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Grant No. FA9550-09-1-0495

Abstract

This document represents the final report on the various scientific activities and ac-
complishments relating to Grant No. FA9550-09-1-0495 over its period of performance,
June 1, 2009 - November 30, 2013. The project had the following three overarching
technical objectives:

1. Numerical evaluations of multivariate statistical entropies and information for
imaging problems

2. bf Information-theoretic assessment of PSF errors and their impact on image
quality in an SOI imaging system

3. Optimal choice of regularization functional in image reconstruction

The following is a list of the most important technical accomplishments of the
project:

• A new relation between two seemingly different metrics of information - mutual
information (MI) and estimation theoretic Fisher information (FI) in the high-
SNR limit, for arbitrary input and channel probability distributions;

• New numerically efficient, tight upper and lower bounds on successfully transmit-
ted statistical information, namely MI, in the estimation of one or more features
of a target based on image data;

• Improved approaches for an exact numerical, Monte-Carlo-sampling based com-
putation of MI and comparison with our tight upper bounds for some problems;
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• Bayesian approaches to the problem of optimal selection of regularizer and its
strength based on data themselves;

• The development of a tight, variational upper bound on the minimum Bayesian
estimation error, the so called minimum mean-squared error (MMSE), that is
tighter than and superior to several more widely known lower bounds on the
MMSE, such as the Ziv-Zakai and Weiss-Weinstein bounds;

• An improved lower bound on the MMSE that is tighter than the standard Ziv-
Zakai bound and is based on the minimum probability of error (MPE) of a related
M -ary hypothesis testing based Bayesian inference;

• A computational-imaging approach to encoding the field depth of a target using
the rotation of a point-spread function based on the orbital angular momentum
(OAM) states of light - this can be employed to track, fully in 3D, unresolved
space objects, such as orbital debris that could pose a potential threat to space
assets; and

• A full Bayesian error analyses of the prospects of 3D localization and super-
resolution of unresolved sources beyond the standard diffraction limit of an imag-
ing system.

These technical accomplishments have resulted in a total of 19 publications, 11 pre-
sentations (6 invited, 5 contributed), and 1 US patent application.
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1 Summary of Overall Project Accomplishments

The three originally proposed objectives of the effort were largely achieved over the project
duration. In this report we provide only a summary description of the project accomplish-
ments, leaving the many technical details of a fuller description to the project-supported
publications that are cited at appropriate places below and are publicly accessible.

An overarching objective of the effort was to construct useful statistical formalisms in
which one can analyze the identification, characterization, and reconstruction of space objects
in the combined spatial-spectral domain. The formalisms we developed during the project
are based on Bayesian error analysis on the one hand and statistical information on the
other, and exploit new insights into their mutual relationship based on improved versions of
certain inequalities such as the Fano bound.

Our technical accomplishments may be summarized as follows:

1.1 A New Relation between Estimation-Theoretic Fisher Infor-
mation and Mutual Information

An important task was to unify estimation theoretic notions of information and noise perfor-
mance based on Fisher information (FI) with concepts like mutual information, compressibil-
ity and complexity described by Shannon’s statistical information. FI is a measure of local
sensitivity of statistical data to a parameter that has to be estimated from the data. As such
it involves a statistical average of a bilinear product of the first derivatives of the logarithm
of the data probability distribution (PD) with respect to the parameters being estimated.
By contrast, mutual information (MI), I(X;Y ), is the amount of statistical information
about a parameter X that can be passed by a communication channel, or more generally
by a measuring system, through its statistical output, Y , in the presence of noise and other
system limitations. It is thus a global and Bayesian measure of information. A handful of
relations are known between FI and MI, but only one previously known such relation has
any physical content, namely the (negative) difference between MI and the statistical en-
tropy, H(X), of the input, the latter representing the maximum information that the system
can transmit under ideal circumstances (i.e., no noise and other limitations) depends on the
FI in the asymptotic limit of many repeated measurements, Y1, Y2, . . . [see, e.g., Kang and
Sompolinsky, “Mutual information of population codes and distance measures in probability
space,” Phys. Rev. Lett., 86, pp. 4958-4961 (2001)]. This is an expected result since in
the asymptotic limit, the SNR becomes infinitely large, and all global information metrics
become local.

The relation we have derived is a different one that applies for any number of measure-
ments, Y ≡ {Y1, . . . , YM}, or of input parameters, X = {X1, . . . , XP}. It is based on the
observation that when the PD of X is sufficiently narrow the local and global measures of
information are expected to be in agreement. That this is indeed true is contained in the
following expression we have derived that is valid to the second order in the width of the
X-PDF:

I(X;Y) =
1

2

∫
dxP (x)

∑
j,k

δxjδxkJjk(Y|x), (1)
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where δxi = xi − ⟨Xi⟩ denotes the linear deviation of xi from its mean value, ⟨Xi⟩. For a
single input parameter, X, this reduces to the following simple expression:

I(X;Y) =
1

2

∫
dxP (x) (x− ⟨X⟩)2J(Y|x). (2)

Unfortunately, this result does not seem to have a simple generalization for arbitrary widths
of the input PD, for which global and local metrics of information must in general be quite
different.

