
SHORT DESCRIPTION OF TI-IE RESEARCH GROUP on

Knowledge-Based Systems (KBS)
and

Human-Computer Communication (HCC)

Gerhard Fischer, Andreas Lemke, Hal Eden, Anders Morch,
Andreas Girgensohn, Scott I-Ienninger, Tom Mastaglio,

David Redmiles, Brent Reeves, Curt Stevens,
Kumiyo Nakakoji, Jonathan Ostwald,

Akihiro Shinmmori, and Frank Shipman

Department of Computer Science
Campus Box 430
University of Colorado,
Boulder, Colorado, 80309

CU-CS-413-88 November 1989

This research is supported by grants and contributions from the following organizations:
National Science Foundation, Army Research Institute, Colorado Institute for Artificial
Intelligence, USWest Advanced Technologies, NYNEX, Software Research Associates,
AT&T, MCC (Austin, TX), NCR (Ft. Collins, CO),and Symbolics.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Short Description of the Research Group on Knowledge-Based Systems
(KBS) and Human-Computer Communication (HCC)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS., FINDINGS, AND- CONCLUSIONS OR RECOMl\llENDA TIONS
EXPRESSED IN' THIS PUBLICATION ARE TiiOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLEcr THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFI
CIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

~ University of Colorado at Boulder

Department of Computer Science

ECOT 7-7 Engineering Center
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-1592

Short Description of the Research Group on

Members

Knowledge-Based Systems (KBS)
and

Human-Computer Communication (HCC)

November 1989

Gerhard Fischer (Professor); Andreas Lemke (Post Doctoral Fellow); Hal Eden (Professional Research
Assistant); Andreas Glrgensohn, Scott Henninger, Tom Mastagllo, David Redmlles, Brent Reeves,
and Cun Stevens (Graduate Research Assistants); Kumlyo Nakakojl, Jonathan Ostwald, Aklhlro
Shlnmorl, and Frank Shipman (PhD and Master Students).

Global Research Goals

Our goal is to establish, both by theoretical work and by building prototype systems, the scientific foun
dations for the construction of intelligent systems which seNe as amplifiers of human capabilities (e.g., to
expand human memory, augment human reasoning, and facilitate human communication). A prerequisite
for intelligent systems is that we understand the information processing possibilities and limitations of the
human and the computer. We apply basic, qualitative theories of human thinking to guide the design of
innovative systems. Our systems should not only be significant as technical achievements in computer
science, but also because they are based upon principled analyses of how one can best help people to
cope with complex information systems. Working in intelligent systems, it is not sufficient to know how to
build these systems; one must discover which systems are worth building.

Knowledge-Based Systems (KBS) and Human-Computer Communication (HCC) are two crucial research
areas for these goals. We are especially interested in understanding the possibilities of pursuing these
two research areas together. The rationale for this approach is that on the one hand effective human
computer communication is more than creating attractive displays on a CRT screen: It requires providing
the computer with a considerable body of relevant world knowledge as well as knowledge about the
psychological characteristics and understanding of the user; on the other hand, the use of knowledge
based systems and expert systems will be severely limited if we are unable to eliminate the communica
tion bottleneck.

2

In our current research effort, innovative system development, cognitive theory construction, and evalua
tion are combined and centered around the following themes: cooperative problem solving, user-centered
design, intelligent support systems (e.g., critics, advisors}, intelligent information management, construc
tion kits and design environme~ts, human problem-domain communication, explanation and visualization
components, and reuse and redesign.

Computational Environment

The group has 12 SvMsoucs Lisp Machines, 6 Macintosh-lis, 2 Maclvories, a Decstation 3100, and 9
Hewlett Packard AI workstations. In addition, the Computer Science Department has a large number of
SUN-3/4 workstations, a MIPS, an Intel Hypercube, an Amdahl Hypercube, Evans and Sutherland, lnc.
ES1 Shared Memory Supercomputer, a NeXT machine, Myrias Computer Cooperation-SPS Memory Su
percomputer. The department also shares a connection machine with NCAR and UCD. All of these
machines are linked together in a network.

Integration and Cooperation

The group is part of the Department of Computer Science. It is a member of the Institute of Cognitive
Science at the University of Colorado and is also part of the Intelligent Systems Group (an association of
a large number of different institutions at the University of Colorado which are interested in artificial
intelligence research}. It participates in the Human-Computer Interaction Consortium (which brings
together research groups from the USA and Europe working in HCI). It cooperates and has active
research relationships with other universities, research laboratories, and industry.

Financial Support

The research is supported by grants and contributions from the following organizations:
1. Current: National Science Foundation (NSF), Army Research Institute (ARI), NYNEX (White

Plains, NY}, Software Research Associates (Boulder, CO and Tokyo), Apple (Cupertino,
CA), and HP (Palo Alto, CA)

2. Previous: Office of Naval Research (ONR), Colorado Institute for Artificial Intelligence,
US WEST Advanced Technologies (Denver, CO), AT&T (Denver, CO), MCC (Austin, TX),
NCR (Fort Collins, CO), and Symbolics (Cambridge, MA)

Attached are:
• Appendix 1: List of Publications

• Appendix 2: List of Technical Reports

• Appendix 3: Short Summaries of Major Research Grants

• Appendix 4: Screen Images of Some of our Systems

Copies of Publications, Technical Reports, and a list of all publications (including those prior to 1988) can
be obtained by contacting:

Francesca Iovine
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430

phone: (303) 492-1592
email: iovine@boulder.colorado.edu
FAX: (303) 492-2844

3

Appendix 1: List of Publications: 1988 - present

1 . G. Fischer: Communication Requirements for Cooperative Problem Solving Systems, Special
Issue on "Knowledge Engineering" of the International Journal "Information Systems" (in press).

Despite lip service that .. most knowledge-based systems are intended to be of assistance to human endeavor
and are almost never intended to be autonomous agents," knowledge-based systems research has not been
focused enough on the nature and the requirements of cooperative problem solving systems. The emphasis of
our work is on creating computer systems to facilitate the cooperation between a human and a computer.
Cooperation requires more from a system than having a nice user interface or supporting natural language
dialogs. One needs a richer theory of problem solving, which analyzes the functions of shared representations,
mixed-initiative dialogues, argumentation, and management of trouble. Our evolving theoretical framework for
this approach has led to a number of prototypical systems developments which serve as vehicles for future
research. Examination of these systems provides evidence that learning and effective problem solving can be
improved through the use of cooperative problem solving systems.

2. G. Fischer, A.C. Lemke, T. Mastaglio, A. Morch: Critics: An Emerging Approach to Knowledge
Based Human Computer Interaction, Human Factors in Computing Systems, CHI'90 Conference
Proceedings (Seattle, WA) ACM, New York, April1990 (in press).

We describe the critiquing approach to building knowledge-based interactive systems. Critiquing supports
computer users in their problem solving and learning activities. The challenges for the next generation of
knowledge-based systems provide a context for the development of this paradigm. We discuss critics from the
perspective of overcoming the problems of high-functionality computer systems, of providing a new class of
systems to support learning, of extending applications oriented construction kits to design environments, and of
providing an alternative to traditional autonomous expert systems. One of the critiquing systems we have built
-- JANUS, a critic for kitchen design -- is described as a reference point for presenting the key aspects of the
critiquing process. We then survey additional critiquing systems developed in our and other research groups.
The paper concludes with a discussion of experiences and extensions to the paradigm.

