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A Fast and Accurate Algorithm for ℓ1 Minimization Problems in

Compressive Sampling ∗

Feishe Chen† Lixin Shen† Bruce W. Suter‡ Yuesheng Xu†

January 22, 2013

Abstract

An accurate and efficient algorithm for solving the constrained ℓ1-norm minimization prob-
lem is highly needed and is crucial for the success of sparse signal recovery in compressive
sampling. Most of existing algorithms in the literature give an approximate solution to the
problem. We tackle the constrained ℓ1-norm minimization problem by reformulating it via an
indicator function which describes the constraints. The resulting model is solved efficiently and
accurately by using an elegant proximity operator based algorithm. We establish convergence
analysis of the resulting algorithm. Numerical experiments show that the proposed algorithm
performs well for sparse signals with magnitudes over a high dynamic range. Furthermore, it
performs significantly better than the well-known algorithm NESTA in terms of the quality of
restored signals and the computational complexity measured in the CPU-time consumed.

1 Introduction

In this paper, we study recovery of an unknown vector u0 ∈ R
n from the observed data b ∈ R

m

and the model
b = Au0 + z, (1)

where A is a known m×n measurement matrix and z ∈ R
m is a noise term. Under an assumption

that the vector u0 of interest is sparse, the work in [4, 5] shows that an accurate estimation of u0
is possible even when m < n, that is, the observations are less than unknowns. Recently, there
is a significant body of work that focuses on finding an approximation to u0 by solving a convex
optimization problem. In the presence of noise-free data, i.e., z = 0, the optimization problem is

(BP) min{‖u‖1 : u ∈ R
n} subject to b = Au,

which essentially is the basis pursuit problem proposed early in the context of time-frequency rep-
resentation [8]. Here, ‖·‖1 denotes the ℓ1-norm of a vector in an Euclidean space. The optimization
model (BP) can be solved by linear programming.

In the presence of noisy data, the linear constraint b = Au in (BP) is relaxed to an inequality
constraint ‖Au− b‖2 ≤ ǫ, where ‖ · ‖2 denotes the ℓ2-norm of a vector in an Euclidean space. As a
result, the optimization model (BP) becomes the basis pursuit denoising problem

(BPǫ) min{‖u‖1 : u ∈ R
n} subject to ‖Au− b‖2 ≤ ǫ,

∗This research is supported in part by 2012 Air Force Visiting Faculty Research Program, by an award from the
NRC (National Research Council) via AFSOR, by the US National Science Foundation under grant DMS-1115523.

†Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA.
‡Air Force Research Laboratory, AFRL/RITB, Rome, NY 13441-4505. Email: Bruce.Suter@rl.af.mil
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where ǫ2 is an estimated upper bound of the noise power.
Both problems (BP) and (BPǫ) are closely related to the penalized least-squares problem

(QPλ) min

{

1

2
‖Au− b‖22 + λ‖u‖1 : u ∈ R

n

}

.

A large amount of research has been done on solving problems (BP), (BPǫ), and (QPλ). Here, we
only give a brief and non-exhaustive review of results for these problems. In [8], problems (BP) and
(QPλ) are solved by first reformulating them as perturbed linear programming and then applying
a primal-dual interior-point approach [24]. Recently, many iterative shrinkage/thresholding algo-
rithms are proposed to handle problem (QPλ). These include the proximal forward-backward split-
ting [9], the gradient projection for sparse reconstruction [12], the FISTA (fast iterative shrinkage-
thresholding algorithm) [1], the fixed-point continuation algorithm [13], the Bregman iterative regu-
larization [3, 25], and the reference therein. Problem (BPǫ) also frequently appears in wavelet-based
signal/image restoration [6, 7] with the matrix A associated with some inverse transforms.

