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Abstract

This report documents the geomorphic assessment component of the
Mississippi River Hydrodynamic and Delta Management Feasibility Study.
The overall objectives of the geomorphic assessment were to utilize all
available data to document the historical trends in hydrology, sedimenta-
tion, and channel geometry in the lower Mississippi River and to summarize
the local changes observed at locations where repetitive datasets exist and at
key reaches determined during the study. The assessment focused on, but
was not limited to, the river reach downstream of the Old River Control
Complex and the time period from 1960 to the present (2013). The
geomorphic assessment tasks included data compilation, geometric data
analysis, gage and discharge analysis, dredge record analysis, sediment data
analysis, development of an events timeline, and integration of results.
Geomorphic reaches were defined, and the morphologic trends during
different time periods were evaluated. The geomorphic assessment
highlighted the importance of considering spatial and temporal variability
when assessing morphological trends. Morphological trends on the Lower
Mississippi River typically occur over decadal timescales. Consequently,
there is considerable uncertainty with assessments that only cover short
time periods. Therefore, investigators must be cautious when assuming that
short-term, recent trends will predict future conditions.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Preface

This study was conducted for the U.S. Army Engineer District, New
Orleans, and the State of Louisiana as part of the Mississippi River
Hydrodynamic and Delta Management Study. The project managers for
the U.S. Army Engineer District, New Orleans, were Bill Hicks and Daimia
Jackson, and the Plan Formulator was Cherie Price. The study managers
for the State of Louisiana were Carol Parsons Richards and Austin
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Unit Conversion Factors

Multiply By To Obtain

acres 4,046.873 square meters

acre-feet 1,233.5 cubic meters

cubic feet 0.02831685 cubic meters

cubic yards 0.7645549 cubic meters

feet 0.3048 meters

miles (U.S. statute) 1,609.347 meters

pounds (mass) 0.45359237 kilograms

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter
square feet 0.09290304 square meters

square miles 2.589998 E+06 square meters

tons (long) per cubic yard 1,328.939 kilograms per cubic meter
tons (2,000 pounds, mass) 907.1847 kilograms

yards 0.9144 meters
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1 Background

The Louisiana Coastal Area (LCA), Louisiana Ecosystem Restoration
Study (U.S. Army Corps of Engineers (USACE), New Orleans District
(MVN) 2004), was recommended to Congress by a Chief of Engineers
report dated 31 January 2005 that called for a coordinated, feasible
solution to the identified critical water resource problems and
opportunities in coastal Louisiana. The Mississippi River Hydrodynamic
and Delta Management Feasibility Study combines two of the six large-
scale and long-term restoration concepts outlined in the LCA 2005
Report: the Mississippi River Hydrodynamic Study and the Mississippi
River Delta Management Study. The feasibility study has as its primary
focus the development of tools that can evaluate both the existing
conditions of the Mississippi River and any potential local and system-
wide impacts of proposed changes to the system (e.g., additional
diversions). The Mississippi River Hydrodynamic component of the
feasibility study focuses on impacts to the Mississippi River. This
component will evaluate the Mississippi River system from Old River
Control Complex (ORCC) to the Gulf of Mexico, develop a comprehensive
numerical modeling system to assess potential restoration alternatives,
and determine the availability of fresh water, sediment, and nutrients for
restoration usage without compromising flood control and navigation
missions. The Mississippi River Delta Management component of the
feasibility study focuses on impacts to the receiving areas. The geomorphic
assessment task of the Mississippi River Hydrodynamic Study component
of the feasibility study is described in this report.
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2 Objectives

The overall objectives of the geomorphic assessment were to utilize all
available data to document the historical trends in hydrology,
sedimentation, and channel geometry in the lower Mississippi River and to
summarize the local changes observed at locations where repetitive
datasets exist and at key reaches that were defined during the study. The
assessment focuses on, but is not limited to, the river reach downstream of
the ORCC and the time period 1960 to the present (2013).
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3.1

Methodology

The geomorphic assessment included seven inter-related tasks:

e data compilation

e geometric data analysis

e gage and discharge data analysis
e dredge data analysis

e sediment data analysis

e events timeline

e integration.

The methodology used for each of these tasks is described in this chapter.

Data Compilation

A comprehensive search of available data was conducted, and pertinent
data for the assessment were collected and assembled. Close coordination
took place with representatives from the State of Louisiana and the U.S.
Army Corps of Engineers (USACE) to ensure all historical and on-going
studies and data-collection efforts were considered. Types of data that
were gathered include the following:

e channel survey data (comprehensive hydrographic surveys, channel
condition surveys, and other miscellaneous surveys of river-channel
geometry)

e aerial photography and topographic maps

e gage and discharge data at all Mississippi River stations in the study
area as well as Vicksburg and Natchez

e suspended-sediment data at all Mississippi River stations

e bed-material data

e dredge records from MVN

e results from previous river-engineering studies.

3.1.1 Hydrographic surveys

Hydrographic surveys of the study reach provide a time series of
bathymetric data that can be used to determine geometric changes of the
river channel. The hydrographic surveys collected for this study were
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comprehensive surveys from MVN, channel condition surveys from MVN,
and multi-beam surveys from MVN, U.S. Army Engineer Research and
Development Center (ERDC), and the State of Louisiana. Table 1 provides
a listing of the hydrographic surveys used in the study along with pertinent
information of each survey.

3.1.2 River gage and discharge data

Daily stage and discharge data, along with irregular discharge
measurements, were assembled for the majority of the main Mississippi
River gauging stations within the study reach. The daily stage and
discharge data were downloaded from the USACE RiverGages.com website
and the U.S. Geological Survey (USGS) website. The historical discharge
measurements were obtained from MVN, either through the annual gage
and discharge publications or directly provided by the district. Much of
this data had been previously assembled as part of prior studies on the
lower Mississippi River. Table 2 lists the primary gage and discharge data
obtained for the study.

3.1.3 Sediment data

Sediment data in the form of suspended sediment measurements were
assembled for gauging stations on the Mississippi River within the study
reach. These data were obtained from USACE sources as well as
downloaded from the USGS website. Bed-material data were collected by
the data collection team as part of a longitudinal study of the Mississippi
River for comparison to a historical data set (Nordin and Queen 1992).
Table 3 lists the sediment data assembled for the geomorphic assessment.

3.1.4 Dredge records

Annual maintenance dredge reports were obtained from MVN for the
period of fiscal year 1970 through fiscal year 2011. Data in these reports
included dredge volume by River Mile (RM) on a daily basis for the dredge
contracts. These reports were used to determine volumes and location of
dredge activities within the study reach.
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Table 1. Hydrographic surveys used in geomorphic assessment.

Vertical
Description Date Extent Datum Source
MVN1 comprehensive 1961-1963 Entire MVN reach of MSL3 MVN .dgn files and hard-
hydrographic survey MS2 River copy maps
MVN comprehensive 1973-1975 Entire MVN reach of MSL MVN .dgn files and hard-
hydrographic survey MS River copy maps
MVN comprehensive 1983-1985 Entire MVN reach of NGVD274 MVN .dgn files and hard-
hydrographic survey MS River copy maps
MVN Comprehensive 1992-1993 Entire MVN reach of NGVD27 MVN .dgn files and hard-
hydrographic survey MS River copy maps
MVN Comprehensive 2003-2004 Entire MVN reach of NAVD885 MVN .dgn files and hard-
hydrographic survey MS River copy maps
MVN multi-beam survey | 2012 RM6 318-RM 234 NAVD88 MVN XYZ files
(partial)
Channel condition survey | 9/09, 10/10, 7/11, 8/12 | Smithland Crossing NAVD88 MVN
Channel condition survey | 9/09, 9/10, 7/11, 8/12 Bayou Sara Crossing NAVD88 MVN
Channel condition survey | 10/09, 8/10, 8/11, 7/12 | Wilkerson Pt. Crossing | NAVD88 MVN
Channel condition survey | 8/09, 9/10, 9/11, 8/12 Baton Rouge Front NAVD88 MVN
Channel condition survey | 10/09, 10/10, 6/11, Redeye Crossing NAVD88 MVN
7/12
Channel condition survey | 9/09, 7/12 Sardine Pt. Crossing NAVD88 MVN
Channel condition survey | 9/09, 9/10, 3/12 Medora Crossing NAVD88 MVN
Channel condition survey | 10/09, 9/10, 7/11, 7/12 | Grenada Crossing NAVD88 MVN
Channel condition survey | 9/09, 3/10, 11/11, 7/12 | Bayou Goula Crossing | NAVD88 MVN
Channel condition survey | 9/09, 9/10, 11/11, 3/12 | Alhambra Crossing NAVD88 MVN
Channel condition survey | 8/08, 10/11, 8/12 Philadelphia Pt. NAVD88 MVN
Crossing
Channel condition survey | 10/09, 9/10 Smoke Bend Crossing | NAVD88 MVN
Channel condition survey | 10/08, 10/11, 8/12 Rich Bend Crossing NAVD88 MVN
Channel condition survey | 10/09, 9/10, 10/11, Belmont Crossing NAVD88 MVN
6/12
Channel condition survey | 8/08, 7/12 Fairview Crossing NAVD88 MVN
Multi-beam survey Aug/Nov 2011 RM 57-RM 68 NAVD88 State of LA7

IMVN=U.S. Army Corps of Engineers, New Orleans District

2MS=Mississippi
3MSL=Mean Sea Level

4NGVD1927=National Geodetic Vertical Datum of 1927

SNAVD88=National Vertica
6RM=River Mile
7LA=Louisiana

| Datum of 1988
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Table 2. Gage and discharge data obtained for geomorphic assessment.

Location Type Date Source

Old River Control Daily stage and Q* 1977-2010 MVN2

Mississippi River @ Tarbert Landing Daily Q and measured Q | 1960-present MVN and Old River
Hydropower report

Mississippi River @ Red River Landing | Daily stage 1960-present MVN

Mississippi River @ Bayou Sara Daily stage 1960-present MVN

Morganza Floodway Daily Q 1973, 2011 MVN

Mississippi River @ Baton Rouge Daily stage 1960-present MVN

Mississippi River @ Baton Rouge Measured Q 2004 -present USGSs3

Bonnet Carré Floodway Daily Q Operation years MVN

Mississippi River @ Carrollton Daily stage 1960-present MVN

Mississippi River @ Belle Chasse Measured Q 2008-present USGS

Baptiste Collette Measured Q 1960-present MVN

Mississippi River @ Venice Daily stage 1960-present MVN

Grand Pass Measured Q 1960-present MVN

West Bay Diversion Measured Q 2004 -present MVN

Cubits Gap Measured Q 1960-present MVN

Head of Passes Daily stage 1960-present MVN

Pass a Loutre, South Pass, Southwest | Measured Q 1960-present MVN

Pass

1Q=discharge

2MVN=U.S. Army Corps of Engineers, New Orleans District

3USGS=U.S. Geological Survey

Table 3. Sediment data obtained for the geomorphic assessment.

Location Type Date Source
Mississippi River @ Tarbert Measured suspended |1975-2011 MVN2
Landing, LAL sediment

Mississippi River @ St. Measured suspended | 1978-2012 USGSs
Francisville, LA sediment

Mississippi River @ Baton Measured suspended | 1975-2012 USGS
Rouge, LA sediment

Mississippi River @ Belle Measured suspended | 1978-2012 USGS
Chasse, LA sediment

Mississippi River Vicksburg, | Bed material 1932 and 1989 Nordin and Queen (1992)
MS4, to Head of Passes

1L A=Louisiana

2MVN=U.S. Army Corps of Engineers, New Orleans District

3USGS=U.S. Geological Survey
4MS=Mississippi
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3.2

Geometric Data Analysis

Analysis of the Mississippi River channel geometry for the study reach was
conducted with hydrographic survey data obtained from the comprehensive
decadal surveys as well as other multi-beam surveys previously documented
in Table 1. Data from these repetitive surveys were used to document river
changes over the study time period and to identify any long-term trends in
morphology. The lower Mississippi River is a dynamic system that can
potentially undergo significant change in channel dimension. These changes
are influenced by the occurrence of large floods, prolonged periods of
extreme high water or drought, as well as anthropogenic activities such as
river-training-structure construction and dredging. Observance of the river
channel at a given location over time may indicate significant variability as
the river responds to the various hydrologic cycles. Even the location or
height of dunes/dune fields on the river bed can result in variability
observed from successive hydrographic surveys. This analysis endeavors to
differentiate between the natural variability of the dynamic river system and
any system-wide, long-term morphologic trends.

Channel geometry changes from successive surveys were determined from
comparative cross sections located in the crossing and pool sections of the
river. Volumetric change between surveys was determined for relatively
short segments along the study reach. These volumetric changes were
utilized in the development of the sediment budget for the lower river
downstream of Tarbert Landing. Profiles of the channel invert for both the
crossing sections and the pool sections were assessed, as well as profiles of
channel conveyance computed at top bank elevation. Profiles of channel
top widths and width/depth ratios were also investigated. Survey contour
maps and bed-elevation-change maps were also created and are available
as Geographic Information System (GIS) grid files.

Additionally, comparative cross sections and volumetric changes were
determined in greater detail for the reach in the vicinity of the Old River
Control Complex (ORCC). The low sill control structure at ORCC began
operation in 1963; thus, the structure represents a river diversion that has
been in place for approximately the entire study period. The geometric and
volumetric changes that are identified for this reach provide an
opportunity to glean unique insights into the effects of a river diversion on
river morphology.
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3.2.1 Hydrographic survey data

The decadal hydrographic surveys used in the geomorphic assessment
contain bathymetric data collected along transects spaced approximately
1,000 feet (ft) apart along the river channel. These data were incorporated
as XYZ data into the GIS database for the geometric analysis. A triangular
irregular network (TIN) surface was developed in the GIS from the XYZ
data, and contour maps for the main river channel were developed from
the TIN. Figure 1 shows an example of a survey TIN and the hydrographic
bathymetric data. Note that the 1983—1985 survey for much of the study
area was taken during a low-water period, and spatial coverage of the
entire channel is incomplete in areas.

Each survey TIN was converted to a grid file in the GIS, and the grid files
of successive surveys were subtracted to determine the bed elevation
change between surveys. Figure 2 shows an example of a bed-elevation-
change grid file.

Figure 1. Example of hydrographic survey bathymetric data and contour map.
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Figure 2. Example of bed elevation change between successive surveys.
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3.2.2 Cross section data

Cross section locations were established in the GIS at the principal river
crossings and pools along the study area. The cross sections were used in
the GIS to extract geometric data from the surveys and to conduct
comparisons of the channel dimension at a specific location over time. The
river-crossings-section locations were determined through inspection of the
survey contour maps to identify the most consistent channel-crossing
pattern over time. Information at these river crossings is considered
important for visualizing stability in the river system as these crossings
generally establish the slope of the river. The pool sections were similarly
identified through contour-map inspection and are generally located in the
bends of the river. In addition to the crossing and pool locations throughout
the entire study reach, more closely spaced cross sections were created in
the vicinity of ORCC from approximately RM 318 to RM 287. These cross
sections were established to achieve a more detailed visualization of channel
dimension adjustment associated with a major river diversion. The location
of the crossing and pool cross sections are shown in Figures 3—5 and
Figures 6—8, respectively, and also listed in Table 4. The location of the
detailed ORCC cross sections is shown in Figure 9 and listed in Table 5.
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Figure 3. Cross section locations for crossings, ORCC to Baton Rouge.
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Figure 6. Cross section locations for pools, ORCC to Baton Rouge.
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Table 4. River Mile (RM) locations of cross sections at crossings and pools.

Crossing Sections Pool Sections

RM 319.3 RM 212.1 RM 102.1 RM 318.0 RM 109.0

RM 315.6 RM 204.1 RM 90.0 RM 309.9 RM 104.0

RM 313.2 RM 197.8 RM 86.3 RM 289.0 RM 101.3

RM 306.8 RM 190.4 RM 78.9 RM 278.9 RM 94.3

RM 294.4 RM 183.2 RM 75.4 RM 269.9 RM 81.6

RM 286.9 RM 175.3 RM 71.3 RM 239.8 RM 77.8

RM 284.4 RM 167.3 RM 65.6 RM 234.8 RM 68.2

RM 281.2 RM 159.2 RM 61.6 RM 222.0 RM 59.2
RM 273.0 RM 153.1 RM 56.2 RM 209.0 RM 43.8
RM 267.0 RM 146.9 RM 49.0 RM 193.5 RM 37.3
RM 260.2 RM 139.8 RM 39.9 RM 186.0 RM 33.0
RM 255.3 RM 134.4 RM 31.4 RM 178.2 RM 21.6
RM 250.8 RM 131.2 RM 24.5 RM 170.6

RM 241.5 RM 126.7 RM 12.6 RM 161.5

RM 236.6 RM 123.9 RM 10.1 RM 156.2
RM 232.0 RM 115.7 RM 7.0 RM 144.6
RM 224.0 RM 109.7 RM 4.3 RM 130.0
RM 219.4 RM 105.4 RM 2.0 RM 118.0

Bathymetric data from each hydrographic survey were extracted at all
cross section locations and imported into spreadsheets for processing and
analysis. Comparative cross section plots were generated to illustrate the
changes in channel dimension at each location. Figure 10 shows an
example of a comparative cross section plot. Plots for all cross sections can
be found in Appendix A. These plots were used to identify any trends or
excessive changes in channel geometry; however, natural variability of the
channel often makes discerning actual trends difficult.
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Figure 9. Location of detailed cross section at ORCC.
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Table 5. RM locations of detailed cross sections at Old River Control

Complex (ORCC).
Location of ORCC Cross Sections
RM 317.6 RM 311.0 RM 304.4 RM 294.0
RM 316.6 RM 310.0 RM 302.4 RM 293.0
RM 315.5 RM 308.9 RM 300.6 RM 292.0
RM 315.0 RM 308.0 RM 299.7 RM 290.0
RM 314.5 RM 307.0 RM 296.9 RM 289.0
RM 313.5 RM 306.2 RM 295.9 RM 288.0
RM 312.1 RM 305.2 RM 294.9 RM 287.0

Figure 10. Example comparative cross section plot, RM 315.6.
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The cross section data were used to compute cross-sectional area,
hydraulic conveyance and top width/depth ratios at each section location.
Cross-sectional area and hydraulic conveyance were computed for the
section below top bank elevation, and approximate top bank widths and
maximum depths relative to top bank elevation were determined to
compute the width/depth ratios. These values were plotted versus river
mile to determine how the characteristics of the river, in terms of these
parameters, change longitudinally throughout the study reach. Results are
discussed later in this report.
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Additionally, the cross section data were used to determine a
representative channel invert elevation that was used to construct a
longitudinal thalweg profile. The representative channel invert elevation
used for the profile was defined as the minimum average bed elevation for
any continuous 500 ft-wide section of the cross section. Each cross section
was analyzed to determine the average bed elevation for a 500 ft-wide
swath as this swath was moved across the channel. The minimum of these
average bed elevations was selected as the representative channel invert
elevation. This process was used to filter out narrow, deep holes in the
river cross section that may not be representative of average bed
conditions. Longitudinal thalweg profiles for both the crossing sections
and the pool sections were constructed from this data. Results are
discussed later in this report.

3.2.3 Volumetric data

Whereas cross section data at specific locations provide a means to assess
relative changes in channel dimension for successive surveys, volumetric
data computed over relatively short reaches of the river provide a sense of
spatial change in the channel. Polygons were constructed in the GIS that
captured the bank-to-bank area of the river for relatively short reach lengths
of approximately 10 miles for the entire study reach. A lid elevation equal to
the average top bank was determined for each polygon. Tools within the GIS
were used to compute the volume for each polygon between the lid elevation
(approximate top bank) and the TIN surface for each hydrographic survey.
The difference in volume for successive hydrographic surveys represents the
volume of erosion or deposition in the polygon for the time period between
the surveys. For surveys that had a different vertical datum, the volumes
were adjusted based on the volume for each polygon resulting for the
average datum shift at the polygon. The polygons for the entire study reach
are shown in Figures 11-13 and listed in Table 6. As was the case for the
cross section analysis, detailed polygons were constructed in the vicinity of
the ORCC to gain more detailed information on the erosion and deposition
patterns associated with a major river diversion. These polygons were
generally 1 RM in length. Figure 14 shows the detailed ORCC volume
polygons.
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Figure 11. Volume polygon locations, ORCC to Baton Rouge.
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Table 6. Volume polygon locations by RM.

Polygon RM Polygon RM Polygon RM
1 320-316.4 12 212-202 23 102-92
2 316.4-306.3 |13 202-190 24 92-83
3 306.3-296 14 190-180 25 83-76
4 296-286 15 180-169 26 76-66
5 286-275 16 169-159 27 66-57
6 275-266 17 159-148 28 57-44
7 266-256 18 148-138 29 44-35
8 256-245 19 138-129 30 35-29
9 245-235 20 129-123 31 29-18
10 235-223 21 123-113 32 18-12
11 223-212 22 113-102 33 12-4

The average annual erosion/deposition volume for successive hydrographic
surveys was computed by dividing the volume change by the length of the
polygon in river miles and the number of years between surveys. The
average annual erosion/deposition rates were used to create maps of
sedimentation rates for the study reach, which are provided in Appendix B.
Additionally, the computed volume changes were converted to an average
annual bed displacement for each polygon by dividing the volume change by
the polygon area. The average annual bed displacements were then plotted
by river mile to provide another description of bed-change trends over time.
These trends were compared to the trends observed with the comparative
cross sections as well as the specific gage trends to gain an understanding of
the stability of the river channel over time.

