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ABSTRACT 

The basic algorithm and software implementation of a string model for 
simulation of surface etching are presented. The algorithm models the time 
evolution of a line edge profile by advancing nodes or points on a piecewise 
linear curve representing the profile. The specific formulas for the direction 
and rate of advance, insertion and deletion of points and deletion of loops are 
shown. Complete software documentation in the form of parameter definitions 
and a listing of the FORTRAN code for a CDC 6400 machine are included. 
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Introduction 

A String Model Etching Algorithm 

Robert Jewett 

Electronics Research Laboratory 
University of California 

Berkeley, California 94720 

As the technology of microfabrication is pushed to its limits, it becomes increasingly 
important to be able to model each step of the fabrication processes, both to predict the ulti
mate performance of the technology and to understand present techniques. Etching is a step 
which appears universally in microfabrication. It may occur as the dissolution of a photoresist 
by an organic solvent, the etching of an oxide by an alkali, or the plasma etching of an electron 
resist. Whatever its physical details, the etching process can in many cases be modeled as a 
surface etching phenomenon. The resulting profile is determined by an initial profile which 
moves through a medium in which the speed of propagation may be a function of position and 
other variables. Several examples are given in appendix Band [1]. 

Two major assumptions limit the generality of the present algorithm. Firstly, the pattern 
to be etched is uniform in one dimension, so the problem can be solved using only two dimen
sions. For most microfabrication problems, the important cases involve the cross-sections of 
lines, so the model is directly applicable. In certain other cases, such as round holes, the sym
metry of some cross-sections is such that the algorithm can still be applied. 

A second major assumption is that the etch rate is a scalar function of position, and is 
independent of the local direction of etch front motion and the history of the front. In some 
real situations this does not hold. PMMA for instance has been found to have a gel region at 
the resist-solvent interface during development, so etch rate is a function of the history of the 
adjacent regions as well as the exposure. This gel is somewhat swollen compared to the dry 
resist, so that during certain periods of the development, the surface may actually advance into 
the solvent. Another case where the second assumption does not hold is in so-called "pre
ferential etching" where etching proceeds more quickly along certain crystal directions, making 
the etch anisotropic. A third case that is allowed by the algorithm is simultaneous exposure and 
development, so that etch rate may be a function of time as well as position. Such a case would 
require the implementation by the user of a special rate algorithm. 

Two other algorithms have been reported previously, the cell model of Dill et al.[2] and 
the ray model of Hagouel[3]. The cell model divides the region under study into rectangles. 
Each rectangle can be thought of as an ice cube in a tray of ice cubes that is melting. Only the 
cubes on the exposed surface melt, and the time for a cube to melt is determined by the local 
rate and the number of sides from which it is exposed. This model is inherently discrete, 
although continuous contours can be interpolated from cell removal times. It is slightly inaccu
rate for certain directions in that circular profiles tend to converge to octagons. The only imple
mentations to date appear to require slightly more computation time than the other alternatives. 

The ray model works by analogy to Snell's law of optics. The etch rate corresponds to the 
inverse of the index of refraction. The etch front is inferred by following the paths of "rays" 
being "refracted" by the nonuniform etch rate. The ray algorithm is suitable for implementa
tion on a desk calculator and for extension to three dimensions. Some user interaction is 
necessary, especially when the gradient of the rate is not defined everywhere. 

The algorithm described in the remainder of this report is known as the "string model". 
The etch front is simulated by a series of points joined by straight line segments, forming a 
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string. During each time increment, each point is advanced perpendicularly to the local etch 
front, as in Fig. 1. A major portion of the algorithm adjusts the number of segments to keep 
them approximately equal in length. Other subroutines input the data and output the etch 
front. The algorithm was implemented in FORTRAN and many details were determined by the 
available syntax, but the following considerations are largely language independent. 

Segment length criteria 

A major problem in developing the algorithm was in choosing suitable criteria for segment 
length. Originally it was believed that the segments should be short enough so that any curve 
that occured would be well defined, i.e., there should be some maximum angle between adja
cent segments, perhaps 0.1 radian. It was soon found that this criterion led to a great prolifera
tion of segments in regions where the front was either expanding or contracting. Often adjacent 
segments would differ in length by several orders of magnitude, which led to apparently insur
mountable problems. Eventually it was decided to make segment length uniformity the sole 
length criterion. While this led to unavoidable position errors of about one-half segment length, 
the resulting algorithm is much simpler and faster. If necessary, the error can be reduced by 
decreasing the average segment length with a proportional increase in computation cost. 

Time step size 

For most cases of interest, the etch rate varies with position. This leads to errors in the 
position and in the direction of each point on the string. Errors in position arise from the 
rather simple integration algorithm used. The local rate at the start of each time step is 
assumed to be constant throughout the step. This can easily lead to position errors as large as 
the distance covered in one step. Consider for example an etch front in a photoresist approach
ing an unetchable substrate. A point which is barely outside the substrate at the start of the 
time step will advance into the substrate at the rate associated with the resist. An example 
which could spawn huge errors in position is thin layers of alternating fast and slow etch rates. 
With too large a time step, a point could jump over a slow region. 

Errors in direction arise from nonuniform rates along the string, and from certain boun
dary conditions. During each step, the perpendicular to the front, which is defined below, is 
assumed to be constant in direction. If two adjacent points have greatly differing rates, the 
quickly moving point cannot start turning towards the slower point until the end of the time 
step. This mechanism tends to introduce relatively small errors in position because the error is 
roughly proportional to the cosine of the angle error. 

