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1 SUMMARY 
The goal of the Quantum Computing Approach to Model Checking for Advanced Manufacturing 
Problems (QCHECK) research project was to determine if it is feasible in the future to speed up 
a Model Checking (MC) approach based on Counter-example Guided Abstraction Refinement 
(CEGAR) by using a D-Wave open system, adiabatic quantum annealing processor.  These are 
specialized computing devices that solve spin Ising models, which are equivalent to Quadratic 
Unconstrained Binary Optimization (QUBO).  We focused on two aspects of the CEGAR 
approach that involved solving integer linear programs (ILPs) and Boolean satisfiability (SAT) 
problems. The project was divided in five tasks: 

Task1: Study feasibility of using a D-Wave to solve Bounded Model Checking (BMC) problems 
and implementing Binary Decision Diagrams (BDD) based techniques. 
Task 2: Compare the performance of a second generation D-Wave (DW2) on MAX-2-SAT 
problems native to its architecture, versus the heuristic solver MaxWalkSat. 
Task 3: Develop a heuristic embedding algorithm for the DW2 to get around the limited 
connectivity of the processor. 
Task 4: Integrate the CEGAR approach with the DW2 processor. 
Task 5: Implement examples. 

Results: 

Task 1: It was found that even though in principle the required BMC problems could be cast as 
QUBO problems, the probabilistic nature of the processor (that provides no guarantees that the 
best possible solution has been found) made the approach susceptible to false negatives: a SAT 
formula could be proclaimed “unsatisfiable” because the best solution found by DW2 does not 
satisfy the formula, while a better solution might exist that proves the formula satisfiable. With 
regards to implementing BDD based approaches using DW2, it was concluded that encoding 
such a problem as an optimization problem, though possible, would not scale well with system 
size. 

Task 2:  The comparison was performed on a set of random instances of MAX-2-SAT that are 
native to the DW2 processor’s architecture, for different numbers of variables. The performance 
of DW2 was shown to be better than that of MaxWalkSat, with the caveat that MaxWalkSat was 
not optimized for the DW2 architecture. The issue of DW2’s performance vs. that of classical 
solvers remains (as this report is being written) an open and very contested research topic. 

Task 3: A tool to perform heuristic embeddings was created. It allowed us to implement QUBO 
problems that had a different connectivity graph than the native DW2 architecture. This tool is 
useful for optimization problems, but suffers the same limitations found in Task 1 for decision 
problems (i.e., SAT) due to the lack of a guarantee that the solution found is the best possible. 
The tool needs further optimization, and alternative approaches need to be investigated. 

Task 4: Several issues arose that made this task more challenging than was anticipated: 
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1. Off-the-shelf model checking packages do not provide access to internal data such as the
ILP needed to be solved during the CEGAR implementation. We contacted the developers but 
they were reluctant to give us access to the source code. 
2. Many simple models that we studied generated trivial ILPs during the CEGAR
implementation, i.e., the solution could be found by simple inspection. It took some time to learn 
from these models what properties of the system will lead to non trivial ILPs. 
3. In order to have access to the ILPs we ended up writing a small model checking package
using publicly available libraries. We used the And-Inverter Graph (AIG) format, allowing us to 
generate small, non-trivial ILPs (on the order of tens of linear constraints and binary variables). 

Task 5: We found an example from the literature of a flight control system and checked a safety 
property that requires two exclusive flight modes not to be engaged at the same time. We 
implemented this problem integrating the AIG-based model checker with the DW2, ran the 
CEGAR approach starting with an abstraction that had 33 hidden variables. Our integrated code 
proved the system to be safe by making visible only 14 of the 33 hidden variables. 

Main lessons learned during the execution of this project 
The current programing paradigm of the DW2 processor requires either heuristic embeddings or 
approximate embeddings to implement QUBO problems that do not have connectivity native to 
the processor. This step leads to a loss of certainty about whether the optimal solution to the 
original problem is the same as the optimal solution to the embedded problem. This feature 
potentially results in false negatives when solving decision problems with DW2. For example, if 
the best answer provided by the processor corresponds to a negative result for the decision 
problem (e.g., a SAT formula is not satisfiable), yet there exists a better solution to the original 
decision problem that gives a positive answer (i.e., the SAT formula may be satisfiable). Note 
that there are no false positives, since a positive answer provides that the corresponding 
assignment can be checked efficiently. 

Optimization problems are better suited for the current programming toolbox. Even though we 
may not find the optimal solution to a problem, both the heuristic and approximate embedding 
approaches provide “good solutions”, which can still be very valuable if they can be found faster 
than with other methods. The heuristic embedding tool developed in this project is designed to 
generate a sequence of improving solutions, although there is no guarantee that the optimal 
solution will be found (although additional information about the problem may help identify 
when optimal solutions are found). 

The question of speed up with respect to classical algorithms is very hard to answer. A 
benchmarking against a particular classical algorithm will not preclude the existence of another, 
more efficient algorithm. Since we can only estimate the scaling behavior of the runtime 
performance of the DW2 processor by benchmarking it on a given set of instances, the problem 
is translated into finding a particular set of instances that show speedup over some set of classical 
algorithms. Even how to pose the question of speedup has been the subject of intense research. 
At this point in time, there is no conclusive evidence that the DW2 provides any speedup, but 
this has only been tested up to 500 variables. New processors with up to 2000 qubits are 
expected to be available in the next two years. 

Although not directly related to this project, very important results have been obtained regarding 
the quantum nature of the DW2 processor. Even though it is designed to operate in a quantum 
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mechanical regime, it is not easy to experimentally confirm this feature. During the execution of 
this project we also performed research aimed at resolving this issue. Two approaches were 
devised: one provided evidence of a quantum signature by analyzing the statistics of the output 
of the DW2 processor when solving a carefully designed problem involving 8 qubits. The second 
approach, implemented in collaboration with the company D-Wave, gave a definitive answer 
regarding the quantum nature of the device by showing that entanglement is present during the 
quantum annealing evolution. Whether this entanglement can provide a computational speedup is 
still an open question. 

In terms of the integration of the CEGAR model checking approach and the DW2 processor, the 
proposed approach was shown to be very straightforward. The obstacles encountered were not 
related to the fundamental idea of the approach, but rather to the technical limitations of the 
software tools required (lack of access to the inner workings of the CEGAR implementation 
available in the different publicly available model checking packages). Any model checking 
package that provides the required information (i.e., the ILPs to be solved in CEGAR) could be 
easily integrated to interface with the DW2 processor.  
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2 INTRODUCTION 
The goal of the QCHECK project was to analyze the feasibility of exploiting the computational 
capabilities of the DW2 adiabatic quantum processor in order to speedup and improve the 
solution of model checking problems. The DW2 device is designed to solve combinatorial 
optimization problems by exploiting quantum mechanical effects of an array of Superconducting 
Quantum Interference Devices (SQUIDs) [1].  

One of the main drivers of the computational hardness of model checking problems is the 
extremely large size of the state space that needs to be considered [2]. The different algorithms 
and techniques that have been developed to solve model checking problems need to implement 
in one way or another, a mitigation strategy for this problem. One of the approaches that have 
been proposed and developed is based on abstractions. The main idea is to replace the system 
that needs to be checked by an abstraction that has a much smaller state space, with the feature 
that if a property is found to be true in the abstraction it is automatically true in the original 
system. Since the size of the abstracted state space is smaller, the algorithms employed to 
address the abstract problem require much less computational resources. 

The abstraction based approach however, comes with a price: a property may be proven wrong in 
the abstraction when it is actually true in the original system (false negative). To avoid this 
problem, every counterexample to a property found in the abstraction must be verified as valid, 
i.e., a corresponding counterexample must exist in the original system. When such a
counterexample cannot be produced, we say that the abstraction generated a spurious 
counterexample, and the truth or falsehood of the property remains unknown.  

To solve this issue an approach known as Counterexample Guided Abstraction Refinement has 
been developed [3]. The basic idea is to use the structure of the spurious counterexample to 
generate a finer abstraction that would get rid of it. A finer abstraction has a larger state space 
and so it is important to find a refinement that increases the size of the state space the least. This 
process continues until the property is proven to hold, or a valid counterexample in the original 
system is found. We have identified an approach to CEGAR in which combinatorial optimization 
problems of the form that can be solved by the DW2 processor are a central part of the 
algorithm: one is to check whether an abstract counterexample corresponds to an actual 
counterexample in the original system which requires solving an instance of a Boolean 
Satisfiability problem; the other is at the root of finding the smallest abstraction refinement that 
can get rid of a spurious counterexample and requires solving and Integer Linear Program.  

2.1 D-Wave Two (DW2) adiabatic quantum optimization processor overview 
The DW2 adiabatic quantum computer solves a Quadratic Unconstrained Binary Optimization. 
This optimization consists in finding the vector of binary variables that minimizes the quadratic 
objective function 

f (x1, …, xn) = Min[x]{ Σ[i<j; i=1, …, n;  j=1, …,i-1]Qijxixj } (1)  

where x = (x1, x2, …, xn),  xi ∈ {0,1}, and Qij is a matrix of real numbers that determines the 
objective function.  This problem is equivalent (through a simple linear transformation of the 
variables xi → si = 2xi – 1) to the Ising model.  The Ising model represents a set of interacting 
spin magnets with an energy given by: 
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E (s1, …, sn) = Σ[i<j; i=1, …, n]Jijsisj + Σ[i=1, …, n]hisi (2) 

where the spin variables, sj’s, now take the values {+1,-1}, the parameters Jij represent the 
interactions between two spins, and the parameters hi correspond to local magnetic fields. 
Solving the Ising model consists in finding the spin configuration that minimizes the energy, E.  
This problem is known to be NP-hard [4], and many important combinatorial problems can be 
reduced to it [5].   

DW2 implements a quantum version of the Ising model, where each spin variable is replaced by 
a Pauli operator σz, representing the state of a qubit (quantum bit) that is associated with the 
magnetic flux of a superconducting quantum interference device (flux-SQUID). The Ising 
Hamiltonian, given by  

HIsing = Σ[i = 1,..,N] {Σ[j=1,…,N][Jijσi
zσj

z]} + Σ[j=1,…,N]hiσi
z       (3) 

characterizes the quantum mechanical system of spins. The device allows for tunable interactions 
between the different qubits (i.e., tunable parameters Jij), as well as tunable local biases 
(parameters hi).  

Quantum annealing in the D-Wave processor proceeds as follows: initially a transverse field is 
applied such that the lowest energy state has all the spins pointing in the same transverse 
direction, a quantum superposition of +1 and -1.  The parameters are then slowly varied in order 
to transform the Hamiltonian into HIsing, whose ground state encodes the solution to the 
optimization problem.  The adiabatic theorem of quantum mechanics assures us that, provided 
this parameter change is slow enough, the final state of the system corresponds to the ground 
state of the final Hamiltonian [6], i.e., the spin configuration that minimizes the energy function. 
The values of the spins are obtained by measuring the flux of each qubit at the end of the 
annealing.  In reality, due to the probabilistic nature of this quantum mechanical system, this 
process must be repeated several times in order to expect to identify the lowest energy 
configuration.  

Our initial D-Wave One (DW1) system had 128 qubits, depicted as green and gray circles in 
Figure 1. They are arranged in a 4 x 4 array of 8-qubit tiles.  In each tile, the qubits are separated 
in two groups of 4 and connected in a bipartite fashion [7] (each qubit is only connected to all the 
qubits in the other group).  Some qubits in each tile have extra connections to qubits in other 
tiles, such that the graph is connected (but not fully connected). The connectivity graph is called 
the Chimera graph [8].  The DW2 processor used in the latter part of the project has 512 qubits. 
It is composed of a 16 x 16 array of 8-qubit tiles connected in a similar way as in Figure 1. 
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This connection topology is dictated by constraints imposed by the underlying technology, but 
the design is scalable up to many thousands of qubits. The lack of full connectivity between all 
the qubits in the chip prevents a straightforward mapping of an arbitrary Ising Hamiltonian (or, 
equivalently, an arbitrary quadratic function) into the processor.  However, although constructing 
and optimizing this embedding is not a trivial issue, several heuristics have already been 
developed. 

2.1.1 The Physical Principles of the D-Wave Quantum Computer 
The basic building block of the DW2 quantum annealing chip is a superconducting flux qubit, 
(rf-SQUID flux qubit) as depicted in Figure 2.  The simplified version consists of two 
superconducting loops having two Josephson junctions [9].  Each loop is subject to externally-
biased magnetic fields (Φ1x and Φ2x) that are used to control the properties of the qubit. The 
quantum states are associated with the quantized magnetic flux Φ1.   

Figure 1. D-Wave One connectivity graph 
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For low temperatures, it is a good approximation to only consider the two lowest states 
corresponding to flux pointing up and flux pointing down.  The energy profile that describes the 
system is a double-well potential, represented in Figure 3.  The bias fluxes Φ1x and Φ2x are used 
to adjust the height of the energy barrier δU, and the energy difference between the two states, 
2h.  The actual qubits in the quantum computing element chip have extra loops that are used to 
compensate for undesirable effects due to fabrication manufacturing variations and provide more 
uniformity in their properties. 

2.1.2 Programming and Using the D-Wave Quantum Computer  

Programming of the DW2 involves setting the values of the local magnetic fields, and the 
coupling coefficients for each super-conducting qubit, which determine the desired final (Ising) 

Figure 2. Schematic representation of the compound superconducting loops used to realize 
the qubits in the D-Wave processor 

Figure 3. Energy profile of a superconducting flux qubit 
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Hamiltonian. The DW2 is housed in an integrated environment able to be programmed by either 
desktop computers connected directly to the DW2, or remotely via a local area network, or other 
remotely-accessed communication networks, to which the desktop computers are connected.  

To program the DW2, a user needs to provide the chip with the values of J and h that satisfy the 
constraints discussed above.  Casting a given problem into the Ising form and respecting the 
constraints on J and h is part of the “art” of programming DW2. For many discrete optimization 
problems there are known mappings to the Ising model, but those often result in matrices J with 
more connectivity than what is currently available on DW2. One way is to map such J into the 
chip by using certain qubits to simulate more connections, but the price paid is that these qubits 
are not available to encode the solution.  There are also heuristic approaches that aim at 
approximating a given unconstrained J with another matrix J’ that satisfies the constraints of the 
chip and has the same minimum of the energy function. 

