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Abstract

This work investigated the feasibility of solving Moving Horizon Esti-
mation(MHE) problems in hardware, e.g. Field Programmable Gate Ar-
rays(FPGA), in contrast to using software. With the hardware approach
we could build customized computational machines for specific algorithms
and hence gain computational and power efficiency, which is crucial for em-
bedded real-time applications where computational resources are limited. A
hardware approach enables one to build certifiable components and is also
less susceptable to software virus attack. Using high level synthesis tools
instead of low level hardware description languages, we demonstrated that
it is feasible to routinely deploy customised, sophisticated computational al-
gorithms such as MHE, on reconfigurable hardware for real-time embedded
applications.

In this report, we first reviewed one formulation of the MHE estimation
which is amenable for both linear and non-linear systems. Numerical simu-
lations, including a radar tracking problem, were performed to compare its
performance against traditional Kalman Filter and Extended Kalman Filter
(EKF). One advantage of the MHE approach is that prior information, such
as constraints that exist in applications can be incorporated in the design.
The results showed that the incorporation of constraints in the MHE ap-
proach outperformed both the Kalman Filter and EKF when there is poor
prior knowledge of the process and measurement noises.

MHE is an online optimization-based strategy which can be formulated
as a Quadratic Program(QP), which then needs to be solved at every sam-
pling instance. This can be computationally more expensive then the tra-
ditional Kalman Filter(KF) where recursive solution is available. We devel-
oped various MHE designs and implemented them on the Xilinx Zynq ZC702
FPGA board. The results suggest that, for modest size MHE problems, a
hardware solution could outperform software solution, with very attractive
speed, clock and power efficiency. Instead of low level hardware description
language, we used a high-level synthesis tool (Vivado from Xilinx) for proto-
typing so that the design can be easily customized for different applications
and for design space explorations, e.g. trading-off power, hardware resource
and computational speed. We concluded that it is feasible to routinely de-
ploy the “MHE on a chip” technology for modest size MHE problems in
embedded and real-time applications where power and computational re-
sources are limited.
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1 Introduction

The aim of this work is to investigate the feasibility of solving Moving Hori-
zon Estimation(MHE) problems in hardware, e.g. Field Programmable Gate
Arrays(FPGA), in contrast to using software. With the hardware approach
we could build customized computational machines for specific algorithms
and hence gain computational and power efficiency, which is crucial for em-
bedded real-time applications where computational resources are limited.
A hardware approach enables one to build certifiable components and is
also less susceptable to software virus attack. The ultimate aim of this
work is to demonstrate that, by using high level synthesis tools instead of
low level hardware description languages, it is feasible to routinely deploy
customised, sophisticated computational algorithms such as MHE, on re-
configurable hardware for real-time and embedded applications.

One paper was published1 and another is currently under review2. Both
papers are included in this report. The appendex contains the C code and
photos of the experimental set up.

2 Results and Discussions

2.1 MHE is more robust than KF or EKF against inaccurate
noise statistics

MHE is an online optimization-based strategy, unlike Kalman Filter (KF)
whose design depends crucially on a good knowledge of the statistical char-
acteristics of the noise in the system. In other words, KF’s performance is
sensitive to the accurate assumption of the noise statistics. Hence, careful
tuning of KF is usually needed when deploying KF in real, practical applica-
tions. One advantage of the MHE approach is that prior information, such
as constraints that exist in applications can be incorporated in the design.

In the first paper of this report, we reviewed one formulation of the MHE
estimation which is amenable for both linear and non-linear systems. Nu-
merical simulations, including a radar tracking problem, were performed to
compare its performance against traditional Kalman Filter and Extended
Kalman Filter (EKF). The results showed that the MHE approach outper-
formed both the Kalman Filter and EKF when there is poor prior knowledge
of the process and measurement noises. This confirmed our intuition that,
by including constraints in the formulation, MHE has the advantage over

1D. Zhou, K.V. Ling and E.K. Poh, Constrained Moving Horizon Estimation for Lin-
ear and Nonlinear Systems, 3rd SONDRA Workshop, 10–14 June 2013, Hyeres, France,
pp.188-191.

2T. V. Dang and K.V.Ling, Moving Horizon Estimation on a Chip, submitted to In-
ternational Conference on Control, Automation, Robotics and Vision (ICARCV), 10-12
December 2014, Singapore
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KF and EKF in the sense that the design is less sensitive to wrong choices
of Q and R (process and measurement noise variances needed in KF and
EKF designs). Robustness of the design against inaccurate prior knowledge
(e.g. process and measurement noise variances) is important for practical
deployment of the MHE technology.

2.2 Implementation of MHE on FPGA

The next paper demonstrated the feasibility of implementing MHE algo-
rithm on hardware. In a larger context, it demonstrated that, by using high
level synthesis tools instead of low level hardware description languages, it
is feasible to routinely deploy customised, sophisticated computational algo-
rithms such as MHE, on reconfigurable hardware for real-time and embedded
applications.

MHE can be formulated as a Quadratic Program(QP), which then needs
to be solved at every sampling instance. Interior Point Method(IPM) and
Active Set Method(ASM) are two popular algorithms for solving QP prob-
lems. In this work, however, we used Alternating Direction Method of Mul-
tipliers(ADMM) which is a first order method. ADMM has the advantage
that it has a simpler computational structure and hence more suitable to
exploit the computational resources available in FPGA for parallel compu-
tation, although ADMM takes more iteration steps to converge than second
order methods such as IPM.

Instead of implementing a generic QP solver, we specialized to MHE with
box-type constraints (a commonly encountered constraint type in practical
applications), so that the ADMM iterations become much simplified and
involve mainly dot-product computations This has the potential of achieving
a division-less algorithm, leading to fixed-point only computation; division
and floating point computations are especially time and resource expensive
in hardware. Instead of low level hardware description language, we used
a high-level synthesis tool (Vivado from Xilinx) for prototyping so that the
design can be easily customized for different applications and for design space
explorations, e.g. trading-off power, hardware resource and computational
speed.