1.2 Certain Logorithmic Upper and Lower Bounds on Mutual In-
formation

Computing the statistical entropy and associated MI requires the evaluation of statistical
averages of logarithms of PDs and their ratios, as we have noted earlier. When many param-
eters and measurements are involved, these averages amount to high-dimensional integrals
which require efficient numerical approaches like Monte-Carlo (MC) integration to evalu-
ate to high accuracy. However, because of the logarithm inside the typical integrand, one
must sample the high-dimensional configuration space of these variables efficiently over vast
regions before the logarithm is sufficiently attenuated and begins to contribute negligibly
in order to yield accurate results. It is important therefore to consider more accurate and
efficient approaches to MC evaluations of MI.

We have developed useful upper and lower bounds to MI that altogether avoid integrating
logarithms of PDs and their ratios. By writing ln[P (y|x)/P (y)] = (1/α) ln[P (y|x)/P (y)]α =
−(1/β) ln[P (y|x)/P (y)]−β, with α, β > 0, and using the convexity of the logarithm in the
equivalent MI expressions,

I(X;Y ) =− 1

α

∫ ∫
dx dy P (x, y) ln[P (y|x)/P (y)]α

=
1

β

∫ ∫
dx dy P (x, y) ln[P (y|x)/P (y)]−β, (3)

we obtain the following logarithmic bounds on MI:

− 1

β
ln

∫ ∫
dx dy P (x, y)

[
P (y|x)
P (y)

]−β

≤ I(X;Y ) ≤ 1

α
ln

∫ ∫
dx dy P (x, y)

[
P (y|x)
P (y)

]α
. (4)

These constitute a family of logarithmic bounds, which we refer to as α and β bounds, which
get progressively tighter as α and β decrease from positive values to 0.

These bounds are already quite tight even for values of α, β of order 0.5 or less, as we
show in Figure 1 for the case of the Poisson channel and negative-exponential statistics for
X. Note that even for α, β equal to 1/2, the bounds are within 10% of the exact result.
Indeed, by averaging the upper and lower bounds corresponding to the same value of α and
β, we are likely to get within 1-2% of the exact result, obviating thus the need, in the exact
MI expression, for numerically inefficient averaging of logarithms of PDFs that may become
exceptionally small for high-dimensional spaces of input and data variables.
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Exact

β = 1/2

Poisson Channel, NegExp X−PDF
No Bias (b = 0)

α = 1/2
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α = 1/3

β = 1/2

β = 1/3

Poisson Channel, NegExp X−PDF
Finite Bias, b = 20

Figure 1: Exact MI and the logarithmic α and β bounds on it, for Poisson channel and
negative exponential statistics for X. The conditional mean of the Poisson channel, given x,
is ax+ b, where a is the linear gain factor and b the bias of the channel. The mean value of
X is ⟨X⟩.
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1.3 Useful Bayesian Bounds on MI

In the vein of discovering further bounds that avoid the numerical inaccuracies of MC based
computations of MI, such as Metropolis-Hastings and improved versions thereof, we turn to
the fact that Bayesian metrics of performance can be quite useful in this respect. The two
most popular Bayesian metrics are the MMSE and MPE, both of which relate to estimators
that, respectively, are the mean and mode of the posterior PDF, namely P (x|y). The
expected value of the negative logarithm of the same posterior, or the equivocation entropy,
is precisely the loss of statistical information, and hence the fact that the MI is related to
MMSE and MPE is no serious surprise. It is this relationship and its many consequences
for bounding MI in terms of these Bayesian metrics as well as the equivalence of MMSE and
MPE to each other in the high SNR limit that we studied in detail under the grant effort.

1.3.1 A Generalized Fano Lower Bound on MI for a Continuous Source

The usual Fano inequality connecting the probability of error in estimating a source from its
measurements to the equivocation entropy has been an excellent tool in relating Bayesian
detection and estimation analysis to statistical information theory. It is however based on
the discreteness of the sample space, X , of the source variable, X, for which the following
Fano bound is valid:

I(X;Y ) ≥ H(X)−H(Pe)− Pe log2(|X | − 1) ≥ H(X)− 1− Pe log2 |X |, (5)

in which Pe is the MPE in predicting the value of a discrete random variable X from data
Y .

We derived a version of the Fano bound that applies to a continuous source variable. If
one defines an ϵ-error variable Eϵ as

Eϵ =

{
1 if |X̂ −X| > ϵ

0 if |X̂ −X| ≤ ϵ.
(6)

then the analog of inequality (??), as we have shown, becomes

I(X; X̂) ≥ h(X)−H(Pe)− (1− Pe) log 2ϵ− Pe
1

2
log(2πeMMSE ̸ϵ), (7)

where MMSE ̸ϵ is the (Bayesian) minimum MSE for the joint PDF defined only over the

excluded region, |X̂ − X| > ϵ. The practical usefulness of this result is unclear, since it
involves the MMSE which even for the fully included X, X̂ region is usually very hard to
compute. However, it may at the very least provide a useful formal tool to prove new
theoretical relations between the Bayesian and information theoretic approaches for upper-
bounding system performance.

