
Software and Performance Issues
in the Implementation of a

RAID Prototype

Edward K. Lee

May 17, 1990

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 MAY 1990 2. REPORT TYPE

3. DATES COVERED
 00-00-1990 to 00-00-1990

4. TITLE AND SUBTITLE
Software and Performance Issues in the Implementation of a RAID
Prototype

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report is the result of knowledge gained in designing and implementing software for RAID-I (RAID
the First), a prototype RAID level 5 system designed and built at the University of California at Berkeley.
RAID-I is currently fully operational and should soon be available as a network file server. The main
purpose of RAID-I is to prototype RAID specific software, gain experience with SCSI, and foresee
performance bottlenecks in the implementation of more advanced RAID systems currently being designed
at Berkeley. The following assumes that the reader is familiar with RAID systems. The earlier sections of
this document are concerned with describing the RAID-I software. Specifically, they describe how logical
RAID block addresses (block number) are mapped to physical disk addresses (disk, sector), how IO
requests are serviced, and how the recovery mechanism reconstructs the contents of failed disks
concurrently with user request servicing. The latter sections investigate the performance consequences of
various parity placement schemes. In particular, we find that at relatively large request sizes, on the order
of a few hundred kilobytes, the choice of parity placement can cause significant differences in performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

This report is the result of knowledge gained in designing and implementing software for RAID-I

(RAID the First), a prototype RAID levelS system designed and built at the University of California
at Berkeley. RAID-I is currently fully operational and should soon be available as a network file

server. The main purpose of RAID-I is to prototype RAID specific software, gain experience with

SCSI, and foresee performance bottlenecks in the implementation of more advanced RAID systems

currently being designed at Berkeley. The following assumes that the reader is familiar with RAID

[3, 7 ,8] systems.
The earlier sections of this document are concerned with describing the RAID-I software. Specif

ically, they describe how logical RAID block addresses (block number) are mapped to physical disk

addresses (disk, sector), how IO requests are serviced, and how the recovery mechanism recon
structs the contents of failed disks concurrently with user request servicing. The latter sections

investigate the performance consequences of various parity placement schemes. In particular, we
find that at relatively large request sizes, on the order of a few hundred kilobytes, the choice of

parity placement can cause significant differences in performance.

1.1 Hardware Overview

RAID-I is configured from off-the-shelf components consisting of a Sun4/280 running the Sprite
operating system, 4 dual-string Interphase Jaguar Controllers and 32 5.25 inch Imprimis Wren IV

SCSI disks. The fully configured system consists of 8 SCSI strings with 4 disks per string. The
Sun4/280 is generally rated at 8 to 10 VAX MIPS and is configured with 128 MB of memory.

A single Interphase HBA has a sustained transfer rate of 4 MB/s. A Wren IV has a formatted
capacity of 344 MB with 512 byte sectors, average rotation time of 8.33 ms, average seek of 17.5 ms,

a 32 KB track buffer and a sustained transfer rate of 1.3 MB/s. Four Wren IV drives on a single

string of the Interphase HBA supports SCSI bus transfers of 4MB/speak and 3 MB/s sustained.1

1.2 Software Overview

The software for RAID-I is implemented as a device driver in the Sprite operating system. This
makes RAID-I logically indistinguishable from the other block devices supported by Sprite, and

appears to Sprite as a single disk of very large capacity. The RAID device driver communicates with
disks through SCSI device drivers supported by Sprite. The RAID device driver is best pictured

as a layer of software that runs on top of Sprite's SCSI device drivers.

2 Logical to Physical Mapping

Formally, we define a logical to physical RAID mapping as a pair of functions: the data-mapping

function and the parity-placement-function. The data-mapping-function is a one-to-one function
which maps a logical block address (blockN umber) to a physical disk addresses (disk, sector).

Frequently, we will find it convenient to picture a disk array as a two dimensional array of disks

and thus to identify a disk by its row and column numbers. Thus, the physical disk address can be

1 I am indebted to Ann Chervanak, a member of the Berkeley RAID group, for providing me with the information

presented here concerning the Wren IV disks and Interphase HBA's.

3

Row

1 [

Snipe

1

3

Snipe Unit

4

12

::>

..._ -
Logical Block Address

I<

5

13

::>

..._ -
stripeiD

I<

6

14

::>

...... -
rowiD

7

15

>

..._ -
sttipeUnitiD

I<

P1

P3

::>

...... -
blockiD

Figure 1: Data Mapping Entities. This figure illustrates the data mapping entities, stripe unit

stripe and row in the context of a RAID level 4 disk array. This figure also illustrates how the

logical RAID block address is decomposed into the ordered tuple (stripeiD, rowiD, stripeUnitiD,

blockiD).

represented as the ordered tuple (row, column, sector). The parity-placement-function is a many

t<rone function which maps a logical block address (blockNumber) to a physical disk address (row,

column, sector). The parity-placement-function specifies for each logical block its corresponding

parity sector. Parity is computed block-wise over all logical blocks which map to the same parity

sector.
Strictly speaking, it is not possible to specify the data mapping independently of the parity

placement. It is, however, useful to discuss certain aspects of the two problems as if they were

independent. The following sections decompose the logical to physical RAID mapping problem

into two somewhat independent subproblems:

• The mapping of data across disks.

• The placement of parity within the data mapping.

2.1 Data Mapping

Ignoring for now the placement of parity, the following data mapping entities are considered. Fig

ure 1 illustrates each mapping entity except the block.

block The minimum unit of data transfer to or from a RAID device.

stripe unit The unit of data interleaving; i.e. the group of logically contiguous blocks that are

placed consecutively on a single disk before placing blocks on a different disk.

parity stripe The group of stripe units over which parity is computed. The term stripe used

unqualified refers to a parity stripe. In contrast, the term data stripe refers to a collection

4

• I

Figure 2: Request Merging. Disk requests which are physically contiguous on the same disk may
be merged into a single disk request.

of logically contiguous stripe units over which data is striped. The distinction arises because
parity does not have to be computed across logically contiguous stripe units. For example, in
Figure 1, if PO computed parity over stripe units 0, 5, 10 and 15, then those stripe units would
comprise a parity stripe even though data would not be striped in that order. Henceforth,
we will assume that the number of stripe units in a parity stripe is equal to the number of

columns in the disk array.

row The minimal group of disks over which a parity stripe can be placed.

Thus, a logical RAID block address can be interpreted as the following ordered tuple: (stripe
number within row, row number within array, stripe unit number within stripe, block number
within stripe unit). We will abbreviate the above tuple as (stripeiD, rowiD, stripeUnitiD, blockiD).

Using the most significant part of the logical RAID block address as the stripeiD interleaves the
stripes over the rows.

The following sections discuss the stripe unit and parity stripe in more detail. The following
definitions will prove useful for this purpose:

small request A request that fits entirely within a stripe unit (a single disk); i.e. requests that
are smaller than or equal in size to a stripe unit and do not cross stripe unit boundaries.

moderate request A request that spans multiple stripe units but does not use each disk more

than once; e.g. in Figure 1, a request to stripe units zero through five.

large request A request that is large enough to use several disks more than once; e.g. in Figure 1,
a request for stripe units zero through fourteen.

Thus, whether a particular request is considered small, moderate or large is dependent upon the
size of the disk array.

2.1.1 Stripe Unit

The stripe unit size is one of the most important parameters in configuring a RAID levelS device
and especially affects the performance of moderate requests. Small requests are not affected since
they fit entirely within a stripe unit. Large requests are less sensitive to stripe unit size because
they tend to wrap to the same disk. This allows accesses to the physically contiguous stripe units
to be merged, effectively forming a larger stripe unit. Figure 2 illustrates requests that may be
merged.

5

Small stripe units increase the amount of parallelism available for servicing moderate requests

but are less efficient at higher loads since a greater number of disks are utilized per request.

Large stripe units result in lower disk utilization but also lower performance for moderate sized

requests at low loads[9]. If the disks in the array are not rotationally synchronized, the increase

in parallelism achieved with smaller stripe units will be offset by the synchronization overhead

incurred by spreading the request over more disks. Because data striping does not reduce the

initial seek and rotational latencies but only the data transfer time, performance increases due to

parallelism are often much less than expected. For example, with current technology, striping a 32

kilobyte request over two synchronized disks can result in only a 25 percent speedup. Chen [1] has

studied the performance implications of varying stripe units sizes in non-redundant disk arrays.

