
A QUANTUM COMPUTING APPROACH TO MODEL CHECKING
FOR ADVANCED MANUFACTURING PROBLEMS

UNIVERSITY OF SOUTHERN CALIFORNIA –
 INFORMATION SCIENCES INSTITUTE

JULY 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-193

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2014-193 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
STEVEN L. DRAGER MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing &
 Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2012 – JAN 2014
4. TITLE AND SUBTITLE

A QUANTUM COMPUTING APPROACH TO MODEL CHECKING FOR
ADVANCED MANUFACTURING PROBLEMS

5a. CONTRACT NUMBER
FA8750-13-2-0035

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Federico M. Spedalieri, John Damoulakis

5d. PROJECT NUMBER
HACM

5e. TASK NUMBER
SL

5f. WORK UNIT NUMBER
QC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California – Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6601

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-193
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project studied the feasibility of integrating the capabilities of the D-Wave adiabatic quantum annealing processor
into a Model Checking (MC) approach based on Counter-example Guided Abstraction Refinement (CEGAR). The
computational bottleneck of this approach is the solution of certain combinatorial optimization problems for which the D-
Wave processor was specifically designed. We developed a set of tools to sidestep the restrictions imposed by the
limited connectivity of the processor, performed a set of benchmarking tests of the device, and implemented a proof of
concept example that integrated the quantum processor with regular model checking techniques.

15. SUBJECT TERMS

Adiabatic Quantum Annealing Processor, Model Checking, Quadratic Unconstrained Binary Optimization, Integer Linear
Programming, Counter-example Guided Abstraction Refinement

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN L. DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

67

TABLE OF CONTENTS
Section Page

List of Figures …………………………………………………………………………………....iii

List of Tables …………………………………………………………………………………….iii

1 SUMMARY .. 1
2 INTRODUCTION .. 4
2.1 D-Wave Two (DW2) adiabatic quantum optimization processor overview 4
2.1.1 The Physical Principles of the D-Wave Quantum Computer ... 6
2.1.2 Programming and Using the D-Wave Quantum Computer .. 7
2.1.3 Counterexample guided abstraction refinement ... 8
2.1.4 Refining the Abstraction ... 9
2.1.5 Minimal Separating Set... 11
3 METHODS, ASSUMPTIONS, AND PROCEDURES .. 13
3.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision

Diagrams ... 13
3.2 Benchmarking of DW2 performance on MAX-2-SAT against classical solver

MaxWalkSAT ... 13
3.2.1 MAX-2-SAT ... 13
3.2.2 MaxWalkSAT ... 14
3.2.3 Instance ensemble ... 14
3.2.4 Benchmarking strategy ... 15
3.3 Development of heuristic embedding algorithm .. 15
3.3.1 Iterative heuristic embedding .. 16
3.4 Integration of CEGAR approach with DW2 .. 18
3.4.1 Converting SAT to ILP ... 19
3.4.2 Converting ILP to QUBO ... 19
3.5 Implementation of Model Checking example.. 21
4 RESULTS AND DISCUSSION ... 22
4.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision

Diagrams ... 22
4.1.1 Creating propositional formulas in BMC ... 22

i

4.1.2 Mapping of propositional formulas for BMC into DW2 .. 23
4.1.3 Results of the suitability study for Bounded Model Checking ... 23
4.1.4 Implementation of Binary Decision Diagrams using DW2 .. 24
4.1.5 Binary Decision Diagrams .. 24
4.1.6 Model checking algorithms... 25
4.1.7 Issues with casting computation of extremal BDD as optimization problem 25
4.1.8 Results of BDD implementation using DW2.. 26
4.2 Benchmarking of DW2 on MAX-2-SAT versus MaxWalkSAT ... 26
4.2.1 Analysis of the benchmarking results ... 27
4.3 Implementation of a heuristic embedding tool .. 28
4.3.1 Code structure ... 28
4.4 Integration of DW2 into CEGAR loop .. 31
4.4.1 Verifying the validity of abstract counterexamples .. 31
4.4.2 Refining the model .. 33
4.4.3 CEGAR Implementation ... 35
4.4.4 ILP Problems .. 36
4.5 Implementation of CEGAR based model checking example .. 36
4.5.1 Verification summary ... 37
4.5.2 Detailed transcript ... 37
4.6 Evidence for quantum behavior in the DW2 processor ... 52
4.6.1 Quantum signature .. 53
4.6.2 Evidence of entanglement ... 53
5 CONCLUSIONS... 54
6 REFERENCES ... 56
7 APPENDIX A – Publications and Presentations .. 58
8 APPENDIX B – Description of CEGAR-DW2 integration code ... 59
9 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 60

ii

LIST OF FIGURES
Figure Page

1 D-Wave One connectivity graph…………………………………………………………6
2 Schematic representation of the compound superconducting loops used to realize the

qubits in the D-Wave processor………………………………………………………….7
3 Energy profile of a superconducting flux qubit………………………………………….7
4 Example of abstracted model……………………………………………………………10
5 Spurious counter example……………………………………………………………….10
6 CEGAR loop…………………………………………………………………………….18
7 Benchmarking results for MAX-2-SAT…………………………………………………27

LIST OF TABLES
Table Page

 1 Truth table for Boolean OR and energies of associated 2-qubit Hamiltonian…………13

iii

1 SUMMARY
The goal of the Quantum Computing Approach to Model Checking for Advanced Manufacturing
Problems (QCHECK) research project was to determine if it is feasible in the future to speed up
a Model Checking (MC) approach based on Counter-example Guided Abstraction Refinement
(CEGAR) by using a D-Wave open system, adiabatic quantum annealing processor. These are
specialized computing devices that solve spin Ising models, which are equivalent to Quadratic
Unconstrained Binary Optimization (QUBO). We focused on two aspects of the CEGAR
approach that involved solving integer linear programs (ILPs) and Boolean satisfiability (SAT)
problems. The project was divided in five tasks:

Task1: Study feasibility of using a D-Wave to solve Bounded Model Checking (BMC) problems
and implementing Binary Decision Diagrams (BDD) based techniques.
Task 2: Compare the performance of a second generation D-Wave (DW2) on MAX-2-SAT
problems native to its architecture, versus the heuristic solver MaxWalkSat.
Task 3: Develop a heuristic embedding algorithm for the DW2 to get around the limited
connectivity of the processor.
Task 4: Integrate the CEGAR approach with the DW2 processor.
Task 5: Implement examples.

Results:

Task 1: It was found that even though in principle the required BMC problems could be cast as
QUBO problems, the probabilistic nature of the processor (that provides no guarantees that the
best possible solution has been found) made the approach susceptible to false negatives: a SAT
formula could be proclaimed “unsatisfiable” because the best solution found by DW2 does not
satisfy the formula, while a better solution might exist that proves the formula satisfiable. With
regards to implementing BDD based approaches using DW2, it was concluded that encoding
such a problem as an optimization problem, though possible, would not scale well with system
size.

Task 2: The comparison was performed on a set of random instances of MAX-2-SAT that are
native to the DW2 processor’s architecture, for different numbers of variables. The performance
of DW2 was shown to be better than that of MaxWalkSat, with the caveat that MaxWalkSat was
not optimized for the DW2 architecture. The issue of DW2’s performance vs. that of classical
solvers remains (as this report is being written) an open and very contested research topic.

Task 3: A tool to perform heuristic embeddings was created. It allowed us to implement QUBO
problems that had a different connectivity graph than the native DW2 architecture. This tool is
useful for optimization problems, but suffers the same limitations found in Task 1 for decision
problems (i.e., SAT) due to the lack of a guarantee that the solution found is the best possible.
The tool needs further optimization, and alternative approaches need to be investigated.

Task 4: Several issues arose that made this task more challenging than was anticipated:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1. Off-the-shelf model checking packages do not provide access to internal data such as the
ILP needed to be solved during the CEGAR implementation. We contacted the developers but
they were reluctant to give us access to the source code.
2. Many simple models that we studied generated trivial ILPs during the CEGAR
implementation, i.e., the solution could be found by simple inspection. It took some time to learn
from these models what properties of the system will lead to non trivial ILPs.
3. In order to have access to the ILPs we ended up writing a small model checking package
using publicly available libraries. We used the And-Inverter Graph (AIG) format, allowing us to
generate small, non-trivial ILPs (on the order of tens of linear constraints and binary variables).

Task 5: We found an example from the literature of a flight control system and checked a safety
property that requires two exclusive flight modes not to be engaged at the same time. We
implemented this problem integrating the AIG-based model checker with the DW2, ran the
CEGAR approach starting with an abstraction that had 33 hidden variables. Our integrated code
proved the system to be safe by making visible only 14 of the 33 hidden variables.

Main lessons learned during the execution of this project
The current programing paradigm of the DW2 processor requires either heuristic embeddings or
approximate embeddings to implement QUBO problems that do not have connectivity native to
the processor. This step leads to a loss of certainty about whether the optimal solution to the
original problem is the same as the optimal solution to the embedded problem. This feature
potentially results in false negatives when solving decision problems with DW2. For example, if
the best answer provided by the processor corresponds to a negative result for the decision
problem (e.g., a SAT formula is not satisfiable), yet there exists a better solution to the original
decision problem that gives a positive answer (i.e., the SAT formula may be satisfiable). Note
that there are no false positives, since a positive answer provides that the corresponding
assignment can be checked efficiently.

Optimization problems are better suited for the current programming toolbox. Even though we
may not find the optimal solution to a problem, both the heuristic and approximate embedding
approaches provide “good solutions”, which can still be very valuable if they can be found faster
than with other methods. The heuristic embedding tool developed in this project is designed to
generate a sequence of improving solutions, although there is no guarantee that the optimal
solution will be found (although additional information about the problem may help identify
when optimal solutions are found).

The question of speed up with respect to classical algorithms is very hard to answer. A
benchmarking against a particular classical algorithm will not preclude the existence of another,
more efficient algorithm. Since we can only estimate the scaling behavior of the runtime
performance of the DW2 processor by benchmarking it on a given set of instances, the problem
is translated into finding a particular set of instances that show speedup over some set of classical
algorithms. Even how to pose the question of speedup has been the subject of intense research.
At this point in time, there is no conclusive evidence that the DW2 provides any speedup, but
this has only been tested up to 500 variables. New processors with up to 2000 qubits are
expected to be available in the next two years.

Although not directly related to this project, very important results have been obtained regarding
the quantum nature of the DW2 processor. Even though it is designed to operate in a quantum

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

mechanical regime, it is not easy to experimentally confirm this feature. During the execution of
this project we also performed research aimed at resolving this issue. Two approaches were
devised: one provided evidence of a quantum signature by analyzing the statistics of the output
of the DW2 processor when solving a carefully designed problem involving 8 qubits. The second
approach, implemented in collaboration with the company D-Wave, gave a definitive answer
regarding the quantum nature of the device by showing that entanglement is present during the
quantum annealing evolution. Whether this entanglement can provide a computational speedup is
still an open question.

In terms of the integration of the CEGAR model checking approach and the DW2 processor, the
proposed approach was shown to be very straightforward. The obstacles encountered were not
related to the fundamental idea of the approach, but rather to the technical limitations of the
software tools required (lack of access to the inner workings of the CEGAR implementation
available in the different publicly available model checking packages). Any model checking
package that provides the required information (i.e., the ILPs to be solved in CEGAR) could be
easily integrated to interface with the DW2 processor.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

2 INTRODUCTION
The goal of the QCHECK project was to analyze the feasibility of exploiting the computational
capabilities of the DW2 adiabatic quantum processor in order to speedup and improve the
solution of model checking problems. The DW2 device is designed to solve combinatorial
optimization problems by exploiting quantum mechanical effects of an array of Superconducting
Quantum Interference Devices (SQUIDs) [1].

One of the main drivers of the computational hardness of model checking problems is the
extremely large size of the state space that needs to be considered [2]. The different algorithms
and techniques that have been developed to solve model checking problems need to implement
in one way or another, a mitigation strategy for this problem. One of the approaches that have
been proposed and developed is based on abstractions. The main idea is to replace the system
that needs to be checked by an abstraction that has a much smaller state space, with the feature
that if a property is found to be true in the abstraction it is automatically true in the original
system. Since the size of the abstracted state space is smaller, the algorithms employed to
address the abstract problem require much less computational resources.

The abstraction based approach however, comes with a price: a property may be proven wrong in
the abstraction when it is actually true in the original system (false negative). To avoid this
problem, every counterexample to a property found in the abstraction must be verified as valid,
i.e., a corresponding counterexample must exist in the original system. When such a
counterexample cannot be produced, we say that the abstraction generated a spurious
counterexample, and the truth or falsehood of the property remains unknown.

To solve this issue an approach known as Counterexample Guided Abstraction Refinement has
been developed [3]. The basic idea is to use the structure of the spurious counterexample to
generate a finer abstraction that would get rid of it. A finer abstraction has a larger state space
and so it is important to find a refinement that increases the size of the state space the least. This
process continues until the property is proven to hold, or a valid counterexample in the original
system is found. We have identified an approach to CEGAR in which combinatorial optimization
problems of the form that can be solved by the DW2 processor are a central part of the
algorithm: one is to check whether an abstract counterexample corresponds to an actual
counterexample in the original system which requires solving an instance of a Boolean
Satisfiability problem; the other is at the root of finding the smallest abstraction refinement that
can get rid of a spurious counterexample and requires solving and Integer Linear Program.

2.1 D-Wave Two (DW2) adiabatic quantum optimization processor overview
The DW2 adiabatic quantum computer solves a Quadratic Unconstrained Binary Optimization.
This optimization consists in finding the vector of binary variables that minimizes the quadratic
objective function

f (x1, …, xn) = Min[x]{ Σ[i<j; i=1, …, n; j=1, …,i-1]Qijxixj } (1)

where x = (x1, x2, …, xn), xi ∈ {0,1}, and Qij is a matrix of real numbers that determines the
objective function. This problem is equivalent (through a simple linear transformation of the
variables xi → si = 2xi – 1) to the Ising model. The Ising model represents a set of interacting
spin magnets with an energy given by:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

E (s1, …, sn) = Σ[i<j; i=1, …, n]Jijsisj + Σ[i=1, …, n]hisi (2)

where the spin variables, sj’s, now take the values {+1,-1}, the parameters Jij represent the
interactions between two spins, and the parameters hi correspond to local magnetic fields.
Solving the Ising model consists in finding the spin configuration that minimizes the energy, E.
This problem is known to be NP-hard [4], and many important combinatorial problems can be
reduced to it [5].

DW2 implements a quantum version of the Ising model, where each spin variable is replaced by
a Pauli operator σz, representing the state of a qubit (quantum bit) that is associated with the
magnetic flux of a superconducting quantum interference device (flux-SQUID). The Ising
Hamiltonian, given by

HIsing = Σ[i = 1,..,N] {Σ[j=1,…,N][Jijσi
zσj

z]} + Σ[j=1,…,N]hiσi
z (3)

characterizes the quantum mechanical system of spins. The device allows for tunable interactions
between the different qubits (i.e., tunable parameters Jij), as well as tunable local biases
(parameters hi).