Programming of, and readout from the DW2 occurs through an application-programming 
interface consisting of function libraries that make calls to the optimization capability of the 
DW2.  These libraries are available in Matlab and Python, and can be used to access the 
machine’s functionalities directly from the programmer’s code.  These software tools, in 
conjunction with the machine’s circuitry, translate the description of the Ising Hamiltonian into 
the time-dependent classical controlling signals that make the qubits evolve following the 
required adiabatic evolution.  After the qubits are measured, the results are also available through 
a software interface.  

2.1.3 Counterexample guided abstraction refinement 
One of the main computational bottlenecks in model checking is related to what is known as the 
“state space explosion”: even for moderately sized systems, the state space needed to describe 
them is intractably large (a system with 10100 states is not uncommon). Developing techniques to 
deal with this issue is central in model checking. One popular technique is based on the use of 
Binary Decision Diagrams, a very compact data structure that allows for a succinct description of 
the state space and the transition system [10]. Another approach is based on abstractions: a 
smaller system is constructed in such a way that properties proven true in the abstraction are 
guaranteed to be also true in the original system [11]. The abstraction can then be checked using 
regular model checking tools (like BDDs for example), which are computationally more efficient 
since they are applied to a much smaller system. 

If an abstraction is not sufficient to prove a given formula, the model checking tool used on the 
abstraction must provide a counter-example (CE), a path in state-space that violates the formula.  
This CE can be real or spurious: a real CE can be mapped to an actual CE in the original 
(concrete) model, hence disproving the formula; a spurious CE is an artifact of the abstraction 
and “disappears” when mapped to the original model.  To determine which one is the case, we 
can “simulate” the CE in the original system.  This can be posed as finding a satisfying 
assignment for a Boolean formula.  DW2 implements these Boolean satisfiability problems by 
fabricating an energy function that achieves a minimum, when all clauses are satisfied.  If the 
formula is not satisfiable, the lowest energy configuration obtained with DW2 will represent an 
assignment of the Boolean variables that will not satisfy the formula. This can be efficiently 
checked from DW2’s output. 
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In order to determine if an abstract CE corresponds to an actual CE in the original system (and 
hence a proof that the property is not satisfied), we need to translate the sequence of transitions 
that form the abstract CE into a sequence of transitions in the original system. The central 
question that we need to ask is: given a transition in the abstract system does a corresponding 
transition exist in the original system? It should be remembered that in an existential abstraction, 
an abstract transition between two abstract states exists, even if only one pair of original states 
(each mapped to a different abstract state) has a transition (see Figure 4, where the transition 
between states s3 and s6 in the original system induces a transition between the second and third 
states of the abstraction).  

For example, consider an abstract CE, 𝑇� , given by a sequence of abstract states 〈𝑠1�  , … , 𝑠𝑛�  〉. 
Given an abstract state 𝑠̂, the abstraction function h maps states in the original system into the 
abstract system.  The set of states that are mapped into 𝑠̂ are the ones that satisfy h(s) = 𝑠̂.  If we 
denote by 𝑅(𝑠𝑖, 𝑠𝑗)  the characteristic function of the transitions in the original system (i.e., 
𝑅�𝑠𝑖, 𝑠𝑗� = 1 if and only if there is a transition between states 𝑠𝑖and 𝑠𝑗 , and 0 otherwise), then a 
path 〈𝑠1, … , 𝑠𝑛 〉 is a concrete representation of the abstract CE 𝑇� , if  the Boolean formula 

⋀ (ℎ(𝑠𝑖) =  𝑠𝚤�) ⋀𝑛
𝑖=1  ⋀ 𝑅(𝑠𝑖, 𝑠𝑖+1)𝑛−1

𝑖=1          (4) 

is satisfied, where the first AND operator assures that the states 𝑠𝑖  are mapped into the 
corresponding abstract states  𝑠𝚤� , while the second AND operator assures that there exists a 
transition in the original system between the states 𝑠𝑖 and 𝑠𝑖+1. We will show later that finding a 
satisfying assignment of a Boolean formula can be cast as a 0-1 Integer Linear Program, and this 
ILP can be mapped into QUBO form implemented by DW2. 

2.1.4 Refining the Abstraction 
If the CE is spurious, the satisfiability problem presented above identifies an abstract state that 
causes the violation of the formula being checked.  This is due to having clustered together 
“dead end” states (that do not provide a path to an error state) and “bad” states (that provide a 
path to an error state).  We can illustrate this behavior with the following diagrams that represent 
a system and its abstraction (see Figure 4). 
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Consider the set of states and their transitions depicted in the original model of Figure 4.  Here, 
s0 is the initial state, and the states colored red are error states.  Consider a possible abstraction of 
this system in which all the states inside each dotted-lined rectangle are mapped to the same 
abstract state.  The transition diagram for such an abstraction is given in the lower part of Figure 
4. From these diagrams, we can see why a spurious CE may arise.  In the original system, it is
clear that if we start in the initial state I, we will never reach the “error” states (red states in the 
diagram).  However, by looking at the transition diagram for the abstraction, we can see that 
starting in the abstract initial state we may eventually reach an “error” state.  This is easier to see 
in the diagram of Figure 5. 

Figure 4. Example of abstracted model 

Figure 5. Spurious counter example 
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The states in black in Figure 5 represent a possible path that the system can take.  Note that in the 
original system that path cannot reach any “error” states.  The farthest the system can go is the 
“dead end” state.  However, in the abstraction, the “dead end” state is mapped to the same 
abstract state as a “bad” state, i.e., a state that can eventually transition into an “error” state, so a 
spurious transition is created that causes the system to have a valid path from the initial state to 
an “error” state.  In the diagram, we note as a “failure” state the abstract state that is causing a 
spurious counter-example to appear, because it maps together “dead end” and “bad” states.  To 
refine the abstraction, these states need to be separated and assigned to different abstract states. 
Therefore, in order to construct viable abstractions, one must follow the steps outlined below: 

1. Minimal Separating Set – Generate an abstraction where “dead end” and “bad”
states are clearly separated.  This results in an ILP that the DW2 can solve as an
Ising problem.

2. Satisfiability – Regardless of the approach used to generate abstractions, any CE
needs to be verified, if it is real or spurious.  This invokes the processing of
satisfiability, which is executed in DW2 as an Ising model.

The sections below discuss how these steps are formulated and mapped to the DW2 quantum 
annealer.  

2.1.5   Minimal Separating Set 
This can be constructed by identifying which of the “invisible” variables should be made 
“visible” to distinguish “dead end” and “bad” states.  The goal is to separate these two sets 
exactly (i.e., no mistakes allowed) using the smallest number of invisible variables possible, in 
order to keep the size of the refined abstraction from growing too much.  For this, we use the 
following definitions, assuming that there are 2 sets of states S = (s1, s2, …, sm) and T = (t1, t2, …, 
tn) that need to be separated (S can represent the “dead-end” states and T can represent the “bad” 
states).  Let W be the set of variables required to specify all states in the original system.  

Definition-1: A set of variables U = (u1, u2, …., uk)⊆W, separates S from T if for each 
pair of states (si, tj), si∈S and tj∈T, there exists a variable ur such that si(ur) ≠ tj(ur).  

Definition-2: Given 2 sets S and T per Definition-1, find the smallest set of variables U = 
(u1, u2, …., uk)⊆W, that separates S from T.  The set U is called the minimal separating set.        
We can assign a binary variable vi to each variable ui , that will represent whether that variable is 
included in the separating set or not: if ui is in the separating set, then vi =1; otherwise is zero (the 
corresponding variable is excluded).  The conditions are that for each (si, tj) pair at least one of 
the variables that distinguish between the two states must be selected.  Thus, there is a total of 
mхn conditions.  Under this formulation, the minimal separating set can be solved using integer 
linear programming in a conventional computer to attain an exact solution.  

Minimize Σ[j=1,…, k] vj  with each vi = 0 or 1 (5) 

Subject to: (∀s∈S) (∀t∈T)  Σ[j=1,…, k] vj  ≥ 1 for s(uj) ≠ t(uj) 

Assuming that S represents the “dead end” states and T the “bad” states, the objective function 
aims to minimize the count on the number of new variables we are including, while the 
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constraints express the fact that every pair of “dead end”-“bad” states has to be distinguished by 
at least one of the new variables we are including. 

We refer now to the case that the sets S and T represent the “bad” and “dead-end” states denoted 
by SB and SD.  The following lemma from formal methods apply: 

Lemma – Let U be the set of variables separating the “dead-end”, SD, and “bad”, SB, states.  Let 
an abstraction function h’ correspond to the visible set V’ of variables realizing the abstraction. 
Also, let V represent the entire set of the original visible variables; then the following applies: V’ 
= V∪U.  The abstraction function h’ maps SD and SB on to different states in the abstract model.       
This lemma implies the following: 1) the number of visible variables have increased from |V| to 
|V’|=|V|+|U|; and 2) using this augmented set of visible variables the abstraction function will 
map SB & SD to different abstract states, which do need to be considered.  As said above, the 
model checking tool will check if the property of interest is valid in the abstraction.  If it is valid, 
then the procedure is over; if it is not and it generates a spurious CE, the process needs to be 
repeated until a set of visible variables is identified on which that property holds or a valid CE is 
found.  
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision 
Diagrams 

The analysis of the suitability of DW2 to address BMC problems and to implement BDD-based 
model checking approaches was a theoretical exercise, and no particular assumptions were 
required. We will present the details of the problem setup together with the results of this 
investigation in Section 4.1.  

3.2 Benchmarking of DW2 performance on MAX-2-SAT against classical solver 
MaxWalkSAT 

The main goal of this task was to benchmark the performance of the DW2 processor on a native 
problem, against a classical heuristic solver. The rational for this task was that benchmarking up 
to that point was performed against classical exact solvers, in particular AK-MAXSAT [12]. 
Since this solver provides a guarantee of optimality, it requires more resources (i.e., run time). 
The DW2 processor is a probabilistic solver (solution is provided with a finite probability and no 
optimality guarantee is given), and so it is not fair to compare it with exact solvers. 

3.2.1 MAX-2-SAT 
The choice of MAX-2-SAT is based on the fact that this problem can be trivially written as an 
Ising problem that is native to the DW2 processor.  

Definition of MAX-2-SAT: given a Boolean formula in conjunctive normal form with 2 literals 
per clause, find the maximum number of clauses that can be simultaneously satisfied. 

The key point in implementing this problem using the DW2 processor is to notice that for each 
2-literal clause, we can construct a Hamiltonian of Ising form whose ground state is composed 
by the satisfying assignments for the clause. For example, consider the 2-literal clause (xi ∨ xj). 
This clause is satisfied if any of the two variables is TRUE. To map this problem into an Ising 
form we will associate to each variable the state of a qubit, with x = TRUE → |+1〉 and x = 
FALSE → |-1〉. Consider then the 2-qubit Hamiltonian 

𝑯 =  𝟏
𝟒

(𝟏 − 𝝈𝒊  −  𝝈𝒋 +  𝝈𝒊  ⊗ 𝝈𝒋 )         (6) 

where the 𝝈𝒊 is the Pauli operator associated with qubit i, and {|+1〉 , |-1〉} are its corresponding 
eigenvectors. Table 1 shows the truth table of the 2-literal clause, and the energies of the 
associated states. 

Table 1. Truth table for Boolean OR and energies of associated 2-qubit Hamiltonian 

xi xj xi ∨ xj 𝝈𝒊 𝝈𝒋 𝑯 

F F F -1 -1 1 

F T T -1 +1 0 

T F T +1 -1 0 
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T T T +1 +1 0 

We can see that all satisfying assignments are associated with states of energy 0, while the only 
non-satisfying assignment corresponds to a state with energy 1. Hence, the ground state of the 
Hamiltonian H is composed exactly by all the satisfying assignments of the 2-literal clause. If 
any of the variables appear negated in the formula, we just need to flip the sign of the 
corresponding Pauli operator on the Hamiltonian. 

If we have a conjunction of many clauses C1∧…∧CM, we just need to add the corresponding 
Hamiltonians H = H1 + …+HM. For any possible truth assignment to the Boolean variables, the 
energy of the state will be increased by 1 for every unsatisfied clause. Then the energy of the 
ground state of H will be the minimal number of unsatisfied clauses, from which we can trivially 
infer the maximum number of satisfied clauses, i.e., the objective of the MAX-2-SAT problem. It 
is then clear that we can look at MAX-2-SAT as a native problem to the DW2 processor. Even 
though the decision problem 2-SAT is known to have a polynomial-time solution, the 
optimization problem MAX-2-SAT is NP-hard (i.e., a polynomial-time algorithm for it would 
imply the existence of a polynomial-time algorithm for all problems in NP). 

3.2.2 MaxWalkSAT 
We chose the MaxWalkSAT [13] solver as the classical algorithm for the benchmarking. This 
solver applies heuristic methods to provide an approximate solution to a MAX-2-SAT instance. 
Since it is not required to provide any guarantees of optimality (as exact solvers do) it can run 
much faster on many instances. We considered that this provided a better comparison between 
classical solvers and the DW2 processor. 

MaxWalkSAT is a variant of WalkSAT, a heuristic SAT solver. In its more general form, 
MaxWalkSAT solves the weighted SAT problem, in which each clause is given a weight and the 
goal is to maximize the total weight of all simultaneously satisfied clauses. In our case, we set 
the weights to 1. The algorithm for WalkSAT starts with a random truth assignment for all the 
variables, then randomly selects an unsatisfied clause and a variable within that clause is flipped. 
This variable can be chosen either at random, or as the variable whose flipping minimizes the 
number of already satisfied clauses becoming unsatisfied. So in a sense, it is a mixture of 
deterministic local search and random jumps.  

3.2.3 Instance ensemble 
In order to implement this comparison we generated MAX-2-SAT instances that were native to 
the architecture of the DW2 processor. We generated problems with N variables, for N = 
20,40,…,500. The number of clauses was chosen to be 2N, since it is known that this ratio of 
clauses to variables generates instances that are typically hard to solve.  

