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Large-area �3�3 mm2� flexible photodetectors were realized, based on crystalline InP
semiconductor nanomembranes transferred to flexible polyethylene terephthalate substrates. Very
low dark current �a few microamperes� and high responsivity �0.12 A/W� were demonstrated for
flexible InP p-i-n photodetectors. Bending characteristics were also investigated for this type of
flexible crystalline semiconductor photodetector, and it was found that, whereas the dark current was
independent of bending radii, the photocurrent degraded, depending on the bending radii. © 2010
American Institute of Physics. �doi:10.1063/1.3372635�

Flexible electronic and photonic structures consisting of
electronic and photonic devices that can be bent, expanded,
and manipulated are of great scientific and engineering im-
portance. Such devices find their applications ranging from
flexible imaging/displays, sensors, solar cells, and conformal
electronic/photonic integrated systems to potential integra-
tion into artificial muscles or biological tissues. Most flexible
photonics research so far is based on organic, polymer,
and/or amorphous semiconductor material systems. Crystal-
line semiconductor nanomembranes �NMs� offer unprec-
edented opportunities for high performance flexible photon-
ics. High quality single crystalline silicon NMs �SiNMs�
have been transferred onto various foreign substrates, such as
glass, flexible polyethylene terephthalate �PET� plastics, etc.,
based on low temperature transfer and stacking processes.1–5

Very high performance electronics based on transferable Si/
SiGe NMs were already reported.1–3 Flexible Ge photodetec-
tors �PDs� were also reported recently.6 We have also re-
ported various photonic devices based on Fano resonances
on Si, glass, and flexible PET substrates.7–9 In addition to
Group IV materials �Si, Ge, etc.�, NMs based on III-V
�GaAs, InP, etc.� and other material systems are also being
developed for heterogeneous integration �membrane stack-
ing� on Si and other foreign substrates, with desired elec-
tronic and photonic functions.10,11

However, two significant challenges remain in realizing
practical large-area photonic devices based on stacked crys-
talline semiconductor NMs. One of them is reliable transfer
of large-area crystalline semiconductor NMs, especially for
those fragile materials systems �e.g., GaAs and InP�. The
second challenge is the incorporation of metal contacts for
the desired electrical properties of photonic devices. To ad-
dress these two challenges, we propose and report here a
frame-assisted membrane transfer �FAMT� process. Based
on this process, we have transferred InP NMs onto flexible
PET substrates, and have demonstrated large area flexible

PDs. The characteristics of flexible InP PDs are also reported
here.

Shown in Fig. 1 is the process flow of the FAMT pro-
cess. The starting material consists of the device layers �InP
p-i-n structure, in this case� grown on top of a sacrificial
layer �e.g., InGaAs for the InP material system�.1,9 As shown
in Fig. 1�a�, release holes were formed on the top device
layer, based on a wet or dry etching process. These release
holes are formed to facilitate the selective wet-etching of
sacrificial layer beneath the device layer. Before the actual
selective wet-etch step for the release of the top device layer,
a metal frame �Fig. 1�b�� is formed on top of the device
layer. This metal frame layer serves as the supporting frame
to increase the mechanical strength of the to-be released InP
NMs. At the same time, it can also serve as the top finger
contact layer for the devices to be built on this transferred
NM. After selective wet-etching of the sacrificial layer, the
top device layer is released from the hosting substrate �Fig.
1�c�� and transferred to a foreign substrate �e.g., PET sub-
strate, Fig. 1�d��. Based on this process, we have been able to
transfer different sizes of InP NMs, up to 3�3 mm2, solely
limited by the feature size of the mask used.

Large-area flexible PDs were demonstrated, based on the
crystalline InP p-i-n NMs transferred to a flexible PET sub-

a�Electronic mail: wzhou@uta.edu.