An example of boundary conditions causing this kind of error is shown in Fig. 2. During 
the first time step, point 1 moves to the left, giving undercutting. Point 2 moves straight down. 
The exact solution of the problem is shown by the broken line, which is simply a circular arc 
joining smoothly with a straight line parallel to the original surface. If the time step were subdi
vided into smaller steps, the path of point 2 would have bent slightly towards point 1, but the 
large error in approximating the circular arc would not have been significantly reduced. 

Defining the normal to the string 

In the example above, it is easy to see what the normal to the string is for point 3, and 
therefore what its direction of movement should be. It is not so easy to see what direction 
point 2' should take. Three alternatives were considered for the algorithm. First, the point 
could travel perpendicularly to the line segment to its left or right. This approximation is easy 
to calculate, and can be applied to every point on the string, but it is inherently asymmetrical 
since the left or right neighbor must be chosen. A second method is to advance the point nor
mal to a line joining the two neighboring points. In the above example, point 2' would be 
moved normal to a line joining 1' and 3'. This is as easy to calculate as the first method, but 
the directions of the endpoints of the string must be determined separately. This is not a major 
drawback since the directions of the endpoints are usually set by boundary conditions or sym
metry. The third method, which was finally chosen, is to advance the point along the angle 
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bisector of the two adjacent segments. This requires slightly more computation than the second 
method, but gives better results when the segments differ in length, especially in regions where 
the string is contracting. 

Endpoint directions 

In the present algorithm, the directions of the two endpoints are constants specified by 
input data. Usually the boundary conditions or symmetry of the problem will determine the 
directions. In the above example, the endpoints are specified as moving parallel to the resist
oxide interface, which leads to undercutting of the resist. The computation for the example 
could be roughly halved by noticing that the problem is symmetrical about the vertical center
line. Point 3 therefore always travels along the centerline. The problem can be solved by cal
culating for the string 1-2-3, with point 3 specified as moving straight down, and then reflecting 
the results through the centerline to obtain the complete solution. Use of symmetry like this 
can cause problems when the centerline is not a region of maximum rate. Neureuther and 
O'Toole[4] have encountered such cases in optical-exposure simulations. 

Addition of segments 

In the example above, the segment between points 1 and 2 will grow indefinitely due to 
the nonparallel motion of its endpoints. As it grows, it becomes an increasingly poor approxi
mation to the exact solution, which is just a quarter circle joined to a horizontal segment. Simi
lar cases occur in nearly all simulations since there is usually at least one region in which the 
front is expanding. One way to solve this problem is to start with very closely spaced points so 
that sufficient resolution is maintained even with considerable expansion. This becomes expen
sive for problems with expansion ratios of more than 10:1, as in optical-exposure standing-wave 
problems. A more economical approach is to break each excessively long segment into two 
shorter segments. The simplest way to do this is to add the midpoint of the long segment to 
the string, as shown in Fig. 3a. This placement of the new point does not approximate very 
well the curved surface of the region of expansion. In the present algorithm the local curvature 
is estimated by calculating the angles formed by the long segment with the two adjacent seg
ments. The larger these angles are, the more the new point should be offset into the region of 
expansion, as shown in Fig. 3b. 

A reasonable function for the length s can be derived by considering a regular polygon 
expanding outward, approximating a circle. In that case H=cb, and s=112L tan (11/4). This is 
approximated in the algorithm by s=L H/8, where H is chosen to be the smaller of the two adja
cent angles. This underestimates s for all cases, so the adjustment never overcompensates for 
curvature. A segment is divided like this whenever its length exceeds some maximum value, 
such as twice the length of the segments in the original string. 

A faster algorithm due to S. N. Nandgaonkar[3] offsets the added point from the midpoint 
of the long segment by a fraction of the vector difference of the two adjacent segments. 

Regions of contraction 

Most simulations also have regions of contraction in which the segments become shorter. 
Consider the development of the idealized exposed line in Fig. 4. The etch rate in the unex
posed region is unity, and is three in the exposed region. Contraction occurs at the points A
A'-A", where the two straight fronts are colliding. The details of the collision are shown in Fig. 
4b. 

Ideally, the algorithm should move the point at he corner to follow the locus of the inter
section of the two straight fronts as they advance. This theoretical point of intersection actually 
moves faster than the two fronts by a factor of 1/sin (11/2), where II is the angle included 
between the two fronts, just as the cutting point of a pair of scissors moves faster than the 
blades. This increase in velocity can only occur for two intersecting fronts, so any algorithm to 
correct the local rate would have to check three consecutive angles to determine whether the 
middle vertex was in fact such an intersection. 
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Rather than perform this additional checking, the corner is allowed to lag behind, as 
shown by the third string in Fig. 4b. Segments adjacent to the corner decrease in length, and 
are deleted when they are less than a minimum value, such as 75% of the initial segment 
length. For some obtuse angles of intersection, this is a satisfactory solution. In some simula
tions a much sharper angle occurs as in Fig. 5. Segment AB may not contract to less than the 
minimum allowed length prior to point A crossing the string between B and D, resulting in the 
situation of Fig. Sb. This process is refered to as "loop budding". Point B will subsequently 
move to the left rather than the right because the sense of the angle has changed. The loop 
will start expanding eventually requiring the addition of points such as B' and B". Loop forma
tion is beneficial in that the intersection point X can move with increased velocity because it is 
not actually a calculated point. If the loop grows too large, the additional computation for its 
segments becomes burdensome. 