Quantum annealing in the D-Wave processor proceeds as follows: initially a transverse field is
applied such that the lowest energy state has all the spins pointing in the same transverse
direction, a quantum superposition of +1 and -1. The parameters are then slowly varied in order
to transform the Hamiltonian into HIsing, whose ground state encodes the solution to the
optimization problem. The adiabatic theorem of quantum mechanics assures us that, provided
this parameter change is slow enough, the final state of the system corresponds to the ground
state of the final Hamiltonian [6], i.e., the spin configuration that minimizes the energy function.
The values of the spins are obtained by measuring the flux of each qubit at the end of the
annealing. In reality, due to the probabilistic nature of this quantum mechanical system, this
process must be repeated several times in order to expect to identify the lowest energy
configuration.

Our initial D-Wave One (DW1) system had 128 qubits, depicted as green and gray circles in
Figure 1. They are arranged in a 4 x 4 array of 8-qubit tiles. In each tile, the qubits are separated
in two groups of 4 and connected in a bipartite fashion [7] (each qubit is only connected to all the
qubits in the other group). Some qubits in each tile have extra connections to qubits in other
tiles, such that the graph is connected (but not fully connected). The connectivity graph is called
the Chimera graph [8]. The DW2 processor used in the latter part of the project has 512 qubits.
It is composed of a 16 x 16 array of 8-qubit tiles connected in a similar way as in Figure 1.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

This connection topology is dictated by constraints imposed by the underlying technology, but
the design is scalable up to many thousands of qubits. The lack of full connectivity between all
the qubits in the chip prevents a straightforward mapping of an arbitrary Ising Hamiltonian (or,
equivalently, an arbitrary quadratic function) into the processor. However, although constructing
and optimizing this embedding is not a trivial issue, several heuristics have already been
developed.

2.1.1 The Physical Principles of the D-Wave Quantum Computer
The basic building block of the DW2 quantum annealing chip is a superconducting flux qubit,
(rf-SQUID flux qubit) as depicted in Figure 2. The simplified version consists of two
superconducting loops having two Josephson junctions [9]. Each loop is subject to externally-
biased magnetic fields (Φ1x and Φ2x) that are used to control the properties of the qubit. The
quantum states are associated with the quantized magnetic flux Φ1.

Figure 1. D-Wave One connectivity graph

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

For low temperatures, it is a good approximation to only consider the two lowest states
corresponding to flux pointing up and flux pointing down. The energy profile that describes the
system is a double-well potential, represented in Figure 3. The bias fluxes Φ1x and Φ2x are used
to adjust the height of the energy barrier δU, and the energy difference between the two states,
2h. The actual qubits in the quantum computing element chip have extra loops that are used to
compensate for undesirable effects due to fabrication manufacturing variations and provide more
uniformity in their properties.

2.1.2 Programming and Using the D-Wave Quantum Computer

Programming of the DW2 involves setting the values of the local magnetic fields, and the
coupling coefficients for each super-conducting qubit, which determine the desired final (Ising)

Figure 2. Schematic representation of the compound superconducting loops used to realize
the qubits in the D-Wave processor

Figure 3. Energy profile of a superconducting flux qubit

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

Hamiltonian. The DW2 is housed in an integrated environment able to be programmed by either
desktop computers connected directly to the DW2, or remotely via a local area network, or other
remotely-accessed communication networks, to which the desktop computers are connected.

To program the DW2, a user needs to provide the chip with the values of J and h that satisfy the
constraints discussed above. Casting a given problem into the Ising form and respecting the
constraints on J and h is part of the “art” of programming DW2. For many discrete optimization
problems there are known mappings to the Ising model, but those often result in matrices J with
more connectivity than what is currently available on DW2. One way is to map such J into the
chip by using certain qubits to simulate more connections, but the price paid is that these qubits
are not available to encode the solution. There are also heuristic approaches that aim at
approximating a given unconstrained J with another matrix J’ that satisfies the constraints of the
chip and has the same minimum of the energy function.

Programming of, and readout from the DW2 occurs through an application-programming
interface consisting of function libraries that make calls to the optimization capability of the
DW2. These libraries are available in Matlab and Python, and can be used to access the
machine’s functionalities directly from the programmer’s code. These software tools, in
conjunction with the machine’s circuitry, translate the description of the Ising Hamiltonian into
the time-dependent classical controlling signals that make the qubits evolve following the
required adiabatic evolution. After the qubits are measured, the results are also available through
a software interface.

2.1.3 Counterexample guided abstraction refinement
One of the main computational bottlenecks in model checking is related to what is known as the
“state space explosion”: even for moderately sized systems, the state space needed to describe
them is intractably large (a system with 10100 states is not uncommon). Developing techniques to
deal with this issue is central in model checking. One popular technique is based on the use of
Binary Decision Diagrams, a very compact data structure that allows for a succinct description of
the state space and the transition system [10]. Another approach is based on abstractions: a
smaller system is constructed in such a way that properties proven true in the abstraction are
guaranteed to be also true in the original system [11]. The abstraction can then be checked using
regular model checking tools (like BDDs for example), which are computationally more efficient
since they are applied to a much smaller system.

If an abstraction is not sufficient to prove a given formula, the model checking tool used on the
abstraction must provide a counter-example (CE), a path in state-space that violates the formula.
This CE can be real or spurious: a real CE can be mapped to an actual CE in the original
(concrete) model, hence disproving the formula; a spurious CE is an artifact of the abstraction
and “disappears” when mapped to the original model. To determine which one is the case, we
can “simulate” the CE in the original system. This can be posed as finding a satisfying
assignment for a Boolean formula. DW2 implements these Boolean satisfiability problems by
fabricating an energy function that achieves a minimum, when all clauses are satisfied. If the
formula is not satisfiable, the lowest energy configuration obtained with DW2 will represent an
assignment of the Boolean variables that will not satisfy the formula. This can be efficiently
checked from DW2’s output.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

In order to determine if an abstract CE corresponds to an actual CE in the original system (and
hence a proof that the property is not satisfied), we need to translate the sequence of transitions
that form the abstract CE into a sequence of transitions in the original system. The central
question that we need to ask is: given a transition in the abstract system does a corresponding
transition exist in the original system? It should be remembered that in an existential abstraction,
an abstract transition between two abstract states exists, even if only one pair of original states
(each mapped to a different abstract state) has a transition (see Figure 4, where the transition
between states s3 and s6 in the original system induces a transition between the second and third
states of the abstraction).

For example, consider an abstract CE, 𝑇� , given by a sequence of abstract states 〈𝑠1� , … , 𝑠𝑛� 〉.
Given an abstract state 𝑠̂, the abstraction function h maps states in the original system into the
abstract system. The set of states that are mapped into 𝑠̂ are the ones that satisfy h(s) = 𝑠̂. If we
denote by 𝑅(𝑠𝑖, 𝑠𝑗) the characteristic function of the transitions in the original system (i.e.,
𝑅�𝑠𝑖, 𝑠𝑗� = 1 if and only if there is a transition between states 𝑠𝑖and 𝑠𝑗 , and 0 otherwise), then a
path 〈𝑠1, … , 𝑠𝑛 〉 is a concrete representation of the abstract CE 𝑇� , if the Boolean formula

⋀ (ℎ(𝑠𝑖) = 𝑠𝚤�) ⋀𝑛
𝑖=1 ⋀ 𝑅(𝑠𝑖, 𝑠𝑖+1)𝑛−1

𝑖=1 (4)

is satisfied, where the first AND operator assures that the states 𝑠𝑖 are mapped into the
corresponding abstract states 𝑠𝚤� , while the second AND operator assures that there exists a
transition in the original system between the states 𝑠𝑖 and 𝑠𝑖+1. We will show later that finding a
satisfying assignment of a Boolean formula can be cast as a 0-1 Integer Linear Program, and this
ILP can be mapped into QUBO form implemented by DW2.

2.1.4 Refining the Abstraction
If the CE is spurious, the satisfiability problem presented above identifies an abstract state that
causes the violation of the formula being checked. This is due to having clustered together
“dead end” states (that do not provide a path to an error state) and “bad” states (that provide a
path to an error state). We can illustrate this behavior with the following diagrams that represent
a system and its abstraction (see Figure 4).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

Consider the set of states and their transitions depicted in the original model of Figure 4. Here,
s0 is the initial state, and the states colored red are error states. Consider a possible abstraction of
this system in which all the states inside each dotted-lined rectangle are mapped to the same
abstract state. The transition diagram for such an abstraction is given in the lower part of Figure
4. From these diagrams, we can see why a spurious CE may arise. In the original system, it is
clear that if we start in the initial state I, we will never reach the “error” states (red states in the
diagram). However, by looking at the transition diagram for the abstraction, we can see that
starting in the abstract initial state we may eventually reach an “error” state. This is easier to see
in the diagram of Figure 5.

Figure 4. Example of abstracted model

Figure 5. Spurious counter example

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

The states in black in Figure 5 represent a possible path that the system can take. Note that in the
original system that path cannot reach any “error” states. The farthest the system can go is the
“dead end” state. However, in the abstraction, the “dead end” state is mapped to the same
abstract state as a “bad” state, i.e., a state that can eventually transition into an “error” state, so a
spurious transition is created that causes the system to have a valid path from the initial state to
an “error” state. In the diagram, we note as a “failure” state the abstract state that is causing a
spurious counter-example to appear, because it maps together “dead end” and “bad” states. To
refine the abstraction, these states need to be separated and assigned to different abstract states.
Therefore, in order to construct viable abstractions, one must follow the steps outlined below:

1. Minimal Separating Set – Generate an abstraction where “dead end” and “bad”
states are clearly separated. This results in an ILP that the DW2 can solve as an
Ising problem.

2. Satisfiability – Regardless of the approach used to generate abstractions, any CE
needs to be verified, if it is real or spurious. This invokes the processing of
satisfiability, which is executed in DW2 as an Ising model.

The sections below discuss how these steps are formulated and mapped to the DW2 quantum
annealer.

2.1.5 Minimal Separating Set
This can be constructed by identifying which of the “invisible” variables should be made
“visible” to distinguish “dead end” and “bad” states. The goal is to separate these two sets
exactly (i.e., no mistakes allowed) using the smallest number of invisible variables possible, in
order to keep the size of the refined abstraction from growing too much. For this, we use the
following definitions, assuming that there are 2 sets of states S = (s1, s2, …, sm) and T = (t1, t2, …,
tn) that need to be separated (S can represent the “dead-end” states and T can represent the “bad”
states). Let W be the set of variables required to specify all states in the original system.

Definition-1: A set of variables U = (u1, u2, …., uk)⊆W, separates S from T if for each
pair of states (si, tj), si∈S and tj∈T, there exists a variable ur such that si(ur) ≠ tj(ur).

Definition-2: Given 2 sets S and T per Definition-1, find the smallest set of variables U =
(u1, u2, …., uk)⊆W, that separates S from T. The set U is called the minimal separating set.
We can assign a binary variable vi to each variable ui , that will represent whether that variable is
included in the separating set or not: if ui is in the separating set, then vi =1; otherwise is zero (the
corresponding variable is excluded). The conditions are that for each (si, tj) pair at least one of
the variables that distinguish between the two states must be selected. Thus, there is a total of
mхn conditions. Under this formulation, the minimal separating set can be solved using integer
linear programming in a conventional computer to attain an exact solution.

Minimize Σ[j=1,…, k] vj with each vi = 0 or 1 (5)

Subject to: (∀s∈S) (∀t∈T) Σ[j=1,…, k] vj ≥ 1 for s(uj) ≠ t(uj)

Assuming that S represents the “dead end” states and T the “bad” states, the objective function
aims to minimize the count on the number of new variables we are including, while the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

constraints express the fact that every pair of “dead end”-“bad” states has to be distinguished by
at least one of the new variables we are including.

We refer now to the case that the sets S and T represent the “bad” and “dead-end” states denoted
by SB and SD. The following lemma from formal methods apply:

Lemma – Let U be the set of variables separating the “dead-end”, SD, and “bad”, SB, states. Let
an abstraction function h’ correspond to the visible set V’ of variables realizing the abstraction.
Also, let V represent the entire set of the original visible variables; then the following applies: V’
= V∪U. The abstraction function h’ maps SD and SB on to different states in the abstract model.
This lemma implies the following: 1) the number of visible variables have increased from |V| to
|V’|=|V|+|U|; and 2) using this augmented set of visible variables the abstraction function will
map SB & SD to different abstract states, which do need to be considered. As said above, the
model checking tool will check if the property of interest is valid in the abstraction. If it is valid,
then the procedure is over; if it is not and it generates a spurious CE, the process needs to be
repeated until a set of visible variables is identified on which that property holds or a valid CE is
found.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision
Diagrams

The analysis of the suitability of DW2 to address BMC problems and to implement BDD-based
model checking approaches was a theoretical exercise, and no particular assumptions were
required. We will present the details of the problem setup together with the results of this
investigation in Section 4.1.

3.2 Benchmarking of DW2 performance on MAX-2-SAT against classical solver
MaxWalkSAT

The main goal of this task was to benchmark the performance of the DW2 processor on a native
problem, against a classical heuristic solver. The rational for this task was that benchmarking up
to that point was performed against classical exact solvers, in particular AK-MAXSAT [12].
Since this solver provides a guarantee of optimality, it requires more resources (i.e., run time).
The DW2 processor is a probabilistic solver (solution is provided with a finite probability and no
optimality guarantee is given), and so it is not fair to compare it with exact solvers.

3.2.1 MAX-2-SAT
The choice of MAX-2-SAT is based on the fact that this problem can be trivially written as an
Ising problem that is native to the DW2 processor.

Definition of MAX-2-SAT: given a Boolean formula in conjunctive normal form with 2 literals
per clause, find the maximum number of clauses that can be simultaneously satisfied.

The key point in implementing this problem using the DW2 processor is to notice that for each
2-literal clause, we can construct a Hamiltonian of Ising form whose ground state is composed
by the satisfying assignments for the clause. For example, consider the 2-literal clause (xi ∨ xj).
This clause is satisfied if any of the two variables is TRUE. To map this problem into an Ising
form we will associate to each variable the state of a qubit, with x = TRUE → |+1〉 and x =
FALSE → |-1〉. Consider then the 2-qubit Hamiltonian

𝑯 = 𝟏
𝟒

(𝟏 − 𝝈𝒊 − 𝝈𝒋 + 𝝈𝒊 ⊗ 𝝈𝒋) (6)

where the 𝝈𝒊 is the Pauli operator associated with qubit i, and {|+1〉 , |-1〉} are its corresponding
eigenvectors. Table 1 shows the truth table of the 2-literal clause, and the energies of the
associated states.