The primary use of the computed volumetric changes by survey was to
inform the sediment budget developed for the study reach. The sediment
budget utilized suspended sediment data and daily discharge data for
streamgage stations along the river to determine the erosion and
deposition trends by reach. The erosion/deposition volumes for the
polygons that encompassed the reach between computation points of the
sediment budget were summed to determine the reach average changes for
comparison to the sediment budget. The volume-change data provided a
means to verify the results of the sediment budget and when combined
with the specific gage results, formed the basis of the stability assessment
for the study reach.
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Figure 14. Location of ORCC detailed volume polygons.

ORCC Volue Polygon Locations
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3.3 Gage and Discharge Analysis

Perhaps one of the most useful tools available to the river engineer or
geomorphologist for assessing the historical stability of a river system is
the specific gage record. Specific gage records were developed at a number
of stations within the study area. This section provides a list of the gages
used in the specific gage analysis as well as a discussion of the application
and limitations of specific gage records.

3.3.1 Gaging stations

Table 7 provides a list of the gages and time periods used in the
development of the specific gage records. The measured discharges at
Tarbert Landing were coupled with the stage records at Red River
Landing, Bayou Sara, Baton Rouge, and Donaldsonville to develop the
specific gage records at these sites. A 1-day lag was applied for the flows at
Baton Rouge and Donaldsonville based on methodology routinely used by
MVN. Daily stage records were available at Algiers Lock and West Pointe a
LaHache. These stages were coupled with the 1978—2012 discharge
measurements made by USGS at Belle Chasse.

Table 7. Gages used in the development of the specific gage records.

Stage Gage Discharge Gage Time Period
Red River Landing (RM 302.4) Tarbert Landing 1963-2011
Bayou Sara (RM 265.4) Tarbert Landing 1963-2011
Baton Rouge (RM 228.4) Tarbert Landing 1963-2011
Donaldsonville (RM 173.6) Tarbert Landing 1963-2011
Algiers Lock (RM 88.3) Belle Chasse 1978-2012
West Pointe a LaHache (RM 48.7) Belle Chasse 1978-2012

3.3.2 Specific gage analysis: methodology, interpretation, and limitations

This section discusses the methodology, interpretation, and limitations of
specific-gage record analysis.

Methodology. The outcome of specific gage analysis is a graph of the stage
(water-surface elevation above a fixed datum) for one or more selected
discharges at a gauging station, plotted as a function of time. The channel is
assumed to be stable (i.e., neither aggrading nor degrading), demonstrated
by a line fitted through the stage data showing no significant upward or
downward trend. Given the empirical basis for specific gage analysis, a key
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issue is the availability of reliable, measured data that chronicle the
relationship between measured stages and measured discharges semi-
continuously throughout the period being analyzed. In this context, it is
important to note that published mean daily discharges are estimated
values and that only the stage is measured daily (or more frequently).
Consequently, an important limitation to the utilization of stage and
discharge records for specific gage analysis is that only measured data
should be used, and extrapolation is unacceptable.

There are two accepted approaches to performing a specific gage analysis:
(1) the rating curve method and (2) the direct step method. Both methods
have advantages and disadvantages but can produce reliable outcomes
when properly applied. Data from the Red River Landing gage (1976—
2010) were used to demonstrate the two methods (Figures 15 and 16). The
first step in the rating curve method is to establish the stage-discharge
relationship based on measured stages and measured discharges for each
year during the period of record. Annual rating curves were developed for
each year of record in Figure 15, using a polynomial regression analysis to
provide objective and repeatable annual stage-discharge rating curves that
minimize subjectivity.

Figure 15. Specific gage record for Red River Landing (1975-2010) using the rating curve method.

Red River Landing 1975 - 2010 | 41,000,000 cfs
Rating Curve Method #300,000¢fs
(1) .
A
A A LI T
A A A
50 R S S W . 4
A A
40
£
a
b
m
&
30
L 2
@ *, s o717
0*...0“.0”.“0 & 00,0000 *

*
20 T

10 + 1 1 1
1970 1975 1980 1985 1990 1995 2000 2005 2010




ERDC/CHL TR-14-5

Figure 16. Specific gage record for Red River Landing (1975-2010) using the direct step method.
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In Figure 15, stages are only plotted for years when measured discharges
encompassed those used for the specific gage analysis. This explains why
in most specific gage analyses there are gaps in the data series for the
highest and/or lowest discharges. Stage values should not be generated by
extrapolation of annual rating curves because additional points generated
this way cannot add to the strength or statistical significance of the specific
gage record for that discharge but may mask real trends in the measured
data. A disadvantage of the rating curve method is that developing
individual rating curves for each year in a long period of record is time
consuming, and a degree of subjectivity exists in selecting the type of
regression analysis employed.

In the direct step method, data are acquired directly from records of
measured stages and measured discharges rather than via an annual rating
curve fitted to those data (Figure 16). Specific discharges used in the
analysis are the mid-points of bins in the range of discrete measurements of
flow, usually at £5% increments. A range of £5%, a total bin width of 10%, is
recommended to reflect the error band associated with field measurements
classified as good by the U.S. Geological Survey (USGS) (Turnipseed and
Saur 2010). The stages observed for each of the measured discharges in the
bin are then plotted as a function of the date (year) of observation to
produce the specific gage record for that discharge. Unlike the rating curve
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method, the direct step method may generate multiple points for a single
year, depending on the number of times that flows within a given bin were
gaged during that year. An advantage of the direct step method is that
variability between measurements within a given year is evident in the
specific gage plot. The primary advantage of the direct step method is that
the measured data are utilized. For example, hysteresis is common in rating
curves for the Mississippi River, and this is captured by the direct step
method but may be eliminated in the annual rating curve. One disadvantage
of the direct step method is that there may be gaps in the record for some
years due to lack of gaged measurements being made that year for one or
more of the specific discharges selected in the analysis.

For either method, the final step in the specific gage analysis is to fit a
regression line to the points for the discharges in the time series. The
specific gage records were developed using both methods, and the
resulting trends were similar. For this study, only the direct step method is
presented.

Interpretation. Performing a specific gage analysis using either the rating
curve or direct step method is relatively simple and straightforward.
However, interpreting the results of a specific gage analysis is not only
more complicated but also presents more challenges, demanding that the
investigator blends consistent treatment of the results with sound
judgment. For example, it may be unwarranted to use trends established
from the specific gage record for a single gauging station to infer that
changes are taking place at the reach scale. Unless the trend exhibited at
one station is corroborated by evidence from other stations and sources,
the possibility that it is associated with a local change in channel form and
process cannot be discounted.

A common error is to place too much emphasis on short-term fluctuations
in stage, which are unreliable as evidence of physical changes to form or
function of the river. Even for rivers in stable regime, specific gage records
exhibit short-term stage fluctuations due to natural variability in the
fluvial system. Consequently, trends that are not sustained for more than a
few years cannot be interpreted as evidence of either morphological
evolution or response to perturbation.

While close visual inspection of a specific gage record is an essential first
step in its interpretation, statistical analyses are necessary to establish
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whether trends identified in data are significant. The two statistical
parameters commonly employed for this purpose are the coefficient of
determination (R2) and the probability (p-value) that the slope of a
regression line fitted to the data is significantly different from zero. RZis a
measure of the proportion of the change in the Y variable (stage) that is
explained by change in the X variable (time). For example, an R2 of 0.8
implies that 80% of change through time in stage can be explained by the
passage of time. Conversely, an R2 of 0.2 implies that only 20% of the
observed change in stage can be explained by time.

The p-value is the probability that the slope of a least squares regression line
fitted to the data is the product of random chance rather than the outcome
of the influence of the X (independent) variable on the Y (dependent)
variable. As it is highly unlikely that the slope of the regression line will be
precisely zero, it is necessary to select a critical p-value against which to
compare the slope. The critical p-value is set by the analyst, based on the
level of significance at which one wishes to reject the null hypothesis. The
null hypothesis states that although the slope is not zero, the difference
from zero is not statistically significant. For this study, the following criteria
were used for setting the critical p-value and interpreting its meaning with
respect to historical trends in stages:

1. For p-values greater than 0.1, the null hypothesis is accepted, and it is
concluded that the slope of the regression line is not significantly different
from zero (i.e., stage does not change as a function of time).

2. For p-values less than 0.01, the null hypothesis is rejected, and it is
concluded that the slope of the regression line is significantly different
from zero (i.e., stage does change as a function of time).

3. For p-values in the range of 0.01 to 0.1, the test is inconclusive. While stage
does change as a function of time, the rate of change is insufficient to be
confident that it is not the result of random chance.

While selection of these values (0.01 and 0.1) represents common practice
for statistical tests of significance in trend lines, values actually used to
support the contention that stage does (or does not) change through time
may be set by the analyst.

Limitations. Specific gage analyses have long been recognized as an
excellent tool for identifying historical stability (or instability) in the
channel at a gauging station. For example, Blench (1969) wrote thus:



ERDC/CHL TR-14-5 30

3.4

“There is no single sufficient test whether a channel is in-regime. However,
for rivers, the most powerful single test is to plot curves of ‘specific gage’
against time; if the curves neither rise nor fall consistently the channel is
in-regime in the vicinity of the gaging site for most practical purposes.”
However, there are limits to what can reliably be concluded from specific
gage analysis, and these must be recognized, accepted, and borne in mind
at all times. These limits may be defined by four statements of principle
(Watson et al. 2013):

1. A specific gage record represents only the condition of the channel in the
vicinity of the particular gauging station.

2. Specific gage analysis examines past trends and changes and does not a
priori give any indication of future trends or changes.

3. Reliable interpretation of a specific gage record requires sound statistical
treatment of the data, coupled with river-engineering experience.

4. The existence of natural variability and other sources of uncertainty in the
data (e.g., measurement error, temperature effects) must be recognized.

Consequently, while specific gage analysis has long been, and remains, a
valuable tool when attempting to identify causal links between engineering
measures and fluvial responses, it is not a panacea. The results of a specific
gage analysis should never be considered in isolation. The approach is
better suited to assessing channel stability and change when used with other
methods, techniques, and models appropriate to the geographical location,
period of record, and quality of data available. It follows that while specific
gage analysis can help identify historical trends of stage change, it cannot
alone prove the cause of any apparent changes in stage with time.

Dredge Records Analysis

Annual maintenance dredging reports were obtained from the MVN for
the time period 1970 to present. The annual dredge volumes listed in these
reports are based on post-dredge surveys of the dredged areas and
represent the official reported volumes for each contract rather than the
actual production volumes reported in the dredge contractor log. For the
time period 1980 to present, the volumes are reported by general locations
such as crossings in the deep draft navigation channels, Southwest Pass,
etc. The annual dredge volumes were determined for all major river
crossings where periodic maintenance dredging has occurred. Dredge
volumes for Southwest Pass and the Mississippi River above Head of
Passes were reported by ERDC (Sharp et al. 2013) and are referenced here.
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The dredge volumes were investigated to determine trends in maintenance
dredging quantity and frequency during the study time period. The dredge
history for the crossing locations was used to qualitatively inform the
interpretation of the results of the geometric data analysis in terms of
observed cross section changes. It should be noted that the dredge
material from the crossing locations is typically discharged into the deep
pool area immediately downstream of the crossing. Reported annual
dredge volumes can also be a function of available funding and may not
accurately reflect the volume of material deposited in a given year,
potentially limiting the interpretation of relationships between dredge
volume and observed geometric change.

Sediment Data Analysis

An integral component of the geomorphic assessment is the development
of a sediment budget for the study reach. This involves the comparison of
annual sediment loads for the various stations along the study reach using
measured suspended sediment data. Allison et al. (2012) conducted a
sediment budget for the study reach for the years 2008—2010. This study
documented the utility of a sediment budget to identify patterns of
sediment storage and delivery. The goals of this present study are to
complement and expand upon the sediment budget conducted by Allison
et al. (2012) by extending the study time period and by the development of
a Probabilistic Sediment Budget (PSB) that incorporates the uncertainty in
the measured sediment data into the analysis. The development of the PSB
approach is described in this section.

3.5.1 Gauging stations utilized

The gauging stations used for this analysis included Tarbert Landing,

St. Francisville, Baton Rouge, and Belle Chasse. These are the same four
stations used by Allison et al. (2012). Tarbert Landing is maintained by the
USACE while the other three are USGS stations.

3.5.2 Flow records

A record of computed daily discharges for the entire time period is
required for the development of the sediment budget. Ideally, this would
be based on measured discharge data at each station. Unfortunately,
Tarbert Landing is the only long-term discharge gage that covers the entire
time period (1973—2012). Therefore, some means of developing the flow
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record at the other stations was needed. Two methods were considered.
The first method was to use the computed daily discharge data at Tarbert
landing and then lag these data to the downstream stations. Adjustments
were also made for discharges through Morganza and Bonnet Carré
floodways. At St. Francisville, no lag adjustments were made. At Baton
Rouge and Belle Chasse, the flows were lagged one day and two days,
respectively, based on methodology routinely used by MVN. The second
method used was to develop stage-discharge relationships at the gages
using the limited measured discharge at the study gage with the long-term
daily stage data from a nearby gage. For example, measured discharge and
computed daily discharge are only available at Belle Chasse from 2009 to
2012. Therefore, a stage-discharge relationship was developed using these
data and the daily stage data at New Orleans where a long-term stage
record exists. The resulting regression equation was then used to develop
computed daily discharge at Belle Chasse using the daily stage data at New
Orleans for the entire time period from 1973 to 2012. A similar method
was used for Baton Rouge and St. Francisville.

The sediment budget results using the lagged flow approach and the stage
relation approach were compared and found to produce very similar results.
While there were minor differences in the annual sediment load calcula-
tions, the overall trends were essentially the same. It should be emphasized
that there is uncertainty in both methods and that both methods have
advantages and disadvantages. The advantages of the lagged approach are
that it provides a long-term record of flows based on Tarbert Landing, and
therefore, uncertainty associated with measurement differences between
gauging stations is not an issue. The primary disadvantages in this approach
are the uncertainty introduced in the determination of the correct lag time
(particularly the farther downstream the flows are lagged) and the
uncertainty with respect to the Morganza and Bonnet Carré flows or other
unknown losses between stations. The primary advantage of the stage
relation approach is that it uses measured discharge data at each station.
The primary disadvantages include the uncertainty in the computed stage-
discharge relationships and the potential for uncertainty associated with
measurement differences between stations. Additionally, the stage-
discharge relationships, developed for a relatively short time period in
recent years, may not be representative of the early time periods. Weighing
all these factors, and recognizing that the results were so similar, it was
determined that the lagged approach would be used for this study.
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Using the lagged approach, daily discharge values were developed for all
four stations for the period of record being considered. Next, a flow-
duration curve for this time period was developed for each station. The
flow-duration approach used discharge bins of 25,000 cubic feet per
second (cfs). Figure 17 shows an example flow-duration curve for Tarbert
landing.

Figure 17. Tarbert Landing flow-duration curve for 1973-2012,
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3.5.3 Sediment rating curves

Sediment concentration-discharge relationships were developed at the
following four gauging stations: Tarbert Landing (1975—2011), St.
Francisville (1978—2012), Baton Rouge (1975—2012), and Belle Chasse
(1978—2012). The data were segmented into fines (<0.063 millimeter
(mm)) and sands (=>0.063 mm). For the sand concentration analysis, the
regressions were developed for the entire time periods shown in
parentheses above. Developing a regression for this entire time period is
acceptable because no significant increasing or decreasing trends in sand
concentration were observed during this time period (see Section 4.4.1).
Although decreasing trends in the fine concentrations have been observed
from the 1950s to the 1990s, no significant trends were observed in the
post-1990 period (see Section 4.4.1). Therefore, the fine sediment analysis
only covered the period from 1990 to 2012. All variables were heavily right-
skewed, and discharge data were strongly heteroscedastic (i.e., data scatter
increased with larger values). Rating curves were constructed using a log-
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log relationship for sediment concentration and discharge in order to meet
assumptions of residual normality and homoscedasticity (Walling 1977).
Natural logarithms were used to simplify correction of transformation bias
in subsequent steps. Approximation of the normal distribution was
indicated by a Shapiro-Wilk statistic of W > 0.95 (Douglass and Douglass
2004).

Logarithmic transformation cannot be performed on values of zero. Some
of the datasets (particularly the sand concentration data) used in this
study, however, contained sediment concentrations equal to zero. In order
to keep these observations in the regression analysis, 1.0 was added to
each value before taking the natural log. Adding a constant to every
observation has no effect on the calculation of least squares for regression,
but it must be taken into account for back-transformation to the original
scale and/or proper interpretation of regression coefficients.

A linear relationship for sediment concentration and river discharge
tended to overestimate values at higher discharges. Therefore, a second-

order polynomial function was fit to each dataset and significance of the
guadratic term was assessed:

Y=0+6,X+0,X*+¢ (1)

where:

Y = In (concentration)
X = In (discharge)
0, 01 and 02 = regression coefficients
e = random error term with mean of zero.

Parker and Troutman (1989) proposed that the parameter 62 may have a
physically significant interpretation in terms of sediment supply, as follows:

6. = 0, sediment increases at a constant (linear) rate (i.e., unlimited
sediment supply)

0. < 0, sediment increases at a decreasing rate (i.e., limited sediment
supply)

6. > 0, sediment increases at an increasing rate (i.e., increasing sediment
supply at higher discharges).
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For both the sands and the fine regressions, the quadratic terms (6-) were
less than zero, possibly indicating a sediment-supply-limiting phenomenon.
Figure 18 shows the sand concentration-discharge relationships for the four
stations. Figure 19 shows the fine concentration-discharge relationships for
the four stations.

Back-transformation of the arithmetic mean of log-transformed data yields
the geometric mean (i.e., median) in the original scale. Consequently, use of
uncorrected anti-logged predicted values from least squares regression in
the logarithmic scale leads to underestimation by the model as the
geometric mean is smaller than the arithmetic mean for right-skewed data.
The degree to which the model underestimates the concentration depends
on the variability in the data. A correction factor (CF) proposed by Ferguson
(19864a) for the logio-linear relationship with normally distributed residuals
was modified for the loge-quadratic relationship:

SQ
CF = exps[—] (2)
2
n ~ N2
with s? = Z[InCi —InCi| /(n—3) (3)
i=1
where:
s2 = unbiased estimator of the error variance (c?)

(logCi — logCt) = the residual (i.e., observed-predicted concentration) in the log-
scale

the sample size.

=]
Il

Because the denominator accounts for the estimation of three parameters
(6,61, 62), the squared standard error of estimate (s2) for the regression is an
unbiased estimator of o2 (Sprugel 1983; Ferguson 1986a). Adaptation of the
correction factor to the quadratic form was straightforward because the
error term in a polynomial function, as in a linear function, is additive. This
correction factor was appropriate because the residuals from the quadratic
regression met the assumptions of least squares regression (Ferguson
1986b). However, to evaluate these parametric assumptions, the results
were compared with those using a nonparametric correction factor
proposed by Koch and Smillie (1986). Both methods yielded similar
correction factors, and the Ferguson approach was employed thereafter.
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LN Sand Concentration Residuals

3.5.4 Sediment budget

The flow-duration curves were coupled with the sediment-discharge
relationships to produce the annual sediment loads at each of the four
stations. Subtracting the values between adjacent stations provides an
estimate of the amount of sediment that is deposited or scoured between
the gages on an annual basis. A traditional sediment budget such as this
reflects the annual sediment load based on the mean regression of the
sediment data. However, this approach fails to capture the complete
structure of the concentration-discharge relationship (Sivakumar and
Wallender 2004). As shown in Figures 18 and 19, there is much scatter
around the mean regression of the sediment data. Therefore, a Monte Carlo
approach based on the statistical properties of each dataset of regression
residuals was adopted as a means to capture the uncertainty in the data and
to produce a probabilistic sediment budget. The first step in this approach
was to calculate the residuals for the sediment-regression equations for each
station. The residuals are simply the difference between the mean value of
the concentration predicted by the regression curve and the actual observed
concentration value. Loge-quadratic relationships were modeled in SAS 9.3
using the General Linear Model Procedure, and approximation of the
normal distribution by the model residuals was assessed using the
Univariate Procedure (SAS Institute 2012). Figure 20 shows an example
plot of the residuals for the Tarbert Landing sand concentration data.

Figure 20. Residual concentration plot for Tarbert Landing sand data.
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Table 8. Example of generation of adjusted sediment concentrations.

