. In this thesis, the 

frequency range of 9-14 kHz is of interest, and Bellhop was selected because it is a 

reliable tool for frequencies greater than one kHz. Bellhop produces transmission loss, 

rays, eigenrays, arrival information, and graphs. Bellhop assumes that the bathymetry and 

properties of the ocean bottom do not change with range. The environment is represented 

as a two-dimensional vertical slice, containing both source and receiver. Reflection 

coefficients of the bottom and the surface can be specified in Bellhop [25], [26]. 

B. INPUT FILE 

The Bellhop model requires an input file, which is called the environment file. 

The environment file is a simple text file and can be generated with any text editor. 

Basically, the environment file includes the sound-speed profile, the frequency of the 

signal, the number of receivers, source and receiver depths, ranges of the receivers to be 

measured, bottom and surface information, and the ray information including angles and 

number of beams. With this information, desired output files can be generated such as ray 

and eigenray plots, multipath arrival information, and transmission losses. In the input 

file, there are options for defining the surface and bottom characteristics, run types, and 

the units to be calculated. With the plot programs included in the Acoustic Toolbox [25] 

file, the desired output plots are obtained.  

C. OUTPUT FILE 

The output file is generated according to selected options. In this thesis, sound-

speed profile plot, sound rays, eigenray plot, and impulse response plots are produced. 

First, the sound-speed profile of the environment is shown, and later, by selecting the ray-

tracing option, the rays emanating from the source are generated. If the eigenray option is 
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selected, the rays that reach the specified receiver location are shown. After each tracing 

option is selected, the Bellhop program is run to make the calculations and produce the 

plot. 

In Figure 9, possible inputs and outputs of the Bellhop ray tracing model are 

shown. Each file used as an input is run with Bellhop, and the output files or graphs are 

obtained according to the used run type methods of the input file. 

 

Figure 9.  Bellhop model input and output structure (from [25]). 
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1. Ray Tracing Plot 

After running the Bellhop program, .prt and .ray extended files are created and 

ray plots are obtained by using the appropriate command. The ray plot has the depth on 

the vertical axis and range on the horizontal axis according to the specifications in the 

environment file. The total fan of rays from the source is seen with different colors. The 

colors describe whether the ray reaches to the specified range directly or by reflecting 

from one boundary or both. A ray that has a red color defines a direct path from the 

source. It is usually the strongest path and usually is the first arrival. The blue colored 

rays have a reflection from one of the boundaries; these rays have less strength than the 

direct path. A black ray has multiple reflections between source and receiver and is 

usually the weakest of these three types [26]. An example of a ray trace plot is shown in 

Figure 10. For this representative plot, the depth of the channel is 12 m, and the 

transmitter is positioned at 9.5 m depth. 

 

Figure 10.  Ray trace plot for a 12 m deep acoustic channel. 
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2. Eigenray Plot 

The eigenray plot shows the rays connecting the source to the specified receivers 

and has the same structure as the ray tracing plots. Depth of the channel is shown on the 

vertical axis, and the range is shown on the horizontal axis. All the multipaths (reflections 

and direct path) of the signal between source and receiver are displayed on eigenray 

plots. In Figure 11, eigenrays between the source at 9.5 m depth and receivers at 8 m and 

10.5 m depth are illustrated for a horizontal range of 850 m. 

 

Figure 11.  Eigenray plot for the receivers positioned at the depth of 8 m and 10.5 m for 

12 m deep acoustic channel through the horizontal range of 850 m. 

3. Impulse Response Plots 

After running the program, an arrival file with the .arr extension is generated. 

This arrival file states the information about the number of the receivers and sources, 

receiver and source depths, channel frequency, amplitude and phase information of the 

arrivals, arrival times, bottom and surface reflection amounts, and launch and arrival 
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angles. In the impulse response plot, the amplitude of the impulse on the vertical axis is 

shown with respect to the arrival time on the horizontal axis. The amplitude of the 

impulse has no units. In Figure 12, it is seen that individual arrivals are at different times, 

and this difference is caused by the path length differences. The rays follow different 

paths and reach the receiver at different times.   

The impulse responses generated by the Bellhop model represent the experimental 

underwater acoustic channel. For this modeled channel, the algorithms developed in the 

next chapter are tested. 
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Figure 12.  Impulse response plot when source is positioned at 9.5 m and the receivers are 

positioned at 8 m and 10.7 m depths with the horizontal range of 850 m away 

from the source. 
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V. THEORETICAL BACKGROUND OF THE PROPOSED 

RECEIVER 

A. MODULATION TECHNIQUE OF THE PROPOSED MODEL 

In this thesis, a single-carrier QPSK modulation scheme is proposed for the 

communications system. 