3. G. Fischer, A. Girgensohn: End-User Modifiability in Design Environments, Human Factors in
Computing Systems, CHI'90 Conference Proceedings (Seattle, WA) ACM, New York, April1990 (in
press).

Convivial systems encourage users to be actively engaged in generating creative extensions to the artifacts
given to them. They have the potential to break down the counterproductive borderline between programming
and using programs. Knowledge-based design environments are prototypes for convivial systems. They sup
port human problem-domain communication allowing users to work within their domains of expertise. One of the
design rationale behind design environments is to ease the construction and modification of artifacts designed
within the environment. But because design environments are intentionally no general purpose programming
environments, situations will arise that require that the design environment itself is modified. The rationale and
the techniques for these later modifications are discussed in this paper. Our conceptual framework for end-user
modifiability is illustrated in the context of JANUS, an environment for architectural design. Evaluating our
system building efforts against our objectives shows the subtleties of integrating end-user modifiability in these
kind of systems.

4. G. Fischer, T. Mastaglio, B. Reeves, J. Rieman: Minimalist Explanations In Knowledge-Based
Systems, Proceedings of the 23rd Hawaii International Conference on Systems Sciences, January
1990 (in press).

Research in discourse comprehension and human-computer interaction indicates that good explanations are
usually brief. A system that provides brief explanations, however, must plan for the case where brevity comes

4

at the expense of understanding. Human to human dialog is, to a large part, concerned with conversational
repair and question-answer episodes; computer systems need to provide similar fallback techniques to their
users. We have designed such an explanation system in the context of a knowledge-based critiquing system,
LISP. The system provides several levels of explanations, specifically tailored to the user. If the initial, brief
explanation is insufficient, the system positions the user at an appropriate point within a more complete,
hypertext-based documentation system. Rather than attempting to design a system that can generate a
perfect, one-shot explanation for any given situation, this approach concentrates on matching the communica
tion abilities provided by current computer technology to the cognitive needs of the human user.

5. T. Mastaglio: User Modeling In Computer-Based Critics, Proceedings of the 23rd Hawaii Inter
national Conference on Systems Sciences, January 1990 (in press).

A user modeling approach for computer-based critics is described. The critiquing model is one approach to
instantiating the cooperative problem solving paradigm. The theoretical background for cooperative problem
solving and the motivation for developing a user modeling approach in this domain are based on a need to
provide systems that operate independent of explicit user direction. A theoretical model of user domain
knowledge, an analysis of the application domain, LISP, and research on the generation of explanations
prescribe the contents of the user model. How to represent, acquire, and maintain consistency of the user
model in a critiquing system for LISP programming -- LISP-· is the fundamental issue addressed. LisP has been
extended to include a user modeling component; this component includes a database of information about the
user and a modeling agent. The modelling agent encapsulates the access and update methods for the user
model.

6. S. Doane, A.C. Lemke: Using Cognitive Simulation to Develop User Interface Design
Principles, Proceedings of the 23rd Hawaii International Conference on Systems Sciences, January
1990 (in press).

This paper summarizes some of our current research using simulation of user performance to develop theory
based user interface design principles. The approach is to develop independent detailed simulations of user
command production in two high-functionality systems: the UNIX operating system and FRAMER, an innovative
user-interface design tool. The simulations are based on the construction-integration theory and build on the
action planning model developed by Mannes and Kintsch. Use of the model provides some insight into why
certain types of command productions pose problems for UNIX users, and it shows promise for explaining
problems for users of FRAMER. We discuss using these insights as tools for developing user interface design
principles for future system design.

7. G. Fischer: The Importance of Models In Making Complex Systems Comprehensible, Proceed
ings of the 8th Interdisciplinary Workshop on Informatics and Pyschology, Schaerding, North Hol
land, 1990 (in press).

Reality is not user-friendly. To cope, model, and comprehend a complex reality requires complex systems.
Complex systems offer power, but they are not without problems. High-functionality computer system serve as
prototypical examples for complex systems in our research. They are used to instantiate our model of coopera
tive problem solving in joint human-computer systems. Models play a crucial part in creating these systems and
in increasing their comprehensibility. Three different types of models are discussed in this paper: the designers'
models of the users, the users' models of the systems, and the systems' models of the users. Innovative
system designs supporting human-problem domain communication and providing design environments illustrate
the relevance of these models in making complex systems comprehensible.

5

8. G. Fischer: Creativity Enhancing Design Environments, Proceedings of the International Con
ference "Modeling Creativity and Knowledge-Based Creative Design," Heron Island, Australia,
December 1989 (in press).

Computers have the potential to be creativity enhancing tools. But most of the current systems have not lived up
to these expectations-- they have restricted rather than enhanced creativity. Designers were forced to express
their goals, ideas, and (partial) solutions at levels that were too remote from the problem domains they were
dealing with. To overcome these limitations, we have developed a conceptual framework and prototypical
systems that allow designers to work with personal meaningful operations. Beyond providing domain-specific
abstractions, our knowledge-based design environments can evaluate and criticize an evolving design and
provide feedback to the designer. They integrate constructive and argumentative components. They turn the
computer into an invisible instrument and support cooperative problem solving between the human designer
and the computer. Our experience with these systems demonstrates that they have the potential to serve as
important stepping stones towards creativity enhancing environments.

9. G. Fischer, R. McCall, A. Morch: JANus: Integrating Hypertext with a Knowledge-Based Design
Environment, Proceedings of Hypertext'89, November 1989 (in press).

Hypertext systems and other complex information stores offer little or no guidance in helping users find infor
mation useful for activities they are currently engaged in. Most users are not interested in exploring hypertext
information spaces per se but rather in obtaining information to solve problems or accomplish tasks. As a step
towards this we have developed the JANUS design environment. JANUS allows designers to construct artifacts in
the domain of architectural design and at the same time to be informed about principles of design and the
reasoning underlying them. This process integrates two design activities: construction and argumentation.
Construction is supported by a knowledge-based graphical design environment, and argumentation is sup
ported by a hypertext system. Our empirical evaluations of JANUS and its predecessors has shown that
integrated support for construction and argumentation is necessary for full supprt of design.

10. H.-D. Boecker, G. Fischer, H. Nieper-Lemke: The Role of Visual Representations in Under
standing Software, in D. Partridge (ed.), "Artificial Intelligence and Software Engineering," Ablex
Publishing Corporation, Norwood, NJ, 1989 (in press).

The way a problem is represented strongly affects our ability to understand and solve it. Visual representations
are especially important because the human visual system is such a powerful way of processing information.
However few existing systems try to take advantage of these insights. In pursuit of the long-range goal of
constructing a software oscilloscope that makes the invisible visible, we have constructed system components
which automatically generate graphical representations of complex structures, illustrate the control flow of
complex programs, and support visualization techniques in object-oriented environments. Our tools are used in
a variety of contexts: in programming environments, as components in intelligent support systems, and in
human-computer interaction in general. Visual representation alone, however, is not enough; the designer of
visualization tools must take into account the semantics of graphical symbols and the user's need to limit
visualization to the relevant facts and relations.