Loop deletion 

Prior to the output of the front, loops are deleted, except for very small loops. This is 
done by checking each segment against following segments for intersection in two steps. First 
the coordinates of the left endpoints of the two segments are compared in the x and y direc
tions. If the difference in either dimension is larger than twice the maximum allowed segment 
length, the pair cannot intersect. Otherwise, the pair may intersect, and a more careful check is 
performed by the following algorithm. 

Suppose complex numbers z 1 and z2 give the endpoints of segment A, and z 3 and z4 

define segment B. Let 

z4 (a )=(1-a )zl+az2 

be any point along the extension of A, determined by a real parameter a. Similarly 

Z 8 (b )=(1-b) z3+bz4 

gives any point along the extension of B. If A and Bare nonparallel, Z 4 (a )=Z8 (b) has a solu
tion, and solving for a and b gives: 

a= 
Im((z3-z 1)(z4-zJ) *) 

Im((z2-zl)(zczJ) *) 

Im((zl-z3)(z2-zl) *) 
b = --~----~-------

Im((zcz3)(.::2-zl) *) 

where * denotes the complex conjugate. If a and b both have values between 0 and 1, the seg
ments A and B intersect at z5=(1-a)z 1+az2=(1-b)z3+bz4, see Fig. 6. When intersection is 
found to occur, the loop is deleted and the point of intersection is added to the string. 

Details of the FORTRAN implementation 

The above aspects of the algorithm are fairly independent of the programming language. 
The following details pertain to the implementation of the algorithm in FORTRAN by the RUN 
compiler on a CDC 6400 computer[S]. Much of the algorithm is based on the use of complex 
arithmetic to easily manipulate magnitudes, directions and angles. The x coordinate 
corresponds to the real part of the complex number, and the y coordinate to the imaginary part. 
It is important to note that y increases downward, and usually represents depth below the initial 
surface. 

The following sections define each variable, and give a description of each routine in the 
algorithm. A listing of the program is in appendix A. 



- 5 -

Variables in blank COMMON 

XY one-dimensional complex array of 200 elements, stores the current coordinates of the 
etch front 

*LABEL one-dimensional integer array of 20 elements, stores the title of the simulation. At 
10 characters per word, there are 200 characters in the title. 

*XMAX maximum x-dimension, normally used only in plotting programs when no x
dimension is specified by the user. Could be used in RATE to specify RATE = 0 
when X > XMAX. 

*YMAX maximum y-dimension, similar to XMAX 

*NPTS The number of points in the string, not greater than 200. If more points are 
required, the following must be changed: 

All blank common statements (XY) 

The line following line 6 in CHKR 

Dimensions of XT and YT in PL TOUT 

READIN limits the initial value of NPTS to less than 101 and greater than 4. 

*CXYL complex variable giving the direction of the left endpoint of the etch front, the cardi-
nal directions could be given as: 

left (-1.,0.) 

right (1.,0.) 

up (0.,-U 

down (0.,1.) 

*CXYR corresponds to CXYL, for the right endpoint 

*NBCHK number of times the etch front is stepped forward between checks of segment length 
by CHKR 

*NBOUT number of checks between each output by PL TOUT. The total number of steps 
between each output is NBCHK times NBOUT. 

*TOUT 

TSTEP 

NSTEP 

ET 

TTOT 

I FLAG 

SMAX 

SMIN 

*NOUT 

LRT 

time between outputs 

time of each minor step, usually TOUT /NBCHK/NBOUT 

normally equals NBCHK, the number of steps taken by CYCLE. If the user imple
ments a subroutine that changes the value of TSTEP, NSTEP will be adjusted in 
CYCLE to correspond to the changed time step. No such subroutine currently exists. 

elapsed time in CYCLE, equals TOUT /NBOUT 

total time of simulation 

integer variable, equal to 0 if no segment length exceeds the bounds of SMAX and 
SMIN, and equal to 1 if one does. Value is determined in CYCLE. 

largest allowed segment length 

smallest allowed segment length 

number of output contours, less than 21 

flag to request RTEST, equal to 2HRT for a test, ignored otherwise 

* denotes user specified variables. 
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Program ETCH 

The main program ETCH calls the various subroutines and cycles through the etching 
simulation. It initially calls: 

READIN to input data cards 

LINEAR to initialize the string between the user-specified endpoints 

PLTBGN to output the title, XMAX, and YMAX to the output file, T APE21 

RA TEF to initialize the function RATE 

The program then calculates the upper and lower bounds on segment length and initializes 
the time parameters. If the user has asked for a test of the rate function, RTEST is called. 

The do-loops to lines 4 and 5 advance the etch front with CYCLE, correct segment 
lengths when necessary with CHKR, remove loops with DELOOP, and output the etch front to 
TAPE21 with PLTOUT. 

Variables in ETCH 

DUMMY dummy variable in call to RATEF 

M main do-loop counter 

N minor do-loop counter 

SMID beginning segment length 

X dummy input variable to RA TEF 

Subroutine READIN 

This subroutine reads in data cards, checks for appropriate values, and prints the input 
data. The cards are first read as alphanumerics into the array LINES, so they can be printed out 
exactly as punched. The input file is then rewound and the variables are read in by appropriate 
formats: 

8A10 for LABEL 

F15. 7 for floating point numbers 

I3 for integers 

The data are reprinted as interpreted by the various formats. This allows the user to correct 
mispunched data without reference to the format statements in the program. 