We developed various MHE designs, compared floating point and fixed
point implementations, with and without parallelism (loop pipelining), on
a Xilinx Zynq ZC702 FPGA board. These designs clocked at 50MHz. The
results suggest that, for modest size MHE problems, a hardware solution
could outperform software solution, with very attractive speed, clock and
power efficiency. It is thus feasible to deploy the “MHE on a chip” technol-
ogy for modest size MHE problems in embedded and real-time applications
where power and computational resources are limited.
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Constrained Moving Horizon Estimation for Linear and Nonlinear
Systems

Dexiang Zhou, K.V. LING and E.K. Poh

Abstract— Moving Horizon Estimation (MHE) is formulated
as a constrained optimization problem using available measure-
ments over a moving window interval. This approach alleviates
the computational complexity and naturally incorporate prior
information in the form of inequality constraints on state and
noise. In this paper, we review one formulation of the MHE
estimation which is amenable for both linear and non-linear
systems. Numerical simulations, including a radar tracking
problem, are performed to compare its performance against
traditional Kalman Filter and Extended Kalman Filter (EKF).
The results show that the MHE approach outperforms both
filters when there is poor prior knowledge of the process and
measurement noises.

I. INTRODUCTION

IT is well known that the Kalman Filter is equivalent to
least-squares estimation when the system is linear and the

process and measurement noises are mutually independent
Gaussian noises [1]. Analytic or recursive solutions are
available for the least-square estimation or Kalman Filter
when constraints are not considered. In applications, limits
or constraints on state variables are often known a priori
and can be expressed as inequalities. For example tempera-
ture, pressure, flow rates, must be non-negative and cannot
go above some upper bound. However, with inequalities
constraints, the estimation of state becomes a constrained
optimisation problem where no analytical solution may exist.
With increasing time horizon, the constrained optimisation
problem becomes computationally intractable, thus the idea
of Moving Horizon Estimation (MHE) is used to limit the
number of decision variables. MHE is a kind of optimization-
based state estimation in which an estimation cost function
is optimized and the measurements in a moving window are
used to estimate the state. The estimation cost function often
includes the error between true and estimation of the state,
the error between measurement and predicted output and the
arrival cost which summaries the past measurements outside
of the moving window.

The relationship between full information and receding
horizon estimation is investigated in [2]. A moving horizon-
based approach for least-squares estimation was proposed
to solve the issue of computational intractable when the
constraints are taken into account [3]. The duality between
control and estimation is well known in the context of

This work was supported by a grant from Asian Office of Aerospace
Research and Development (Ref:AOARF-124004). Dexiang Zhou, K.V.
LING and E.K. Poh are with Division of Control and Instrument, School
of Electrical and Electronic Engineering, Nanyang Technological Uni-
versity, Singapore, 639798, Singapore. (e-mail: ZHOU0180@e.ntu.edu.sg;
EKVLING@ntu.edu.sg; eekpoh@ntu.edu.sg )

Linear Quadratic Regulator and the Kalman Filter. For
constrained control and estimation their Lagrangian duality
is investigated in [4]. Constrained MHE for linear system
and the conditions of nominal asymptotically stability are
investigated in [5]. General constrained MHE for nonlinear
system is proposed in [6].

Constrained MHE uses the constraints (often in the form
of inequalities of states and noise) to prevent the estimator
from producing values which are not reasonable (i.e. the
values which violate the constraints). Thus good estimation
performance is often obtained using constrained MHE. In
this paper constrained MHE for linear and nonlinear systems
state estimation is investigated. The purpose of the paper is
to demonstrate that the constrained MHE is more robust than
Kalman Filter and EKF when uncertainty exists, in particular,
when we have poor prior knowledge about the process and
measurement noises.

This paper is organized as follows. In Section 2 we
introduce the constrained MHE which is suitable for both
linear and non-linear systems. In Section 3 approximations
of arrival costs of constrained MHE for linear and nonlin-
ear systems are introduced. In Section 4 the advantage of
constrained MHE is shown comparing to Kalman Filter and
EKF using simulations. Section 5 concludes this paper.

II. CONSTRAINED MHE

Consider the following system

xk+1 = f [k, xk] + ωk

yk = h [k, xk] + ek (1)

The process noise ωk and measurement noise ek are assumed
additive, zero mean and white noises. The initial state, with
estimate x̄0, an approximation mean, and the associated
covariance matrix P0 which is positive definite, is assumed
to be uncorrelated with the two noise sequences.

We assume the system (1) are subject to the following
constraints:

xk ∈ Ωx, ωk ∈ Ωω, ek ∈ Ωe (2)

where Ωx, Ωω and Ωe are polytopic sets containing the
origin.

We formulate a constrained state estimation problem as

1
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the follows:

JT : Φ∗T = min
x̂0,{ω̂k}Tk=0

ΦT

s.t. x̂k+1 = f [k, x̂k] + ω̂k,

yk = h [k, x̂k] + êk,

x̂k ∈ Ωx, ω̂k ∈ Ωω, êk ∈ Ωe. (3)

where

ΦT =

T∑

k=0

(
ê
′
kR
−1êk + ω̂

′
kQ
−1ω̂k

)

+ (x̂0 − x̄0)
′
P−10 (x̂0 − x̄0) (4)

and {ω̂k}Tk=0 denotes the sequence {ω̂0, ω̂1, · · · , ω̂T }, Q
and R are the design choices of variances of the process
and measurement noises. The solution of JT at time T is
x̂o0|T and {ω̂ok|T }Tk=0. The current estimation x̂oT |T is the state
evolution of the system (1) driven by the {ω̂ok|T }T−1k=0 from
the initial state x̂o0|T .

The above estimation is full information estimation with-
out dropping old measurements. This optimization problem
becomes computational intractable as T increases. MHE
removes this difficulty by considering only the most recent N
measurements {yk}TT−N+1 to estimate states {xk}TT−N+1.
We reformulate the object function (4) by breaking the time
interval into two pieces:

ΦT =
T∑

k=T−N+1

(
ê
′
kR
−1êk + ω̂

′
kQ
−1ω̂k

)

T−N∑

k=0

(
ê
′
kR
−1êk + ω̂

′
kQ
−1ω̂k

)

+ (x̂0 − x̄0)
′
P−10 (x̂0 − x̄0) (5)

Because we use the state space model of the system the
quality of the first term of (5) only depends on x̂T−N+1

and sequences {ω̂k}Tk=T−N+1, {êk}Tk=T−N+1. By using for-
ward dynamic programming the full information estimation
(3) with the cost function (5) can be reformulated as the
following equivalence with moving horizon window:

JT : Φ∗T = min
x̂T−N+1,{ω̂k}Tk=T−N+1

T∑

k=T−N+1

(ê
′
kR
−1êk

+ ω̂
′
kQ
−1ω̂k) + θT−N+1(x̂T−N+1)

s.t. x̂k+1 = f [k, x̂k] + ω̂k,

yk = h [k, ω̂k] + êk,

x̂k ∈ Ωx, ω̂k ∈ Ωω, êk ∈ Ωe (6)

where

θT (z) = min
x̂0,{ω̂k}T−1

k=0

{ΦT−1 :

x̂(T ; x̂0, {ω̂k}T−1k=0 ) = z} (7)

where the minimization is subject to the constraints (2) and
x̂(T ; x̂0, {ω̂k}T−1k=0 ) denotes the state evolution of the system
(1) when the initial sate is x̂0 and the process noise is
{ω̂k}T−1k=0 . It follows that θ0(x̂0) = (x̂0− x̄0)

′
P−10 (x̂0− x̄0).