11. G. Fischer, T. Mastaglio, J. Rieman: User Modeling In Critics Based on a Study of Human
Experts, Proceedings of the Fourth Annual Rocky Mountain Conference on Artificial Intelligence,
RMSAI, Denver, CO, June 1989, pp. 217-225.

Computer-based critics are an effective approach for using knowledge-based systems to support cooperative
problem solving but need to be extended with user modeling capabilities. Efforts to do this in the LISP-CRITIC

system using statistical methods indicated the need to pursue additional techniques for implicit acquisition of
knowledge about the user. A verbal protocol study of human experts analyzing the work of other programmers
was conducted. The study focused on how these experts infer the knowledge and expertise levels of
anonymous programmers when provided only with samples of the programmers' LISP code. Three distinct
categories of "cues" to a programmer's knowledge were found: syntactic, code semantic, and problem seman-

6

tic. Analysis of these categories indicates that the first two are amenable to acquisition by the LISP-CRITIC
system, but that the third category requires a significantly different knowledge base than the system currently
contains. Knowledge of the world in general and specific problem domains is required. The results of current
efforts to incorporate some of these techniques into the LisP-CRITIC are presented.

i 2. R. McCall, G. Fischer: Supporting Reflection-In-Action In the JANUS Design Environment,
Proceedings of the CAAD Futures'89 Conference "Computer Aided Design Education" (Pre
Publication Edition), June '1989.

Computer-supported construction facilitates design. The problem is that it facilitates both good and bad design.
To create good design, designers need knowledge about how to evaluate what is constructed. To increase the
likelihood of good design, a computer-aided design system should supplement support for construction with a
store of evaluative knowledge. But adding such knowledge to a construction support system would not in itself
be enough. Good design requires that designers have more than knowledge. It requires reflection-in-action, i.e.,
think about what one does while this thinking can still make a difference to what one does. The paper describes
an architecture and a prototype of a system which supports reflection-in-action.

i 3. G. Fischer, R. McCall, A. Morch: Design Environments for Constructive and Argumentative
Design, Human Factors in Computing Systems, CHI'89 Conference Proceedings (Austin, TX), ACM,
New York, May i 989, pp. 269-275.

Design Environments are computer systems which support design by enabling cooperative problem solving
between designer and computer. There are two complementary problem solving activities in design: construc
tive design and argumentative design. We have created two computer-supported environments, CRACK and
VIEWPOINTS, to support these two activities. CRACK is a knowledge-based critic which has knowledge about how
kitchen appliances can be assembled into functional kitchens. VIEWPOINTS is a hypertext system based on the
IBIS design methodology and contains useful information about the principles of kitchen design. The integration
of these two types of systems will eliminate shortcomings of the individual systems.

14. G. Fischer, H. Nieper-Lemke: HELGON: Extending the Retrieval by Reformulation Paradigm,
Human Factors in Computing Systems, CHI'89 Conference Proceedings (Austin, TX), ACM, New
York, May 1989, pp. 357-362.

People who attempt to use a complex information store on a computer encounter a number of problems: They
do not know what information exists or how to find information, they get no support in articulating a question,
and they are unable to phrase their question in terms that the system understands. HELGON, an intelligent
environment that supports limited cooperative problem solving, helps people deal with complex information
stores. HELGON supports retrieval and editing by reformulation with multiple specification techniques, and it
acquaints the user with the system model of the information store. Within the current HELGON system, a number
of different information stores have been implemented. Empirical evaluations have shown that HELGON sup
ports effective communication. In addition, the evaluations have shown interesting extensions for future work.

15. G. Fischer: Human .. Computer Interaction Software: Lessons Learned, Challenges Ahead, IEEE
Software, Vol. 6, No. 1, January 1989, pp. 44-52.

Human-computer interaction (HCI) is an ill-structured domain that is limited much more by specification than by
implementation. When we write software for HCI, we define not only what the computer will do but also what
humans will and can do -- and we make assumptions about what they want to do. Humans are individuals.
They have different knowledge and different preferences, and they change; that is, a novice may become an
expert over time. In our research over the last ten years, we have tried to improve human-computer interaction
by widening the explicit communication channel between humans and computers and by establishing with
knowledge-based systems an implicit communication channel in which shared knowledge is the basis for
cooperative problem solving. Our efforts have taught us a number of lessons such as the limitations of user

7

interface toolkits, the need for higher level, application-oriented abstractions, and the need for intelligent support
systems. We have defined several challenges for the future: the need for methodologies and tools for coping
with design tasks with incomplete specifications, the challenge of resolving design trade-offs, and the need to
support cooperative problem solving.

16. G. Fischer, T. Mastaglio: Computer-Based Critics, Proceedings of the 22nd Hawaii Conference on
System Sciences, Vol. Ill: Decision Support and Knowledge Based Systems Track, IEEE Computer
Society, January 1989, pp. 427-436.

Computer-based critics are a paradigm for intelligent human-computer communication which overcomes a
number of limitations of other approaches, such as tutoring and advising. Critics are much more user-centered
and support users in their own doing. They provide information only when it is relevant. They allow users to do
whatever they want and interrupt only when users' plans, actions, or products are considered significantly
inferior. They are applicable in situations where users have some basic competence in carrying out a task,
because users must be able to generate a plan, action, or product by themselves. They are most useful in
domains where no unique best solution exists but where trade-offs have to be carefully balanced. Critics need
to be knowledge-based systems. Critic systems must incorporate knowledge of the application domain, support
dynamic explanation generation, model individual users, and provide innovative user interfaces. Over the last
few years, we have implemented a number of critics in different domains (e.g., for programming, for design).
The rationale, the design, and the evaluation of these systems is described as a starting point towards a general
framework for computer-based critics.

17. S. Henninger, A. lgnatowsky, C. Rathke, D. Redmiles: A Knowledge-Based Design Environment
for Graphical Network Editors, Proceedings of the 22nd Hawaii Conference on System Sciences,
Vol. II: Software Track, IEEE Computer Society, January 1989, pp. 881-891.

Design systems for graphical network editors are general purpose tools that capture common characteristics of
network-like structures. As a consequence, these systems support their users only as far as the network
functionality is concerned. While this is important, it is not enough to effectively support users in designing
specific network viewers or editors for specific applications. Without knowledge about the application domain,
for which the editor is designed, there is little potential to guide the user or make suggestions for a better
design. We have developed a graphical editor design environment that incorporates and applies knowledge
about application domains. Our goal is to boost a design environment closer towards its application. As an
example of this new generation of design support systems, we have developed a design environment for
graphical editors in the domain of object-oriented inheritance networks. In addition to the general knowledge
about graphs, the system knows about inheritance mechanisms in object-oriented systems, it knows about the
nodes being classes and the links representing the superclass relation. This knowledge is used to provide
guidance, critique, and constraints.

18. G. Fischer: Cooperative Problem Solving Systems, Proceedings of the 1st Simposium lnter
nacional de lnteligencia Artificial (Monterrey, Mexico), October 1988, pp. 127-132.