The data are partially checked for reasonable values, and KRASH is called for out-of-
range inputs. The allowed ranges are: 

NPTS from 5 to 100 

NOUT from 1 to 20 

NBCHK from 1 to 10 

NBOUT from 1 to 50 

The directions for the left and right endpoints (CXYL and CXYR), are normalized to unit 
magnitude. 

The first 18 data cards are mandatory. If the user supplies fewer cards, the subroutine 
prints out the cards as read into LINES and stops. LRT is read on the 19th data card. This 
card should have "RT" punched in the first two columns if a rate test by RTEST is desired. 
This is strongly recommended for any new rate function. If there is no 19th data card, LRT is 
set equal to "NO". 
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Variables in READIN 

LINES an 18x8 array used to store the characters on the first 18 data cards. The total 
number of characters is 18x80, at 10 characters per word. 

Subroutine RTEST 

This subroutine checks the rate function in the region of interest. The area between x = 

0 and x = XMAX, andy = 0 andy = YMAX is divided into a 30x30.grid. The rate at each 

grid point is read into the array RTS, and the maximum and minimum rates are kept in RMAX 
and RMIN. RTS is then normalized so that the maximum value is .99. This allows a compact 

printing format for the array of rates. The subroutine also looks for the maximum and 
minimum rates along the starting string. The printed output includes: 

1. The minimum and maximum rates observed in the 30x30 grid 

2. The minimum and maximum rates along the starting string 

3. The "worst case error coefficient", which is found from: 

Q = RMAX*TSTEP /SMIN 

This gives some indication of the accuracy of the simulation. 

4. The bounds and dimensions of the test grid 

5. The values of the rates in the test grid, normalized to a specified value. 

The subroutine also prints out the CPU time required by itself. This gives the user an 

indication of how quickly RATE is operating. 

Variables in RTEST 

DT the smallest time increment in the simulation 

DX the x-distance between grid points 

DY the y-distance between grid points 

N do-loop counter 

NX do-loop counter for the x-direction 

NY do-loop counter for the y-direction 

Q the "worst case error coefficient" 

RL temporary value of the rate along the starting string 

RLMAX maximum rate along the string 

RLMIN 

RMAX 

RMIN 

minimum rate along the string 

maximum rate in the test grid 

minimum rate in the test grid 

RNORM a value 1% greater than RMAX 

RTS 

RXY 

TIME 

TIME I 

TIME2 

X 
y 

a 30x30 real array of rates 

a temporary value of the rate at the current grid point 

The CPU time in seconds spent in subroutine RTEST 

starting time 

ending time 

the real part of the location of the grid point 

the imaginary part of the location of the grid point 
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Subroutine CHKR 

This subroutine adds and deletes segments when CYCLE has detected a segment length 
error. At the start of the subroutine, the current simulated time, the number of points in the 
string, and the total CPU time are printed out. This allows the user to follow the course of the 
simulation without a plotted output, and to estimate the calculation time required for more or 
less resolution and accuracy. 

The subroutine next checks to see if the rates at the two left-most points are both zero. 
If they are, the left endpoint is deleted. This saves computation time when the left end reaches 
a region of zero rate (i.e. the substrate). To use this feature, the user should arrange to start 
the left end of the string in a region of maximum rate. 

The subroutine then checks each segment length against the limits of SMAX and SMIN. 
If a segment is out of bounds, its index is stored and the number of changes required is incre
mented. After all the errors have been located, the subroutine deletes short segments (line 7 
to line 10) and splits long segments (line 6 to line 7). If an attempt is made to create more 
than 200 points, KRASH is called. 

Variables in CHKR 

ANG an angle used when adding a point near the midpoint of a long segment. It is one
eighth of the smaller convex angle formed by the long segment and its neighboring 
segments. 

ANG 1 The angle between the long segment and its left neighbor 

ANG2 the angle between the long segment and its right neighbor 

C the magnitude of the current segment length 

CI the square root of -1, used for 90 degree rotation. 

I do-loop counter 

INDEX array for indices of segments having length errors 

1 temporary integer variable 

K do-loop counter 

M index of current segment to be modified, calculated from the previously found index 
and the number of segments already added or deleted. 

MLAST The last value of M. Checking MLAST prevents the deletion of two adjacent seg-
ments on the same pass through CHKR. 

N do-loop counter 

NADD number of segments added so far, may be negative 

NCHNGEnumber of changes needed 

NSTOP used to stop one place short of NPTS on some do-loops 

T 

TCPU 

length of the current incorrect segment 

CPU total elapsed time in seconds 

Subroutine DELOOP 

This subroutine finds and deletes the loops that form in regions of contraction of the 
string. Because it is a rather slow routine, it is normally called just before each output. 

Each segment is checked for intersection with all following segments with a few excep
tions. No segment is checked against the two segments following it. While this allows small 
loops to be output, it saves a considerable amount of time by eliminating needless exact checks. 
Also, the last four segments are not checked against each other. 