The arrival cost θT−N+1(x̂T−N+1) denotes the contribution
of the measurements {yk}k=T−Nk=0 on the estimation of state
xT−N+1 and allows us to formulate the full information esti-
mation as MHE. For the majority of systems with constraints,
we can not obtain analytical expression for the arrival cost.
Because full information estimation has very good theoret-
ical properties in terms of stability and optimality [7] we
formulate MHE as close as possible to the full information
estimation by designing a suitable arrival cost.

III. APPROXIMATION OF THE ARRIVAL COST

One reasonable solution is to approximate the arrival
cost for constrained estimation problem with the arrival
cost for the unconstrained estimation problem. Here two
approximations of the arrival cost for linear system and
nonlinear system are introduced respectively.

For linear system it is assumed that the functions f [k, xk]
and h [k, xk] are defined by

f [k, xk] := Akxk, h [k, xk] := Ckxk.

The unconstrained full information estimation is known as
Kalman Filter. Kalman filtering covariance update formula
is

Pk = Q+Ak−1Pk−1A
′
k−1

−Ak−1Pk−1C ′k(R+ CkPk−1C
′
k)−1CkPk−1A

′
k−1 (8)

with initial condition P0 and its arrival cost is expressed as

θk(z) = (z − x̂ok|k−1)′P−1k (z − x̂ok|k−1) + Φ∗k−1 (9)

In constrained MHE for linear system the arrival cost is
approximated by the arrival cost of Kalman Filter (i.e. (9)).

For nonlinear system one strategy to approximate the
arrival cost θk(·) is to employ the first-order Taylor se-
ries approximation of the system (1) around the estimated
trajectory. This strategy yields the Extended Kalman Filter
covariance update formula. Suppose the model functions
f [k, xk] and h [k, xk] are sufficiently smooth. Then the
arrival cost is approximated as

θ̃k(z) = (z − x̂MHE
k|k−1)′P−1k (z − x̂MHE

k|k−1) + Φ̃∗k−1 (10)

where Pj sequence is obtained by solving the matrix Riccati
equation (8) in which

Ak =
∂f(k)

∂x
|x=x̂MHE

k|k
, Ck =

∂h(k)

∂x
|x=x̂MHE

k|k

and the superscript MHE means that the state estimation is
obtained by MHE .

For T > N we formulate the implementation of con-
strained MHE as the solution to the following least-squares
program which approximates to the estimation problem JT :

J̃T : Φ̃∗T = min
x̂T−N+1,{ω̂k}Tk=T−N+1

Φ̃T

s.t. x̂k+1 = f [k, x̂k] + ω̂k,

yk = h [k, x̂k] + êk,

x̂k ∈ Ωx, ω̂k ∈ Ωω, êk ∈ Ωe (11)
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where the objective function is defined as

Φ̃T =
T∑

k=T−N+1

(
ê
′
kR
−1êk + ω̂

′
kQ
−1ω̂k

)

+ θ̃T−N+1(x̂T−N+1) (12)

Note that the arrival cost is approximated as (10) including
the linear and nonlinear cases.

IV. ILLUSTRATE EXAMPLE

In this section we show, with simulation examples, the
advantage of constrained MHE comparing to Kalman Filter
and EKF when the process and measurement noise variances
are not chosen correctly. In the following simulations it is
assumed that process and measurement noises are white
Gaussian noises. And we denote the ith element of a vector
z in time instant k as zi,k.

A. Performance Comparison of Kalman Filter and Con-
strained MHE

Consider an observable discrete linear system:

xk+1 =




0.2695 0.4779 0.1127 0.1339

0.2688 0.4786 0.0753 0.1713

0.0053 0.0063 0.5713 0.0168

0.0035 0.0081 0.0094 0.5782


xk +




1

1

1

1


uk

+ ωk

yk =
[
1 0.5 1 0.5

]
xk + ek

We assume the constraints are



2.2

2.4

0

0


 6 xk 6




4.3

4.2

2.7

2.3


 ,




−1

−1

−1

−1


 6 wk 6




1

1

1

1




and
E
(
ωkω

T
k

)
= 0.1× I4, E

(
eke

T
k

)
= 5.

Kalman Filter results is an optimal estimation for linear
system when Q and R are chosen to match process and
measurement noises. However, the variances of process and
measurement noises are often not known exactly in practice
and Q and R are often used as tuning parameters of the
Kalman filter.

Figure 1 and 2 show that the Kalman Filter could produce
estimates that violate the state constraints when Q and R are
not chosen correctly while the constrained MHE gives state
estimates that are within the constraints. The reason is that
the prior information of constraints are taken into account in
the constrained MHE while Kalman Filter does not.

Also in Table I we use the criterion:

JKF =
T∑

k=1

(x1,k − x̂o1,k|k)2, JMHE =
T∑

k=1

(x1,k − x̂MHE
1,k|k )2

to compare the estimation performance of Kalman Filter and
MHE when the variances of process and measurement noises
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Fig. 1. Estimation performance with Q = 10× I4 and R = 5
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Fig. 2. Estimation performance with Q = 0.1× I4 and R = 0.1

TABLE I
PERFORMANCE COMPARISON OF KALMAN FILTER AND MHE

Q = qI4 with q R Kalman Filter MHE wih N = 5

0.1 5 13.9794 13.9794

10 5 166.6161 37.1588

10 1 194.8563 37.5834

100 1 203.5847 37.7831

are not chosen correctly. The correct values are q = 0.1 and
R = 5 (row 1). When this is the case, Kalman Filter gives
the optimal estimates and the performance of Kalman Filter
and constrained MHE is almost the same. The performance
of Kalman Filter deteriorates significantly when the values
of q and R are inaccurate (rows 2 to 4). The constrained
MHE, however, is less sensitive to the values of q or R.
Thus constrained MHE is robust to the uncertain information,
in particular to the variances of process and measurement
noises.
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B. Performance Comparison of EKF and Constrained MHE

Consider a radar tracking application

xk+1 =




1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


xk + ωk

yk =

[√
x21,k + x23,k

arctan
x3,k

x1,k

]
+ ek

where ωk and ek are zero means Gaussian noise with
variance

E
(
ωkω

T
k

)
=




1 0 0 0

0 0.01 0 0

0 0 1 0

0 0 0 0.01


 , E

(
eke

T
k

)
=

[
9 0

0 1

]
.