1. Phase-Shift Keying 

In a standard single-carrier digital-communication system, the binary information 

may modulate the magnitude and phase of two sinusoidal signals of a given carrier 

frequency, with a phase difference of 90 degrees from each other such as a sine and a 

cosine signal as shown in Figure 13. This phase difference ensures orthogonality, which 

allows the in-phase and quadrature information from the two to be fully recovered at the 

receiver. 

In single-carrier modulation, modulated signals are sent with the phase and 

amplitude information which is unique for each symbol and are represented by complex 

numbers. For complex representations of the modulated signals, this corresponds to a 

mapping of groups of bits into M -QAM symbols, where M usually takes the values 2, 4, 

16, or 64. For example, the case of M equal to four, corresponds to 4-QAM (also called 

QPSK) as in Figure 14, which shows four possible values, called the “constellation.” 

In this method, each signal represents two bits. If the bit stream comes with a data 

rate of R  bps, it is converted to the rate of / 2R  symbols per second because signal 

elements represent two bits [14]: 
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The QPSK transmitter block diagram is illustrated in Figure 13 and the QPSK 

constellation is illustrated in Figure 14. 

 

Figure 13.  QPSK transmitter block diagram (from [14]). 

 

Figure 14.  QPSK constellation of gray mapping with phase offset 0.7854 radians. 



 27 

B. ERROR CORRECTION CODING 

Noise and distortion in the communication channel invariably cause errors in the 

decoding of digital information. In order to cope with this problem, the information can 

be encoded so that errors can be detected and corrected. This is obtained by ECC, which 

adds extra bits to the transmitted message [27]. Forward error correction (FEC) is used in 

this research, specifically a convolutional encoding technique. This technique is used in 

systems that do not need complicated encoders, and the decoding performance exploits 

redundancy [27].  

1. Forward Error Correction Coding 

There are two basic types of FEC codes: block codes and convolutional codes. In 

this thesis, convolutional codes are used. 

In a typical ECC system, for each k  information data bits, n  encoded data bits 

are transmitted, where n k  [28]. Some of the encoding rates used are 1/ 2 , 2 / 3 , and 

3 / 4 . In this thesis, a convolutional code rate of 1/ 2  is used. In Figure 15, the block 

diagram of convolutional coding (CC) is illustrated. As shown, for every k  input bits, n  

output bits are encoded. 

 

Figure 15.  Convolutional coding with k  data bits as an input and n  coded bits as an 

output where n k  (from [29]). 

Since the number of symbols per second has to be the same, we can relate the data 

rate before and after the coder as 

 bc bnT kT  (5.2) 
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where 
bcT  is the coded bit duration and 

bT  is the input data bit duration [28]. From this 

relation, 

 bc b b

k
T T rT

n
   (5.3) 

and  

 b
bc

R
R

r
  (5.4) 

where bcR  is the bit rate of the coded data, bR  is the bit rate of the source data, and r  is 

the code rate defined as [28] 

 
k

r
n

 . (5.5) 

Convolutional encoding can be described in a number of different formats, 

including connection vectors or polynomials, the state diagram, the tree diagram, and the 

trellis diagram [27], [29]. 

A typical CC is defined in terms of binary convolution and implemented by 

tapped shift registers where each tap has a gain. For example, in Figure 16, for every bit 

of information x  we have two encoded bits 1y  and 2y . The structure of convolutional 

code with a rate of 1/ 2   is shown in Figure 16. 

  

Figure 16.  Convolutional encoding structure of code rate 1/ 2  (from [29]). 
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The binary coefficients associated with the branches in Figure 16 can be grouped into 

octal numbers. In particular, 

 1 2 1 2[   ] [   ]y y x a a   (5.6) 

where x  describes the input of the structure, the vector a  describes the coded 

connections between input and output, and the vector y  describes the output of the 

structure [29]. For example, if the elements of a  are given by 

 
1 8 8 8

2 8 8 8

(1) (111) (001) 171

(1) (011) (011) 133

a

a

 

 
, (5.7) 

 

the code can be described by the matrix: 

 1 2[   ] [171  133]y y x . (5.8) 

2. Convolutional Decoding 

The received sequence is compared with the possible transmitted sequences using 

the Viterbi algorithm. The Viterbi algorithm selects a maximum-likelihood path. When a 

valid path is selected, the input data bits are recovered from the corresponding output 

values [14]. 

C. CHANNEL ESTIMATION 

As seen in the previous sections, channel multipath is responsible for ISI which, 

in turn, degrades the received signal. One of the remedies for this problem is to include 

channel equalization, which compensates for the channel spread. 

This operation relies on knowledge of the impulse response of the channel, which 

in most cases is estimated using training sequences at the beginning of the transmission. 

Since, during the transmission, the channel most likely drifts with time due to motion and 

environmental conditions, estimates needs to be constantly updated so the effects of 

multipath are kept at minimum. 