A preliminary check is made on each pair of segments to be tested. This is clone by look
ing at the magnitudes of the real and imaginary separations of the left endpoints of the two 
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segments. If either of these separations is larger than twice the maximum allowed segment 
length (SMAX), it is impossible for the segments to intersect, and the subroutine goes on to 
the next pair of segments. 

If the left endpoints are closer than the test limit, an exact check is done. This requires 
the calculation of the point of intersection of the segments if they were extended, and a check 
to see if that point lies interior to both segments. 

If the two segments are found to intersect by the exact check, all the segments on the 
loop are deleted, and the point of intersection becomes the joint between the two parts of the 
string. Since the intersection may be near one end of an intersecting segment, one of the 
resulting segments may be shorter than the minimum allowed segment length. This is not 
adjusted prior to outputting the string, and will normally be adjusted during the next call to 
CYCLE. 

When a loop is deleted, the subroutine prints the number of points before and after the 
deletion and the total simulated time. 

Variables in DELOOP 

AA a parameter that tells how far along the first segment the point of intersection is. If it 
is between 0 and 1, the intersection occurs within the segment. 

ADENOMa temporary variable used in calculating AA 

BB similar to AA, for the second segment 

BDENOMsimilar to ADENOM 

J do-loop counter for segment deletion 

JST ART starting value for J 

JSTOP stoping value for J 

M 

N 

NOLO 

s 
XN 

YN 

the index of the left endpoint of the second segment 

the index of the left endpoint of the first segment 

the former value of NPTS, prior to the deletion 

twice SMAX, used for the preliminary check 

the real part of the the left endpoint of the first segment 

the imaginary part of the left endpoint of the first segment 

Subroutine LINEAR 

This subroutine establishes an evenly spaced string of points between specified endpoints. 
The user supplies the values of NPTS, XY(l), and XY(NPTS) through subroutine READIN. 

Variables in LINEAR 

N do-loop counter 

NSTOP upper limit on N, equal to NPTS-1 

XYSTEP complex variable equal to the increment from one point to the next 

XYSTRT complex variable giving the starting location of the string, actually one step prior to 
the start 

Subroutine CYCLE 

This subroutine advances the string perpendicular to itself according to the local etch rates 
and the specified time increment. The minimum and maximum segment lengths are retained, 
so that CHKR can be called to correct any length error. 

The subroutine first initializes variables to be used in the do-loop. The number of steps, 
NSTEP, is calculated from the total time to be simulated, ET, and the time step increment for 
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each step, TSTEP. CSTEP is a complex variable incorporating both the magnitude of TSTEP 
and a 90 degree rotation. 

For each TSTEP, each point is advanced along the angle bisector of the adjacent segments 
a distance proportional to the local etch rate. The endpoints are advanced in the directions 
specified by the user. 

At the end of the subroutine, the minimum and maximum segment lengths are checked, 
and IFLAG is set if an error has occured. 

Variables in CYCLE 

CI square root of -1. 

CSTEP complex variable equal to CI*TSTEP 

DL unit vector along segment to the left 

DR unit vector along the segment to the right 

DT DL +DR, giving a direction 90 degrees from the angle bisector 

M do-loop counter for the index of XY 

N do-loop counter for NSTEP 

NSTOP upper limit on M, equal to NPTS-1 

T magnitude of the current segment length 

TMAX observed maximum ofT 

TMIN observed minimum ofT 

Subroutine KRASH 

This subroutine prints an error message and stops execution. The input variable is 
expected to be a Hollerith constant of ten characters, which states the cause of termination. 

Variable in KRASH 

WORD integer variable expected to be the error message 

Subroutine PL TOUT 

This subroutine writes the output on T APE21. The first call to the subroutine is through 
entry PLTBGN, which writes LABEL, XMAX, and YMAX on TAPE21 by a binary format. 
Subsequent calls are through the normal entry, and cause the number of points, NPTS, the x 
coordinates and the y coordinates to be written on T APE21 in a binary format. 

Variables in PL TOUT 

N do-loop counter 

XT temporary array for the x coordinates 

YT temporary array for the y coordinates 

Function RATE (Z) 

The RATE function will usually be supplied by the user. The example function simply 
returns a value of 1.0 for the rate at all positions. 

The entry RATEF must appear in the function RATE. It is called by ETCH prior to any 
direct call to RATE. It is intended to allow the user to calculate constants, establish look-up 
tables, read in parameters from data cards, etc., prior to using the function. This can often 
result in the saving of a great deal of computation time. 

The input variable, Z, is a complex variable giving the position of the point for which the 
rate is to be calculated. 
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Appendix A 

The following is a listing of the etching algorithm for the RUN compiler on a CDC 6400 
computer. 

PROGRAM ETCH(INPUT, OUTPUT, TAPEl ... INPUT, TAPE20, TAPE21) 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C, LRT 
COMPLEX XY, CXYL, CXYR 
CALL READIN 
CALL LINEAR 
CALL PLTBGN 
DUMMY= RATEF(X) 
SMID =CABS (XY (1)-XY (2)) 
SMIN==.75*SMID 
SMAX- 2. *SMID 
TTOT=O. 
ET=-TOUT/NBOUT 
TSTEP- ET /NBCHK 
IF(LRT.EQ.2HRT) CALL RTEST 
DO 4 M=l,NOUT 
DO 5 N==l,NBOUT 
CALL CYCLE 
IF(IFLAG.EQ.l) CALL CHKR 