Problem solving effectiveness is often enhanced by cooperation --traditionally, cooperation among people, or,
more recently, cooperation between a human and a computer. The emphasis of our work is on creating
computer systems to facilitate the cooperation between a human and a computer. Examination of these
systems provides evidence that learning and effective problem solving can be improved through the use of
cooperative systems. It also indicates the need for a richer theory of problem solving, which would analyze the
functions of shared representations, mixed-initiative dialogues, and management of trouble, if problems occur.

8

19. G. Fischer, C. Rathke: Knowledge-Based Spreadsheet Systems, Proceedings of AAAI-88,
Seventh National Conference on Artificial Intelligence (St. Paul, MN), Morgan Kaufmann Publishers,
San Mateo, CA, August 1988, pp. 802-807.

Spreadsheet systems have changed the way the world perceives and deals with computers. In an attempt at
maintaining the positive elements of spreadsheets while overcoming some of their limitations, we have
developed FtNANZ, a computational environment to develop financial planning systems. FINANZ contains a
form-based user interface construction system, which allows the creation of advanced user interfaces without
the need for conventional programming. It uses constraint-based programming for the representation of
knowledge about the application domain. Its layered architecture (based on object-oriented knowledge
representation) supports the modification and extension of the system and the dynamic generation of explana
tions.

20. G. Fischer, A. Morch: CRACK: A Critiquing Approach to Cooperative Kitchen Design, Proceed
ings of the International Conference on Intelligent Tutoring Systems (Montreal, Canada), June 1988,
pp. 176-185.

Human problem-domain communication and cooperative problem solving are two enabling conditions that allow
users, who are not computer experts, to use computers for their own purposes. Computer-based critics, a
specific class of intelligent support systems, are most effective if they are embedded in a framework defined by
human problem-domain communication and cooperative problem solving. CRACK is a specific critic system
which supports users designing kitchens. It provides a set of domain-specific building blocks and has
knowledge about how to combine these building blocks into useful designs. It uses this knowledge "to look over
the shoulder" of a user carrying out a specific design. If CRACK, based on its understanding of kitchen design,
discovers a shortcoming in users' designs, it offers criticism, suggestions, and explanations and assists users in
improving their designs through a cooperative problem solving process. CRACK is not an expert system that
dominates the design process by generating new designs from high-level goals or resolving design conflicts
automatically. Users control the behavior of the system at all times (e.g., the critiquing can be "turned on and
off"), and if users disagree with CRACK, they can modify its knowledge base.

21. G. Fischer, S.A. Weyer, W.P. Jones, A.C. Kay, W. Kintsch, R.H. Trigg: A Critical Assessment of
Hypertext Systems, Human Factors in Computing Systems, CHI'88 Conference Proceedings
(Washington, D.C.), ACM, New York, May 1988, pp. 223-227.

Over forty years ago, Vannevar Bush articulated his vision of a "Memex" machine: ~~associative indexing, ...
whereby any item may be caused at will to select immediately and automatically another." In the sixties,
Engelbart built collaborative systems to provide idea structuring and sharing. Nelson coined "hypertext" and
proposed world-wide networks for publishing, linking, annotating, and indexi ng mu~iple versions of documents.
With increasing numbers of research projects, papers, panels, and conferences, and cOmmercially available
systems (e.g., NoTECARDS by Xerox, GUIDE by Owl and HYPERCARD by Apple) in recent years, hypertext may be
an idea whose time has finally come -- or at least a phenomenon not to be ignored.

22. G. Fischer: Enhancing Incremental Learning Processes with Knowledge-Based Systems, in
A. Lesgold and H. Mandl (eds.), "Learning Issues for Intelligent Tutoring Systems," Springer Verlag,
Berlin - Heidelberg - New York, 1988, pp. 138-163, Ch. 7.

Over the last several years we have developed aspects of a general theory of incremental learning processes
which will be the dominant way to master systems of broad functionality. To complement the theoretical work
we are pursuing the goal of building a LISP-CRITIC and we have constructed several systems to be used as its
components. All these systems have two things in common: they are knowledge-based and use innovative
techniques to enhance human-computer communication.

9

23. G. Fischer, A.C. Lemke: Constrained Design Processes: Steps Towards Convivial COmputing,
in R. Guindon (ed.). "Cognitive Science and its Application for Human-Computer Interaction/'
Lawrence Erlbaum Associates, Hillsdale, NJ, 1988, pp. 1-58.

Our goal is to construct components of convivial computer systems which give people who use them the
greatest opportunity to enrich their environments with the fruits of their vision. Constrained design processes
are a means of resolving the conflict between the generality, power and rich functionality of modern computer
systems, and the limited time and effort which casual and intermediate users want to spend to solve their
problems without becoming computer experts. Intelligent support systems are components which make it less
difficult to learn and use complex computer systems. We have constructed a variety of design kits as instances
of intelligent user support systems which allow users to carry out constrained design processes and give them
control over their environment. Our experience in building and using these design kits will be described.

24. G. Fischer, A.C. Lemke: Construction Kits and Design Environments: Steps Toward Human
Problem .. Domaln Communication, Human-Computer Interaction, Vol. 3, No.3, 1988, pp. 179-222.

Our goal is to build cooperative computer systems to augment human intelligence. In these systems the
communication between the user and the computer plays a crucial role. To provide the user with the ap
propriate level of control and a better understanding, we have to replace human-computer communication with
human problem-domain communication, which allows users to concentrate on the problems of their domain and
to ignore the fact that they are using a computer tool. Construction kits and design environments are tools that
represent steps towards human problem-domain communication. A construction kit is a set of building blocks
that models a problem domain. The building blocks define a design space (the set of all possible designs that
can be created by combining these blocks). Design environments go beyond construction kits in that they bring
to bear general knowledge about design (e.g., which meaningful artifacts can be constructed, how and which
blocks can be combined with each other) that is useful for the designer. Prototypical examples of these
systems (especially in the area of user interface design) are described in detail and the feasibitity of this
approach is evaluated.

Appendix 2: List of Technical Reports and Papers in Preparation

1. G. Fischer, A.C. Lemke: Knowledge-Based Design Environments for User Interface Design,
Technical Report, Department of Computer Science, Boulder, CO, 1989.

2. A.C. Lemke: Design Environments for High-Functionality Computer Systems, PhD Thesis,
Department of Computer Science, University of Colorado, Boulder, CO, July 1989.

3. S. Henninger: CooEFINDER: Using Associative Networks and Spreading Activation for
Software Object Retrieval, Technical Report, Department of Computer Science, University of
Colorado, Boulder, CO, April1989.

4. G. Fischer, P. Foltz, W. Kintsch, H. Nieper-Lemke, C. Stevens: Personal Information Systems
and Models of Human Memory, Technical Report, Department of Computer Science, University of
Colorado, Boulder, CO, April1989.

10

5. G. Fischer, W. Kintsch, P.W. Foltz, S.M. Mannes, H. Nieper-Lemke, C. Stevens: Theories,
Methods, and Tools for the Design of User-Centered Computer Systems (Interim Project
Report, September 1986 - February 1989), Department of Computer Science, UniversHy of
Colorado, Boulder, CO, March 1989.

6. G. Fischer, T. Mastaglio: A Conceptual Framework for Knowledge-Based Critic Systems, Sub
mitted to the International Journal "Decision Support Systems," North Holland.