2.1.2 Parity Stripe

The parity stripe size affects the performance of moderate write requests. Writes in RAID systems

are most efficient when they are the same size as the stripe size. This is because parity can be

calculated for exact stripe writes by xoring the data to be written without having to read additional

information from the disk. Thus, it is frequently desirable to choose smaller stripe sizes, so that a

majority of writes can be executed as exact stripe writes.

2.2 Parity Placement

The number of different ways parity can be placed relative to data is astronomical. It is, moreover,

very likely that the choice of parity placement will significantly affect performance under certain

workloads. We will begin our investigation of parity placements by requiring that that they satisfy

the following properties:

• Stripe units belonging to the same parity stripe should not map to the same column. {In

many RAID systems, the disks within a column have a common failure mode; e.g. the string

interface.) This is referred to as the "orthogonal RAID" property and guarantees that the

failure of a single column does not result in data unavailability.

• In a RAID with n stripe units per parity stripe, the ith parity stripe unit should correspond

to logical stripe unit j such that j div n = i. This guarantees that the parity for any write

request that is stripe aligned and a stripe in size can be computed by using only the data

being written: i.e. without having to read old data from disk.

Dibble [2] has investigated parity placements under a different set of requirements 2 • Figure 3

illustrates eight parity placements that are supported by our prototype RAID driver and which

satisfy the above properties. The RAID level 0 and RAID level4 placements were proposed in earlier

RAID papers [7,8]. Of the RAID level5 placements, the right-asymmetric, left-asymmetric, right

symmetric and left-symmetric placements were initially created ad-hoc to determine if different

placements actually impacted performance. The other two RAID levelS placements, the extended

left-symmetric and flat-left-symmetric, are modifications of the left-symmetric placement that were

developed in order to improve read performance as a result of performance studies that will be

presented in later sections of this report. The following lists the placements illustrated in Figure 3

for the reader's convenience:
2He requires all writes to be small. A large write is therefore broken into many independent small writes.

6

• RAID level 0

• RAID level 4

• RAID level 5 Placements

- Right-Asymmetric

- Left-Asymmetric

- Right-Symmetric

- Left-Symmetric

- Extended-Left-Symmetric

- Flat-Left-Symmetric

The following describes each placement and specifies for each placement the data-mapping
function and the parity-placement-function. Both functions map logical block addresses, (stripeiD,
rowiD, stripeUnitiD, blockiD), to physical disk addresses, (row, column, sector). Unfortunately,
the interpretation of the logical block address as (stripeiD, rowiD, stripeUnitiD, blockiD) is not
applicable to RAID level 0 placements which does not have parity stripes. So that we may treat
the RAID level 0 placement in the same uniform framework as the other placements, we arbitrarily
define a parity stripe for a RAID level 0 placement as n consecutive and aligned stripe units where
n is the number of columns in the disk array. Thus, in Figure 3, stripe units 5, 6, 7, 8 and 9
constitute a parity stripe. Note that a RAID level 0 placement with n columns has n data stripe
units per parity stripe whereas the redundant placements with n columns have only n-1 data stripe
units per parity stripe. This affects the conversion of the logical block address to the ordered tuple
(stripeiD, rowiD, stripeUnitiD, blockiD). In the interests of simplifying the following equations,
we will assume that the stripe unit is the same size as a block which is the size as a sector. Thus,
our functions will map (stripeiD, rowiD, stripeUnitiD) to (row, column, sector). The following
assumes that any number modulo a positive number is also a possible number. Unfortunately, on
some machines, a negative number modulo a positive number is a negative number. The following
definitions and clarification of terms will prove useful:

n

m
ndata

blockNumber
stripeUnitiD

rowiD
stripeiD

logicalStripeiD

2.2.1 RAID level 0

=

=
=
=
=
=
=
=

Number of columns in array.
(Number of stripe units per parity stripe.)
Number of rows in array.
Number of data stripe units per parity stripe.
n (RAID level 0) or n- 1 (all others)
Logical RAID block address.
blockNumbermod ndata
(blockNumber div ndata) mod m
(blockNumberdivndata) divm
blockNumberdiv ndata

The RAID level 0 placement results in the conventional modulo n data striping scheme [4,5,6,10].
The RAID level 0 placement is defined here for comparison purposes only.

7

Right

RAIDlevelO

0 I 2 3 4

5 6 7 8 9

10 11 I2 I3 I4

I5 I6 I7 I8 I9

20 2I 22 23 24

Asymmetric

==m:· o I 2 3

4 ::1\ij\l 5 6 7

8 9 ::m,=! IO II

I2 13 I4 ~;11:::: I5

I6 I7 I8 I9 ::~4:

RAIDlevel4

0 I 2 3

4 5 6 7

8 9 10 11

I2 I3 I4

I6 I7 I8

Symmetric

' -------------------------------------~-------------------------------

0 I 2 3 j'JI·''
4

Left
8

·:::;:·:·:·:···=····.

I2 ::::p:£: I3 I4 I5

:::a4·, I6 I7 I8 I9

Aat -Left-Symmetric

0 I 2 3 4

5 6 7 8 9

10 11 I2 13 I4

I5 I6 17 I8 I9

Extended-Left-Symmetric

,-----------------------------,
' ' I
I
I
I
I
I
I
I
I
I

Figure 3: Parity Placements. Each square corresponds to a stripe unit. Each column of squares

corresponds to a disk. Each matrix corresponds to a single row of disks. In all cases except the

RAID level 0 and RAID level 4 placements, the minimum repeating pattern is shown.

8

Data-Mapping-Function

Parity-Placement-Function
Not applicable.

2.2.2 RAID level 4

row = rowiD
col = stripe Unit! D

sector = stripeiD

The RAID level4 placement is derived from the RAID level 0 placement by adding a parity disk
to each row. The read performance of a RAID level4 placement with n disks per row is identical

to the read performance of a RAID level 0 placement with n- 1 disks per row. Because the RAID
level 0 placement is widely used and better understood than the other placements, this can be a

desirable property. A disadvantage of the RAID level 0 placement is that the parity disks will
become a bottleneck for small writes [8] since every write must update a parity disk of which there

is only one per row. Also, only n- 1 disks per row, instead of n disks per row are available for

servicing reads since the nth disks do not contain data.

Data-Mapping-Function

Parity-Placement-Function

2.2.3 Right-Asymmetric

row rowiD
col = stripe Unit! D

sector = stripe! D

row rowiD
col = n- 1

sector = stripeiD

The right-asymmetric placement is derived from the RAID level 0 placement by pushing out data

stripe units horizontally as parity stripe units are inserted. For each successive parity stripe, the
point at which the parity stripe unit is inserted is rotated one stripe unit towards the right.

Data-Mapping-Function

row = rowiD
col stripe Unit! D if stripeiD mod n > stripeUnitiD

otherwise = stripeUnitiD + 1
sector stripe! D

Parity-Placement-Function

row = rowiD
col = stripe! D mod n

sector = stripeiD

9

2.2.4 Left-Asymmetric

The left-asymmetric placement is derived from the RAID level 0 placement by pushing data stripe

unit out horizontally as parity stripe unit are inserted. For each successive parity stripe, the point

at which the parity stripe unit is inserted is rotated one stripe unit towards the left.

Data-Mapping-Function

row = row!D
col = stripeUnitiD if (-stripe!D- 1) mod n > stripeUnitiD

= stripe Unit! D + 1 otherwise
sector = stripe!D

Parity-Placement-Function

2.2.5 Right-Symmetric

row = row!D
col = (-stripe!D -1)modn

sector = stripe! D

The right-symmetric placement is derived by right rotations of entire parity stripes from the RAID

level 4 placement.

Data-Mapping-Function

row = row!D
col (stripeUnitiD + stripe!D + 1) mod n

sector = stripe! D

Parity-Placement-Function

2.2.6 Left-Symmetric

row = row!D
col = stripe!Dmodn

sector = stripe! D

The left-symmetric placement is derived by left rotations of entire parity stripes from the RAID

level 4 placement.