Random Random Random Random Random Random

Number 1 Number 2 Number 3 — | Number 9,998 | Number 9,999 | Number 10,000

-0.985 -0.069 0.067 — |-1.449 0.065 -0.511

Predicted Mean
LN Sand Adjusted Sand | Adjusted Sand | Adjusted Sand Adjusted Sand | Adjusted Sand | Adjusted Sand

Discharge | Concentration | Concentration Concentration | Concentration Concentration | Concentration | Concentration
(cfs) (milligrams/liter) | (milligrams/liter) | (milligrams/liter) | (milligrams/liter) | — | (milligrams/liter) | (milligrams/liter) | (milligrams/liter)
87,500 0.133 0.000 0.064 0.200 - 10.000 0.198 0.000
112,500 |0.914 0.000 0.844 0.981 - 10.000 0.978 0.402
137,500 |1.479 0.494 1.410 1.547 —10.031 1.544 0.968
162,500 |1.912 0.926 1.842 1.979 —10.463 1.976 1.400
187,500 |2.254 1.268 2.184 2.321 —10.805 2.318 1.742
212,500 |2.532 1.546 2.463 2.599 —1.083 2.596 2.020
237,500 |2.762 1.777 2.693 2.830 —11.314 2.827 2.251
262,500 |2.956 1.971 2.887 3.024 —11.508 3.021 2.445
287,500 |[3.122 2.136 3.052 3.189 —11.673 3.186 2.610
312,500 |3.264 2.279 3.195 3.331 —11.815 3.329 2.753
1,387,500 | 4.327 3.341 4.257 4.394 —12.878 4.391 3.815
1,412,500 | 4.323 3.337 4.253 4.390 -1 2.874 4.387 3.811
1,437,500 | 4.318 3.332 4.249 4.385 - 12.869 4.383 3.806
1,462,500 | 4.313 3.328 4.244 4.380 —12.864 4.378 3.802
1,487,500 | 4.308 3.322 4.238 4.375 —12.859 4.372 3.796
1,512,500 | 4.302 3.317 4.233 4.370 —12.853 4.367 3.791
1,537,500 | 4.297 3.311 4.227 4.364 —12.848 4.361 3.785
1,562,500 | 4.291 3.305 4.221 4.358 —12.842 4.355 3.779
1,587,500 | 4.284 3.299 4.215 4.352 —12.836 4.349 3.773
1,612,500 | 4.278 3.293 4.209 4.345 —12.829 4.343 3.767
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As shown in Figure 20, the data are approximately normally distributed
about the mean of zero, satisfying the assumptions of least squares
regression. The random number generation analysis tool in Excel was used
to generate 10,000 randomly generated residuals conforming to a normal
probability distribution with a variance unique to each regression. Ten-
thousand values were generated to ensure that a reasonable range of
possible values was analyzed. Each random number when added to the
predicted mean value produces a new concentration value that falls within
the scatter of the data. This was accomplished for each discharge bin.
Table 8 lists an example of the calculations for the sand concentrations at
Tarbert Landing. The data in the first column are the representative
discharges for each discharge bin for the flow-duration data. The second
column contains the predicted mean value for the Loge of the sand
concentration from the regression curve for each discharge bin. The
remaining columns contain the random numbers and the adjusted concen-
trations. Each random number is added to the predicted mean concentra-
tion value in the second column for each discharge bin to produce an
adjusted concentration value for that random number (i.e., a randomized
location within the scatter of data at that discharge value). For example, in
the fourth column, the random number is —0.069, which when added to the
mean concentration (0.133) for the first discharge bin, produces a concen-
tration value of 0.064. It should be noted that in the smallest discharge
bins, the adjusted concentration result is sometimes negative. In these
instances, the adjusted value is simply set to zero. This is considered to be a
reasonable assumption since this occurs only in the smaller discharge bins
where there is typically little-to-no sand moved. This process simulates
10,000 new sand concentration-discharge values that are normally
distributed about the mean curve with a standard deviation descriptive of
the variability at that station. Figure 21 graphically presents scenarios
representing the median and exceedance frequencies at 10% increments
between 5% and 95%.

The next step in the process was to calculate the annual sediment loads for
all 10,000 scenarios. Each Loge concentration value was back-transformed
to the standard linear scale and then multiplied by the Ferguson bias
correction factor. The concentration values in each bin were then
multiplied by the representative discharge for that bin and the average
number of days per year (from the flow-duration curve) that the flows in
that bin occur to produce the annual sediment load for each bin in
tons/year. These values were then summed up to produce the total annual
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Figure 21. Sequences of sand concentration-discharge curves at Tarbert Landing for the
exceedance frequencies between 5% and 95%.
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sediment load in tons/year for each of the 10,000 scenarios. Table 9 lists
examples of the annual load calculations for Tarbert Landing. Using the
rank and percentile tool in Excel, the percentile rank was then determined
for all 10,000 scenarios. Figure 22 presents an example graph of the
percentiles for the annual sand loads at Tarbert Landing. A key aspect of the
PSB approach is that it provides the user with the flexibility to examine a
range of possible results rather than simply relying on the mean value. As
shown in Figure 22, this approach generates some extreme loads at both the
upper and lower percentile ranges. These loads are the result of the upper
and lower percentile curves in Figure 21. Although these loads are
theoretically possible, it is highly unlikely that they would occur. It is more
likely that there is some range of values on either side of the median (50%)
value that provides a more realistic range of practical results. Defining the
boundaries for this practical outcome range is inherently subjective and
requires engineering judgment. For this study, the 35t and 65t percentile
curves were selected to represent the lower and upper boundaries of the
practical range. As indicated in Figure 21, these curves are fairly close to the
median value curve, representing a rather conservative range. Therefore,
sand concentrations that fall within this range are considered very likely to
occur. Using the 35t to 65t percentile range, the range of annual sand load
results at Tarbert Landing would range from approximately 28 million
tons/year (tons/yr) to 46 million tons/yr.
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Table 9. Example calculations for the annual sands loads for Tarbert Landing,
Scenario Scenario Scenario

Mean Curve | Scenario 1 |Scenario 2 |Scenario 3 9,998 9,999 10,000
Discharge |SandlLoad |SandLoad |SandLoad |Sand Load Sand Load |Sand Load |Sand Load
(cfs) (tons/yr) (tons/yr) (tons/yr) (tons/yr) — | (tons/yr) (tons/yr) (tons/yr)
87,500 0 0] 0] 0 - 10 0 0
112,500 448 0 398 500 - 10 497 148
137,500 5,745 1,082 5,247 6,263 - |53 6,241 2,766
162,500 22,462 5,942 20,697 24,296 - 12,293 24,221 11,909
187,500 52,568 15,757 48,634 56,654 7,626 56,487 29,052
212,500 142,578 45,500 132,203 153,353 - 124,059 152,914 80,562
237,500 218,897 72,460 203,247 235,152 - 140,117 234,489 125,348
262,500 293,254 99,378 272,534 314,775 56,557 313,898 169,400
287,500 321,371 110,668 298,852 344,759 - 164,131 343,806 186,767
312,500 406,547 141,621 378,233 435,954 - | 83,108 434,756 237,304
1,387,500 |207,140 75,580 193,079 221,743 - 146,522 221,148 123,095
1,412,500 |218,704 79,791 203,857 234,123 - 149,110 233,495 129,962
1,437,500 |239,259 87,281 223,017 256,129 - | 53,714 255,441 142,171
1,462,500 |233,240 85,075 217,405 249,687 - 152,351 249,016 138,588
1,487,500 |54,457 19,861 50,760 58,297 - 112,220 58,141 32,356
1,512,500 | 18,356 6,694 17,109 19,650 - 14,118 19,597 10,905
1,537,500 |37,102 13,528 34,583 39,719 - 18,321 39,612 22,042
1,562,500 |18,739 6,832 17,467 20,061 - 14,202 20,007 11,132
1,587,500 |9,460 3,448 8,818 10,127 - 12,1420 10,100 5,620
1,612,500 | 38,188 13,917 35,594 40,882 - | 8,557 40,772 22,683
Total Annual
Load 35,751,909 | 12,942,670 |33,314,179 | 38,283,762 |- |7,904,949 38,180,552 | 21,180,605

(tons/yr)




ERDC/CHL TR-14-5

43

Annual Sand Load (tons/yr)

Figure 22. Percentiles for the 10,000 scenarios of annual sand loads at Tarbert Landing.
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With a traditional sediment budget, the mean values for the annual
sediment loads at two adjacent stations are simply subtracted from each
other. However, with the PSB, there are thousands of potential combina-
tions of values that can be considered. The change in the annual sediment
load for the three reaches (Tarbert Landing to St. Francisville,

St. Francisville to Baton Rouge, and Baton Rouge to Belle Chasse) is
determined for each of the 10,000 scenarios by subtracting the annual loads
for each scenario. Table 10 lists an example of the calculations for the
Tarbert Landing to St. Francisville reach. The percentile rank is then
determined for all 10,000 scenarios of annual load changes. Figure 23
presents an example graph of the percentiles for the annual sand load
changes for the Tarbert Landing to St. Francisville reach. The next step is to
determine the boundaries of the practical outcome range that corresponds
to the selected percentile range from the individual station curves, which for
this study are the 35t and 65t percentile values. This is accomplished by
subtracting the 35t and 65t percentile values at St. Francisville from the
65t and 35t percentile values at Tarbert Landing, respectively. This
provides the maximum and minimum values for the annual sand load
change within the 35t and 65t percentile curves. Table 11 lists the results
for this example. As shown in Table 11, the minimum and maximum values
for the annual sand load change within the 35t to 65t percentile range are -
10.1 million tons/yr and 24.5 million tons/yr, respectively. These values can
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then be used to define a range of practical outcomes along the percentile
curve as indicated by the vertical red lines in Figure 23. Note that this
results in a range from approximately the 29th to 72nd percentile on the
annual sand load change curve in Figure 23.

Table 10. Example calculations for the annual sand load change for the Tarbert Landing
to St. Francisville reach.

Annual Sand Loads Annual Sand Change
(tons/yr) (tons/yr)
Tarbert Landing Minus St.
Scenario Tarbert Landing | St. Francisville — | Francisville
1 12,942,670 22,272,777 - 1-9,330,106
2 33,314,179 17,384,431 - 115,929,748
3 38,283,762 88,955,715 - 1-50,671,953
4 10,867,328 12,745,617 - 1-1,878,289
5 11,114,993 24,017,510 - 1-12,902,517
6 89,857,494 29,761,734 - 160,095,760
7 15,226,524 22,105,954 - |-6,879,431
8 122,531,266 5,686,419 - 1116,844,847
9,993 34,880,982 75,840,889 - | —40,959,907
9,994 50,063,321 17,608,849 - 132,454,473
9,995 28,479,510 120,140,622 - 1-91,661,111
9,996 37,320,550 10,735,718 - 126,584,832
9,997 72,749,595 40,161,355 - 132,588,240
9,998 7,904,949 19,426,770 - 1-11,521,821
9,999 38,180,552 16,849,812 - 121,330,740
10,000 21,180,605 50,056,180 - | —28,875,574
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Figure 23. Percentiles for the 10,000 scenarios of annual sand load change between Tarbert Landing and

St. Francisville.
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Table 11. Calculation of annual sand load change between Tarbert Landing and
St. Francisville for the 35% and 65t percentiles.

. Tarbert-St. Francisville
Tarbert Landing o Sand Load Change (tons/yr)
Annual Sand St. Francisville
Load Annual Sand Minimum Maximum
Percentile | (tons/yr) Load (tons/yr) (35%-65% (65%-35%)
35th 28,100,000 21,600,000
-10,100,000 24,500,000
65t 46,100,000 38,200,000

A test was conducted to determine how sensitive the results were to the

random number generation. Figure 24 provides an example of the test for

the St. Francisville to Baton Rouge reach. A completely different set of
10,000 random numbers was generated for St. Francisville and Baton

Rouge using the statistical parameters (mean and standard deviation) for

each station, and a new PSB analysis was conducted. Figure 24 presents

the results for the annual sand load changes between St. Francisville and
Baton Rouge for these two different sets of random numbers. Although the

individual values for each scenario were different, the percentile values

were almost identical. This suggests that the PSB approach is not sensitive

to the random number generation.
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Figure 24. Annual sand load change between St. Francisville and Baton Rouge for two sets of random numbers.
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3.5.5 Effective discharge analysis

Wolman and Miller (1960) identified that the flow doing most bed-material
transport over a period of years may be taken to represent the dominant or
channel forming discharge. The peak in a histogram of bed-material load
versus discharge developed using the principles of magnitude and frequency
analysis defines the flow doing the most transport. Andrews (1980) termed
this flow the effective discharge. The first step in the effective discharge
calculation is to select a specific period of record and then divide the flows
into a number of classes. Next, a sediment transport-discharge rating curve
is developed. The total amount of sediment (bed material) transported by
each flow class is then calculated. This is achieved by multiplying the
frequency of occurrence of each flow class by the median sediment load for
that flow class. A more detailed description of this methodology is described
in the Federal Interagency Stream Corridor Restoration Handbook
(Federal Interagency Stream Restoration Working Group (FISRWG) 1998)
and by Biedenharn et al. (2001).

Effective discharge analysis was conducted at Tarbert Landing for various
time periods to assess temporal trends in the effective discharge results.
The time periods analyzed include 1955—-1972, 1973—1992, 1992—2012,
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3.6

3.7

and 1973—2012. The sand regressions were combined with the flow-
duration data to produce effective discharge curves for each time period.

Events Timeline

A chronology of the major river engineering, hydrologic, and anthropogenic
events within the study reach was developed for the study time period. The
chronology was largely based on the chronology reported by ERDC in the
West Bay Sediment Diversion Effects report (Sharp et al. 2013). The West
Bay report chronology was augmented with additional information on dike
and revetment construction obtained from MVN. Information gleaned from
this task was primarily used to add insight into the interpretation of the
results from other analyses presented in this report.

Integration

The integration component of the geomorphic assessment blends the
results from all of the analyses conducted as part of the geomorphic
assessment and forms the basis for the comprehensive understanding of
the study reach. The results from each analysis are combined to establish
the trends in river morphology and sedimentation from a historical
perspective. In some cases, the trends indicated by the different
techniques are in agreement. However, in many instances, the techniques
may produce conflicting results. The techniques utilized in the geomorphic
assessment (channel geometry comparisons, specific gage records, and
sediment budgets) each have inherent uncertainty that can vary spatially
and temporally. Consequently, the confidence placed on a specific
technique may vary depending upon the reach in question or the time
period being considered.
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4.1

Results

Geometric Data Analysis Results

The geometric data analysis reveals that the lower Mississippi River is
constantly changing in response to extreme hydrologic events and river-
engineering activities. These changes can range from significant episodes
of channel erosion and deposition to very subtle changes over time. It is
evident that there is natural variability in the river system between survey
time periods that does not represent a discernible long-term trend or
change in river morphology. The geometric data analysis focused on
identification of long-term changes in the system; however, morphological
changes on a local scale can be investigated for site-specific areas with the
maps and products developed in the analysis.

4.1.1 Comparative cross sections analysis

Comparative channel cross section plots for the various surveys at crossing
and pool locations along the study reach were investigated to determine
notable changes in channel depth, width, and shape. The comparative
plots indicate areas of both stable and variable channel dimensions.
Channel depth fluctuations of 10—15 ft were not uncommon between
successive surveys, and identification of trends in geometry change was
often difficult due to this natural variability of the channel. Appendix A
displays the cross sections for the crossing locations.

The cross section plots for the crossing locations generally indicated more
variability from survey to survey than the plots for the pool sections.
Figures 25 and 26 present examples of this variability. Figure 25 shows the
cross section plots at RM 319.3 above Head of Passes (AHP), located
upstream of Old River Control Complex and near the upstream end of the
study reach. Channel depths are shown to vary over an approximate 20 ft
range with no discernible trend or pattern, but the general shape of the
section is consistent. Figure 26 shows the cross section variation at RM
78.9 AHP, the crossing just upstream of English Turn. This plot indicates a
shift in the channel thalweg location since the 1963 survey. Although the
thalweg position has shifted, the thalweg has deepened such that the
channel in 2004 is near the 1963 depth.
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Figure 25. Comparative cross sections for the Mississippi River crossing at RM 319.3
above Head of Passes (AHP).
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Figure 26. Comparative cross sections for the Mississippi River crossing at RM 78.9 AHP.
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Figures 27 and 28 present examples of observed stability in the crossings
geometry. Figure 27 presents the comparative cross sections for the
crossing at RM 236.6 just upstream of Baton Rouge harbor. The cross
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sections indicate the channel bed fluctuates as much as 10 ft between
successive surveys, yet the overall dimension and shape of the section are
stable. The percent change in cross-sectional area below top bank
elevation between surveys is no more than 2%. Figure 28 shows the
comparative cross sections for the crossing at RM 126.7 just downstream
of the Bonnet Carré floodway. The crossing at this location has shown little
movement spatially over time, and the bed elevation and cross section
shape are very stable over time. This location coincides with a study
reported by Allison et al. (2013) of water and sediment surveys conducted
in the vicinity of Bonnet Carré floodway during the Mississippi River
record flood of 2011. Allison observed as much as 6 to 7 meters (m) of
accretion downstream of the floodway as a result of floodway operation
from early May to late June 2011. Subsequent bathymetric surveys
conducted by Allison in 2012 as part of the Mississippi River Hydro study
indicate that most of the accreted area has since been eroded. The
comparative cross sections, along with Allison’s findings, indicate that the
river downstream of the floodway will remove material deposited during
the relatively infrequent operation of the floodway and readjust to some
stable, equilibrium state.

Situations were observed where a shift in the channel thalweg resulted in a
different channel shape but with no appreciable change in cross section
area. Figure 29 shows the comparative cross sections for RM 219.4 AHP at
the Sardine Point crossing. The plot indicates that the channel thalweg
shifted from the left descending bank in 1963 to the right descending bank
in 1992. However, the percent change in cross-sectional area between
successive surveys is minimal. Figure 30 shows the comparative contour
maps for the area.

Since the comparative cross sections were extracted from the survey TINs
at a set location, caution must be exercised when interpreting the changes
in depth and shape. Shifts in crossing or pool location from survey to
survey can give the illusion that significant changes in depth have
occurred, but in reality the pool location has shifted slightly upstream or
downstream. In cases such as this, the controlling elevation at the crossing
may not have actually changed. Figure 31 shows an example of this. The
comparative cross section plot for the crossing at RM 123.9 AHP seems to
indicate deposition as much as 50 ft has occurred since 1975. However,
inspection of the bed elevation change maps for this location reveals the
pool shifted downstream after 1975, as shown in Figure 32. The apparent
changes at this cross section reflect a shift in pool location rather than a
change in the controlling elevation of the crossing.
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Figure 27. Comparative cross sections for the Mississippi River crossing at RM 236.6 AHP.
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Figure 28. Comparative cross sections for the Mississippi River crossing at RM 126.7 AHP.
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Figure 29. Shift in the Mississippi River channel thalweg with no appreciable change
in cross-sectional area at RM 219.4 AHP.
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Cross-sectional area below the top bank elevation was computed for each
crossing section. The percent change from survey to survey was computed
and is listed in Table 12. The 1983 survey was not used for these computa-
tions because the limited spatial coverage of the survey did not provide a full
section up to top bank elevation. The percent change in cross section area
from the 1963—1975 surveys in excess of 15% indicates an erosion of the
channel (positive percent change) for the sections upstream of the ORCC
low sill structure entrance channel. This change was also noted in the bed-
change maps for this time period. This is due to the drawdown effect from
the low sill structure being placed in operation in 1963, as well as the
increased outflow during the 1973 flood due to structural damage. This will
be addressed in more detail later in the report as part of the ORCC detailed
analysis. Percent changes for the reach between ORCC and Baton Rouge
indicate a pattern of deposition (negative percent change) to no change. The
greatest change indicating excessive deposition occurred for the cross
section at RM 224.0 AHP located at Redeye Crossing, which has historically
been the most problematic crossing in terms of required maintenance
dredging for navigation. The percent changes for the reach downstream of
Donaldsonville, Louisiana, near RM 175.0 AHP to Head of Passes indicate
predominantly erosion (positive percent change) throughout the reach. A
possible explanation for this response is that the period of the late 1950s to



53

ERDC/CHL TR-14-5

09 - 05 Il

05 - ot Il

0F - 0c

0% - 0z
0z-oL]
oL-0C1
0-0-C]
0L- - 02-]
0¢- - 0e- [
0¢- - 0[]
0% - 05[]
05- - 09- [
09- - 0.- Il
0/- - 02- N
0g- - 06- Il
06-- 00 N
004~ - 0LL-
Obb-- 02
0Z->[]
188J Ul UolleAa|]
puaba

& fanins €961

‘dHV 76T Z Y U104 SUIpIeS 18 UoNeoo| Sam{ey) JoAyY IddISSISSI a1 Ul YIYS *OE 4nSi4




ERDC/CHL TR-14-5

54

Figure 31. Example of false indication of deposition in the Mississippi River due to a shift
in pool location at RM 123.9 AHP.
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the early 1970s was characterized by relatively low-to-moderate hydrologic
extremes, with no major flood events occurring during that time. During
this time, this reach of the river may have adjusted to a lower hydrologic
regime where some of the crossings and pools were filled with sediment.
The major floods of 1973 and 1975 were of such magnitude that this reach of
the river was significantly altered through channel enlargement.
Additionally, anecdotal information suggests that coarse bed material was
dredged from this reach of river and used as fill material for construction of
nearby Interstate 10 during the 1960s and 1970s. Regardless of the cause,
this reach experienced a fairly uniform enlargement of the channel during
the time period.