Table 1. Truth table for Boolean OR and energies of associated 2-qubit Hamiltonian

xi xj xi ∨ xj 𝝈𝒊 𝝈𝒋 𝑯

F F F -1 -1 1

F T T -1 +1 0

T F T +1 -1 0

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

T T T +1 +1 0

We can see that all satisfying assignments are associated with states of energy 0, while the only
non-satisfying assignment corresponds to a state with energy 1. Hence, the ground state of the
Hamiltonian H is composed exactly by all the satisfying assignments of the 2-literal clause. If
any of the variables appear negated in the formula, we just need to flip the sign of the
corresponding Pauli operator on the Hamiltonian.

If we have a conjunction of many clauses C1∧…∧CM, we just need to add the corresponding
Hamiltonians H = H1 + …+HM. For any possible truth assignment to the Boolean variables, the
energy of the state will be increased by 1 for every unsatisfied clause. Then the energy of the
ground state of H will be the minimal number of unsatisfied clauses, from which we can trivially
infer the maximum number of satisfied clauses, i.e., the objective of the MAX-2-SAT problem. It
is then clear that we can look at MAX-2-SAT as a native problem to the DW2 processor. Even
though the decision problem 2-SAT is known to have a polynomial-time solution, the
optimization problem MAX-2-SAT is NP-hard (i.e., a polynomial-time algorithm for it would
imply the existence of a polynomial-time algorithm for all problems in NP).

3.2.2 MaxWalkSAT
We chose the MaxWalkSAT [13] solver as the classical algorithm for the benchmarking. This
solver applies heuristic methods to provide an approximate solution to a MAX-2-SAT instance.
Since it is not required to provide any guarantees of optimality (as exact solvers do) it can run
much faster on many instances. We considered that this provided a better comparison between
classical solvers and the DW2 processor.

MaxWalkSAT is a variant of WalkSAT, a heuristic SAT solver. In its more general form,
MaxWalkSAT solves the weighted SAT problem, in which each clause is given a weight and the
goal is to maximize the total weight of all simultaneously satisfied clauses. In our case, we set
the weights to 1. The algorithm for WalkSAT starts with a random truth assignment for all the
variables, then randomly selects an unsatisfied clause and a variable within that clause is flipped.
This variable can be chosen either at random, or as the variable whose flipping minimizes the
number of already satisfied clauses becoming unsatisfied. So in a sense, it is a mixture of
deterministic local search and random jumps.

3.2.3 Instance ensemble
In order to implement this comparison we generated MAX-2-SAT instances that were native to
the architecture of the DW2 processor. We generated problems with N variables, for N =
20,40,…,500. The number of clauses was chosen to be 2N, since it is known that this ratio of
clauses to variables generates instances that are typically hard to solve.

The ensemble was composed of 1000 instances for each value of N. The instances were
constructed in the following way. For each value of N, we chose N qubits that formed a
connected subset of the processor (to avoid assigning variables to qubits that were not connected
to other qubits of the set). Then we randomly picked M=2N of the available couplers associated
with the set of qubits to represent the 2-literal clauses. Finally, for each clause we randomly
(probability ½) negated the literals. This construction assured us that all clauses were distinct,
and hence the total number of clauses was indeed 2N.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

3.2.4 Benchmarking strategy
To compare the performance of the classical and quantum solvers we implemented the following
strategy. First, by using the exact solver AK-MAXSAT, we found the optimal value of the
objective function for every instance in the ensemble. This value was later used to estimate the
probability of success of each solver on each given instance.

Quantum solver (DW2): we ran each instance a thousand times, using an annealing cycle of 20
microseconds. We compared the value of the objective obtained in each run with the known
optimal value, and used this information to compute the probability of success for each given
instance. Then we used this information to compute the expected number of repetitions (or runs)
needed to obtain the optimal value at least once with at least 99% probability. This number of
repetitions times the annealing time used (20 microseconds) was the performance figure we used
for each instance. We then averaged this value over all instances with the same number of
variables N, and used it to compare with the classical solver.

Classical solver (MaxWalkSAT): the classical algorithm MaxWalkSAT requires another input
parameter called the “cutoff”, that gives an upper limit on the number of iterations performed
before stopping. Clearly, if the cutoff is small, the algorithm will be faster but we may not find
the optimal solution. On the other hand if the cutoff is very large, the algorithm will take more
time but will have a better chance of finding the optimal solution. There is then a tradeoff
between the value of the cutoff and the time it would take the algorithm to find the optimal
solution with probability at least 99%. We ran every instance with different values of the cutoff
in order to find a value that will reach the optimal solution with 99% probability in the fastest run
time. We then averaged these values over all of the instances with the same number of variables
N. All the instances were run on a Mac Pro with a 2.6 GHZ processor and 48Gb of RAM.

3.3 Development of heuristic embedding algorithm
The main goal of this task was to develop a tool that would allow us to embed problems that do
not match the processor’s connectivity. As discussed in Section 2, the DW2 processor has a very
particular connectivity graph called the Chimera graph that is the result of design compromises
between scalability and algorithmic power. The connectivity graph is sparse, and each is qubit
connected to at most 6 other qubits.

This design feature has an impact on the type of problems that can be embedded in the processor.
A general Ising model will have an underlying graph of couplings, and if this graph is not a
subset of the Chimera graph we need to implement alternative ways of embedding the problem.
Even if a given instance was a subgraph of the Chimera graph, finding the appropriate mapping
is an instance of Subgraph Isomorphism, another combinatorial optimization problem that may
be as hard as the original Ising instance. Hence, with the current design of the processor we have
no choice but to develop alternative methods to embed problems. It is important to point out that
this issue is not particular to the D-Wave processors. For any implementation of adiabatic
quantum optimization, the connectivity of the processor will be associated with some physical
interaction between qubits. These interactions tend to be local and thus require that the qubits are
close to each other. This will put a limit to the number of interactions a given qubit can represent,
since the number of local neighbors in any reasonable architecture will be limited and much
smaller than the total number of qubits. Hence the problem of embedding is central to the
adiabatic quantum optimization approach and not just a D-Wave issue.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

Since most Ising problems of interest will not fit directly into the Chimera graph, it is necessary
to develop techniques to go around this issue. We have already mentioned that an exact
embedding requires solving a hard problem and does not seem to be a scalable solution. Hence,
we need to apply some kind of approximate embedding. This requires discarding some of the
information (i.e., the couplings) that defines the problem in order to generate a related Ising
problem that can be fit into the Chimera graph. This approach has been used by Google and D-
Wave in an image recognition application [14], where they reduced the training of a strong
classifier to a QUBO problem. Their approximate embedding scheme followed a greedy
algorithm, that aimed at keeping the largest couplings (in absolute value) with the rational that
these couplers will be more important in determining the structure of the best solutions. It is
important to note that this step requires a certain preprocessing of the input instance that
increases the computational resources required. Also, there are no theoretical results that would
guide this process or give any guarantees on the quality of the solutions obtained.

3.3.1 Iterative heuristic embedding
In order to address the drawbacks of the approximate embedding method, we considered a
different approach that aims at taking advantage of the sampling capabilities of the DW2
processor. The idea comes from an approach to optimization problems known as “Probability
collectives” [15]. The main idea is to replace an optimization problem with a sampling problem.
Given an objective function over binary strings G(x), one approach to find its minimum will be
to sample from its Gibbs distribution, which is given by

P(x) = exp(-β*G(x)) / Z (7)

where beta is the inverse temperature, and Z is the partition function, which is defined as Z = Σ
exp(-β*G(x)), where the sum runs over all binary strings. It is clear that this distribution is biased
towards configurations that have a small value of G(x) due to the exponential factor. So if we
had access to a machine or algorithm that generated samples following this distribution, with
high probability we would obtain the minimum configuration.

The key point is to consider the DW2 processor as a parameterized sampler, where the
parameters are the local fields and the couplings (hi,Jij), and the output is a distribution over the
set of binary strings. The goal is then to find a set of parameters that produce an output
distribution that is “close” to the Gibbs distribution associated with the objective function G(x).
This sets up an iterative procedure:

1. Initialize the set of parameters (hi,Jij).
2. Sample the output of the DW2 processor using these parameters.
3. Compute measure of “closeness” between this output distribution and P(x).
4. Update the parameters (hi,Jij) in order to decrease the measure of “closeness”.
5. Go back to Step 2.

This process continues until a termination criterion is reached. Every time we sample the
processor, we can compute the value of the objective function G on all samples and keep track of
the one that gives us the minimum.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 16

As a measure of “closeness” we chose the relative entropy (or Kullback-Leibler divergence)
between the two distributions [16]. This measure has the property of being non-negative, and
vanishing if and only if the two distributions are identical. If we call Q(x; hi,Jij) the output
distribution of the quantum processor (that depends on the parameters (hi,Jij)), the relative
entropy between Q and P is defined by

D(Q||P) = Σ Q(x; hi,Jij) log (Q(x; hi,Jij) / P(x)) (8)
where the sum is taken over all binary strings. Our goal then is to find the values of the
parameters (hi,Jij) that minimize the relative entropy. This is an optimization problem of a
continuous function over a set of continuous variables, so we chose a gradient descent method.

In order to compute the components of the gradient of the relative entropy, we would need to
know the functional form of Q(x; hi,Jij). However, this functional form is not available to us, and
we can only sample from the distribution Q(x; hi,Jij). To move forward, we made the assumption
that Q(x; hi,Jij) was the Gibbs distribution associated with the Ising energy, that is

Q(x; hi,Jij) = exp(-β EIsing (x; hi,Jij)) / ZQ (9)

where ZQ(hi,Jij) = Σ exp(-β*EIsing (x; hi,Jij)) is a normalization constant that depends on the
parameters (hi,Jij), and the sum is over all binary strings. By making this assumption we can
explicitly compute the components of the gradient and obtain

∇J = -β {〈(2xi -1)(2xj-1) log(Q(x; hi,Jij) / exp(-β*G(x)))〉 - 〈(2xi -1)(2xj-1) 〉
〈 log(Q(x; hi,Jij) / exp(-β*G(x)))〉 }

∇h = -β {〈(2xi -1) log(Q(x; hi,Jij) / exp(-β*G(x)))〉 - 〈(2xi -1)〉 〈 log(Q(x; hi,Jij) /

exp(-β*G(x)))〉 } (10)

The expectation values that appear in the gradient are taken with respect to the distribution exp(-
β EIsing (x; hi,Jij)) / ZQ, i.e., the Gibbs distribution associated with the Ising model implemented
on the processor. Even though we know it’s functional form, this expression is hard to compute
because it requires summing over all binary strings to obtain the normalization constant ZQ, and
this sum has exponentially many terms, making it impractical for large problems. In order to get
around this obstacle, we will make another approximation and use the sample averages to
compute the expected values. The sample averages can be obtained by evaluating the expressions
on the samples produced by the processor. Since we will only generate a fixed number of
samples, this computation can be done efficiently.

Note that the algorithm makes two approximations: first, it assumes that the output distribution
from the DW2 processor is a Gibbs distribution in order to compute the gradient of the relative
entropy; and second, it replaces the expected values over this Gibbs distribution by the sample
averages.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

3.4 Integration of CEGAR approach with DW2
The CEGAR algorithm is a means of tackling the state space explosions that often arise in
model-checking. In CEGAR, one initially computes an abstraction of the original model that
can be model-checked more easily than the full model. This must be an abstraction that is
conservative, in a sense we describe below. One then checks the abstracted model to see if the
property holds in the abstracted model. If it holds, we are done; the system passes the test. Here
is where the conservative nature of the abstraction is critical: it must be the case that if the
system passes the check the property is, in fact, safe (the check must be sound); however,
CEGAR admits false positives (where the check fails, although the system is safe – the check is
not complete). Typically the CEGAR algorithm is applied to reachability problems, where the
safety property states that the system must not reach some undesirable state. A conservative
abstraction is used which increases the set of reachable states, so that the check will be sound.

If we find an abstract counterexample, we commence the part of the process that gives the
algorithm its name. First we must check to see if the counterexample is sound. We do this by
“replaying” the counterexample in the full model, instead of the abstraction. If the
counterexample is found to be sound, we are done: the system is unsafe, and must be corrected.
On the other hand, if the counterexample is unsound, we must refine the abstraction and repeat
the process. A simple diagram of the CEGAR procedure is presented in Figure 6. The
abstraction refinement is counter-example guided in the sense that we find a place in the counter-
example trace where the abstract counterexample cannot be followed. In this case, what must
have happened is that the abstract counter-example progresses from abstract state asi to asi+1 but
there is no way to progress from a corresponding concrete state h-1(asi) to h-1(asi+1) (h-1is the
inverse of the abstraction, so h-1(asi) is the set of concrete states that correspond to the abstract
state asi.) To refine the abstract state, we find the set of concrete states that satisfy the
description of abstract state i, h-1(asi), and the set of concrete states from which h-1(asi+1) is
reachable, and refine by adding state features that separate these two sets. The first set of states
is called the “dead end states,” and the second set is called the “bad states.”

In the QCHECK project, we experimented with applying the D-wave quantum computer to two
steps of the CEGAR process:

Figure 6. CEGAR loop

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 18

1. Checking the soundness of the abstract counter-example and
2. Finding an (approximately) optimal refinement to separate the dead-end from

the bad states.

The first step involved solving a SAT problem that encoded the existence of an actual counter
example associated with the abstract counterexample. The second involved solving an ILP in
order to find the smallest set of hidden variables that needed to be made visible in order to get rid
of the spurious counterexample. These two problems (SAT and ILP) are special cases of
combinatorial optimization problems, and can both be cast as QUBO problems that can be
solved with DW2. Actually, SAT can be cast as a particular instance of ILP as we show below.

3.4.1 Converting SAT to ILP

In a Boolean satisfiability problem, we have a set of Boolean variables {𝒙𝒊}, and a set of clauses
formed by combining a number of those variables and their negations with the logic operator
OR. For example, a clause can take the form

C = 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟑��� (11)

where ∨ stands for the OR operator and 𝒙𝟑��� stands for the negation of 𝒙𝟑. A clause is satisfied if
at least one of its Boolean operands is TRUE. The Boolean satisfiability problem consists in
finding an assignment of truth-values for all the variables such that all clauses are satisfied. As
we have shown above, a step in the abstraction refinement process requires us to solve a Boolean
satisfiability problem in order to determine if an abstract CE corresponds to a CE in the concrete
system. We will now show how to map this problem into an ILP. For each clause, we will
replace the OR operator by the “+” (sum) operator, every Boolean variable 𝒙𝒊 by a binary
variable xi if it is not negated, and by (1- xi) if it is negated, and we will impose the condition that
this sum must be greater or equal to 1. We will use the numerical value 1 to represent the
Boolean value TRUE, and 0 to represent FALSE. Hence, the clause C defined above will be
transformed into

𝒙𝟏 + 𝒙𝟐 + (𝟏 − 𝒙𝟑) ≥ 𝟏 (12)
It is not difficult to see that the logical clause C is TRUE, if and only if the above linear
inequality is satisfied. Then, satisfying a set of clauses is equivalent to checking the feasibility of
satisfying a set of linear inequalities like the one above (one for each clause). Since the variables
are binary, this is nothing but a particular case of an Integer Linear Program, one in which there
is no linear function to optimize and the variables are restricted to be 0 or 1. This type of problem
can be implemented on DW2 as explained in the next section.