Data-Mapping-Function

row = row!D
col = (stripeUnitiD- stripe! D) mod n

sector = stripe! D

Parity-Placement-Function

row = row!D
col = (-stripe I D - 1) mod n

sector = stripe! D

10

0

10

RowO 20

30

s
15

Row! 25

35

I 2 3 4 0 I 2 3

II 12 13 14 10 11 12 13

21 22 23 24 20 21 22 23

31 32 33 34 30 31 32 33

6 7 8 9 s 6 7 8

16 17 18 19 15 16 17 18

26 27 28 29 25 26 27 28

36 37 38 39 35 36 37 38

Step 1 Stcp2

~.· 4

14

24

34

9

19

29

39

012319.

10 11 12 13 4

20 21 22 23 14

30 31 32 33 24

34

s 6 7 rm= 9

15 16 17 8 19

25 26 27 18 29

35 36 37 28 39

38

Stcp3

0123f9::

10 11 ift: 13 4

20 21 12 23 14

30 31 22 33 24

32 34

s 6 7 l~[9

is 16 17 8 19

25 26 27 18 29

35 36 37 28 39

38

Stcp4

Figure 4: Derivation of the Extended-Left-Symmetric Placement

etc.

2.2.7 Extended-Left-Symmetric

The extended-left-symmetric placement is derived from the RAID level 0 placement by pushing

out data stripe units vertically as parity stripe units are inserted as shown in Figure 4. For each

successive parity stripe, the point at which the parity stripe unit is inserted is rotated one stripe unit

towards the left. Figure 4 illustrates the conceptual steps in deriving the extended-left-symmetric

placement from the corresponding RAID level 0 placement. In arrays with only one row of disks,

the extended-left-symmetric placement is identical to the left-symmetric placement. In arrays with

multiple rows of disks, traversing the logical blocks of the extended-left-symmetric placement in

sequence results in a traversal of all the disks whereas the left-symmetric placement will skip every

nth disk. Note that in Figure 3, where each five element column represents a distinct disk, P1 is the

parity corresponding to stripe units 4, 5, 6 and 7 and not 5, 6, 7 and 9. Likewise, P2 corresponds

to stripe units 8, 9, 10 and 11. This is to ensure that writes which are a parity stripe in size and

parity stripe aligned can always be written without having to read additional information from the

disks.
We find it convenient to specify the data-mapping-function for the extended-left-symmetric

placement in terms or the mapping that would have been obtained with the RAID level 0 placement.

Thus,
row' = (blockNumberdivn)modm
col' = block Number mod n

sector' = (blockNumber div n) div m

Data-Mapping-Function

row =
col =

coladj =
=

sector =

row'
col'
1 if 3i s.t. 0 ~ i ~ sector'mod(n- 1) and (-m Xi- row' -1)modn =col'

0 otherwise
sector' + sector' div ndata + coladj

11

Parity-Placement-Function

row = rowiD
col = (-logicalStripeiD- 1) mod n

sector = stripeiD

2.2.8 Flat-Left-Symmetric

The flat-left-symmetric placement is derived from the extended-left-symmetric placement by group

ing all of the parity together and placing them at identical offsets within each disk. When reading

large amounts of data, all disk heads within the same row skip over parity at the same time; thus,

reducing disk synchronization time. When writing data, however, performance is likely to be worse

than the extended-left-symmetric placement since the parity stripe unit is located at a different

offset within the disk relative to its corresponding data stripe units. Note that in Figure 3, PO is

the parity corresponding to stripe units 0, 1, 2, and 3. Likewise, P1 corresponds to 4, 5, 6 and 7.

Data-Mapping-Function

row' = (blockNumberdiv n) mod m
col' = blockNumbermod n

sector' = (blockNumber div n) div m

row = row'
col = col'

sector = sector'+ sector' div ndata

Parity-Placement-Function

row = rowiD
col = (-logicalStripeiD- 1) mod n

sector = (stripeiDdivn) x n + n- 1

2.2.9 Physical Versus Logical Placements

When rotating the placement of parity, the question arises whether to rotate relative to physical

stripe addresses (stripeiD) or logical stripe addresses (logicalStripeiD). Physical stripe addresses

are sequential on each disk whereas the logical stripe addresses follow the same sequence as the data

striping. Figure 5 illustrates the physical and logical variations of the left-symmetric placement

when applied to an array with two rows. Note that for a single row of disks, there is no difference

between a physical placement and a logical placement (stripeiD = logicalStripeiD).

Specifying parity stripe unit relative to logical addresses can have surprising undesirable con

sequences. For example, rotating parity stripe unit relative to logical addresses under certain array

configurations will cause all of the parity stripe unit to be concentrated on a small subset of the

disks! Figure 5 illustrates this problem. To guarantee that this does not occur with a logical

placement, one must ensure that the number of rows per array and the number of disks per row

do not have a common integer factor other than one. For example, a two-by-five configuration

is acceptable but a two-by-four configuration is not since two and four are both divisible by two.

Physical placements, by contrast, always guarantee a uniform distribution of parity over all disks.

Thus, physical placements are generally preferable over logical placements. All of the parity place

ments presented above, with the exception of the extended-left-symmetric and flat-left-symmetric

placements, which suffer from the problem just described, are physical placements.

12

Physical Left-Symmetric

l'llylicll

llzipoNo..--.---,----r----.=

0 0 2 3 :~:

9 10 11 .;~ 8

2 18 19 _:gi 16 17

3 27 r§ 24 25 26

4 :f~ 32 33 34 35

0 4 5 6 7 .m
1 13 14 15 :~ 12

2 22 23 :~=: 20 21

3 31 'it 28 29 30

4 :i 36 37 38 39

Logical Left-Symmetric

.........
Slripo Na. ,-,...--.,--....,---,,.

0 0 2 3 :fij
2 10 11 :Pi 8 9

4 :)M 16 17 18 19

6 25 26 27 'i.: 24

8 35 Pi 32 33 34

56 7jff:4

3 15 l*J 12 13 14

5 20 21 22 23 'iii'
7 30 31 :1 28 29

9 :Pi 36 37 3s 39

2 rows by 5 columns

Physical Left-Symmetric .. ,.....
Sllipl Na. ,-..,..----,---,=

0 0 1 2 :iji:i·:
1 1 s1~6

2 14 " 12 13

3 :~ 18 19 20

4 24 25 26 !I'!

0

1

2

3

4

Logical Left-Symmetric

J..oP:II
laipo No. ,--.,-----,----r,=

0 012:fQ

2 s!n6 7

4 12 13 14 :f:4
6 20 !Its 19

8 24 25 261Pl

1

3

5

7

9

2 rows by 4 columns

Figure 5: Physical Versus Logical Placement. This figure illustrates the physical and logical varia

tions of the left-symmetric placement for a two-by-five array and a two-by-four array.

3 10 Request Servicing

The RAID driver recognizes two basic types of 10 requests from Sprite: reads and writes. In

addition, the RAID driver recognizes various 10 controls for configuring/initializing the RAID

device and for performing recovery of failed disks. The basic steps followed in servicing 10 requests

are as follows.

1. Break up 10 requests into stripe requests. From here on, each stripe request is processed

independently. The IO request completes successfully if and only if all of the corresponding

stripe requests complete successfully. Note that breaking up 10 requests into stripe requests

at this level and handling each stripe request independently means that physically contiguous

requests, generated by a very large logical request which wraps to the same disk, are not

merged into a single request but are processed via separate physical requests to the disk.

Figure 2 illustrates requests that may be merged.

The main reason for not merging requests was simplicity of implementation. Merging logically

discontiguous requests implies recopying data to make it logically contiguous, playing games

with the virtual memory mapping, or using disks which support scatter-gather operations.

2. Lock required stripes. This is necessary to guarantee the consistency of the parity information

associated with each stripe.

3. For each stripe request, choose and execute an appropriate 10 method.

4. Unlock stripes.

13

3.1 10 Methods

The RAID driver supports the following five 10 methods which are illustrated by Figure 6.

• Read

• Read-Modify-Write

• Reconstruct-Write

• Reconstruct-Read

• Nonredundant-Write

An appropriate 10 method is selected to service a stripe request by examining the request type

(read or write), request size, and RAID device specific state information. The selected 10 method

then breaks up the stripe request into physical disk requests to be processed in parallel.