The main tool used for estimation is the well-known LMS algorithm, which 

recursively estimates the parameters of a linear model. 
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The channel response at the symbol rate is given by 

 [ ] [0] [ ] [1] [ 1] [ ] [ ] [ ]y n h x n h x n h N x n N w n         (5.9) 

 

where h  values are the channel coefficients, and x  is the transmitted sequence. 

The LMS algorithm gives the estimated channel coefficients as 

 ˆ ˆ ˆ ˆ[0], [1], , [ ]h h h h N 
 

.  (5.10) 

At the beginning, [ ]x n  is known at the receiver, since it is the training sequence. 

When the data are transmitted, [ ]x n  is the demodulated data. This is the basis of the 

decision feedback equalizer, which we use for channel tracking. 

The LMS adapts the channel estimates by minimizing the mean-square of the 

error signal. The error signal is the difference between the desired signal and the output 

of the filter [30] 

 ˆ( ) ( ) ( )e n d n d n  .  (5.11) 

In Equation 5.11, ( )e n  is the error signal at time n , ( )d n  is the desired signal, and ˆ( )d n  

is the output of the filter that is the current signal. First, the output signal is calculated by 

using the initial coefficient value. After finding the actual signal, Equation 5.11 is 

applied. This operation is done iteratively, and the filter coefficients are automatically 

updated [30].  

One of the applications of adaptive filters is unknown system identification. The 

channel filter coefficients can be estimated with the LMS technique. The unknown 

system identification set-up is shown in Figure 17. The transmitted sequence is the input 

of both the channel and the adaptive filter. The desired signal is the output of the 

unknown system, and the adaptive filter converges to the coefficients of the unknown 

system with the LMS technique.  
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Figure 17.  Unknown system identification set-up for adaptive filter (after [30]). 

In this thesis, the input of the adaptive filter is the estimated sequence of the 

transmitted signal. The desired signal is applied to the adaptive filter with the delay 

because the system experiences a certain amount of delay in the FEC coding, modulation 

and the inverse process. The adaptive filter finds the optimal filter coefficients by 

converging to zero error. A schematic diagram of the proposed model is illustrated in 

Figure 18.  

 

Figure 18.  Illustration of the channel estimation in the proposed model. 

D. EQUALIZATION USING ONE TRANSMITTER AND TWO RECEIVER 

ANTENNAS 

The main contribution of this thesis is the investigation of the design of an 

optimal two-antenna receiver based on the well-known Kalman Filter technique. The key 

point is that in a single-input multi-output (SIMO) setting, the transmitted signal can be 

viewed as the state of a dynamic system, with the received signals being inputs and 

outputs. This result allows for the implementation of a technique that is not only 
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considered to be optimal under certain noise and linearity conditions but is also known to 

be robust and adaptable to a changing environment. 

1. Kalman Filtering   

The Kalman Filter is a well-known technique to compute the estimate of the state 

of a dynamic system subject to external disturbances. Under certain assumptions of 

linearity and white Gaussian disturbances, it provides an optimal estimate in the mean 

square sense. When some of these assumptions are relaxed, for example when the noise is 

not Gaussian, then the Kalman Filter is still the best linear estimator, and only a nonlinear 

filter can do better in terms of estimation error. The general equations for a linear system 

with external disturbances are 

 
( 1) ( ) ( ) ( )

( ) ( ) ( )

x n Ax n Bu n Gv n

y n Cx n w n

   

 
  (5.12)  

where ( )u n is the input signal, ( )y n  is the output signal, ( )x n  is the state, ( )v n  and ( )w n  

are the uncorrelated white Gaussian noise sequences. Usually, the state ( )x n  is a vector 

with dimensions larger than the dimensions of the input and output signals.  The matrices 

, ,  and A B C  have appropriate dimensions and may also be time-varying, but they are 

independent of the input, output or state signals. The covariance of the two noise 

sequences Q  and R  are assumed to be known. In Figure 19, a standard setup of the 

linear stochastic dynamic model defined in (5.12) is illustrated. 

 

Figure 19.  Linear stochastic dynamic model. 
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Under certain assumptions of observability, well documented in the  

literature [31], the state can be recursively estimated by the Kalman Filter, which 

alternates a prediction from the input signal ( )u n  and a correction from the output 

signal ( )y n .  

In the next section, the case of one transmitter and two receivers is formulated 

using exactly the same model as in (5.12). The input and output signals ( )u n and ( )y n are 

actually the two received signals. In this way the state vector becomes an array of delayed 

versions of the transmitted signal. The role they play in the Kalman filter is that one of 

the signals becomes a predictor and the other a corrector, and this yields the best estimate 

of the transmitted signal embedded in the state vector. The whole technique requires the 

solution of a quadratic equation, called the Riccati Equation, dependent only on the 

dynamic model in (5.12). 