3.4.2 Converting ILP to QUBO

ILPs are known to be computationally expensive for conventional computers (since they are NP-
hard). Nevertheless, we can map this problem to an Ising model that can be implemented
natively on the DW2 quantum processor. Let us show in general how this mapping can be done.
A typical binary integer linear programming problem can be written as:

 minimize[x] Σ[j=1,…, n]cjxj
 subject to: Σ[j=1,…, n]Bkjxj ≥ bk ; bk ≥ 0 ; 1 ≤ k ≤ q (13)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 19

where each xj is a Boolean number taking the value of 0 or 1, xj∈{0,1}, all the coefficients, cj,
Bkj, are integer numbers (positive or negative), and bk is non-negative integer number. The way
to deal with these constraints is to transform them into a quadratic penalty term that will increase
the energy of the Ising model when they are not satisfied. This is easily done with equality
constraints. For the inequality constraints, we first transform them into equality constraints by
adding extra “slack" variables (this is a canonical way of dealing with inequalities in
optimization problems). The detail we have to take into account is that the variables that we add
must be binary too (as the xj’s). For the kth inequality constraint, we define mk = Σ[i=1, …, n]Bki
including only the Bki’s that are non-negative (Bki ≥ 0). In essence, mk represents the maximum
numerical value of the sum, since each xj is a Boolean number. The role of the slack variables is
to add whatever value is needed in order to transform the inequality constraint into an equality
constraint. The slack variables must construct a non-negative integer number pk such that

 Σ[j=1,…, n]Bkjxj – pk = bk (14)

In order to satisfy this equality, the integer number pk should be allowed to be as large as the
maximum difference between Σ[j=1,…, n]Bkjxj and bk; this constitutes its numerical range. This
maximum difference is just |mk - bk|. The most efficient way (in terms of using the smallest
number of extra slack variables) is to express the non-negative integer pk by an expansion in
powers of 2 (binary expansion). Therefore,

 pk = Σ[j= 1, …, Dk]2j-1βj (15)

where each βj is a binary variable, βj ∈{0.1}, and Dk = [|log2(mk-bk)|]+1, since pk ≤ |(mk –bk)|.
This is a consequence of the binary arithmetic stating that the number of bits required to express
a positive number of magnitude ≤ N is equal to log2N + 1. Here, the number of bits required
(and hence, the number of binary slack variables) will be Dk, and the square brackets, […],
represent the largest integer smaller than the argument. So we define new slack binary variables
βki that transform the inequality constraints in Equations (13) to equality, namely,

 Σ[j=1,…, n]Bkjxj - Σ[j=1, …, Dk]2j-1βj = bk ; 1 ≤ k ≤ q (16)

It should be clear that if this equality is satisfied, Equation (16), then, the inequality in Equation
(13) is also satisfied. To generate an Ising problem we add, to the linear objective function of the
binary ILP, Equation (13), the square of the difference of the left-hand-side and the right-hand-
side of each equality, Equation (16), times a penalty constant K>0, and we now take the
minimum over the original variables xi and the new slack variables βkj. We finally get:

min[x,β]{Σ[j=1,…, n]cjxj +KΣ[k=1,…, q]((Σ[j=1,…, n]Bkjxj - Σ[j=1, …, Dk]2j-1βkj) – bk)2} (17)

where x = {xi; i=,..,n}, β = {βkj; j=1,.., Dk; k=1,.., q}, and Dk = [|log2(mk-bk)|]+1 for k=1,..,q.
Equation (17) has the form of an Ising model (a linear term and a quadratic term). We can make
this more explicit by expanding this expression and grouping the corresponding terms. In order
to make things more compact we define the following new integer matrices:

 = Bik if 1 ≤ i ≤ n and 1 ≤ k ≤ q.

Φik = 2i – (n + Σ[l= 1, …, k-1]Dl) if (n + 1≤i≤ (n + Σ[l=1, …, k-1]Dl) and 1≤ k≤q.

 = 0 Otherwise (18)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 20

and

gi
= ci if 1 ≤ i ≤ n

= 0 if (n + 1 ≤ i ≤ (n + Σ[k=1, …, q]Dk) (19)

where Φ = {Φik; k=1, …, q; i=1, …, n + Σ[k=1, …, q]Dk} is a qх (n + Σ[k=1, …, q]Dk) matrix, and g is
a 1х(n + Σ[k=1, …, q]Dk) row vector. Also, we augment the original vector x to a new vector z, by
appending the slack variables β, namely creating a new (n + Σ[k=1, …, q]Dk)х1 column vector , z, z
= {x1,…,xn, βkj ; k = 1,…,q; j = 1, …, Dk}.
Equation (17) can be transformed into an Ising model solvable by the DW2 quantum computer.
The minimization is over the augmented vector, z:

min[z] { zT(ΦTΦ)z + (g – 2bTΦ)z } (20)

where b is the qх1 column vector {b1, …, bq}.

In summary, this ILP-based approach to abstraction refinement can be cast as an Ising problem
that can be natively implemented on the D-Wave quantum computing processor.

3.5 Implementation of Model Checking example
The final task of this project consisted of applying the tools and techniques developed in the
previous tasks to a simple model checking example. We considered different systems and finally
converged on a model that was inspired by an avionics example problem, but did not correspond
to any real hardware or software. It was a toy model designed to show a proof of concept for the
integration of DW2 and the CEGAR approach to model checking, and was tweaked to have
certain features that would result in non trivial problems for the DW2 processor to solve. A more
detailed description of the example will be provided when discussing the result of the actual
implementation in the following section.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 21

4 RESULTS AND DISCUSSION

4.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision
Diagrams

Bounded Model Checking is an alternative approach to model checking. Its main feature is that
properties are checked to hold for a finite number of time steps. In this way, the properties can be
expressed as Boolean formulas and the algorithm consists in applying a satisfiability solver to
determine if the formula has a satisfying assignment: if it does, the property is proven true, and if
it does not, it is proven false.

This approach is different from the more general model checking approach, whose algorithms
are based on constructing a sequence of sets that tend to the set of all states that satisfy a
particular temporal logic formula. The advantage of the general approach is that properties can
be proven to hold for all possible executions of the system, while BMC are only restricted to
executions within a finite temporal horizon. The price paid in BMC is a lack of completeness,
i.e., it is not possible to prove or disprove every formula in a given temporal logic. However,
there are certain properties that can be proved and others that can be disproved. In particular,
BMC is well suited for finding short counterexamples, so its goal leans more towards finding
bugs than proving correctness. In this area, BMC can be more efficient than general model
checking techniques based on BDDs.

BMC proceeds in two steps: first, a finite length execution path satisfying a certain property on
the space state is encoded as a propositional formula; then, a satisfiability solver is applied to
find a satisfying assignment or prove none exists. If a satisfying assignment is found, it can be
decoded to represent a particular path on the state space that satisfies the property. Depending on
the property being considered, this could be a proof of a liveness property (i.e., a state with a
certain property can actually be reached), or a counterexample that disproves a property (by
showing a specific path that violates it). It is in this second step of BMC that we believe DW2
can provide an advantage, since Boolean satisfiability is a decision problem that can be cast as
the type of combinatorial optimization problem that DW2 is designed to solve.

4.1.1 Creating propositional formulas in BMC
In BMC we consider three elements:

1. A transition system M.
2. A temporal logic formula Φ.
3. A time bound k.

From these three elements we construct a propositional formula that checks the satisfiability of
the property represented by Φ in the transition system M for paths of length at most k. We can
construct the unrolled transition relation defined by

[𝑀]𝑘 ∶= 𝐼(𝑠0) ∧ ⋀ 𝑇(𝑠𝑖, 𝑠𝑖+1)𝑘
𝑖=0 (21)

where 𝐼(𝑠0) is the characteristic function of the set of initial states, and 𝑇(𝑠𝑖, 𝑠𝑖+1) is the
characteristic function of the transition relation. Basically, [𝑀]𝑘 is the set of all allowed paths of

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 22

length k that start in the set of initial states. We can also construct [Φ]𝑘, which is a formula that
will be true if and only if Φ is valid along a path of length k. In BMC, we want to find whether
the conjunction formula ([𝑀]𝑘 ∧ [Φ]𝑘) has a satisfying assignment.
As an example, consider the Computation Tree Logic (CTL) formula EF p, that means that a
state satisfying the propositional formula p is reachable from the initial state. Applying the BMC
approach to this formula for k=2, results in the following formula:

𝐼(𝑠0) ∧ 𝑇(𝑠0, 𝑠1) ∧ 𝑇(𝑠1, 𝑠2) ∧ (𝑝(𝑠0) ∨ 𝑝(𝑠1) ∨ 𝑝(𝑠2)) (22)

where [𝐄𝐅 𝑝]2 = (𝑝(𝑠0) ∨ 𝑝(𝑠1) ∨ 𝑝(𝑠2)). Solving this formula consists in finding a sequence
of three states (𝑠0, 𝑠1, 𝑠2) that satisfies it, or proving that no such satisfying assignment exists.

4.1.2 Mapping of propositional formulas for BMC into DW2
Our approach to implementing a satisfiability solver using DW2 is based on a transformation of
SAT to a 0-1 ILP, which in turn can be transformed into a QUBO problem. The transformation
from SAT to 0-1 ILP assumes that the SAT formula is given in conjunctive normal form (CNF),
that is

𝐹 = 𝐶1 ∧ ⋯∧ 𝐶𝑛 (23)

where each clause 𝐶𝑖 is a disjunction of literals. The formulas generated in the BMC approach
need not be of this particular form. Even though it is a conjunction of three elements (the
characteristic functions of the set of initial states and the unrolled transition, together with the
formula specifying the particular property being considered) each of these terms will not
necessarily be just a disjunction of literals.

It will then be necessary to transform them into CNF before we can map the problem into the
chip. This type of preprocessing is also present in classical implementations of BMC, and
researchers have developed subroutines that perform this translation. The drawback is that they
usually require the addition of extra variables, which will reduce the number of qubits available
to represent state variables, resulting in a reduction of the size of the systems we will be able to
analyze. Given that the number of qubits available is fixed, and even though it is expected that
this technology will scale with time it will only do it moderately, it is clear that preprocessing
techniques and hybrid approaches that allows us to break the problem into smaller ones will be
an extremely important component of any application of quantum computing in the adiabatic
model implemented by D-Wave devices.

4.1.3 Results of the suitability study for Bounded Model Checking

The analysis presented above shows that the BMC approach is indeed suitable for
implementation using the capabilities of DW2. Since the problem reduces to SAT and SAT can
be cast as a combinatorial optimization problem of the form solved by DW2, the main issues to
address are how to efficiently use the resources of DW2, namely how to encode the SAT formula
in a way that it makes the most efficient use of the qubits available. These are not different from
the ones that we had already anticipated when we proposed to use DW2 to check if the abstract
counter examples obtained within the CEGAR framework are associated with real counter
examples in the original system (this is again an instance of SAT).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 23

4.1.4 Implementation of Binary Decision Diagrams using DW2
The purpose of this analysis was to study whether techniques based on BDDs used in model
checking of finite discrete systems can be cast as an optimization problem that would be suited
for implementation with DW2. We will first discuss the basic features of BDDs, why they are
useful in MC, and the issues that arise when we try to implement BDD based algorithms as
combinatorial optimization problems.

4.1.5 Binary Decision Diagrams

BDDs are a type of data structure used to represent Boolean functions. A Boolean function is just
a function from {0,1}N to {0,1}, that is, a function from the set of all N-bit strings to {0,1}. We
can interpret these functions as the characteristic function of a given subset to N-bit strings (the
subset that evaluates to 1). Since the model checking problem is essentially a set problem (i.e.,
whether the set of initial states I is included in the set of states that satisfies a formula Φ), BDDs
are a natural tool for model checking algorithms.

Why are BDDs so useful in MC? The main problem of MC is the state space explosion. BDDs
provide a structure that in some cases can represent both the subsets of the state space and the
state transition relation in a compact way. Furthermore, we can define operations on BDDs that
implement the set operations required by the model checking algorithms (unions, intersections,
etc.) This allows the algorithms to operate not with the subsets, but with their characteristic
functions. The point is that a subset can have an exponential size (in the number of variables
used to describe it) while its characteristic function can be described much more compactly. In
this way, the algorithms proceed in a way that it does not require an explicit description of an
exponentially large set at any point.

Formally speaking, a BDD is an acyclical directed graph, with one root node, two terminal
nodes, and a set of internal nodes that have one predecessor and two successors. Each node
represents a variable, and the value of the Boolean function the BDD represents is obtained by
traversing the graph starting from the root node, and moving to the successor node associated
with the value of the variable the node represents; the terminal node that is reached is the value
of the function for that particular bit string.

One of the useful features of a BDD is that, once a variable ordering is fixed, the BDD can be
written in a unique canonical way, which makes comparing two BDDs (i.e., two subsets of N-bit
strings) computationally simple for polynomially sized BDDs. The size of this canonical BDD
depends crucially on the variable ordering, and two different variable orderings can result in two
BDDs of exponentially different size. Even though finding the best variable ordering for a BDD
is itself a hard computational problem, heuristics have been developed that result in reasonable
sized BDDs for many problems studied in practice.

Another important reason for working with canonical BDDs is that the set operations required by
model checking algorithms can be implemented directly on the BDD by applying a small set of
graph operations: given two BDDs in canonical form, we can compute the canonical BDD
corresponding to logical operations applied to them (like AND and OR) in a very compact way.
To understand the real practical impact of this, we need to look at how model checking
algorithms work.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 24

4.1.6 Model checking algorithms
A typical model checking problem consists in proving that a given property is satisfied for a
certain set of initial states. The property will depend on the type of logic that we are considering,
but typical examples are whether a state with a certain characteristic is eventually (or always)
reached, or that a certain set of states is never reached. The essence of model checking
algorithms is to compute the set of states that satisfy the property and then check if the set of
initial states is included in this set. The advantage of using BDDs for these algorithms is that
these sets are never defined explicitly (they could be exponentially large).

As an example of the basic structure of these algorithms, let us consider a path formula in CTL
of the form (Φ U Ψ), which means that for all paths property Φ holds until property Ψ becomes
true. The goal is to find the set of all states that satisfy this formula. The algorithm will proceed
iteratively and generate a nested sequence of sets that satisfy the formula, until the set obtained
does not change: this will be the set of all states S that satisfy the formula, and then we can easily
check if the set of initial states is included in it.

The steps in such an iterative algorithm will be something like this:
1. Let S1 be the set of states that satisfy Ψ (sets like this are assumed to be provided). Then

S1 ⊆ S, since all states that satisfy Ψ trivially satisfy (Φ U Ψ).
2. Next, find the set of states that both satisfy Φ, and such that there is a transition from it to

a state in S1. Both S1 and the set of states that satisfy Φ are represented by BDDs. The
transition relation R, being a subset of the set of 2N bit strings can also be represented by
a BDD. If f1 is the Boolean function associated with S1, and 𝜒Φ is the characteristic
function of the set of states satisfying Φ, we can compute the Boolean function associated
with S2 ⊇ S1, as f2(x) = f1(x) ∨ (𝜒Φ(𝑥) ∧ ∃ 𝑥′. (𝑅(𝑥, 𝑥′) ∧ f1(x)). The key point is that all
these operations can be computed using the BDDs associated with each Boolean
function.