The primary RAID state information concerns the validity of disk blocks. A block is marked

invalid when the disk containing the block fails. The block remains invalid until the content of the

invalid block is recovered to a functional disk. It is necessary to maintain the above information for

two reasons. First, a disk failure can be intermittent, in which case a read to a failed disk, for which

a previous write failed, may succeed, returning stale (not the most recently written) data. Second,

when the failed disk is replaced, one needs a mechanism for determining whether a particular block

has been recovered. Currently, a single counter per disk is used as a "high water mark" of valid

blocks. Thus, when a disk fails, blocks must be recovered sequentially starting from zero. A bitmap

will eventually be used to support a wider range of recovery strategies.

3.1.1 Read

Read is the simplest 10 method. The read method is selected if all of the blocks read by a stripe

read request are valid. The read method simply reads those blocks and only those blocks that are

requested. If one of the physical requests needed to service the stripe request fails, the read method

invokes the reconstruct-read method. If more than one physical request fails, the stripe request

fails.

3.1.2 Read-Modify-Write

The read-modify-write method is invoked if a relatively small portion of the stripe is written. In

such a case, it is more efficient to update the parity incrementally by xoring the new data, old data

and old parity than by xoring the new data with the rest of the stripe. Currently, the read-modify

write method is used in preference to the reconstruct-write method if less than half of the stripe is

being written. The read-modify-write method is executed in three distinct non-overlapping stages:

1. Read old data and old parity.

2. Compute new parity.

3. Write new data and new parity.

14

Read

Read-Modify-Write

Reconstruct-Write

Reconstruct -Read

Nonredundant-Write

Figure 6: 10 Methods. The lightly shaded regions correspond to data that is to be read or written.

The dark regions correspond to parity. The 'X' denotes a failed disk.

15

Executing the read-modify-write method in non-overlapping stages simplifies the implementation

but results in a slight penalty in response time (I estimate this penalty at less than 10 percent

for very small writes and up to 25 percent for larger writes.). The performance penalty can be

eliminated by overlapping the stages:

1. Write the new data as soon as the old data is read without waiting for the read of the old

parity to complete.

2. Acknowledge the request as soon as the new data is written without waiting for the write of

the new parity.

The key to recovering from physical request failures during the execution of the read-modify

write and reconstruct-write methods is to recognize that the two methods can be used to recover

from each others.
A single physical request failure during the read stage causes the reconstruct-write method to

be invoked unless this method was called to recover from the reconstruct-write method in which

case the stripe request fails. More than one physical request failure causes the stripe request to fail.

A single physical request failure during the write stage causes the blocks of the disk corresponding

to the failed component 10 to be invalidated; i.e. the disk is assumed to have failed, but the stripe

request succeeds. More than one physical request failure causes the 10 request to fail.

3.1.3 Reconstruct-Write

The reconstruct-write method is invoked if a relatively large portion of the stripe is written. Cur

rently, the reconstruct-write method is used in preference to the read-modify-write method if half

or more of the stripe is being written. The reconstruct-write method is executed in three distinct

non-overlapping stages.

1. Read data from rest of stripe.

2. Compute parity.

3. Write new data and new parity.

If an exact stripe is being written, step one is trivial and does not require physical 10.

At first, it may seem possible to read the data from the rest of the stripe in parallel with writing

the new data and therefore reduce the time it takes to do a reconstruct-write by assuming that the

parity update, which is redundant, can be done in the "background" after the stripe request has

been acknowledged. This causes a problem, however, if after initiating the read and write physical

requests simultaneously, one of the read requests fail. In such a case, the data on the failed block

can never be reconstructed since we have just overwritten a part of the stripe without reading it

and hence the parity is inconsistent.
A single physical request failure during the read stage causes the read-modify-write method to

be invoked unless this method was called by the read-modify-write method in which case the stripe

request fails. More than one physical request failure causes the stripe request to fail. A single

physical request failure during the write stage causes the blocks of the disk corresponding to the

failed component 10 to be invalidated; i.e. the disk is assumed to have failed, but the stripe request

succeeds. More than one physical request failure causes the 10 request to fail.

16

3.1.4 Reconstruct-Read

The reconstruct-read method is invoked if one of the blocks covered by a stripe read request is
invalid. The contents of the invalid blocks are computed with the aid of parity. If called by the

read-method, those blocks which have already been read are not reread. Any physical request

failure causes the stripe request to fail.

3.1.5 Nonredundant-Write

The nonredundant-write method is invoked if the blocks containing the parity are invalid. In such

a case, there is no need to update the the parity, so a simple write of the data is sufficient. Any

physical request failure causes the stripe request to fail.

4 Recovery and Data Consistency

In the event of disk failure, the RAID driver satisfies user requests by reconstructing, on demand,
lost data from redundant information. In addition, the RAID driver allows recovery of failed disks

and reconstruction of parity on system startup to proceed concurrently with user request servicing

in order to reduce periods of data unavailability. The above implies that care must be taken to

ensure data consistency; it is not permissible to return stale (not the most recently written) data or

incorrectly reconstructed data as valid. Data consistency must be maintained in the face of power
and system failures where the contents of main memory can be lost. In the following, the term

reconstruction refers to the computation of data or parity via XOR's while the term recovery refers

to the reconstruction of the contents of a failed disk onto a replacement disk.

4.1 Consistency States

The following state information is used by the RAID driver to maintain data consistency:

• stripe-unit-state
(VALID /INVALID)

• disk-state
(READY /FAILED)

• stripe-state
(CONSISTENT /INCONSISTENT)
(LOCKED /UNLOCKED)

The most important state is the stripe-unit-state which describes the logical state of a stripe
unit. Any changes in the stripe-unit-state must be logged to stable storage before user requests

involving the stripe-unit can be serviced. The disk-state is used during data recovery and parity
reconstruction to prevent the inadvertent recovery/reconstruction of information onto failed disks.

To guarantee the consistency of the parity, stripes are locked before any part of the stripe is

read or written. A stripe is consistent if the parity is up to date; otherwise, it is inconsistent.

During normal operation, a stripe is considered consistent if and only if it is unlocked and the
corresponding parity stripe unit is valid. Immediately after a system crash, all stripes that were

17

locked at the time of the crash are considered inconsistent. Hit is not possible to determine which

stripes were locked at the time of the crash, all stripes must be considered inconsistent; i.e. all

parity stripe units must be reconstructed.

4.2 System Startup

The following steps must be taken when starting up the RAID driver after a system crash.

1. Recover disk-state from log. (Not absolutely necessary but highly recommended.)

2. Recover stripe-unit-state from log. This includes invalidating parity stripe units corresponding

to inconsistent stripes.

3. Accept user requests and reconstruct invalid parity and data.

5 Investigation of Parity Placement

This section evaluates the performance of the RAID level 0, RAID level 4, right-asymmetric,

left-asymmetric, right-symmetric, left-symmetric, extended-left-symmetric and fiat-left-symmetric

parity placement schemes (all the placements illustrated in Figure 3) via simulation.

5.1 The RAID Simulator

The simulator was constructed by interfacing the RAID driver with a model of disk behavior and a

program to generate synthetic 10 requests3 • In all, the simulator consists of approximately 10,000

lines of C. The only hardware resources modeled are disks. The disks are rotationally synchronized.

The simulator merges physically contiguous disk requests. The request types used are random reads

and random writes of various sizes. Sequential requests are not used because the sequentiality is

much less meaningful when there is more than one process generating requests to the same disk (the

disk will thrash between the two sequential request streams). The load on the system is controlled

by specifying the number of concurrent processes which issue requests. The number of processes,

request type and request size are fixed for each simulation run.

5.2 The Disk

Table 1 tabulates the parameters of the simulated disk. Seek times are calculated with the following

equation:
seekTime = 0 if x = 0,

= a(x-1)0·5 +b(x-1)+c ifx>O.

Where x is the seek distance in cylinders and a, band c are constants chosen to satisfy the single

cylinder, max stroke and average seek times. For the simulated disk, a = 0.4623, b = 0.0092 and

c = 2. Figure 7 plots the seek time modeled by the above function versus the seek distance.

1 1 am indebted to Garth Gibson and Peter Chen for supplying the disk model and program to generate synthetic

10 requests respectively.