Problem (BPǫ) can be formulated as a second-order cone program and solved by interior-point
algorithms. Many suggested algorithms for (BPǫ) are based on repeatedly solving (QPλ) for various
values of λ. Such algorithms are referred to as the homotopy method originally proposed in [11, 20].
The homotopy method is also successfully applied to (BP) in [10]. A common approach for obtaining
approximate solutions to (BPǫ) is often accompanied by solving (QPλ) for a decreasing sequence
of values of λ [22]. The optimization theory asserts that problems (BPǫ) and (QPλ) are equivalent
provided that the parameters ǫ and λ satisfy certain relationship [21]. Since this relationship is
hard to compute in general, solving problem (BPǫ) via repeatedly solving (QPλ) for various values
of λ is problematic. Recently, the NESTA [2] which employs Nesterov’s optimal gradient method
was proposed for solving relaxed versions of (BP) and (BPǫ) via Nesterov’s smoothing technique
[18]. Clearly, the closeness of the solution to the relaxed version of (BP) (or the relaxed version of
(BPǫ)) to the solution to (BP) (or (BPǫ)) is determined by the level of the closeness of the smoothed
ℓ1-norm to the ℓ1-norm itself. Certainly, the performance of these approaches depends on the fine
tuning of the parameter λ in (QPλ) or a parameter that controls the degree of the closeness of the
ℓ1-norm and its smoothed version.

In this paper, we consider solving problems (BP) and (BPǫ) by a different approach. We convert
the constrained optimization problems to unified unconstrained one via an indicator function. The
corresponding objective function for the unconstrained optimization problem is the sum of the ℓ1-
norm of the underlying signal u and the indicator function of a set in R

m, which is {0} for (BP)
or the ǫ-ball for (BPǫ), composing with the affine transformation Au − b. Non-differentiability
of both the ℓ1-norm and the indicator of the set imposes challenges for solving the associated
optimization problem. Fortunately enough, their proximity operators have explicit expressions.
The solutions for the problem can be viewed as fixed-points of a coupled equation formed in terms
of these proximity operators. An iterative algorithm for finding the fixed-points is then developed.
The main advantage of this approach is that solving (QPλ) or smoothing the ℓ1-norm are no longer
necessary. This makes the proposed algorithm attractive for solving (BP) and (BPǫ). The efficiency
of fixed-point based proximity algorithms has been demonstrated in [9, 14, 15, 16] for various image
processing models.

The rest of the paper is organized as follows: In section 2 we reformulate the ℓ1-norm minimiza-
tion problems (BP) and (BPǫ) via an indicator function and characterize solutions of the proposed
model in terms of fixed-point equations. We also point out the connection between the proposed
model and (QPλ) through the Moreau envelope. In section 3 we develop an algorithm for the re-
sulting minimization problem based on the fixed-point equations arising from the characterization
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of the proposed model. Numerical experiments are presented in section 4. We draw our conclusions
in section 5.

2 An ℓ1-Norm Optimization Model via an Indicator Function

In this section, we consider a general optimization model that includes models (BP) and (BPǫ) as
its special cases and characterize solutions to the proposed model.

We begin with introducing our notation and recalling necessary background from convex anal-
ysis. For the usual d-dimensional Euclidean space denoted by R

d we define 〈x, y〉 :=
∑d

i=1 xiyi, for
x, y ∈ R

d, the standard inner product in R
d. The class of all lower semicontinuous convex functions

f : Rd → (−∞,+∞] such that domf := {x ∈ R
d : f(x) < +∞} 6= ∅ is denoted by Γ0(R

d). The
indicator function of a closed convex set C in R

d is defined, at u ∈ R
d, as

ιC(u) :=

{

0, if u ∈ C,
+∞, otherwise.

Clearly, the indicator function ιC is in Γ0(R
d) for any closed nonempty convex set C. In particular,

we define a ball in R
m centered at the origin with radius ǫ as Bǫ := {v : v ∈ R

m and ‖v‖2 ≤ ǫ}.
Given a matrix A ∈ R

m×n and a vector b ∈ R
m, we consider the following optimization problem

min{‖u‖1 + ιBǫ(Au− b) : u ∈ R
n}. (2)

We can easily see that if ǫ = 0 then model (2) reduces to (BP) and if ǫ > 0 then model (2) reduces
to (BPǫ). In other words, the both constrained optimization problems (BP) and (BPǫ) can be
unified as the unconstrained optimization problem (2) via the indicator function ιBǫ .