The constraints are

140 6 x2,k, x4,k 6 210.

The initial state is x0 = [0 200 0 200]′ and we chose

P0 = I4, N = 40.

Figure 3 shows that the performance of EKF and con-
strained MHE are almost the same when Q and R are
chosen correctly. Constrained MHE is able to keep the state
estimates within the constraints while the EKF is unable to
do so shown in Figure 4 when the values of Q and R are
not chosen correctly. The inaccurate values of Q and R used
in Figure 4 are

Q =




1 0 0 0

0 10 0 0

0 0 1 0

0 0 0 1


 R =

[
0.09 0

0 0.1

]
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Fig. 3. Estimation of Velocities using EKF and constrained MHE when
Q and R are chosen correctly
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Fig. 4. Estimation of Velocities using EKF and constrained MHE when
Q and R are inaccurate

V. CONCLUSION

In this paper, we review the implementation of constrained
MHE which is applicable to both linear and nonlinear sys-
tems. The constrained MHE is formulated where the arrival
cost is approximated by the solution to a Kalman Filter
for a linear estimation problem and by EKF for nonlinear
estimation. Two illustrative examples, including one on a
typical non-linear radar tracking problem, were studied and
the simulation results demonstrate that the constrained MHE
exhibits robust performance when there is poor prior knowl-
edge of the process and measurement noises as compared
to stand-alone Kalman Filter and EKF. Our future work will
consider deploying the proposed MHE strategy for real-time
applications where computational resources are limited. We
aim to devise algorithms that could exploit the structure
of the specific problems and types of nonlinearity to gain
computational advantage.
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Abstract—Second order Quadratic Programming (QP) solvers
such as interior-point method (IPM) require the solution of a
system of linear equations at every iteration and could be a factor
limiting the implementation of IPM to miniaturized devices or
embedded systems. In contrast, first order QP solvers such as
alternating direction method of multipliers (ADMM) does not re-
quire the solution of a system of linear equations. Thus first order
QP solver is cheaper and easier to be implemented in embedded
systems such as FPGA which has limited hardware resources. In
this paper an FPGA implementation of ADMM which solves QP
problems arising from Moving Horizon Estimation is proposed
to demonstrate the “MHE on a Chip” idea. Our design has been
implemented in both fixed-point and floating point arithmetic on
the Xilinx Zynq-7000 XC7Z020-1CLG484C AP SoC and clocks
at 50 MHz.

I. INTRODUCTION

Interior Point Method (IPM) and Active Set Method (ASM)
are two commonly employed approaches for solving QP
problems. In every iteration of IPM and ASM, the solution
of a system of linear equations is required and this could
be a factor limiting the implementation IPM or ASM to
miniaturized devices or embedded systems. Recently first order
QP solvers receive significant interests [1]–[3]because of its
simple computational structure and low cost implementation.
In contrast to the IPM and ASM, first order QP solver such as
alternating direction method of multipliers (ADMM) does not
require the solution of a system of linear equations and this
makes first order QP solver easier and cheaper to implement
on embedded systems such as Field Programmable Gate Array
(FPGA).

Recent advances in reconfigurable hardware technology
have made FPGA becoming more popular in a wide range
of embedded applications. Implementation with FPGA brings
a shorter design cycle and greater flexibility comparing with
ASIC. Moreover, high speed computation can be achieved
through parallelization and customization to meet timing re-
quirement.

There have been several previous FPGA implementations of
QP solvers [4]–[6]. In [6] QP solver based on infeasible IPM
has been implemented on FPGA for Model Predictive Control
(MPC). The comparison of implementation of IPM and ASM
on FPGA for MPC was discussed in [7]. In [8] the authors
proposed that the FPGA can provide substantial accelerating
by exploiting the parallelism inherent in Multiplexed MPC
(MMPC). All these papers implemented the QP solvers which
requires the solution of system of linear equations. Similar to

Fast Gradient Method, ADMM is also a first order method that
has simple computational structures which allow efficient par-
allelism. In addition, the method are division-free making the
implementation efficiently since division is a costly operation
in FPGA design, in term of resource and latency, comparing
with other operations such as multiplication or addition .

Using high-level synthesis (HLS) tools, such as Vivado
HLS from Xilinx or Synphony C Compiler from Synopsys
[9], for implementation with FPGA brings lots of advantages.
Designing at a higher abstraction level makes it possible to
handle the increasing complexity of embedded applications.
For those who do not have the training to work with hardware
description languages (HDLs) to perform a register transfer
level (RTL) description of the hardware, HLS tools offer an
alternative approach. HLS tools also facilitate rapid proto-
typing. FPGA design and implementation by HLS not only
significantly saves time, but also reduces the risk of mistakes.
For the implementation of ADMM-based QP Solver on FPGA,
we used Vivado HLS and System Generator to generate the
bit stream from a C-based design.

MHE is a kind of optimization-based state estimation
where an on-line constrained optimization is solved and the
measurements in a moving window are used to estimate the
state. In applications, limits or constraints on state variables are
often known a priori and can be expressed as inequalities. For
example temperature, pressure, flow rates, and concentration,
must be non-negative and cannot go above some upper bound.
Constrained MHE can include the prior information (i.e.
constraints), non-Gaussian noises [10] and nonlinear system
without linearisation [11]. The parallel computing architecture
of FPGA can accelerate the computation to solve on-line
constrained optimization. In this paper a ADMM-based QP
solver which solves on-line constrained optimization problems
is implemented in FPGA with the aim to extend MHE to
embedded applications.

This paper is organized as follows. In Section II we
summarise the method of using ADMM to solve MHE for
linear system. The procedure for designing and arriving at a
FPGA implementation of ADMM-based MHE is described in
Section III. Section IV discusses the approaches to accelerate
computation for our FPGA designs. In Section V, an example
is used to illustrate our designs. Conclusions and future work
are given in Section VI.
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II. ADMM METHOD FOR MHE

A. QP formulation of MHE

Consider the following linear system

xk+1 = Axk +Buk + ωk (1)
yk = Cxk + ek (2)

where xk ∈ Rn is the state vector, yk ∈ Rp is the measure-
ment. The process noise ωk and measurement noise ek are
assumed additive, zero mean and white noises with variances
Q and R respectively. The initial state, with estimate x̄0, an
approximation mean, and the associated covariance matrix P0

which is positive definite, is assumed to be uncorrelated with
the two noise sequences.