5 CONTINUE 
CALL DELOOP 
CALL PLTOUT 

4 CONTINUE 
END ETCH 

SUBROUTINE READIN 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C , LRT 
COMPLEX XY, CXYL, CXYR 
DIMENSION LINES(l8,8) 
REWIND 1 
READ 1, LINES 
IF(EOF, 1)6, 7 

1 FORMAT(8A10) 
7 CONTINUE 

PRINT 8, LINES 
8 FORMAT(lHI, *INPUT DATA CARDS FOR PROGRAM ETCH AS PUNCHED*,//, 
C X, *VARIABLE *, lO(*DATACARD*), //, 
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C X, *LABEL *, 8A10, /,X, *LABEL *, 8A10, /, 
C X, *LABEL *, 8A10, /, 
C X, *XMAX *, 8Al0, /,X, *YMAX *, 8Al0, /, 
C X, *NPTS *, 8Al0, /,X, *CXYL RE *, 8A10, /, 
C X, *CXYL IM *, 8A10, /,X, *CXYR RE *, 8A10, /, 
C X, *CXYR IM *, 8A10, /,X, *XY(l) RE *, 8A10, /, 
C X, *XY(l) IM •, 8A10, /,X, *XY(NPTS)RE*, 8A10, /, 
C X, *XY(NPTS)IM*, 8A10, /,X, *TOUT •, 8A10, /, 
C X, *NOUT •, 8Al0, /,X, *NBCHK •, 8Al0, /, 
C X, *NBOUT •, 8A10, II!) 
REWIND 1 
READ 1, LABEL 

2 FORMAT(F15.7) 
READ 2, XMAX, YMAX 

3 FORMAT(I3) 
READ 3, NPTS 
READ 2, CXYL, CXYR, XY(l), XY(NPTS), TOUT 
READ3,NOUT,NBCHK,NBOUT 
PRINT 4, LABEL, XMAX, YMAX, NPTS, CXYL, CXYR, XY(l), XY(NPTS), 

C TOUT,NOUT,NBCHK,NBOUT 
4 FORMAT(X, *INPUT DATA AS INTERPRETED:*, //, 
C X, *LABEL •, 8A10, /, 
C X, *LABEL •, 8A10, /, 
C X, *LABEL •, 4Al0, //, 
C X, *X MAX •, E12.4,//, 
C X, *Y MAX •, E12.4, //, 
C X, *NUMBER OF POINTS IN STARTING STRING*, I4, //, 
C X, *DIRECTION OF LEFT ENDPOINT, X ANDY COMPONENTS*, 2F10.4,//, 
C X, *DIRECTION OF RIGHT ENDPOINT, X ANDY COMPONENTS*,2F10.4,//, 
C X, *X ANDY OF LEFT ENDPOINT •, 2E12.4, //, 
C X, *X ANDY OF RIGHT ENDPOINT*, 2E12.4, //, 
C X, *TIME BETWEEN OUTPUTS*, E12.4, //, 
C X, *NUMBER OF OUTPUTS*, 13, //, 
C X, *NUMBER OF ADVANCES BETWEEN CHECKS •, 13, //, 
C X, *NUMBER OF CHECKS BETWEEN OUTPUTS*, 13, //) 
IF(NPTS.LT.5) CALL KRASH(lOHNPTS < 5 ) 
IF(NPTS.GT.100) CALL KRASH(IOHNPTS > 100) 
IF(NOUT.GT.20) CALL KRASH(IOHNOUT > 20 ) 
IF(NOUT.LT.l) CALL KRASH(IOHNOUT < 1 ) 
IF(NBCHK.GT.IO) CALL KRASH(IOHNBCHK > 10) 
IF(NBCHK.LT.l) CALL KRASH(IOHNBCHK < 1 ) 
IF(NBOUT.GT.50) CALL KRASH(IOHNBOUT > 50) 
IF(NBOUT.LT.l) CALL KRASH(IOHNBOUT < 1 ) 
CXYL =CXYLICABS ( CXYL) 
CXYR = CXYR/CABS ( CXYR) 
READ 10,LRT 

10 FORMAT(A2) 
IF(EOF,l)ll,l2 

11 LRT=2HNO 
12 CONTINUE 

RETURN 
6 CONTINUE 

PRINT 8, LINES 
PRINT 9 
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9 FORMAT(lHl, *LESS THAN 18 DATA CARDS*) 
STOP 
END READIN 

SUBROUTINE RTEST 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C, LRT 
COMPLEX XY, CXYL, CXYR 
REAL RTS(30,30) 
CALL SECOND(TIMEl) 
PRINT 1, TIME 1 

1 FORMAT(lHl, *START OF RTEST, CPU TIME=*, F6.3,//) 
DX=-XMAX/29. 
DY=YMAX/29. 
RMAX=RATE(CMPLX(O.,O.)) 
RMIN=RMAX 
DO 2 NX=l,30 
X=DX*(NX-1) 
DO 3 NY= 1,30 
Y=DY*(NY-1) 
RXY = RATE(CMPLX(X, Y)) 
IF(RXY.L T.O.)GO TO 4 
RMAX = AMAXl (RMAX,RXY) 
RMIN= AMINl(RMIN,RXY) 
RTS(NX,NY)=-RXY 