2. Application to Two Antennas Demodulator 

Let the transmitted data [ ]x n  be received by two receivers through two different 

channels as 

 
1 10 11 1

2 20 21 2

[ ] [ ] [ 1] [ ]

[ ] [ ] [ 1] [ ]

L

L

y n h x n h x n h x n L

y n h x n h x n h x n L

     

     
 (5.13) 

where the terms ijh  represent the impulse responses of the two channels which represent 

the arrivals of a transmitted impulse. The two channel impulse responses can be indicated 

in the vector form as 1 2 and h h  which are shown in (5.14) as 

 
 

 
1 10 11 1

2 20 21 2

       

=        

L

L

h h h h

h h h h


. (5.14) 

The received signals in both receivers can be found by the convolution of the 

transmitted signal and the channel impulse responses with additive noise, 

 
1 1 1

2 2 2

[ ] [ ]* [ ] [ ]

[ ] [ ]* [ ] [ ]

y n h n x n w n

y n h n x n w n

 

 
 (5.15) 
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where 
1w  and 2w  are the noise components in the channel. The covariance of the noise 

components are: 
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  (5.16) 

where ,  and R Q N  are the noise covariance.  

The channel impulse responses are obtained from the Bellhop ray tracing model 

according to the given profile determined by environmental conditions as in Chapter IV. 

A typical channel impulse response is illustrated in Figure 20. In this example, the source 

depth is 10 m, the receiver depth is 7.5 m, and the receiver range is 770 m. It is clearly 

seen that the first signal arrival, which is probably the direct path between the transmitter 

and the receiver, has the greatest amplitude, and the other arrivals are decreasing in 

amplitude due to the reflections from the bottom and the surface of the ocean and the 

absorption attenuation. 
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Figure 20.  Illustration of the impulse response for 770 m long acoustic channel where the 

transmitter is positioned at the depth of 10 m and the receiver is positioned at 

the depth of 7.5 m. 
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The two impulse responses of the two acoustic channels are assumed to be 

estimated initially by the receiver using training sequences in the preamble.  In Figure 21, 

the transmitted signal ( )x n and the received signals 1 2( ) and ( )y n y n  through the two 

channels are represented as a block diagram.  

 

 

Figure 21.  Illustration of the transmitted signal sent through two different acoustic 

channels with noise in the environment and the received signals (after [1]). 

In what follows, it is shown that just by delaying one of the received signals, all 

signals in Figure 21 can be related by state space equations as (5.12) above. In fact, let 

 
1 10 11 12 13 1

2 21 22 23 2

[ ] [ ] [ 1] [ 2] [ 3] [ ]

[ ] [ 1] [ 2] [ 3] [ ]

y n h x n h x n h x n h x n w n

y n h x n h x n h x n w n

       

      
  (5.17) 

where, for simplicity, we used a third order system. Then [ ]x n  can be written in the 

following form: 

 
1 11 12 13 1

10

1
[ ] ( [ ] [ 1] [ 2] [ 3] [ ])x n y n h x n h x n h x n w n

h
        .  (5.18) 

Define the state vector as 

 

[ 1]

[ ] [ 2]

[ 3]

x n

x n x n

x n

 
 

 
 
  

. (5.19) 



 36 

The goal is to define the state and estimate the past sequences of the transmitted 

signal vector x . It can be easily verified that: 

 

[ 1]

[0, ,1] [ ]

[ ]

x n

x n N

x n N

 
 

 
 
  

.  (5.20) 

 

Equations (5.17), (5.18), and (5.19) can be combined in the following form: 

 

 

11 10 12 10 13 10 10 10

1 1

2 21 22 23 2

[ ] / / / [ 1] 1/ 1/

[ 1] 1 0 0 [ 2] 0 [ ] 0 [ ]

[ 2] 0 1 0 [ 3] 0 0

[ 1]

[ ] [ ] [ ] [ ] [ 2] [ ]

[ 3]

x n h h h h h h x n h h

x n x n y n w n

x n x n

x n

y n h n h n h n x n w n

x n

             
         

    
         
                   

 
 

  
 
  

(5.21) 

The two equations in (5.21) yield the state space model of the received signals 1y  

and 2y . Equation (5.21) can be related to the general equations depicted in (5.12) and is 

shown as: 

 

 
11 10 12 10 13 10 10 10

21 22 23

/ / / 1/ 1/

1 0 0 , 0 , 0 ,       

0 1 0 0 0

h h h h h h h h

A B G C h h h

        
     

   
     
          

 . (5.22) 

The general equations of the Kalman Filter in (5.12) can be written in the 

following form as the model in this thesis: 

 
1

2

( 1) ( ) ( ) ( )

( ) ( ) ( )

x n Ax n By n Gv n

y n Cx n w n

   

 
.  (5.23) 

We see from (5.23) that the actual states and the Kalman estimator algorithm 

estimates the state by making prediction and corrections. Measurement updates for the 

Kalman estimator are 
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 2
ˆ ˆ ˆ[ | ] [ | 1] ( [ ] [ | 1])x n n x n n M y n Cx n n       (5.24) 

where ˆ[ | ]x n n  is the updated estimate at time n  and ˆ[ | 1]x n n  is the estimate of the 

transmitted sequence [ ]x n  with the previous time measurements. The symbol M  refers to 

the innovation gain matrix.  