The ensemble was composed of 1000 instances for each value of N. The instances were 
constructed in the following way. For each value of N, we chose N qubits that formed a 
connected subset of the processor (to avoid assigning variables to qubits that were not connected 
to other qubits of the set). Then we randomly picked M=2N of the available couplers associated 
with the set of qubits to represent the 2-literal clauses. Finally, for each clause we randomly 
(probability ½) negated the literals. This construction assured us that all clauses were distinct, 
and hence the total number of clauses was indeed 2N. 
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3.2.4 Benchmarking strategy 
To compare the performance of the classical and quantum solvers we implemented the following 
strategy. First, by using the exact solver AK-MAXSAT, we found the optimal value of the 
objective function for every instance in the ensemble. This value was later used to estimate the 
probability of success of each solver on each given instance. 

Quantum solver (DW2): we ran each instance a thousand times, using an annealing cycle of 20 
microseconds. We compared the value of the objective obtained in each run with the known 
optimal value, and used this information to compute the probability of success for each given 
instance. Then we used this information to compute the expected number of repetitions (or runs) 
needed to obtain the optimal value at least once with at least 99% probability. This number of 
repetitions times the annealing time used (20 microseconds) was the performance figure we used 
for each instance. We then averaged this value over all instances with the same number of 
variables N, and used it to compare with the classical solver. 

Classical solver (MaxWalkSAT): the classical algorithm MaxWalkSAT requires another input 
parameter called the “cutoff”, that gives an upper limit on the number of iterations performed 
before stopping. Clearly, if the cutoff is small, the algorithm will be faster but we may not find 
the optimal solution. On the other hand if the cutoff is very large, the algorithm will take more 
time but will have a better chance of finding the optimal solution. There is then a tradeoff 
between the value of the cutoff and the time it would take the algorithm to find the optimal 
solution with probability at least 99%. We ran every instance with different values of the cutoff 
in order to find a value that will reach the optimal solution with 99% probability in the fastest run 
time. We then averaged these values over all of the instances with the same number of variables 
N. All the instances were run on a Mac Pro with a 2.6 GHZ processor and 48Gb of RAM. 

3.3 Development of heuristic embedding algorithm 
The main goal of this task was to develop a tool that would allow us to embed problems that do 
not match the processor’s connectivity. As discussed in Section 2, the DW2 processor has a very 
particular connectivity graph called the Chimera graph that is the result of design compromises 
between scalability and algorithmic power. The connectivity graph is sparse, and each is qubit 
connected to at most 6 other qubits.  

This design feature has an impact on the type of problems that can be embedded in the processor. 
A general Ising model will have an underlying graph of couplings, and if this graph is not a 
subset of the Chimera graph we need to implement alternative ways of embedding the problem. 
Even if a given instance was a subgraph of the Chimera graph, finding the appropriate mapping 
is an instance of Subgraph Isomorphism, another combinatorial optimization problem that may 
be as hard as the original Ising instance. Hence, with the current design of the processor we have 
no choice but to develop alternative methods to embed problems. It is important to point out that 
this issue is not particular to the D-Wave processors. For any implementation of adiabatic 
quantum optimization, the connectivity of the processor will be associated with some physical 
interaction between qubits. These interactions tend to be local and thus require that the qubits are 
close to each other. This will put a limit to the number of interactions a given qubit can represent, 
since the number of local neighbors in any reasonable architecture will be limited and much 
smaller than the total number of qubits. Hence the problem of embedding is central to the 
adiabatic quantum optimization approach and not just a D-Wave issue. 
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Since most Ising problems of interest will not fit directly into the Chimera graph, it is necessary 
to develop techniques to go around this issue. We have already mentioned that an exact 
embedding requires solving a hard problem and does not seem to be a scalable solution. Hence, 
we need to apply some kind of approximate embedding. This requires discarding some of the 
information (i.e., the couplings) that defines the problem in order to generate a related Ising 
problem that can be fit into the Chimera graph. This approach has been used by Google and D-
Wave in an image recognition application [14], where they reduced the training of a strong 
classifier to a QUBO problem. Their approximate embedding scheme followed a greedy 
algorithm, that aimed at keeping the largest couplings (in absolute value) with the rational that 
these couplers will be more important in determining the structure of the best solutions. It is 
important to note that this step requires a certain preprocessing of the input instance that 
increases the computational resources required. Also, there are no theoretical results that would 
guide this process or give any guarantees on the quality of the solutions obtained. 

3.3.1 Iterative heuristic embedding 
In order to address the drawbacks of the approximate embedding method, we considered a 
different approach that aims at taking advantage of the sampling capabilities of the DW2 
processor. The idea comes from an approach to optimization problems known as “Probability 
collectives” [15]. The main idea is to replace an optimization problem with a sampling problem. 
Given an objective function over binary strings G(x), one approach to find its minimum will be 
to sample from its Gibbs distribution, which is given by 

P(x) = exp(-β*G(x)) / Z                    (7) 

where beta is the inverse temperature, and Z is the partition function, which is defined as Z = Σ  
exp(-β*G(x)), where the sum runs over all binary strings. It is clear that this distribution is biased 
towards configurations that have a small value of G(x) due to the exponential factor. So if we 
had access to a machine or algorithm that generated samples following this distribution, with 
high probability we would obtain the minimum configuration. 

The key point is to consider the DW2 processor as a parameterized sampler, where the 
parameters are the local fields and the couplings (hi,Jij), and the output is a distribution over the 
set of binary strings. The goal is then to find a set of parameters that produce an output 
distribution that is “close” to the Gibbs distribution associated with the objective function G(x). 
This sets up an iterative procedure: 

 

1. Initialize the set of parameters (hi,Jij). 
2. Sample the output of the DW2 processor using these parameters. 
3. Compute measure of “closeness” between this output distribution and P(x). 
4. Update the parameters (hi,Jij) in order to decrease the measure of “closeness”. 
5. Go back to Step 2. 

 

This process continues until a termination criterion is reached. Every time we sample the 
processor, we can compute the value of the objective function G on all samples and keep track of 
the one that gives us the minimum.  
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As a measure of “closeness” we chose the relative entropy (or Kullback-Leibler divergence) 
between the two distributions [16]. This measure has the property of being non-negative, and 
vanishing if and only if the two distributions are identical. If we call Q(x; hi,Jij) the output 
distribution of the quantum processor (that depends on the parameters (hi,Jij) ), the relative 
entropy between Q and P is defined by  

D(Q||P) = Σ Q(x; hi,Jij) log (Q(x; hi,Jij) / P(x))             (8) 
where the sum is taken over all binary strings. Our goal then is to find the values of the 
parameters (hi,Jij) that minimize the relative entropy. This is an optimization problem of a 
continuous function over a set of continuous variables, so we chose a gradient descent method.  

In order to compute the components of the gradient of the relative entropy, we would need to 
know the functional form of Q(x; hi,Jij). However, this functional form is not available to us, and 
we can only sample from the distribution Q(x; hi,Jij). To move forward, we made the assumption 
that Q(x; hi,Jij) was the Gibbs distribution associated with the Ising energy, that is 

Q(x; hi,Jij) = exp( -β EIsing (x; hi,Jij) ) / ZQ              (9) 

where ZQ(hi,Jij) = Σ  exp(-β*EIsing (x; hi,Jij)) is a normalization constant that depends on the 
parameters (hi,Jij), and the sum is over all binary strings. By making this assumption we can 
explicitly compute the components of the gradient and obtain 

∇J = -β {〈(2xi -1)(2xj-1) log(Q(x; hi,Jij) / exp(-β*G(x)))〉 - 〈(2xi -1)(2xj-1) 〉   
〈 log(Q(x; hi,Jij) / exp(-β*G(x)))〉 } 

∇h = -β {〈(2xi -1) log(Q(x; hi,Jij) / exp(-β*G(x)))〉 - 〈(2xi -1)〉 〈 log(Q(x; hi,Jij) / 

exp(-β*G(x)))〉 }                       (10) 

The expectation values that appear in the gradient are taken with respect to the distribution exp( -
β EIsing (x; hi,Jij) ) / ZQ, i.e., the Gibbs distribution associated with the Ising model implemented 
on the processor. Even though we know it’s functional form, this expression is hard to compute 
because it requires summing over all binary strings to obtain the normalization constant ZQ, and 
this sum has exponentially many terms, making it impractical for large problems. In order to get 
around this obstacle, we will make another approximation and use the sample averages to 
compute the expected values. The sample averages can be obtained by evaluating the expressions 
on the samples produced by the processor. Since we will only generate a fixed number of 
samples, this computation can be done efficiently. 

Note that the algorithm makes two approximations: first, it assumes that the output distribution 
from the DW2 processor is a Gibbs distribution in order to compute the gradient of the relative 
entropy; and second, it replaces the expected values over this Gibbs distribution by the sample 
averages.  
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3.4 Integration of CEGAR approach with DW2 
The CEGAR algorithm is a means of tackling the state space explosions that often arise in 
model-checking.  In CEGAR, one initially computes an abstraction of the original model that 
can be model-checked more easily than the full model.  This must be an abstraction that is 
conservative, in a sense we describe below.  One then checks the abstracted model to see if the 
property holds in the abstracted model.  If it holds, we are done; the system passes the test.  Here 
is where the conservative nature of the abstraction is critical: it must be the case that if the 
system passes the check the property is, in fact, safe (the check must be sound); however, 
CEGAR admits false positives (where the check fails, although the system is safe – the check is 
not complete).  Typically the CEGAR algorithm is applied to reachability problems, where the 
safety property states that the system must not reach some undesirable state.  A conservative 
abstraction is used which increases the set of reachable states, so that the check will be sound. 

If we find an abstract counterexample, we commence the part of the process that gives the 
algorithm its name.  First we must check to see if the counterexample is sound.  We do this by 
“replaying” the counterexample in the full model, instead of the abstraction.  If the 
counterexample is found to be sound, we are done: the system is unsafe, and must be corrected. 
On the other hand, if the counterexample is unsound, we must refine the abstraction and repeat 
the process.  A simple diagram of the CEGAR procedure is presented in Figure 6. The 
abstraction refinement is counter-example guided in the sense that we find a place in the counter-
example trace where the abstract counterexample cannot be followed.  In this case, what must 
have happened is that the abstract counter-example progresses from abstract state asi to asi+1 but 
there is no way to progress from a corresponding concrete state h-1(asi) to h-1(asi+1) (h-1is the 
inverse of the abstraction, so h-1(asi) is the set of concrete states that correspond to the abstract 
state asi.)  To refine the abstract state, we find the set of concrete states that satisfy the 
description of abstract state i, h-1(asi), and the set of concrete states from which h-1(asi+1) is 
reachable, and refine by adding state features that separate these two sets.  The first set of states 
is called the “dead end states,” and the second set is called the “bad states.”  

 

 

In the QCHECK project, we experimented with applying the D-wave quantum computer to two 
steps of the CEGAR process: 

Figure 6. CEGAR loop 
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1. Checking the soundness of the abstract counter-example and  
2. Finding an (approximately) optimal refinement to separate the dead-end from 

the bad states. 
 

The first step involved solving a SAT problem that encoded the existence of an actual counter 
example associated with the abstract counterexample. The second involved solving an ILP in 
order to find the smallest set of hidden variables that needed to be made visible in order to get rid 
of the spurious counterexample. These two problems (SAT and ILP) are special cases of 
combinatorial optimization problems, and can both be cast as QUBO problems that can be 
solved with DW2. Actually, SAT can be cast as a particular instance of ILP as we show below. 

3.4.1 Converting SAT to ILP 

In a Boolean satisfiability problem, we have a set of Boolean variables {𝒙𝒊}, and a set of clauses 
formed by combining a number of those variables and their negations with the logic operator 
OR. For example, a clause can take the form  

C =  𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑���             (11) 

where ∨ stands for the OR operator and 𝒙𝟑��� stands for the negation of 𝒙𝟑.  A clause is satisfied if 
at least one of its Boolean operands is TRUE.  The Boolean satisfiability problem consists in 
finding an assignment of truth-values for all the variables such that all clauses are satisfied.  As 
we have shown above, a step in the abstraction refinement process requires us to solve a Boolean 
satisfiability problem in order to determine if an abstract CE corresponds to a CE in the concrete 
system.  We will now show how to map this problem into an ILP.  For each clause, we will 
replace the OR operator by the “+” (sum) operator, every Boolean variable 𝒙𝒊 by a binary 
variable xi if it is not negated, and by (1- xi) if it is negated, and we will impose the condition that 
this sum must be greater or equal to 1.  We will use the numerical value 1 to represent the 
Boolean value TRUE, and 0 to represent FALSE.  Hence, the clause C defined above will be 
transformed into 

𝒙𝟏 + 𝒙𝟐 + (𝟏 − 𝒙𝟑) ≥ 𝟏              (12) 
It is not difficult to see that the logical clause C is TRUE, if and only if the above linear 
inequality is satisfied. Then, satisfying a set of clauses is equivalent to checking the feasibility of 
satisfying a set of linear inequalities like the one above (one for each clause).  Since the variables 
are binary, this is nothing but a particular case of an Integer Linear Program, one in which there 
is no linear function to optimize and the variables are restricted to be 0 or 1. This type of problem 
can be implemented on DW2 as explained in the next section. 