Percent changes in cross-sectional area from the 1975—1992 surveys for
the crossing sections at RM 315.6 and 313.2 AHP indicate a potential
response due to the opening of the auxiliary structure at ORCC. The
percent change of 15% for section at RM 313.2 AHP indicates erosion of
the channel that may be due to drawdown at the auxiliary structure after
operation began in 1986. However, the section at RM 315.6 AHP upstream
of the low sill structure shows a deposition trend that may have resulted
from less frequent operation of the low sill structure. The percent changes
for the remainder of the reach downstream of ORCC to Baton Rouge
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Figure 32. Shift in pool location between surveys can give false indication of depth change.
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Table 12. Percent change in cross-sectional area for Mississippi River crossing sections.

RM of Percent Change in Cross-Sectional Area below Top Bank Elevation
Crossing Section | 1963-1975 1975-1992 1992-2004 2004-2012
319.3 19.2% -1.9% -8.1%

315.6 22.5% -3.2%
313.2 -2.3% 15.0% -11.9% 0.2%
306.8 -7.4% 3.7% -0.1% 0.2%
294.4 -1.0% -0.8% -7.4% 0.0%
286.9 -8.6% -4.7% 4.8%

284.4 -0.3% 4.4% -0.4% -1.5%
281.2 -2.3% 3.6% -2.9% _
273.0 -12.7% 0.1% 4.1% -3.6%
267.0 0.5% 4.0% -0.6% -4.5%
260.2 1.7% 3.9% 2.1% 2.2%
255.3 -10.5% 1.8% 17.3% -7.2%
250.8 -13.9% 0.1% 5.8%

241.5 -2.2% -1.6% 0.9% -3.1%
236.6 -0.7% -1.1% 1.6% 2.4%
232.0 3.2% 0.6% -1.1%

219.4 -0.1% 1.6% 1.5%

2121 -11.7% 16.7% -2.8%

204.1 -5.5% 5.1% -4.3%

197.8 -2.4% 3.1% -2.5%

190.4 -0.4% 4.9% -2.6%

183.2 0.5% 3.0% -2.8%

175.3 1.8% 4.0% -6.4%

167.3 7.6% 5.3% -4.7%

159.2 6.8% 5.4% -2.2%

153.1 -1.5% -2.1%

146.9 2.7% -3.9%

139.8 0.9% 6.5% -3.8%

134.4 6.5% -6.4% -1.6%

131.2 2.1% -1.9% -4.3%
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RM of Percent Change in Cross-Sectional Area below Top Bank Elevation

Crossing Section | 1963-1975 1975-1992 1992-2004 2004-2012

126.7 3.6% 0.3% -0.6%

123.9 -6.6%

115.7 -0.2%

109.7 -5.8% -1.7%

105.4 -4.1% -3.9% 2.6%

102.1 -2.1% -0.2%

90.0 ~0.4% _

86.3 -5.2% 0.3%

78.9 4.1% 4.2%

75.4 2.6% 0.5%

71.3 2.1% -1.1%

65.6 -1.5% 2.5%

61.6 -4.8% 4.6% 0.2%

56.2 3.0% -0.9%

49.0 4.7% -0.3%

39.9 4.8% 0.6%

31.4 -2.3% -0.3%

24.5 -3.5% 1.7%

12.6 -4.2% 0.6%

10.1 2.0% -71% -5.6%

7.0 -9.2% -7.1% -3.3%

4.3 -9.3% -9.2% -8.8%

2.0 -6.4% -4.0%

Legend for percent change in cross-sectional area. Positive change indicates erosion; negative change
indicates deposition.

Greater than 15%

10% to 15%

5% to 10%

5% to -5%

-5% to -10%

-10% to -15%

Greater than -15%
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indicate little change. Downstream of Baton Rouge, the percent changes
indicate slight channel enlargement to no change. Exceptions to this were
noted at RM 224.0 and 212.1 AHP, the locations of Redeye Crossing and
Medora Crossing, respectively, where channel enlargement was greater
than other places in the reach. An additional exception occurs at RM 123.9
AHP where the excessive decrease in cross section was caused by a shift in
the pool location between the surveys that gives a false indication of
significant deposition. The percent change observed for the sections at RM
7.0, 4.3, and 2.0 AHP indicates a pattern of deposition downstream of
Venice, Louisiana, that was similarly identified by Sharp et al (2013) as
part of the West Bay Sediment Diversion Effects study. Channel geometry
analysis in that study indicated a deposition trend for the Mississippi River
downstream of Venice that began in the late 1970s to early 1980s.

The percent changes in cross-sectional area from the 1992—2004 surveys
indicate a continued deposition trend in two locations, in the vicinity of
ORCC and downstream of Venice. The reductions in area for the sections
at RM 319.3, 315.5, and 313.2 AHP suggest deposition that is most likely
attributable to initiation of hydropower operation at ORCC in 1990. Little
et al. (2012) reported that the hydropower channel is the least efficient of
all the ORCC structures at diverting sand from the Mississippi River. The
sediment diversion characteristics of the hydropower facility result in
deposition in the Mississippi River immediately downstream of the
hydropower channel. In the vicinity of Venice and downstream, the
deposition trend continued at rates similar to those observed from the
1975—1992 surveys. For the remainder of the study, reach percent changes
in cross-sectional area were minimal.

Percent changes in cross-sectional area from the 2004—2012 surveys are not
available for the entire study reach due to the limited coverage of the 2012
surveys. Where sufficient survey coverage does exist, the percent changes in
area generally indicate little-to-no change in the vicinity of ORCC and
continued deposition near Venice, but at a somewhat lesser rate.

Comparative cross sections for the pool locations within the study reach
indicate depths in the pools can fluctuate by 10—20 ft between surveys, but
the general dimension and shape of the sections is fairly consistent. Since
the pool sections are usually located in a bend of the river, evidence of
lateral shift prior to construction of revetments can often be observed. In
general, channel dimension at the pool sections was more consistent than
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observed for the crossing sections. This seems likely, given that erosion
and deposition are much more active in the crossings than in the pools.
Appendix A shows the comparative cross sections for the pool locations.
Examples of the observed channel dimension changes for the pool sections
are presented in the following paragraphs.

The comparative cross sections for the pool section at RM 318.0 AHP are
shown in Figure 33. This section is located at the most upstream extent of
the study reach upstream of ORCC. The dimension of the section is typical
of pool locations in a meandering fluvial system. Deposition on the point
bar side along with a slight decrease in channel depth is observed from
1975 to 2012, and the percent change in cross-sectional area between
surveys indicates a fluctuation within + 7%.

Figure 33. Comparative cross sections for pool located at RM 318.0 AHP.
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The cross section plot for the pool section at RM 309.9 AHP shown in
Figure 34 illustrates the lateral changes that have occurred in some
locations within the study area. This section is located downstream of the
auxiliary structure channel and is in an area where the channel has shifted
towards the left descending bank, and the opposite point bar has inflated
due to sediment deposition. The magnitude of the lateral shift is approxi-
mately 400-500 ft, but channel depths have not significantly increased or
decreased beyond normal levels of fluctuation. The Ft. Adams revetment is



ERDC/CHL TR-14-5

60

located in this reach and has stabilized the river against further lateral shift.
Additional detailed analysis in the vicinity of ORCC will be presented later
in the report.

Figure 34. Comparative cross sections for pool located at RM 309.9 AHP.
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Figure 35 shows the comparative cross sections for the pool section at RM
269.9 AHP just downstream of St. Maurice Towhead and in the vicinity of
Red Store Landing revetment. The sections indicate a slight decrease in
channel depths from 1963 to 2004 and some deposition along the opposite
point bar, but percent changes in cross-sectional area below top bank are
minor. The position of the pool at this location has been very stable over
the time range of all surveys. This is an example of slight variability in
channel dimension that occurs over time.

An example of the variability observed in the channel dimension is shown in
Figure 36 for the pool section at RM 239.8 AHP. This pool is located in a
very tight bend in the river upstream of Baton Rouge harbor and in the
vicinity of the Allendale Bend revetment. The channel depth at this location
has fluctuated as much as 25—30 ft over the survey period, and some lateral
shift occurred until the 1983 timeframe when the revetment stabilized the
location. Also notable is the deflation of the opposite point bar that occurred
subsequent to the 1992 survey, which resulted in an approximately 16%
increase in cross-sectional area below top bank elevation. However, no
definitive trends in channel dimension change are identified.
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Figure 35. Comparative cross sections for pool located at RM 269.9 AHP.
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Figure 36. Comparative cross sections for pool located at RM 239.8 AHP.
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The comparative cross section plot for the pool section at RM 77.8 AHP at

English Turn is shown in Figure 37. The location is in a tight bend in the

river where the pool position has been very stable over the survey periods.

Channel depths have fluctuated between the surveys, but in general, the
overall dimension of the cross section has remained stable.
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Figure 37. Comparative cross sections for pool located at RM 77.8 AHP
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The percent change in cross-sectional area below top bank elevation for all
pool sections was computed and is listed in Table 13. In terms of
generalized trends, the percent changes in area between the 1963 and 1975
surveys suggest erosion of the channel downstream from approximately
RM 200 AHP. This is similar to the trend observed in the crossing
sections. Change in cross-sectional area observed between the 1975 and
1992 surveys does not suggest any particular trend or pattern. Significant
change in the form of random erosion and deposition can be seen for the
pool at RM 234.8 AHP. This pool is located in the extremely tight bend at
Wilkerson Point just upstream of Baton Rouge. Area change between
successive surveys is of the greatest magnitude observed at any section,
but there is no discernible pattern or trend. This random change suggests
the pool temporarily stores sediment that can be flushed during times of
high discharge. The area change from the 1992 survey to the 2004 survey
indicates a general depositional trend throughout the study reach.

In addition to the comparative cross section geometry analysis, the cross
section data were used to construct profiles of the channel invert and the
hydraulic conveyance for the study reach. A representative channel invert
elevation was determined for each crossing and pool section by computing
the minimum average bed elevation over a given 500 ft width of channel.
The minimum average elevations were plotted longitudinally to create the
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Table 13. Percent change in cross-sectional area for Mississippi River pool sections.

Percent Change in Cross-Sectional Area below Top Bank Elevation

RM of Pool
Section 1963-1975 1975-1992 1992-2004 2004-2012
318.0 6.3% 1.2% -7.2% -6.4%
309.9 -1.4% 7.3% -11.7% -8.0%
289.0 -10.3% 5.6% -6.4% 1.7%
278.9 3.2% -4.0%
269.9 -0.5% -3.0% 0.7% 2.3%
239.8 -5.6% 6.6% 16.2% -3.5%
234.8 34.0% -9.7% 16.0%
222.0 -1.9% -0.9% -1.1%
209.0 -13.6% 6.0%
193.5 -6.2% -7.9%
186.0 6.9% -1.3% -2.6%
178.2 15.8% 1.4% -1.4%
170.6 7.1% -3.9% -8.3%
161.5 4.8% -9.8% 3.3%
156.2 4.0% 0.9% -5.6%
144.6 -1.1% 7.2% -3.9%
130.0 3.4% 1.4% -1.5%
118.0 -12.2% -5.1%
109.0 -0.5% -3.0% -1.2%
104.0 19.8% -8.2% 0.1%
101.3 7.6% -3.7% 1.3%
94.3 2.3% 3.2% -3.8%
81.6 3.1% 2.3% 2.2%
77.8 6.5% -4.8% -0.7%
68.2 6.0% -3.7% -1.8%
59.2 -9.9%
43.8 -6.5%
37.3 5.3%
33.0 -1.9%
21.6 -6.3% -2.4%
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Percent Change in Cross-Sectional Area below Top Bank Elevation
RM of Pool

Section 1963-1975 1975-1992 1992-2004 2004-2012

Legend for percent change in cross-sectional area. Positive change indicates erosion; negative change
indicates deposition.

Greater than 15%

10% to 15%

5% to 10%

5% to -5%

-5% to -10%

-10% to -15%

_ Greater than -15%

channel invert profile. Figure 38 presents the plot of the representative
channel invert for the crossing sections. The profile of the low-water survey
conducted by ERDC in 2012 is also shown in the plot. The large, downward
spike in the invert profile is caused by the sections at RM 123.9 AHP for the
1963 and 1975 surveys where a shift in the location of the adjacent pool
resulted in lower elevations. Although there is variability in the data, the
profile indicates that the slope of the river has been consistent over the time
range of the surveys. The slope of the river is fairly uniform downstream of
ORCC to approximately the location of Belle Chasse. From that point, the
slope of the river flattens to approximately RM 35. At this point, there is a
distinct change in gradient, and the invert profile assumes an adverse slope
of approximately 1 ft per mile downstream to Head of Passes at RM O
(zero). The point of beginning of the adverse slope generally coincides with
the location where the flood control levee along the left descending bank
ends, and loss of discharge from the Mississippi River through crevasses
and distributaries increases. This break point in gradient may also represent
the location where the river approaches a threshold level of minimum
energy for sediment transport.

Average invert profiles for both the crossing sections and the pool sections
for all surveys are presented in Figure 39. The plot illustrates the relation-
ship in depth between the crossing and the pools within the study reach.
The difference in depth between the crossings and pools is as much as 50 ft.
This indicates that the crossings provide the principal control on the slope
of the river and that the pools have ample sediment storage capacity.
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Figure 38. Mississippi River profiles of representative channel invert.
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Figure 39. Mississippi River profiles of average channel invert for crossing and pool sections.
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The conveyance at top bank elevation for the crossing sections was
computed for all surveys. Conveyance was computed as AR2/3, where A is
the cross-sectional area, and R is the hydraulic radius. The conveyance
gives an indication of the hydraulic efficiency of the channel. Figure 40
presents the conveyance for the crossing sections along the study. The plot
indicates that the highest hydraulic conveyance of the channel is located
from approximately RM 140 to 35 AHP.

Figure 40. Mississippi River profiles of hydraulic conveyance for crossing sections.
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4.1.2 Volumetric analysis

The cross section data analysis provides information on the channel
geometry at a given location. Natural variability in the river system, such as
the passage of dunes during floods, can result in significant fluctuation in
the channel bed at a given location. The degree of fluctuation in the channel
bed also varies longitudinally along the channel. Volume computations for
the channel over a reach will capture average changes that are more
representative of reach conditions than single cross sections.

Volume below top bank elevation for the polygons described in Section 3.2
was computed for each hydrographic survey. The exception is the 1983—



ERDC/CHL TR-14-5 67

1985 survey, which did not have sufficient spatial coverage to the top bank
of the channel. The difference between successive surveys indicates the
volume of erosion or deposition for the time period. The volumes were
divided by the lengths of the polygons in river miles and by the time period
between surveys in years to provide average annual values by mile. Table 14
presents the tabulated results.

Graphs of the average annual erosion/deposition volumes per river mile
for each survey period are presented in Figures 41—44. The graph for the
period 1963—1975 shown in Figure 41 indicates a general trend of channel
erosion from approximately RM 210 AHP to the downstream end of the
study reach. Upstream of RM 210 AHP there is a trend of deposition, with
the exception of the polygon from RM 320 to 316.4 AHP. This polygon is
located upstream of the entrance channel for the low sill structure at
ORCC, and the volume change indicates significant erosion that occurred
after the structure began operation. The results for the survey period
1975—-1992 shown in Figure 42 indicate no discernible overall pattern of
erosion or deposition for the study reach. However, the observed changes
for the polygons from ORCC to Bayou Sara (RM 320—256 AHP) are
opposite of those observed from 1963 to 1975, which may indicate
adjustment of the river back toward an equilibrium condition. The trend
from Bayou Sara to near Bonnet Carré floodway (RM 126 AHP) is
primarily deposition while the trend from Bonnet Carré downstream is
primarily erosion. The results for the survey period 1992—2004 shown in
Figure 43 indicate a predominance of deposition for the entire study reach.
The largest magnitude of deposition occurs for the polygons from RM 320
to 306 AHP in the vicinity of ORCC. The deposition is believed to be a
result of the initiation of hydropower operation at ORCC. The results for
the survey period 2004—2012 shown in Figure 44 are limited due to the
incomplete coverage of the 2012 survey. However, the available data
indicate a continuation of the deposition downstream of ORCC and
suggest that the deposition zone may be shifting farther downstream.

The computed erosion and deposition volumes were also evaluated as an
average annual bed displacement for each polygon. The average annual bed
displacement was computed by dividing the volume change between
surveys by the surface area for each polygon and the years between surveys.
This method results in a uniform annual bed displacement over the entire
polygon area. Although the bed displacement will likely never be uniform
over the entire river channel, it is indicative of the general trends of erosion
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Table 14. Average annual volume of erosion/deposition per river mile.

Average Annual Volume of Erosion/Deposition per River Mile
Polygon Range (cubic yard/mile/year (cy/mile/yr))
by RM 1963-1975 1975-1992 1992-2004 2004-2012
320-316.4 -437,000 101,000 228,000
316.4-306.3 161,000 -74,000 279,000 -70,000
306.3-296 7,000 -28,000 -15,000 404,000
296-286 250,000 -36,000 38,000 127,000
286-275 39,000 -62,000 43,000 76,000
275-266 82,000 16,000 -8,000 -19,000
266-256 -10,000 -21,000 35,000 -96,000
256-245 112,000 132,000 -118,000 159,000
245-235 46,000 114,000 -23,000 42,000
235-223 71,000 -42,000 60,000
223-212 34,000 30,000 51,000
212-202 -19,000 22,000 62,000
202-190 -76,000 68,000 115,000
190-180 -32,000 -26,000 123,000
180-169 -87,000 48,000 141,000
169-159 -181,000 8,000 112,000
159-148 -147,000 74,000 85,000
148-138 -114,000 4,000 108,000
138-129 -13,000 -5,000 53,000
129-123 -10,000 103,000 24,000
123-113 -71,000 -72,000 20,000
113-102 -103,000 0 5,000
102-92 -67,000 -18,000 -20,000
92-83 -219,000 -31,000 -46,000
83-76 -149,000 -35,000 -13,000
76-66 -177,000 -42,000 77,000
66-57 -143,000 34,000 37,000
57-44 -112,000 -66,000 25,000
44-35 -51,000 -62,000 13,000
35-29 -142,000 -60,000 65,000
29-18 -198,000 26,000 100,000
18-12 -280,000 -31,000 80,000
12-4 -127,000 42,000 170,000
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Figure 42. Mississippi River average annual erosion/deposition volume per RM, 1975-1992.
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Figure 43. Mississippi River average annual erosion/deposition volume per RM, 1992-2004.
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Figure 44. Mississippi River average annual erosion/deposition volume per RM, 2004-2012.
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and deposition over the time period and gives some sense of the relative
magnitudes of erosion and deposition. The computed average annual bed
displacement for all polygons is listed in Table 15 and Figures 45—48. The
trends are basically identical to those observed in the erosion/deposition
volume data. The average annual bed displacements range from a
maximum erosion of —0.82 ft/yr to a maximum deposition of 0.55 ft/yr.
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Table 15. Computed average annual bed displacement by polygon reach.

Polygon range

Computed Average Annual Bed Displacement by Polygon (ft/yr)

by RM 1963-1975 1975-1992 1992-2004 2004-2012
320-316.4 -0.82 0.20 0.44
316.4-306.3 0.31 -0.15 0.55 -0.14
306.3-296 0.01 -0.03 -0.02 0.52
296-286 0.40 -0.06 0.07 0.22
286-275 0.08 -0.12 0.09 0.15
275-266 0.16 0.03 -0.02 -0.04
266-256 -0.02 -0.04 0.06 -0.16
256-245 0.18 0.22 -0.20 0.26
245-235 0.09 0.22 -0.04 0.08
235-223 0.13 -0.08 0.11
223-212 0.06 0.06 0.10
212-202 -0.03 0.04 0.11
202-190 -0.15 0.14 0.23
190-180 -0.06 -0.05 0.24
180-169 -0.17 0.10 0.28
169-159 -0.41 0.02 0.27
159-148 -0.28 0.15 0.17
148-138 -0.23 0.01 0.22
138-129 -0.03 -0.01 0.11
129-123 -0.02 0.23 0.05
123-113 -0.15 -0.15 0.04
113-102 -0.24 0.00 0.01
102-92 -0.18 -0.05 -0.05
92-83 -0.49 -0.07 -0.10
83-76 -0.32 -0.08 -0.03
76-66 -0.35 -0.08 0.15
66-57 -0.29 0.07 0.08
57-44 -0.21 -0.13 0.05
44-35 -0.10 -0.12 0.03
35-29 -0.26 -0.11 0.12
29-18 -0.35 0.05 0.18
18-12 -0.51 -0.06 0.14
12-4 -0.21 0.07 0.28
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Figure 45. Computed average annual Mississippi River bed displacement between 1963 and

1975 surveys.
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Figure 46. Computed average annual Mississippi River bed displacement between 1975 and

1992 surveys.
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Figure 47. Computed average annual Mississippi River bed displacement between 1992 and

2004 surveys.
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Figure 48. Computed average annual Mississippi River bed displacement between 2004 and

2012 surveys.
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The results of the volumetric analysis were also used to inform the
sediment budget analysis. The volume changes for the polygons located
between the computation points for the sediment budget were summed to
determine the erosion/deposition volume for the budget reaches. These
values were used to interpret the computed budget changes for the reaches
and are discussed in Section 4.4.