In the following, we shall focus on characterizing solutions of model (2) using fixed-point equa-
tions. To characterize solutions of model (2), we first need two concepts, namely, the proximity
operator and subdifferential of functions in Γ0(R

d). For a function f ∈ Γ0(R
d), the proximity

operator of f with parameter λ, denoted by proxλf , is a mapping from R
d to itself, defined for a

given point x ∈ R
d by proxλf (x) := argmin

{

1
2λ‖u− x‖

2
2 + f(u) : u ∈ R

d
}

. The subdifferential of a

proper convex function ψ ∈ Γ0(R
d) at a given vector u ∈ R

d is the set defined by

∂ψ(u) := {v : v ∈ R
d and ψ(w) ≥ ψ(u) + 〈v,w − u〉 for all w ∈ R

d}.

The subdifferential and the proximity operator of the function ψ are related in the following way
(see, e.g. [15]): For u in the domain of ψ and v ∈ R

d

v ∈ ∂ψ(u) if and only if u = proxψ(u+ v). (3)

Now, with the help of the subdifferential and the proximity operator, we can characterize a
solution of the indicator function based model (2) via fixed-point equations.

Proposition 2.1 Let ǫ be a nonnegative number, let Bǫ be the ball in R
m centered at the origin

with radius ǫ, let b be a point in R
m, and let A be an m × n matrix. If u ∈ R

n is a solution to
model (2), then for any α > 0 and β > 0 there exists a vector v ∈ R

m such that

u = prox 1

α
‖·‖1

(

u−
β

α
A⊤v

)

, (4)

v = (I − proxιBǫ (·−b)
)(Au+ v). (5)

Conversely, if there exist α > 0, u ∈ R
n, and v ∈ R

m satisfying equations (4) and (5), then u is a
solution of model (2).
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Proof: We first assume that u ∈ R
n is a solution of model (2). Set ϕ := ιBǫ(· − b). Hence Au− b

must be in the ball Bǫ. Therefore, both sets ∂‖ · ‖1(u) and ∂ϕ(Au) are nonempty. By Fermat’s
rule we have that 0 ∈ ∂‖ · ‖1(u) + A⊤∂ϕ(Au). Therefore, for any α > 0 and β > 0 there exist
w ∈ 1

α
∂‖ · ‖1(u) and v ∈ 1

β
∂ϕ(Au) such that 0 = αw + βA⊤v, i.e., w = −β

α
A⊤v. By using (3),

inclusion w ∈ 1
α
∂‖ · ‖1(u) implies u = prox 1

α
‖·‖1

(u+ w), which is equation (4). Since 1
β
ϕ = ϕ for

any β > 0, inclusion v ∈ 1
β
∂ϕ(Au) leads to Au = proxϕ(v +Au), which is equivalent to (5).

Conversely, if equations (4) and (5) are satisfied for some α > 0, β > 0, u ∈ R
n, and v ∈ R

m,
using (3) again, we have that −β

α
A⊤v ∈ ∂

(

1
α
‖ · ‖1

)

(u) and v ∈ ∂ϕ(Au). Since ∂
(

1
α
‖ · ‖1

)

(u) =
1
α
∂‖ · ‖1(u) and ∂ϕ(Au) = β∂ϕ(Au), we know from the above that 0 ∈ ∂‖ · ‖1(u) + A⊤∂ϕ(Au).

This indicates that u is a solution of model (2). The proof is complete. 2

We remark that the above fixed-point characterization can be identified as a special case of
Proposition 1 in [16]. We include the proof of Proposition 2.1 here for making the paper self-
contained.

The proximity operators of the functions ‖·‖1 and ιBǫ(·−b) involved in the characterization can
be computed efficiently. Indeed, the proximity operator prox 1

α
‖·‖1

is the soft-thresholding operator

defined for u ∈ R
n by:

(

prox 1

α
‖·‖1

(u)
)

[i] = max

{

|u[i]| −
1

α
, 0

}

sign(u[i]), for i = 1, 2, . . . , n. (6)

The proximity operator proxιBǫ(·−b)
is given by the following lemma.