3.4.2 Converting ILP to QUBO 

ILPs are known to be computationally expensive for conventional computers (since they are NP-
hard).  Nevertheless, we can map this problem to an Ising model that can be implemented 
natively on the DW2 quantum processor.  Let us show in general how this mapping can be done.  
A typical binary integer linear programming problem can be written as: 

                            minimize[x] Σ[j=1,…, n]cjxj       
                            subject to: Σ[j=1,…, n]Bkjxj  ≥ bk ;  bk ≥ 0  ; 1 ≤ k ≤ q               (13) 
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where each xj is a Boolean number taking the value of 0 or 1, xj∈{0,1}, all the coefficients, cj, 
Bkj, are integer numbers (positive or negative), and bk is non-negative integer number.  The way 
to deal with these constraints is to transform them into a quadratic penalty term that will increase 
the energy of the Ising model when they are not satisfied.  This is easily done with equality 
constraints.  For the inequality constraints, we first transform them into equality constraints by 
adding extra “slack" variables (this is a canonical way of dealing with inequalities in 
optimization problems).  The detail we have to take into account is that the variables that we add 
must be binary too (as the xj’s).  For the kth inequality constraint, we define mk = Σ[i=1, …, n]Bki 
including only the Bki’s that are non-negative (Bki ≥ 0).  In essence, mk represents the maximum 
numerical value of the sum, since each xj is a Boolean number.  The role of the slack variables is 
to add whatever value is needed in order to transform the inequality constraint into an equality 
constraint.  The slack variables must construct a non-negative integer number pk such that 

   Σ[j=1,…, n]Bkjxj – pk = bk    (14)   

In order to satisfy this equality, the integer number pk should be allowed to be as large as the 
maximum difference between Σ[j=1,…, n]Bkjxj and bk; this constitutes its numerical range.  This 
maximum difference is just |mk - bk|.  The most efficient way (in terms of using the smallest 
number of extra slack variables) is to express the non-negative integer pk by an expansion in 
powers of 2 (binary expansion).  Therefore, 

   pk = Σ[j= 1, …, Dk]2j-1βj                                           (15) 

where each βj is a binary variable, βj ∈{0.1}, and Dk = [|log2(mk-bk)|]+1, since pk ≤ |(mk –bk)|.  
This is a consequence of the binary arithmetic stating that the number of bits required to express 
a positive number of magnitude ≤ N is equal to log2N + 1.  Here, the number of bits required 
(and hence, the number of binary slack variables) will be Dk, and the square brackets, [ … ], 
represent the largest integer smaller than the argument.  So we define new slack binary variables 
βki that transform the inequality constraints in Equations (13) to equality, namely, 

  Σ[j=1,…, n]Bkjxj - Σ[j=1, …, Dk]2j-1βj  = bk ; 1 ≤ k ≤ q   (16) 

It should be clear that if this equality is satisfied, Equation (16), then, the inequality in Equation 
(13) is also satisfied.  To generate an Ising problem we add, to the linear objective function of the 
binary ILP, Equation (13), the square of the difference of the left-hand-side and the right-hand-
side of each equality, Equation (16), times a penalty constant K>0, and we now take the 
minimum over the original variables xi and the new slack variables βkj.  We finally get: 

min[ x,β ]{Σ[j=1,…, n]cjxj +KΣ[k=1,…, q]((Σ[j=1,…, n]Bkjxj - Σ[j=1, …, Dk]2j-1βkj) – bk)2}  (17) 

where x = {xi; i=,..,n}, β = {βkj; j=1,.., Dk; k=1,.., q}, and Dk = [|log2(mk-bk)|]+1 for k=1,..,q.  
Equation (17) has the form of an Ising model (a linear term and a quadratic term). We can make 
this more explicit by expanding this expression and grouping the corresponding terms.  In order 
to make things more compact we define the following new integer matrices: 

   = Bik if 1 ≤  i ≤  n and 1 ≤  k ≤  q. 

Φik    = 2i – (n + Σ[l= 1, …, k-1]Dl) if (n + 1≤i≤  (n + Σ[l=1, …, k-1]Dl)  and  1≤ k≤q. 

    = 0 Otherwise                                                      (18)   
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and  
 

gi 
= ci if 1 ≤  i ≤  n 

= 0 if (n + 1 ≤ i ≤  (n + Σ[k=1, …, q]Dk)      (19)  

where Φ  = {Φik; k=1, …, q; i=1, …, n + Σ[k=1, …, q]Dk} is a qх (n + Σ[k=1, …, q]Dk) matrix, and g is 
a 1х(n + Σ[k=1, …, q]Dk) row vector.  Also, we augment the original vector x to a new vector z, by 
appending the slack variables β, namely creating a new (n + Σ[k=1, …, q]Dk)х1 column vector , z, z 
= {x1,…,xn, βkj ; k = 1,…,q; j = 1, …, Dk}. 
Equation (17) can be transformed into an Ising model solvable by the DW2 quantum computer.  
The minimization is over the augmented vector, z: 

min[z] { zT(ΦTΦ)z + (g – 2bTΦ)z }   (20)  

where b is the qх1 column vector {b1, …, bq}. 

In summary, this ILP-based approach to abstraction refinement can be cast as an Ising problem 
that can be natively implemented on the D-Wave quantum computing processor.  

3.5 Implementation of Model Checking example 
The final task of this project consisted of applying the tools and techniques developed in the 
previous tasks to a simple model checking example. We considered different systems and finally 
converged on a model that was inspired by an avionics example problem, but did not correspond 
to any real hardware or software. It was a toy model designed to show a proof of concept for the 
integration of DW2 and the CEGAR approach to model checking, and was tweaked to have 
certain features that would result in non trivial problems for the DW2 processor to solve. A more 
detailed description of the example will be provided when discussing the result of the actual 
implementation in the following section.  
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4  RESULTS AND DISCUSSION 

4.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision 
Diagrams 

Bounded Model Checking is an alternative approach to model checking. Its main feature is that 
properties are checked to hold for a finite number of time steps. In this way, the properties can be 
expressed as Boolean formulas and the algorithm consists in applying a satisfiability solver to 
determine if the formula has a satisfying assignment: if it does, the property is proven true, and if 
it does not, it is proven false. 

This approach is different from the more general model checking approach, whose algorithms 
are based on constructing a sequence of sets that tend to the set of all states that satisfy a 
particular temporal logic formula. The advantage of the general approach is that properties can 
be proven to hold for all possible executions of the system, while BMC are only restricted to 
executions within a finite temporal horizon. The price paid in BMC is a lack of completeness, 
i.e., it is not possible to prove or disprove every formula in a given temporal logic. However, 
there are certain properties that can be proved and others that can be disproved. In particular, 
BMC is well suited for finding short counterexamples, so its goal leans more towards finding 
bugs than proving correctness. In this area, BMC can be more efficient than general model 
checking techniques based on BDDs. 

BMC proceeds in two steps: first, a finite length execution path satisfying a certain property on 
the space state is encoded as a propositional formula; then, a satisfiability solver is applied to 
find a satisfying assignment or prove none exists. If a satisfying assignment is found, it can be 
decoded to represent a particular path on the state space that satisfies the property. Depending on 
the property being considered, this could be a proof of a liveness property (i.e., a state with a 
certain property can actually be reached), or a counterexample that disproves a property (by 
showing a specific path that violates it). It is in this second step of BMC that we believe DW2 
can provide an advantage, since Boolean satisfiability is a decision problem that can be cast as 
the type of combinatorial optimization problem that DW2 is designed to solve. 

4.1.1 Creating propositional formulas in BMC 
In BMC we consider three elements: 

 

1. A transition system M. 
2. A temporal logic formula Φ. 
3. A time bound k. 

 

From these three elements we construct a propositional formula that checks the satisfiability of 
the property represented by Φ in the transition system M for paths of length at most k. We can 
construct the unrolled transition relation defined by  

[𝑀]𝑘 ∶=  𝐼(𝑠0) ∧  ⋀ 𝑇(𝑠𝑖, 𝑠𝑖+1)𝑘
𝑖=0                (21) 

where 𝐼(𝑠0)  is the characteristic function of the set of initial states, and  𝑇(𝑠𝑖, 𝑠𝑖+1)  is the 
characteristic function of the transition relation. Basically, [𝑀]𝑘 is the set of all allowed paths of 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 22 



length k that start in the set of initial states. We can also construct [Φ]𝑘, which is a formula that 
will be true if and only if Φ is valid along a path of length k. In BMC, we want to find whether 
the conjunction formula ([𝑀]𝑘 ∧ [Φ]𝑘) has a satisfying assignment. 
As an example, consider the Computation Tree Logic (CTL) formula EF p, that means that a 
state satisfying the propositional formula p is reachable from the initial state. Applying the BMC 
approach to this formula for k=2, results in the following formula: 

𝐼(𝑠0) ∧  𝑇(𝑠0, 𝑠1) ∧ 𝑇(𝑠1, 𝑠2) ∧ (𝑝(𝑠0)  ∨  𝑝(𝑠1) ∨ 𝑝(𝑠2) )           (22) 

where [𝐄𝐅 𝑝]2 = (𝑝(𝑠0)  ∨  𝑝(𝑠1) ∨ 𝑝(𝑠2) ). Solving this formula consists in finding a sequence 
of three states (𝑠0, 𝑠1, 𝑠2) that satisfies it, or proving that no such satisfying assignment exists. 

 

4.1.2 Mapping of propositional formulas for BMC into DW2 
Our approach to implementing a satisfiability solver using DW2 is based on a transformation of 
SAT to a 0-1 ILP, which in turn can be transformed into a QUBO problem. The transformation 
from SAT to 0-1 ILP assumes that the SAT formula is given in conjunctive normal form (CNF), 
that is 

𝐹 =  𝐶1 ∧ ⋯∧ 𝐶𝑛             (23) 

where each clause 𝐶𝑖 is a disjunction of literals. The formulas generated in the BMC approach 
need not be of this particular form. Even though it is a conjunction of three elements (the 
characteristic functions of the set of initial states and the unrolled transition, together with the 
formula specifying the particular property being considered) each of these terms will not 
necessarily be just a disjunction of literals.  

It will then be necessary to transform them into CNF before we can map the problem into the 
chip. This type of preprocessing is also present in classical implementations of BMC, and 
researchers have developed subroutines that perform this translation. The drawback is that they 
usually require the addition of extra variables, which will reduce the number of qubits available 
to represent state variables, resulting in a reduction of the size of the systems we will be able to 
analyze. Given that the number of qubits available is fixed, and even though it is expected that 
this technology will scale with time it will only do it moderately, it is clear that preprocessing 
techniques and hybrid approaches that allows us to break the problem into smaller ones will be 
an extremely important component of any application of quantum computing in the adiabatic 
model implemented by D-Wave devices.  

4.1.3 Results of the suitability study for Bounded Model Checking 

The analysis presented above shows that the BMC approach is indeed suitable for 
implementation using the capabilities of DW2. Since the problem reduces to SAT and SAT can 
be cast as a combinatorial optimization problem of the form solved by DW2, the main issues to 
address are how to efficiently use the resources of DW2, namely how to encode the SAT formula 
in a way that it makes the most efficient use of the qubits available. These are not different from 
the ones that we had already anticipated when we proposed to use DW2 to check if the abstract 
counter examples obtained within the CEGAR framework are associated with real counter 
examples in the original system (this is again an instance of SAT).  
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4.1.4 Implementation of Binary Decision Diagrams using DW2 
The purpose of this analysis was to study whether techniques based on BDDs used in model 
checking of finite discrete systems can be cast as an optimization problem that would be suited 
for implementation with DW2. We will first discuss the basic features of BDDs, why they are 
useful in MC, and the issues that arise when we try to implement BDD based algorithms as 
combinatorial optimization problems. 

4.1.5 Binary Decision Diagrams 

BDDs are a type of data structure used to represent Boolean functions. A Boolean function is just 
a function from {0,1}N to {0,1}, that is, a function from the set of all N-bit strings to {0,1}. We 
can interpret these functions as the characteristic function of a given subset to N-bit strings (the 
subset that evaluates to 1). Since the model checking problem is essentially a set problem (i.e., 
whether the set of initial states I is included in the set of states that satisfies a formula Φ), BDDs 
are a natural tool for model checking algorithms. 

Why are BDDs so useful in MC? The main problem of MC is the state space explosion. BDDs 
provide a structure that in some cases can represent both the subsets of the state space and the 
state transition relation in a compact way. Furthermore, we can define operations on BDDs that 
implement the set operations required by the model checking algorithms (unions, intersections, 
etc.) This allows the algorithms to operate not with the subsets, but with their characteristic 
functions. The point is that a subset can have an exponential size (in the number of variables 
used to describe it) while its characteristic function can be described much more compactly. In 
this way, the algorithms proceed in a way that it does not require an explicit description of an 
exponentially large set at any point. 

Formally speaking, a BDD is an acyclical directed graph, with one root node, two terminal 
nodes, and a set of internal nodes that have one predecessor and two successors. Each node 
represents a variable, and the value of the Boolean function the BDD represents is obtained by 
traversing the graph starting from the root node, and moving to the successor node associated 
with the value of the variable the node represents; the terminal node that is reached is the value 
of the function for that particular bit string.  

One of the useful features of a BDD is that, once a variable ordering is fixed, the BDD can be 
written in a unique canonical way, which makes comparing two BDDs (i.e., two subsets of N-bit 
strings) computationally simple for polynomially sized BDDs. The size of this canonical BDD 
depends crucially on the variable ordering, and two different variable orderings can result in two 
BDDs of exponentially different size. Even though finding the best variable ordering for a BDD 
is itself a hard computational problem, heuristics have been developed that result in reasonable 
sized BDDs for many problems studied in practice. 

Another important reason for working with canonical BDDs is that the set operations required by 
model checking algorithms can be implemented directly on the BDD by applying a small set of 
graph operations: given two BDDs in canonical form, we can compute the canonical BDD 
corresponding to logical operations applied to them (like AND and OR) in a very compact way. 
To understand the real practical impact of this, we need to look at how model checking 
algorithms work. 
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4.1.6 Model checking algorithms 
A typical model checking problem consists in proving that a given property is satisfied for a 
certain set of initial states. The property will depend on the type of logic that we are considering, 
but typical examples are whether a state with a certain characteristic is eventually (or always) 
reached, or that a certain set of states is never reached. The essence of model checking 
algorithms is to compute the set of states that satisfy the property and then check if the set of 
initial states is included in this set. The advantage of using BDDs for these algorithms is that 
these sets are never defined explicitly (they could be exponentially large). 

As an example of the basic structure of these algorithms, let us consider a path formula in CTL 
of the form  (Φ U Ψ), which means that for all paths property Φ holds until property Ψ becomes 
true. The goal is to find the set of all states that satisfy this formula. The algorithm will proceed 
iteratively and generate a nested sequence of sets that satisfy the formula, until the set obtained 
does not change: this will be the set of all states S that satisfy the formula, and then we can easily 
check if the set of initial states is included in it.  