1.3.2 Other Bayesian Bounds on MI

For a discrete source variable,X, the equivocation entropyH(X|Y ), which is simply−E logP (X|Y ),
is clearly bounded below by −E logP (xm∗(Y )|Y ), wherem∗(Y ) is the MAP estimator, namely

m∗(Y ) = argmaxm {P (xm|Y )} , (8)
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in which {x1, . . . , xM} is the sample space of the source X. Since the logarithm is a concave
function, it then follows that

H(X|Y ) ≥ − lnEY P (xm∗(Y )|Y ) = − ln(1− P (min)
e ), (9)

where P
(min)
e is the MPE. This is the so-called Feder-Merhav (FM) bound derived two decades

ago. The FM bound is typically not sharp. In our work, we found a number of improvements
on the FM bound that make it much tighter, as we show for certain generic problems we
considered.

One tighter bound follows from writing

− logP (X|Y ) = − logmax
m

P (xm|Y )− log
[
P (X|Y )/max

m
P (xm|Y )

]
, (10)

and then calculate its expectation. Performing this expectation in two steps, first over the
posterior and then over the data Y , and then using the concavity of the logarithm on the
RHS above, we may obtain the following lower bound on EE:

H(X|Y ) ≥ − logEY max
m

P (xm|Y ) + ∆

= − log(1− P (min)
e ) + ∆, (11)

where ∆ denotes the expression

∆
def
= − logEY

[ ∑
m P 2(xm|Y )

maxm P (xm|Y )

]
. (12)

By means of the Bayes theorem, P (xm|y) = P (y|xm)pm/P (y), we may express ∆ as

∆ = − log

[∑
m

∫
dy

p2m
pm∗(y)

P 2(y|xm)

P (y|xm∗(y))

]
, (13)

with the corresponding lower bound on EE via (11) being

H(Θ|X) ≥ − log
(
1− P (min)

e

)
− log

[∑
m

∫
dx

p2m
pm∗(x)

P 2(x|θm)
P (x|θm∗(x))

]
. (14)

Subtracting the RHS of bound (14) from H(X) yields the corresponding upper bound on
MI.

If instead of (11), we write the exact equality

H(X|Y ) = −EY logmax
m

P (xm|Y ) + ∆′, (15)

where ∆′ is the difference

∆′ = −E log

[
1− maxm P (xm|Y )− P (X|Y )

maxm P (xm|Y )

]
, (16)
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and then use the inequality − ln(1− u) ≥ u, valid for 0 ≤ u < 1, to upper-bound ∆′ as

∆′ ≥ (log e)

[
1−

∑
m

∫
dy

p2m
pm∗(y)

P 2(y|xm)

P (y|xm∗(y))

]
. (17)

This bound involves the same integral as, but is looser than, (13). Since the first term on
the RHS of expression (15) is lower-bounded by − logEX maxm P (θm|X), the EE is then
lower-bounded as

H(Θ|X) ≥ −log(1− P (min)
e )

+ (log e)

[
1−

∑
m

∫
dy

p2m
pm∗(y)

P 2(y|xm)

P (y|xm∗(y))

]
. (18)

As before, subtracting the RHS of bound (18) from H(X) yields the corresponding upper
bound on MI.

The two lower bounds on H(X|Y ), (14) and (18), the latter tighter than the former, cor-
respond to fairly tight upper bounds on MI and are denoted as SUB1 and SUB2, respectively,
in Fig. 2. The looser Fano lower bound and the looser FM upper bound are also plotted
and indicated as FLB and FM-UB, respectively, on the same figure which also displays the
numerically exact MI. In this figure, the fractional MI, namely I(X;Y )/H(X), refers to that
for the joint angular position-chemical type feature, X, of a distant muzzle flash which is
observed in a number of spectral bands by a array of single-pixel sensors (“light buckets”)
mounted on a hemispherical surface like a soldier’s helmet as shown in Fig. 3.

More details of this work appear in a technical report prepared for a DARPA contract
which partially supported the work.

A Useful Upper Bound for the Uniform Prior Denoting the difference of the posterior
from the prior as δP (X|Y ) = P (X|Y )− P (X), we may express the sum in Eq. (12) as∑

m

P 2(xm|Y ) =
∑
m

[Pm + δP (xm|Y )]2

=
∑
m

[
P 2
m + δP 2(xm|Y ) + 2PmδP (xm|Y )

]
. (19)

For the uniform prior, the last term in expression (19) vanishes, since the posterior, like the
prior, is a probability distribution that sums to 1, while the first term in the second expression
there is simply 1/M . In this case, the sum (19) thus differs from the corresponding sum over
the prior proabilities, namely 1/M , by terms that are of quadratic order in the deviations
δP (xm|Y ). This allows us to write the lower bound on equivocation as

H(X|Y ) = −E logP (X|Y )

≥ − logEP (Θ|Y )

= − logEY

∑
m

P 2(θm|Y )

= logM − log

[
1 +M EY

∑
m

δP 2(xm|Y )

]
, (20)
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Figure 2: Fractional mutual information (fMI) vs. peak signal-to-background ratio (pSBR).
Numerically exact results are shown via dashed line segments, while the Fano lower bound
and the various upper bounds are shown via different marker symbols and colors. In all
cases, the error in calculating the various results due to finiteness of sampling was smaller
than the size of the marker symbol itself.