4.1.3 Geometry analysis for Old River Control Complex (ORCC)

The geometry analysis for the ORCC vicinity involved more closely spaced
cross sections and shorter polygon lengths than were utilized in the reach-
wide analysis. This was done so that the channel geometry changes in
response to the various river-engineering activities at ORCC could be
identified. The analysis methodology for the ORCC investigation was the
same as for the reach-wide analysis.

Comparative cross sections plots for the ORCC section locations previously
presented in Figure 9 are displayed in Appendix C. These plots include
data from various ERDC multi-beam surveys collected in 2006, 2008, and
2010 for limited areas in the ORCC vicinity. These surveys generally did
not have sufficient spatial coverage for use in the volumetric analysis but
did provide additional information for the cross section assessment.

Figure 49 shows the comparative cross sections for the ORCC section at
RM 317.6 AHP. The sections indicate that the channel depths have
decreased since the 1992 survey. With the exception of point bar erosion
between the 1963 and 1975 surveys, the cross sections are fairly consistent
in dimension.

The comparative sections at RM315.0 AHP shown in Figure 50 illustrate
the channel dimension changes that occurred subsequent to the opening of
the low sill structure and the hydropower plant. This section is located
immediately upstream of the low sill structure entrance channel. The
channel geometry change from 1963 to 1975 is characterized by a shift in
the channel thalweg from the left descending bank to the right descending
bank and an increase in depth between 20 and 25 ft. This response
corresponds to the opening of the low sill structure which began operation
in 1963. Also noted is a reduction in top width of approximately 15% that
occurred as the channel area occupied along the left descending bank in
1963 filled with sediment. The channel position remained consistent and
depths decreased approximately 10 ft through the 1992 survey period.
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Figure 49. Comparative cross sections at ORCC section RM 317.6 AHP.
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Subsequent to the 1992 survey, the channel thalweg shifted back toward
the left descending bank, and depths decreased by approximately 20 ft.
This distinct change in channel dimension corresponds with the beginning
of operation of the hydropower plant at ORCC in 1991. Since the 2004
survey period, channel depths have varied by 5 to 10 ft, but channel
dimensions have been consistent. Channel width at the time of the 2012
survey remained approximately 15% less than the width at the time of the
1963 survey.

Figure 51 shows the comparative cross sections for RM 312.1 AHP located
immediately upstream of the auxiliary structure entrance channel. The
cross sections indicate channel depths decreased approximately 20—22 ft
from 1963 to 2004. The location of the channel thalweg has varied from
the left side of the channel in 1963 to the right side of the channel in 1992.
It is not clear whether this shift corresponds to the opening of the auxiliary
structure in 1986, given the 1975 survey indicates the shift had begun prior
to that time. Subsequent to the 2004 survey, the channel dimension has
been relatively consistent, and depths have fluctuated within 10 ft. The
sections also indicate the presence of deposition in the form of a middle
bar that has been present since the 2006 survey. Erosion of the right
descending bank between 1963 and 1992 is evident, but the bank has been
stable since that time. Although a shift in the channel occurred, top bank
widths are relatively the same.

The channel dimension of the river reach between the auxiliary structure
entrance and Old River Lock over the survey periods is generally
consistent with some minor lateral shift in the channel. The cross sections
for RM 308.0 AHP shown in Figure 52 exemplify the general stability of
the channel in this reach. Observed lateral shift in the channel in this
reach is associated by deposition on the point bar along the right
descending bank.

The Hog Point dikes and trench-fill revetment located in the vicinity of RM
300 AHP are the most extensive river-training structures deployed within
the study reach, with possibly the exception of the Redeye crossing dikes
located near RM 224 AHP. The dikes and revetment were constructed from
the early to mid-1990s to realign the channel through a large island at
Smithland that separated two channels of the river. The river channel is
very wide at this location, and maintaining a dependable navigation channel
was problematic. The river channel in this vicinity has undergone
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Figure 51. Comparative cross sections at ORCC section RM 315.0 AHP.
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Figure 52. Comparative cross sections at ORCC section RM 308.0 AHP.

v 50}

Mississippi River Crosss Sections - ORCC
RM 308.0 AHP

2000 2500
Stationing (feet)

—— 1964 survey —— 1975 survey —— 1983 survey —— 1992 survey —— 2004 survey

—— 2006 survey —— 2008 survey —— 2010 survey —— 2012 survey




ERDC/CHL TR-14-5 78

significant changes in geometry due to the river-engineering efforts as
illustrated in Figure 53 for the cross sections at RM 299.7 AHP. The cross
sections indicate that the split channel was the most prominent at the time
of the 1992 survey. The sections for the 2004 and 2012 surveys show how
the realigned channel has developed. Dredging records indicate that very
little maintenance dredging has been required at this site since approxi-
mately 1997; therefore, the river-engineering efforts appear to be successful.

From the Hog Point dikes location to the downstream end of the ORCC
detailed study reach at RM 287.0 AHP, the river channel has either
remained relatively consistent or experienced some degree of lateral shift.
Figure 54 shows the comparative cross sections for the section at RM
294.0 AHP where a channel shift from the left to the right descending
bank occurred. The shift was evident in the 1975 survey and continued
until 2004. A downstream extension of the Hog Point revetment along the
right descending bank in the mid-1990s has effectively halted the lateral
shift. It is also interesting to note that the dimension and shape of the
current channel shown in the 2012 survey is very similar to the channel
shape in 1963 but with less top bank width. The comparative cross sections
at RM 288.0 AHP shown in Figure 55 indicate a channel that has been
fairly consistent in dimension yet with some variation in depth and shape.

Figure 53. Comparative cross sections at ORCC section RM 299.7 AHP, site of Hog Point dikes and realignment.
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Figure 54. Comparative cross sections at ORCC section RM 294.0 AHP.
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The percent change in cross-sectional area below top bank elevation for
successive surveys was computed for the ORCC sections and is listed in
Table 16. The percent change for the period 1963—1975 indicates erosion
(positive change value) for the reach upstream of the low sill structure at
RM 315.0 AHP that has previously been noted in this report. The
remainder of the ORCC reach is predominantly depositional (negative
change value) with the exception of a couple of sections in the vicinity of
Old River Lock near RM 302.0 AHP. In addition to the effects of the
opening of the low sill structure, the 1973 flood is thought to be a major
contributor to channel geometry adjustments during this time period. An
overall trend in erosion is noted for the majority of the ORCC reach for the
time period 1975—1992. The largest degree of deposition indicated by the
percent area change values is seen for the time period 1992—2004. The
area change for the sections RM 316.6 to 308.9 AHP indicates a consistent
deposition trend for the reach immediately downstream of the ORCC
hydropower plant. This deposition is thought to be associated with ORCC
hydropower operation and the resulting change in sediment passage
through the ORCC to the Atchafalaya River basin. Downstream of RM
308.9 AHP, the deposition trend is generally not as pronounced. For the
time period 2004—2012, a general trend of deposition is observed for the
ORCC reach but at a lower rate than observed for the period 1992—2004.

Polygons of the river channel constructed between each ORCC section
were used to determine the average annual erosion/deposition volume per
river mile between successive surveys. The average annual volumetric
changes were converted to average annual bed displacement by dividing
the volume change by the surface area of each polygon. The average
annual erosion/deposition volume per river mile for the ORCC polygons is
listed in Table 17 and shown in maps in Appendix D. The computed
average annual bed displacement for each survey period is presented in
Figures 56—59. The general trends for each survey period are very similar
to those indicated with the cross section data. For the period 1963—1975
shown in Figure 56, average annual bed displacement indicated erosion
upstream of the low sill structure and deposition downstream of the
structure. This trend reverses for the 1975—1992 time period (Figure 57),
showing deposition upstream of the low sill structure and erosion
downstream. The average annual bed displacement for 1992—2004 shown
in Figure 58 indicates consistent deposition from the hydropower plant to
just upstream of Tarbert Landing. A general deposition trend for the entire
ORCC reach is observed from 2004 to 2012 (Figure 59), although the
magnitude is less than observed from 1992 to 2004.
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Table 16. Percent change in cross-sectional area for ORCC sections.

RM of ORCC Percent Change in Cross-Sectional Area below Top Bank Elevation
Section 1963-1975 1975-1992 1992-2004 2004-2012
317.6 -4.0% -3.4% -6.6%
316.6 7.7% -11.9% -3.2%
315.5 -2.3%
315.0 -3.1%
314.5 -6.6%
313.5 -4.0%
312.1 -6.3%
311.0 -5.3%
310.0 -2.0%
308.9 -0.4%
308.0 -13.5% 9.2% -5.7% -6.2%
307.0 -5.8% 3.2% -0.9% -3.3%
306.2 -7.2% 3.4% 0.5% -5.0%
305.2 -0.3% -4.0%
304.4 5.0% -1.0% -0.3%
302.4 1.0% -11.5% -4.8%
300.6 8.4% -2.5% -3.1% -10.2%
299.7 3.6%
296.9 -10.8% 3.0%
295.9 -12.8% -4.4%
294.9 0.8% -3.6%
294.0 -1.8% -1.4% -8.3%
293.0 -6.7% -8.8% -6.9%
292.0 -14.0% 16.9% -0.2% -8.2%
290.0 -4.4% 6.8% -8.7% -7.5%
289.0 -8.7% 4.2% -6.4% -0.9%
288.0 -10.4% 5.6% 2.7% -7.7%
287.0 -10.6% -0.9% 4.2% -7.2%
Legend for percent change in cross-sectional area. Positive change indicates erosion; negative
change indicates deposition.
Greater than 15%
10% to 15%
5% to 10%
5% to -5%
-5% to -10%
-10% to -15%

_ Greater than -15%
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Table 17. Average annual erosion/deposition volume per mile by ORCC polygon reach.

Average Annual Erosion/Deposition Volume per River Mile

ORCC Polygon (cy/mile/y)

by RM 1963-1975 1975-1992 1992-2004 2004-2012
317.6-316.6 -264,000 72,000 229,000 20,000
316.6-315.5 -293,000 208,000 366,000 105,000
315.5-315.0 -378,000 211,000 489,000 53,000
315.0-314.5 148,000 67,000 556,000 -225,000
314.5-313.5 379,000 -221,000 387,000 -46,000
313.5-312.1 236,000 -210,000 333,000 -172,000
312.1-311.0 382,000 -205,000 415,000 66,000
311.0-310.0 447,000 -195,000 325,000 171,000
310.0-308.9 133,000 3,000 243,000 74,000
308.9-308.0 198,000 -104,000 218,000 -17,000
308.0-307.0 173,000 -56,000 68,000 49,000
307.0-306.2 212,000 -4,000 -45,000 147,000
306.2-305.2 321,000 30,000 -25,000 157,000
305.2-304.4 556,000 7,000 -25,000 285,000
304.4-302.4 -9,000 21,000 353,000 149,000
302.4-300.6 -266,000 -42,000 123,000 247,000
300.6-299.7 -48,000 -94,000 38,000 349,000
299.7-296.9 8,000 -59,000 -302,000 202,000
296.9-295.9 345,000 -91,000 -38,000 -190,000
295.9-294.9 131,000 9,000 -160,000 73,000
294.9-294.0 41,000 122,000 -63,000 82,000
294.0-293.0 187,000 44,000 211,000 543,000
293.0-292.0 231,000 -95,000 29,000 108,000
292.0-290.0 138,000 -139,000 151,000 -112,000
290.0-289.0 177,000 -129,000 228,000 20,000
289.0-288.0 219,000 -69,000 40,000 21,000
288.0-287.0 343,000 -130,000 -30,000 321,000
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Figure 56. Average annual bed displacement for ORCC polygons, 1963-1975.
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Figure 57. Average annual bed displacement for ORCC polygons, 1975-1992.
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Figure 58. Average annual bed displacement for ORCC polygons, 1992-2004.
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Figure 59. Average annual bed displacement for ORCC polygons, 2004-2012.
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4.2

The geometry data analysis for the ORCC reach indicates that the river
channel in the reach has been influenced by the structural evolution of the
ORCC. The addition of the low sill structure in 1963 resulted in a definitive
shift in the channel thalweg towards the structure as well as erosion of the
channel bed upstream of the structure. The addition of the hydropower
plant in 1991 resulted in significant deposition for the immediate reach
downstream of the structure. Each of these structures, along with the
auxiliary structure added in 1986, has altered the total sediment diversion
percentage of the ORCC. The various combinations of operation involving
these structures that can occur at ORCC can result in complex and variable
sediment diversion scenarios. Thus, interpretation of observed geometric
changes in the vicinity can be difficult and uncertain. However, analysis of
the observed geometric changes does suggest that the response of the river
channel to ORCC operation may be more of a local response rather than a
system-wide adjustment. The magnitude of observed changes is greatest in
the immediate vicinity of the ORCC and decreases downstream from the
complex. No discernible channel adjustment trends attributable to the
ORCC can be confidently identified near the downstream end of the ORCC
study reach. It must be noted, however, that a system-wide response by
the river to the effects of the ORCC may occur at very slow rates and over
decadal temporal scales.

Gage and Discharge Analysis Results

Specific gage records were developed at the following stations: Red River
Landing, Bayou Sara, Baton Rouge, Donaldsonville, Algiers Lock, and
West Pointe a LaHache. A discussion of each of these follows.

4.2.1 Red River Landing specific gage record

The specific gage record for the Red River Landing gage for the period
1963—2011 is shown in Figure 60. This figure shows that there is a shift in
the stage trends before and after approximately 1975. This increase in stages
is observed at almost all of the stations on the Lower Mississippi River. For
this reason, specific gage records were developed for the 1963—1974 and
1975—2012 time periods. Figure 61 shows the specific gage record at Red
River Landing for the 1963—1974 time period. As shown in Figure 61, all
three regression lines are statistically significant, indicating an aggrada-
tional trend during this time period. However, closer examination of the
data reveals that almost all of the stage increase occurs in 1973 and 1974 and
therefore is considered to be the result of the 1973 flood. For several decades
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prior to 1973, the river was dominated by moderate flows. To examine the
pre-1973 regime more closely, the specific gage record at Red River Landing
was extended back to 1943. Figure 62 shows the long-term trends of the
specific gage record at Red River Landing from 1943 to 2011. Examination
of Figure 62 shows that stages prior to 1973 were relatively stable and
consistently lower than the post-1973 stage. A more detailed examination of
the pre-1973 trends (Figure 63) shows that with the exception of a very
slight increasing trend at the low flows, the stage trends were relatively
stable for the approximately 30 yr period prior to 1973.

The specific gage record for the 1975—2011 time period (Figure 64) shows
that the aggradational trends have continued during this time period, albeit
at a much slower pace. It is also important to note that during this 36 yr
time period, there are cyclic periods of increasing and decreasing trends. To
illustrate these varying trends, the specific gage record was developed for
the following shorter term periods: 1975—1992 (Figure 65), 1993—2003
(Figure 66), and 1993—2011 (Figure 67). As shown in Figure 65, there are
apparent downward trends at the high and low flows, but the trends are
statistically inconclusive for the period 1975—1992. For the short period
from 1993—2003, there is a statistically significant decreasing trend at
300,000 cfs, but a statistically significant increasing trend at the mid-range
flow of 600,000 cfs. No trend was observed at 1 million cfs. However, when
the period is extended from 1993 to 2011, both the 600,000 cfs and the 1
million cfs flows have statistically significant increasing trends. No trend
was observed at the low flow.

4.2.2 Bayou Sara specific gage record

The specific gage record for the Bayou Sara gage for the period 1963—1974 is
shown in Figure 68. This figure shows that all three regression lines are
statistically significant, indicating an aggradational trend during this time
period. The specific gage record for the 1975—2011 time period (Figure 69)
indicates very slight increasing trends at the three discharges. However,
only the trend for the 600,000 cfs flow is statistically significant, and the R2
values for all three flows are extremely small (all less than 0.02). Therefore,
the overall assessment suggests that the stage trends have been relatively
stable during this time period. The specific gage records for the 1975—-1992,
1993—-2003, and 1993—2011 periods are shown in Figures 70, 71, and 72,
respectively. For the 1975—1992 period (Figure 70), a statistically significant
decreasing trend was observed at the 300,000 cfs flow. However, the trends
at 600,000 cfs and 1 million cfs were insignificant and inconclusive.
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For the 1993—2003 period (Figure 71), there was a statistically significant
increasing trend at the 600,000 cfs flow. However, no trends were observed
at the 300,000 cfs and 1 million cfs flows. A slight increasing stage trend
was identified for the 600,000 cfs and 1 million cfs flows for the 1993—-2011
period, but the 300,000 cfs flow exhibited no trend (Figure 72).

4.2.3 Baton Rouge specific gage record

The specific gage record for the Baton Rouge gage for the period 1963—1974
is shown in Figure 73. This figure shows that all three regression lines are
statistically significant, indicating an aggradational trend during this time
period, again, primarily driven by the 1973 flood. The specific gage record
for the 1975—2011 time period is shown in Figure 74 and indicates very
slight increasing trends at the three discharges. However, only the trend for
the 600,000 cfs flow is statistically significant, and the R2 values for all
three flows are extremely small (all less than 0.05). Therefore, the overall
assessment suggests that the stage trends have been relatively stable during
this time period. The specific gage records for the 1975—1992, 1993—2003,
and 1993—2011 periods are shown in Figures 75, 76, and 77, respectively.
For the 1975—1992 period (Figure 75), a statistically significant decreasing
trend was observed at the 300,000 cfs flow. However, the trends at
600,000 cfs and 1 million cfs were insignificant and inconclusive, respec-
tively. For the 1993—2003 period (Figure 76), there was a statistically signi-
ficant increasing trend at the 600,000 cfs flow. However, no trends were
observed at the 300,000 cfs and 1 million cfs flows. A slight increasing stage
trend was identified for the 600,000 cfs and 1 million cfs flows for the
1993—-2011 period, but the trend for the 300,000 cfs flow was inconclusive
(Figure 77).

