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Abstract—Current sensor collection capabilities produce an in-
credible amount of data that needs to be processed, analyzed, and 
distributed in a timely and efficient manner. Information Man-
agement (IM) services supporting a publish-subscribe and query 
paradigm can be a powerful general purpose approach to ena-
bling this information exchange between decoupled and dynamic 
information producers and consumers. These IM services will 
only be of value, however, if they can support operations in a 
manner that is responsive to the sheer quantity and frequency of 
data produced by surveillance platforms.  Cloud computing is the 
technology of choice for providing the resources and services 
needed to enable and mange large-scale distributed computation. 
To date, there has been little work to develop highly scalable, 
dynamic IM processing and dissemination services in a cloud 
computing environment. In this paper we discuss our design, 
implementation and evaluation of a prototype cloud-based in-
formation broker which is a critical component of a highly scala-
ble, distributed IM System. The  brokering prototype is designed 
using a distributed stream processing framework and is shown to 
scale nearly linearly with the number of computing nodes as in-
formation load and subscription quantity increases. 

Keywords—sensor, cloud computing, stream computing, 
publish-subscribe, information brokering. 

I.  INTRODUCTION 
Real-time and near-real-time information sharing continues 

to increase in importance for many military, security and intel-
ligence domains.  This has led to challenges in information 
management that has been exacerbated by the proliferation of 
increasingly capable sensors. The volume of available sensed 
information and the consumers of this information have led to 
the following two challenges:  

� How to distribute large amounts and high rates of sensor 
information to the proper consumers without burying the 
consumers in extraneous information. 

� How to process and filter content-rich information des-
tined for consumers at scale and high speeds. 

Publish-subscribe brokering has emerged to solve the for-
mer of these challenges. Brokering is the task of matching in-
coming published data against a set of subscriptions, which is 
the core functionality of publish-subscribe systems. Within 
such systems, consumers register subscriptions and publishers, 
such as sensors, publish data. The information broker matches 
published information with subscriptions, and forwards the 
published information to subscribed consumers.  

In recent years a canonical problem in information broker-
ing for has been to develop approaches that can scale to handle 
large volumes of information generated by sensor networks. 
Unfortunately, up until now, there have been few capabilities to 
sufficiently scale key information brokering capabilities to 
support the increasingly large volumes of information generat-
ed by sensor networks. Information brokering can be computa-
tionally expensive and its cost can increase non-linearly with 
the number of subscribers and the complexity of their subscrip-
tions. Additionally, information brokering needs to be able to 
handle large amounts of aperiodic and periodic input data of 
heterogeneous sizes and data formats in real time or near-real 
time. 

Cloud computing has emerged as a powerful medium for 
affordable large-scale computing which could be used to ad-
dress the brokering problem. Cloud computing provides infra-
structure access, software licensing, training and maintenance 
bundled into large commodity computing data centers that sup-
port elastic resource allocation. Cloud computing could help 
enable broader distributed information interactions built upon 
the publish-subscribe model with real-time and network-centric 
operational requirements. To date, however, little has been 
done to support publish-subscribe in cloud environments, de-
spite the advantage of enabling scalable brokering at high 
speed larger numbers of clients, and more complex filtering 
and brokering. In this paper we describe our design, develop-
ment, experimentation and analysis of SCIMITAR, a cloud-
based information brokering capability implemented using the 
Storm Stream Processing Framework [16]. 

The remainder of this document is organized as follows. In 
Section II we discuss the needs for high-performance broker-
ing. In Section III we discuss stream processing technologies 
which we use as the basis for our SCIMITAR prototype. In 
Section IV we present our overall design and implementation 
details for our information brokering concept. In Section V we 
discuss our experimental evaluation of our cloud-based broker-
ing prototype. In Section VI discuss conclusions and possible 
future work. 

II. THE INFORMATION BROKERING CHALLENGE 
Eugster et al [7] provides an overview of the pub-sub in-

teraction pattern, highlighting the decoupled nature of publish-
ers and subscribers in time, space, and synchronization. There 
have been multiple prior approaches to publish-subscribe sys-
tems including the OMG Data-Distribution Service (DDS) 
Specification [19] and JMS [20].  For the common pub-sub 
brokering capabilities we are attempting to improve upon, 
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consumers register subscriptions based on attributes (i.e., 
metadata) about the information and its contents. Published 
information objects are matched by the broker against the reg-
istered subscription predicates.  The broker tags each IO with 
the endpoints to which it is to be delivered. The brokered ob-
ject is then passed to a dissemination service which transmits 
the object to its subscribers. Information is then disseminated 
to each consumer only those information objects that match 
the consumer’s interests. We utilize explicit submission and 
dissemination services for receiving published information and 
transmitting brokered information to subscribers. 