18

cylinders per disk 949

tracks per cylinder 14

sectors per track 48

bytes per sector 512

track skew 4

revolution time 13.9 ms

single cylinder seek time 2.0 ms

average seek time 12.5 ms

max stroke seek time 25.0 ms

max sustained transfer rate 1.7 MB/s

Table 1: Disk Parameters

Seek Time Versus Seek Distance
30 ·----. --~-.----.-~--.---r--T--,~

' e 20
e
k

m
e

• 10
)

. i I I ! ; i I I I

i ! i i ! ! i I
i ! ! ! I I I I

i I i i I I I
: I : I I 1 •

i ! I i 1 1 l
i i i i ~ i i
! ! I i i i
i I ! i i !
! f i ! : j

i I i ! I
! i i I i

·----~ ---i -+-++-+- +--+---f---i
! ! ! ! . ! l ! i
I i ! I I ! i !
! ! ! i i i ! i
i ! i : ! j i i
I I i I i I i

I i i i f i I
i i ! I ! i

i i l i i l
i I I I I ;
I ! I i I
! I i I !
I I i I I

i ! i i ! ; ! ! i ! ·--:-"'- .-.--.---,---.----r--+-----.,~
. i i i i . i i I i

i I I I I I I I
I I I I I i i i
i ! I I I I I i
i I I I I ! I i

i I i l t i ! i
i I I I I i i I
i ! ! I I I ! i
i I I i i I I !
i I I I ! I I I

i ! ! ! ! l l l
! ! l l ! l ! l

0+-~~~--~--+---r-~--~--~--r-~

0 100 200 300 .tOO soo 600 700 800 900 1000

.-k cliiiWICe ill c:ylillclen

Figure 7: Seek Profile. A plot of the seek time in milliseconds versus the seek distance in cylinders

for the simulated disk. The plot was obtained using the following equation:

seekTime =
=

0
0.4623(x- 1)0·5 + 0.0092(x- 1) + 2

19

if X= 0,
if X> 0.

5.3 Simulation Parameters

The following is a list of the input and output variables used in the simulation and their corre

sponding ranges.

• Input Variables.

- Parity placement scheme {one of the eight listed above).

- Number of rows of disks in array (1 or 2).

- Number of disks per row (5 or 9).

- Size of the stripe unit (4KB, SKB, 16KB, 32KB, or 64KB).

- Request type (read or write).

- The size of the request (2KB to 1MB).

- Request alignment (aligned or unaligned). Aligned requests are aligned on their own size

boundaries. Unaligned requests are aligned on sector boundaries (512 byte).

- The degree of concurrency; i.e. the number of processes generating requests (1, 2 or

16). 'When the concurrency equals one, the average response time is proportional to the

inverse of throughput. The term low load refers to a degree of concurrency of one. The

term high load refers to a degree of concurrency of sixteen.

• Output Variable.

- Throughput, measured in megabytes per second.

Note, in the interests of reducing the parameter space, all workloads are homogeneous; i.e. mixtures

of reads and writes as well as non-constant distributions of request sizes are not used.

The cross product of all input variables was considered too large to simulate and analyze

properly, as well as being unnecessary. We also did not have reasonable ranges for the input

variables when we started. Thus, only specific subsets of the cross product were investigated. The

selection of the subsets and the investigation of the results proceeded in an iterative manner to

reduce the possibility of missing interesting points in the cross product. In all, approximately

20,000 points in the cross product were investigated.

5.4 Simulation Results

Figures 8, 9, 10 and 11 illustrate the simulated performance of each parity placement under a set of

particular inputs and is characteristic of other input combinations which are not illustrated here.

At low load, the graphs display a sawtooth pattern with a period approximately equal to

300KB4 • The first dip occurs when requests become large enough to wrap around the array. At

this point, some of the disks must read/write two stripe units while other disks read/write only one

stripe unit. Some of the disks end up waiting for the other disks, resulting in inefficient resource

utilization. This behavior is repeated each time the request wraps around the array, resulting in

a periodic behavior. Note that at low load and relatively large requests sizes, the choice of parity

placement results in up to a 20 to 30 percent difference in performance for the array configuration

simulated.
4 The length of the period is a function of the logical to physical mapping and the size of the array.

20

M
B
s

12

11

10

9

8

7

5

4

3

1

0

Random Reads at Low Load

'\ :RS
0 t I 0 0 ·············-··········-························ I I I I I
I I I I I

I I I t I
0 0 0 0 I

I I I I

I I I t
I I f I

I I I I
I I t I
I I t I

I I I I I I ···································-···································· 0 I I I I I

I I I I I I
I I f I t I

I I I I I I . . .
i'tf:<i/1------!; RAID4 .ItA .LA ~ ~ ~

0 I 0 t I

--- ·-------~··- --------1- ·--.--..,.,__-_, r--·-···- -- -~-- .. ··------i---··------+··--·--·---r---·--·----r·----------~
I I t I I I I I I

0 I I 0 0 0 I I 0

I I I I I I I

I I I I f 0 I

I I I I 0 I I

I I I I I I I
. ~· -.. +- ~~ -~ -~ --- -i--- -- ... ~- ... -....... ---:- -~ ~

I I I I I I I I

o I 0 0 I I 0 I

I I I I I I I I

I I I I I I I

I I I I I o I

: : : : : : :
0 I 0 I 0

I I I I I

I I I I I I I I I ---- .. -. -........... -·- --
I I I I I I I f I

o I I f I I 0 I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I

I I I I I I

t I I I I I

I f I I I I

t I I I I I

I I I I I I I

o I I I I I I I I I --- .. ·•····· --............ -····················
o o I I 0 I I 0 0 I

I I I I I I I I I I

I I I I I I I I I

0 I I I I I I I I

I I I I I I I I

I I I I I I I I

I I I I I I

0 • • • •

I I I I

I I I I

I I I I

0 I I I I I I I f I

·····r····················r·········;··········-;-·········T·······T········r········r·········:

0 100 200 300 400 500 600 700 800 900 1000

request size (kilobytes)

Figure 8: Reads at Low Load. The simulation parameters are two rows, five disks per row, 32KB

stripe units, and unaligned requests. The degree of concurrency for low load is one and the degree

of concurrency for high load is sixteen.

21

• J

M
B
s

12

11

10

8

7

6

5

4

3

1

0

Random Writes at Low Load

0 100 200 300 400 500 600 700 800 900 1000

request size (kilobytes)

Figure 9: Writes at Low Load. The simulation parameters are two rows, five disks per row, 32KB

stripe units, and unaligned requests. The degree of concurrency for low load is one and the degree

of concurrency for high load is sixteen.

22

M
B
s

12 --- ---r ~-~~g~--~~-~~-~--ll.t._tl_i~~}~?.-~~---r·------------------- -,

11 ---------- ·:····----··-r·····-·-··r···-····-·r···--------!·-··-·····T··········r··--·····r·····-····l·----······!
: : : : : : : ... ~ : : : : : : ,.._..,..tl :

10
I t I t I I I

.................. ; -- ·~- .. -............... -~· -~ ; -~·-- ~ -.. -:
: : : : : : ,. A: ~.. \ •
: : : : ..k.A : - •
l l l . l - - . . . :

9 ---- ------r·--------r·--- --r·-- ----r-·---- - -------r-- -----r·--------;-----------1
. .

8 : . : ----------- ~------- --- ·r·------- - 1-- --------r·--------:··--------T·----- ----1

7 0 • ·r-.. -- ·r--..... -. ·r·.-...... -T -... ··T··· ·: i
.

6 ·····t··········~~---·i···········i···········t· .. ·····""t···········i···········j
I I I t I

I I I I I I I I o I

.. • .. - - 4• --· - - - -· -- -

I I I I I I I I I 5
I I I I I I f I I

I I I I I I I I

I 0 0 I I I I

I I I I I

I I I I I

I I I I I

I I I I I

0 0 I I I

I I I I I

4 : : : : I : : I I :

-- ----T ---- - T --------r-------T --- ------i ---------- r·-------r-- -- _T ____ ---T- --- ----~

3 . : . . : : : . . :
- --- -T --- --- -r- --- ---- - -----r··-----·r··------T·-- ---·r··------------- --·r··-------;

2 . : . . : : : . . .

---- --- ---;-----------r·-------r·-------r---------r--------r·------·r·-------, ----------r·--------1

1
-----------:----------T---------r·-----T·--------r·-------r·------T·-------r·------·r·------ --!

0+---~---+--~----~--~--~---+--~----~~

0 100 200 300 400 500 600 700 800 900 1000

request size (kilobytes)

Figure 10: Reads at High Load. The simulation parameters are two rows, five disks per row, 32KB

stripe units, and unaligned requests. The degree of concurrency for low load is one and the degree

of concurrency for high load is sixteen.