3. Now we iterate step 2, looking for states that both satisfy Φ and have a transition to a
state in S2.

4. Keep iterating until the BDD associated with Sj is the same as the one associated with
Sj+1.

5. Check if the set of initial states is included in Sj. This can be done by computing the
AND of the BDD associated with the set of initial states and the one associated with Sj
and checking the resulting BDD is the same as the one for the initial states.

As we can see, the algorithm looks for a mathematical object (a set) that is extremal in the sense
that is the larger set that satisfies the property. This interpretation gives us the idea that the
problem may be recast as some sort of optimization. This was the idea put forward at the
Vanderbilt meeting. The hope was that such an optimization problem may be suitable for
implementation with DW2.

4.1.7 Issues with casting computation of extremal BDD as optimization problem

In order to cast this computation of an extremal BDD as a combinatorial optimization problem
suitable for implementation with DW2, we need to be able to accomplish two tasks: first, encode
BDDs as binary strings (the space over which DW2 performs optimization), and second,
construct a cost function that whose minimum is associated with the extremal BDD we are
looking for. We will now discuss what we see as major roadblocks for these two requirements.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 25

BBD encoding as binary strings: BDDs are used to encode Boolean functions on N-bit strings.
Since these functions are uniquely associated the subsets of N-bit strings, there are 22𝑁such
functions. However, we can only encode a space of size 2N on DW2. So here is the first major
obstacle to optimizing over BDDs using DW2: we will be able to encode all BDDs only of
systems with log (Nqubits) states, and since the number of qubits is currently 512 and not
expected to grow exponentially, this approach will only work for toy models and will not scale
for even moderately sized problems.

A way around this issue could be to restrict the set of BDDs over which the optimization is
performed. However, there is no clear guidance on how to choose this subset. Furthermore, such
a subset must include the BDD associated with the solution for the computation, but we have no
way of knowing if that will hold. If we proceed anyway, we will not have any assurance that the
BDD obtained has any of the properties required by the solution. The only way to check this will
be to perform an exhaustive testing of such a BDD, but this defeats the purpose of using BDDs
in the first place.

Cost function for BDD optimization: even if we assume that we have enough qubits to encode all
possible BDDs, we still need to construct a suitable cost function whose minimum is associated
with the extremal BDD sought. From the algorithm presented above it is clear that the sequence
of BDD generated represent subsets of the state space with increasing size, so the size may be a
candidate for a cost function. But it is also clear that there are more constraints that the set needs
to satisfy, i.e., the states it contains need to satisfy a certain formula in some temporal logic. The
parameters at our disposal when constructing a cost function for DW2 are the local fields and the
interaction between qubits. This results in a quadratic function, and it is not clear that this form
has the power to encode the required properties of the states. At the very least, this mapping (if
possible) would require a lot of preprocessing before it can be implemented in DW2, and this
will likely erase any gains produced by running the optimization in the quantum computer.

4.1.8 Results of BDD implementation using DW2
As discussed above, implementing an optimization approach to solve the same fix point problem
that is usually addressed with BDDs has several obstacles. It may be the case that these obstacles
can be overcome in some cases (for example, if we have enough knowledge to restrict the set of
BDDs over which the optimization will take place), but at that point in the research we believed
that the cost of focusing on this problem and identifying favorable instances would have been too
high for the expected benefit. Furthermore, it would have negatively affected the research on
other aspects of model checking that seemed more likely to have a payoff. It was then decided
not to pursue this avenue of research as part of the QCHECK project.

4.2 Benchmarking of DW2 on MAX-2-SAT versus MaxWalkSAT
As discussed in previous quarterly reports, a fair comparison of the performance of the chip is
obtained when benchmarked against a probabilistic solver like MaxWalkSAT, instead of an
exact solver like AK-MAXSAT. An exact solver will typically take a longer time to run since it
is not only providing the solution, but also a guarantee of optimality. On the other hand, the D-
Wave processor falls under the class of probabilistic solvers, where running an instance will
result in an answer that corresponds to the optimal solution with probability p<1. Hence, in order

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 26

to get a higher confidence in the result, the solver needs to be run many times, and this must be
included in the computation of the runtime. The figure of merit will be the number of repetitions
needed to find the best answer for an instance with a probability above a certain threshold.

To run this benchmark we generated random instances of MAX-2-SAT that respected the
connectivity of the Chimera graph, so that they could be run directly on the D-Wave processor.
The instances had N variables and M=2N clauses, where N ranged from 20 to 500 (in steps of
20). For each instance we used an exact solver to determine the optimal solution, so we can use it
to compute with what probability the D-Wave processor and MaxWalkSAT find the correct
answer. The plot below shows the results we obtained on this benchmark using a 2.5GHz
desktop processor to implement MaxWalkSAT.

4.2.1 Analysis of the benchmarking results
The results of Figure 7 show the comparison between the performance of DW2 against the
MaxWalkSAT algorithm run on a Mac Pro desktop (2.6 GHz processor). We plotted the
logarithm of the runtime (in microseconds) against the number of variables. What we see from
this experiment is that the DW2 processor has a better performance for problems above N=40
variables. This is an encouraging result, although it should be fair to point out some caveats.

First, the MaxWalkSAT algorithm is designed to tackle general MaxSAT problems and no steps
were taken to optimize it for the Chimera connectivity of the problems in the ensemble we
tested. In some sense, one can see this issue as providing some kind of advantage to the DW2
processor, since the problems are native to its underlying architecture. This is an issue that
should always be kept in sight when interpreting benchmarking results for DW2.

Figure 7. Benchmarking results for MAX-2-SAT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 27

Second, we have only run these instances on a moderately powerful desktop computer. A faster
processor will certainly increase the performance of MaxWalkSAT. This is another issue that
makes comparing the DW2 quantum device with a classical algorithm somewhat difficult. We do
not have any guidance to decide against which classical hardware should the DW2 performance
be measured. One could consider the cost of the systems (i.e., look for a classical computing
system of similar cost), but this will give the classical approach an unfair advantage, given that
classical hardware and algorithms have benefited from decades of research and investment.
Quantum systems like DW2 have been around for only a few years and their development is still
at the very early stages.

Another issue to point out is that for the DW2 system we are only counting the time required to
run the annealing portion of the optimization. The system has a significant time overhead that is
required to program the device and to measure the results at the end. On the other hand, this
overhead is constant (and being improved in newer designs) and will play less of a factor in
future generations of the chip having a larger number of qubits.

4.3 Implementation of a heuristic embedding tool
The heuristic embedding tool was implemented as a Matlab program that communicated with the
DW2 processor through a special function call, gathered its output and computed the gradient of
the relative entropy, updated the Ising model and submitted it again to the DW2 processor. The
full code is submitted as an addendum to this report. We will now discuss the main components
of the code.

4.3.1 Code structure

The main code is the Matlab function SEBREMforQUBO (SEBREM stands for Sequential
Embedding By Relative Entropy Minimization):

o Inputs: 1. Qfull: a matrix encoding the full QUBO problem to solve

2. beta: a parameter that characterizes the temperature of the Gibbs
distribution associated with Qfull (usually taken to be 1).

3. Niterations: the number of iterations of the sequential embedding.

4. EmbeddingFlag: a flag that determines the initial embedding. It could
take three values: EmbeddingFlag =1, applies a greedy embedding that tries
to map the variables to the qubits in a way that preserves the couplers with the
largest absolute value; EmbeddingFlag = 2, applies a modified version of
the greedy embedding, where when various options are presented when choosing
which qubit a variable will be assigned to, it chooses one of them at random (the
previous embedding would choose the first qubit in the list); EmbeddingFlag
= 3, applies a randomized direct embedding, i.e., it randomly assigns variables
to qubits.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 28

5. Step: controls the size of the step when updating the (h,J) parameters in the
Ising model.

6. Display: (0 or 1) turns off and on the display of results after each iteration.

o Outputs: 1. RelativeEntropy: a vector of values of the relative entropy at each

iteration step.
2. BestSolutions: a matrix whose columns are the best solutions found at
each iteration (a solution is a binary string).

3. BestObjective: a vector with the best value of the objective function
found at every iteration.

4. BestSolutionFound: a binary string representing the best solution found
over all iterations.

5. BestObjectiveFound: the value of the objective function corresponding
to the best solution found.

The code starts by fixing the values of certain parameters and initializing matrices that would
store the results generated by the iterative procedure. Then it generates the initial embedding
(depending on the value of EmbeddingFlag) and then starts the iteration that construct the
sequential embedding. Each iteration step has the following structure:

1. Solve the Ising model using the DW2 using the function IsingConnectSolve, which
is called using the parameters (h_chimera,J_chimera) . We multiply the parameters by
0.5 in order to increase the number of samples generated (this is equivalent to raising the
temperature).

2. Extract an empirical distribution from the DW2 output, i.e., the solutions sampled, their
frequency and their associated energy.

3. Compute the objective function associated with the matrix Qfull on all solutions
sampled in the previous step.

4. Extract the solutions that minimize the value of the objective function.
5. Compute the relative entropy.
6. Compute the gradient of the relative entropy.
7. Update the values of the Ising model given by (h_chimera,J_chimera), using the gradient

information. This step also adds another heuristic (implemented inside the function
UpdateIsingModel): it adds to the Ising model another Ising model that has the
Chimera connectivity and the property that the best solution seen so far is its ground
state. The idea is to reward direction in the state of parameters that produced good
solutions. This heuristic is controlled by the parameter MIXFACTOR.

8. Information is displayed (depending on the value of the Display flag) and saved.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 29

9. Go back to step 1 until Niterations are performed.

4.3.2 Discussion of code performance

The main objective of this task was to develop a tool that would allow us to solve problems with
the DW2 processor that would not fit in the underlying architecture given by the Chimera graph.
In that capacity, the code generates a sequence of Ising models that respect the Chimera graph,
with parameters that are adjusted in such a way that the solutions obtained are better solutions of
the original non-Chimera problem. The whole method can be seen as an optimization in the
space of parameters (h,J), which is a continuous, bounded subset of Rn (the space of n-tuples of
real numbers). The boundaries are given by the limited range that the parameters can take when
programming the device: the local fields lie within -2 and 2, while the couplers take values
between -1 and 1. The function that we are trying to optimize in this space is the relative entropy,
and although we have an analytical expression for it, the function is not convex and we have no
guarantees about finding the absolute minimum.

It is then hard to quantify the performance of the code in general, and we are then limited to
study its behavior in examples of interest. The basic characteristic that we would want the code
to have, is that it would improve the solutions provided by the initial embedding. The initial
embedding is in some sense the best we can do to solve, in one shot, a problem that does not fit
the processor’s connectivity. Different strategies for this embedding will result in different
quality of solutions. We considered three types of initial embeddings: two that tried to capture
some of the structure of the problem (greedy embeddings), and one that essentially mapped the
problem into the processor in a random way. An interesting feature we found is that, even though
the greedy strategies provided better initial solutions than the randomized embedding, by
implementing the sequential embedding we were always able to generate better solutions after a
few iterations, irrespective of the initial embedding we chose. Given that the greedy embeddings
required some non trivial preprocessing (i.e., finding such embedding) that required extra
computational resources, we realized that a randomized embedding would provide good
solutions without the upfront computational cost.

The time performance of the sequential embedding depends on the size of the problem being
considered, mainly because the computation of the gradient can be expensive if care is not taken
to code it efficiently. We implemented the computation in Matlab, and we took care of
vectorizing the calculations as much as possible in order to avoid any loops (that are notoriously
slow in Matlab). For problems of around 500 variables, the gradient computation step would take
only a few seconds. We found that in most problems, only a few tens of iterations were enough
to reach a point where the solutions would no longer improve (we suspect we were either
reaching a local minima of the relative entropy, or that the approximations we made were no
longer valid). So in summary, for a 500 variable problem, a run time of a few minutes will be the
most we needed to run in order to find the best solutions this method would provide. Applying
this method to future generations of the processor, that would support more than a thousand
variables, would certainly benefit from speeding up the gradient computation by using faster
languages.

The algorithm has several parameters that can be used to try to improve convergence and
behavior. In this project we did not have the time required to analyze them in more detail and try

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 30

to find their optimal values. The values we used were born out of trial and error, where the
driving feature was that the code generated improving solutions in a reasonable amount of time.

In summary, the tool we developed succeeded in allowing us to produce good solutions for
optimization problems that did not fit into the processor’s connectivity. These solutions were
better than the ones obtained using single-shot approximate embeddings. We can always take
any approximate embedding as the initial embedding, and we believe that the algorithm
implemented here will always improve the solutions initially obtained.

4.4 Integration of DW2 into CEGAR loop
As discussed in previous sections, the central goal of this project was to integrate the capabilities
of the DW2 processor into the CEGAR framework of model checking. We identified two key
steps in the CEGAR loop where combinatorial optimization problems needed to be solved in
order to proceed:

i. Solving a SAT problem to verify the validity of an abstract counterexample
ii. Solving an ILP problem to find the smallest increase of the abstraction in order to get rid

of a spurious abstract counterexample

The first of the two tasks, at least in the form we were able to cast it, turned out not to be a good
fit for the capabilities of the DW2 processor. The second task provided much more promising
results.

4.4.1 Verifying the validity of abstract counterexamples
Given an abstract counterexample, checking its validity consists in verifying if the corresponding
trace in the original system also provides a counter example to the property we are trying to
prove. This problem can be formally reduced to checking the satisfiability of a Boolean formula
that encodes the existence (or non existence) of the required trace in the original system. In order
to study this task, we generated abstract problems in New Symbolic Model Checker for System
Verification (NuSMV), we checked the abstract models, and reformulated the counterexample
checking problem in Linear Temporal Logic (LTL). We wrote a program that read abstract
counter-examples, and generated from them LTL formulas that would be satisfiable if and only if
the abstract counterexamples were valid, i.e., they were associated with actual counterexamples
in the original system. Then we exported the resulting SAT problem using a canonical format,
converted them into QUBO problems and tested on DW2.

Our first experiments were with the problem of testing abstract counter-examples for soundness.
We then translated these LTL formulas, and the system models, into satisfiability problems,
using a standard format known as DIMACS. These SAT problems were then be reformulated
and submitted to the DW2 to be solved.

We worked with the NuSMV system developed by Fondazione Bruno Kessler (FBK), CMU, and
the Universities of Trento and Genova (http://nusmv.fbk.eu). NuSMV is the next generation,
open source version of the original Symbolic Model Checker for System Verification (SMV)
model-checking tool. SMV was the first BDD-based model-checker, developed by McMillan at
CMU. NuSMV extends the original SMV, and offers both BDD-based model-checking and
SAT-based bounded model-checking. NuSMV provided the model-checking of the abstract

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 31

http://nusmv.fbk.eu/

models, and translated our LTL claims into SAT problems (NuSMV provides SAT problem
translation to support external SAT tools for BMC).