The steps in such an iterative algorithm will be something like this: 
1. Let S1 be the set of states that satisfy Ψ (sets like this are assumed to be provided). Then 

S1 ⊆ S, since all states that satisfy Ψ trivially satisfy (Φ U Ψ). 
2. Next, find the set of states that both satisfy Φ, and such that there is a transition from it to 

a state in S1. Both S1 and the set of states that satisfy Φ are represented by BDDs. The 
transition relation R, being a subset of the set of 2N bit strings can also be represented by 
a BDD. If f1 is the Boolean function associated with S1, and 𝜒Φ  is the characteristic 
function of the set of states satisfying Φ, we can compute the Boolean function associated 
with S2 ⊇ S1, as f2(x) = f1(x) ∨  (𝜒Φ(𝑥) ∧ ∃ 𝑥′. (𝑅(𝑥, 𝑥′) ∧ f1(x)). The key point is that all 
these operations can be computed using the BDDs associated with each Boolean 
function. 

3. Now we iterate step 2, looking for states that both satisfy Φ and have a transition to a 
state in S2.  

4. Keep iterating until the BDD associated with Sj is the same as the one associated with 
Sj+1. 

5. Check if the set of initial states is included in Sj. This can be done by computing the 
AND of the BDD associated with the set of initial states and the one associated with Sj 
and checking the resulting BDD is the same as the one for the initial states. 

As we can see, the algorithm looks for a mathematical object (a set) that is extremal in the sense 
that is the larger set that satisfies the property. This interpretation gives us the idea that the 
problem may be recast as some sort of optimization. This was the idea put forward at the 
Vanderbilt meeting. The hope was that such an optimization problem may be suitable for 
implementation with DW2. 

4.1.7 Issues with casting computation of extremal BDD as optimization problem 

In order to cast this computation of an extremal BDD as a combinatorial optimization problem 
suitable for implementation with DW2, we need to be able to accomplish two tasks: first, encode 
BDDs as binary strings (the space over which DW2 performs optimization), and second, 
construct a cost function that whose minimum is associated with the extremal BDD we are 
looking for. We will now discuss what we see as major roadblocks for these two requirements. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 25 



BBD encoding as binary strings: BDDs are used to encode Boolean functions on N-bit strings. 
Since these functions are uniquely associated the subsets of N-bit strings, there are 22𝑁such 
functions. However, we can only encode a space of size 2N on DW2. So here is the first major 
obstacle to optimizing over BDDs using DW2: we will be able to encode all BDDs only of 
systems with log (Nqubits) states, and since the number of qubits is currently 512 and not 
expected to grow exponentially, this approach will only work for toy models and will not scale 
for even moderately sized problems. 

A way around this issue could be to restrict the set of BDDs over which the optimization is 
performed. However, there is no clear guidance on how to choose this subset. Furthermore, such 
a subset must include the BDD associated with the solution for the computation, but we have no 
way of knowing if that will hold. If we proceed anyway, we will not have any assurance that the 
BDD obtained has any of the properties required by the solution. The only way to check this will 
be to perform an exhaustive testing of such a BDD, but this defeats the purpose of using BDDs 
in the first place. 

Cost function for BDD optimization: even if we assume that we have enough qubits to encode all 
possible BDDs, we still need to construct a suitable cost function whose minimum is associated 
with the extremal BDD sought. From the algorithm presented above it is clear that the sequence 
of BDD generated represent subsets of the state space with increasing size, so the size may be a 
candidate for a cost function. But it is also clear that there are more constraints that the set needs 
to satisfy, i.e., the states it contains need to satisfy a certain formula in some temporal logic. The 
parameters at our disposal when constructing a cost function for DW2 are the local fields and the 
interaction between qubits. This results in a quadratic function, and it is not clear that this form 
has the power to encode the required properties of the states. At the very least, this mapping (if 
possible) would require a lot of preprocessing before it can be implemented in DW2, and this 
will likely erase any gains produced by running the optimization in the quantum computer. 

4.1.8 Results of BDD implementation using DW2 
As discussed above, implementing an optimization approach to solve the same fix point problem 
that is usually addressed with BDDs has several obstacles. It may be the case that these obstacles 
can be overcome in some cases (for example, if we have enough knowledge to restrict the set of 
BDDs over which the optimization will take place), but at that point in the research we believed 
that the cost of focusing on this problem and identifying favorable instances would have been too 
high for the expected benefit. Furthermore, it would have negatively affected the research on 
other aspects of model checking that seemed more likely to have a payoff. It was then decided 
not to pursue this avenue of research as part of the QCHECK project.  

 

4.2 Benchmarking of DW2 on MAX-2-SAT versus MaxWalkSAT 
As discussed in previous quarterly reports, a fair comparison of the performance of the chip is 
obtained when benchmarked against a probabilistic solver like MaxWalkSAT, instead of an 
exact solver like AK-MAXSAT. An exact solver will typically take a longer time to run since it 
is not only providing the solution, but also a guarantee of optimality. On the other hand, the D-
Wave processor falls under the class of probabilistic solvers, where running an instance will 
result in an answer that corresponds to the optimal solution with probability p<1. Hence, in order 
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to get a higher confidence in the result, the solver needs to be run many times, and this must be 
included in the computation of the runtime. The figure of merit will be the number of repetitions 
needed to find the best answer for an instance with a probability above a certain threshold. 

To run this benchmark we generated random instances of MAX-2-SAT that respected the 
connectivity of the Chimera graph, so that they could be run directly on the D-Wave processor. 
The instances had N variables and M=2N clauses, where N ranged from 20 to 500 (in steps of 
20). For each instance we used an exact solver to determine the optimal solution, so we can use it 
to compute with what probability the D-Wave processor and MaxWalkSAT find the correct 
answer. The plot below shows the results we obtained on this benchmark using a 2.5GHz 
desktop processor to implement MaxWalkSAT. 

4.2.1 Analysis of the benchmarking results 
The results of Figure 7 show the comparison between the performance of DW2 against the 
MaxWalkSAT algorithm run on a Mac Pro desktop (2.6 GHz processor). We plotted the 
logarithm of the runtime (in microseconds) against the number of variables. What we see from 
this experiment is that the DW2 processor has a better performance for problems above N=40 
variables. This is an encouraging result, although it should be fair to point out some caveats.  

 

First, the MaxWalkSAT algorithm is designed to tackle general MaxSAT problems and no steps 
were taken to optimize it for the Chimera connectivity of the problems in the ensemble we 
tested. In some sense, one can see this issue as providing some kind of advantage to the DW2 
processor, since the problems are native to its underlying architecture. This is an issue that 
should always be kept in sight when interpreting benchmarking results for DW2. 

Figure 7. Benchmarking results for MAX-2-SAT 
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Second, we have only run these instances on a moderately powerful desktop computer. A faster 
processor will certainly increase the performance of MaxWalkSAT. This is another issue that 
makes comparing the DW2 quantum device with a classical algorithm somewhat difficult. We do 
not have any guidance to decide against which classical hardware should the DW2 performance 
be measured. One could consider the cost of the systems (i.e., look for a classical computing 
system of similar cost), but this will give the classical approach an unfair advantage, given that 
classical hardware and algorithms have benefited from decades of research and investment. 
Quantum systems like DW2 have been around for only a few years and their development is still 
at the very early stages.  

Another issue to point out is that for the DW2 system we are only counting the time required to 
run the annealing portion of the optimization. The system has a significant time overhead that is 
required to program the device and to measure the results at the end. On the other hand, this 
overhead is constant (and being improved in newer designs) and will play less of a factor in 
future generations of the chip having a larger number of qubits.   

4.3 Implementation of a heuristic embedding tool 
The heuristic embedding tool was implemented as a Matlab program that communicated with the 
DW2 processor through a special function call, gathered its output and computed the gradient of 
the relative entropy, updated the Ising model and submitted it again to the DW2 processor. The 
full code is submitted as an addendum to this report. We will now discuss the main components 
of the code. 

4.3.1 Code structure 

The main code is the Matlab function SEBREMforQUBO (SEBREM stands for Sequential 
Embedding By Relative Entropy Minimization): 

 

o Inputs:   1.   Qfull: a matrix encoding the full QUBO problem to solve  

2. beta: a parameter that characterizes the temperature of the Gibbs 
distribution associated with Qfull (usually taken to be 1). 

3.    Niterations: the number of iterations of the sequential embedding. 

4.   EmbeddingFlag: a flag that determines the initial embedding. It could 
take three values: EmbeddingFlag =1, applies a greedy embedding that tries 
to map the variables to the qubits  in a way that preserves the couplers with the 
largest absolute value; EmbeddingFlag = 2, applies a modified version of 
the greedy embedding, where when various options are presented when choosing 
which qubit a variable will be assigned to, it chooses one of them at random (the 
previous embedding would choose the first qubit in the list); EmbeddingFlag 
= 3, applies a randomized direct embedding, i.e., it randomly assigns variables 
to qubits. 
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5.    Step: controls the size of the step when updating the (h,J) parameters in the 
Ising model. 

6.   Display: (0 or 1) turns off and on the display of results after each iteration. 

 
o Outputs: 1. RelativeEntropy: a vector of values of the relative entropy at each   

iteration step.  
2. BestSolutions: a matrix whose columns are the best solutions found at 
each iteration (a solution is a binary string). 

3. BestObjective: a vector with the best value of the objective function 
found at every iteration.  

4. BestSolutionFound: a binary string representing the best solution found 
over all iterations.  

5. BestObjectiveFound: the value of the objective function corresponding 
to the best solution found. 

 

 

The code starts by fixing the values of certain parameters and initializing matrices that would 
store the results generated by the iterative procedure. Then it generates the initial embedding 
(depending on the value of EmbeddingFlag) and then starts the iteration that construct the 
sequential embedding. Each iteration step has the following structure: 

 

1. Solve the Ising model using the DW2 using the function IsingConnectSolve, which 
is called using the parameters (h_chimera,J_chimera) . We multiply the parameters by 
0.5 in order to increase the number of samples generated (this is equivalent to raising the 
temperature). 

2. Extract an empirical distribution from the DW2 output, i.e., the solutions sampled, their 
frequency and their associated energy.  

3. Compute the objective function associated with the matrix Qfull on all solutions 
sampled in the previous step. 

4. Extract the solutions that minimize the value of the objective function. 
5. Compute the relative entropy. 
6. Compute the gradient of the relative entropy. 
7. Update the values of the Ising model given by (h_chimera,J_chimera), using the gradient 

information. This step also adds another heuristic (implemented inside the function 
UpdateIsingModel): it adds to the Ising model another Ising model that has the 
Chimera connectivity and the property that the best solution seen so far is its ground 
state. The idea is to reward direction in the state of parameters that produced good 
solutions. This heuristic is controlled by the parameter MIXFACTOR. 

8. Information is displayed (depending on the value of the Display flag) and saved. 
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9. Go back to step 1 until Niterations are performed. 

4.3.2 Discussion of code performance 

The main objective of this task was to develop a tool that would allow us to solve problems with 
the DW2 processor that would not fit in the underlying architecture given by the Chimera graph. 
In that capacity, the code generates a sequence of Ising models that respect the Chimera graph, 
with parameters that are adjusted in such a way that the solutions obtained are better solutions of 
the original non-Chimera problem. The whole method can be seen as an optimization in the 
space of parameters (h,J), which is a continuous, bounded subset of Rn (the space of n-tuples of 
real numbers). The boundaries are given by the limited range that the parameters can take when 
programming the device: the local fields lie within -2 and 2, while the couplers take values 
between -1 and 1. The function that we are trying to optimize in this space is the relative entropy, 
and although we have an analytical expression for it, the function is not convex and we have no 
guarantees about finding the absolute minimum. 

It is then hard to quantify the performance of the code in general, and we are then limited to 
study its behavior in examples of interest. The basic characteristic that we would want the code 
to have, is that it would improve the solutions provided by the initial embedding. The initial 
embedding is in some sense the best we can do to solve, in one shot, a problem that does not fit 
the processor’s connectivity. Different strategies for this embedding will result in different 
quality of solutions. We considered three types of initial embeddings: two that tried to capture 
some of the structure of the problem (greedy embeddings), and one that essentially mapped the 
problem into the processor in a random way. An interesting feature we found is that, even though 
the greedy strategies provided better initial solutions than the randomized embedding, by 
implementing the sequential embedding we were always able to generate better solutions after a 
few iterations, irrespective of the initial embedding we chose. Given that the greedy embeddings 
required some non trivial preprocessing (i.e., finding such embedding) that required extra 
computational resources, we realized that a randomized embedding would provide good 
solutions without the upfront computational cost. 

The time performance of the sequential embedding depends on the size of the problem being 
considered, mainly because the computation of the gradient can be expensive if care is not taken 
to code it efficiently. We implemented the computation in Matlab, and we took care of 
vectorizing the calculations as much as possible in order to avoid any loops (that are notoriously 
slow in Matlab). For problems of around 500 variables, the gradient computation step would take 
only a few seconds. We found that in most problems, only a few tens of iterations were enough 
to reach a point where the solutions would no longer improve (we suspect we were either 
reaching a local minima of the relative entropy, or that the approximations we made were no 
longer valid). So in summary, for a 500 variable problem, a run time of a few minutes will be the 
most we needed to run in order to find the best solutions this method would provide. Applying 
this method to future generations of the processor, that would support more than a thousand 
variables, would certainly benefit from speeding up the gradient computation by using faster 
languages. 

The algorithm has several parameters that can be used to try to improve convergence and 
behavior. In this project we did not have the time required to analyze them in more detail and try 
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to find their optimal values. The values we used were born out of trial and error, where the 
driving feature was that the code generated improving solutions in a reasonable amount of time.  

In summary, the tool we developed succeeded in allowing us to produce good solutions for 
optimization problems that did not fit into the processor’s connectivity. These solutions were 
better than the ones obtained using single-shot approximate embeddings. We can always take 
any approximate embedding as the initial embedding, and we believe that the algorithm 
implemented here will always improve the solutions initially obtained. 