3 CONTINUE 
2 CONTINUE 

RNORM=RMAX/.99 
DO 5 N = 1, 900 
RTS (N) == RTS(N) /RNORM 

5 CONTINUE 
RLMAX=RATE(XY(l)) 
RLMIN = RLMAX 
DO 6 N=2,NPTS 
RL=RATE(XY(N)) 
RLMAX = AMAXl (RLMAX,RL) 
RLMIN =AMINI (RLMIN,RL) 

6 CONTINUE 
DT=TOUT /NBOUT /NBCHK 
Q= DT*RMAX/SMIN 
PRINT 7, RMAX, RMIN, RLMAX, RLMIN, Q 

7 FORMAT(lHX, *MAXIMUM RATE OBSERVED == •, E9.3, /, 
C X, *MINIMUM RATE OBSERVED = *, E9.3, /, 
C X, *MAXIMUM RATE ALONG STARTING STRING = •, E9.3, /, 
C X, *MINIMUM RATE ALONG STARTING STRING=*, E9.3, /, 
C X, *WORST CASE ERROR COEFF ( = MAX RATE X TIME STEP I MIN SEGMENT 
C LENGTH) = *, F10.6,/) 
PRINT 8, XMAX, YMAX, DX, DY, RNORM,((RTS(NX,NY), NX=l,30),NY=l,30) 

8 FORMAT(/, X, *X FROM 0 TO*, E10.4, /, 
C X, *Y FROM 0 TO*, El0.4, /, 
C X,*X INCREMENT="', E10.4, /, 
C X, *Y INCREMENT=*, E10.4, /, 
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C X, *RATES NORMALIZED TO A VALUE OF*, E10.4,//, 
C X, *CAUTION, X ANDY SCALES NOT NECESSARILY EQUAL*,//, 
C X, *NORMALIZED RATES:*,/ I, 
C (1 HX, 30F4.2, I/)) 
CALL SECOND (TIME2) 
TIME = TIME2-TIME1 
PRINT 9, TIME 

9 FORMAT(//, X, *TOTAL CPU TIME IN RTEST = *, F7.3, /, lHl) 
RETURN 

4 CONTINUE 
PRINT 10, RXY, X, Y 

10 FORMAT(/, X, *NEGATIVE RATE FOUND:*//, 
C X, *RATE=*, E10.4, /, 
C X,* X = *, E10.4, /, 
C X,* Y = *, E10.4, //, 
C X, *JOB ABORTED*) 
STOP 
END RTEST 

SUBROUTINE CHKR 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C , LRT 
COMPLEX XY, CXYL, CXYR 
COMPLEX CI 
DIMENSION INDEX(200) 
DATA CI/0.,1./ 
CALL SECOND(TCPU) 
PRINT 20, TTOT, NPTS, TCPU 

20 FORMAT( lHX, *IN CHKR TTOT, NPTS, TCPU = *, F20.5, I6, F7.3) 
IF((RATE(XY(l)).EQ.O.).AND.(RATE(XY(2)).EQ.0.)) GO TO 11 

12 CONTINUE 
NCHNGE = 0 
NSTOP=NPTS-1 
DO 1 N=l,NSTOP 
C=CABS(XY(N + 0-XY(N)) 
IF(C.GT.SMAX.OR.C.L T.SMIN) GO TO 2 

3 CONTINUE 
1 CONTINUE 

IF(NCHNGE.NE.O) GO TO 4 
RETURN 

2 CONTINUE 
NCHNGE = NCHNGE+ 1 
INDEX(NCHNGE) =N 
GOTO 3 

4 CONTINUE 
NADD=O 
MLAST=1 
DO 5 N=1,NCHNGE 
M=INDEX(N) +1 +NADD 
T=CABS(XY(M)-XY(M-1)) 
IF (T.GT.SMAX) GO TO 6 
IF(T.LT.SMIN) GO TO 7 



8 CONTINUE 
5 CONTINUE 

RETURN 
6 CONTINUE 
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IF(NPTS.GE.200) CALL KRASH(lOHNPTS > 200 ) 
NADD-NADD+1 
DO 9 I-M,NPTS 
J-NPTS+M-I 
XY(J + 0 -XY(J) 

9 CONTINUE 
NPTS-NPTS + 1 
ANG1-1.6 
ANG2-1.6 
IF(M.GT.2) ANG 1 =-AIMAG (CLOG ( (XY (M + 1}-XY (M -0) I (XY (M-0-XY (M-2)))) 
IF(M.LT. NPTS-l)ANG2='-AIMAG(CLOG((XY(M +2)-XY(M + 0)/(XY(M + 0-XY(M-1 

C)))) 
ANG=-AMAX1(AMIN1( ANG1, ANG2),0.)/8. 
XY(M) ... (XY(M) + XY(M··0)/2. + ANG*CI*(XY(M)-XY(M-0) 
GOTO 8 

7 CONTINUE 
IF(NPTS.LT.5) CALL KRASH(IOHNPTS < 5 
IF(MLAST + l.EQ.M) GO TO 8 
NADD-NADD-1 
NPTS ... NPTS-1 
MLAST=-M 
XY(M-1) =.5*(XY(M-1) + XY(M)) 
DO 10 K=-M,NPTS 
XY(K) =XY(K + 1) 