 1
ˆ ˆ[ 1| ] [ | ] [ ]x n n Ax n n By n   .  (5.25) 

Equation (5.25) addresses the time update of the estimator algorithm. The 

quantity ˆ[ 1| ]x n n  is the one-step ahead predictor that estimates the state value at the 

next time sample by using the current estimate ˆ[ | ]x n n . Substituting (5.24) into (5.25) 

gives 

 1 2
ˆ ˆ ˆ[ 1| ] [ | 1] [ ] ( [ ] [ | 1])x n n Ax n n By n K y n Cx n n         (5.26) 

where K AM   is the Kalman gain matrix. 

Equation (5.25) and the actual state can be modified in order to have an 

expression for error covariance matrix. State error is the difference between the actual 

state and the predicted state and can be defined as 

 ˆ[ ] [ ] [ ]x n x n x n  . (5.27) 

Error covariance matrix for the state is 

  ( ) [ ] [ ]TP n E x n x n  (5.28) 

where ( )P n  is the notation for covariance. By using (5.25) and the actual state, we obtain 

the error covariance matrix 

 [ 1| ] [ | ] TP n n AP n n A Q   . (5.29) 

The Kalman filter computes the state estimate in terms of predictor and corrector. 

Using the Bayesian linear estimation and the relationships illustrated in the equations 

above, we get 
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1 2

1

ˆ ˆ ˆ[ 1| ] [ | 1] [ ] ( )( [ ] [ | 1]),

( ) [ | 1] ( [ | 1] ),

and

[ 1| ] [ | 1] [ | 1] ( [ | 1] ) [ | 1]  .

T T

T T T T

x n n Ax n n By n K n y n Cx n n

K n P n n C CP n n C R

P n n AP n n A AP n n C CP n n C R CP n n A Q

      

   

        

(5.30) 

The Riccati Equation gives recursive results by starting with an initial value of the 

covariance matrix. Impulse responses of two different channels are used as an initial 

value to form the matrices and solve the Riccati Equation which gives the state filter 

coefficients.  

In a steady-state implementation, this estimator results in the superposition of the 

output of two filters as shown in Figure 22. 

  

Figure 22.  Block diagram representation of Kalman state filters (after [1]). 

The state filter coefficients are always updated by the estimated values. By 

summing up two digital state filters, the estimation of the transmitted sequence is 

obtained.  
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VI. SIMULATION RESULTS 

A. SHALLOW-WATER ACOUSTIC CHANNEL 

To test the proposed system in a realistic environment, an artificial channel is 

created in the Bellhop ray tracing model. In the created shallow-water channel, some 

different measurements are taken to show the channel estimation quality by using the 

estimated sequence of the transmitted data as an input signal to the LMS adaptive filter.  

In the simulated acoustic channel, the depth is assumed to be 12.5 m, and there is 

an assumption of a temperature-driven gradient in the environment. The sound-speed 

profile of the artificial channel is shown in Figure 23. The speed of sound decreases 

sharply in the first two meters and then it decreases gradually. 
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Figure 23.  Sound-speed profile of the shallow-water artificial channel. 
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The horizontal distance between the transmitter and the receiver is selected as 960 

m. The transmitter is at a depth of 10 m, and the receivers are put at depths of 9.5 m 11.5 

m. Bottom type is assumed as sand-silk-clay, which has fairly high compressional wave 

attenuation. Sea state is assumed to be zero, and the depth of the channel is range-

independent between the transmitter and the receiver.  

Multiple propagating paths from the given source are illustrated in Figure 24. 

There are both the direct path that is shown in red and reflected paths that are shown with 

blue and black colors to a maximum range of 1100 m. Even the direct path, which is 

reflected by neither the bottom nor the surface, does not propagate on a straight line due 

to the sound-speed gradient in the water column. 
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Figure 24.  Illustration of emanating rays from the source at 10 m in shallow-

water acoustic channel. 
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Depending on where a receiver is positioned, only a subset of propagating rays 

reach it. To see the rays reaching the receivers, an eigenray plot is exhibited in Figure 25. 

There are direct paths for both receivers. 
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Figure 25.  Illustration of eigenrays when the transmitter is positioned at a depth 

of 10 m and the receivers at depths of 9.5 m and 11.5 m in the 12.5 m 

deep acoustic channel. 