Figure 3: A schematic of the hemispherical mount for single-pixel multi-spectral sensors
arranged regularly in rings on the mount. Arrows indicate possible angular directions of
arrival of a distant muzzle flash.
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so the MI is upper bounded as

I(X;Y ) = H(X)−H(X|Y ) ≤ log

[
1 +M EY

∑
m

δP 2(xm|Y )

]
. (21)

To obtain the first inequality in relation (20), we used the concavity of the logarithm, and
then decomposed the full expectation into an expectation over the posterior followed by an
expectation over the data before substituting expression (19) for the sum. The MI bound
(21) is fairly tight, and interpolates between the logM value of MI in the high-discrimination
regime where only one of the posterior probabilities is close to 1 and all the other (M − 1)
ones are close to 0, and the vanishing value of the MI in the low-discrimination regime
where the correction contained in the sum on the RHS in the upper bound (21) tends to
be small. While numerically inefficient to compute, in general, this bound has a very useful
interpretation because of its analogy with the information capacity of an additive Gaussian
channel for which the ratio of the mean squared deviations of the posterior from the prior
and the uniform squared prior probability, 1/M2, serves as an effective SNR.

1.4 Optimal Choice of Regularization Functional in Image Recon-
struction

In the first 3.5 years of the project, we studied in much detail the notion of accommodation
by a regularizer defined as the degree of degradation of reconstruction as the regularization
strength is increased beyond its optimal value. This is a measure of how well a regularizer
continues to “fit” the reconstruction even when it dominates the fit-to-data term in the
minimization functional. A good measure of the fit is the MSE, defined as the squared
error in the reconstructed signal relative to the truth signal averaged over the Bayesian prior
defined over the parameters that define the object class. By considering error in different
attributes of the brightness distribution of the sources in the family, e.g., intensity gradients,
rather than intensities themselves, one can in this approach rank the various regularizers
according to their ability to accommodate different attributes such as edges, lines, and
points.

We found by means of extensive simulation the superiority of Laplacian regularizer when
compared to the Tikhonov, maximum-entropy (ME), and total-variation (TV) regularizers,
for the object class that contains smooth Gaussian-shaped sources. Similar studies were
extended to other classes of sources too, those containing rect functions and combinations
of Gaussian and rect functions.

Most recently, our attention was focused on performing this analysis without the use
of computer simulation so the reconstruction may be calculated analytically and the data
statistics imposed essentially exactly on the MSE calculations. We have succeeded partially
in this work by restricting attention to quadratic regularizers of form

R(X) =
λ

2
XTRX, (22)

where R is a real symmetric matrix with positive eigenvalues and X is the vector of signal
intensities at its pixels. By choosing three different regularizer matrices R, we have been
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Figure 4: (a) The brightness distribution of a typical 1D signal consisting of three Gaussian
shaped peaks. (b) The MSE vs. regularizer strength curves in a log-log plot for three
different quadratic regularizers, as indicated in the legend on the plot. The PSNR value was
fixed at 10 for this plot.

able to model reconstructions under Tikhonov, Laplacian, and curvature regularizations, and
compare the curvatures of the corresponding logMSE vs. log λ curves at their minima as
a measure of accommodation. As seen below in Fig. 4 (b), the curvature regularizer seems
to do the best, the curvature of the corresponding MSE curve distinctly being the smallest
for it. The class of signals we considered for these plots consists of three Gaussian shaped
peaks in one dimension (1D), as shown in Fig. 4 (a). We have derived analytically an exact
closed-form expression for the MSE, which we numerically evaluated either individually for
each member of the object class or at once for the whole class by statistically averaging the
analytical expression over the prior defining the class.

1.5 A Variational Upper Bound on the MMSE of Bayesian Esti-
mation

A number of lower bounds on the MMSE, including Ziv-Zakai (ZZB) and Weiss-Weinstein
(WWB) families of bounds, have been proposed and studied over the past 40 years. These
lower bounds have reformulated the problem of Bayesian estimation in clever ways but they
still have been difficult to calculate and apply to practical problems.

In order to overcome the problem of efficient computability of the MMSE and the cor-
responding MMSE estimator for general prior and channel PDFs, we turned out attention
instead to simple upper bounds on the MMSE. We have derived one such upper bound that
seems, in all cases we have studied so far, to be easy to compute and rather tight. Also, the
celebrated lower bounds, ZZB and WWB, can be shown in some cases to be quite loose and
thus of little value in accurately predicting error performance bounds, particularly for space
imaging applications.