4.2.4 Donaldsonville specific gage record

The specific gage record for the Donaldsonville gage for the period 1963—
1974 is shown in Figure 78. Similar to the previous stations, there is a
statistically significant aggradational trend during this period that is
dominated by the 1973 flood. Figure 79 shows the specific gage record for
the 1975—2011 time period and indicates a statistically significant degrada-
tional trend. A closer examination of the specific gage records indicates that
most of the lowering may have occurred in the earlier part of the time
period. As shown in Figure 80, the specific gage record indicates a statisti-
cally significant degradational trend at all flows for the time period 1975—
1992. The specific gage records for the 1993—2003 and 1993—2011 time
periods are shown in Figures 81 and 82, respectively. For both time periods,



101

ERDC/CHL TR-14-5

- i §9-dos 19-3ny
ﬁ 0
#>000000T M $§2000°009 59 000'00€ @
.%1&% ..“u ~6-® o1
o © 2 i .
(@]
IIW 07
¢ &« H ¢ e o
) ®* ¢ o 4
$ o
. |
] . pp— 0§
w 8 R
100000°0>9NEA-d |l £700°0 2NIEA-d 61000°02NeAd | |
raLeo - T06T°0 =Y 1560 =
868°C-X5000°0 =A| 65957 + x8000'0 = A || 6£06°5 +XTTOO O = A
542 000°00€ 5J2000'009 $42000'000'T

" L6T-E96T ‘p1odal 93eg ol10ads agnoy uoleg "€/ 8ngid

(34) °3e3g




102

ERDC/CHL TR-14-5

0T-ARIN

90-1eIN

20-9o4

86-uer

€6-NON 68-120

58-das

Tg-dny

L-unp

c/-Aeln

$J2000°000'TH

5J3000'009 ¢

5J3000°00€ @

] 0€
3 - " [ II - m-' ‘
T R L [ LR
— 8 nf" H
B gl .
|
or
Se'ooniep-d 220000 2NnjeA-d 9¢0'0oneA-d
990070 = 4 S00=oM €200=4
901 €€ +%50-37 =A | €77'07 +XT000'0 =A||8STT'6 +X50-I€ = A
5$2000'000'T 542000009 542 000'00€
0S

"TTOC-G.6T ‘Pi0dal1 o3eg oij100ds a3noy uoleq ‘{7, aingid

(1) 2325




103

ERDC/CHL TR-14-5

£6-AON 68-120 §8-deg 18-3ny L-ung €L-AelN
| |
| | 0
S§2000°000' T W $§9000'009 $§2.000°00E @
0t
& S o © 4
P om oﬁ ® 8 * o & b 4 R
o o ® é 33 “ m $
® ® ¢ o
u B 0€
m B .m &
] 4 e m—
ov
610°03N(eA-d E6°02NI2A-d £000°02N[EA-d
690°0 =4 10000 =24 12210 =2
SY9T +X2000°0- =A|| TS0'7Z + X90-36- = A £°5T +x2000°0- = A
$49.000°000'T $19000°009 547000'00€
05

'C66T-G.6T ‘Pi0dal) o3eg oij10ads a3noy uoleq "G, aingid

(1) 23e1s




104

ERDC/CHL TR-14-5

#0-"ON TO-Inf 86-1dy GE-uef T6-das
Il
, , o
$§2000°000'T B 5)2000'009 ¢ $J2000°00€ @
_ SN - e —— T (o)
8% & [er°)
@
N o 0t
° m‘ o ° °9 ® ®
° X — %
‘“
g ° ®
[~ <
3
= ]
.. L ] =
- ———el--======--gr-- lll.qlll-llll.lllll‘llll-.l
‘ .
|
of
S6°0°NeAd 8T00°09NjeA-d FZ0NeA-d
50-35 =24 TL60°0 = 24 SPZ00 = -4
SL6TE + XS0-3T- =A|[ #2098 + 40000 =A[ T9F ST +XT000°0- =A
$}2000'000'T $42000°009 512000'00€
0§

"€00Z-E66T ‘P10231 93e8 d1oads 88noy uoleq "9/ aingl4

(1) ?8e1s




105

ERDC/CHL TR-14-5

£T-ABIN ot-uer 90-120 €0-unr 00-1BIA 96-224 £6-8ny 06-Aelnl

5J3000'000'TH $J2000'009 ¢ 512 000°00€ @

ot

0¢

4 0€
n = [~ - -
o B mf.- J-----:“s—.-n-m-u--n--

o

u B -
[ | _ "]
900°0 @N|eA-d T00000 0> 2N|eA-d 9£0°0 2N|eA-d
1550°0 = SPIT0 =Y 0v0°0 =24
66/°07 +XZ0000 =A|LEDTT +XE0000 =A|CTTE L +X50-38 =4
$J2000°000'T 42000009 $J2000°00€

0S
"TT0Z-E66T ‘p10oal a3es oioads agnoy uoleq °2 ) aindi

(3) 23e1s




106

ERDC/CHL TR-14-5

€4-72Q 69-120 59-dag 19-8ny
1
0
7 $j2000°000'TH  $J2000°009¢  5J2000°005 @ 7
o @
L i LEEERT R S S

A ® e &° e

01
¢ 0000 o M I

o 3

€ .
0t

]
. - - - -
! . b -
0g
70000 @N[eA-d 120°0@NeA-d 8200070 @N|eA-d
YPSED =Y ¥8ZT'0 =M ¥L8T°0 =Y
8125'S +¥8000°0=A|€969 7 +x50000=A| L2 T -*c0000 =4
5J2000°000'T $J2000°009 $J2000°00€

ot

v 16T -E96T ‘pI10221 838 o0ads a|jIAuospleuoq '/ aIndiy

(14) a8e15




107

oT-Aein 90BN 70-924 86-uer €6-NON 63-120 58-dag 18-8ny £4-unf cL-Aen
! | | | | 0
7 S}2000'000'TH  S)O000°009¢  SJ2000'005 @ 7
ey Sesge e &
.. ’ [o) Q@
908 e3PV B 5 o -HCP% 8" ag-
IQ -4 .f 8 g B .
© 01
“ ®
® n ®e
@ °e ® e o°
A ¢ % o *®
¢ ® $ 0z
| [ | u
N N TR TR P
R R . ]
a-- -.._.-.-.- .-F-----m-. S
" i s o Tl
] |
“ 0g
£0000°0 @N[_A-d £00°0 @n[_A-d T00000 0> @n|eA-d
764070 =4 £0E0°0 = 24 STPT'0 =Y
LT0°0€ +XT000'0- =A || SZO'6T + XS0-38- =A| 85898 + XS0-3L- = A
5)2000'000'T 542000009 $§2000°00€
of

ERDC/CHL TR-14-5

“TT0Z-S.6T ‘p109a1 a3ed oiioads a|jIauospieuoq "6/ aingi4

(14) 28e35




108

ERDC/CHL TR-14-5

£6-NON £8-190 5g-das 18-8ny ££-ung gL-Aen
! ! !
0
S$2000'000°'TH $2000°009 ¢ $$2000'00€ @
(o) ®0 o ®
..*Jfllu rn.l‘l...w-. '..m
6 08 @ 8 - - 08 - — )
© ot
é R .
o § o
'If M ® ° s ®
dlob’o’lTPcJ?'olo *
Qo o%e & ® 4
¢ P4
L ¢ $ 0z
= B - | ]
L N
CRENNRE i R |
[ |
“ og
TO000 0= anjeA-d €00°02n|eA-d TO0000 0=2n[eA-d
€0E0=2Y S0TT0=z24 68670 =2:H
97 6E +X7000°0- =A| 667°97 +XE000°0- =A|| 87 €T +XZ0000- = A
$$000°000'T 54§2000°009 5)2000°00¢€
or

"'Z66T-S/6T ‘plooal 93e8 oy10ads a|Iauospleuo(q 08 aInsi4

(3)) 23e3s




109

ERDC/CHL TR-14-5

rO-uer

*€00C-£66T ‘pJ0dal a3eg olj10ads o||IAuospjeuoq T8 24314

66-720 56-190 T6-das
1 | D
$JP000°000'TH $JP000°009 ¢ $JP000°00E @ 7
S L N
ﬁl‘.’l.‘h.l’.” - ||.|.".||0Ql|--||.0|.
Q@
ot
®
® 4 ¢ o
® $s ¢ ¢ ® ® -
0# 00‘“ $
A4 g @ @
. hs 0z
o ]
2 . ;
-— - - —— - -— -— - mmmmffe———— cnnocl-
LB R ] ‘ g
|
0€
8%'0 @NeA-d STO0'02N[eA-d 8E'0aNeA-d
90070 = 4 1660°0 =4 1€T0°0 = .Y
12917 +XT000°0 =A| 62T T +X7000°0 =A] €908 + X50-3/-=A
$J2.000°000°T $§2000'009 $42000°00€
of

() 2835




110

ERDC/CHL TR-14-5

ZT-1dy 80-924 y0-uef 66-220 56120 T6-das
] | ]
0
$§2000'000'T W 512000009 ¢ 5)2000'00€ @
55 ‘ o) ..
O 8 g 9 08P 0 PRI BTV p-B-8-- -
Q
o1
<@
o ° o X ®
3 0@ m
“ < <@
<
u 0t
= |
B " g - = = 8 .‘ = B - -
| p—— - ————— - e - ll.llll B . .- -I .
] - = ]
| ]
o€
TT°0aneA-d 7100°02NBAd 87°02N|EA-d
£6T00 =Y 97900=M ZIT00 =24
€7STZ +XTO000 =A[889T 6 +X8T000°0 = A[r8SE L + XG0-3E- =A
5)2000'000°T $42000°009 5J2000'00€
or

“TTO0Z-E66T ‘pJodas a8ed ol10ads ajjiauospjeuo( ‘g8 24ngi4

(14} 28eas




ERDC/CHL TR-14-5 111

there are no statistically significant stage trends at the 300,000 cfs and

1 million cfs flows. While the stage trends at 600,000 cfs are statistically
significant, the R2 values are low (less than 0.1) and the regression slopes
are very small. Therefore, the overall assessment for the post-1993 time
periods is that the stage trends are relatively stable. It should also be noted
that the Donaldsonville record reflects lagged flows from Tarbert Landing,
and because of the distance between these gages, there is more uncertainty
in the results than for the stations farther upstream.

4.2.5 Algiers Lock specific gage record

The specific gage record developed at the Algiers Lock gage is shown in
Figure 83. This specific gage record was developed by combining the
discharge data that were obtained as part of the USGS sediment
measurements at Belle Chasse with the daily stage record at Algiers Lock.
The data spans the time period from 1978 to 2012. However, there is an
approximate 10 yr gap in the discharge data between June 1997 and May
1997 when no discharge data were available. As shown in Figure 83, all
three flows indicate apparent degradational trends. However, only the
trend for the 1 million cfs flow is statistically significant. The 300,000 cfs
trend is inconclusive, and the 600,000 cfs trend is insignificant. Another
complicating issue is the 10 yr data gap, which adds another layer of
uncertainty to the interpretation of the stage trends. Because of this
uncertainty and the relatively weak statistical results, the results at this
gage are considered inconclusive.

4.2.6 West Pointe a La Hache specific gage record

The specific gage record developed at the West Pointe a La Hache gage is
shown in Figure 84. This specific gage record was developed by combining
the discharge data that were obtained as part of the USGS sediment
measurements at Belle Chasse with the daily stage record at West Pointe a
La Hache. As with the Algiers Lock record, there is an approximate 10 yr
gap in the discharge data between June 1997 and May 1997 when no
discharge data were available. As shown in Figure 84, there were no
statistically significant trends at any of the flows. Once again, the 10 yr gap
in the data makes it difficult to draw any definite conclusions with respect
to long term trends.
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4.3

Dredge Records Analysis Results

The Mississippi River crossings that generally require some degree of
dredging to maintain the deep-draft and shallow-draft navigation channel
are listed in Table 18. Crossings that require dredging within the deep draft
navigation channel are generally located in an 84-mile reach between Baton
Rouge and Belmont, with the exception of Fairview located downstream of
Bonnet Carreé floodway near Kenner. No deep-draft channel crossings
downstream of New Orleans have ever required maintenance dredging.
Crossings within the shallow-draft navigation channel are Smithland, Bayou
Sara, and Wilkerson Point. The Smithland reach is in the vicinity of the Hog
Point dikes and channel realignment. The annual maintenance dredge
reports obtained for this study cover the period of fiscal years 1970—2011.
For the period 1970—1979, the annual reports list the yearly dredge volumes
collectively for all crossings. Beginning in 1980, the reports list the dredge
volumes individually for each crossing for most years. Figure 85 shows the
annual dredge volumes for all river crossing locations collectively. The
average annual dredge volume for the period 1970—2011 is approximately
13.3 million cubic yards (MCY). The average annual dredge volumes for the
time periods prior to and subsequent to the deepening of the navigation
project in 1987 from —40 to —45 feet elevation are 8.3 MCY and 17.2 MCY,
respectively. As expected, the annual dredge needs increase with the deeper
navigation project. To determine if the increased dredge volumes may be
related to the hydrology of the period, the yearly maximum discharges at
Tarbert Landing were superimposed on the chart. The annual dredging
volumes appear to be reasonably correlated with the peak discharges for the
entire time period with the exception of the late 1970s period. Given that the
magnitude and frequency of yearly peak discharges are generally consistent
before and after project modification, the increase in post-navigation
project modification dredge volumes is most likely simply a result of the
deeper draft requirement.

Table 18. Mississippi River channel crossing locations.

Crossing RM Crossing RM
Smithland* 297-305 Bayou Goula 194-199
(in 3 reaches)

Bayou Sara* 263-268 Alhambra 188-193
Wilkerson Point* 234-237 Philadelphia Point 181-185
Baton Rouge Front 229-234 Smoke Bend 172-179
Redeye 221-226 Rich Bend 155-160
Sardine Point 216-221 Belmont 150-155
Medora 208-214 Fairview 111-117
Granada 202-207 *|ocated in shallow draft channel
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Figure 85. Annual dredge quantities for Mississippi River crossings.

1800

(s23]) Buipueq uaqae) e a8ieyosip wnwixew Ales s

o
(=]
(=]

]

(=]

=
1

- 1200
- 1000

o

(=]

[1=]
1

I - 1600

—

/]
S

o
MY

|
\ 1 5t 011 Op- load “Aen

13.3 MCY

ey

=
-
N

—~J

35

30

[Tp]
(o]

T T T
] [Tp] ] [Tn] ]
™~ - —

[ADIN) s8uissoud Janly SIAl 104 awinjoa adpauq

TTAd
OTAd
60Ad
80Ad
LOAd
90Ad
SOAd
FOoAd
£0Ad
Z0Ad
TOAd
00Ad
66Ad
86Ad
LBAd
96Ad
S6Ad
EAd
€6Ad
<6Ad
T6Ad
06Ad
68Ad
88Ad
L8Ad
98Ad
S8Ad
8Ad
€8Ad
C8Ad
T8Ad
08Ad
64Ad
8LAd
LLAd
9LAd
SLAd
tird
€LAd
TLAd
TLAd
0LAd

Fiscal Year

Long-term average (1970-2011)

mmm Annual Dredging Volume (MCY)
=== Average (1970-1987)

— = Average(1988-2011)

Yearly maximum discharge at Tarbert Landing (kcfs)




ERDC/CHL TR-14-5 116

For the time period 1980—2011, the percentage of years that annual
maintenance dredging was required at each crossing location is shown in
Figure 86. Figure 87 illustrates the frequency and magnitude of dredge
volumes for the individual crossing locations. The deep—draft crossings at
Redeye, Medora, Granada, Bayou Goula, Alhambra, and Belmont required
annual maintenance dredging for over 80% of the years from 1970 to 2011.
The rest of the deep draft crossings required dredging between 30% and
70% of the years, except for the crossings at Rich Bend and Fairview. For
the crossings located in the shallow-draft navigation channel, percentages
range from near 60% for Wilkerson Point to approximately 6% for Bayou
Sara. Figure 87 indicates that the crossing at Redeye requires the greatest
quantity of dredging. Dikes were constructed at Redeye crossing in the mid-
1990s to alleviate dredge needs, but the site continues to be the most
problematic in terms of required maintenance. Alhambra, Belmont, and
Medora require the next-most dredging after Redeye. The dikes and
channel realignment at Smithland appear to be functioning effectively as no
dredging has been required since construction of the features in the mid-
1990s. Dikes were also constructed at Medora crossing in 2000 and appear
to be reasonably effective in reducing required maintenance dredging. More
recently, dikes were constructed in 2006 at Springfield Bend near RM 241.5
AHP, but these dikes were constructed to correct an alignment problem
more than a shoaling problem. Figure 88 shows the magnitude and
frequency of maintenance dredging requirements for four of the more
troublesome crossings: Redeye, Medora, Alhambra, and Belmont.

In general, the dredge record analysis shows that the river crossing areas
are very active in terms of sediment deposition and that many crossings in
the upper half of the deep draft channel between Baton Rouge and Bonnet
Carré require regular maintenance dredging to ensure navigable depths.
The geometry data analysis indicates that crossings in the lower half of the
deep-draft channel downstream of Bonnet Carré are also subject to active
sedimentation processes, yet depths are sufficient such that maintenance
dredging is not required. Increases in required maintenance dredging at
the crossings appear to reasonably correspond to increases in river
discharge. The regular dredging that occurs at the crossing locations in the
reach from Baton Rouge to Bonnet Carré results in long-term, consistent
elevations at these crossings.
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4.4

Sediment Data Analysis Results

This section discusses the spatial and temporal trends in sediment data
within the study area. The first section describes the changes in sediment
(fines and sands) concentrations since the 1950s; the second section
discusses the probabilistic sediment budget; and the last section describes
the changes in bed material composition.

4.4.1 Temporal changes in measured suspended sediment concentrations

As discussed in Section 3.5.3, one of the first steps in the development of
the PSB was to develop the regression equations describing the sediment-
discharge relationships at the study gages. However, there are numerous
studies that document the long-term reductions in the sediment loads on
the Mississippi River over the past 50—150 yr (Mead and Moody 2010;
Horowitz 2010; Keown et al. 1981; Kesel 1988; Robbins 1977). Therefore,
it was first necessary to ensure that there were no increasing or decreasing
trends in the sediment concentration during the time period that the
regressions were developed. Since Tarbert Landing had the longest record
of measured suspended data, an analysis of these data was conducted to
examine temporal trends spanning several decades.

Tarbert Landing data were collected using four different methods at
different time intervals during the study period. The 8-sample technique
was used from 1986 to 1989 to collect suspended sediments at 70% of the
total water column whereas the 12-, 20-, and 40-sample techniques
sampled 90% of the water column. Therefore, suspended sand concentra-
tion data were examined for potential effects from the four collection
methods, particularly regarding the depth at which samples were collected,
as this could bias the percentage of sand present in the sample. Sample
number differed among the collection methods, and the homogeneity of
variance assumption was violated (Brown and Forsythe’s F=7.92; df=3,698;
p<.0001); therefore, Welch’s analysis of variance (ANOVA) was used to test
for differences among sampling techniques, which were statistically
significant (F=43.43; df=3,127; p<.0001). The 8-sample technique was
significantly lower than all other techniques (p<.0001) indicating that
collecting suspended sand from only 70% of the water column under-
estimates the actual concentration of sand present. In subsequent analyses,
these data were excluded, and data collected with the remaining three
techniques were combined. A similar analysis conducted for the fine
concentrations data did not reveal any significant differences related to the
sampling technique.
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Polynomial analysis of covariance (ANCOVA) comparing mean fines
concentration with discharge as the covariate revealed significant
differences among decades with a discernible negative (decreasing) trend
from the 1950s to 1980s. However, no significant trends were observed
from the 1990s to present. Therefore, in order to avoid developing a
regression curve over a period of decreasing concentrations, the study
period for the fine sediment analysis was limited to the period from 1990
to 2012 when fine concentrations were unchanging. Polynomial ANCOVA
for sand concentration data for the period 1959—2011, excluding 1986—
1989, data revealed no monotonically decreasing trend over time. Because
there was no discernible trend in the data, it was deemed acceptable to
combine the sand data over the historical period of record.

4.4.2 Probabilistic sediment budget for sand loads

This section discusses the PSB for the sand loads between Tarbert Landing
and Belle Chasse for the period 1973—2012. The methodology for the
development of the PSB was discussed in Section 3.5. Figures 89, 90, 91,
and 92 show the percentile plots for annual sand loads at Tarbert, St.
Francisville, Baton Rouge, and Belle Chasse. The relationship among the
four stations is illustrated graphically in the box plots shown in Figure 93.
The bottom and top of the box represent the 25t and 75t percentile,
respectively, and the band near the middle of the box represents the 50t
(median) percentile. The ends of the whiskers represent the minimum and
95th percentile. Any data not included within the whiskers are shown as
outliers. As shown in Figure 93, the whiskers and outliers extend over an
extremely wide range of values. These extremes are not likely possibilities,
and in order to more clearly illustrate the relationship among the stations,
the box plots are shown in Figure 94 with the extremes outliers removed.
The box plots provide an overall view of the sand-load characteristics at
the four stations. As shown in Figure 94, there is an overall decrease in the
sand loads between Tarbert Landing and Belle Chasse.

The sediment budget percentile curves for the Tarbert Landing to St.
Francisville, St. Francisville to Baton Rouge, and Baton Rouge to Belle
Chasse reaches are shown in Figures 95, 96, and 97, respectively. The
methodology used for the development of these curves was discussed in
Section 3.5.4. As shown in all three curves, there are extreme values
associated with the lower and upper percentile ranges. These extremes are
not likely possibilities, and a more likely range of practical outcomes
occurs along the flatter portion of the curves for some distance on either
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side of the 50% value. As discussed in Section 3.5.4, the range selected for
this study was based on the 35th and 65t percentile curves for the
individual stations. As shown in Figures 95, 96, and 97, this resulted in a
range between approximately the 30t and 70t" percentile on the annual
sand-load-change percentile plots. A brief discussion of the sand-load
changes in each reach follows.

Figure 89. Percentage of annual Mississippi River sand loads at Tarbert Landing,
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Figure 90. Percentage of annual Mississippi River sand loads at St Francisville.
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Figure 91. Percentage of annual Mississippi River sand loads at Baton Rouge.
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Figure 92. Percentage of annual Mississippi River sand loads at Belle Chasse.
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Annual Sand Loads (Tons/Yr)

Figure 93. Annual Mississippi River sand load at Tarbert Landing, St. Francisville,
Baton Rouge, and Belle Chasse.
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Figure 94. Annual Mississippi River sand load for Tarbert Landing, St. Francisville,
Baton Rouge, and Belle Chasse with outliers removed.
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Figure 95. Percentile ranks of annual Misissippi River sand loads in tons/yr for the
Tarbert Landing to St. Francisville reach, 1973-2012.
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Figure 96. Percentile ranks of annual Mississippi River sand loads in tons/yr for the St. Francisville
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Figure 97. Percentile ranks of annual Mississippi River sand loads in tons/yr for the
Baton Rouge to Belle Chasse reach, 1973-2012.
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Tarbert Landing to St. Francisville. The percentile curve for the change in
annual sand load for the Tarbert Landing to St. Francisville reach is shown
in Figure 95. The median (50%) value for this reach is about 6.5 million
tons/yr of sand deposition. According to the curve, approximately 60% of
the 10,000 scenarios were aggradational while only 40% were
degradational. The range of practical outcomes extends from about 10.1
million tons/yr of degradation to 24.5 million tons/yr of aggradation.
Although this range includes both degradational and aggradational trends,
it is skewed more towards aggradation. Therefore, based on the PSB, it
appears that this reach could be expected to experience periods of both
aggradation and degradation; however, the overall long-term tendency
would be towards aggradation. This trend agrees well with the annual
volumetric change (3.26 million tons/yr) obtained from comparison of the
decadal surveys (Figure 95).