7. G. Fischer, A.C. Lemke: FRAMER: Integrating Working and Learning, Technical Report, Depart
ment of Computer Science, University of Colorado, Boulder, CO, December 1988.

8. G. Fischer, A.C. Lemke, H. Nieper-Lemke: Enhancing Incremental Learning Processes with
Knowledge-Based Systems (Final Project Report), Technical Report No. CU-CS-392-88, Depart
ment of Computer Science, University of Colorado, Boulder, CO, March 1988.

9. T.T. Turner (ed): Mental Models and User-Centered Design, Workshop Report (Breckenridge,
CO), Technical Report No. 88-9, Institute of Cognitive Science, University of Colorado, Boulder, CO,
1988.

10. G. Fischer, H. Nieper: Personalized Intelligent Information Systems, Workshop Report
(Breckenridge, CO), Institute of Cognitive Science, University of Colorado, Boulder, CO, Technical
Report No. 87-9, 1987.

11

Appendix 3: Short Summaries of Current Major Research Grants

1. Theories, Methods, and Tools for the Design of User-Centered Computer Systems

Sponsor: Army Research Institute
Principal Investigators: Gerhard Fischer, Walter Kintsch
Period of Support: August 1986- July 1991
Project Summary:

The goal of this research at the general level is to develop theories, methods, and tools for the
design of user-centered computer systems and at the specific level to design, implement and
evaluate a customizable E.ersonalized intelligent B.etrieval §ystem (PIRS). Our research effort is
based on the basic hypothesis that the following duality exists:

1. User-centered system design cannot be done and understood without trying to test
existing ones, extend existing ones, and design new ones.

2. User-centered system design cannot be understood by just doing it; the system build
ing efforts must be based on a deep understanding of the theoretical and methodologi
cal issues behind them, derived primarily from Cognitive Science and as far as evalua
tion is concerned from Human Factors I Cognitive Ergonomics.

The software systems developed within our research effort should be significant not only as technical
achievements in computer science, but also because these systems are based upon principled
analyses of how one can best help humans to cope with complex information systems. If one wants
to accomplish good work in user-centered human-computer systems, it is not sufficient to know only
how to build these systems: one must also be prepared to discover which systems are worth
building and on which principled design strategies these systems can be based. Only joint expertise
in computer science, cognitive science and human factors will make this possible.
The expected results of this long-term research effort will be substantial contributions to a number of
significant scientific and practical problems:

1. the theory of design and comprehension of complex user-centered systems,
2. the theory of knowledge use and knowledge retrieval for designers at all levels,
3. the definition, exploration and instantiation of new methodologies (e.g., evolutionary

design methodologies, coevolution between specifications and implementations to
cope with design instabilities, strategies to incrementally derive well-structured
problems from ill-structured ones, end-user control over systems),

4. the design, implementation and evaluation of a customizable PIRS,
5. a set of well-tested tools and metatools organized in a PIRS,
6. guidelines for constructing user-centered systems based on the above theories,

methodologies, tools, and metatools,
7. quantitative and qualitative measures to be used by designers and Human Factors

specialists to evaluate the design of user-centered systems.
The proposed research builds upon many years of psychological research on text comprehension
and the development of advanced computer systems over the past 8 years to enhance human
computer communication with knowledge-based systems.

12

2. Design Principles for Comprehensible Systems

Sponsor: National Science Foundation
Principal Investigators: Gerhard Fischer, Walter Kintsch, Clayton Lewis, Peter Polson
Period of Support: August 1988 - July 1991

Project Summary:
Modern high-function computer systems are difficult to master and use. To attack this problem, we
propose a program of research that combines fundamental theoretical work on the cognitive
processes involved in computer use with the development of innovative systems that embody new
design approaches.

The main objective is to develop design principles for making comprehensible systems: systems that
are radically easier for users to understand than current systems. These principles will be developed
in the context of two prototype application systems, which will serve as testbeds for the principles as
well as illustrations of them. The prototype applications will be the foci of interaction of two lines of
work: the exploration of new interface ideas, and the development of a new, comprehension
centered theory of human-computer interaction. These lines of work build on and draw together our
previous and current work in exploratory system building and in cognitive theory. Both the prototype
applications and the underlying theoretical developments will be evaluated empirically.
This project is unique in bringing together fundamental theoretical work and exploratory system
building in tight cooperation. We feel this will pay dividends for both sides of the project. Findings
from exploration of new interface ideas will have more general impact if they can be placed on a
theoretical basis. Theory developed in conjunction with advanced system design will be more
relevant to future technology.

13

Appendix 4: Screen Images of Some of our Systems

v
(co!lr e)

! (power (cdr s)))))
I
j(defuniPer, (s r)
1

1

(cond ((eQua 1 r 1) (11apcar (function 1 ist) s))
(t (Plapcan (function

(lal'lbda (x)
, (l'lapcar (function (1al'lbda (y) (cons x y)))

i' (perA (re.,ove x s) (subl r)))))
s))))

I (de fun col'lb (s r)

I

(cond ((x r 1) (r~apcar (function list) s))
(t (Plapcon (function

(l:itl'lbda (u)
(cond ((< (length u) r) nil)

s}}))

(t (r.apcar (func:t ion (l..,bda (y) (cons (c•r u) y)))
(cor~b (cdr u} (1- r)))})))

L ; ; subseqs s r
l; ; ; a 11 consecutive 5ub5equenc:es of 1 ensth r
! (de fun subseqs (s r}
i (if(< (lengths) .-) nil
I (cons (seq s r) (subseqs (cdr s) r))))
l(defun seQ (s r)

(t (cons (cars) (seq '~--~--.~--~--~~----~~~~l~l_s_p_-C __ R_JT_I_c ______________________________ ~l
I

(cond ((: r 9) nil)

(de fun sub-search (sub 1) cond ~ ~ "'(~:~c~n \ 1• (1::: ~ ~; ist
5

(cond ((null 1) nil) (r~apcar ll'(laMbda (y) (cons x y)} (perl'l {rer~ove x s) (subl r))))
~~n{!~b=~:!r~~ sub (cdr ===> s)))

(if (equal ,. 1)
(A<~tpcar lt'lht s)
(r~apcan II' { 1lll'lbda (x}

(napc<!lr ll'(hnbda (y) (cons x y)) (per" (reP'Iove x s) (subl r))))
s))

Explanation (Why-cond-to-if-else)
IF Is more readable than CONO because It uses fewer parentheses
and because IF has a common English meaning.

Abort Explain New Code Show New Code
Accept. Reject Show Ori~inal Code
Accept. All Set. Parameter$ Why i$ 1 1s Betterl

z,.,ec:l!l (LISP Font-loc:k) pouer.lisp >brentr>~lc MUNCH: 2) *
l1ov• point

Figure 1: The User Interlace of LisP
LISP-CRITIC Is a knowledge-based system that critiques LISP code. The interface shows the user working with
LisP-CRITIC. The large editor window contains a program being worked on by the user. When invoked by the user,
LISP-CRITIC opens a window in which it makes suggestions to the user about how to improve the program being written
and provides explanations of its suggestions when asked. In this figure, the LISP-CRITIC displays a cond-to-if
transformation and an explanation of why LISP-CRITIC recommended changing the oond function to an if.

See publications No. 4, 5, 16, and 22.