We assume that the state and noise vectors in (1) are subject
to the following constraints:

xk ∈ Ωx, ωk ∈ Ωω (3)

where Ωx and Ωω are polytopic sets containing the origin.
Given the N most recent measurements {yk}Tk=T−N+1 at

T , the MHE is defined as

min
x̂T−N+1,

{ω̂k}T−1
k=T−N+1

1

2

T∑
k=T−N+1

‖êk‖2R−1 +
1

2

T−1∑
k=T−N+1

‖ω̂k‖2Q−1

+
1

2
‖x̂T−N+1 − µ̂T−N+1‖2P−1

T−N+1

s.t. x̂k+1 = Ax̂k +Buk + ω̂k,

yk = Cx̂k + êk,

x̂k ∈ Ωx, ω̂k ∈ Ωω (4)

where

Pk =Q+APk−1A
′

−APk−1C
′(R+ CPk−1C

′)−1CPk−1A
′ (5)

µ̂T−N+1 =Ax̂oT−N +BuT−N (6)

and x̂oT−N is the estimation of x at T −N .
By defining:

z =
[
x̂TT−N+1 · · · x̂TT ω̂T

T−N+1 · · · ω̂T
T−1

]T
Y =

[
µ̂T
T−N+1, y

T
T−N+1, · · · , yTT

]T
.

H =

[
ΥTΛΥ 0

0 IN−1 ⊗Q−1

]
,

K =

[
1N ⊗ Ωx

1N−1 ⊗ Ωω

]
(7)

g = − (IN−1 ⊗B)


uT−N+1

...
uT−1

 , h =

[
ΦY

0

]
, (8)

G =


A −In 0 · · · 0 0 In 0 · · · 0

0 A −In · · · 0 0 0 In · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · A −In 0 0 · · · In


and

Φ = −ΥTΛ, (9)

Υ =

[
In

IN ⊗ C

]
, Λ =

[
P−1T−N+1 0

0 IN ⊗R−1

]
,

(⊗ is Kronecker product, Im is denoted as the identity matrix
with m of dimension,)

The constrained optimization problem (4) can be formulated
as following standard form:

min
z

1

2
zTHz + hT z (10)

s.t. Gz = g, (11)
z ∈ K, (defined as Eq. (7)) (12)

The size of H is (2N − 1)n × (2N − 1)n and QP size is
defined as

QPSize = (2N − 1)n (13)

B. ADMM for MHE

The ADMM algorithm [12] for the MHE QP problem (10)
is as follow [13]:

− Choose initial condition z0, θ0, τ0

Do

1. θi+1 = M11(−h− τi + ρzi) + M12g (14)

2. zi+1 = πK(θi+1 +
1

ρ
τi) (15)

3. τi+1 = ρθi+1 + τi − ρzi+1 (16)
4. ε = ‖θi+1 − θi‖2

While(ε > ε0)

(17)

where M11 and M12 are computed offline as[
H + ρI(2N−1)n GT

G 0

]−1
=

[
M11 M12

MT
12 M22

]
(18)

with the notation of projection operation:

πK(zk) = arg min
z∈K

‖z − zk‖2 (19)

In MHE application constraints are usually imposed to restrict
the minimum and maximum values of internal states or noises.
For simplicity of FPGA implementation we assume the con-
straints Ωx and Ωω are box type constraints, i.e.,

Ωx = {xk : xmin 6 xk 6 xmax} (20)
Ωω = {ωk : ωmin 6 ωk 6 ωmax} (21)
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Consequence, K is box: {K : zmin ≤ z ≤ zmax }.
where

zmin =

[
1N ⊗ xmin

1N−1 ⊗ ωmin

]
, zmax =

[
1N ⊗ xmax

1N−1 ⊗ ωmax

]
and 1m is the m × 1 vector of ones. With the box type
constraints assumption the solution (15) reduces to

zi+1 = max

{
zmin, min

{
zmax,

(
θi+1 +

1

ρ
τi

)}}
(22)

As a summary, MHE with box constraints using ADMM
algorithm is:

Algorithm 1

− Compute M11, M12 with a ρ > 0 as (18)
− Choose initial condition z0, θ0 ∈ K,

τ0 = 0, ε0 : Stopping Criterion

−While (new measurement is available)

Compute h and g as (8), M12g
Do

1. θi+1 = M11(−h− τi + ρzi) + M12g (23)
2. zi+1 =

max

{
zmin, min

{
zmax,

(
θi+1 +

1

ρ
τi

)}}
(24)

3. τi+1 = ρθi+1 + τi − ρzi+1 (25)
4. ε = ‖θi+1 − θi‖2 (26)
while(ε > ε0)

− end While

III. FPGA IMPLEMENTATION

To implement a ADMM-based QP solver for MHE on
FPGA, we use Vivado HLS, Xilinx System Generator and
MATLAB/Simulink as development tools, and the Zynq
ZC702 board [14]–[16].

Vivado HLS, a high-level synthesis tool, allows the
designer to describe the computational algorithm using a
high-level language, commonly C/C++/SystemC, to generate
automatically the register transfer level (RTL) description,
e.g. VHDL or Verilog, for FPGA implementation. Especially
for those whose main expertise is in control system design,
writing algorithms in C is easier and more familiar than
using hardware description languages. Therefore, high-level
synthesis tools accelerate the design process for complicated
algorithms, and significantly reduce design time. The main
steps to implement our ADMM-based QP sovler on FPGA
for MHE problems is shown in Figure 1 and is described next.

Step 1: C/C++ Coding
The MHE with box constraints using ADMM algorithm
(Algorithm 1) is written in C where the ADMM part is shown
in Figure 2.

Step 2: Synthesis and RTL export with Vivado HLS

Fig. 1. Design flow for FPGA Implementation

Fig. 2. ADMM C code in the MHE with box constraints

Vivado HLS supports floating-point (single or double precision
IEEE-754 standard compliance) or fixed-point arithmetic for
synthesis. In addition, Vivado HLS allows designers to
customize the design by adding synthesis directives/constraint
such as loop-unroll, pipeline, resource constraint, etc for
performance optimization. The design is then synthesized and
exported as a RTL module with different options for further
processing with other Xilinx tools.
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Step 3: Bit stream and Hardware co-simulation block
generation with System Generator
To verify that the ADMM algorithm is implemented correctly,
the RTL module generated from Vivado HLS is imported to
System Generator (SysGen) which is integrated with Simulink.
SysGen generates the bit-stream for FPGA configuration, and
a Hardware co-sim block for the interfacing between FPGA
and Simulink environment [14].