We focus on supporting published information represent-
ed as an Information Object (IO) consisting of XML metadata 
and a payload. This representation is fairly standard for infor-
mation management systems.  The metadata contains details 
such as publisher ID, timestamps, source location, payload 
format, and attributes over which interest can be registered. 
The form of the payload will be dictated by the publisher, for 
instance cameras would likely push out binary imagery data in 
a payload.  

The subscriptions can be complex, and the brokering ser-
vices we focus on support brokering that can match over rich 
sets of metadata using the XPath language to represent sub-
subscription expressions [21] which are to be matched against 
the metadata of published IOs. XPath is a rich expression lan-
guage and can be computationally expensive. Computational 
cost can grow non-linearly with the number of predicates in an 
XPath expression, and metadata on published data may be 
very large.  

A key difference between our information brokering capa-
bility and many others is support for richer “matching” of bro-
kered information with subscriptions. DDS, for example, uti-
lizes a topic based subscription model in which published data 
contains a topic field and subscribers who have registered for 
that specific topic will receive the data. This topic-based sub-
scription model is a coarse division of all information into 
logical groups based on a shared topic name.  

Challenges in supporting a scalable brokering service in a 
cloud computing environment at large scales include that the 
service must be able to (1) scale to the throughput of published 
data objects (2) scale with the quantity and complexity of reg-
istered subscription predicates and published metadata, and (3) 
maintain up-to-date and consistent views of registered sub-
scriptions. These challenges are related to the number of pub-
lisher and subscriber clients. An individual publisher may cre-
ate much more data than other publishers and similarly any 
individual subscriber may register more or more complex sub-
scriptions than another subscriber. 

There has been surprisingly little related work in the appli-
cation of cloud computing technologies to the problem of in-
formation brokering. Apache Kafka [5] is a distributed and 
scalable commit log service which provides brokering capabil-
ities using a topic-based subscription model. Prior research in 
scalable brokering has focused on challenges of geographical-
ly distributed multicast [6][7]. G-QoSM [2] describes a mech-

anism for QoS management in a grid computing architecture 
by reserving some of the system capacity for utilization by 
certain classes of operations if there is resource failure or con-
gestion. This elasticity is similar to the benefits we provide in 
our SCIMITAR approach, but through a different underlying 
brokering mechanism that accounts more explicitly for low-
level resource allocation. A key benefit of our SCIMITAR 
approach is that it is easier to use than these prior approaches, 
to better fit the elastic resource allocation model encouraged 
by cloud providers. Kang et al provides an approach for re-
source provisioning in stream-based services but without pub-
lish-subscribe capabilities [13].  Tudoran et al describes an 
approach to streaming data analysis, but without publish-
subscribe capabilities [17].  Zhu et al [22] provides an ap-
proach to cloud-based publish-subscribe that does not provide 
the breadth of capabilities provided in SCIMITAR. 

III. CLOUD COMPUTING AND STREAM PROCESSING 
When designing cloud-based brokering capability, we con-

sidered the design of a distributed computing architecture as 
the largest challenge.  This architecture needs to support the 
desirable features of cloud computing including horizontal 
scalability and resilience to individual computing node failures.  
Horizontal scalability is the ability of a system to provide in-
creased performance as more computational resources are 
available. The distributed computing architecture needs to ena-
ble low latency and “exactly-once” delivery of published in-
formation to subscribers as required for practical Pub-Sub mid-
dleware. By “exactly once” delivery we mean that the broker-
ing capability should not deliver replicated information to a 
subscriber. 

In order to support these requirements we focus our design 
and development on stream processing based frameworks. 

Based on a cursory review of the current cloud computing 
distributed computing paradigms, one might consider use any 
of the highly scalable batched Map-Reduce technologies as, for 
example, implemented in Hadoop [10]. Although extremely 
scalable for information processing, this approach cannot pro-
vide a scalable, low-latency approach to information. Hadoop 
needs to register information in the Hadoop NameNode ser-
vice, and then read from disk for any brokering function that 
could be supported by Hadoop. Whereas successful uses of 
batched MapReduce support iterative estimation of parameters 
for information pulled from disk, our needs for brokering on 
IOs already stored in memory do not align well with Hadoop. 

We utilize an alternative and increasingly popular paradigm 
called stream processing to develop a cloud-based information 
brokering prototype. In the stream processing framework, 
“flows” of data are ingested and the stream processing frame-
work uses parallel computation to process this data across mul-
tiple compute nodes. 