The minimum value of the MSE over the space of all possible estimators is attained by

11



the minimum MSE estimator (MMSEE), which is the posterior mean of the parameter X,

X̂M(Y ) = EX|Y (X) =

∫
xP (x|Y ) dx. (23)

The MSE of this estimator is the MMSE, EM , which can be simplified to the form

EM =E[X̂M(Y )−X]2

=σ2
X − σ2

XM
(24)

involving the variances of the prior and the MMSEE, namely σ2
X and σ2

XM
.

If X̂(Y ) is another estimator of X, then by writing X̂ − X = (X̂ − X̂M) + (X̂M − X),
taking its mean squared value, and using Eqs. (23) and (24), we may express its MSE in the
expanded form

E =EM + E[X̂(Y )− X̂M(Y )]2 + 2E[X̂(Y )− X̂M(Y )][X̂M(Y )−X]

=EM + E[X̂(Y )− X̂M(Y )]2, (25)

which is obviously bounded below by the MMSE, EM . The second term in the second
equality in (25) is the amount by which the MSE for an estimator must exceed the MMSE.
By subtracting this term from both sides of the equality and noting that this term cannot be
smaller than the square of the mean E[X̂(Y )− X̂M(Y )], we have the following upper bound
(UB) on the MMSE:

EM ≤E − E2[X̂(Y )− X̂M(Y )]

=E[X̂(Y )−X]2 − E2[X̂(Y )−X]

=E{[X̂(Y )− E(X̂)]− [X − E(X)]}2 def
= EUB, (26)

where the second line follows from the fact that the mean value of the MMSEE is simply the
mean value of the prior, EX(X). The third line represents a convenient way of combining
the two terms in the second line and then regrouping them inside the square.

The rather simple upper bound (26) has the immediate benefit that it can be computed
readily since, unlike the MMSE, it does not require any knowledge of the posterior PD,
PX|Y , the chief bane of any MMSE calculation. Furthermore, since according to Eq. (25)
the MSE of any estimator differs from the MMSE in the quadratic order in the difference
between the two estimators, a variational approach to estimate the MMSE by minimizing
the UB (26) with respect to classes of estimators should yield excellent accuracy even when
the estimator itself does not approximate the MMSEE as well. An analogous situation exists
for the variational method for estimating the ground-state energy of a quantum mechanical
energy problem. Note further that being smaller than the MSE, which is the first term in
the second line of (26), the UB obtained from any trial estimator is already closer to the
MMSE than its own MSE, and thus presumably furnishes a better starting point and a faster
convergence to the MMSE.

12



1.5.1 MMSE Upper Bound for a Polynomial Family of Estimators

Consider first the simplest problem of a single parameter being estimated from a single
observation and estimators belonging to the class of Nth-order polynomials, i.e.,

X̂N(Y ) = a0 +
N∑

n=1

anY
n. (27)

We shall regard {an} as variational parameters that need to be chosen to minimize the UB
(26). Substituting the form (27) into the formula (26), we may express the UB as

EUB =E

(
N∑

n=1

anδY
n − δX

)2

=aTMa− 2aTv + σ2
X , (28)

where a denotes the vector (a1, . . . , aN)
T (T : matrix transpose), M an N×N matrix with el-

ements, Mmn = E(δY mδY n), m, n = 1, . . . , N , and v an N×1 vector of elements E(δX δY n),
n = 1, . . . , N . The symbol δ preceding a variable denotes its deviation from its mean value,
e.g.,

δY n ≡ Y n − E(Y n). (29)

Since the matrix M is positive definite, the quadratic problem (28) has a single extremum
that is its absolute minimum. Its location a∗ in the space of the parameter vector a is
determined by setting the gradient of the expression (28) with respect to the parameter
vector a equal to 0, namely Ma∗ = v, or equivalently a∗ = M−1v. The corresponding
minimum value of the UB (28) then simplfies greatly to the final form

EUB∗ = σ2
X − vTM−1v. (30)

The minimum value of the UB (30) is both smaller than the prior variance, σ2
X , and

lowered in general as the order of the polynomial, N , increases. To prove the latter assertion,
we simply note that the class of (N +1)th-order polynomials includes as a proper subset the
class of Nth order polynomials. Thus the minimum of the UB over the former class cannot
be larger than the that over the latter class. A more rigorous mathematical proof may also
be given based on Schur’s inversion formula for the block-matrix form of a square matrix.