Lemma 2.2 Let ǫ be a nonnegative number, let Bǫ be the ball in R
m centered at the origin with

radius ǫ, let b be a point in R
m. Then for a given v ∈ R

m

proxιBǫ (·−b)
(v) = b+min

{

1,
ǫ

‖v − b‖2

}

· (v − b).

Proof: By the definition of the proximity operator, we can verify directly that proxιBǫ (·−b)
=

b+proxιBǫ
(· − b) and proxιBǫ

is the projection operator onto the ball Bǫ. The result of this lemma
follows immediately. 2

We close this section by making a connection between the proposed model (2) and model
(QPλ) via the Moreau envelope introduced in [17]. Recall that the Moreau envelope of a function
f ∈ Γ0(R

d) with parameter µ at x ∈ R
d is envµf (x) := min{ 1

2µ‖y − x‖
2
2 + f(y) : y ∈ R

d}, which is

also in Γ0(R
d). In particular, the Moreau envelope of the indicator function ιBǫ with parameter µ

is given in the following result.

Lemma 2.3 Let ǫ be a nonnegative number, let µ be a positive number, let Bǫ be the ball in R
m

centered at the origin with radius ǫ. Then envµιBǫ
(x) = 1

2µ (max{‖x‖2 − ǫ, 0})
2, for any x ∈ R

m.

Proof: By the definition of the Moreau envelope, we have that envµιBǫ
(x) is the square of the

distance from the point x to the ball Bǫ then scaled by the factor 1
2µ . Since this distance is either

0 if x is inside the ball or ‖x‖2 − ǫ if x is outside the ball, our result follows immediately. 2

As an immediate consequence of Lemma 2.3 we have that envλι{0} = 1
2λ‖ · ‖

2
2. Hence, problem

(QPλ) can be rewritten in terms of the Moreau envelope as

min
{

‖u‖1 + envλι{0}(Au− b) : u ∈ R
n
}

. (7)
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In recent literature, model (7) (i.e., (QPλ)) is commonly adopted for finding an approximate solution
to both problems (BP) and (BPǫ). Note that

ιBǫ(x)− envλιBǫ
(x) = ιBǫ(x)

and

ιBǫ(x)− envλι{0}(x) =

{

− 1
2λ‖x‖

2
2, if x ∈ Bǫ;

+∞, otherwise.

These identities clearly indicate that envλιBǫ
approximates ιBǫ better than envλι{0} . Therefore, we

comment that instead of model (7) the following model

min
{

‖u‖1 + envλιBǫ
(Au− b) : u ∈ R

n
}

(8)

would be more suitable for finding an approximate solution to problem (BPǫ). In other words,
(QPλ) used in many algorithms (e.g., [11, 20, 22, 23]) for (BPǫ) should be replaced by model (8).
By doing so, an improvement for solving (BPǫ) should be expected if the noise power ǫ2 can be
estimated in advance. This will be studied in our future project. Unlike models (7) and (8) we
solve model (2) directly without introducing the parameter λ.

3 An Algorithm and Its Convergence

In this section, we develop an algorithm for finding a solution of model (2) and provide a convergence
analysis for the developed algorithm.

As we already know, all solutions of model (2) should satisfy the fixed-point equations given
by (4) and (5). Our proposed algorithm for model (2) is derived based on the following equivalent
form of equations (4) and (5)















u = prox 1

α
‖·‖1

((

I − β
α
A⊤A

)

u− β
α
A⊤(v − w)

)

,

w = proxιBǫ(·−b)
(Au+ v),

v = Au+ v − w.

(9)

Based on the above fixed-point equations in terms of u, w, and v, for arbitrary initial vectors
u0 ∈ R

n, w0, v0 ∈ R
m, we generate the sequence {uk : k ∈ N0} by the following iterative scheme














uk+1 = prox 1

α
‖·‖1

((

I − β
α
A⊤A

)

uk − β
α
A⊤(vk − wk)

)

,

wk+1 = proxιBǫ (·−b)
(Auk+1 + vk),

vk+1 = Auk+1 + vk − wk+1,

(10)

where N0 := {0, 1, . . .}.
To show convergence of the iterative scheme (10), we recall a result from [14].