10 CONTINUE 
GOTO 8 

11 CONTINUE 
IF(NPTS.LE.10) GO TO 12 
IF(RATE(XY(2)).NE.O.) GO TO 12 
DO 13 N=2,NPTS 
XY(N-0 =XY(N) 

13 CONTINUE 
NPTS = NPTS-1 
GO TO 11 
END 

SUBROUTINE DELOOP 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C ,LRT 
COMPLEX XY, CXYL, CXYR 
S=SMAX*2. 
N=O 

1 CONTINUE 
N=N+1 
IF(N.GT. (NPTS-5)) RETURN 
YN = AIMAG (XY (N)) 
XN =REAL (XY (N)) 
M=N+3 
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2 CONTINUE 
M=-M+l 
IF(M.GE.NPTS) GO TO 1 
IF(ABS(REAL(XY(M))-XN).GT.S) GO TO 2 
IF(ABS(AIMAG(XY(M))-YN).GT.S) GO TO 2 
ADENOM =-AIMAG((XY(N+O-XY(N))"'CONJG(XY(M+l)-XY(M))) 
IF(ADENOM.EQ.O.) GO TO 2 
AA-AIMAG((XY(M)-XY(N))*CONJG(XY{M+l)-XY(M))) I ADENOM 
IF((AA.LE.O.).OR.(AA.GE.l.)) GO TO 2 
BDENOM ""'AIMAG((XY(M + 0-XY(M))"'CONJG(XY(N+ 1)-XY(N))) 
IF(BDENOM.EQ.O.) GO TO 2 
BB- AIMAG((XY(N)-XY(M))"'CONJG(XY(N+l)-XY(N)))/BDENOM 
IF((BB.LE.O.).OR.(BB.GE.l.)) GO TO 2 
XY(N+l)- (1.-AA)"'XY(N)+AA"'XY(N+l) 
JSTART-N+2 
JSTOP==NPTS-M + N + 1 
DO 3 J=JSTART, JSTOP 
XY(J)== XY(J+M-N-1) 

3 CONTINUE 
NOLD==NPTS 
NPTS=-JSTOP 
PRINT 4, NOLD,NPTS, TTOT 

4 FORMAT(/, X, "'DELOOP, NOLO - "', 13, *, NPTS =- "', 13, * TIME == *, 
C F9.3) 
N-N+l 
GOTO 1 
END 

SUBROUTINE LINEAR 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C ,LRT 
COMPLEX XY, CXYL, CXYR 
COMPLEX XYST RT, XYSTEP 
XYSTEP = (XY (NPTS)-XY (1)) I (NPTS-1) 
XYST RT=XY(l)-XYSTEP 
NSTOP=NPTS-1 
DO 1 N = 2,NSTOP 
XY (N) = XYST RT + N*XYSTEP 

1 CONTINUE 
RETURN 
END 

SUBROUTINE CYCLE 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C ,LRT 
COMPLEX XY, CXYL. CXYR 
COMPLEX DL,DR,DT 
COMPLEX Cl, CSTEP 
DATA CliO., 1./ 
IFLAG=O 



TMIN-l.E50 
TMAX-0. 
NSTEP- ET /TSTEP +. 5 
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IF(NSTEP.LT.l.OR.NSTEP.GT.SO) CALL KRASH(lOHSEE CYCLEl ) 
TSTEP- ET INSTEP 
CSTEP -CI*TSTEP 
NSTOP- NPTS-1 
DO 1 N-l,NSTEP 
DL-XY(2)-XY(l) 
XY (1) ... XY (1) + TSTEP*CXYL *RATE (XY (1)) 
T-CABS(DL) 
TMIN ... AMINl (TMIN, T) 
TMAX- AMAXl (TMAX, T) 
DL-DLIT 
DO 2 M=-2,NSTOP 
DR-XY (M + 1 )-XY (M) 
T=-CABS(DR) 
TMIN- AMINI (TMIN, T) 
TMAX == AMAXl (TMAX, T) 
DR=DR/T 
DT-DL+DR 
XY (M) = XY (M) + CSTEP*RATE (XY (M)) *DT /CABS (DT) 
DL=-DR 

2 CONTINUE 
XY (NPTS) ""XY (NPTS) + TSTEP*CXYR *RA TE(XY (NPTS)) 

1 CONTINUE 
IF( (TMAX.GT.SMAX) .OR. (TMIN.L T.SMIN) )I FLAG= 1 
TTOT ==TTOT + ET 
RETURN 
END 

SUBROUTINE KRASH (WORD) 
INTEGER WORD 
PRINT 1, WORD 

1 FORMAT(1H1, 132(1H*), Ill/, T30, *KRASH, YOUR CLUE IS •, A10, /) 
STOP 
END 

SUBROUTINE PLTOUT 
COMMON//XY(200), LABEL(20), XMAX, YMAX, NPTS, CXYL, NBCHK, NBOUT, 

C CXYR, TOUT, TSTEP, NSTEP, ET, TTOT, IFLAG, SMAX, SMIN, NOUT 
C ,LRT 
COMPLEX XY, CXYL, CXYR 
REAL XT(200), YT(200) 
DO 1 N=1,NPTS 
XT (N) =REAL (XY (N)) 
YT (N) =AI MAG (XY (N)) 

1 CONTINUE 
WRITE(21)TTOT, NPTS, (XT(N), N=1,NPTS), (YT(N), N=l,NPTS) 
RETURN 
ENTRY PLTBGN 
WRITE(21)LABEL, XMAX, YMAX 



RETURN 
END 

FUNCTION RATE(Z) 
COMPLEX Z 
RATE-1. 
RETURN 
ENTRY RATEF 
RATE-I. 
RETURN 
END 
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