23

M
B
s

11

Random Writes at High Load -r· --T-- --r-- --- , -- , ----- --: ------r- -----r---- ----:------ - -:
........................ ~ ·~· ·+ ·~ ·! -~·- ~·· -:-- ·- ··-t ·!

12

1 I t t I I I I I

I I I t I I I I I

I I I I I I I I I

I I I t I I I I I

I I I I I I I I I I

: : : : : : : : : " :
: : : : : : : : , f/ ' :

....... -.. -........... i ·~- .. --- -~· -~ -.............. ; : -............ ~ -- ,...=t ~.~· l -...... ~
: : : : : : ,. : ,.... : : :
: : : : : : .A.. ""•;,, : : :
: : : : : ..,~ : : : :
: : : : : ... " : : : : :

9 : -........ -~- ···t ··f ··-.. -:~----····~-- -- ··+· ···---t --- ·--~- .. -.................. ·!

10

: : : : .• ! : : ! : :

: : : : ,- : : : : : :
: : : : ~ : : : : : :
: : : :, : : : : : :

........... : ... ·······-~·-··· ~ ~ : ~ ~ ~ ~ :
: . : ,.... : : : : : : :
: ~:I: : : : : : :

1 1 \.~."~ 1 1 l 1 1 1 l

........... j ~···;.,..:":..·+···········~···········t··········+·········-+··········+··········.i .. _. .. ~ ··~ . ..,....,..... ' , : : : : : . :
: I : : : : : ,. !
:"i : : : : : .. t : 6 :t •......•.•••....•....• _............................... ·•••·••••••·••••••·•••

.J. : : : : ' :
, I : : : :

:

8

7

i : : : : :
f t I I I

I

J : : : I
:

..... .j : l. L... : ~ ·--~ ~ :
I , • • • ' ' , '

! l j : : j l l j
5

I i 1 l : l l
4 ~ : : .l ~ :. : !..:. !. :

••;~••••••r••••••••••-:•• .. I : i ~ ~ I i :
i : : : : .

I I I I I I I I I ---·r ·--- ·-- ·-·r · · · ------··r · --- ·-· ---· ~--- -- ·---· ·r· ·----··-· r· ----· ---·1· --------- ·r ·--------- ·1 3
I 1 t I I I I

I I I I I I I

I I I I I I I

: : : : : : :
I t I I I I I

: : : I : : I : :

~ ···-:·· -~-- ·:- .. ••••••• •••! --~-- ~- --~- ••••• ·····:··· ••••••• -~
0 I I I I I I I I

l : l l ~ ~ ~ l ~
I I ! I ~ ~ ~ I I ~

......... ~ ······:···········:···········:···········:···········:···········:··········:···········:···········: 1
: : : : : . : : :

1 1 1 1 1 1 l 1
0+---~--~----~--~---P--~~--~--~--~--~

0 100 200 300 400 500 600 700 800 900 1 ()()()

request size (kilobytes)

Figure 11: Writes at High Load. The simulation parameters are two rows, five disks per row, 32KB

stripe units, and unaligned requests. The degree of concurrency for low load is one and the degree

of concurrency for high load is sixteen.

24

distance= 3 -{t--r--6-+--7 --f"""'!!!f""";;~"""t;._;:!~Sm-
- 9 10 11 !l!l@i'il. - distance=6

5.4.1 Reads at Low Load

~:·!Ill: 12 13 14

15 :::~!'': 16 17

Figure 12: Placement Distance

"When performing reads at low load, roughly four groups of placements can be distinguished based

on performance. From highest performance to lowest performance they are grouped as follows:

1. RAID level 0, extended-left-symmetric and fiat-left-symmetric.

2. Left-symmetric.

3. RAID level4, right-asymmetric and left-asymmetric.

4. Right-symmetric.

We define the minimum placement distance of a placement, which gives a good prediction of

read performance at low load, as the minimum arithmetic difference between logical data stripe

unit addresses of stripe units that are logically sequential on the same disk. Figure 12 illustrates

the concept of distance. Parity stripe units are ignored when determining minimum placement

distances. The minimum placement distance gives an indication of the number of disks a parity

placement can stripe data over before reusing a disk and hence the amount of parallelism available

for servicing a single request. The larger the minimum placement distance, the better the read

performance at low load. We will refer to a placement with a minimum placement distance of N as

a distance N placement. The maximum minimum placement distance for an array with N disks is

N. Table 2 tabulates the minimum placement distances for the parity placement so far considered.

The RAID level 0 placement outperforms the extended-left-symmetric placement even though

they have the same minimum placement distance because the RAID level 0 placement never has

to skip over parity stripe units. The fiat-left-symmetric placement outperforms the extended-left

symmetric placement even though they have the same minimum placement distance because the

fiat-left-symmetric placement aligns the parity stripe units together so that on large reads, all parity

stripe units can be skipped simultaneously.

5.4.2 Writes at Low Load

"When performing writes at low load, roughly four groups of placements can be distinguished based

on performance. From highest performance to lowest performance they are grouped as follows:

1. RAID level 0.

25

minimum
placement
distance

RAID level 0 mn
Flat-Left-Symmetric mn
X-Left-Symmetric mn
Left-Symmetric m(n -1) + 1
Left-Asymmetric m(n -1)
RAID level4 m(n -1)
Right-Asymmetric m(n- 1)- 1
Right-Symmetric m(n- 1)- 1

Table 2: Parity Placement Distances. The symbol m denotes the number of rows in the array and

the symbol n denotes the number of disks per row. Note that the left-symmetric and extended

left-symmetric placements are identical placements when the number of rows is one.

2. RAID level4, right-asymmetric, left-asymmetric, right-symmetric and left-symmetric.

3. Extended-left-symmetric.

4. Flat-left-symmetric.

As expected, the RAID level 0 placement - no redundancy - displays the highest performance

since it does not maintain parity. The extended-left-symmetric placement performs worse than the

placements in the second group because it places the parity of the previous stripe on the same disk as

the data of the current stripe; e.g. note that in the extended-left-symmetric placement illustrated in

Figure 3, PO is on the same disk as stripe unit 4. Thus, if two sequential parity stripes are written,

a single disk must service both a parity access and a data access. The extended-left-symmetric

placement performs better than the flat-left-symmetric placement because it aligns parity with

its corresponding data stripe units, whereas the flat-left-symmetric placement aligns the parity

together. Note that this was the same reason the flat-left-symmetric-placement outperformed the

extended left-symmetric-placement on reads at low load.

5.4.3 Reads at High Load

The RAID level 4 placement has the worst read performance at high load because it does not

distribute parity and data over all disks. Thus, only n - 1 rather than n disks are available for

servicing read requests. The performance of the other placements, which distribute parity and data,

are comparable. At high load, the most important criterion for high read performance is uniform

disk utilization; i.e. placements which distribute the load uniformly are desirable.

5.4.4 Writes at High Load

As expected, the RAID level 0 placement displays the highest write performance at high load since

it does not maintain parity. Note that because the redundant placements must write parity, their

write performance asymptotically approachs (n -1)/ n, 4/5 in the case of Figure 11, ofthe maximum

26

RAID level 0 performance at large request sizes. The RAID level 4 placement displays the worst

write performance at high load due to contention for the parity disks. For small request sizes

(< 32KB) and these particular simulation parameters, the difference in performance between the

RAID level4 placement and the other placements is over a factor of two. With more disks per row

and at higher load, we would expect the performance difference to be even larger. Thus, for high

write performance at high load, placements which distribute the parity uniformly are desirable.

5.4.5 Summary

In this section, we have examined the performance characteristics of eight parity placements. The

RAID level 0 placement is unsuitable since it does not support parity. The left-symmetric placement

outperforms the RAID level4, right-asymmetric, left-asymmetric and right-symmetric placements

on reads at low load over almost all request sizes and has comparable or better performance in

all of the other cases. Thus, the choice to be made is between the left-symmetric, extended-left

symmetric and flat-left-symmetric placements. Which placement is used for a particular system

depends on the importance of read performance at low load versus write performance at low load.

For the reader's benefit, the performance of the a.bove three placements at low load is redisplayed

in Figure 13 v.ith the other placements omitted. To make the differences easier to evaluate, Ta.ble 3

tabulates the absolute throughput and throughput relative to the left-symmetric placement for a

few key requests sizes (2 rows X 5 columns X 32KB stripeunits = 320KB) from Figure 13.