Lemma 3.1 (Theorem 3.5 in [14]) If x is a vector in R
n, A is an m×n matrix, ϕ is in Γ0(R

m)
and α, β, λ are positive numbers such that β

λα
< 1

‖A‖2 , then the sequence {uk : k ∈ N0} generated

by the following iterative scheme















uk+1 = x+ prox 1

α
‖·‖1

((

I − β
λα
A⊤A

)

uk − x− β
λα
A⊤(vk −wk)

)

,

wk+1 = prox 1

β
ϕ(Au

k+1 + vk),

vk+1 = Auk+1 + vk − wk+1

(11)
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converges to a solution of the optimization problem

min{λ‖u− x‖1 + ϕ ◦ A(u) : u ∈ R
m}. (12)

With the help of Lemma 3.1, the following result shows that under appropriate conditions on
parameters α and β the sequence {uk : k ∈ N0} converges to a solution of model (2).

Theorem 3.2 Let ǫ be a nonnegative number, let Bǫ be the ball in R
m centered at the origin with

radius ǫ, let b be a point in R
m, and let A be an m× n matrix. If

β

α
<

1

‖A‖2
, (13)

then for arbitrary initial vectors u0 ∈ R
n, w0, v0 ∈ R

m, the sequence {uk : k ∈ N0} generated by the
iterative scheme (10) converges to a solution of model (2).

Proof: By setting x = 0 and λ = 1 and identifying ϕ = ιBǫ(· − b) in model (12), the iterative
scheme (10) can be viewed as a special case of the one given in (11). The desired result follows
immediately from Lemma 3.1. 2

The convergence result given by Theorem 3.2 offers a practical way to find a solution of
model (2). Since the explicit forms of the proximity operators prox 1

α
‖·‖1

and proxιBǫ (·−b)
are given

by (6) and Lemma 2.2, respectively, based on Theorem 3.2 a unified approach for solving both
(BP) and (BPǫ) is depicted in Algorithm 1.

Algorithm 1 (The iterative scheme for model (BPǫ) with ǫ ≥ 0)

Initialization: v0 ∈ R
m, w0 ∈ R

m, u0 ∈ R
n, ǫ > 0, α > 0, and β > 0 with β

α
< 1

‖A‖2
.

repeat(k ≥ 0)

Step 1: uk+1 ← prox 1

α
‖·‖1

((

I −
β

α
A⊤A

)

uk −
β

α
A⊤(vk − wk)

)

Step 2: wk+1 ←

{

Auk+1 + vk, if ‖Auk+1 + vk − b‖2 < ǫ;

b+ ǫ Auk+1+vk−b
‖Auk+1+vk−b‖2

, otherwise.

Step 3: vk+1 ← Auk+1 + vk − wk+1

until a given stopping criteria is met

We make some comments on Algorithm 1. Step 1 of computing uk+1 is from the first equation
in (10); Step 2 of computing wk+1 is from the second equation in (10) and Lemma 2.2; Step 3 of
computing vk+1 is exactly the same as the last equation in (10). This algorithm can be presented
in a more computationally efficient way by combining Step 2 and Step 3 together and eliminating
the intermediate variable wk. The motivation comes from the observation Auk − wk = vk − vk−1

which is due to the third step of Algorithm 1. Substituting Auk −wk in Step 1 by vk − vk−1 yields
that

uk+1 = prox 1

α
‖·‖1

(

uk −
β

α
A⊤(2vk − vk−1)

)