St. Francisville to Baton Rouge. The percentile curve for the change in
annual sand load for the St. Francisville to Baton Rouge reach is shown in
Figure 96. The median value for annual sand load change is about

—1.5 million tons/year. While the PSB results suggest a slight degradation,
examination of the curve indicates that the scenarios are fairly evenly
distributed between degradation (52%) and aggradation (48%). The range
of probable outcomes extends from approximately —15.8 million tons/year
to 13.5 million tons/year, which is also fairly evenly balanced between
degradation and aggradation. Therefore, the PSB suggests that while there
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might be a slight tendency for degradation, it appears that this reach may be
approaching dynamic equilibrium. This seems to agree with the annual
volumetric change for this reach which was only 813,000 tons/yr

(Figure 96).

Baton Rouge to Belle Chasse. The percentile curve for the change in
annual sand load for the Baton Rouge to Belle Chasse reach is shown in
Figure 97. The median value of the annual sand load change in this reach
is approximately 6.9 million tons/years of aggradation. The curve also
indicates that approximately 62% of the scenarios were aggradational
while only 38% were degradational. The practical outcome range extends
from —5.2 million tons/year to 19.8 million tons/year. Therefore, the PSB
indicates that this reach could be expected to experience periods of both
aggradation and degradation; however, the overall long-term tendency
would be towards aggradation. The annual volumetric change for this
reach obtained from comparison of the decadal surveys was 10.046 million
tons/yr, which supports the tendency for aggradation (Figure 97).

4.4.3 Probabilistic sediment budget for fine loads

This section discusses the PSB for the fine loads between Tarbert Landing
and Belle Chasse for the period 1990—2012. As discussed in Section 3.5,
the fine sediment analysis covered a shorter time period than for the sands
due to the decreasing fine concentrations prior to the 1990s. Figures 98,
99, 100, and 101 show the percentile plots for annual fine loads at Tarbert
Landing, St. Francisville, Baton Rouge, and Belle Chasse. The relationship
among the four stations is illustrated graphically in the box plots shown in
Figure 102. To more clearly illustrate the relationship among the stations,
the box plots are shown in Figure 103 with the extremes outliers removed.
The box plots provide an overall view of the fine load characteristics at the
four stations. As shown in Figure 103, there is an overall decrease in the
fine loads between Tarbert Landing and Baton Rouge and an increase
between Baton Rouge and Belle Chasse.

The fine sediment budget percentile curves for the Tarbert Landing to

St. Francisville, St. Francisville to Baton Rouge, and Baton Rouge to Belle
Chasse reaches are shown in Figures 104, 105, and 106, respectively. The
methodology used for the development of these curves was discussed in
Section 3.5.4. As shown in all three curves, there are extreme values
associated with the lower and upper percentile ranges. These extremes are
not likely possibilities, and a more likely range of practical outcomes occurs
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Figure 98. Percentage of annual Mississippi River fine loads at Tarbert Landing, 1990-2012.
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Figure 99. Percentage of annual Mississippi River fine loads at St. Francisville, 1990-2012.
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Figure 100. Percentage of annual Mississippi River fine loads at Baton Rouge, 1990-2012.
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Figure 101. Percentage of annual Mississippi River fine loads at Belle Chasse, 1990-2012.
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Figure 102. Annual Mississippi River fine loads at Tarbert Landing, St. Francisville,
Baton Rouge, and Belle Chasse, 1990-2012.

450,000,000 ~
400,000,000 | B
w k4
= by
350,000,000 x
g o] %
Z. 300,000,000 - § o
(=
o
E‘ 250,000,000
3
& 200,000,000 -
S
g
€ 150,000,000 |
K
100,000,000 - -
50,000,000 |
0 -
Tarbert St Francisville Baton Rouge Belle Chasse
Figure 103. Annual Mississippi River fine loads at Tarbert Landing, St. Francisville,
Baton Rouge, and Belle Chasse, 1990-2012, with outliers removed.
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Figure 104. Annual Mississippi river fine loads in tons/yr for the Tarbert Landing
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Figure 105. Annual Mississippi River fine loads in tons/yr for the St. Francisville to
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Figure 106. Annual Mississippi River fine loads in tons/yr for the Baton Rouge
to Belle Chasse reach, 1990-2012,
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along the flatter portion of the curves for some distance on either side of the
50% value. Using the same rationale as for the sand loads, the range
selected for this study was based on the 35t and 65t percentile curves for
the individual stations. As shown in Figures 104, 105, and 106, this resulted
in a range between approximately the 30t and 70th percentile on the annual
fine load change percentile plots. It is important to note that there is more
uncertainty in the fine sediment-discharge regressions than for the sand
data. In general, the sand-discharge regressions had R2values between
approximately 0.5 and 0.8 (Figure 18), while the R2 values for the fine-
discharge regressions were much smaller, ranging from approximately 0.19
to 0.45 (Figure 19). A brief discussion of the fine load changes in each reach
follows.

Tarbert Landing to St. Francisville. The percentile curve for the change in
annual fine loads for the Tarbert Landing to St. Francisville reach is shown
in Figure 104. The median (50%) value for this reach is approximately 23.7
million tons/yr of fine sediment deposition. According to the curve,
approximately 68% of the 10,000 scenarios were depositional. The range
of practical outcomes extends from approximately —2.9 million tons/yr to
24.5 million tons/yr. Although there are some scenarios indicating an
erosional regime, this reach is heavily skewed towards deposition.

St. Francisville to Baton Rouge. The percentile curve for the change in
annual fine load for the St. Francisville to Baton Rouge reach is shown in
Figure 105. The median (50%) value for this reach is approximately

10.6 million tons/yr of fine sediment deposition. According to the curve,
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approximately 60% of the 10,000 scenarios were depositional. The range
of practical outcomes extends from approximately —10.9 million tons/yr to
34.4 million tons/yr. Although there are some scenarios indicating an
erosional regime, this reach is skewed towards deposition, albeit not as
severely as the upstream reach from Tarbert Landing to St. Francisville.

Baton Rouge to Belle Chasse. The percentile curve for the change in
annual fine load for the Baton Rouge to Belle Chasse reach is shown in
Figure 106. The median (50%) value for this reach indicates the erosion of
approximately 8.3 million tons of fines annually. According to the curve,
approximately 58% of the 10,000 scenarios were erosional. The range of
practical outcomes extends from approximately —30.9 million tons/yr to
12.8 million tons/yr. Although there are some scenarios indicating a
depositional regime, this reach is skewed towards erosion.

Effects of Flow Period and Sediment Regime on the PSB. In the previous
discussion, the PSB was developed for a specific time period, 1973—2012
for sands and 1990—2012 for the fines. However, the PSB can also provide
insight into the behavior of the channel system resulting from short-term
droughts or flood periods, or long-term changes due to flow diversions or
climate change. This section provides examples to illustrate the impacts of
alternate flow conditions on the sediment regime.

In order to test the effects of the flow regime, the PSB was conducted for a
short, high-flow period from 2008 to 2012 and compared with the results
for the 1973—2012 time period. This test was conducted for the Baton
Rouge to Belle Chasse reach using the sand data. This required the
development of new sand concentration-discharge regressions curves and
flow-duration data for both stations for the time period 2008—2012. Using
these data, the PSB was re-calculated. Figure 107 presents the percentile
curve for the changes in annual sand loads for the Baton Rouge to Belle
Chasse reach. As shown in Figure 106, the 2008—2012 period shifted the
curve up, indicating a much greater tendency for aggradation. In fact, the
practical outcome range (30%—72%) is now completely aggradational,
extending from 1.3 million tons/yr to 21.8 million tons/yr, as compared to
—5.2 million tons/yr to 19.8 million tons/yr for the 1973—2012 period. This
example clearly illustrates the importance of the time period considered
when conducting a sediment budget.
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Figure 107. Annual Mississippi River sand loads in tons/yr for the Baton Rouge
to Belle Chasse reach, 1973-2012 and 2008-2012.
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As shown above, the effects of the flow period selected can be significant.
Likewise, changes in the sediment regime must also be considered. As
discussed in Section 4.4.1, there were no significant changes in the sand
concentration data from the 1950s to present. However, there has been a
significant decrease in the fine sediment concentrations during this
period. To illustrate the effects of these declining fine concentrations on
the annual loads, the 1959—-1969 flow period was compared to the 1990—
2012 period using the Tarbert Landing data. Lack of data at the other
stations for the 1959—1969 period prevented the development of a PSB
between these stations; however, the effects on the annual loads at Tarbert
Landing are presented. To illustrate the effects of the sediment regime, the
PSB was developed using the 1990—2012 flow duration with both the
1959—-1969 and the 1990—2012 fine sediment concentration—discharge
regressions. Figure 108 presents a comparison of the fine loads for these
two time periods. As shown in Figure 108, the annual fine loads at Tarbert
Landing were much greater in the 1959—1969 period than in the 1990—
2012 period. The median (50%) value decreased approximately 37% from
about 155.4 million tons/yr to 98.4 million tons/yr. Similar decreases were
observed at the 35% and 65% levels.



ERDC/CHL TR-14-5

135

Figure 108. Annual Mississippi River fine loads at Tarbert Landing, 1959-1969 and
1990-2012.
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4.4.4 Effective discharge analysis

Effective discharge analysis was conducted at Tarbert Landing for various
time periods to assess temporal trends in the effective discharge results. The
time periods analyzed include the following: (1) 1955-1972, (2) 1973—1992,
(3) 1992—2012, and (4) 1973—2012. The sand regressions were combined
with the flow-duration data to produce effective discharge curves for each
time period shown in Figures 109—112. The post-1973 curves exhibit the
typical bell-shaped curve with a fairly well-defined peak representing the
effective discharge. The pre-1973 curve shown in Figure 109 also exhibits a
bell curve but with a much broader peak, making the precise identification
of the effective discharge more problematic. Table 19 presents the effective
discharge results for each time period. As shown in Table 19, the effective
discharges for the post-1973 time periods are in the range of approximately
800,000 cfs while the pre-1973 effective discharge is closer to 700,000 cfs.

Although the effective discharge analysis provides an estimate of the single
flow that is responsible for transporting the most sediment, Figures 109—112
show that there is a wide range of flows that contributes significantly to the
overall sediment transport at each location. Biedenharn and Thorne (1994)
conducted a cumulative analysis of sediment transport to define an effective
range of flows. Using this same approach, the cumulative percentage of
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Sand Load (tons/yr)

sand transport for each time period was calculated and is shown in

Figures 109—112. Although the curves vary somewhat for each time period,
they exhibit a similar form, and the zone representing the steepest segment
of the cumulative curves where the maximum sediment transport occurs for
each increment of discharge can generally be identified. In general, it
appears that this zone occurs between approximately the 15% and 85%
values on the cumulative percent curve. Thus, the flows in this range are
responsible for transporting aproximately 70% of the total sediment.

Table 19 presents the discharges corresponding to the 15% and 85% values
along with the total sand moved in this range during each time period. As
shown in Table 19, the effective range of flows in the post-1973 time period
is fairly consistent, ranging from close to 500,000 cfs to slightly over

1 million cfs. The total sand moved by these flows in the post-1973 time
period varied slightly but was generally in the range of approxiamtely

25 million tons/yr. The effective range of flows in the pre-1972 time period
was much smaller, ranging from approximately 400,000 cfs—900,000 cfs
with a total sand transport of only approximately 16.5 million tons/yr. Thus,
the Mississippi River morphology in the pre-1973 time period would have
been responding to a smaller channel forming discharge regime than in the
post-1973 time period.

Figure 109. Mississippi River effective discharge and cumulative percentage sand load curves
for Tarbert Landing, 1955-1972.
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Figure 110. Mississippi River effective discharge and cumulative percentage sand load
curves for Tarbert Landing, 1973-1992.
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Figure 111. Mississippi River effective discharge and cumulative percentage sand load
curves for Tarbert Landing, 1992-2012.
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Figure 112. Mississippi River effective discharge and cumulative percentage sand load curves
for Tarbert Landing, 1973-2012.

1800000 | ‘ 100%

e .

/ -
1400000 / B0
\f/ - 70%

1200000 / v

1600000 | Effective Discharge .

= Cumulative Percent A

- 60%

1000000 Vj
\ - s0%

/ [ /
800000 f~
\ A - 40%
f Y
600000
/ V4 \ V\  30%
400000 / / \ L 20%
200000 / 7 VAV‘A\’\- - 10%
0 / d 0%
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000
Discharge (cfs)

Sand Load {tons/yr)
Cumulative Percent

Table 19. Effective discharge and cumulative percentage sand load at Tarbert Landing
for four time periods.

Effective Cumulative Percentage Sand Load Sand Load
Time Period Discharge (cfs) | 15 85 (tons/yr)
1955-1972 712,000 400,000 900,000 16,500,000
1973-1992 762,000 470,000 1,100,000 24,700,000
1992-2012 812,000 470,000 1,020,000 25,300,000
1973-2012 812,000 500,000 1,080,000 25,000,000

4.4.5 Bed material analysis

The primary focus of this section is to present a comparison of Mississippi
River bed sediment gradations based on three separate sampling investiga-
tions. The first of these investigations is the systematic sampling of bed
sediments in 1932 from the Mississippi River channel thalweg along a
1,070-mile reach between Cairo, Illinois, and Head of Passes. A total of 572
samples were collected (WES 1935). In 1989, the Corps of Engineers
contracted with Colorado State University (CSU) to undertake a sampling
program to duplicate the 1932 sampling program (Nordin and Queen 1992).
Two purposes of the study were to determine if the size distributions of the
thalweg bed sediments had changed since 1932 and to provide a baseline of
information against which future changes could be monitored.
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Nordin and Queen (1992) report the final conclusions from the 1989
sampling as follows:

The 1989 samples contained less coarse sand and gravel, and less
very fine sand than the 1932 samples; generally, they were more
uniform in distribution than the 1932 samples.

Between Cairo, lllinois, and RM 300 near the Old River Control
Structure, the bed sediments were generally finer in 1989 than in
1932. Downstream of the Old River Control Structure, the median
and mean diameters were about the same for both sets of samples,
but the 1989 samples contained less very fine sand (0.062 mm —
0.125 mm) and more fine sand (0.125 mm—0.25 mm) than in 1932.

The mean diameters of the sample fractions between 0.062 and
1.0 mm were generally slightly smaller in 1989 upstream of about
RM 300 and generally slightly larger in 1989 downstream of RM
300 compared to 1932.

Of the three types of samplers tested in 1989 (USGS 4-inch pipe
dredge, US BM-54, and 8-inch pipe dredge), there were no
systematic differences in particle size distribution of samples
collected with the different samplers.

The Nordin and Queen (1992) results represent the first systematic long-
term comparison of bed material along the entire Lower Mississippi River.
However, it must be remembered that the study results are based on only
two snapshots in time of the bed material, and therefore, any definitive
conclusions from these data must be viewed with caution.

ERDC acquired the third set of bed samples in December 2012. Samples
were acquired in much greater density than in the 1932 or 1989 investiga-
tions and were concentrated within approximately 5-mile reaches near
Vicksburg, Natchez, Tarbert Landing, and Baton Rouge as shown in
Figures 113, 114, 115, and 116. Samples were taken at various locations
across the channel and not all were along the thalweg. Table 20 lists the
average, minimum, and maximum D50 values for the 1932, 1989, and 2012
time periods. These data reflect the approximate 5-mile reach associated
with the 2012 sampling. Figure 117 shows a plot of the D50 for the three
time periods. Table 20 indicates that the average D50 value had been
relatively
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Figure 113. Location of Mississippi River samples taken in 2012 near Vicksburg, Mississippi.
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Figure 115. Location of Mississippi River samples taken in 2012 near Tarbert Landing,
Louisiana.

Tarb 3 Tarb 17 arp 28

Tam'g,ar.nw 7 Tarb.2 Tarb 34

Tarb*11, rarb10

Tapn 98~ ot
Tarb 15 o Tartia— Tarb.8

Tarb 17 Tarb 6
Tarb 16 o

Tarbi18

Tarb 19

Figure 116. Location of Mississippi River samples taken in 2012 near
Baton Rouge, Louisiana.
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Table 20. Average, maximum, and minimum D50 values for three sampling periods.

Bed Material D50 (millimeters (mm)) for 3 Sampling Years
1932 1989 2012

Vicksburg

Average 0.330 0.464 0.34
Maximum 0.508 0.485 0.429
Minimum 0.162 0.433 0.031
Natchez

Average 0.355 0.251 0.317
Maximum 0.695 0.339 0.414
Minimum 0.184 0.205 0.016

Tarbert Landing
Average 0.346 0.252 0.311
Maximum 0.502 0.369 0.415
Minimum 0.091 0.178 0.021
Baton Rouge

Average 0.347 0.274* 0.235
Maximum 0.373 NA* 0.380
Minimum 0.32 NA* 0.019

*Only one cross section was available in 1989 within the 5-mile reach.

Figure 117. D50 values for the 1932, 1989, and 2012 samplings from Mississippi River RM 0-RM 500.
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4.5

stable at these three points in time, with the average 2012 value generally
falling between the 1932 and 1989 values. Table 20 also indicates that the
minimum D50 values for the 2012 sampling were generally much finer than
the 1932 and 1989 values. Figure 117 presents the same. This is probably
explained by the difference in sampling locations of the 2012 samples as
compared to the 1932 and 1989 samples. The 2012 sampling had a much
wider spatial variability covering most of the channel width, while the 1932
and 1989 samples were restricted to the thalweg. Because of this difference
in sampling locations, and the fact that there are only three time periods
(1932, 1989, and 2012), it is difficult to draw any definitive conclusions with
respect to bed-material trends.

Events Timeline Results

A timeline bar chart of the major events that have occurred during the
study time period that are considered influential in terms of morphology
in the lower reach of the Mississippi River is shown in Figure 118. Since
1960 there have been seven major floods on the lower Mississippi River
that have required the operation of the Bonnet Carré floodway (1973, 1975,
1979, 1983, 1997, 2008, and 2011). Of these flood events, the 1973 and
2011 floods also required the operation of the Morganza floodway. The
2011 flood was the flood of record on the lower Mississippi River, setting
record stages at Vicksburg, Natchez, and Red River Landing. Although of
less magnitude than the 2011 flood, the flood of 1973 appears to have been
a more significant event in terms of impact to river morphology. The 1973
flood terminated a relatively flood-free period of more than 2 decades.
Specific gage records indicate a definitive rise in stage at the time of the
1973 flood whereas response to the 2011 flood was not as noticeable. A
potential reason for this is the river may have adjusted to a lower regime of
discharge during the flood-free decades. The 1973 flood resulted in
significant reworking of the channel through erosion, as evidenced by the
general erosional patterns observed between the 1963 and 1975
hydrographic surveys in the geometric data analysis.

In terms of anthropogenic events, the construction and evolution of the
ORCC has been the major activity on the lower river during the study
period. The low sill structure of ORCC began operation in 1963; the
auxiliary structure was added in 1986; and the hydropower plant came on
line in 1990. With the addition of each structure, the location of the water
diversion point for the ORCC was altered. In addition, the sediment
diversion characteristics of the ORCC were also altered as the various
combinations of structure operation have evolved.
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There are numerous revetments along the river banks within the study
reach, but there are relatively few dike fields compared to river reaches
between Cairo, Illinois, and ORCC. The primary dike fields are located at
Hog Point/Smithland, Redeye, and Medora crossings and Springfield
Bend. The Hog Point dikes are associated with a river channel realignment
that was constructed in the early 1990s. The dikes at Redeye and Medora
crossings were constructed in the early 1990s and 2000s, respectively,
with the purpose of maintenance dredging reduction. The Springfield
Bend dikes were constructed for bank protection and channel realignment.
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5.1

Discussion

Geometry Data

Evaluation of the cross section data obtained from decadal hydrographic
surveys indicates that the lower Mississippi River channel can vary
considerably in channel dimension from survey to survey. Channel depths
were observed to fluctuate as much as 10 ft between successive surveys, yet
there was often no discernible long-term trend in geometry change. In
general, the cross sections at the crossing locations indicate more change
due to erosion and deposition than cross sections at the pool locations. It
is generally understood that the channel crossings in a sand bed river are
important in defining the vertical stability of the river. Channel invert
profiles of cross sections at the crossing and pool locations indicate that
the crossing profile ranges from 20 to 50 ft higher than the pool profile. In
addition, the channel invert profiles generally indicate that reach-scale
slope of the river has been very consistent for the study time period. In
general, the river pattern has been very stable over the study time period,
with significant lateral shifts of 200 to 300 ft observed at only a few bends
in the reach between ORCC and Baton Rouge.