To extract detailed information about the arrival signals, impulse response plots 

for both receivers are produced. From these impulse response plots, amplitude, phase, 

and arrival time information are used in representation of the Rayleigh fading channel in 

Simulink. Channel impulse responses for both receivers are illustrated in Figure 26 and 

27. 
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Figure 26.  Arrivals with the receiver positioned at a depth of 9.5 m and the 

transmitter positioned at 10 m in shallow-water acoustic channel. 

 

Figure 27.  Arrivals with the receiver positioned at a depth of 11.5 m and the 

transmitter positioned at 10 m in shallow-water acoustic channel. 
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It is clearly seen in Figures 26 and 27 that there are groups of arrivals at different 

times. Each group of arrivals is approximated to one arrival value by using the phase and 

amplitude information, and the time is averaged for each group. The total arrived signal 

power is calculated in dB to use in the Rayleigh fading channel model. 

The signal is disturbed by AWGN, and the measurements are taken from zero dB 

to 36 dB to see the channel estimation quality. For each of the AWGN values, the 

simulation was run a large number of times to obtain consistent results.  The sampling 

time for the source data was selected as 1/ 2000  seconds, and the symbol rate was 1000 

symbols/second. An increase in the symbol rate causes more calculations for the Kalman 

state filters. A code rate of 1/ 2  was used in ECC section. In the error-decoding part, a 

hard decision technique was applied. In the channel estimation part, a normalized LMS 

technique was chosen, and step size 0.2 was used for calculations. 

The same measurements were taken for two different Doppler shift values. 

Doppler shift frequencies of 1.0 Hz, and 0.1 Hz were used to compare the channel 

estimation quality for two different channel variabilities. To show the relative differences 

between error values as a function of signal-to-noise ratio (SNR), the magnitude of the 

results were normalized to one. Normalized-error magnitude values are illustrated in 

Figure 28. The error rate for Doppler shift 1.0 Hz is larger than Doppler shift 0.1 Hz. 

Another important result which can be deduced for a Doppler shift of 1.0 Hz is that the 

error converges to a value that does not change much above some certain SNR value, but 

for a Doppler shift of 0.1 Hz, the error keeps decreasing up to a SNR of 36 dB.  For 

smaller SNR, there is not much difference between 1.0 Hz and 0.1 Hz, but as the SNR 

increases, the difference between the errors for a Doppler shift of 1.0 Hz and a Doppler 

shift of 0.1 Hz increases.  
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Figure 28.  Normalized minimum-mean square error of channel coefficients in 

representative shallow-water acoustic channel. 

Another important observation related to this system is that at lower Doppler shift 

frequencies such as 0.1 Hz, the estimated channel coefficients can calculate the transfer 

function and recover the transmitted sequence with zero error, but for relatively a large 

Doppler shift such as 1.0 Hz, the error converges to a constant value so that the estimated 

channel coefficients are too noisy to calculate the transfer function and recover the 

transmitted data signal without error.  

Percent error rate for the channel estimation was calculated, and the results are 

depicted in Figure 29. When the Doppler shift is 0.1 Hz, the percent error approaches 

zero for larger SNR. On the other hand, when the Doppler shift frequency is 1.0 Hz, the 

percent error is higher, and this error rate affects the calculation of Riccati equation by 

using estimated channel coefficients.  
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Figure 29.  Percent-error rate of channel estimation in the artificial shallow-

water channel. 

 

B. DEEP-WATER ACOUSTIC CHANNEL 

The second scenario is chosen to be a deep-water channel, and a measured Kauai 

sound-speed profile was used for the environment. The Kauai sound-speed profile is 

shown in Figure 30. 
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Figure 30.  Kauai, HI environment sound speed profile (from [25]). 

As seen in Figure 30, the Kauai environment has a positive gradient up to depths 

55-60 m and after these depths has a negative gradient. After around 650 m, the 

environment is almost isospeed. 

The source is assumed to be at 920 m depth for this case, and the receivers are 

close to the surface at depths of 5 m and 23 m. The horizontal range between source and 

the receivers is 5000 m, and the bottom type is identified as silt. Sea-state is assumed to 

be zero. For these conditions, the rays emanating from the transmitter at 920 m depth are 

depicted in the ray tracing plot in Figure 31. The beam angle extends from 25 degrees 

to 25 degrees. 
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Figure 31.  Illustration of emanating rays from the source at 920 m in Kauai, HI 

environment. 