, (14)

with an assumption v−1 = v0 − (Au0 − w0) for given u0, w0, and v0. We can further substitute
wk+1 computed in Step 2 into Step 3. In this way, the intermediate variable wk is no longer
needed. Hence, these simplifications yield Algorithm 2, a variant of Algorithm 1. When ǫ = 0,
all vectors wk+1 in Algorithm 1 are equal to the constant vector b for all k ≥ 0. Because of this,
we would like to set w0 = b in both Algorithms 1 and 2. Finally, it is more efficient to update
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uk+1 with Step 1 of Algorithm 2 than Step 1 of Algorithm 1 in each iteration since the matrix-
vector multiplication involving A is not required in equation (14). However, updating uk+1 via the
formulation of Step 2 in Algorithm 1 can be implemented through the use of the component-wise
Gauss-Seidel iteration which may accelerate the rate of convergence of the algorithm and therefore
reduce the total CPU-time consumed. The efficiency of component-wise Gauss-Seidel iteration has
been verified in [14, 15].

Algorithm 2 (A variant of Algorithm 1 for model (BPǫ))

Initialization: v0 ∈ R
m, u0 ∈ R

n, ǫ > 0, α > 0, and β > 0 with β
α
< 1

‖A‖2
; set v−1 =

v0 − (Au0 − d0),
repeat(k ≥ 0)

Step 1: uk+1 ← prox 1

α
‖·‖1

(

uk −
β

α
A⊤(2vk − vk−1)

)

Step 2: vk+1 ←

{

0, if ‖Auk+1 + vk − b‖2 < ǫ;
(

1− ǫ
‖Auk+1+vk−b‖2

)

(Auk+1 + vk − b), otherwise.

until a given stopping criteria is met

4 Numerical Simulations

This section is devoted to showing the numerical performance of the proposed algorithms for com-
pressive sampling. We use the algorithm NESTA [2] as a comparison. We focus on sparse signals
with various dynamic ranges and measurement matrices from randomly partial discrete cosine trans-
forms (DCTs) and evaluate performance of algorithms in terms of various error metrics, speed, and
robustness to noise. All the experiments are performed in Matlab 7.11 on Thinkpad T400 with
Intel Core Duo CPU @2.26G, 3GB RAM on Windows Vista Home Basic operating system.

We begin with a description of generating them×n sensing matrix A and length-n and s-sparse
signals. In each experimental trial, the m×n sensing matrix A is generated by randomly picking m
rows from the n×n DCT matrix. Sparse signals u used in our experiments are generated according
to [2]. In each experimental trial, a length-n, s-sparse signal (a signal having exactly s nonzero
components), is generated in such a way that non-zero components are given by

η110
θη2 , (15)

where η1 = ±1 with probability 1/2 and η2 is uniformly distributed in [0, 1]. The locations of
the nonzero components are randomly permuted. Clearly, the range of the magnitude of nonzero
components of an s-sparse signal is [0, 10θ ] with the parameter θ controlling this dynamic range.
An observed signal (data) is collected by b = Au+ z, where z represents a Gaussian noise.

The accuracy of a solution obtained from a specific algorithm is quantified by the relative
ℓ2-error, the relative ℓ1-error, and the absolute ℓ∞-error defined, respectively, as follows:

‖u− u⋄‖/‖u‖, |‖u‖1 − ‖u⋄‖1|/‖u‖1, ‖u− u⋄‖∞, (16)

where u is the true data and u⋄ is the restored data. All results reported in the tables of this
section are the means and the standard deviations of these relative errors from simulations that
were performed 20 trials.

To use Algorithm 2, one needs to fix the parameters α and β such that β/α < 1/‖A‖2 (see
Theorem 3.2). From Step 1 of the algorithm, the ratio β/α plays a role of step-size of changing uk.
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Therefore, we keep this ratio as big as possible and set

β =
0.999

‖A‖2
α (17)

in our numerical experiments. In such the way, α is essentially the only parameter that needs to be
determined. We now investigate the impact of the parameter α on the performance of Algorithm 2.