4.4 Integration of DW2 into CEGAR loop 
As discussed in previous sections, the central goal of this project was to integrate the capabilities 
of the DW2 processor into the CEGAR framework of model checking. We identified two key 
steps in the CEGAR loop where combinatorial optimization problems needed to be solved in 
order to proceed:   

i. Solving a SAT problem to verify the validity of an abstract counterexample 
ii. Solving an ILP problem to find the smallest increase of the abstraction in order to get rid 

of a spurious abstract counterexample 
 

The first of the two tasks, at least in the form we were able to cast it, turned out not to be a good 
fit for the capabilities of the DW2 processor. The second task provided much more promising 
results. 

4.4.1 Verifying the validity of abstract counterexamples 
Given an abstract counterexample, checking its validity consists in verifying if the corresponding 
trace in the original system also provides a counter example to the property we are trying to 
prove. This problem can be formally reduced to checking the satisfiability of a Boolean formula 
that encodes the existence (or non existence) of the required trace in the original system. In order 
to study this task, we generated abstract problems in New Symbolic Model Checker for System 
Verification (NuSMV), we checked the abstract models, and reformulated the counterexample 
checking problem in Linear Temporal Logic (LTL).  We wrote a program that read abstract 
counter-examples, and generated from them LTL formulas that would be satisfiable if and only if 
the abstract counterexamples were valid, i.e., they were associated with actual counterexamples 
in the original system.  Then we exported the resulting SAT problem using a canonical format, 
converted them into QUBO problems and tested on DW2. 

Our first experiments were with the problem of testing abstract counter-examples for soundness. 
We then translated these LTL formulas, and the system models, into satisfiability problems, 
using a standard format known as DIMACS.  These SAT problems were then be reformulated 
and submitted to the DW2 to be solved. 

We worked with the NuSMV system developed by Fondazione Bruno Kessler (FBK), CMU, and 
the Universities of Trento and Genova (http://nusmv.fbk.eu).  NuSMV is the next generation, 
open source version of the original Symbolic Model Checker for System Verification (SMV) 
model-checking tool.  SMV was the first BDD-based model-checker, developed by McMillan at 
CMU.  NuSMV extends the original SMV, and offers both BDD-based model-checking and 
SAT-based bounded model-checking.  NuSMV provided the model-checking of the abstract 
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models, and translated our LTL claims into SAT problems (NuSMV provides SAT problem 
translation to support external SAT tools for BMC). 

For our experiments with soundness checking, we manually abstracted various models from the 
NuSMV distribution.  These models included some properties to check, and we added other 
properties of our own.  We added some of our own properties since most of the properties in the 
distribution were properties that the models satisfied, so we needed to have additional cases 
covering unsafe models. 

To generate the abstract counter-examples, we used NuSMV’s BDD-based model-checking on 
the manually abstracted models.  NuSMV can be configured to write counter-examples in an 
Extended Markup Language (XML) form that is very easy to parse.  We are grateful to FBK 
personnel for helping us understand the XML format, and for responding to our issues with the 
format. 

Reformulation:  The key to our checking process is reformulating the validity checking problem 
as an LTL claim, since this enables automatic generation of the SAT problem.  The abstract 
counter-example is a sequence of abstract states, asi, each of which is an assignment of values to 
propositional variables.  Since these are abstract states, the assignments are to only a subset of 
the propositional variables of the full model.  Again, since this is an abstraction, a single abstract 
transition may correspond to multiple concrete transitions.  So for an abstract counter-example 
as0,as1…asn  to be valid, there must be a valid sequence of concrete states s0…si…sm such that as0 
⊆ s0, as1 ⊆ si,… asn ⊆ sm.  Note that the subset relation is equivalent to saying that the concrete 
state entails the abstract state.  We may formulate this in LTL as follows: 

as0 X(as1 X(as2 … X asn ))) (Property 1)           (24) 

That is, we begin in a state satisfying as0, eventually we reach a state satisfying as1, then 
eventually we reach a state satisfying as2, and so on, until we reach a state satisfying asn, all in 
the context of the full, original, concrete model. 

The above query cannot be used as written to check validity, however.  As an LTL property, it is 
effectively claiming that in all runs of the model, we start in a state satisfying as0, reach a state 
satisfying as1, etc.  To use this formulation, we must invert it, and charge the solver to prove to 
us that it is impossible to satisfy Property 1.  If the negation of Property 1 is valid, then the 
abstract counter-example is invalid: 

¬as0 X(as1 X(as2 … X asn ))) (Property 2)           (25) 

Implementation:  To support these experiments, we wrote a program that parsed the XML 
formatted counterexamples, and generated from them LTL claims in the form of Property 2, 
expressed in NuSMV’s input language.  These LTL claims, together with the original (concrete) 
system model, were then submitted to NuSMV, and bounded model checking SAT models in 
DIMACS notation were extracted.  These DIMACS problems were then translated into problems 
for the D-Wave system. 

Unfortunately, experience has shown that the D-Wave quantum adiabatic optimization process is 
not a good choice for this kind of decision problem.  The D-wave is well suited to approximate 
optimization problems, where best effort is what matters. But in the case of decision problems, a 
best effort that misses is not a useful approximation; it is simply wrong.  The CEGAR algorithm 
shows that approximate solutions that can be wrong are sometimes acceptable, if the 
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approximations are safe (conservative), and if there is a means to refine the computation.  So it is 
possible that a revision of our approach here, where the D-Wave would only give erroneous 
results that mistakenly concluded that the counter-example was valid, and never give a false 
invalid result, would be useful.  Such a technique would never cause us to mistakenly certify a 
system as safe when it wasn’t, and would never send us on a wild-goose chase to refine an 
already sound counter-example.   

4.4.2 Refining the model 
The second part of the QCHECK project involved using the D-wave to solve the optimization 
problems arising in the refinement part of the CEGAR algorithm.  Recall that this involves 
finding an optimal refinement of the model.  In the specific version of CEGAR that we used, this 
was, specifically, finding a minimal set of propositional variables, previously abstracted away, to 
add to the abstract model.  This is formulated as an ILP, choosing a set of variables that are 
sufficient to create a new abstraction in which the dead end states and the bad states of an invalid 
counter-example, are guaranteed to be in different abstract states. 

Our work in this area was more successful than our work on checking abstract counter-examples.  
This was primarily due to the fact that the abstraction-refinement is a better fit to the D-wave’s 
capabilities.  In particular, this problem is an optimization problem, rather than a decision 
problem, and if the solution is less than perfectly optimal, it simply costs us more work in the 
model-checking phases of the CEGAR process: a suboptimal answer can never lead to an 
unsound conclusion. 

Our original plan was to find an off-the-shelf model-checker with an implementation of the 
CEGAR algorithm, from which we could extract ILPs or, as a second choice, a model checker in 
which we could perform steps of the algorithm and from which we could extract partial results.  
Unfortunately, our attempts to find such a tool were not successful.  We contacted the authors of 
the original CEGAR paper, and while they offered a number of very helpful suggestions, the 
code for the original implementation had been lost.  We consulted FBK about NuSMV, and 
although its successor, NuXmv, will contain an implementation of the CEGAR algorithm, it was 
not in a condition for release to us.1  We also investigated whether it would be possible to work 
the CEGAR algorithm “around” a tool, in the way we were able to do our counter-example 
checking “around” the NuSMV tool.  We concluded that this would not be possible, since the 
data structures needed to identify the dead end and bad states were not visible to the user of 
NuSMV.  We also investigated whether it would be possible to implement the CEGAR 
algorithm by scripting NuSMV.  This technique seemed very promising: the NuSMV code is 
well structured, and we were able to construct NuSMV data structures and exercise some of its 
functions through a foreign function interface from the Common Lisp programming language.  
Unfortunately, we concluded that for this small program, we didn’t have the resources to dig 
deeply into the NuSMV sources. Scripting NuSMV would be a promising direction to take given 
a larger-scale program. 

1 It has since been released, but so far only in closed-source form, so would not be suitable for 
our purposes. 
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After we had to abandon the plan of using an off-the-shelf tool, our next step was to manually go 
through the steps of the CEGAR algorithm, using two BDD “desk calculators,” to check the 
abstractions, and to identify dead ends and bad states.  In particular, we used both the iben2 and 
bddc3 tools.  We learned a number of valuable lessons about the structure of models that would 
give rise to valid and invalid abstract counter-examples, and designed some small problems.  
After developing a small number of small problems, we were unable to make larger problems: 
the need to work directly with propositional logic was too burdensome and inefficient. 

At this point we were nearing the end of the program, and realized that we needed our own 
implementation of the CEGAR algorithm, so that we could run examples more easily.  We were 
fortunate to find that the CU Decision Diagram (CUDD) open source Ordered Reduced Binary 
Decision Diagram (OBDD) library,4 developed by Fabio Somenzi at Colorado University, offers 
a Perl application programming interface (API).  Using this API we could rapidly build our own 
implementation around the BDD operations, developing interactively. 

The CUDD library provided one of the pieces of the solution: it remained to make or choose an 
input language.  We considered the SMV language, but concluded that writing a parser would 
require too much effort.  We had consulted Ofer Strichman, one of the authors of the original 
CEGAR paper, and he suggested that we use the AIGER – And Inverter Graph – notation.5  The 
AIGER format offered a number of advantages: (1) it is very easy to parse; (2) it is used for 
hardware model-checking competitions, so there are a large number of preexisting models 
available; (3) it maps nicely to the abstraction framework of CEGAR.  With respect to point (3), 
in addition to AND gates and Inverters, AIGER models contain latches.  A CEGAR-compatible 
abstraction technique is to abstract away latches by treating them as if they are inputs.  Finally, 
point (4), there are existing BMC tools for AIGER models that we could (and did) use to check 
our results when building and debugging our CEGAR implementation.   

In practice, the AIGER notation did not provide a perfect input solution: although it is higher 
level than the propositional logic that we used when working with the BDD calculators, it was 
still too low level. In particular, AIGER offered no way to capture higher level building blocks 
such as, for example OR-gates, XOR-gates, half-adders, etc.  In order to build models that would 
offer interesting ILPs, we needed to be able to reuse model components.  To support such reuse, 
we added a simple macro-language, laig (for Lisp-flavored AIG), and wrote a simple macro-
expansion facility.  We discuss this in more detail below. 

Three other issues remained.  First, although the laig notation made it possible to reuse model 
components, allowing us to make bigger and more interesting circuits, it did nothing to help 
formulate the properties we needed to check.  In our successful test cases, we were checking 
properties of the form “in a valid trace it is impossible to reach a state satisfying P.”  The proviso 
“in a valid trace” was necessary in order to capture bounding assumptions such as “there are no 

2 http://sourceforge.net/projects/iben/ 
3  http://www-verimag.imag.fr/PEOPLE/Pascal.Raymond/tools/bddc-manual/bddc-manual-
pages.html 
4 http://vlsi.colorado.edu/~fabio/CUDD/ 
5 http://fmv.jku.at/aiger/ 
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more than two sensor failures” in our example avionics model.  In practice, assumptions like 
“valid trace” unpacked into temporal properties which were difficult to formulate in AIGER and 
which laig notation did not support as well as possible.  To capture temporal properties in 
AIGER notation involved adding latches that captured property components so that temporal 
assertions could be evaluated.  While laig allowed us to capture repeated components of such 
translations, an automatic translation of temporal properties would have been helpful.  Another 
problem was that the existing AIGER models were not very well documented, so they didn’t 
provide all the CEGAR examples we had wanted.  Nevertheless, the availability of examples, 
with gold standard computation results (from the BMC checker), was immensely useful in 
development and debugging.  Finally, the abstraction relationship of treating latches as inputs 
turned out to be more subtle than we had originally anticipated:  different treatments of 
abstraction in model-checking used subtly different definitions, so that getting consistent results 
required substantial debugging and rework. 

4.4.3 CEGAR Implementation 
To summarize the implementation, it contained the following components: 

Input: 

• The Lisp-style AIGER language (laig) and translator.  Input models are formulated 
as laig files, and translated into 

• Single-output AIGER models.  Single-output models are used to capture reachability 
checks in AIGER models.  A model formulated in this way is safe if it can never 
output 1. 

• A single-output AIGER model is read by our AIGER parser, and translated into 
internal data structures. 

CEGAR Process: 

• An initial abstraction is computed, which hides all of the latches that are not direct 
components of the single AIGER output. 

• LOOP 
o Our solver checks reachability of the unsafe state in the abstract model.  This is 

done using a search, implemented as a Perl loop (based upon code from Ed 
Clarke’s model-checking text), whose primitive computations are done using the 
CUDD BDD library. 

o If the unsafe state is not reachable, we return “safe” and exit. 

o If the unsafe state is reachable, we compute an abstract counterexample. 

o We check the abstract counterexample for validity. This is done according to the 
CEGAR algorithm, using a loop over the images computed in the reachability 
search. 

o If the abstract counterexample is valid, we return “unsafe” and exit. 
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o If the abstract counterexample is invalid, we identify the dead end and bad states.  
We compute an ILP, each of whose rows captures the difference between one 
dead state, d, and one bad state, b.  The columns of the ILP are latches that are 
hidden, and each row assigns 1 to propositional variables whose values differ in b 
and d, and zero to all other entries. 

o The CEGAR algorithm publishes the ILP to the D-wave solver, and reads a 
solution to the ILP.  The solution to the ILP specifies a set of latches that should 
no longer be hidden. 

o We compute a new abstract model, by “unhiding” the set of latches indicated by 
the D-Wave solver and go to LOOP. 

 

We were pleased to find that it was very easy to interface the CEGAR loop with the existing D-
Wave solver. The output format was very easy to print and to parse, as was the format of the 
answers (a list of latch indices).  This holds promise for further work on the CEGAR algorithm, 
and for other applications in which an outer loop is to be wrapped around the D-Wave solver. 

 

4.4.4 ILP Problems 

 
Particular structures in model-checking problems pose interesting challenges for abstraction 
refinement.  Or, put differently, many spurious counter-examples can easily be eliminated by 
adding one or two new latches.  More challenging problems arise in the presence of two features.  
First, there must be multiple different concrete paths that correspond to a single spurious abstract 
counterexample.  This arises when there are functions in the counterexample that involve a wide 
variety of variables in a non-trivial Boolean function. The second condition is that these Boolean 
functions must not include intermediate values that are computed and latched.  If there is such 
structure, then the CEGAR algorithm will simply identify whether or not the set of values so 
latched are consistent and either confirm the abstract counter-example or reject it, without need 
for complex reasoning (this is the strength of the CEGAR algorithm). We conjecture that the 
challenging cases for CEGAR refinement are characteristic of models of complex circuits.  They 
may be less likely to arise in models of software, where storage of intermediate results is more 
common.  As the D-Wave system gets more powerful, and capable of handling larger and larger 
models, we believe that we will see more non-trivial ILPs in CEGAR refinement. 