For our experiments with soundness checking, we manually abstracted various models from the
NuSMV distribution. These models included some properties to check, and we added other
properties of our own. We added some of our own properties since most of the properties in the
distribution were properties that the models satisfied, so we needed to have additional cases
covering unsafe models.

To generate the abstract counter-examples, we used NuSMV’s BDD-based model-checking on
the manually abstracted models. NuSMV can be configured to write counter-examples in an
Extended Markup Language (XML) form that is very easy to parse. We are grateful to FBK
personnel for helping us understand the XML format, and for responding to our issues with the
format.

Reformulation: The key to our checking process is reformulating the validity checking problem
as an LTL claim, since this enables automatic generation of the SAT problem. The abstract
counter-example is a sequence of abstract states, asi, each of which is an assignment of values to
propositional variables. Since these are abstract states, the assignments are to only a subset of
the propositional variables of the full model. Again, since this is an abstraction, a single abstract
transition may correspond to multiple concrete transitions. So for an abstract counter-example
as0,as1…asn to be valid, there must be a valid sequence of concrete states s0…si…sm such that as0
⊆ s0, as1 ⊆ si,… asn ⊆ sm. Note that the subset relation is equivalent to saying that the concrete
state entails the abstract state. We may formulate this in LTL as follows:

as0 X(as1 X(as2 … X asn))) (Property 1) (24)

That is, we begin in a state satisfying as0, eventually we reach a state satisfying as1, then
eventually we reach a state satisfying as2, and so on, until we reach a state satisfying asn, all in
the context of the full, original, concrete model.

The above query cannot be used as written to check validity, however. As an LTL property, it is
effectively claiming that in all runs of the model, we start in a state satisfying as0, reach a state
satisfying as1, etc. To use this formulation, we must invert it, and charge the solver to prove to
us that it is impossible to satisfy Property 1. If the negation of Property 1 is valid, then the
abstract counter-example is invalid:

¬as0 X(as1 X(as2 … X asn))) (Property 2) (25)

Implementation: To support these experiments, we wrote a program that parsed the XML
formatted counterexamples, and generated from them LTL claims in the form of Property 2,
expressed in NuSMV’s input language. These LTL claims, together with the original (concrete)
system model, were then submitted to NuSMV, and bounded model checking SAT models in
DIMACS notation were extracted. These DIMACS problems were then translated into problems
for the D-Wave system.

Unfortunately, experience has shown that the D-Wave quantum adiabatic optimization process is
not a good choice for this kind of decision problem. The D-wave is well suited to approximate
optimization problems, where best effort is what matters. But in the case of decision problems, a
best effort that misses is not a useful approximation; it is simply wrong. The CEGAR algorithm
shows that approximate solutions that can be wrong are sometimes acceptable, if the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 32

approximations are safe (conservative), and if there is a means to refine the computation. So it is
possible that a revision of our approach here, where the D-Wave would only give erroneous
results that mistakenly concluded that the counter-example was valid, and never give a false
invalid result, would be useful. Such a technique would never cause us to mistakenly certify a
system as safe when it wasn’t, and would never send us on a wild-goose chase to refine an
already sound counter-example.

4.4.2 Refining the model
The second part of the QCHECK project involved using the D-wave to solve the optimization
problems arising in the refinement part of the CEGAR algorithm. Recall that this involves
finding an optimal refinement of the model. In the specific version of CEGAR that we used, this
was, specifically, finding a minimal set of propositional variables, previously abstracted away, to
add to the abstract model. This is formulated as an ILP, choosing a set of variables that are
sufficient to create a new abstraction in which the dead end states and the bad states of an invalid
counter-example, are guaranteed to be in different abstract states.

Our work in this area was more successful than our work on checking abstract counter-examples.
This was primarily due to the fact that the abstraction-refinement is a better fit to the D-wave’s
capabilities. In particular, this problem is an optimization problem, rather than a decision
problem, and if the solution is less than perfectly optimal, it simply costs us more work in the
model-checking phases of the CEGAR process: a suboptimal answer can never lead to an
unsound conclusion.

Our original plan was to find an off-the-shelf model-checker with an implementation of the
CEGAR algorithm, from which we could extract ILPs or, as a second choice, a model checker in
which we could perform steps of the algorithm and from which we could extract partial results.
Unfortunately, our attempts to find such a tool were not successful. We contacted the authors of
the original CEGAR paper, and while they offered a number of very helpful suggestions, the
code for the original implementation had been lost. We consulted FBK about NuSMV, and
although its successor, NuXmv, will contain an implementation of the CEGAR algorithm, it was
not in a condition for release to us.1 We also investigated whether it would be possible to work
the CEGAR algorithm “around” a tool, in the way we were able to do our counter-example
checking “around” the NuSMV tool. We concluded that this would not be possible, since the
data structures needed to identify the dead end and bad states were not visible to the user of
NuSMV. We also investigated whether it would be possible to implement the CEGAR
algorithm by scripting NuSMV. This technique seemed very promising: the NuSMV code is
well structured, and we were able to construct NuSMV data structures and exercise some of its
functions through a foreign function interface from the Common Lisp programming language.
Unfortunately, we concluded that for this small program, we didn’t have the resources to dig
deeply into the NuSMV sources. Scripting NuSMV would be a promising direction to take given
a larger-scale program.

1 It has since been released, but so far only in closed-source form, so would not be suitable for
our purposes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 33

After we had to abandon the plan of using an off-the-shelf tool, our next step was to manually go
through the steps of the CEGAR algorithm, using two BDD “desk calculators,” to check the
abstractions, and to identify dead ends and bad states. In particular, we used both the iben2 and
bddc3 tools. We learned a number of valuable lessons about the structure of models that would
give rise to valid and invalid abstract counter-examples, and designed some small problems.
After developing a small number of small problems, we were unable to make larger problems:
the need to work directly with propositional logic was too burdensome and inefficient.

At this point we were nearing the end of the program, and realized that we needed our own
implementation of the CEGAR algorithm, so that we could run examples more easily. We were
fortunate to find that the CU Decision Diagram (CUDD) open source Ordered Reduced Binary
Decision Diagram (OBDD) library,4 developed by Fabio Somenzi at Colorado University, offers
a Perl application programming interface (API). Using this API we could rapidly build our own
implementation around the BDD operations, developing interactively.

The CUDD library provided one of the pieces of the solution: it remained to make or choose an
input language. We considered the SMV language, but concluded that writing a parser would
require too much effort. We had consulted Ofer Strichman, one of the authors of the original
CEGAR paper, and he suggested that we use the AIGER – And Inverter Graph – notation.5 The
AIGER format offered a number of advantages: (1) it is very easy to parse; (2) it is used for
hardware model-checking competitions, so there are a large number of preexisting models
available; (3) it maps nicely to the abstraction framework of CEGAR. With respect to point (3),
in addition to AND gates and Inverters, AIGER models contain latches. A CEGAR-compatible
abstraction technique is to abstract away latches by treating them as if they are inputs. Finally,
point (4), there are existing BMC tools for AIGER models that we could (and did) use to check
our results when building and debugging our CEGAR implementation.

In practice, the AIGER notation did not provide a perfect input solution: although it is higher
level than the propositional logic that we used when working with the BDD calculators, it was
still too low level. In particular, AIGER offered no way to capture higher level building blocks
such as, for example OR-gates, XOR-gates, half-adders, etc. In order to build models that would
offer interesting ILPs, we needed to be able to reuse model components. To support such reuse,
we added a simple macro-language, laig (for Lisp-flavored AIG), and wrote a simple macro-
expansion facility. We discuss this in more detail below.

Three other issues remained. First, although the laig notation made it possible to reuse model
components, allowing us to make bigger and more interesting circuits, it did nothing to help
formulate the properties we needed to check. In our successful test cases, we were checking
properties of the form “in a valid trace it is impossible to reach a state satisfying P.” The proviso
“in a valid trace” was necessary in order to capture bounding assumptions such as “there are no

2 http://sourceforge.net/projects/iben/
3 http://www-verimag.imag.fr/PEOPLE/Pascal.Raymond/tools/bddc-manual/bddc-manual-
pages.html
4 http://vlsi.colorado.edu/~fabio/CUDD/
5 http://fmv.jku.at/aiger/

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 34

more than two sensor failures” in our example avionics model. In practice, assumptions like
“valid trace” unpacked into temporal properties which were difficult to formulate in AIGER and
which laig notation did not support as well as possible. To capture temporal properties in
AIGER notation involved adding latches that captured property components so that temporal
assertions could be evaluated. While laig allowed us to capture repeated components of such
translations, an automatic translation of temporal properties would have been helpful. Another
problem was that the existing AIGER models were not very well documented, so they didn’t
provide all the CEGAR examples we had wanted. Nevertheless, the availability of examples,
with gold standard computation results (from the BMC checker), was immensely useful in
development and debugging. Finally, the abstraction relationship of treating latches as inputs
turned out to be more subtle than we had originally anticipated: different treatments of
abstraction in model-checking used subtly different definitions, so that getting consistent results
required substantial debugging and rework.

4.4.3 CEGAR Implementation
To summarize the implementation, it contained the following components:

Input:

• The Lisp-style AIGER language (laig) and translator. Input models are formulated
as laig files, and translated into

• Single-output AIGER models. Single-output models are used to capture reachability
checks in AIGER models. A model formulated in this way is safe if it can never
output 1.

• A single-output AIGER model is read by our AIGER parser, and translated into
internal data structures.

CEGAR Process:

• An initial abstraction is computed, which hides all of the latches that are not direct
components of the single AIGER output.

• LOOP
o Our solver checks reachability of the unsafe state in the abstract model. This is

done using a search, implemented as a Perl loop (based upon code from Ed
Clarke’s model-checking text), whose primitive computations are done using the
CUDD BDD library.

o If the unsafe state is not reachable, we return “safe” and exit.

o If the unsafe state is reachable, we compute an abstract counterexample.

o We check the abstract counterexample for validity. This is done according to the
CEGAR algorithm, using a loop over the images computed in the reachability
search.

o If the abstract counterexample is valid, we return “unsafe” and exit.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 35

o If the abstract counterexample is invalid, we identify the dead end and bad states.
We compute an ILP, each of whose rows captures the difference between one
dead state, d, and one bad state, b. The columns of the ILP are latches that are
hidden, and each row assigns 1 to propositional variables whose values differ in b
and d, and zero to all other entries.

o The CEGAR algorithm publishes the ILP to the D-wave solver, and reads a
solution to the ILP. The solution to the ILP specifies a set of latches that should
no longer be hidden.

o We compute a new abstract model, by “unhiding” the set of latches indicated by
the D-Wave solver and go to LOOP.

We were pleased to find that it was very easy to interface the CEGAR loop with the existing D-
Wave solver. The output format was very easy to print and to parse, as was the format of the
answers (a list of latch indices). This holds promise for further work on the CEGAR algorithm,
and for other applications in which an outer loop is to be wrapped around the D-Wave solver.

4.4.4 ILP Problems

Particular structures in model-checking problems pose interesting challenges for abstraction
refinement. Or, put differently, many spurious counter-examples can easily be eliminated by
adding one or two new latches. More challenging problems arise in the presence of two features.
First, there must be multiple different concrete paths that correspond to a single spurious abstract
counterexample. This arises when there are functions in the counterexample that involve a wide
variety of variables in a non-trivial Boolean function. The second condition is that these Boolean
functions must not include intermediate values that are computed and latched. If there is such
structure, then the CEGAR algorithm will simply identify whether or not the set of values so
latched are consistent and either confirm the abstract counter-example or reject it, without need
for complex reasoning (this is the strength of the CEGAR algorithm). We conjecture that the
challenging cases for CEGAR refinement are characteristic of models of complex circuits. They
may be less likely to arise in models of software, where storage of intermediate results is more
common. As the D-Wave system gets more powerful, and capable of handling larger and larger
models, we believe that we will see more non-trivial ILPs in CEGAR refinement.

4.5 Implementation of CEGAR based model checking example
We describe here an example run of the CEGAR algorithm with the D-Wave solver providing
answers to the ILPs. 6 The test model 7 was inspired by an avionics example problem (the

6 The CEGAR program can be run without the D-Wave in the loop, simply picking a single
implicated variable to “unhide” at each iteration. Of course, this can perform arbitrarily badly; it
is only of use on small test runs, to debug other parts of the CEGAR loop.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 36

Rockwell Flight Control System (FCS) 5000 problem [17]), but does not correspond to any real
hardware or software. The property checked is a mutual exclusion property: there are two
control modes, “left” and “right,” and the invariant is that the system should never have both
control modes active simultaneously.

4.5.1 Verification summary
Initially, the model is almost completely abstract. Recall that the property to be checked is of the
form “in a valid trace, the left and right control modes cannot both be engaged.” The only latch
involved in this claim is the “trace valid latch.” This allows for a trivial counterexample, since
“left control mode on” and “right control mode on,” are essentially treated as inputs. This is an
invalid counterexample, for reasons having to do with system function -- there is substantial
logic behind whether or not the control modes are engaged – and the logic of the property --
there is substantial logic in the memory of tracking whether a given trace is valid or not. The
first several refinements do not require any optimization: they are obvious refinements that
gradually add logic for the full temporal chain needed to decide trace validity.

The first interesting ILP arises when the model has been elaborated around the temporal logic of
deciding trace validity. There is now a spurious counterexample to the effect of “turn the right
controller on, turn the left controller on, wait for three cycles, then turn the valid latch on.” The
model actually enforces that the control modes can only be engaged if sensors detect the right
condition and enough of the redundant sensors vote to enable it. This meets the criterion above
for an interesting ILP: there are many combinations of the sensor latches that could lead to a
successful vote to engage the sensor modes, and the ILP solver must choose a minimal covering
set.

The second, and last, interesting ILPs arise from a spurious counterexample in which the sensor
inputs are arranged in such a way that both the left and right control modes can be
simultaneously engaged. This is a spurious counterexample because of the trace validity
checking: it turns out that such a constellation of sensor inputs cannot happen in valid traces.
Note, however, that we don’t simply eliminate all inconsistent sensor value combinations: we
simply stipulate a limit on the number of sensors that can simultaneously give the wrong
detections. The trace validity constraints capture the notion that, e.g., the aircraft cannot be
taking off and landing at the same time. In solving the final interesting ILP, the solver identifies
a set of variables that is sufficient to capture enough of the validity-checking logic to eliminate
these inconsistent sensor combinations.

This summary has skipped over the refinement steps that do not require the intervention of the
ILP solver. There are many such steps, where identifying a set of latches to add to the model is
trivial. This arises when, e.g., the same latch appears in all rows of the ILP. In those cases, the
CEGAR loop does not invoke the D-Wave. We give the full transcript below.