Curiously, the overall additive constant a0 in the trial form (27) of the estimator is left
undetermined. This is not a surprise since the UB form (28) is clearly insensitive to any
overall additive constants. Yet, such a constant is in general included in the actual form
of the MMSEE, X̂M , e.g., for a Gaussian channel and a Gaussian prior, X̂M is a weighted
sum of the prior mean, which is a constant, and the data. We can thus estimate the form
of the MMSEE only up to an arbitrary additive constant even when the UB approximates
the MMSE very well. To fix this constant, we need an additional constraint obeyed by the
MMSEE, namely that its mean be the same as the prior mean.
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Multi-Parameter Generalization of the MMSE and Upper Bound As is well
known, the form (23) of the MMSEE remains valid for the most general definition of the
MSE for multivariate parameter and data vectors,

E def
= E{[X̂(Y )−X]TR [X̂(Y)−X]}, (31)

where R is a positive-definite, symmetric, real matrix. We need only interpret (23) as being
the MMSE estimator for each parameter,

X̂nM(Y ) = EX|Y (Xn) =

∫
xn P (xn|Y ) dxn, n = 1, . . . , Nx, (32)

where Nx is the total number of parameters being estimated. Consequently, the upper-bound
formula (25) undergoes a simple modification to the form

EM ≤ EUB,

where
EUB = E{[δX̂(Y )− δX]TR[δX̂(Y)− δX]}. (33)

1.5.2 A MAP Estimator Based MMSE Upper Bound

One approach for choosing a good trial estimator is to use a weighted sum of the MAP
estimator and the mean value of the prior and to pick the two weights by requiring that
the expected value of the estimator, like the true MMSE estimator, be the same as the
prior mean and that the MSE computed for this estimator be as small as possible (for the
tightest UB). The two requirements fix the weights, thus yielding both an approximate value
(in the UB sense) of the MMSE and a good approximation to the true MMSE estimator.
Some results of this approach are shown in Fig. 5 for the problem of estimating the center
of a Gaussian-shaped source on a pixel line in the presence of Gaussian noise. We have
plotted the MMSE, calculated numerically (with difficulty), and the UB obtained by the
approach we have just outlined. Other well known bounds, specifically the Ziv-Zakai and
Weiss-Weinstein bounds that are lower bounds on MMSE, are also presented on the same
plot. The superiority of the UB obtained in our work is evident as it hugs the true MMSE
more closely than the two lower bounds as well as a pure MLE based UB, as shown.

1.5.3 A Quasilinear Variational Bound: Piecewise Linearization

A typical issue facing the choice of a good trial estimator is the nonlinear dependence of
the data mean on the parameter being estimated. In the 1D localization problem, the
nonlinearity is present in the Gaussian dependence of the mean data vector on the center
position of the true Gaussian signal, denoted by G(θ), where θ is its center position being
estimated here. Correspondingly, a good estimator of the center position cannot depend
linearly on the data, making the choice of a good estimator a difficult one. As we have seen,
a weighted MAP estimator provides a good choice, but determining the MAP estimator iself
may be a highly daunting task requiring extensive nonlinear-optimization based computation.
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Figure 5: The MMSE and various lower and upper bounds on it for the problem of 1D
source localization in the presence of Gaussian additive noise

A good, computationally simple alternative to the MAP approach is to approximate the
required estimator piecewise, so it works well for a wide interval of prior values over which the
mean data vector depends nonlinearly. Since over a small sub-interval of parameter values
the data may be regarded as being approximately linearly dependent on the parameter, a
good approximation to the estimator may be had via the following piecewise linearized form:

θ̂(Y ;A, b) =

Nθ∑
i=1

(bi + aTi Y ) exp[−∥Y −G(θi)∥2/w2], (34)

where G(θi) is the vector of intensity values that depend on the pixel index via the given
Gaussian function evaluated for the center position θ being equal to the mid-point of the
ith subinterval of the full θ interval. The use of such Gaussian weight enforces in the above
linear sum enforces its piecewise linearity, while allowing for linear variational parameters in
terms of the matrix A of column vectors ai, representing linear gain, and the elements of the
vector b linear bias, one for each subinterval. In spite of the nonlinearity posed by the data-
dependent Gaussian weights, the calculation of the MSE for the estimator () is analytically
straightforward since its form is identical to the Gaussian form of the conditional PDF of
the data vector Y , given θ. Indeed, the same analytical expediency can be built into any
specific form of the conditional data PDF, as long as there is a one-to-one correspondence,
however nonlinear, between the mean data vector and the parameter value and the weight
factor is chosen to be of the same analytical form as the conditional data PDF.
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Figure 6: The MMSE and various upper bounds on it for the problem of 1D pulse-center
localization from a time series in the presence of Gaussian additive noise

In Fig. 6, we display the results for the numerically exact MMSE and its upper bounds
computed by variational MAP and piece-wise linearlization approaches covered above, for the
problem of estimation of the center of a pulse that is corrupted by additive Gaussian noise.
The width of the pulse is

√
3 units, while the prior on the center is distributed uniformly

over the range (30,40) (in the same units). The SNR plotted on the x axis is simply the
ratio of the total pulse signal energy and the total noise energy, E/N , with the noise energy,
N , being the variance of the read noise per time sub-interval, taken to be 0.1 long, times
the total number of such sub-intervals, about 700 in all, in the full time series. The MMSE
and MAP-based variational bounds were computed for 50 different noise realizations, with
corresponding finite but sufficiently error bars on those bounds shown in the plot. Note the
excellent accuracy provided by the piece-wise linearized versions of the variational estimator,
for Nθ = 1, 4, and 10 subintervals over which the full range (30,40) of the pulse center, θ, is
subdivided according to the piece-wise linearization protocol described above. As expected,
the agreement of the coresponding bounds with the exact MMSE improves dramatically from
1 to 4 to 10 subdivisions of this range.