Volumetric data analyses for polygons along the study reach indicate a
general erosional trend in the river reach from Baton Rouge to Head of
Passes for the time period 1963—1975. This erosional trend was somewhat
surprising, and may possibly be related to effects of the major flood in
1973 after a 2—decade, non-flood period. General deposition was noted for
this time period from ORCC downstream to approximately Baton Rouge,
where the trend transitioned to erosion. No identifiable pattern of erosion
or deposition was noted for the 1975—1992 time period. A shift towards a
reach-wide general trend of deposition was observed for the time period
1992—2004 for the entire study reach as well as 2004—2012 for the reach
between ORCC and Baton Rouge. The highest rates of deposition for the
1992—-2004 time period were observed at ORCC, between Baton Rouge
and Bonnet Carré floodway and from Belle Chasse to Head of Passes. It
should be noted that the percent change in channel volume below top bank
elevation for successive survey periods is only 5% or less for the majority
of the analysis polygons with the exception of those in the immediate
vicinity of ORCC and below Venice, Louisiana.
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5.2

Analysis of the channel geometry in the immediate vicinity of ORCC
reveals that the river channel has readily adjusted as the complex has
evolved with the addition of the various structures. The 1963 and 1975
hydrographic surveys indicate that significant erosion occurred upstream
of the ORCC low sill structure, which began operation in 1963. This
erosion is most likely a result of drawdown caused by the structure.
Additionally, the drawdown effect was potentially increased during the
1973 flood when discharge through the structure was increased to reduce
the head on the structure due to structural damage during the flood. The
most significant changes observed in the vicinity of ORCC were between
the 1990 survey and 2004 survey, when deposition of 20 to 25 ft occurred
in the reach immediately downstream of the hydropower structure. The
sediment diversion characteristic of the hydropower structure along with
the change in the point of discharge withdrawal resulted in less sediment
being diverted from the Mississippi River, thus causing deposition in the
river channel. From all indications, the observed deposition appears to be
local to the ORCC; however, additional years of survey data may indicate
the changes are more systematic than local.

Specific Gage

A summary of the overall trends for each station during five different time
periods is shown in Table 21. The trends identified in Table 21 reflect an
overall assessment for all three flow regimes based on the statistical
analyses tempered with engineering judgment. All gages for which data
were available indicated an aggradational trend during the 1963—1974 time
period. These aggradational trends were almost entirely the result of the
1973 flood. For the 1975—2011 period, the individual gage trends varied. The
Red River Landing gage exhibited a general aggradational trend over this
entire time period. The overall assessment at the Bayou Sara and Baton
Rouge gages suggests that the stage trends have been relatively stable
during this time period. At Donaldsonville, a degradational trend for the
1975—2011 period was observed. The specific gage record at Algiers lock
indicated an apparent downward trend. However, overall, these trends are
considered inconclusive due to a 10 yr gap in the data. At West Pointe a La
Hache, no significant stage trends were observed. The longer period from
1975 to 2011 was broken into smaller periods in an attempt to capture any
shorter term trends. Table 21 indicates that the time period selected can
impact the observed trends.
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5.3

Table 21. Specific gage trends for all stations for specific time periods.

Trends for Specific Time Periods
Station 1963-1974 |1975-1992 |1993-2011 |1975-2011
Red River Landing A (D) A A
Bayou Sara A (D) A EQ
Baton Rouge A (D) A EQ
Donaldsonville A D EQ D
Algiers Lock NA EQ NA I(D)
West Pointe a LaHache NA EQ NA EQ

A=Increasing stage trend

D=Decreasing state trend

EQ=Dynamic equilibrium (no stage trend)
I(D)=Inconclusive (degradational)
I(A)=Inconclusive (aggradational)

NA=Not applicable

In evaluating the specific gage trends, it is worth noting that with the
exception of the dramatic increase in stages associated with the 1973 flood,
most all other trends in the post-1973 period are very subtle, and it is
difficult to determine if a real trend exists or not, particularly over relatively
short time periods. Even when statistically significant trends were
identified, the R2 values were extremely small, indicating that there was
little relationship between stage and time. Additionally, the regression
slopes were also very small. For instance, the regression slope for 1 million
cfs at Red River Landing for the 1975—2011 period was only approximately
0.05 ft/yr, which equates to approximately a 1.8 ft rise during this 36 yr
period.

Sediment Budget

This section provides a discussion of the results of the analysis of the
sediment data.

5.3.1 PSB for sands

The PSB results for the Tarbert Landing-to-St. Francisville reach for the
period 1973—2011 indicate a range of practical outcomes that extends from
approximately 10.1 million tons/yr of degradation to 24.5 million tons/yr of
aggradation, with a median (50%) value of approximately 6.5 million
tons/yr of sand deposition. Therefore, the Tarbert Landing-to-St.
Francisville reach could be expected to experience periods of both
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aggradation and degradation; however, the overall long-term tendency
would be towards aggradation. For the St. Francisville to Baton Rouge
reach, the PSB indicates the median value for annual sand load change is
approximately —1.5 million tons/yr, and the range of practical outcomes
extends from approximately —15.8 million tons/yr to 13.5 million tons/yr,
which is fairly evenly balanced between degradation and aggradation. This
suggests that while this reach may have a slight tendency for degradation, it
appears that it may be approaching dynamic equilibrium. The PSB results
for the Baton Rouge to Belle Chasse reach for the period 1973—2011 indicate
a range of practical outcomes that extends from approximately 5.2 million
tons/yr of degradation to 19.8 million tons/yr of aggradation, with a median
(50%) value of approximately 6.9 million tons/yr of sand deposition.
Therefore, the PSB indicates that this reach could be expected to experience
periods of both aggradation and degradation; however, the overall long-
term tendency would be towards aggradation.

The results of the PSB indicate an extremely wide range of practical
results, owing to the uncertainty in the data. Because of this, it is difficult
to use the measured sediment data by itself as a morphological predictor.
A more appropriate use of these data is to supplement the geometric and
specific gage analyses. It is also important to note that since the data are
limited to four stations within the study reach, the sediment budget results
are most applicable at the broader scale analysis. At the smaller, sub-reach
scale, their utility is limited.

5.3.2 PSB for fines

The PSB results for the fine loads raises questions about the fate of fine
sediments between Tarbert Landing and Belle Chasse. According to the
PSB, there is a tendency for the deposition of fine sediment between Tarbert
Landing and Baton Rouge. However, it must be noted that the PSB also
indicated a wide range of practical outcomes ranging from approximately
59 million tons/yr of deposition to 13.8 million tons/yr of erosion. Within
this reach, there are a number of low over bank areas, particularly just
upstream of St. Francisville that are potential deposition areas for fine
sediments. Sediment deposition of fine sediments in these overbank areas
has been documented by a number of researchers (Kesel et al. 1974).
However, a quantitative determination of the volume of fine sediment
deposited in these areas has not been established; it is likely that fine
sediments are being stored in this reach. Quantifying this deposition using
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the measured fine sediment data is difficult due to the uncertainty in the
data.

With respect to the Baton Rouge to Belle Chasse reach, the PSB indicates
that there is a tendency for erosion of fine sediments. More importantly,
the PSB produced a wide range of practical outcomes, ranging from 30.9
million tons/yr of erosion to 12.8 million tons/yr of deposition. Therefore,
it is difficult to establish with any certainty whether fine sediments are
being eroded or deposited within this reach using the measured fine
sediment data.
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6 Integration

Channel stability was assessed using channel geometry changes from the
decadal surveys, specific gage records, and the PSB. For this assessment,
the river between Old River and the Head of Passes was divided into the

following nine geomorphic reaches:

e Old River to Tarbert Landing

e Tarbert Landing to Bayou Sara
e Bayou Sara to Baton Rouge

e Baton Rouge to Donaldsonville
e Donaldsonville to Bonne Carré
e Bonne Carré to New Orleans

e New Orleans to Belle Chasse

e Belle Chasse to Empire

e EmpiretoRM4

Temporally, the analysis was divided into the following four general time
periods:

e 1960s—1970s, extending from approximately 1961—1963 to 1973—1975

e 1970s—1990s, extending from approximately 1973—1975 to 1991-1992

e 1990s—2000s, extending from approximately 1991—-1992 to 2003—
2004 downstream of Baton Rouge and to 2012 upstream of Baton
Rouge

e 1970s—2000s, extending from approximately 1973—1975 to 2003—
2004 downstream of Baton Rouge and to 2012 upstream of Baton
Rouge.

For each time period, the channel geometry, specific gage data, and PSB
were integrated to obtain a composite stability assessment for each reach.
Stability was divided into the following five broad categories:

e Aggradation
e Trending Aggradation
e Dynamic Equilibrium
e Trending Degradation
e Degradation
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The interpretation of the results necessarily involved some engineering
judgment when distinguishing among the different categories. In an effort

to provide some consistency in the approach, general criteria were

developed to aid in the interpretation of trends. Table 22 lists these trends.
The confidence placed in each metric (channel geometry, specific gage,
and PSB), and consequently the weight given to it in the final integration
of results, varied according to the reach and time period considered.
Tables 23—26 list the tabulation of results for each time period. Table 27
lists the results for all time periods. Figures 119—122 present color-coded
maps of the stability assessments by reach for each time period.

Table 22. Criteria for integration of geomorphic assessment analyses.

Criteria for Integration of Analyses

Assessment

Channel Volume
Percent Change

Specific Gage Trends

PSB

Aggradation

>1.5%

Statistically significant
aggradational trends

Not applicable

Trending Aggradation

0.8% to 1.5%

Inconclusive aggradational

trends

Dominant trends indicate aggradation

Dynamic Equilibrium

0.8% to -0/8%

No statistically significant

trends

Results balanced between aggradation
and degradation

Trending Degradation

-0.8% to -1.5%

Inconclusive degradational

trends

Dominant trends indicate degradation

Statistically significant

Degradation <-1.5% degradational trends Not applicable
Table 23. Geomorphic reach stability (1960s-1970s).

Reach Channel Geometry | Specific Gage Sediment Budget | Integrated Result
Old River-Tarbert D A N/A TD
Tarbert-Bayou Sara A A N/A

Bayou Sara-Baton Rouge A A N/A

Baton Rouge-Donaldsonville EQ A N/A EQ
Donaldsonville-Bonnet Carré D A N/A D
Bonnet Carré-New Orleans D N/A N/A D
New Orleans-Belle Chasse D N/A N/A D
Belle Chasse-Empire D N/A N/A D
Empire-RM4 D N/A N/A D

A=Aggradation
TA=Trending Aggradation
D=Degradation
TD=Trending Degradation
EQ=Dynamic Equilibrium
N/A=Not Applicable
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Table 24. Geomorphic reach stability (1970s-1990s).

Reach gzzr%ngclry Specific Gage Sediment Budget | Integrated Result
Old River-Tarbert EQ D N/A EQ
Tarbert-Bayou Sara TD TA TD
Bayou Sara-Baton Rouge TD EQ EQ
Baton Rouge-Donaldsonville EQ D TA TD
Donaldsonville-Bonnet Carré TA D TA EQ
Bonnet Carré-New Orleans EQ N/A TA EQ
New Orleans-Belle Chasse D EQ TA TD
Belle Chasse-Empire D EQ N/A D
Empire-RM4 EQ N/A N/A EQ

A=Aggradation
TA=Trending Aggradation
D=Degradation
TD=Trending Degradation
EQ=Dynamic Equilibrium
N/A=Not Applicable

Table 25. Geomorphic reach stability (1990s-2000s).

Reach gzzr%ngclry Specific Gage Sediment Budget | Integrated Result
Old River-Tarbert A A N/A A
Tarbert-Bayou Sara A A TA A
Bayou Sara-Baton Rouge TD A EQ EQ
Baton Rouge-Donaldsonville TA TA TA
Donaldsonville-Bonnet Carré EQ TA TA
Bonnet Carré-New Orleans EQ N/A TA EQ
New Orleans-Belle Chasse D N/A TA TD
Belle Chasse-Empire TA N/A N/A TA
Empire-RM4 A N/A N/A A

A=Aggradation
TA=Trending Aggradation
D=Degradation
TD=Trending Degradation
EQ=Dynamic Equilibrium
N/A=Not Applicable
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Table 26. Geomorphic reach stability (1970s-2000s).
Channel

Reach Geometry Specific Gage Sediment Budget | Integrated Result
Old River-Tarbert A A N/A A
Tarbert-Bayou Sara A TA TA A

Bayou Sara-Baton Rouge TA EQ EQ EQ

Baton Rouge-Donaldsonville TD TA TA
Donaldsonville-Bonnet Carré D TA TA
Bonnet Carré-New Orleans TA N/A TA TA

New Orleans-Belle Chasse D D TA D

Belle Chasse-Empire EQ EQ N/A EQ
Empire-RM4 A N/A N/A A

A=Aggradation
TA=Trending Aggradation
D=Degradation
TD=Trending Degradation
EQ=Dynamic Equilibrium
N/A=Not Applicable

Table 27. Geomorphic reach stability for all time periods.

Stability Assessment for Given Time Period

Analysis Type 1960s-1970s 1970-1990s 1990s-2000s 1970s-2000s
Old River to Tarbert Landing
Channel Geometry D EQ A A
Specific Gage A TD A A
Sediment Budget N/A N/A N/A N/A
Integrated Result TD EQ A A
Tarbert Landing to Bayou Sara
Channel Geometry A D A
Specific Gage A TD A
Sediment Budget N/A TA TA TA
Integrated Result A D A A
Bayou Sara to Baton Rouge
Channel Geometry A A TD TA
Specific Gage A TD A EQ
Sediment Budget N/A EQ EQ EQ
Integrated Result A EQ EQ EQ
Baton Rouge to Donaldsonville
Channel Geometry EQ EQ A A
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Stability Assessment for Given Time Period
Analysis Type 1960s-1970s 1970-1990s 1990s-2000s 1970s-2000s
Specific Gage A TD TA TA
Sediment Budget N/A TA TA TA
Integrated Result EQ TD TA TA
Donaldsonville to Bonnet Carré
Channel Geometry D TA A
Specific Gage A D EQ
Sediment Budget N/A TA TA TA
Integrated Result D EQ TA TA
Bonnet Carré to New Orleans
Channel Geometry D EQ EQ TA
Specific Gage N/A N/A N/A N/A
Sediment Budget N/A TA TA TA
Integrated Result D EQ EQ TA
New Orleans to Belle Chasse

Channel Geometry D D TD D
Specific Gage N/A EQ N/A TD
Sediment Budget N/A TA TA TA
Integrated Result D D TD TD

Belle Chasse to Empire
Channel Geometry D D TA EQ
Specific Gage N/A EQ N/A EQ
Sediment Budget N/A N/A N/A N/A
Integrated Result D D TA EQ

Empire to RM4

Channel Geometry D EQ A A
Specific Gage N/A N/A N/A N/A
Sediment Budget N/A N/A N/A N/A
Integrated Result D EQ A A

A=Aggradation

TA=Trending Aggradation
D=Degradation
TD=Trending Degradation
EQ=Dynamic Equilibrium
N/A=Not Applicable
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Figure 119. Color-coded map of geomorphic reach stability assessment, 1960s-1970s.
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Figure 120. Color-coded map of geomorphic reach stability assessment, 1970s-1990s.
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Figure 121. Color-coded map of geomorphic reach stability assessment, 1990s-2000s.
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Figure 122. Color-coded map of geomorphic reach stability assessment, 1970s-2000s.
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7 Conclusions

10.

Analysis of geometric data indicates there is considerable variability in
channel dimensions between decadal surveys.

Planform and profiles of the river in the study reach have been relatively
stable for the study time period.

Channel dimension at river crossing sections were observed to be more
variable than pool sections.

Grid files of observed change between decadal surveys were developed that
can be used to investigate channel morphology at desired locations for the
Mississippi Hydro and Delta Management Studies.

Geometric data analysis at ORCC indicates that diversion structures can
have significant impact on local geometry. The evolution of the ORCC has
resulted in various sediment diversion ratios due to the characteristics of
the individual structures. Changes in the sediment diversion characteristics
and location of structures within the ORCC have resulted in notable
geometric changes in the immediate vicinity of the ORCC. However, these
appear to be local changes based on available data. Long—term, system-
wide impacts may occur but are not evident based on current analysis.
Depositional trends downstream of Venice that were identified in the West
Bay study were confirmed.

Observed changes between surveys indicated that the percent change of
channel volume below top-bank elevation is relatively small (generally less
than =+ 5%).

It is important to recognize that channel surveys represent single points in
time and that channel morphology can change rapidly in the river.
Therefore, observed changes between these points in time should be
viewed with some caution as they may not necessarily reflect true long-
term morphologic trends.

The specific gage analysis indicates that with the exception of the dramatic
increase in stages associated with the 1973 flood, almost all other trends in
the post-1973 period are very subtle. It is often difficult to determine if a
real trend exists or not, particularly over relatively short time periods.
Even when statistically significant trends were identified, the R2 values
were extremely small, indicating that there was little relationship between
stage and time.

A statistical analysis of the measured suspended sediment data indicated
that there had been a statistically significant decreasing trend in the fine
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11.

12.

13.

14.

15.

16.

sediment concentration from the 1950s—1980s. However, no significant
trends were observed from the 1990s to present. Statistical analysis of the
sand concentration data for the period 1959—2011 revealed no
monotonically decreasing trend over time.

Measured suspended sediment data were analyzed to assist in the
assessment of historical channel morphology. Because of the uncertainty
in the data, a Monte Carlo approach was developed to capture this
uncertainty. A probabilistic sediment budget (PSB) was developed for the
1973—2012 time period using the data at the four main gauging stations
(Tarbert Landing, St. Francisville, Baton Rouge, and Belle Chasse).

The PSB for the sand loads indicated a tendency for aggradation between
Tarbert Landing and St. Francisville and Baton Rouge and Belle Chasse,
while the St. Francisville to Baton Rouge reach was in dynamic
equilibrium. The median values of the PSB agreed well with observed
channel volume changes obtained from the decadal surveys. However, the
PSB also indicated a wide range of possible outcomes ranging from
degradation to aggradation.

The PSB for the fine sediment loads indicated a significant deposition of
fine sediment between Tarbert Landing and Baton Rouge. Deposition of
fine sediment in the floodplain areas in this reach is reasonable. However,
it is difficult to quantify the amount of deposition due to the uncertainty in
the suspended sediment data and the limited mapping in the overbank
areas. Between Baton Rouge and Belle Chasse, the PSB indicated a wide
range of results ranging from erosion to deposition; however, the
dominant tendency was for the erosion of fine sediments.

The PSB indicates an extremely wide range of practical results, owing to
the uncertainty in the data. It is also important to note that since the data
are limited to four stations within the study reach, the sediment budget
results are most applicable for broader scale analyses. At the smaller, sub-
reach scale, its utility is limited.

The 1973 flood event had a dramatic impact on the morphology of the river
as evidenced by the specific gage records and channel geometry
comparisons. The changes in stage and channel geometry resulting from
the 1973 flood were the most pronounced changes observed in the past 50
yr. It is important to note that the previous 2 decades prior to the 1973
flood were dominated by moderate flows.

The overall stability assessment for the 1960s—1970s time period indicates
that the reach downstream of Donaldsonville was dominated by channel
degradation. Upstream of Baton Rouge the reach was dominated by
aggradation, except for the ORCC to Tarbert Landing reach that was



ERDC/CHL TR-14-5 162

trending towards degradation due to impacts of the low sill structure. The
Baton Rouge to Donaldsonville reach was a transition reach. It is
important to note that trends experienced during this period were
significantly influenced by the 1973 flood.

17. The overall stability assessment for the 1970s—1990s time period shows
that the ORCC to Tarbert Landing, Bayou Sara to Baton Rouge, and
Donaldsonville to New Orleans reaches were in dynamic equilibrium. The
remaining reaches were trending toward degradation with the exception of
the Empire to River Mile 4 above Head of Passes (AHP) reach, which was
trending towards aggradation.

18. For the period between the 1990s and the 2000s, the channel shifted to a
predominantly aggradational regime throughout the study reach. The only
reaches that were not aggradational were the Bonnet Carré to New Orleans
reach, which was in dynamic equilibrium, and the New Orleans to Belle
Chasse reach, which was trending towards degradation.

19. Over the longer time period between the 1970s and 2012, the general trend
of the entire study reach was predominantly aggradational, with the
exception of the New Orleans to Belle Chasse reach which was trending
toward degradation, and the Belle Chasse to Empire reach which was in
dynamic equilibrium.

20. The geomorphic assessment highlighted the importance of considering
spatial and temporal variability when assessing channel stability. For
instance, the 1970s—1990s was a period reflecting erosion and dynamic
equilibrium, while the 1990s—2000s was dominated by aggradation.
Morphologic trends on the Lower Mississippi River typically occur over
decadal timescales. Consequently, there is considerable uncertainty with
assessments that only cover short time periods. Therefore, investigators
must be cautious when assuming that short term recent trends will reflect
future conditions.
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Appendix A: Geometry Data Analysis,
Comparative Cross Sections

Abbreviations Used in Appendix A

River mile RM
Above head of passes AHP
Cubic yards/mile/year CY/mi/yr
Old River Control Complex ORCC

Average

ave.

Comparative cross sections—Crossing locations
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Appendix B: Geometry Data Analysis, Average

Annual Erosion/Deposition Maps

Abbreviations Used in Appendix B

River mile RM
Above head of passes AHP
Cubic yards/mile/year CY/mi/yr
Old River Control Complex ORCC

Average

ave.
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Appendix C: Geometry Data Analysis, Old
River Control Complex (ORCC) Comparative
Cross Sections

Abbreviations Used in Appendix C

River mile RM
Above head of passes AHP
Cubic yards/mile/year CY/mi/yr
Old River Control Complex ORCC
Average ave.
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Appendix D: Geometry Data Analysis, Old
River Control Complex (ORCC) Average Annual
Erosion/Deposition Maps

Abbreviations Used in Appendix D

River mile RM
Above head of passes AHP
Cubic yards/mile/year CY/mi/yr
Old River Control Complex ORCC

Average

ave.
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