4.5 Implementation of CEGAR based model checking example 
We describe here an example run of the CEGAR algorithm with the D-Wave solver providing 
answers to the ILPs. 6  The test model 7  was inspired by an avionics example problem (the 

6 The CEGAR program can be run without the D-Wave in the loop, simply picking a single 
implicated variable to “unhide” at each iteration. Of course, this can perform arbitrarily badly; it 
is only of use on small test runs, to debug other parts of the CEGAR loop. 
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Rockwell Flight Control System (FCS) 5000 problem [17]), but does not correspond to any real 
hardware or software.  The property checked is a mutual exclusion property: there are two 
control modes, “left” and “right,” and the invariant is that the system should never have both 
control modes active simultaneously. 

4.5.1 Verification summary 
Initially, the model is almost completely abstract.  Recall that the property to be checked is of the 
form “in a valid trace, the left and right control modes cannot both be engaged.” The only latch 
involved in this claim is the “trace valid latch.” This allows for a trivial counterexample, since 
“left control mode on” and “right control mode on,” are essentially treated as inputs. This is an 
invalid counterexample, for reasons having to do with system function -- there is substantial 
logic behind whether or not the control modes are engaged – and the logic of the property -- 
there is substantial logic in the memory of tracking whether a given trace is valid or not.  The 
first several refinements do not require any optimization: they are obvious refinements that 
gradually add logic for the full temporal chain needed to decide trace validity. 

The first interesting ILP arises when the model has been elaborated around the temporal logic of 
deciding trace validity. There is now a spurious counterexample to the effect of “turn the right 
controller on, turn the left controller on, wait for three cycles, then turn the valid latch on.” The 
model actually enforces that the control modes can only be engaged if sensors detect the right 
condition and enough of the redundant sensors vote to enable it.  This meets the criterion above 
for an interesting ILP: there are many combinations of the sensor latches that could lead to a 
successful vote to engage the sensor modes, and the ILP solver must choose a minimal covering 
set. 

The second, and last, interesting ILPs arise from a spurious counterexample in which the sensor 
inputs are arranged in such a way that both the left and right control modes can be 
simultaneously engaged.  This is a spurious counterexample because of the trace validity 
checking: it turns out that such a constellation of sensor inputs cannot happen in valid traces. 
Note, however, that we don’t simply eliminate all inconsistent sensor value combinations: we 
simply stipulate a limit on the number of sensors that can simultaneously give the wrong 
detections. The trace validity constraints capture the notion that, e.g., the aircraft cannot be 
taking off and landing at the same time.  In solving the final interesting ILP, the solver identifies 
a set of variables that is sufficient to capture enough of the validity-checking logic to eliminate 
these inconsistent sensor combinations. 

This summary has skipped over the refinement steps that do not require the intervention of the 
ILP solver.  There are many such steps, where identifying a set of latches to add to the model is 
trivial.  This arises when, e.g., the same latch appears in all rows of the ILP.  In those cases, the 
CEGAR loop does not invoke the D-Wave.  We give the full transcript below. 

4.5.2 Detailed transcript 
Initially, the model is almost completely abstract. The only un-hidden variable is the one 
corresponding to “the trace is valid” (literal 52). Unsurprisingly, this leads to a trivial 

7 We give the laig source as an appendix. 
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counterexample: we just turn on the right and left controllers (since they are unconstrained in this 
abstract model). 

This abstraction is too simple, for two different reasons:  The first is the interesting reason, which 
is that the counterexample must take into account the surrounding environment, as redundantly 
sensed.  The less interesting reason is that there is a chain of latches for the on/off state of the left 
and right controllers; this is necessary to synchronize the state of the system with the state of the 
part of the circuit that tracks validity of the trace.  A trace that’s invalid (e.g., we are both at and 
not at an airport, simultaneously) must be weeded out. 

To be precise, we are verifying that we never enter the bad state of “left3 is on,” “right3 is on,” 
and “the trace is valid.” 

The first several steps of the CEGAR refinement process introduce, one by one, the latches in the 
three-step delay chains from “right1” to “right3” and “left1” to “left3.” 

 
Made new Aiger model with 9 inputs, 40 latches, 1 outputs, and 42 
and gates. 
Reading 40 latches. 
Reading 1 outputs. 
Reading 42 and gates. 
Done reading file and building model. 
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32 
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80 
82 84 86 88 90 92 94 
Making transition relation 
Done making transition relation 
Preparing for model-checking. 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Goal reached 
Goal Reached in 2 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111100 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
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 Output: 1 
Abstract counterexample: 
 000 
 100 
 111 
Abstract counterexample is invalid at step 2. 
ILP is: 
92 94 
Splitting on literal 92 

The first refinement is to add one of the two latches (literals 92 & 94), representing the state of 
the left and right controllers. In this case, the algorithm adds the literal 92 (“left3”). This does not 
require the intervention of the D-Wave solver; the ILP is trivial (the format “92 94” represents a 
linear constraint in which the sum of literals 92 and 94 must be greater or equal than 1). 

 
Checking for goal 
Goal reached 
Goal Reached in 3 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111110100 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111101 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 0000 
 1000 
 1101 
 1111 
Abstract counterexample is invalid at step 2. 
ILP is: 
88 94 
Splitting on literal 88 

 

The next counterexample is almost as trivial.  The solver realizes that the left channel cannot 
simply be turned on instantaneously, but still generates a very quick path to failure (only three 
steps long), taking into account a delay in turning the left channel on.  Note that this delay comes 
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partly because there is a delay from the logic of checking the switch and the state-sensing logic, 
but also because the model has a three-step delay to compute the validity of the trace. 

This counterexample is shown to be spurious: the abstract model now takes into account the 
delay in turning on the left controller, but not yet the right controller. The culprit for this three-
step counterexample is that there must be a progression (at least) through latches “right2” (88) 
and “right3” (94).  The solver has another trivial refinement problem, to choose between 88 and 
94, which it does by choosing in numerical order (again, no need for the ILP solver; there is only 
one row to the ILP). 

 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Goal reached 
Goal Reached in 4 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111010100 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111110101 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111101 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 00000 
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 10000 
 11001 
 11101 
 11111 
Abstract counterexample is invalid at step 2. 
ILP is: 
82 94 
Splitting on literal 82 
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32 
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80 
84 86 90 94 
Making transition relation 
Done making transition relation 
Preparing for model-checking. 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Goal reached 
Goal Reached in 5 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111011010100 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111010101 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111110101 
 Output: 0 
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4 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111101 
 Output: 0 
5 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 000000 
 100000 
 110001 
 111001 
 111101 
 111111 
Abstract counterexample is invalid at step 2. 
ILP is: 
94 
Splitting on literal 94 
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32 
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80 
84 86 90 
Making transition relation 
Done making transition relation 
Preparing for model-checking. 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Goal reached 
Goal Reached in 5 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
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 Inputs: 111111111 
 Latches: 1111111111111111110111111111111011010000 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111010100 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111110101 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111101 
 Output: 0 
5 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 0000000 
 1000000 
 1100100 
 1110101 
 1111101 
 1111111 
Abstract counterexample is invalid at step 2. 
ILP is: 
90 
Splitting on literal 90 
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32 
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80 
84 86 
Making transition relation 
Done making transition relation 
Preparing for model-checking. 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
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Computing successors 
Checking for new state 
Checking for goal 
Goal reached 
Goal Reached in 5 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111011000000 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111010000 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111110100 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111101 
 Output: 0 
5 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 00000000 
 10000000 
 11010000 
 11110100 
 11111101 
 11111111 
Abstract counterexample is invalid at step 3. 
ILP is: 
84 
Splitting on literal 84 

 

This refinement process continues, the counterexample still being trivial, and the refinement 
introducing more of the latches in the three-latch left and right chains. 

Quick summary: these refinements eliminate the “just turn the right on and the left on” abstract 
counterexample.  It takes multiple refinement steps to introduce all of the latches in the “right1” 
… “right3” and “left1”…”left3” delay chains. 
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Goal Reached in 5 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111011000000 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111010000 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111110100 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111101 
 Output: 0 
5 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 000000000 
 101000000 
 111010000 
 111110100 
 111111101 
 111111111 
Abstract counterexample is invalid at step 2. 
ILP is: 
70 72 74 
70 72 76 
70 74 76 
72 74 76 
70 72 78 
70 74 78 
72 74 78 
70 76 78 
72 76 78 
74 76 78 
No common element in ILP.  Enter literals to split on. 
Calling print_ilp 
---------------------------------------- 
Minimized ILP: 
70 72 74 
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70 72 76 
70 74 76 
72 74 76 
70 72 78 
70 74 78 
72 74 78 
70 76 78 
72 76 78 
74 76 78 
---------------------------------------- 
 
Returned from print_ilp 
70 72 74 

 

At this point, we have an abstract counterexample that effectively says “turn the right controller 
on, turn the left controller on, wait for three cycles, then turn the valid latch on.”8  Now we get 
our first interesting ILP, as the solver generates a spurious counterexample, the sensing logic 
enabling the left controller to turn on is still abstract. In fact, the controller can only be turned on 
if the sensors detect the right condition and enough of the redundant sensors vote to enable it.  
There are a large number of combinations of possible sensor result latches that could lead to this 
voting outcome, and the D-Wave ILP solver chooses a minimal covering set (literals 70, 72, 74). 

 
Goal reached 
Goal Reached in 6 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111110111111000111011000000 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111101010000 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111100100 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111001 

8 Since the logic behind computing validity is still abstract, the system considers that it could just 
turn the valid latch on. 
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Output: 0 
5 

Inputs: 111111111 
Latches: 1111111111111111110111111111111111111110 
Output: 0 

6 
Inputs: 111111111 
Latches: 1111111111111111111111111111111111111111 
Output: 1 

Abstract counterexample: 
000000000000 
100001000000 
111110010000 
111111100100 
111111111001 
111111111110 
111111111111 

Abstract counterexample is invalid at step 4. 
ILP is: 
36 38 40 56 
40 56 
36 38 56 
56 
Splitting on literal 56 
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32 
34 36 38 40 42 44 46 48 50 54 58 60 62 64 66 68 76 78 80 86 
Making transition relation 
Done making transition relation 
Preparing for model-checking. 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Goal reached 
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Goal Reached in 6 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111111100111111000111011000000 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111111100111111111111101010000 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111111100111111111111111100100 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111100111111111111111111001 
 Output: 0 
5 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111110 
 Output: 0 
6 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 0000000000000 
 1000001000000 
 1011110010000 
 1011111100100 
 1011111111001 
 1011111111110 
 1111111111111 
Abstract counterexample is invalid at step 3. 
ILP is: 
36 38 40 54 
40 54 
36 38 54 
54 
Splitting on literal 54 

 

The next counterexample has the left sensing on, and a concurrent enabling of the right channel.  
The model-checker detects that this abstract counterexample is incorrect, because of the trace 
validity constraints that capture the mutual exclusion between the right and left controller 
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enabling conditions. In order to check this correctly, the model must be refined to take into 
account a combination of different bits of validity logic, including the one-shot logic that 
maintains the validity of the trace,9 and the left integrity constraints.  The next two steps in this 
refinement are trivial: we add the one-shot validity logic to the model. 

This step adds the second latch required for the one-shot validity logic. 
 
Goal Reached in 6 steps 
Counterexample: 
0 
 Inputs: 111111111 
 Latches: 0000000000000000000000000000000000000000 
 Output: 0 
1 
 Inputs: 111111111 
 Latches: 1111111111111100100111111000111011000000 
 Output: 0 
2 
 Inputs: 111111111 
 Latches: 1111111111111100100111111111111101010000 
 Output: 0 
3 
 Inputs: 111111111 
 Latches: 1111111111111100100111111111111111100100 
 Output: 0 
4 
 Inputs: 111111111 
 Latches: 1111111111111111100111111111111111111001 
 Output: 0 
5 
 Inputs: 111111111 
 Latches: 1111111111111111110111111111111111111110 
 Output: 0 
6 
 Inputs: 111111111 
 Latches: 1111111111111111111111111111111111111111 
 Output: 1 
Abstract counterexample: 
 00000000000000 
 10000001000000 
 10011110010000 
 10011111100100 
 10011111111001 
 11011111111110 
 11111111111111 
Abstract counterexample is invalid at step 2. 
ILP is: 

9 If an invalid state is detected in the trace, then it is always invalid. 
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36 38 40 48 
36 38 42 48 
36 38 48 
40 44 48 
40 48 
42 44 48 
44 48 
42 48 
48 
36 38 40 50 
36 38 40 
36 38 42 50 
36 38 50 
36 38 42 
40 44 50 
40 50 
40 44 
42 44 50 
44 50 
42 50 
50 
42 44 
No common element in ILP.  Enter literals to split on. 
Calling print_ilp 
---------------------------------------- 
Minimized ILP: 
48 
36 38 40 
36 38 42 
40 44 
50 
42 44 
---------------------------------------- 

Returned from print_ilp 
36 38 44 48 50 

At this point, the model has been refined to include enough variables to recognize that the 
validity flag starts on, and if turned off cannot be restored. This eliminates spurious 
counterexamples where the adversary takes the system through invalid transitions to turn on the 
right and left controllers simultaneously, and then flips the valid flag on from off. The new 
abstract counterexamples involve assignments to the sensor inputs that would allow the aircraft 
to enable both right and left controllers simultaneously.  There are no valid assignments that do 
so, and the model checker detects that the counterexamples are spurious.  The final ILP requires 
the solver to identify a covering set of variables that is sufficient to capture enough of the 
validity-checking logic to eliminate all of these abstract counterexamples.  It chooses enough of 
the variables to enforce a valid assignment of sensor variables to the left side logic, and enough 
to enforce the consistency relations between the left and right sides. 
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Goal reached 
Goal Reached in 6 steps 
Counterexample: 
0 

Inputs: 110111111 
Latches: 0000000000000000000000000000000000000000 
Output: 0 

1 
Inputs: 110111111 
Latches: 1111111100100001100111111000111011000000 
Output: 0 

2 
Inputs: 110111111 
Latches: 1111111100100001100111111001111101010000 
Output: 0 

3 
Inputs: 111111101 
Latches: 1111111100100001100111111001111111100100 
Output: 0 

4 
Inputs: 111111101 
Latches: 1111111111111110100111111001111111111001 
Output: 0 

5 
Inputs: 111111101 
Latches: 1111111111111110110111111111111111111110 
Output: 0 

6 
Inputs: 111111111 
Latches: 1111111111111110111111111111111111111111 
Output: 1 

Abstract counterexample: 
0000000000000000000 
0000110000001000000 
0000110000110010000 
0000110000111100100 
1111010000111111001 
1111011011111111110 
1111011111111111111 

Abstract counterexample is invalid at step 2. 
ILP is: 
40 
42 
No common element in ILP.  Enter literals to split on. 
Calling print_ilp 
---------------------------------------- 
Minimized ILP: 
40 
42 
---------------------------------------- 
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Returned from print_ilp 
40 42 
Will split on: 
40 42  
OK? y 
Splitting on 40 42 
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32 
34 46 58 60 62 64 66 68 76 78 80 86 
Making transition relation 
Done making transition relation 
Preparing for model-checking. 
Starting fixed point computation. 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Checking for goal 
Computing successors 
Checking for new state 
Reached fixpoint after 7 steps 
Goal not reached 
No abstract path to goal state: circuit is safe. 