To investigate the impact of varying the parameter α on the performance of Algorithm 2, we
consider the configuration of n = 215, m = n/2, s = 0.05 and the dynamic range parameter θ = 5.
The observed data is noise free. Six different values of α, namely, 0.0025, 0.005, 0.01, 0.02, 0.04,
and 0.08, are tested. Figure 4.1(a) depicts the traces of the relative ℓ1-error (see (16)) against the
number of iterations for each α. As it can be seen from this figure, for α = 0.0025, the smallest
value in our test, the relative ℓ1-error drops rapidly from 1 to 10−4, stabilizes with insignificant
changes for about 1200 iterations and then quickly drops again to the level of 10−16. When α
increases from 0.0025 to 0.08, the number of iterations required for the relative ℓ1-error dropping
from 1 to 10−4 increases. Meanwhile, the numbers of iterations for the transitions from the first
sharp jump region to the second one decrease. For example, it is about 700 for α = 0.005 and only
few iterations for α = 0.08. These observations motivate us to extend Algorithm 2 to a scenario in
which the parameter α can be updated during the iteration with the goal of reducing the number
of iterations. The proposed approach is rather simple. It begins with a relative small α and then
increases it for every given amount of iterations. A detailed flow of this new approach is given in
Algorithm 3.
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Figure 4.1: The relative ℓ1 error (the vertical axis with a base 10 logarithmic scale) versus number
of iterations (the horizontal axis). (a) Convergence of Algorithm 2 with different values of α; (b)
Convergence of Algorithm 3.

Three new parameters introduced in Algorithm 3 are integers p > 0, τ > 1, and T > 0.
The parameter T is the allowable maximum number of updating the parameters α and β. For
each update, the pair (α, β) will change to (τα, β/τ) that will keep the ratio β/α unchanged. The
parameter p is to indicate that the underlying algorithm with a pair (α, β) will iterate p times before
the algorithm with the pair (τα, β/τ) runs another p times. We now demonstrate the efficiency of
varying the parameters α and β via applying Algorithm 3 for the same data used in Figure 4.1(a).
We set T = 6, τ = 4, and p = 20 and initialize α = m

n
20

‖A⊤b‖∞
. Again, we choose β by using

(17). The corresponding result is shown in Figure 4.1(b). It is clear to see that it takes about
200 iterations to drop the relative ℓ1 error down below 10−14. Hence the strategy of updating the
parameters α and β as described in Algorithm 3 is reasonable.
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Algorithm 3 (A variant of Algorithm 1 for model (BPǫ))

Given: integers p > 0, τ > 1, and T > 0; ǫ > 0
Initialization: v0 ∈ R

m, u0 ∈ R
n, α > 0, and β > 0 with β

α
< 1

‖A‖2 ; set v
−1 = v0 − (Au0 − d0)

repeat(k ≥ 0)
Step 1: Compute uk+1 using Step 1 of Algorithm 2
Step 2: Compute vk+1 using Step 2 of Algorithm 2
Step 3: If k is a multiple of p and the number of changing the parameters α and β does not

exceed T , update α← τα, β ← β
τ

until a given stopping criteria is met

The rest of this section consists of two parts. Part one contains the results for (BP) while part
two contains the results for (BPǫ).

In part one, we compare the performance of Algorithm 3 with that of the NESTA [2]. The
algorithm NESTA was developed by applying a smoothing technique for the nonsmooth ℓ1-norm
and an accelerated first-order scheme, both from Nesterov’s work [19]. A parameter denoted by
µ is used to control how close the smoothed ℓ1-norm to the ℓ1-norm will be. Two different levels
of µ, namely, µ = 10−2 and µ = 10−7 , are used for the NESTA in experiments. A parameter
δ for tolerance in the NESTA varies for different values of the smoothing parameter µ and needs
to be determined. We finally choose δ = 10−8 for µ = 10−2 and δ = 10−12 for µ = 10−7 since
such choices lead to reasonable results. For Algorithm 3, we set p = 20 and T to be the smallest
integer that is greater than log10(

n
m
‖A⊤b‖∞). In our experiments, we notice that n

m
‖A⊤b‖∞ is

approximately equal to 10θ. As a result, T is about θ + 1. The stopping criterion of Algorithm 3
is that the relative errors between the successive iterates of the reconstructed signal should satisfy
the inequality ‖uk+1 − uk‖/‖uk‖ < 10−15.