Other problems, including 2D point-source localization using a imager with Gaussian
PSF and different noise statistics, such as Poisson conditional data treated via a pseudo-
Gaussian PDF approximation, have also been treated for our MAP-based and piecewise
linearized variational upper bounds. In each case, the upper bounds obtained in these ways
have been found to be tight and numerically efficient to compute.
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Figure 7: A schematic of the optical element with its spiral phase retardation

1.6 3D Imaging and Source Ranging via a Rotating Point-Spread
Function

In a recent work [3], we have proposed and evaluated a novel rotating PSF design by means
of wavefront coding. The imaging pupil in this design is subdivided into Fresnel zones, with
each zone carrying a radially uniform but azimuthally spiraling phase profile with an integral
number of turns in a complete circuit around the pupil center. The number of turns of the
spiral phase is taken to increment by 1 between two successive Fresnel zones. For such a
pupil phase plate, shown in Fig. 7, the PSF merely rotates with changing defocus of the
source point, without spreading significantly, over a considerable range of defocus values.
While the PSF itself is not as compact as the in-focus Airy disk PSF obtained with a clear,
well-corrected pupil, its non-spreading character lends it a potential to determine the depth
distribution of a collection of point sources in a single snapshot. This increased efficiency,
with little degradation of sensitivity with defocus, enables it to provide a fast image of a
3D scene of point sources without having to refocus the imager at different focal depths in
a sequential manner. Applications to space-borne imagers that provide surveillance of the
space environment in the vicinity of a space asset against debris and other potential threats
are immediate for this imager.

For such a phase mask in the imaging pupil, the resulting PSF rotates with defocus,
largely maintaining its shape and size over a large range of values of the defocus. This is
illustrated well in Fig. 8 where we make color-coded surface plots of the PSF for a number
of different values of the defocus-induced quadratic phase,ζ, at the edge of the pupil. The
top row displays the PSF rotation for the spiral pupil-phase mask described here, while the
bottom row presents the corresponding conventional clear-aperture PSFs that exhibit large
spreading and loss of sensitivity over the same range of defocus values.

The wavefront-coded imager works in the trade space of transverse and longitudinal reso-
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Figure 8: Surface plots of the rotating PSF, with L = 7 Fresnel zones (top row). The plots
from left to right are for increasing values of defocus, namely -24, -8, 0, 8, and 24 radians
at the pupil edge. The conventional clear-aperture PSF is shown in the bottom row of plots
for the same values of defocus.

lutions, and thus provides a fertile setup to explore such tradeoffs in computational imaging.
The generalization of this concept to include the vector nature of the electromagnetic field
and thus to provide a potential polarimetric imager is currently being investigated. While
this work was not a direct result of any task initially proposed under the current grant, its
serendipitous discovery has given a new direction and impetus to our work.

1.7 Statistical Bayesian Analysis of 3D Source Super-localization
Using a Rotating-PSF Imager

We have analyzed certain statistical upper bounds on the performance of a rotating-PSF-
based imager for a complete 3D super-localization and super-resolution of point sources and
compared its performance, via these upper bounds, to that of a conventional imager. Two
kinds of Bayesian estimators, specifically the mean and mode of the posterior probability
density function (PDF), are adopted for our calculations. The first is associated with the
minimum mean-squared error (MMSE) and the latter with the minimum probability of error
(MPE) in a multi-hypothesis testing (MHT) based Bayesian inference. The two error bounds
provide somewhat different quantitative metrics of performance, but are closely related at
high SNR [2].

The problem of localizing a point source to sub-diffractive uncertainties in 3D may be
phrased in terms of the minimum error in localizing the source to within one of M2

⊥ ×
M∥ possible sub-voxels into which a nominal voxel, corresponding to the diffraction-limited
resolution volume, is subdivided uniformly. The integersM⊥ andM∥ represent the transverse
and axial localization enhancement factors, respectively. The problem can be posed either
as a spatial error bound problem, described by the MMSE metric, or as an MHT problem,
described by the MPE metric. The Bayesian prior in each case must be chosen as being
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Figure 9: MMSE vs. FNR for conventional and rotating-PSF based imagers for 2D source
localization, at different background levels.

uniform over the M2
⊥ ×M∥ sub-voxels.