To see the rays arriving at the specific receiver locations, the eigenray plot is 

used, and to see the specific information related to each eigenray, the arrivals file and 

impulse response plots are generated. The eigenray plot is shown in Figure 32, and the 

impulse response plots for two receivers are shown in Figure 33 and Figure 34, 

respectively. 
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Figure 32.  Illustration of eigenrays for a source at 920 m depth and receivers at 

5 m and 23 m depths in Kauai environment.  
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Figure 33.  Arrivals with the receiver positioned at a depth of 5 m and the 

transmitter positioned at a depth of 920 m in Kauai environment. 
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Figure 34.  Arrivals with the receiver positioned at a depth of 23 m and the 

transmitter positioned at a depth of 920 m in Kauai environment. 

For the receiver at 5 m depth, there are four arrivals in two different groups. The 

first group arrives at around 3.375 seconds, and the second group arrives at around 3.395 

seconds. The rays arrive at the second receiver at 23 m depth almost at the same time 

interval as the first receiver, and there are two different groups and four arrivals as well. 

From the phase and the amplitude information, the arrivals were approximated and dB 

values of the arrivals were taken to represent the Rayleigh fading channel. 

The sampling rate was chosen as 1/1000  seconds, and the symbol rate was 500 

symbols/second.  

The quality in channel estimation is shown in the Kauai environment by taking 

the measurements up to 36 dB SNR. The normalized minimum-mean-square error plot 

for the estimated channels is illustrated in Figure 35.  
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Figure 35.  Normalized minimum-mean square error for channel estimation in 

Kauai environment where the transmitter is at 920 m, receivers are at 

the depths of 5 m and 23 m, and the horizontal range between the 

transmitter and receivers is 5 km.  

When the Doppler shift frequency is 1.0 Hz, the error rate is much higher than the 

error found in shallow-water conditions, and the error rate is almost constant after around 

20 dB SNR. On the other hand, when Doppler shift frequency is 0.1 Hz, the error is lower 

and continues to decrease for greater than 20 dB.  

In Figure 36, the percent-error rate is shown for Kauai environment. According to 

this result, we see that the larger Doppler shift results in almost a constant value above 

some SNR. For a lower Doppler shift, the error is constant for larger SNR, and the 

channel estimation is better than for the larger Doppler shift. 
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Figure 36.  Percent-error rate of channel estimation in Kauai environment. 
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VII. CONCLUSIONS 

A. SUMMARY OF THE MODEL AND CONTRIBUTION 

A two-receiver underwater acoustic communication system was presented in this 

thesis. Equalization and tracking of the acoustic channels characterized by considerable 

multipath were implemented with a Kalman filter algorithm. The acoustic channel was 

modeled with the Bellhop ray tracing model with its dependencies. A forward error-

correction scheme and single carrier QPSK modulation was used. Since the channel is 

time-varying, the performance of the channel estimation was tested as a function of SNR 

and for different Doppler shift frequencies. Tracking of the time-varying channel by the 

proposed system is shown. 

The Bellhop ray tracing model was used to model the acoustic channels, and 

emanating rays were shown according to the specified environment parameters. A 

Simulink model was used to simulate and show the results of the system for different 

parameters such as Doppler shift frequency and underwater acoustic environment 

variables. Two different channel types were implemented to show the validity of the 

model: a shallow-water acoustic channel and a deep-water Kauai environment. In both 

environments, the channels were estimated successfully with estimation success 

increasing as the Doppler shift frequency decreases. When the Doppler shift frequency 

was 0.1 Hz and the SNR large enough, the Kalman state filters calculated by the 

estimated channel coefficients recovered the transmitted sequence with zero error. The 

SNR needed to recover the transmitted sequence without error increases as the range 

between the transmitter and the receivers increases. 

B.  RECOMMENDATIONS FOR FURTHER WORK 

With rapid advances in underwater acoustic communications, the proposed model 

can be improved to provide smaller error differences in channel estimation and to achieve 

better data rates. In this proposed model, the transfer function coefficients were 

calculated for each iteration, but this process increases computation time and reduces 
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efficiency. The calculations should be done for specific time intervals with an adaptive 

approach to obtain more efficiency from the system. 

In this simulated system, the noise sources are assumed to be as AWGN, and for 

the future work, the model should be realized for non-Gaussian noise sources since the 

ambient noise in the ocean environments behaves in non-Gaussian manner. Instead of 

creating an artificial channel in a modeling program, the measurements should be taken 

in real environments to see how robust the system is.  

Channel estimation quality was examined in this thesis, but BER was not 

calculated for specific SNR values. Although BER is inversely proportional to the 

channel estimation quality, it should be shown as a function of SNR for certain 

underwater environments. 
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APPENDIX A. MATLAB CODES 

A. IMPULSE RESPONSE OF RAYLEIGH MULTIPATH FADING 

CHANNEL 

The impulse response of the channel contains zero and non-zero values that are 

determined by the sampling rate of the source signal. The sampling rate determines the 

length of the channel impulse responses, and these channel impulse response coefficients 

are used in calculating the state-filter coefficients. Matlab codes related to finding these 

channel coefficients are shown below.   