Note that the relative performance of the left-symmetric, extended-left-symmetric and flat

left-symmetric placements converge as the request size increases for reads but remains relatively

unchanged for writes. Note also that the flat-left-symmetric placement achieves only 90% of the

performance of the left-symmetric placement for 16KB request sizes.

We propose the following list of desirable placement properties, roughly in the order of their

importance:

1. Stripe units belonging to the sa.me parity stripe should not occupy the same column. {In
many RAID systems, the disks within a column have a common failure mode; e~g. the

string interface.) This is referred to as the "orthogonal RAID" property. All of the proposed

placements have this property.

2. In a RAID with n disks per row, the ith parity stripe unit should correspond to stripe unit

j such that j div n = i. This guarantees that any write request tha.t is stripe aligned and a

stripe in size can be written without reading old data. All of the proposed placements have

this property.

3. Parity and data should be distributed over all disks. All of the proposed placements except

the RAID level4 placement have this property.

4. The minimum placement distance should be maximized. Only the extended-left-symmetric

and flat-left-symmetric placements are maximum distance placements. The left-symmetric

placement is a. maximum distance placement for a. single row of disks but not for multiple

rows of disks.

5. If the number of rows is n then stripe units belonging to any n consecutive parity stripes should

not occupy the same disk. This avoids the write contention experienced by the extended-left-

27

0 100 200 300 400 SOO 600 700 BOO 900 1000 0 100 200 300 400 SOO 600 700 BOO 900 1000

request size (kilobyiC&) rcquc::st size (kilob)'IC$)

Figure 13: Parity Placement Performance Summary. The simulation parameters are two rows, five

disks per row, 32KB stripe units, unaligned requests, and the degree of concurrency for low load is

one.

Random Reads at Low Load

II 16KB 320KB 640KB 960K

MBS % ofLS MBS % ofLS MBS % ofLS MBS % ofLS

Left-Symmetric 0.52 100% 5.77 100% 8.12 100% 9.68 100%

X-Left-Symmetric 0.53 102% 6.92 120% 8.98 111% 10.31 107%

Flat-Left-Symmetric 0.52 100% 6.98 121% 9.28 114% 10.60 110%

Random Writes at Low Load

II 16KB 320KB 640KB 960K

II MBS % ofLS MBS % ofLS MBS % ofLS MBS % ofLS

Left-Symmetric 0.30 100% 3.59 100% 6.01 100% 7.35 100%

X-Left-Symmetric 0.29 97% 3.38 94% 5.46 91% 6.83 93%

Flat-Left-Symmetric 0.27 90% 3.21 89% 5.08 85% 6.28 85%

Table 3: Parity Placement Performance Summary. MBS denotes throughput in megabytes per

second. Percentage of LS denotes throughput relative to the left-symmetric parity placement.

28

symmetric and flat-left-symmetric placements which are the only proposed placements which

do not satisfy this property.

Unfortunately, properties 4 and 5 seem to be at odds 'With one another. That is, given an array

with N disks, it does not seem possible to devise a placement which is both distance N and
satisfies Property 5 for a general m-by-n disk array. With only a single row of disks, the left

symmetric, extended-left-symmetric and flat-left-symmetric placements are optimal 'With respect
to both properties. This would imply that when selecting a parity placement for a general disk

array, one must sacrifice either read performance or write performance. A key question to be
answered in a later section is whether there exists a placement which is distance N and satisfies

Property 5 for disk arrays 'With multiple rows of disks.

5.5 Computational Overhead

The previous section has investigated the performance of parity placements without considering the

amount to CPU time needed to compute each placement. This section quantifies the computational
overhead incurred in computing each parity placement. Table 4 summarizes the measured CPU

overheads.

relative %of
mapping RAID levelO
overhead overhead

RAID level 0 1.00 100%
RAID level4 1.00 100%
Right-Asymmetric 1.16 103%
Left-Asymmetric 1.17 103%
Right-Symmetric 1.13 103%
Left-Symmetric 1.15 103%
X-Left-Symmetric 1.49 110%
Flat-Left-Symmetric 1.09 102%

Table 4: Computational Overhead. Relative mapping overhead denotes the relative amount of
CPU time needed to map a single stripe unit using the given mapping. Percentage of RAID level 0
overhead denotes the relative RAID driver time (software overhead excluding SCSI drivers) of the

specified placement algorithm relative to a RAID driver using the RAID level 0 placement. For all
of the placement algorithms, approximately 20 percent of the total RAID driver time is spent in
the mapping code. The time needed to map a single stripe unit 'With the RAID level 0 placement

on a DECstation 3100 (12-15 MIPS) is approximately 16JLS.

Of all the placements, the extended-left-symmetric placement incurs the highest CPU overhead,

and requires almost 50 percent more CPU time to compute than the RAID level 0 placement;
however, when the rest of the RAID driver software is included, a RAID driver configured 'With

the extended-left-symmetric placement uses only 10 percent more CPU time than a RAID driver

configured 'With the RAID level 0 placement. We feel that once other factors such as the operating

system and SCSI drivers are factored in, it is unlikely that the 50 percent relative mapping overhead

will significantly affect performance. Of course, the above measures the performance of only a

29

specific implementation of each mapping algorithm, still, the computational overhead does not

seem to be an important factor in the choice of parity placements.

5.6 A Systematic Look at Parity Placements

The above sections have compared the performance of eight different parity placements and derived

properties that are desirable of parity placements. The question remains, however, whether there

exists a placement which is superior to the eight placements so far considered. This section attempts

to answer this question by systematically generating and examining parity placements 5• We first

look at placements for a single row of disks and then generalize our method to look at placements

for multiple rows of disks.

5.6.1 Single Row Placements

This section takes a systematic look at parity placements for arrays with a single row of disks by

considering all three-by-three parity placements. Consider a three-by-three checkerboard where the

columns correspond to distinct disks and the squares to stripe units. We define a parity placement

for a single row of disks as any column indistinct permutation of distinct stripe units; i.e. shuffiing

the columns does not change the parity placement. Since the columns are indistinct, the number of

possible ways in which nine distinct stripe units, six of which are data and three of which are parity,

can be placed on the checkerboard is 9!/3! = 60480. This is clearly too many to examine by hand.

In order to reduce the number of distinct cases to consider, we will initially ignore the ordering of

stripe units within each column and look at the number of ways in which the nine distinct stripe

units can be partitioned over the three indistinct columns. Thus, each column forms a set of size

three which we will refer to as a placement group. The three placement groups taken together will

be referred to as a placement class.
There exist 9!/(3!3!3!3!) = 280 distinct placement classes and each placement class corresponds

to 3!3!3! = 216 distinct parity placements. If we restrict placement classes to those which place

parity and its corresponding data stripe units on different disks and further specify that parity, and

hence data, must be uniformly distributed over all disks, the number of placement classes drops

down to eight (the eight placement classes were derived by exhaustively generating placement

classes and eliminating those that did not satisfy the above requirements). Figure 14 illustrates the

eight placement classes which are labeled with instances of their corresponding parity placements.

Note that each asymmetric class gives rise to a "family" of placements differing only on the column

offset at which the rotation is started.
Now that we have identified eight feasible placement classes, it is time to consider which parity

placements derivable from each class are the most useful. Since the data stripe units within each

column should obviously be placed in ascending order, the question becomes one of where to place

the parity. For all placement classes except the left-symmetric placement class, the parity should

almost certainly be aligned with its corresponding data stripe units; i.e. there is no advantage

to not aligning the data and parity. This ensures that the data and corresponding parity stripe

units will be rotationally.synchronized, and when writing only exact parity stripes, all of the disk

heads will travel equal distances. Placing the data stripe units in ascending order a.nd aligning the

6 I am indebted to Garth Gibson for suggesting that I take a more systematic approach to identifying parity

placements.

30

Symmetric

.Pb o 1

Right

4

I
I
I
I
I
I
I
I
I
I
I

Asymmetric(O)

~·ro.: 0 1

2 ~:l!!l 3

4 5 ::11::

Asymmetric(1)

----------------------------------~------------------------L-----------------------

0

Left

5

1
I
I
I
I
I

0 1

2

4 ::~: 5

Figure 14: Three By Three Parity Placement Classes

Asymmetric(2)

parity and its corresponding data results in the family of right-asymmetric placements, the family

of left-asymmetric placements, the right-symmetric placement and the left-symmetric placement.