Step 4: Implementation on FPGA
Through the hardware co-sim block generated from SysGen,
the bit stream is downloaded to the FPGA board. This
block allows Simulink and the FPGA board to be connected
directly so that FPGA-in-the-Loop simulation can be carried
out as shown in Figure 3. In this simulation scheme, QP
problems of MHE at each sample time are sent to FPGA
board via JTAG communication from Simulink. After
completing the computation, FPGA board sent back the result
to Simulink, and wait for the next computation task. The
interface setting between the FPGA board and Simulink is
defined by the Hardware Co-sim block. In the simulation, the
FPGA clocking mode is free running. The synchronization
mechanism (Figure 4) is as follow : the Logical Control
block generates the Start signal periodically (Ts), this signal
triggers the FPGA starting operation; when FPGA is busy
the Idle signal goes low, and goes high when the FPGA has
completed the computation. Based on the rising edge of the
Idle signal, the Buffer capture the solution.

Fig. 3. Hardware Co-simulation with FPGA

Fig. 4. Synchronization mechanism

IV. COMPUTATIONAL ACCELERATION

Since our proposed ADMM for MHE (Algorithm 1) is
division free, it allows an efficient fixed-point arithmetic im-
plementation which will run faster than a floating point de-
sign. Moreover, ADMM consist loops involving in computing
matrix-vector product, loop pipeline technique was employ to
exploit the parallelism. The efficiency of fixed-point arithmetic
and loop pipelining are discussed in Section V.

A. Fixed-point Arithmetic Implementation

Comparing with floating point arithmetic, the circuitry for
fixed-point computations is much more simple and faster, but
the dynamic range is limited. The design of fixed point data
type is based on the accuracy required, and the dynamic range
of the variable involving in the algorithm. Since there have not
been any general results on establishing an analytical bound for
ADMM, it must estimate the bounds through simulation study
for a particular QP problem. In our particular MHE example
shown in Section V, through simulation we got the lower and
upper bound for dynamic variables (Table 1). The fixed point
data type is chosen (Table I) to ensure the required accuracy
and dynamic range. For an accuracy of ε = 10−6, about
(6ln(10))/ln(2) = 20 fractional bits is required. Looking
at the different range of the variables, ideally different word
and fractional bit length fixed-point representation should be
used. Since the DSP48 block of Xilinx Zynq ZC702 consists
of a 25× 18 bit multiplier, we chose 25 and 18 bits long data
types for variables involving in the multiplication operation.
The use of different fixed-point data type is a subject of the
future work. In order to show the effectiveness of fixed point
arithmetic, we also implemented the algorithm in floating point
(single precision 32 bit IEEE 754 standard) for resouces and
timing comparison (Section V).

TABLE I
FIXED POINT DESIGNATION (N = 5, n = 4)

Variable Range Word Fraction
M11,M12 (−0.02, 0.09) 25 19

z (−0.12, 4.3) 25 19
θ (−0.12, 4.56) 25 19
τ (0, 1.31) 25 19
h (−15.02, 0) 25 19
g (−1, 1) 25 19

ro, 1/ro ro = 4, 1/ro = 0.25 18 10
Intermediate (−10, 10) 25 19

B. Loop pipelining

To exploit the parallelism, loop pipelining (LPP) technique
was employed. The computation is in a parallel manner. As a
result, this reduces the latency, but the cost is more hardware
resource and hence chip area. To apply LPP, Vivado HLS
provides compiler directive: set_directive_pipeline
<code section> or # pragma HLS pipeline
[Option] [14]. In default option, Vivado HLS
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automatically control the Initiation Interval (II) which is
the number of cycles between each new execution of the loop
body, to achieve minimum latency. Figure 5 illustrates LPP
mechanism. If a loop need Q iterations, each iteration takes
N cycles to complete, then it take NQ cycles to complete
( Figure 5a). When employ LPP, the latency of the loop is
(Q − 1)II + N cycles ( Figure 5b). The lower the II is,
the smaller latency it achieves. In our design, three loops
of the ADMM algorithm is applied pipeline directive, by
adding pragma directive before the code section of the loop
as in Figure 2. The accelerating effectiveness depends on
the computational architecture and data dependencies of
the algorithm. Since ADMM consist of mainly dot-product
operations, which is simple computation structure and high
data dependence, so that it allows efficient parallelism. In
Section V we will show the computation acceleration and
resources usage of ADMM with LPP.

In summary, Table II shows the various designs imple-
mented on FPGA.

Fig. 5. Loop pipelining

TABLE II
VARIOUS “MHE ON CHIP” DESIGNS IMPLEMENTED

Design Name Description
Fl32 Single precision floating point without LPP
Fl32-LPP Single precision floating point with LPP
Fi25 25-bit word fixed-point without LPP
Fi25-LPP 25-bit word fixed-point with LPP
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Fig. 6. Comparison of MHE solutions by FPGA and PC

V. RESULTS

A. Illustrative Example

As an illustration, we use our designs shown in Table II to
solve the following MHE example:

xk+1 =


0.2695 0.4779 0.1127 0.1339

0.2688 0.4786 0.0753 0.1713

0.0053 0.0063 0.5713 0.0168

0.0035 0.0081 0.0094 0.5782

xk +


1

1

1

1

uk
+ ωk

yk =
[
1 0.5 1 0.5

]
xk + ek

We assume the constraints are
2.2

2.4

0

0

 6 xk 6


4.3

4.2

2.7

2.3

 ,

−1

−1

−1

−1

 6 wk 6


1

1

1

1


and

Q = E
(
ωkω

T
k

)
= 0.1× I4, R = E

(
eke

T
k

)
= 5,

x0 =
[
3 3 1.3 1.3

]T
, uk = 0.5.

The parameters of MHE (4) are

P0 = I4, µ̂0 =
[
3 3 1.3 1.3

]T
, N = 5.

B. Hardware Co-simulation Result

The MHE solutions obtained from employing MATLAB
quadprog(), m-File ADMM and ADMM implemented on
FPGA are depicted in Figure 6 which shows that the MHE
solutions in MATLAB on a PC (red-square line and green
cross line) and MHE solution by ADMM method in FPGA
(blue-rhombus line and pink-diamond) are slightly different.
The fixed-point version is almost the same as the floating-
point version on FPGA. Figure 7 show the relative errors in
FPGA computation( both fixed-point and floating point), and
from this we see that the accuracy are acceptable (less than
2%)
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Fig. 7. Relative Error between different computations

C. Average running time and iteration time

Table III shows the average running time per MHE
sampling instant of different FPGA designs for different QP
sizes. The QP size depends on the estimation horizon N and
is equal to (2N − 1).4 (see (13) ) in our MHE example.
The second column of Table III shows the average iteration
time, to achieve an accuracy ε0 = 10−6, at each sampling
instant of ADMM in FPGA . The number of iterations
of ADMM increases as the QP Size grows. Moreover, the
number of iterations of ADMM also depends on the numerical
characteristic of a particular QP problem, e.g the condition
number of the Hessian matrix.