FIG. 1. �Color online� A flow chart for FAMT process. �a� Formation of
release holes on the top device layer; �b� formation of metal-frames �finger
contacts� on top of the device layer; �c� release of the device layer; and �d�
transfer of the device layer onto flexible PET substrate or other foreign
substrates.
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strate as shown schematically in Figs. 2�a� and 2�b�. The
starting material is a p-i-n InP layer �total thickness of
1 �m� grown on top of an InP substrate, with an InGaAs
sacrificial layer sandwiched in between. The thicknesses for
the p-, i-, and n-type InP layers are 400 nm, 100 nm, and
500 nm, respectively. First, release holes were formed on the
top InP layer, based on selective wet etching of InP layer
with a mixed solution of hydrochloric acid and phosphoric
acid �1:4�. Second, an Au finger contact �90 nm thick� was
formed on top of the p-InP layer. Third, the InGaAs layer
was then selectively etched away by immersing the sample
in a HF:H2O2:H2O �1:1:10� solution, and the metal framed
InP layer detached from the InP host substrate. Finally, InP
NM was transferred to the indium tin oxide �ITO�/PET sub-

strate. A complete flexible InP PD array was formed, with
top Au finger contact and bottom ITO transparent contact. A
micrograph of an actual device under test is shown in Fig.
2�c�. Shown in Figs. 2�d�–2�f� are device micrographs with
different zoom-in scales.

The measured flexible InP p-i-n PD characteristics are
shown in Figs. 3–5. Based on the simple stacked bottom ITO
contact, very low dark current of less than 1 �A was ob-
served at reverse biases up to �0.5 V �Fig. 3�a��. Shown in
Fig. 3�b� are the photocurrents measured at different incident
optical powers, with an incident light source of 533 nm
wavelength. A very large operation window is feasible due to
the linear response. As shown in Fig. 4 for light sources with
three different wavelengths �533, 632, and 980 nm�, very

FIG. 3. �Color online� Measured flexible InP p-i-n PD characteristics. �a�
Measured dark current-voltage characteristics. �b� Measured photocurrents
at different incident optical powers for a 533 nm wavelength light source.

FIG. 4. �Color online� Measured photocurrent density for different incident
optical power levels with three different wavelengths, at reverse bias of
�0.4 V.

FIG. 5. �Color online� Measured bending characteristics for a fabricated
flexible InP PD at different bending radii. �a� Dark currents; and �b� photo-
currents. The relative changes in measured dark and photocurrent are also
shown in the inset of �a�, at a bias voltage of �0.3 V.

FIG. 2. �Color online� �a� Cross-sectional, and �b� three-dimensional views
of flexible InP p-i-n NM PD on ITO/PET substrate. �c� A micrograph of
fabricated flexible InP PD under test. ��d�–�f�� Zoom-in views of a fabricated
large area �3�3 mm2� InP PD on flexible PET substrate.

121107-2 Yang et al. Appl. Phys. Lett. 96, 121107 �2010�

Downloaded 26 Mar 2010 to 129.107.47.108. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



linear photoresponse was observed for the power ranges
measured. The measured quantum efficiencies are similar at
the incident wavelengths of 533 and 632 nm but are signifi-
cantly reduced at 980 nm, mostly due to the reduced absorp-
tion near the absorption edge of InP.

The measured responsivity of the flexible InP p-i-n PD is
0.12 A/W with incident light of 533 nm wavelength. Based
on the absorption coefficient value of 105 cm−1 for InP at
533 nm, we have derived the theoretical responsivity for the
1 �m thick InP PD to be about 0.29 A/W. The measurement
results agree very well with the theoretical predictions.

The bending characteristics are shown in Fig. 5 for the
flexible InP p-i-n PD with incident light wavelength of 533
nm and the optical incident power intensity of 3 mW /mm2.
For different bending radii, the dark current does not change
much �Fig. 5�a��. On the other hand, as shown in Fig. 5�b�,
the photocurrent initially changed only slightly when large
bending radii were employed �down to 38.1 mm�. However,
when the PD was bent further, the photocurrent decreased
quickly. The relative photocurrent reduction is also plotted
in the inset of Fig. 5�a�, for a bias voltage of �0.3 V, where
up to 71% reduction was observed for the bending radius of
30 mm. This change in PD performance maybe associated
with the nonuniform illumination from the light source used
for the test, as well as the possible strain-induced absorption
reduction. These results indicate that the flexible InP PD will
work when the bending radius is larger than 38.1 mm. How-
ever, it is feasible to further reduce the bending radius with-
out much degradation in PD performance.4,6,11

In summary, we report here very large flexible PDs,
based on a FAMT process for the transfer of a very soft

crystalline semiconductor NM onto flexible substrate. High
performance flexible InP p-i-n PDs were demonstrated with
responsivity of 0.12 A/W at 533 nm for 1 �m thick InP
NMs. The flexible InP p-i-n PDs perform well when the
bending radius is larger than 38.1 mm.
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