For the extended-left-symmetric placement class, there are two reasonable ways to place the parity.

The first method, as already described, is to align the parity with its corresponding data. The

second method is to align all of the parity with each other. This ensures that on large reads, all

disk heads will skip over the parity sectors simultaneously. The two methods of placing the parity

within each row give rise to the left-symmetric and fiat-left-symmetric placements.

Thus, we conclude that the most useful parity placements derivable for a single row of disks

from a three-by-three grid are the family of right-asymmetric placements, the family of left

asymmetric placements, the right-symmetric placement, the left-symmetric placement and the fiat

left-symmetric placement. It would be useful to characterize the placements derivable for general

m-by-n disk arrays. Due to the lack of time and other resources, we leave these as possibilities for

future work.

5.6.2 Multi Row Placements

This section takes a systematic look at parity placements for arrays with multiple rows of disks

by considering all three-by-three parity placements for two rows of disks. Consider two three-by

three checkerboards where the columns of each checkerboard correspond to distinct disks and the

squares to stripe units. Each column within each checker board forms a set of size three which we

will refer to as a placement group. A placement group represents the stripe units placed together on

a single disk. The set of placement groups within the same column is referred to as a column group.

With two rows of disks, there are two placement groups per column group. The set of all column

groups will be referred to as a placement class. Figure 15 illustrates the above concepts. A parity

placement is derived from a placement class by imposing an ordering on the stripe units within

each placement group. Thus, in our example, there are 18!/(3!3!~3) = 2, 858,856 placement classes

31

'--- .. ----------------.
: r;::::::·· :
::: I I :
Ill 1 I I

Ill :: I

'*-ntmtO.. :: I I :

::: :: :
ColumD Oroup ---i..i :r--+·~· -+---1

I I I I

I 1 ::

,_,__ Oruup --f.?--'='--=--~-f--0--'-----'
I

:
I
I
I
I
I

:
I
I

: I 1---f--;..-+---1
II
II
lo
I 1 '--~--'----'

: ~--------·
~------- -------------4

Figure 1S: Parity Placement Definitions

and each placement class corresponds to 3!6 = 46, 6S6 parity placements (columns are unordered

-+ 3!, stripe units within each of six placement groups unordered -+ 3!6 , placement groups within

column groups unordered -+ 23).

In what follows, we implicitly restrict placement classes to those which place parity and its

corresponding data stripe units on different disks and uniformly distributes parity and data over

all disks. We will refer to such a placement as a RAID level 5 placement. Note that the results

which follow, unless otherwise indicated, have been derived by brute force; i.e by enumeration of

all possibilities.
A key question to be answered in this section is whether there exists a RAID levelS placement

which is distance six and satisfies Property S, i.e. places stripe units belonging to any two consec

utive parity stripes on different disks. An enumeration of all possible placement classes indicates

that there does not exist such a placement.

The number of RAID levelS placements which are distance six but do not satisfy Property Sis

sixty-four. The extended-left-symmetric and flat-left-symmetric placements are derived from one

of these sixty-four classes. The other sixty-three classes can be generated from the extended-left

symmetric class by swapping the parity stripe units within column groups, and by swapping the set

of data stripe units within a placement group with another such set containing data stripe units of

the same parity stripe. Figure 16 illustrates each type of swap. There are eight ways to perform the

former swap and eight ways to perform the latter swap, resulting in a total of 8 X 8 = 64 different

placement classes. The performance of placements derived from the other sixty-three placement

classes is difficult to predict with certainty although we would not expect them to be significantly

different from the extended-left-symmetric and flat-left-symmetric placements.

The number of RAID level S placement classes which are distance five and satisfy Property S,

as illustrated by Figure 17, is six. The placement classes differ only in the grouping of placement

groups to form column groups. The six placement classes would produce identical performance in

our simulator.

5.7 Summary

We have examined the performance and computational overhead of eight different parity place

ments, derived desirable properties for parity placements, and analytically examined a large space

32

3 4 5

9 10 11

Figure 16: Distance Six Multi-Row Parity Placement Classes

Left-Symmetric

o 1 ::m
5 igj" 4

::14::= 8 9

2 3 ::!1'::
:=:=:-::::::·:··

7 ::m: 6

::l:i 10 11

o 1 =:1:
5 m:. 4

:~ti:' 8 9

2 :~!! 3

7 6 ~:t~:.:
~:~·· 11 10

o 1 ~rm::
5 :;;.:: 4

' :;=:· 8 9

0 1 il
5 ::1]:: 4

iii~: 8 9

0 1 ;:1:'
5 [l:l' 4

iii!; 8 9

Figure 17: Distance Five Multi-Row Parity Placement Classes

33

0 1 :(1
5 :1:, 4

!!14': 8 9

::1!.::: 3 2

6 1lil 7

11 10 :a:~

of possible placements. The latter shows that there does not seem to exist a placement which is

capable of significantly higher performance than those that we have already examined (In truth,

the analytical analysis initially yielded placements of superior performance which we added to the

list we had at that time to derive our current list!).

Given what we now know of parity placements, the following "recommendations" can be made:

• The performance of small reads and writes is insensitive to the parity placement.

• H the performance of large reads at low loads is of primary importance; than the fiat-left

symmetric placement is the best.

• H the performance of large writes at low loads is of primary importance, than the left

symmetric placement is the best.

• At high loads, all of the redundant placements with the exception of the RAID level4 place

ment, which does not distribute the parity, perform equally well.

• In general, if the workload of a system is not well known, the left-symmetric placement is an

all-around good placement.

6 Conclusion

We have described the software of RAID-I, including the data mapping, parity placement, how

user requests are serviced and how data consistency is maintained. In addition, we have classified

and investigated the performance of a variety of parity placement schemes in detail via simulatio~

and analytical methods. We have shown that the left-symmetric, extended-left-symmetric and fiat

left-symmetric are the best parity placements. We have also shown that, of the three placements

mentioned above, the placement with the highest read performance (fiat-left-symmetric) has the

lowest write performance and the placement with the lowest read performance (left-symmetric) has

the highest write performance. Additional work remains to be done in investigating other RAID

parameters such as the stripe unit [1] and row sizes and their impact on performance.

7 Acknowledgements

I would like to thank my advisor, Randy Katz, members of the RAID group (especially Peter Chen,

Ann Chervenak and Garth Gibson) members of the Sprite group (especially Mendel Rosenblum

and Mary Baker) and our government and industrial affiliates (Array Technologies, DARPA, DEC,

Eastman Kodak, Hewlett-Packard Labs, IDM, Intel Scientific Computers, NASA, NSF, Seagate,

Sun Microsystems and Thinking Machines Corporation) for making this work possible. I am also

greatly indebted to David Patterson for reviewing this report and making numerous helpful sug

gestions. I would also like to thank John Ousterhout for supervising the initial implementation of

the RAID software under Sprite.

34

References

[1] Peter M. Chen and David A. Patterson. Maximizing throughput in a. striped disk array. In

Proc. International Symposium on Computer Architecture, May 1990.

[2] Peter C. Dibble. A parallel interleaved file system. Technical Report CS TR 334, University

of Rochester, March 1990.

[3) R. H. Katz, G. A. Gibson, and D. A. Patterson. Disk system architectures for high performance

computing. In Proc. IEEE, December 1989.

[4] M. Y. Kim. Synchronized disk interleaving. IEEE Trans. on Computers, November 1986.

[5) M. Y. Kim and A. N. Tantawi. Asynchronous disk interleaving. Technical Report RC12497,

mM, January 1987.

[6] M. Livny, S. Khoshafian, and H. Boral. Multi-disk management algorithms. In Proc. BIG

METRICS, May 1987.

[7) David A. Patterson, Peter M. Chen, Garth Gibson, and Randy H. Katz. Introduction to

redundant arrays of inexpensive disks (raid). In Proc. IEEE COMPCON, Spring 1989.

[8] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of

inexpensive disks (raid). In Proc. ACM SIGMOD, June 1988.

[9) A. L. Narasimha Reddy and Prithviraj Banerjee. An evaluation of multiple-disk i/o systems.

IEEE Trans. on Computers, December 1989.

[10] K. Salem and H. Garcia-Molina. Disk striping. In Proc. IEEE Data Engineering, February

1986.

35