Computational acceleration of LPP and fixed-point
designs
From column 6 & 9 of Table III, we see that LPP sped up
the computation significantly. For a fixed-point design, LPP
speeds up about 7 times, whereas with a floating point design,
it is about 30 times faster with LPP.
Also as expected, fixed-point design runs faster than floating
point design. From two last column of Table III, we can see
that the speed up factor is about 4.7 and 1.2 for designs with
and without LPP respectively.

Resource Comparison
As expected, fixed-point design is not only faster, but also it
cost less hardware resources than floating point design. Also, a
design with LPP which speed up the computation costs much
more resource than a design without LPP. As an illustration,
Table IV shows the resource usage for the case when the
estimation horizon N = 5 resulting in QP Size= 36.

TABLE IV
HARDWARE RESOURCE COMPARISON (QP SIZE 36)

Design BRAM18s DSP48s LUTs FFs
Fi25 16 14 1385 837
Fi25− LPP 16 157 5377 3977
Fl32 17 16 1538 3521
Fl32− LPP 17 32 8976 8562
Available 280 220 53200 106400

D. Max QP size

Base on the resource used for some difference QP Size
problems; we estimate the largest QP size that can be im-
plemented on this FPGA board is about 300. This is the
largest solvable QP problem on an embedded platform in the
literature. Future work will be carried out to confirm this
number.

VI. CONCLUSION AND FUTURE WORKS

In this paper we have implemented the ADMM method
on an FPGA to solve QP problems arising from MHE, and
demonstrated the feasibility of the “MHE on chip” idea. The
average running time per MHE sampling instance by various
FPGA designs are compared for different QP sizes. Also we
compare the speed and resources usage of our MHE-on-FPGA
implementations with and without Loop pipelining as well
as fixed-point and floating point arithmetic. Loop pipelining
technique sped up significantly the computation but much more
resources used. Fixed-point design not only faster but also
cheaper than a floating point design. A natural extension of
this work includes

1) Establish the generally analytical bound for fixed-point
arithmetic implementation, since the current bound is
based on the simulation

2) Accelerate computation on FPGA by further exploring
the structure and property of ADMM and MHE

3) ADMM-based MHE on FPGA for nonlinear plant and
apply the ADMM implemented on FPGA for MHE to a
real plant.
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A Simulink Model for “MHE on a Chip”

Figure 1: FPGA-in-the-Loop Simulation System
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Figure 2: FPGA Harware Co-Simulation Block

Figure 3: Control Logic Block

Figure 4: Plant Data Y
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Figure 5: Setting Block

Figure 6: Buffer Block
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B “MHE on a Chip” Experimental Setup

Figure 7: Zynq ZC702 APP SoC

Figure 8: Hardware Co-Simulation
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C C++ Code for “MHE on a Chip”

1

2 C++ Code
3 /*
4 * File mhe admm.cpp
5 * By DANG Van Thuy @ Control Engineering Lab @ NTU, Singapore
6 * May 2014
7 * Ver 1.0
8 * MHE Project
9 */

10

11 #include "mhe admm.h"
12

13 //MHE base on ADMM function declaration
14 int mhe admm(dType1 y[N],dType1 muy0[n], dType1 TOL[1],dType2 ro[0],dType1 v[N-1], dType1 ...

z[size],dType1 xH[n],int loops[1],dType1 xArrive[n])
15 //Input: y, muy0, TOL (Tolerance), ro, v(u)
16 //Output: z, xH, Loops counter, xArrive
17 {
18 dType1 zK[size],zK1[size],uk[size], uk1[size],xK1[size], h[size], g[16], m12g[size];
19 dType1 epsilon=0;
20 int i,j,t,loopCounter,count;
21 dType1 temp;
22 dType1 zTemp[size];//,thetaTemp[size];
23 dType2 ro 1;
24 dType1 epsilon 0;
25 int loopCount;
26 int loopNum;
27 ro 1=0.25;
28 epsilon 0=TOL[0];
29

30 //Variable Initiation
31 MHE admm init:for(i=0;i<size;i++)
32 {
33 zK[i]=zMin[i];
34 uk[i]=0;
35 xK1[i]=zMin[i];
36 zK1[i]=zMin[i];
37 uk1[i]=0;
38 h[i]=0;
39 };
40

41 // h , g calculation h=-Gama'*Lamda'*Y=-GaLa*[muy0,Y];
42 MHE hCalculation:
43 for(i=0;i<20;i++)
44 {
45 temp=0;
46 for(j=0;j<4;j++)
47 {
48 temp=temp+GaLa[i][j]*muy0[j];
49 }
50

51 for(j=4;j<9;j++)
52 {
53 temp=temp+GaLa[i][j]*y[j-4];
54 }
55 h[i]=temp;
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56 }
57

58 // g Calculation g=-Bba*v =[-u0 ;-u0 ;u0 -u0....
59 admmQP cCalculation:for(i=0;i<4;i++)
60 {
61 g[4*i+1]=-v[i];
62 g[4*i+2]=-v[i];
63 g[4*i+3]=-v[i];
64 g[4*i]=-v[i];
65 }
66

67 //m12g=M12 *g calculation 36x16 16x1
68 MHE admm M12gCalculation:for(i=0;i<size;i++)
69 {
70 temp=0;
71

72 loop label4:for(j=0;j<16;j++)
73 {
74 temp=temp+M12[i][j]*g[j];
75 }
76 m12g[i]=temp;
77 }
78

79 //¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ ADMM loop ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬...
¬¬¬¬¬¬¬¬

80 loopCounter=0;
81 epsilon=1;
82

83 ADMM loop:do
84 {
85 //xK1=M11*(-h+ro*(zK-uk))+M12*g
86 Loop 1:for(i=0;i<size;i++)
87 {
88 #pragma HLS PIPELINE //Loop Pipelining Directive
89

90 temp=0;
91 Loop 1.1:for(j=0;j<size;j++)
92 {
93 temp=temp+M11[i][j]*(-h[j]+ro[0]*(zK[j]-uk[j]));
94 }
95 xK1[i]=temp+m12g[i];
96 zTemp[i]=xK1[i]+ro 1*uk[i];
97 }
98