14

Figure 2: KAESTLE

With KAESTLE, the graphic representation of a LISP data structure is generated automatically and can be edited
directly with a pointing device. By editing we do not only mean changing the structure itself but rearranging the
graphical layout as well.

See publication No. 1 o.

node : :• <naMe)

de fun de: crea·u- iteM <naMe)
<let < < tu 11-naMe (path: cd current-d irector':l naMe)>>

<cond «not (prober fu 11-n&f'l&))

15

(
1
in t~ ~'i~~~M= ~ ~~ector':l ed i 'tor: cannot accus: • tu 11-nal'le)) >

de tun de: pnaMc < i'teM) (path: but path <car iteM)>>

de fun de: crutc-ch ild <child iTeM>
<or Ceq 0 <•process <concat "Mkd ir • <car iteM) •" child)))

<error>>
<list <concat (car i'teM) '" child)))

defun de:Move (child i'l'ell)
<or (eq 0 (ltprocess <concat "Mv • <car child> • • <car iTeM))))

<error»
(rplaca child (pa'th:cd <car i'teM> <Pll'th:bu'tpath <car child)))))

de fun de: parenTs < iTeM)
(lis't <lisT (pa'th:path <c•r iTeM)))))

de fun de:children < ite11>
<11apcar • lis't (path-ls <car i't&M) >) >

de tun de : reMove < ch ild i1' eM>

~~~ ~=~o~•t.;;~C::~~e~~o~~:~o;==•- ~M~d t~.;" C:~~l~;) ~ "". gone• > >) 
(error>>> 

Name of relation: 
An Item Is called a: 

Directory Editor.:·:·:·:·:·:·:·:·:.:·: 
file·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· 

Name of child relation: directory-element·>>>>>:<<<< 
Name of parent relation: super-directory.;.;·>:.;.;.;<·>:.;· 
Default layout direction: horizontal 
Expression to find an Item for a typed In •name•: 

( de:crea te-ltem name~·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:.:.:.:·:·:·:·:·:·:·:·:·:.:.: 
Compare Items by: equat ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: ·: · 
Pname selector for Items: de:pname;.;.;.;.:.;.;.;.:.;.;.;.;.;.;.;.;.; 
Create an unlinked Item with name •name•: 

wa'tnu 
S';IMbolics 
S&TPrOIIPt 
raM-USll9e 

More 
... i 1. lllolk 
knuHi 
eMacs 
bllud 

......................... .............. ' ......... . ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·. Name of Item type: directory·>:<·>>>>:<<·>>>>>>>>:-:.;.;.;.;.;.;.;.;.;.;.;.;.: 
Add "child" to "Item•: 

:::::::::::::::::::::::::::::::::::::::::::::::::. 
Remove "child" from "Item•: ......................... ......................... ....... ...... .. ... . .. .. . . .. ..... ..... ·········· ... 
Aellnk "Item• from "parent1" to 

......................... 
••• ••• ••••• 0 ••••••••••••• 

The window has a default size? 
Width: 500:-:-: Height: 

Types of Items: 

LJEJ 

Expression to check whether 'Item• Is of this type: 
(de:dlrectoryp Item)·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· 

Can the parents for a given Item be computed? Yes 
Compute the list of parents for "Item•: 

( de:parents Item}:·:·:·:.:.:·:·:·:·:·;.:·:.:.:.:.:.:·:·:·:·:·:·:.:.:.:.:.:.:.:<·:.:.:.:.;.:.:.:.:.:.:-:.;.;.;.:.; 
Is the order of the parents significant? No 
Can the children for a given Item be computed? Yes 
Compute the list of children for "Item•: 

(de:chlldren Item}:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· 
Is the order of the children significant? No 
Item representation: adaptive-text-region-with-border 
Label • 

( de:pname item)·:·:·:·:·:.:·:·:·:·:·:·:·:·:·:.:.:.:.:·:·:·:·:·:·:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: 
Items • 

Jl!IM sfstEb Of! F!Leil (list (ask ,Item pname)):-:-:-:-:-:-:-:.;.;.;.:.:-:-:-:-:-:.;.;.;.;.;.;.;.:.;.;.:-:-:-:-:-:.;.;.;.:-:-:·:-:-:-:-
t@B!t mtijj H@ I@@!HtU Its font: mini 
r-,.,.-------------1 Its left button down action: 
••• 0 •••••••••••••••••••••••• (de:make-current Item):·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: 

••• ••••••• ••••••••• ••• • 0 ••••• . ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.L--------------------------------l 

Figure 3: TRIKIT 

TRIKIT is a high-level interface to TRISTAN for application programmers. TRISTAN is a generic display and editing 
system for directed graphs, used for example, in HELGON (see Figure 9) and INFOSCOPE (see Figure 11 ). TRIKIT hides 
implementation details of TRISTAN and the implementation language. The forms have to be filled in with calls to the 
application. 

See publications No. 23 and 24. 



16 

Network Oriented Design Environment; 

Obf""alk Hrnusol!r Hodol! forN 

Class Definition: Vas No Class 
Local Nethode: Yet No Show Method3 
All Methods: Ves Ho 4 l~tl 
Local S 1 ots: Yet No Show Slots 
A11 Slots: 'fes Ho • l41btl 
Inst11nces: Ves Ho a ldlbtl 
Superclaeees: V~t No Show Superela."u 
Subclasses: Ye• No Show Suboluses 
Constraints: Yes No a lllbtl 
Rules: 'l'as llo a l41btl 

Other Local Property>: 4 function 4 ldlbtl 
Other All Property> 1 a function « l~tl 

Exit D Abort D 

conl'll.md: Hade Operations Forrt 

Figure 4: NODE 

The l'lenu labe 1 entered, 'Clase •, I'I!IY be 
inappropriate for this function. 

A label such as 'Sho~o.~ Class Definition' 
hi nore descriptive of this nenu iten, 

NODE (Network-Oriented Design Environment) is a design environment for creating user interfaces for programs that 
interact with network structures. Examples include class inheritance networks in object-oriented languages or layouts 
of communication networks. The NODE user interface consists of a display pane where input forms are displayed, a 
listener pane which allows the designer to communicate with the operating system, a command pane through which 
the user chooses which form to display, and a critic pane, where constraint and critic information is displayed. Note 
that a critic has responded to the user changing a label to something not very meaningful. 

See publication No. 17. 



!Z] (Initial proeral'l fral'lework) 

!ZJ ( Proer~ll'l nal'le ) 

[] ( Invok 1 ne th; s prot~ral'l ) 

=>!::] ( Arrangenent of panes ~ 

0 ( Col'lnand loop function) 

0 ( Col'll'lollnd defining l'lacro) 

0 (Types of input) 

D~ 
0 ( Col'lnand tab lee ) 

[] (Code Generation) 

17 

Check I I st I ten: Rrrangenent of panes 

Arrange the panes as desired in your progrel'l fral'lework shown in the work area. Choose frol'l 
the fo 11 ow ins no use connands. 

Work Area Palette 
1'1ou:HI Button Op•r«tion 1'1ous• Button Op•ration 
Left Move pane, Left Get pane of th 111 type, 
M i dd 1e Re11i xe pane, Middle Dnoribe this type, 
Right Menu of all possible operations. 
Shift-Left Edit pane options. 
Shift-Middle Delete pene. 

• Add a nenu bar, (Explain ) ( Rej.ct ) ( Ex.cut• ) 

• Move the tit 1 e pene to the top of the frane. ( !J<platn ) ( bJ.et ) ( Ex.cut• ) 

• Renove the overlap of DATA end TITLE, ( EJ<plaln) 
(R•qutr.cl) 