1. First Channel 

function h1 = Channel(G1) 

Fs = 2000; 

D = [0 0.001 0.0025 0.004]; 

nd = round(D*Fs); 

nd = nd+1; 

h1 = complex(zeros(1,max(nd))); 

G1 = [G1(1), G1(2), G1(3),G1(4)]; 

h1(nd) = G1; 

2. Second Channel 

function h2 = Channel(G2) 

Fs = 2000; 

D = [0 0.001 0.0025 0.004]; 

nd = round(D*Fs); 

nd = nd+1; 

h2 = complex(zeros(1,max(nd))); 



 56 

G2 = [G2(1), G2(2), G2(3),G2(4)]; 

h2(nd) = G2; 

B. TRANSFER FUNCTION OF KALMAN FILTER 

The sum of two Kalman transfer function outputs give the estimate of the 

transmitted data sequence and this operation is repeated recursively with the estimated 

channel coefficients. Matlab code to calculate the transfer function coefficients is shown 

below.  

%% Coefficients of transfer function 

function [num1,num2,den] = Riccati(h1,h2) 

coder.extrinsic('ss2tf'); 

coder.extrinsic('dlqe'); 

h1 = [h1 0]; % First channel 

h2 = [0 h2]; % Second channel 

N1=length(h1); 

N2=length(h2); 

N=max([N1,N2])-1;   

% Defining state-space matrices 

A=[-h1(2:N1)/h1(1); 

   eye(N-1), zeros(N-1,1)]; 

B=[1/h1(1); 

zeros(N-1,1)]; 

Bw=B; 

C=h2(2:N2); 

D = 0; 
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Q = 0.0001; 

R = 0.0001; 

G = Bw; 

M = complex(zeros(length(A),1)); 

[M,P,Z,E]=dlqe(A,Bw,C,Q,R); 

K=A*M; 

Cx=[zeros(1,N-1),1];  % State  of x(n-N) 

num1 = complex(zeros(length(A)+1,1)); 

num2 = complex(zeros(length(A)+1,1)); 

den1 = complex(zeros(length(A)+1,1)); 

[num1, den1]=ss2tf(A-K*C, B, Cx, 0,1); 

[num2, den2]=ss2tf(A-K*C, K, Cx, 0,1); 

den = den1; 

end 

C. IMPULSE RESPONSE MAGNITUDE DIFFERENCE 

Estimation of the channel impulse response is tested with the actual channel 

response, and the Matlab code below calculates the error amount between the actual and 

the estimated channels. 

%% Error calculation 

for i = 1:length(h1) 

h_tilde1(i,:) = h1(i,:)-h1_est(i,:); 

h_tilde2(i,:) = h2(i,:)-h2_est(i,:); 

error(i) = sqrt(sum(abs(h_tilde1(i,:)).^2) + sum(abs(h_tilde2(i,:)).^2)); 

end 
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error_f = mean(error); 

%% Plotting the magnitude difference in magnitude 

dB_val = [0:4:36]; 

error_DS1 = [0.8637,0.5250,0.2987,0.1988,0.1583... 

             0.1443,0.1383,0.1366,0.1360,0.1359]; 

error_DS01 = [0.8559,0.4593,0.2342,0.1300,0.0789... 

              0.0524,0.0362,0.0266,0.0213,0.0186]; 

plot (dB_val,error_DS1/max(error_DS1),'k'); 

hold on 

plot (dB_val,error_DS01/max(error_DS01),'b'); 

axis tight 

grid on 

xlabel('SNR (dB)'); 

ylabel('Normalized minimum-mean square error'); 

title('Error difference magnitude for shallow acoustic channel'); 

legend('Doppler shift: 1.0 Hz','Doppler shift: 0.1 Hz'); 

hold off 

%% Calculate in deep water 

dB_val_deep = [0:4:36]; 

err_deep_1 = [1.2118,0.9822,0.8089,0.7120,0.6810... 

              0.6516,0.6498,0.6464,0.6409,0.6401]; 

err_deep_01 = [1.1263,0.7315,0.3701,0.1803,0.1362... 

               0.1145,0.1004,0.0967,0.0948,0.0924]; 

plot (dB_val_deep,err_deep_1/max(err_deep_1),'k'); 
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hold on 

plot (dB_val_deep,err_deep_01/max(err_deep_01),'b'); 

axis tight 

grid on 

xlabel('SNR (dB)'); 

ylabel('Normalized minimum-mean square error'); 

title('Error difference magnitude for Kauai deep acoustic channel'); 

legend('Doppler shift: 1.0 Hz','Doppler shift: 0.1 Hz'); 

hold off 
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APPENDIX B. SIMULATION DIAGRAM 

A. SIMULINK DIAGRAM OF PROPOSED MODEL 

 

Figure 37.  Simulink diagram of the proposed model. 
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