Until recently, most stream computing frameworks have 
been proprietary, such as IBM’s Infosphere Streams [18]. Re-
cently emerging open-source stream processing frameworks 
include Apache S4 [15] and Storm [16]. These two open-
source streaming frameworks provide near-real-time response 
to input data while also enabling horizontal scalability. Storm 
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provides fault-tolerance guarantees on data processing despite 
occurrences of failures of individual computing nodes. Storm is 
designed to restart failed computation in response to partial 
failures by maintaining limited state information. We selected 
Storm as the basis for our SCIMITAR brokering capability due 
to Storm’s general computing model and support for guaran-
teed processing of published information. 

In the Storm framework, streams of data are unbounded 
lists of tuples. Spouts represent the data sources that emit pos-
sibly multiple streams. Bolts perform the computation to take 
streams and convert them to output streams. A Storm topology 
is a network of bolts connected by flows of streams and 
streams emanating from possibly multiple spouts. 

IV. DESIGN AND IMPLEMENTATION 
To scale with data throughput, subscriptions must be repli-

cated across multiple broker processes in a manner that allows 
more brokers to be spawned for higher throughput situations 
and each published IO to be dispatched to one of these bro-
kers. To scale with the number of subscriptions, subscriptions 
must be distributed across multiple broker processes, and pub-
lished IOs must be passed to each of these brokers to ensure 
that it is compared against every active subscription. These 
two situations are illustrated in Figure 1. 

To provide this functionality, SCIMITAR distributes sub-
scriptions across multiple subscription groups. Each subscrip-
tion group is responsible for matching published information 
against an exclusive subset of all subscriptions. Within each 
subscription group is a set of replicated brokering processes 
that compare published information against the subscriptions 
assigned to its group. By passing each published IO to a single 
brokering process within every subscription group, each IO is 
matched against every active subscription. 

All output from the subscription groups is sent to a set of 
parallel filters which remove duplicates and forward brokered 
IOs to the dissemination service. The specific filtering process 
used is based on a hash of each IO’s unique ID ensuring the 
same filter sees all of the endpoints for a given IO. Additional-
ly, this processing layer caches which consumer endpoint an IO 
is being delivered to and filter out any duplicates. 

This design allows us to meet our two scalability goals 1) 
increasing the number of brokering processes within each sub-

scription group to scale with increased information throughput 
and 2) increasing the number of subscription groups to scale 
with a larger quantity of subscriptions or more computationally 
complex subscriptions. 

To support our third design goal of maintaining up-to-date 
and consistent views of registered subscriptions we implement-
ed a persistent globally accessible database store. Subscription 
modification processes listen for commands from clients to 
add/remove/update subscriptions and then update the subscrip-
tion store and send update commands to the appropriate sub-
scription group. As brokering processes within a subscription 
group start, they query the Subscription Store with its Group ID 
to receive all current subscriptions.  

In the context of the Storm framework, we designed Broker 
Bolts which operate as the brokers. Internally, the brokering 
bolt iterates over subscriptions for each IO received and imme-
diately outputs matches. The output of the broker bolts is fed to 
the Filter/Output Bolts. The filters contain a TimeCacheMap of 
IO UID to List of Endpoints. Field Grouping on IO UID en-
sures that the same worker gets each endpoint for a given UID 
to reduce the likelihood of a subscriber receiving duplicate IOs, 
but there are still cases where duplicates might be delivered. A 
Field Grouping uses a specific Field of the tuple to identify 
which downstream task that tuple should be assigned to. In 
other words, the Field Grouping on IO UID means every tuple 
where IO UID is set to “A” will be delivered to the same task. 
If a worker dies then a different worker may be assigned that 
UID and duplicates may be delivered. Also in our design if the 
processing of an IO takes too long then its entries may have 
been removed from the cache and duplicates may be delivered. 

We developed a Subscription Modification Bolt to manage 
subscription updating. The Subscription Modification Bolt 
communicates with the Subscription Store, which is imple-
mented using a PostgreSQL DB. This database stores the de-
tails of subscriptions, as well as to which subscription group 
each is assigned. A schematic of this occurring is shown in 
Figure 3 where specialized subscription modification spouts in 
Storm receive subscription update tasks which are routed to the 
appropriate subscription groups and subsequently to brokers. 

Input into the system is provided via a distributed buffer 
implemented using Kestrel [14]. The IO spout polls the buffer 
for published IOs, while the Subscription Modification spout 
polls a second set of buffers for commands to 
add/remove/update subscriptions. The output bolt places the 
brokered IO into a similar output buffer, which test clients con-
tinuously poll. A schematic of this architecture is shown in 
Figure 2. In a deployed system, a dissemination service would 
perform this task and then deliver the IO to the correct end-
points. 