•Fill the er~pty space inside the proerar~ 
frel'lework, (R•qutrtd) 

Figure 5: FRAMER 

~===~-___,! lllstuor•p4nt 

display-pane . 

~;:::::::==~ llntorutor-pau 

FRAMER is a knowledge-based design environment for window-basad user interfaces. FRAMER supports the software 
design process in multiple ways. It makes components readily available through a graphical direct manipulation 
interface. FRAMER takes care of interdependencies of components, and FRAMER assesses designs by highlighting 
good aspects and suggesting improvements to eliminate the shortcomings of poor designs. This last feature is 
implemented as a rule-based critic that can be activated by the user at any time of the design process. FRAMER 

translates the graphical representation into executable program code and vice versa. This allows rapid prototyping 
and transparent modifications at both levels. 

See technical reports No. 1 and 2. 



Janus-CRACK 
Palette Context: App/lat'IOCHS 

walls 

windows 

WD 
slnlr.s 

18 

R Ill- !Jucrib~ lluit.m IJnit BRSE-CRBINET-1 II .. Cr~ate o-stgn IJnU FOI.IR-El.Ef1EffT-5r(JIJE 

~ ... 
Meny;e 1 frOllll STOVE-<:l!.ITICI 

•[OUA-ELEMENT-STOVE-1 Is next to a slnij 

Figure 6: JANUS: The Construction Component 

El 

horlzontal·wall-1 
vertlcal-wall-1 
window-1 
doutlle-bowt-slnk-1 
dlshwa.sner-1 
slngle·door-retrlgerator-1 
b&se-oablnet-1 

.. tour-element-nove-1 

Cooperative problem solving environments for design require support for constructive and argumentative design. The 

JANUS design environment allows designers to construct architectural floor plan layouts and at the same time to be 
Informed about the general principles underlying such constructions. JANUS, does not try to automate the design 
process by replacing the human designer with an expert system, but the computer is used as a tool and an agent in 
cooperation with the designer to enrich traditional design practice. JANUS is both a useful learning environment for 
design students as well as an efficient tool for skilled designers. 

JANUS is the most recent in a series of system building efforts starting with the two systems CRACK and VIEWPOINTS 

which support constructive and argumentative aspects of design, respectively. CRACK is a knowledge-based design 
environment which has knowledge about how basic design units can be assembled into functional designs. 

See publications No. 9, 12, 13, and 20. 



19 

Outline 
Iseue (Stove) Janus- ewPointis 1---------------------------------flll Answer (Stove, Window) 

Answer (Stove, Sink) 
The stove should be near a sink, but not next to a sink. 

IDOl 
1~ dt$t 

Figure 3: alnk•atove 

Argument (Small Kitchen) 
If the kitchen Is small, the sink might have to be located next to 
a stove In order to fit all the appliances! 

Argument (Set-off Space) 
The sink should not be too close to the stove since there should 
be a minimum of 24 Inches counter surface on one side of the 
sink and 18 Inches on the other side to accommodate for •set

off" space. There should also be a minimum of 12 Inches of 
counter on each side of the stove! 

Argument (Work Flow) 
Sink and stove are two of the components of the work triangle, 
and there Is frequent work flow from sink to stove during food 
preparation. Often the food Is first cleaned In the sink and next 
cooked In the oven or over a cooktopl 

Vlttwer: Default VIewer 

..,.. Done 
Ill- Sholl RrgVI'.ent«l:ion Rn.sw•r (SI:ov•, Sinlr.) 
..,.. Sholl OtJtltne It~su.• (BI:ov•) ..... 

ArguPtent (Burn Ha:r:ard) 
ArguP~ent (FlaMable Curtains) 
ArguPtent (Grease) 
Rr{ilu,ent (Outeide Vieu) 
Argunent (Venti lotion) 

Answer (Steve, Door) 
ArguPtent (Fire Hazard) 
ArguPtent (D1n1ne Roof'!) 

Ansuer (Stove, Sink) 
ArguPtent ( Sna 11 Kitchen) 
Arsunent (Set-off Space) 
Argunent (Work F 1 ow) 

Answer (Stove, Refrigerator) 
Argunent (Heo!lt Flow) 
Argunent (Fit All Appliences) 

tlld Nodlla 
• Ansuer (Stove, Sink) Section 

Inue (Stove) Section 

Figure 7: JANUS: The Argumentation Component 
VIEWPOINTS is an issue-based hypertext system which contains useful information about general principles of design. 
Critics link the two systems. Evaluation of the individual systems have identified shortcomings which have lead to the 
design and implementation of JANUS, an integration of CRACK and VIEWPOINTS. Evaluation of JANUS has shown that 
the integrated system is able to overcome some of the limitations of the original, systems, and that problematic 
situations designers can come up in during construction can be resolved by argumentation and vice versa. 

See publications No. 9, 12, 13, and 20. 



20 

Janus-CRACK ~~Woric Area 
New Class 

Palsttfl Context: ADD II~ I !!II 
He IP or Neu a8S 

llllwllalllill$-•l'l'ou are beinll asked to enter a set of desilln unit classes Super Classes: (design unit clan) I 
Attribute! c'ltll c'ltttl"ibut• d•scription 
Display l1ethod1 Loo.al Inherited Dehult 
Abstract Clan: Yes Ha I
Na,.,e: « syl'lbol 

Catalog 

- ltitove 
NoM: STOVE 
Super Clasee~11 deeign-unit 
Attribute: ~IDTH Default 55 
Attribute: DEPTH Default 44 

Purpose: R purpos• 
Belongs To: a work c•nt•r clc'ltss 

Done Abort. 

Roo i cob e ru ee for Stove 
atove-door-ru 1 e 
stove-refrieerator-ru 1 e 
stove-ui ndow-ru 1 e 
stove-s1 nk-rule-2 
stove-sink-rule 
refr i gerator-iiltove-ru 1 e 
iii i nk-iiltove-ru 1 e-2 
• ink-stove-rule 
work-triangle-ru le-3 
work-tri angle-rule-2 
work-tri angle-rule-1 

Press any key to rel'love this ui ndcw 1 

Nat1e t STOVE -SINK -RULE 
Argu,.,entst stove sink 

f.!!!~!!!!!!~Condition: NEAR 
que All Apply to: One 

n Ca•ftlO" S Argunentotion Topic: enewer (stove, eink) 
11---""--'"--tOutline Topiot issue (stove) 

Press any key to rel'love this u1ndcw: 

Attribute: ENERGY-SOURCE Type (,.,e,ber gas electricity) Pro,.,pt 'Energy Source' Def'ault GAS 
Attribute: HEATING-ELEMENTS Type ( nel'lber 4-syntletr i c 3-tri ongu 1 or 4-aeyl'll'\etri c) Prol'lpt • Heoti ng El enente' 
Displey Method: Default 
Abstract Class: Yes 
Purpose: • cooks food" 
Belongs To: COOKING-CENTER 

Pre8e any key to rel'love this window: 

l.t .. h·,;·.,,-11: f.fc.nrt"~(,f compkrti<ult.. ' ''',' ~ 
I ~,f~~~.·~ otlt<oW ~ ~muaml:>, r'>l ~1?~~' :;hit t. ConH·<>I, tl~t.--lilu It. <11' JitiJM!J • 

Figure 8: End-User Modifiability in JANUS 

-

End-user modifiability is of crucial importance in knowledge-based design environments, because these systems do 
not try to serve as general purpose programming environments but provide support for specific tasks. In cases where 