4.5.2 Detailed transcript
Initially, the model is almost completely abstract. The only un-hidden variable is the one
corresponding to “the trace is valid” (literal 52). Unsurprisingly, this leads to a trivial

7 We give the laig source as an appendix.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 37

counterexample: we just turn on the right and left controllers (since they are unconstrained in this
abstract model).

This abstraction is too simple, for two different reasons: The first is the interesting reason, which
is that the counterexample must take into account the surrounding environment, as redundantly
sensed. The less interesting reason is that there is a chain of latches for the on/off state of the left
and right controllers; this is necessary to synchronize the state of the system with the state of the
part of the circuit that tracks validity of the trace. A trace that’s invalid (e.g., we are both at and
not at an airport, simultaneously) must be weeded out.

To be precise, we are verifying that we never enter the bad state of “left3 is on,” “right3 is on,”
and “the trace is valid.”

The first several steps of the CEGAR refinement process introduce, one by one, the latches in the
three-step delay chains from “right1” to “right3” and “left1” to “left3.”

Made new Aiger model with 9 inputs, 40 latches, 1 outputs, and 42
and gates.
Reading 40 latches.
Reading 1 outputs.
Reading 42 and gates.
Done reading file and building model.
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80
82 84 86 88 90 92 94
Making transition relation
Done making transition relation
Preparing for model-checking.
Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Goal reached
Goal Reached in 2 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111100
 Output: 0
2
 Inputs: 111111111
 Latches: 11

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 38

 Output: 1
Abstract counterexample:
 000
 100
 111
Abstract counterexample is invalid at step 2.
ILP is:
92 94
Splitting on literal 92

The first refinement is to add one of the two latches (literals 92 & 94), representing the state of
the left and right controllers. In this case, the algorithm adds the literal 92 (“left3”). This does not
require the intervention of the D-Wave solver; the ILP is trivial (the format “92 94” represents a
linear constraint in which the sum of literals 92 and 94 must be greater or equal than 1).

Checking for goal
Goal reached
Goal Reached in 3 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111110100
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111101
 Output: 0
3
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 0000
 1000
 1101
 1111
Abstract counterexample is invalid at step 2.
ILP is:
88 94
Splitting on literal 88

The next counterexample is almost as trivial. The solver realizes that the left channel cannot
simply be turned on instantaneously, but still generates a very quick path to failure (only three
steps long), taking into account a delay in turning the left channel on. Note that this delay comes

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 39

partly because there is a delay from the logic of checking the switch and the state-sensing logic,
but also because the model has a three-step delay to compute the validity of the trace.

This counterexample is shown to be spurious: the abstract model now takes into account the
delay in turning on the left controller, but not yet the right controller. The culprit for this three-
step counterexample is that there must be a progression (at least) through latches “right2” (88)
and “right3” (94). The solver has another trivial refinement problem, to choose between 88 and
94, which it does by choosing in numerical order (again, no need for the ILP solver; there is only
one row to the ILP).

Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Goal reached
Goal Reached in 4 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111010100
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111110101
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111101
 Output: 0
4
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 00000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 40

 10000
 11001
 11101
 11111
Abstract counterexample is invalid at step 2.
ILP is:
82 94
Splitting on literal 82
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80
84 86 90 94
Making transition relation
Done making transition relation
Preparing for model-checking.
Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Goal reached
Goal Reached in 5 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111111111011010100
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111010101
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111110101
 Output: 0

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 41

4
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111101
 Output: 0
5
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 000000
 100000
 110001
 111001
 111101
 111111
Abstract counterexample is invalid at step 2.
ILP is:
94
Splitting on literal 94
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80
84 86 90
Making transition relation
Done making transition relation
Preparing for model-checking.
Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Goal reached
Goal Reached in 5 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 42

 Inputs: 111111111
 Latches: 1111111111111111110111111111111011010000
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111010100
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111110101
 Output: 0
4
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111101
 Output: 0
5
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 0000000
 1000000
 1100100
 1110101
 1111101
 1111111
Abstract counterexample is invalid at step 2.
ILP is:
90
Splitting on literal 90
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32
34 36 38 40 42 44 46 48 50 54 56 58 60 62 64 66 68 70 72 74 76 78 80
84 86
Making transition relation
Done making transition relation
Preparing for model-checking.
Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 43

Computing successors
Checking for new state
Checking for goal
Goal reached
Goal Reached in 5 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111111111011000000
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111010000
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111110100
 Output: 0
4
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111101
 Output: 0
5
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 00000000
 10000000
 11010000
 11110100
 11111101
 11111111
Abstract counterexample is invalid at step 3.
ILP is:
84
Splitting on literal 84

This refinement process continues, the counterexample still being trivial, and the refinement
introducing more of the latches in the three-latch left and right chains.

Quick summary: these refinements eliminate the “just turn the right on and the left on” abstract
counterexample. It takes multiple refinement steps to introduce all of the latches in the “right1”
… “right3” and “left1”…”left3” delay chains.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 44

Goal Reached in 5 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111111111011000000
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111010000
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111110100
 Output: 0
4
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111101
 Output: 0
5
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 000000000
 101000000
 111010000
 111110100
 111111101
 111111111
Abstract counterexample is invalid at step 2.
ILP is:
70 72 74
70 72 76
70 74 76
72 74 76
70 72 78
70 74 78
72 74 78
70 76 78
72 76 78
74 76 78
No common element in ILP. Enter literals to split on.
Calling print_ilp
--
Minimized ILP:
70 72 74

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 45

70 72 76
70 74 76
72 74 76
70 72 78
70 74 78
72 74 78
70 76 78
72 76 78
74 76 78
--

Returned from print_ilp
70 72 74

At this point, we have an abstract counterexample that effectively says “turn the right controller
on, turn the left controller on, wait for three cycles, then turn the valid latch on.”8 Now we get
our first interesting ILP, as the solver generates a spurious counterexample, the sensing logic
enabling the left controller to turn on is still abstract. In fact, the controller can only be turned on
if the sensors detect the right condition and enough of the redundant sensors vote to enable it.
There are a large number of combinations of possible sensor result latches that could lead to this
voting outcome, and the D-Wave ILP solver chooses a minimal covering set (literals 70, 72, 74).

Goal reached
Goal Reached in 6 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111110111111000111011000000
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111110111111111111101010000
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111100100
 Output: 0
4
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111001

8 Since the logic behind computing validity is still abstract, the system considers that it could just
turn the valid latch on.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 46

Output: 0
5

Inputs: 111111111
Latches: 1111111111111111110111111111111111111110
Output: 0

6
Inputs: 111111111
Latches: 11
Output: 1

Abstract counterexample:
000000000000
100001000000
111110010000
111111100100
111111111001
111111111110
111111111111

Abstract counterexample is invalid at step 4.
ILP is:
36 38 40 56
40 56
36 38 56
56
Splitting on literal 56
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32
34 36 38 40 42 44 46 48 50 54 58 60 62 64 66 68 76 78 80 86
Making transition relation
Done making transition relation
Preparing for model-checking.
Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Goal reached

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
47

Goal Reached in 6 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111111100111111000111011000000
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111111100111111111111101010000
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111111100111111111111111100100
 Output: 0
4
 Inputs: 111111111
 Latches: 1111111111111111100111111111111111111001
 Output: 0
5
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111110
 Output: 0
6
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 0000000000000
 1000001000000
 1011110010000
 1011111100100
 1011111111001
 1011111111110
 1111111111111
Abstract counterexample is invalid at step 3.
ILP is:
36 38 40 54
40 54
36 38 54
54
Splitting on literal 54

The next counterexample has the left sensing on, and a concurrent enabling of the right channel.
The model-checker detects that this abstract counterexample is incorrect, because of the trace
validity constraints that capture the mutual exclusion between the right and left controller

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 48

enabling conditions. In order to check this correctly, the model must be refined to take into
account a combination of different bits of validity logic, including the one-shot logic that
maintains the validity of the trace,9 and the left integrity constraints. The next two steps in this
refinement are trivial: we add the one-shot validity logic to the model.

This step adds the second latch required for the one-shot validity logic.

Goal Reached in 6 steps
Counterexample:
0
 Inputs: 111111111
 Latches: 00
 Output: 0
1
 Inputs: 111111111
 Latches: 1111111111111100100111111000111011000000
 Output: 0
2
 Inputs: 111111111
 Latches: 1111111111111100100111111111111101010000
 Output: 0
3
 Inputs: 111111111
 Latches: 1111111111111100100111111111111111100100
 Output: 0
4
 Inputs: 111111111
 Latches: 1111111111111111100111111111111111111001
 Output: 0
5
 Inputs: 111111111
 Latches: 1111111111111111110111111111111111111110
 Output: 0
6
 Inputs: 111111111
 Latches: 11
 Output: 1
Abstract counterexample:
 00000000000000
 10000001000000
 10011110010000
 10011111100100
 10011111111001
 11011111111110
 11111111111111
Abstract counterexample is invalid at step 2.
ILP is:

9 If an invalid state is detected in the trace, then it is always invalid.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 49

36 38 40 48
36 38 42 48
36 38 48
40 44 48
40 48
42 44 48
44 48
42 48
48
36 38 40 50
36 38 40
36 38 42 50
36 38 50
36 38 42
40 44 50
40 50
40 44
42 44 50
44 50
42 50
50
42 44
No common element in ILP. Enter literals to split on.
Calling print_ilp
--
Minimized ILP:
48
36 38 40
36 38 42
40 44
50
42 44
--

Returned from print_ilp
36 38 44 48 50

At this point, the model has been refined to include enough variables to recognize that the
validity flag starts on, and if turned off cannot be restored. This eliminates spurious
counterexamples where the adversary takes the system through invalid transitions to turn on the
right and left controllers simultaneously, and then flips the valid flag on from off. The new
abstract counterexamples involve assignments to the sensor inputs that would allow the aircraft
to enable both right and left controllers simultaneously. There are no valid assignments that do
so, and the model checker detects that the counterexamples are spurious. The final ILP requires
the solver to identify a covering set of variables that is sufficient to capture enough of the
validity-checking logic to eliminate all of these abstract counterexamples. It chooses enough of
the variables to enforce a valid assignment of sensor variables to the left side logic, and enough
to enforce the consistency relations between the left and right sides.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
50

Goal reached
Goal Reached in 6 steps
Counterexample:
0

Inputs: 110111111
Latches: 00
Output: 0

1
Inputs: 110111111
Latches: 1111111100100001100111111000111011000000
Output: 0

2
Inputs: 110111111
Latches: 1111111100100001100111111001111101010000
Output: 0

3
Inputs: 111111101
Latches: 1111111100100001100111111001111111100100
Output: 0

4
Inputs: 111111101
Latches: 1111111111111110100111111001111111111001
Output: 0

5
Inputs: 111111101
Latches: 1111111111111110110111111111111111111110
Output: 0

6
Inputs: 111111111
Latches: 1111111111111110111111111111111111111111
Output: 1

Abstract counterexample:
0000000000000000000
0000110000001000000
0000110000110010000
0000110000111100100
1111010000111111001
1111011011111111110
1111011111111111111

Abstract counterexample is invalid at step 2.
ILP is:
40
42
No common element in ILP. Enter literals to split on.
Calling print_ilp
--
Minimized ILP:
40
42
--

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
51

Returned from print_ilp
40 42
Will split on:
40 42
OK? y
Splitting on 40 42
Checking abstract model, hidden literals are: 20 22 24 26 28 30 32
34 46 58 60 62 64 66 68 76 78 80 86
Making transition relation
Done making transition relation
Preparing for model-checking.
Starting fixed point computation.
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Checking for goal
Computing successors
Checking for new state
Reached fixpoint after 7 steps
Goal not reached
No abstract path to goal state: circuit is safe.

This is almost enough to eliminate all of the spurious counterexamples. The final refinement
requires the addition of two more variables (40 and 42), which round out some of the input
consistency constraints, and then the solver establishes that the failure state is unreachable, and
the process concludes.

4.6 Evidence for quantum behavior in the DW2 processor
Even though it was not an explicit part of the QCHECK proposed research, we would like to
present very important results regarding the quantum nature of the D-Wave processor that were
obtained through research conducted in parallel to the main QCHECK work.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 52

The D-Wave processor was designed to exploit quantum mechanical effects in solving
combinatorial optimization problems. However, in order to make the design scalable, certain
compromises in the hardware had to be made. The main result of these was that only a restricted
set of measurements were allowed to investigate the state of the processor, and hence we lack an
important set of tools to determine if the state of the system indeed behaves quantum
mechanically. We worked on developing two approaches to address this issue: in one, we
designed a very simple problem whose output statistics were different for a simple classical
model and a quantum model; in the other, using partial state information about the state of the
processor during the annealing we proved, using a novel analytical technique developed for this
purpose, that the state of the system has entanglement at some points during the annealing. We
give a brief description of both approaches.

4.6.1 Quantum signature
We constructed a simple toy problem involving 8 qubits that had the following characteristics: (i)
the ground state was 17th-fold degenerate; (ii) the ground states were divided in two sets, a
cluster whose 16 states could be transformed to another ground state by flipping a single qubit,
and another single state that required flipping 4 qubits in order to obtain another ground state;
(iii) the energy landscape of the problem had no local minima. We studied the evolution of the
populations of the 17 ground states according to a simulated annealing evolution (which is a
simple classical model of a thermalizing system) and found that the isolated state initially had a
higher population than the states in the cluster. On the other hand, a quantum mechanical model
of the system predicted that the isolated state would have a suppressed population with respect to
the cluster states. We then performed the experiment on the Rainier processor (a 128-qubit
processor, that preceded DW2), and found that the experimental statistics agreed with the
quantum model and disagreed with the classical model. These results were published in Nature
Communications [18] (see appendix A).

4.6.2 Evidence of entanglement
The second approach was a collaboration with D-Wave to analyze the entanglement of a set of 8
qubits in the DW2 processor (Vesuvius chip). DW2 has extra controls that allow for certain
measurements that were not available for the Rainier processor (DW1). Using these extra
controls, an experiment was designed in which one qubit was used as a probe to measure some
elements of the state of a set of eight interacting qubits. The extra controls allowed for
independent annealing of the probe and the system under study. With this setup, researchers from
D-Wave measured the populations of the ground state and the first excited state of the 8-qubit
system at different points during the annealing. These two quantities are just 2 of the 65535 real
parameters needed to completely determine the quantum state of the system. We at Information
Sciences Institute (ISI) developed a new technique to analyze this information that allowed us to
conclude that no matter what the values of the unknown parameters were, any state that was
compatible with the measured values for the two populations had to be entangled. This was the
first experimental proof of the presence of entanglement in the D-Wave processor, and it
provides definite evidence of the quantum mechanical nature of the device. This work was
accepted for publication in Physical Review X, but has not been published at the time this report
is being written. A preprint [19] is attached in appendix A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
53

5 CONCLUSIONS
The goal of the QCHECK project was to study the feasibility of integrating the capabilities of the
D-Wave adiabatic quantum annealer into a model checking framework for the certification of
complex systems. The results of this project show that this is indeed possible. By identifying a
particular approach to model checking that required solving combinatorial optimization
problems, we were able to off load these hard computational tasks to the DW2 processor,
construct a hybrid algorithm that applied classical model checking techniques, and call upon the
DW2 processor whenever needed. The CEGAR approach to model checking was a very good fit
to exploit the strengths of the DW2 device. In fact, the main difficulty encountered in this part of
the project, was the lack of a model checking package that was open enough to allow us to
extract the required combinatorial optimization problems that needed to be solved by DW2.
These packages typically use their own solvers, and do not provide the user with the low level
access to extract them. But looking into the future, this project shows that the DW2 processor
can be trivially integrated into the CEGAR approach, if the necessary access is provided.
Furthermore, any advances in the model checking side and DW2 side will not alter the basics of
this integration, so improvements and new developments in both components will only improve
the integrated approach.