 

This is almost enough to eliminate all of the spurious counterexamples. The final refinement 
requires the addition of two more variables (40 and 42), which round out some of the input 
consistency constraints, and then the solver establishes that the failure state is unreachable, and 
the process concludes. 

 

4.6 Evidence for quantum behavior in the DW2 processor 
Even though it was not an explicit part of the QCHECK proposed research, we would like to 
present very important results regarding the quantum nature of the D-Wave processor that were 
obtained through research conducted in parallel to the main QCHECK work. 
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The D-Wave processor was designed to exploit quantum mechanical effects in solving 
combinatorial optimization problems. However, in order to make the design scalable, certain 
compromises in the hardware had to be made. The main result of these was that only a restricted 
set of measurements were allowed to investigate the state of the processor, and hence we lack an 
important set of tools to determine if the state of the system indeed behaves quantum 
mechanically. We worked on developing two approaches to address this issue: in one, we 
designed a very simple problem whose output statistics were different for a simple classical 
model and a quantum model; in the other, using partial state information about the state of the 
processor during the annealing we proved, using a novel analytical technique developed for this 
purpose, that the state of the system has entanglement at some points during the annealing. We 
give a brief description of both approaches. 

4.6.1 Quantum signature 
We constructed a simple toy problem involving 8 qubits that had the following characteristics: (i) 
the ground state was 17th-fold degenerate; (ii) the ground states were divided in two sets, a 
cluster whose 16 states could be transformed to another ground state by flipping a single qubit, 
and another single state that required flipping 4 qubits in order to obtain another ground state; 
(iii) the energy landscape of the problem had no local minima. We studied the evolution of the 
populations of the 17 ground states according to a simulated annealing evolution (which is a 
simple classical model of a thermalizing system) and found that the isolated state initially had a 
higher population than the states in the cluster. On the other hand, a quantum mechanical model 
of the system predicted that the isolated state would have a suppressed population with respect to 
the cluster states. We then performed the experiment on the Rainier processor (a 128-qubit 
processor, that preceded DW2), and found that the experimental statistics agreed with the 
quantum model and disagreed with the classical model. These results were published in Nature 
Communications [18] (see appendix A). 

4.6.2 Evidence of entanglement 
The second approach was a collaboration with D-Wave to analyze the entanglement of a set of 8 
qubits in the DW2 processor (Vesuvius chip). DW2 has extra controls that allow for certain 
measurements that were not available for the Rainier processor (DW1). Using these extra 
controls, an experiment was designed in which one qubit was used as a probe to measure some 
elements of the state of a set of eight interacting qubits. The extra controls allowed for 
independent annealing of the probe and the system under study. With this setup, researchers from 
D-Wave measured the populations of the ground state and the first excited state of the 8-qubit 
system at different points during the annealing. These two quantities are just 2 of the 65535 real 
parameters needed to completely determine the quantum state of the system. We at Information 
Sciences Institute (ISI) developed a new technique to analyze this information that allowed us to 
conclude that no matter what the values of the unknown parameters were, any state that was 
compatible with the measured values for the two populations had to be entangled. This was the 
first experimental proof of the presence of entanglement in the D-Wave processor, and it 
provides definite evidence of the quantum mechanical nature of the device. This work was 
accepted for publication in Physical Review X, but has not been published at the time this report 
is being written. A preprint [19] is attached in appendix A.  
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5 CONCLUSIONS 
The goal of the QCHECK project was to study the feasibility of integrating the capabilities of the 
D-Wave adiabatic quantum annealer into a model checking framework for the certification of 
complex systems. The results of this project show that this is indeed possible. By identifying a 
particular approach to model checking that required solving combinatorial optimization 
problems, we were able to off load these hard computational tasks to the DW2 processor, 
construct a hybrid algorithm that applied classical model checking techniques, and call upon the 
DW2 processor whenever needed. The CEGAR approach to model checking was a very good fit 
to exploit the strengths of the DW2 device. In fact, the main difficulty encountered in this part of 
the project, was the lack of a model checking package that was open enough to allow us to 
extract the required combinatorial optimization problems that needed to be solved by DW2. 
These packages typically use their own solvers, and do not provide the user with the low level 
access to extract them. But looking into the future, this project shows that the DW2 processor 
can be trivially integrated into the CEGAR approach, if the necessary access is provided. 
Furthermore, any advances in the model checking side and DW2 side will not alter the basics of 
this integration, so improvements and new developments in both components will only improve 
the integrated approach. 

One of the main reasons for our interest in combining the DW2 device with a model checking 
approach is the possibility that computational speedups may be provided by the adiabatic 
quantum optimization approach. The question of quantum speedups is not easy to answer at this 
point in time. In particular, the size of the devices currently available may not be large enough to 
fully break beyond the capabilities of classical computers. Furthermore, it is very difficult to 
prove that a quantum device is better than all possible classical devices at solving a particular 
class of problems. We are then left with comparing the quantum device against a set of classical 
algorithms on a particular ensemble of problems, and it is not clear if this performance will carry 
to more general problems, or if another more efficient classical algorithm will be developed. In 
this project we compared the performance of DW2 against a heuristic classical solver that has 
performed well in several algorithmic competitions. Even though DW2 performed well against 
it, it is not clear what conclusions we can draw at this point, since the classical solver was 
designed for general problems and not optimized to the architecture of DW2. The question of 
speedup has been (and still is) extensively studied by many groups around the world, and the 
results are still inconclusive [20]. On the other hand, the results are also promising in the sense 
that the performance of DW2 is on par with very optimized algorithms running on very fast 
hardware [20]. 

In this project we developed some of the tools that would be necessary for any practical 
application involving DW2. One of the main obstacles in using the processor is the limited 
connectivity of the underlying architecture that severely limits the type of problems that can be 
embedded exactly. It is thus unavoidable that users will have to rely on approximate or heuristic 
embedding techniques to solve a broader set of problems. This has its own set of drawbacks as 
the solutions we found are only approximate, and it is not clear a priori how good those 
approximations are. The sequential embedding technique developed in this project shows one 
possible way forward and the results are encouraging for optimization problems, but not so much 
for decision problems. The issue is that decision problems are implemented in DW2 by first 
encoding them as optimization problems: the answer to the decision problem is YES if the 
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minimum of a certain discrete function is equal to a certain value (usually zero), and NO 
otherwise. The problem with this type of formulation is that the DW2 processor does not provide 
a guarantee that the ground state has been found. So, if the best configuration provided by the 
quantum processor gives us the known minimum of the function, we know the answer to the 
decision problems is YES, but if it is not equal to that minimum, we cannot say that the answer is 
NO, because there is no guarantee that the answer found is the best possible one. We faced this 
issue when attempting to use DW2 to check the validity of abstract counterexamples (i.e., 
checking is there was a corresponding counterexample in the original system). This required 
solving a SAT decision problem, and the fact that we could not guarantee that the best solution 
was found would lead us to a wrong assertion about our problem (i.e., that a real counter 
example existed when that was not true). 

Another important feature that was shown in parallel with the work performed for QCHECK was 
the quantum mechanical behavior of the D-Wave processor. We developed two approaches, one 
that gave evidence of a quantum signature (but fell short of being a proof), and another one that 
provided experimental evidence of the existence of entangled state during the annealing process. 
This last one constitutes a definite proof of the quantum mechanical nature of the device and it is 
a very important step forward in the field of practical implementations of programmable 
quantum devices. There is, however, a lot of work to be done to determine if these quantum 
effects are being exploited in a way that provides a computational speedup. 

In summary, integrating adiabatic quantum optimization techniques with a model checking 
approach is feasible and relatively straightforward. The framework developed in this project 
could be easily followed in the future provided the model checking packages used provide the 
user with the required information. Developing newer techniques to go beyond the connectivity 
limitations of the DW2 device will certainly help improve the performance of the approach. And 
hopefully, newer generations of the device will provide the desired computational speedup and 
transform this proof of concept into a practical tool. 
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7 APPENDIX A – Publications and Presentations 

The following two publications, regarding the quantum nature of the D-Wave device, were 
written in parallel with the work performed for the QCHECK project. Although not a part of the 
proposed research, these results are included to complement and give better context to the results 
presented in this report. 

• Quantum Signature
S. Boixo, T. Albash, F.M. Spedalieri, N. Chancellor, D. A. Lidar; “Experimental signature of 
programmable quantum annealing”; Nature Communications 4, Article number: 2067, 
published online 28 June 2013. 

• Quantum entanglement
T. Lanting, A.J. Przybysz, A. Yu. Smirnov, F.M. Spedalieri, M.H. Amin, A.J. Berkley, R. 
Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J.P. Hilton, E. Hoskinson, 
M.W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov, C. Rich, M.C. 
Thom, E. Tolkacheva, S. Uchaikin, A.B. Wilson, G. Rose; “Entanglement in a quantum 
annealing processor”;  arXiv:1401.3500, accepted for publication in Physical Review X, 
2014. 
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8 APPENDIX B – Description of CEGAR-DW2 integration code 

In this appendix we provide a brief description of the main code components needed to integrate 
the CEGAR approach with the DW2 capabilities. As discussed in Section 4.4, we were forced to 
construct a simple model checking program (based on freely available BDD libraries) because 
publicly available model checking packages did not provide the user with low level information 
needed to construct the ILPs required during the CEGAR process. This code (and supporting 
files) can be accessed at http://www.isi.edu/people//fspedali/QCHECK_code 

To run the integrated CEGAR process, we call a Perl script named cegar-solver-
loop.pl. This script takes as an argument the name of the file where the system is described in
AIG format. The CEGAR process is then applied: an abstraction is generated, the model checker 
is called to check the required property, and if a counterexample is found, it is checked using a 
regular SAT solver. When the counter example is found to be spurious, an ILP is generated to 
solve the Minimal Separating Set problem that would allow us to refine the abstraction. Once the 
ILP is generated, it is written to a temporary file. Then the DW2 solver is called (see the line 
my $answer =`matlab -nodisplay -nosplash -r 
"SolverILP('$tmpfile')"  | tail -n +11`;

in cegar-solver-loop.pl). This command calls Matlab and runs the function
SolverILP, that takes the name of the file where the ILP is stored as an argument, and then
calls other functions that write the ILP as a QUBO problem and solves it using the heuristic 
embedding coded in the function SEBREMforQUBO. The answer is sent to the standard output,
where the Perl script grabs it and continues with the CEGAR process, refining the abstraction 
according with the solution of the ILP. The code can be run in verbose mode, where the 
successive ILPs solved are shown. A detailed transcript of one such run was presented in Section 
4.5. 
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9 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

σ Pauli operator 

2-SAT 2-Satisfiability problem 

AIG And Inverter Graph 

AIGER Format for And-Inverter Graphs 

API Application Programming Interface 

AX-MAXSAT Exact MAX-SAT solver 

BDD Binary Decision Diagram 

BMC Bounded Model Checking 

CE Counter Example 

CEGAR Counter-example Guided Abstraction Refinement 

CMU Carnegie Mellon University 

CNF Conjunctive Normal Form 

CTL Computational Tree Logic 

CUDD CU Decision Diagram package 

DIMACS Computer-readable format for Boolean satisfiability problems 

DW1 D-Wave One 

DW2 D-Wave Two 

FBK Fondazione Bruno Kessler 

FCS Flight Control System 

h Vector of local magnetic fields 

ILP Integer Linear Program 

ISI Information Sciences Institute 

J Matrix of inter qubit couplings 

laig Lisp-flavored AIG 

LTL Linear Temporal Logic 

MAX-2-SAT Maximum 2-Satisfiability problem 

MaxWalkSAT WalkSAT variant for weighted SAT problem solver 

MC Model Checking 
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NP Non-deterministic Polynomial class of decision problems 

NP-hard Computational complexity class that contains the class NP 

NuSMV New Symbolic Model Checker for System Verification 

NuXMV New Symbolic Model Checker for the Analysis of Synchronous 
finite-state and infinite-state Systems 

OBDD Ordered Reduced Binary Decision Diagram package 

QCHECK A Quantum Computing Approach to Model Checking for 
Advanced Manufacturing Problems 

QUBO Quadratic Unconstrained Binary Optimization 

rf-SQUID Radio Frequency Superconducting Quantum Interference Device 

SAT Boolean satisfiability 

SEBREM Sequential Embedding By Relative Entropy Minimization 

SMV Symbolic Model Checker for System Verification 

SQUID Superconducting Quantum Interference Device 

WalkSAT Boolean satisfiability problem solver 

XML Extended Markup Language 
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