designers of these environments have not anticipated specific activities, users must be able to modify the design 
environment itself. 

Situations will arise in which users want to design a kitchen with appliances that are not provided by the design 
environment. Property sheets help users define new design unit classes or modify existing ones by eliminating the 
need to remember names of attributes. The modification process is supported with context-sensitive help (e.g., 
showing users constraints for the value of a field). 

The system supports the finding of an appropriate place for the new class in the class hierarchy by displaying the 
current hierarchy. The user can display the definition of every class in the hierarchy with a mouse click. In addition, 
the applicable critic rules for a class can be listed, and the definition of each of these rules can be be displayed. 

See publication No. 3. 



THING 
LITERATURE 
TECHREPORT 

21 

HELGON 

Bt:inSmolensi<y1988 
fi $Chtrl..emkeNieper-Lemke 1988 
FischerNieper-Lemke 1988 
Lemke1988 

FischerNieper-Lemke19SS 
BeinSmolensky19S8 
Ambraseta/.1985 
AaronsonCarrol/1985 
AAAI-83 
A. Archbold 

INSTITUTION, not IBM 
ADDRESS: Boulder 
YEAR: 1988 

Nleper-Lemke 1 9S8b Fisch erNi eper-lemke 1988 
Schwertz 1986 

AUTHOR 
TITLE 

INSTITUTION 

ADDRESS 
MONTH 
YEAR 
NOTE 

G. fischer H. Nieper-lemke 
HELGON: Extending the Retrieval by 
Reformulation Paradigm 
Department of Computer Science. 
University of Colorado 
Boulder, CO 
December 
1988 
To Appear in the Proceedino' of the ACM 
Conference on Human Factors in Computing 
Systems (CHI'89) 

Retrieve Show Item Requirs Cate9ory Prohibit Cat.e9ory Require Attribute Prohibit. Attribute load Database Save Database 

~ 
Helgon cof'IP'll!lnd: Retrieve 
Helgon COI'IP'l<llnd: Show Itel'l "Fiec:herNieper-Ler~kel988' 
He leon col'lr~end 1 I 

Figure 9: HELGON 

HELGON is an information system that is based on the retrieval by reformulation paradigm. A query is created 
incrementally. It consists of categories and attribute restrictions associated with the categories (see the Query 
pane). The set of items matching the current query is shown in the Matching Items pane; one example item is 
shown in the Example of the Matohing Items pane. A graphical display of the hierarchical classification of the 
information store is shown in the Cateqory Bierarohy pane. Categories as well as attribute values can be either 
"required" or "prohibited." Users can do this by selecting them from the information displayed or from a menu of 
a~ernative values. Thus users who are not familiar with the knowledge base or who do not have a well-specified goal 
can be guided towards the appropriate information. On the other hand, users who know exactly what they want can 
add categories or attribute restrictions to the query directly through input from the keyboard. In this case, only 
existing values are accepted as input, partial input is completed automatically if possible, and users can get a list of 
all current possibilities. HELGON also allows users to edit information and integrates the addition of new information 
with the retrieval by reformulation paradigm. 

See publication No. 14 and technical reports No. 4 and 5. 



22 

CodeFinder-
.;ategorv Hlerarcnv l~ooKmarks or Items 

read-from-string 
:any-tyi 

I 
I ~.!lllifWII'Ii iXI"!''Iilil¥1l;IW 
I 

'"" ""' ''" ~ 
II!Al)IHO STitlNG$ ) 

I<£Al)IH0 THE KiY'iiQIRlJ) 

C!E!!!)-
.I<EillliHO Clfl<I'ICT~ 

~ 
~IHG LISTS) 

_l'iifilllHG fRti'I~S!Rli!Ci J 
OTiet INP\JT J'UiCT loti ) 
I<£Al)[N; PfiSiillORI)i) 

Querv 1~ Kevworas IU Matcnlna Items Examole or tt e .Ma toning !terns 
THING read read-from-atrlng THING 

stream read-preserving-wrlitespa INPUT FUNCTION 
Keywords: character read-char-no-hang READING F'ROM STRINGS 

whitespace input.-st.ream read-char ( ll\oose Th1s ) string eof-value read 
input. s-expression peek-char read-from-string 

eof-error-p sys: read-character 
DUCJUPTIONI Related Items: retum zl:readline-trim 

read- frcm-st.ri ng line read-line-trim Gtves the characwu tl'cm 6 saUlt ~vely to the 

recursive-p zl: read-or-character ru.cle:, until a L!Jp obJec~ can be buUt. 
object. 

PII.U..METEU string eof-error-p eof-value end 
whi teap.t:W8 start end preserve-whi tespace 

liU:•.U.SO 
READS a strin~ 
ACTIV.tTION•V.t.LUE @. Hl1@13 
DES<:IUPTORS string successive reader 

object Lisp build construct 
eof 

Rstl"ieve Show Item Load Database Save Database Simple Query 
ReQuire Category Prohibit Category ReQuire Attribute Pn.mibit Attribute 

~ CodoF!odor ~'''""' Add au~y ""' 'rood-fcon-othno' [14:11:0<1 Process Function Key ~o~ents to type out 
Select Function Key Becl<around Streel'l by typing Funotion-e-s.J 

CodeFinder co,.,,and: II 

Figure 10: CODEFINDER 

CooEFINDER is an information retrieval system in the domain of software objects. In addition to the reformulation 
techniques of HELGON, CooEFINDER uses a connectionist approach, called spreading activation, to rank the relevance 
of items retrieved by the system. This gives users a flexible guide to choose which objects should be further 
examined. The same mechanism is used to rank the relevance of related keywords, which are displayed in the 
Related Keyword• pane giving the user additional information for reformulating the previous query. The spreading 
activation process supports the notion of soft constraints. In traditional keyword approaches (including HELGON), if a 
query does not include keywords associated with a particular object, the object will not be retrieved. In CooEFINDER 

this problem is reduced through the spreading activation process by retrieving objects that are closely related to the 
query, but may not contain any of the keywords in the query. 

See technical report No. 3. 



23 

Figure 11: INFOSCOPE 

The INFOSCOPE system allows users to define virtual newsgroups within the information hierarchy. These virtual 
newsgroups are created through user-defined tmers which ensure that only interesting information is displayed. In 
this way, users define the beginning of a user model which will be used in future versions of the system in order to 
offload some of the classification task from the user to an active user modeling component. Virtual newsgroups are 
created with a single mouse click and the subsequent specification of the keywords which describe interesting 
conversations. The information space used in this prototype is the UsENET news system which we feel is repre
sentative of many of the basic information retrieval problems we face. 

See technical report No. 5. 