One of the main reasons for our interest in combining the DW2 device with a model checking
approach is the possibility that computational speedups may be provided by the adiabatic
quantum optimization approach. The question of quantum speedups is not easy to answer at this
point in time. In particular, the size of the devices currently available may not be large enough to
fully break beyond the capabilities of classical computers. Furthermore, it is very difficult to
prove that a quantum device is better than all possible classical devices at solving a particular
class of problems. We are then left with comparing the quantum device against a set of classical
algorithms on a particular ensemble of problems, and it is not clear if this performance will carry
to more general problems, or if another more efficient classical algorithm will be developed. In
this project we compared the performance of DW2 against a heuristic classical solver that has
performed well in several algorithmic competitions. Even though DW2 performed well against
it, it is not clear what conclusions we can draw at this point, since the classical solver was
designed for general problems and not optimized to the architecture of DW2. The question of
speedup has been (and still is) extensively studied by many groups around the world, and the
results are still inconclusive [20]. On the other hand, the results are also promising in the sense
that the performance of DW2 is on par with very optimized algorithms running on very fast
hardware [20].

In this project we developed some of the tools that would be necessary for any practical
application involving DW2. One of the main obstacles in using the processor is the limited
connectivity of the underlying architecture that severely limits the type of problems that can be
embedded exactly. It is thus unavoidable that users will have to rely on approximate or heuristic
embedding techniques to solve a broader set of problems. This has its own set of drawbacks as
the solutions we found are only approximate, and it is not clear a priori how good those
approximations are. The sequential embedding technique developed in this project shows one
possible way forward and the results are encouraging for optimization problems, but not so much
for decision problems. The issue is that decision problems are implemented in DW2 by first
encoding them as optimization problems: the answer to the decision problem is YES if the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
54

minimum of a certain discrete function is equal to a certain value (usually zero), and NO
otherwise. The problem with this type of formulation is that the DW2 processor does not provide
a guarantee that the ground state has been found. So, if the best configuration provided by the
quantum processor gives us the known minimum of the function, we know the answer to the
decision problems is YES, but if it is not equal to that minimum, we cannot say that the answer is
NO, because there is no guarantee that the answer found is the best possible one. We faced this
issue when attempting to use DW2 to check the validity of abstract counterexamples (i.e.,
checking is there was a corresponding counterexample in the original system). This required
solving a SAT decision problem, and the fact that we could not guarantee that the best solution
was found would lead us to a wrong assertion about our problem (i.e., that a real counter
example existed when that was not true).

Another important feature that was shown in parallel with the work performed for QCHECK was
the quantum mechanical behavior of the D-Wave processor. We developed two approaches, one
that gave evidence of a quantum signature (but fell short of being a proof), and another one that
provided experimental evidence of the existence of entangled state during the annealing process.
This last one constitutes a definite proof of the quantum mechanical nature of the device and it is
a very important step forward in the field of practical implementations of programmable
quantum devices. There is, however, a lot of work to be done to determine if these quantum
effects are being exploited in a way that provides a computational speedup.

In summary, integrating adiabatic quantum optimization techniques with a model checking
approach is feasible and relatively straightforward. The framework developed in this project
could be easily followed in the future provided the model checking packages used provide the
user with the required information. Developing newer techniques to go beyond the connectivity
limitations of the DW2 device will certainly help improve the performance of the approach. And
hopefully, newer generations of the device will provide the desired computational speedup and
transform this proof of concept into a practical tool.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
 55

6 REFERENCES

[1] M. Johnson, et al.; “Quantum annealing with manufactured spins”; Letter, Nature, Vol. 473,
12 May, 2011(doi:10.1038/nature 10012).

[2] C. Baier and J-P. Katoen, Principles of Model Checking, The MIT Press, Cambridge,
Massachusetts, 2008.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith; “Counterexample-guided abstraction
refinement for symbolic model checking”; J. ACM, 50, 5 (September 2003), 752-794.

[4] F. Barahona; “On the computational complexity of Ising spin glass models”; J. Phys. A:
Math. Gen., 15, 3241, 1982.

[5] A. Lucas; “Ising formulations of many NP problems”; arXiv:1302.5843.

[6] Farhi, E., et al.; “Quantum Computation by Adiabatic Evolution". arXiv:quant-
ph/0001106v1.

[7] R. Harris et al.; “Experimental investigation of an eight-qubit unit cell in a superconducting
optimization processor”; Phys. Rev. B, 82, 024511 (2010).

[8] V. Choi; “Minor-embedding in adiabatic quantum computation: II. Minor-universal graph
design”; arXiv:1001.3116.

[9] R. Harris, et al.; “Experimental Demonstration of a Robust and Scalable Flux Qubit”; Phys.
Rev. B, 81, 134510 (2010).

[10] R. E. Bryant; "Graph-Based Algorithms for Boolean Function Manipulation"; IEEE
Transactions on Computers, C-35(8):677–691, 1986.

[11] E. Clarke, O. Grumberg, D. Long; "Model checking and abstraction"; ACM Transactions on
Programming Languages and Systems, 16 (5): 1512–1542, 1992.

[12] A. Kuegel; “Improved Exact Solver for the Weighted MAX-SAT Problem”; in POS-10,
EPiC Series, Vol. 8, edited by D. L. Berre (EasyChair, 2012) pp. 15–27.

[13] Walksat Home Page: Stochastic Local Search for Satisfiability,
www.cs.rochester.edu/u/kautz/walksat/. Accessed May 6th, 2014.

[14] H. Neven, V. S. Denchev, G. Rose, W. G. Macready; “QBoost: Large scale classifier
training with adiabatic quantum optimization”; Asian Conference on Machine Learning
(ACML), 2012.

[15] S. Bieniawski, I. Kroo, D. Wolpert; “Discrete, continuous, and constrained optimization
using collectives”; 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
30 August - 1 September, 2004, Albany, New York.

[16] T. M. Cover, J. A. Thomas; Elements of Information Theory, 2nd Edition; Wiley Series in
Telecommunications and Signal Processing, Wiley-Interscience, Hoboken, New Jersey, 2006.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
56

[17] S. Miller, E. Anderson, L. Wagner, M. Whalen, M. Heimdahl; “Formal verification of flight
critical software”; AIAA Guidance, Navigation and Control Conference and Exhibit, San
Francisco, August 15-18, 2005.

[18] S. Boixo, T. Albash, F.M. Spedalieri, N. Chancellor, D. A. Lidar; “Experimental signature
of programmable quantum annealing”; Nature Communications 4, Article number: 2067,
published online 28 June 2013.

[19] T. Lanting, A.J. Przybysz, A. Yu. Smirnov, F.M. Spedalieri, M.H. Amin, A.J. Berkley, R.
Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J.P. Hilton, E. Hoskinson,
M.W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov, C. Rich, M.C.
Thom, E. Tolkacheva, S. Uchaikin, A.B. Wilson, G. Rose; “Entanglement in a quantum
annealing processor”; arXiv:1401.3500, accepted for publication in Physical Review X, 2014.

[20] T. Rønnow, Z. Wang, J. Job, S. Boixo, S. Isakov, D. Wecker, J. Martinis, D. Lidar, M.
Troyer; “Defining and detecting quantum speedup”; arXiv:1401.2910, 2014.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
57

7 APPENDIX A – Publications and Presentations

The following two publications, regarding the quantum nature of the D-Wave device, were
written in parallel with the work performed for the QCHECK project. Although not a part of the
proposed research, these results are included to complement and give better context to the results
presented in this report.

• Quantum Signature
S. Boixo, T. Albash, F.M. Spedalieri, N. Chancellor, D. A. Lidar; “Experimental signature of
programmable quantum annealing”; Nature Communications 4, Article number: 2067,
published online 28 June 2013.

• Quantum entanglement
T. Lanting, A.J. Przybysz, A. Yu. Smirnov, F.M. Spedalieri, M.H. Amin, A.J. Berkley, R.
Harris, F. Altomare, S. Boixo, P. Bunyk, N. Dickson, C. Enderud, J.P. Hilton, E. Hoskinson,
M.W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld, T. Oh, I. Perminov, C. Rich, M.C.
Thom, E. Tolkacheva, S. Uchaikin, A.B. Wilson, G. Rose; “Entanglement in a quantum
annealing processor”; arXiv:1401.3500, accepted for publication in Physical Review X,
2014.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
58

8 APPENDIX B – Description of CEGAR-DW2 integration code

In this appendix we provide a brief description of the main code components needed to integrate
the CEGAR approach with the DW2 capabilities. As discussed in Section 4.4, we were forced to
construct a simple model checking program (based on freely available BDD libraries) because
publicly available model checking packages did not provide the user with low level information
needed to construct the ILPs required during the CEGAR process. This code (and supporting
files) can be accessed at http://www.isi.edu/people//fspedali/QCHECK_code

To run the integrated CEGAR process, we call a Perl script named cegar-solver-
loop.pl. This script takes as an argument the name of the file where the system is described in
AIG format. The CEGAR process is then applied: an abstraction is generated, the model checker
is called to check the required property, and if a counterexample is found, it is checked using a
regular SAT solver. When the counter example is found to be spurious, an ILP is generated to
solve the Minimal Separating Set problem that would allow us to refine the abstraction. Once the
ILP is generated, it is written to a temporary file. Then the DW2 solver is called (see the line
my $answer =`matlab -nodisplay -nosplash -r
"SolverILP('$tmpfile')" | tail -n +11`;

in cegar-solver-loop.pl). This command calls Matlab and runs the function
SolverILP, that takes the name of the file where the ILP is stored as an argument, and then
calls other functions that write the ILP as a QUBO problem and solves it using the heuristic
embedding coded in the function SEBREMforQUBO. The answer is sent to the standard output,
where the Perl script grabs it and continues with the CEGAR process, refining the abstraction
according with the solution of the ILP. The code can be run in verbose mode, where the
successive ILPs solved are shown. A detailed transcript of one such run was presented in Section
4.5.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
59

9 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

σ Pauli operator

2-SAT 2-Satisfiability problem

AIG And Inverter Graph

AIGER Format for And-Inverter Graphs

API Application Programming Interface

AX-MAXSAT Exact MAX-SAT solver

BDD Binary Decision Diagram

BMC Bounded Model Checking

CE Counter Example

CEGAR Counter-example Guided Abstraction Refinement

CMU Carnegie Mellon University

CNF Conjunctive Normal Form

CTL Computational Tree Logic

CUDD CU Decision Diagram package

DIMACS Computer-readable format for Boolean satisfiability problems

DW1 D-Wave One

DW2 D-Wave Two

FBK Fondazione Bruno Kessler

FCS Flight Control System

h Vector of local magnetic fields

ILP Integer Linear Program

ISI Information Sciences Institute

J Matrix of inter qubit couplings

laig Lisp-flavored AIG

LTL Linear Temporal Logic

MAX-2-SAT Maximum 2-Satisfiability problem

MaxWalkSAT WalkSAT variant for weighted SAT problem solver

MC Model Checking

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
60

NP Non-deterministic Polynomial class of decision problems

NP-hard Computational complexity class that contains the class NP

NuSMV New Symbolic Model Checker for System Verification

NuXMV New Symbolic Model Checker for the Analysis of Synchronous
finite-state and infinite-state Systems

OBDD Ordered Reduced Binary Decision Diagram package

QCHECK A Quantum Computing Approach to Model Checking for
Advanced Manufacturing Problems

QUBO Quadratic Unconstrained Binary Optimization

rf-SQUID Radio Frequency Superconducting Quantum Interference Device

SAT Boolean satisfiability

SEBREM Sequential Embedding By Relative Entropy Minimization

SMV Symbolic Model Checker for System Verification

SQUID Superconducting Quantum Interference Device

WalkSAT Boolean satisfiability problem solver

XML Extended Markup Language

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
61

	1 SUMMARY
	2 INTRODUCTION
	2.1 D-Wave Two (DW2) adiabatic quantum optimization processor overview
	2.1.1 The Physical Principles of the D-Wave Quantum Computer
	2.1.2 Programming and Using the D-Wave Quantum Computer
	2.1.3 Counterexample guided abstraction refinement
	2.1.4 Refining the Abstraction
	2.1.5 Minimal Separating Set

	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision Diagrams
	3.2 Benchmarking of DW2 performance on MAX-2-SAT against classical solver MaxWalkSAT
	3.2.1 MAX-2-SAT
	3.2.2 MaxWalkSAT
	3.2.3 Instance ensemble
	3.2.4 Benchmarking strategy

	3.3 Development of heuristic embedding algorithm
	3.3.1 Iterative heuristic embedding

	3.4 Integration of CEGAR approach with DW2
	3.4.1 Converting SAT to ILP
	3.4.2 Converting ILP to QUBO

	3.5 Implementation of Model Checking example

	4 RESULTS AND DISCUSSION
	4.1 Feasibility study of using DW2 for Bounded Model Checking and Binary Decision Diagrams
	4.1.1 Creating propositional formulas in BMC
	4.1.2 Mapping of propositional formulas for BMC into DW2
	4.1.3 Results of the suitability study for Bounded Model Checking
	4.1.4 Implementation of Binary Decision Diagrams using DW2
	4.1.5 Binary Decision Diagrams
	4.1.6 Model checking algorithms
	4.1.7 Issues with casting computation of extremal BDD as optimization problem
	4.1.8 Results of BDD implementation using DW2

	4.2 Benchmarking of DW2 on MAX-2-SAT versus MaxWalkSAT
	4.2.1 Analysis of the benchmarking results

	4.3 Implementation of a heuristic embedding tool
	4.3.1 Code structure

	4.4 Integration of DW2 into CEGAR loop
	4.4.1 Verifying the validity of abstract counterexamples
	4.4.2 Refining the model
	4.4.3 CEGAR Implementation
	4.4.4 ILP Problems

	4.5 Implementation of CEGAR based model checking example
	4.5.1 Verification summary
	4.5.2 Detailed transcript

	4.6 Evidence for quantum behavior in the DW2 processor
	4.6.1 Quantum signature
	4.6.2 Evidence of entanglement

	5 CONCLUSIONS
	6 REFERENCES
	7 APPENDIX A – Publications and Presentations
	8 APPENDIX B – Description of CEGAR-DW2 integration code
	9 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