In our experiments for problem (BP), the dimensions n and the dynamic ranges θ of the unknown
signals are chosen from {213, 215, 217} and {1, 3, 5}, respectively. The number of nonzero entries s
is set to be 0.05n, 0.02n, 0.01n respectively for the number of measurements m = n/2, n/4, n/8.
The left-column of Figure 4.2 shows the results of Algorithm 3 and the NESTA when the dimension
of the tested signals n is 217 and the number of measurements m is n/4. The symbols ‘2’, ‘♦’,
and ‘∇’ denote the results produced by Algorithm 3, the NESTA with µ = 10−2, and the NESTA
with µ = 10−7, respectively. The colors ‘red’, ‘blue’, and ‘yellow’ represent the dynamic ranges of
the tested signals with θ being 1, 3, and 5, respectively. Three error metrics, namely the relative
ℓ2-error, ℓ1-error, ℓ∞-error, are respectively displayed with a base 10 logarithmic scale plot for the
vertical axis. We see clearly that Algorithm 3 is significantly better than the NESTA in terms
of these error metrics for the unknown signals with various dynamic ranges and the CPU time
consumed. We also observe that the relative ℓ2-error and ℓ1-error of the results recovered by
Algorithm 3 along with the CPU time consumed are quite robust with respect to the dynamic
ranges of the unknown signals. The same conclusions can be drown for the results with m = n/2
and m = n/8 as well.

Part two presents results for problem (BPǫ). The settings of dimension, sparsity, and dynamic
range of unknown signals for problem (BPǫ) are the same as those for problem (BP). The only
difference is that measurements in part two are contaminated with noise. In our experiments,
noise levels in the measurements vary with the dynamic ranges of the unknown signals. More
precisely, the noise levels σ are set to be 0.05, 1.0, and 5.0 corresponding to choices 1, 3, and 5 of
the dynamic range parameter θ, respectively. It turns out that the noise power is ǫ2 = mσ2. The
stopping criteria for our algorithm is that the relative errors between the successive iterates of the
reconstructed signal should satisfy the inequality ‖uk+1 − uk‖/‖uk‖ < 10−5. For the smoothing
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Figure 4.2: The relative ℓ1, ℓ2, and ℓ∞ errors (the vertical axis with base 10 logarithmic scale)
versus the CPU time consumed (the horizontal axis) for (the left-column) the noise free case and
(the right-column) the noise case. The colors ‘red’, ‘blue’, and ‘yellow’ represent the dynamic ranges
of the tested signals with θ being 1, 3, and 5, respectively.
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parameter µ in the NESTA, we choose the default setting µ = max{0.1σ, 0.01}. The right column
of Figure 4.2 shows the results of Algorithm 3 and the NESTA when the dimension of the tested
signals n is 217 and the number of measurements m is n/4. We see that the accuracy of our
algorithm is better than that of the NESTA in terms of relative ℓ2-error and relative ℓ∞-error.
There is up to 1 order of improvement of accuracy regarding the relative ℓ1-error with Algorithm 3.
Regarding the consumed CPU time, Algorithm 3 consumes at most half of the CPU time that the
NESTA does. Again, the same conclusions can be drown for the results with m = n/2 andm = n/8
as well.

5 Conclusions

We reformulated the ℓ1-norm minimization problems (BP) and (BPǫ) via indicator functions as
unconstrained minimization problems. The objective function for each unconstrained problem is
the sum of the ℓ1-norm of the underlying signal u and the indicator function of a set in R

m, which
is {0} for (BP) or the ǫ-ball for (BPǫ), composing with the affine transformation Au − b. Due to
the structure of this objective function and the availability of the explicit forms of the proximity
operators for both the ℓ1-norm and the indicator function, an accurate and efficient algorithm is
developed for recovering sparse signals based on fixed-point equation. The algorithm outperforms
the state-of-the-art algorithm NESTA in terms of the relative ℓ2, the relative ℓ1, and the absolute
ℓ∞ error measures as well as the CPU time for tested signals ranging from a low dynamic range to
a high dynamic range with different sizes.
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