Some preliminary results [4,5] for the two approaches under a combination of sensor read
noise and signal and background based shot noise sources are presented in Figs. 9-10 below.
For the MMSE based description of transverse (2D) source localization, we find that at
sufficiently high SNR, defined here as the source flux-to-noise ratio (FNR), the MMSE is
reduced well below its zero-SNR value, namely the prior variance. A reduction of the MMSE
by a factor M2

⊥ represents an M⊥-fold transverse super-localization, with the associated FNR
providing a lower bound on the FNR needed to achieve it. As seen in Fig. 9, the conventional
imager at best focus yields a rapid decrease in 2D-localization MMSE with increasing FNR,
but its behavior is reversed at large defocus, e.g., at ζ = 16 radians for which the MMSE
shows little reduction even at FNR = 40 dB. By contrast, the rotating-PSF imager has a
rather robust 2D-localization performance, with all of the MMSE vs. FNR curves closely
bunched, over any defocus phase between 0 and 16 radians.

Figure 10 captures similar 2D-localization trends for the two imagers from the MPE
perspective. ForN pixels of image data, whenN >> 1 it is possible to develop an asymptotic
analysis of the MPE for an image-based Bayesian MHT problem that involves complimentary
error functions [5]. The agreement between the exact and asymptotic MPE values, as the
figure shows, is quite good at large FNR.

We have also confirmed a cross-over behavior of the MPE vs. defocus for 2D localization
between the two imagers, since the conventional imager has a better performance at the
plane of best focus but rapidly degrades with increasing defocus while the rotating-PSF
imager has a rather constant performance across a large range of defocus. This behavior is
consistent with the fact that with increasing defocus the rotating PSF maintains its size and
shape, but the conventional PSF spreads rapidly and thus loses its sensitivity to localize a
source in the transverse plane.

Finally, we have also computed the exact and asymptotic values of the MPE for full 3D
source super-localization. An interesting competition between transverse and axial (depth)
localization enhancement is seen here, with the latter providing the limiting behavior of
the MPE in the limit of high FNR. Also, the conventional imager performs poor depth
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Figure 10: Plots of MPE vs. FNR for the rotating-PSF imager for two values of defocus,
(a) ζ = 0; (b) ζ = 16. (c) The same plot for the conventional imager for the same two values
of ζ. The asymptotic MPE values are shown by dashed line segments without any marker
symbols.

localization at the plane of best focus where it has vanishing first order derivative relative
to defocus and thus no first-order sensitivity to depth localization. These and other details
of full 3D localization are contained in Ref. [5].

1.7.1 A Bayesian MPE Based Analysis of 2D Point-Source-Pair Superresolution

In a second recently submitted paper [6], a related problem of the optical superresolution
(OSR) of a pair of equal-brightness point sources separated spatially by a distance (or angle)
smaller than the nominal diffraction-limited resolution spacing (or angle) has been analyzed
from the same Bayesian perspective of the MPE. The question was posed as a Bayesian
binary-hypothesis testing problem of discriminating between a null hypothesis - that there
is a single point source with double the brightness of each point source in the pair - and an
alternative hypthesis - that there are indeed two point sources. This problem was studied un-
der the same noise and background conditions under which we studied 3D super-localization
discussed in the previous subsection. The correct hypothesis is chosen with little error,
determined by the MPE dropping below a lower threshold typically at 5%, equivalent to
a 95% statistical confidence level, provided the source brightness exceeds a certain upper
threshold that is determined by the smallness of the (sub-diffractive) source separation and
background/noise levels. Without going into the details of a rather complex calculation pre-
sented in the paper [6], which is based on some asymptotically valid theoretical expressions
for the MPE derived in the earlier paper [5], we present only the most important findings of
this work.

First, the minimum brightness needed to achieve pair OSR in the signal-dominated regime
scales approximately as the fourth power of the inverse source-pair spacing, but the scaling is
modified from its quartic behavior by logarithmic corrections that have not been inferred by
any of the previous analyses of this problem. Second, in the background-dominated regime,
the same scaling law is moderated to a pure quadratic form, with a slow transition from
the logarithmically modified quartic power law dependence as the signal strength increases

20



10
1

10
4

10
5

10
6

10
7

10
8

10
9

10
10

K
m

in

Minimum Source Strength vs. Pair−OSR Factor

 

 

(d/w)−1

b=109

Signal vs. Background Dominated Regimes

b=102

b=106

Figure 11: Log-log plots of the minimum source strength, Kmin, vs. the OSR ratio, w/d,
for the three different background levels.

relative to the background level. These scaling laws are seen in Fig. 11 where we plot the
minimum source strength, Kmin (in photon number units), versus the inverse ratio of the
pair spacing, d, to the diffractive resolution spacing, w, on a log-log plot. The slow change
of the slope of the log10 Kmin vs. log10(d/w) from 4 to 2 with increasing background levels
is quite evident in this plot.

More details of this work may be found in Ref. [6] where we present detailed derivations
of the various scaling laws under varying conditions of signal to background ratios. While
the pair OSR problem was analyzed here in the plane of best focus for a Gaussian PSF based
imager, the analysis can be readily generalized to other PSFs and to full 3D pair OSR as
well. This is currently being studied by the UNM group.
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