99 // Projection
100 Loop 2:for(i=0;i<size;i++)
101 {
102 #pragma HLS PIPELINE
103

104 if(zTemp[i]<zMax[i]) zK1[i]=zTemp[i];
105 if(zTemp[i]>zMax[i]) zK1[i]=zMax[i];
106 if(zK1[i]<zMin[i]) zK1[i]=zMin[i];
107 }
108

109 //uk1=xK1+uk-zK1
110 epsilon=0;
111 Loop 3:for(i=0;i<size;i++)
112 {
113 #pragma HLS PIPELINE
114

115 uk1[i]= xK1[i]+uk[i]-zK1[i];
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116 epsilon=epsilon+(zK1[i]-zK[i])*(zK1[i]-zK[i]);
117 zK[i]=zK1[i];
118 uk[i]=uk1[i];
119 }
120 loopCounter=loopCounter+1;
121 }
122 while(epsilon>epsilon 0);
123

124 //¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬End ADMM¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
125

126 //Output
127 admmQP outZ:for(i=0;i<size;i++)
128 {
129 z[i]=zK[i];
130 }
131 loops[0]=loopCounter;
132 MHE admm outXhat:for(i=0;i<4;i++)
133 {
134 xH[i]=zK[i];
135 xArrive[i]=zK[16+i];
136 }
137 //ack[0]=1;
138 Return loops[0];
139 }
140

141

142

143

144 /*
145 * File mhe admm.h
146 * By DANG Van Thuy @ Control Engineering Lab
147 * NTU, Singapore
148 * May 2014
149 * Ver 1.0
150 * MHE Project
151 */
152

153 #ifndef admmQP H
154 #define admmQP H
155 #include"ap fixed.h"
156 #include"stdio.h"
157 #include "math.h"
158

159 typedef ap fixed<25,6,AP RND, AP SAT> dType1; // Fixed point Data Type , 25 bits long, ...
6 integer bits

160 typedef ap fixed<18,8,AP RND, AP SAT> dType2; // Fixed point Data Type , 18 bits long, ...
8 integer bits

161

162

163 #define N 5
164 #define M 4
165 #define n 4
166 #define Nn 20
167 #define size 36 // QP Size (2*N-1)*n
168

169 #define wL 16
170 #define mNu 12
171

172 // MHE base on ADMM function
173
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174 int mhe admm(dType1 y[N],dType1 muy0[n], dType1 TOL[1],dType2 ro[0],dType1 v[N-1], dType1 ...
z[size],dType1 xH[n],int loops[1],dType1 xArrive[n]);

175

176 // M11, M12 pre-computed and loaded M11: 36x36 Matrix, M12: 36x16 Matrix
177 const dType1 M11[size][size]=
178 {
179 {0.0861026975072449,0.0115724687727949,-0.00127297278375129,-0.000925443208968007,0.019995714317645,...\\
180 ,...,0.0564792028859685},
181 };
182

183 const dType1 M12[size][wL]=
184 {
185 {0.118608904521333,0.13640580586447,0.0147584872209736,0.0192466287930242,0.0574180881243037,...
186 \\
187 ...,0.20929115959644},
188 };
189

190

191 const dType1 zMax[size]=
192 {
193 4.30000000000000,
194 4.20000000000000,
195 2.70000000000000,
196 2.30000000000000,
197 4.30000000000000,
198 4.20000000000000,
199 2.70000000000000,
200 2.30000000000000,
201 4.30000000000000,
202 4.20000000000000,
203 2.70000000000000,
204 2.30000000000000,
205 4.30000000000000,
206 4.20000000000000,
207 2.70000000000000,
208 2.30000000000000,
209 4.30000000000000,
210 4.20000000000000,
211 2.70000000000000,
212 2.30000000000000,
213 1,
214 1,
215 1,
216 1,
217 1,
218 1,
219 1,
220 1,
221 1,
222 1,
223 1,
224 1,
225 1,
226 1,
227 1,
228 1,
229

230 } ;
231

232 const dType1 zMin[size]=
233 {
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234 2.20000000000000,
235 2.40000000000000,
236 0,
237 0,
238 2.20000000000000,
239 2.40000000000000,
240 0,
241 0,
242 2.20000000000000,
243 2.40000000000000,
244 0,
245 0,
246 2.20000000000000,
247 2.40000000000000,
248 0,
249 0,
250 2.20000000000000,
251 2.40000000000000,
252 0,
253 0,
254 -1,
255 -1,
256 -1,
257 -1,
258 -1,
259 -1,
260 -1,
261 -1,
262 -1,
263 -1,
264 -1,
265 -1,
266 -1,
267 -1,
268 -1,
269 -1,
270

271 } ;
272

273 const dType1 GaLa[20][9]=
274 {
275 {-6.99897353428822 ,3.00726673635644 ,0.397510911062318 ,0.482987654546387 ...

,-0.200000000000000 ,0 ,0 ,0 ,0},
276 {3.00726673635644 ,-6.95879175306943 ,0.190294233491864 ,0.691613831146628 ...

,-0.100000000000000 ,0 ,0 ,0 ,0},
277 {0.397510911062318 ,0.190294233491864 ,-6.88479688368285 ...

,0.00358283802374717 ,-0.200000000000000 ,0 ,0 ,0 ,0},
278 {0.482987654546387 ,0.691613831146628 ,0.00358283802374717 ...

,-6.86404367001155 ,-0.100000000000000 ,0 ,0 ,0 ,0},
279 {0, 0 ,0 ,0 ,0 ,-0.200000000000000 ,0 ,0 ,0},
280 {0, 0 ,0 ,0 ,0 ,-0.100000000000000 ,0 ,0 ,0},
281 {0 ,0 ,0 ,0 ,0 ,-0.200000000000000 ,0 ,0 ,0},
282 {0, 0 ,0 ,0 ,0 ,-0.100000000000000 ,0 ,0 ,0},
283 {0 ,0 ,0 ,0 ,0 ,0 ,-0.200000000000000 ,0 ,0},
284 {0 ,0 ,0 ,0 ,0 ,0 ,-0.100000000000000 ,0 ,0},
285 {0 ,0 ,0 ,0 ,0 ,0 ,-0.200000000000000 ,0 ,0},
286 {0 ,0 ,0 ,0 ,0 ,0 ,-0.100000000000000, 0 ,0},
287 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.200000000000000 ,0},
288 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.100000000000000 ,0},
289 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.200000000000000 ,0},
290 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.100000000000000 ,0},
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291 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.200000000000000},
292 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.100000000000000},
293 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.200000000000000},
294 {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,-0.100000000000000}
295

296 };
297

298 #endif
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