V. EXPERIMENTAL EVALUATION 
To evaluate the performance of our cloud-based brokering pro-
totype, we conducted experiments that evaluated correctness 
and scalability with respect to throughput as a function of the 
number of Storm Supervisor nodes and subscriptions. We eval-
uate scalability in terms of the rate of published IOs and the 
number of registered subscriptions. We performed two sets of 
scalability experiments: 

 
Figure 1 Parallelization of Brokering 
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1. IO Input Rate Scalability to measure how IO brokering 
throughput changes as a function of IO input rate and the 
number of compute nodes used for brokering. 

2. IO Subscription Scalability to measure how IO brokering 
throughput changes as a function of the number of registered 
subscriptions and compute nodes used for brokering. 

Additionally, we have results from experiments indicating that 
subscription groups are a feasible way to minimize latency. 

A. Experimentation Environment 
We developed a custom deployment infrastructure and a test 
framework to support experimentation on our cloud-based 
brokering services. The basis of our deployment framework is 
the capability to create, populate, configure, and run the VMs 
necessary for our cloud-based brokering capability. This 
framework maps the requirements of our prototype cloud ser-
vices to “roles,” each containing requirements for software 
and a VM and each containing instructions on how to config-
ure the software and system to interact with the other nodes in 
the prototype services cloud. We wrote this automated de-
ployment infrastructure with the boto API [1]. Boto provides 
an interface to several Infrastructure as a Service (IaaS) cloud 
frameworks including Amazon Web Services and Eucalyptus. 
For load testing, we used The Grinder [9], a Java load testing 
framework that facilitates running a distributed test using 
many load injector machines. 

Our experimental framework consists of virtual machines 
providing the following roles: publisher and subscription cli-
ents running Grinder agents, Kestrel queues serving as input 
and output buffers, nodes running ZooKeeper and a node run-
ning the Storm Nimbus service to coordinate the Storm topol-

ogy, a node serving as a Grinder console to coordinate the test 
clients, a node running PostGreSQL to provide persistent sub-
scription storage, and nodes running Storm Supervisors which 
we refer to as worker nodes and which were responsible for 
the brokering computation.   

B. Experiment Execution to Investigate Scalability from 
adding more Worker Nodes for Brokering 
After deployment, we ran an initial experiment to collect 

data on how IO throughput performance varies with the num-
ber of brokering nodes while supporting either 64 or 128 sub-
scriptions. We ran this initial set of experiments to verify that 
the effect of scaling the number of nodes would be consistent 
across different numbers of registered subscriptions. Figure 4 
shows the graph from one of the 128 subscriptions runs, the 
one with 32 nodes. For these experiments the published IOs 
contained 1 KB payloads and metadata which contained less 
than 20 lines of XML. 

Table 1 presents the collected data which relates the maxi-
mum brokering throughput in IOs per second as a function of 
the number of brokering worker nodes and subscriptions. Giv-
en the variability in this measurement over time, we collected 2 
significant digits of data. This data is also shown as a graph in 
Figure 4.  

As can be seen from Figure 4, throughput appears to grow 
linearly with the number of worker nodes used for brokering. 
This is the behavior we expected and is highly desirable as it 
provides a simple approach to scale our brokering prototype to 
deal with high throughput by adding more brokering compute 
nodes. This linear scaling shows that we can deal with increas-
ingly large throughput requirements by adding extra computing 
nodes as brokering workers.  

We used the standard linear regression technique to esti-
mate the slope of the lines which we also plot in Figure 4. The 
slope of the 64 subscription throughput best-fit line (56 IOs per 
sec. per node) is almost double the slope of the 128 subscrip-
tion throughput best-fit line (32 IOs per sec. per node.) These 
measurements indicate that the brokering throughput may be 
close to inversely proportional to the number of subscriptions. 

 
Figure 4. IO Throughput with Best-fit Lines 

 
Figure 3 Storm Topology 

 
Figure 2 SCIMITAR Architecture 

18591859



This near-inverse-proportional behavior is expected based on 
our design in that it intuitively takes longer to broker over more 
subscriptions. We investigate the inverse proportional relation-
ship further in an experiment set below, and we provide a more 
detailed analysis of the relationship between throughput and the 
number of subscriptions. 

We did not explore the far upper limits of the linear scala-
bility of IO throughput with respect to the number of worker 
nodes used for brokering. Our hypothesis is that there are limits 
to how far our experimental cloud-based brokering framework 
can scale based either on the underlying infrastructure, inter-
node communication bottlenecks, or the stream processing 
framework. An exploration of the upper limits of the scalability 
of our framework is an area of ongoing and future work.  

Although we did not analyze how scalability varies based 
on IO size, our expectation is that IO size will not greatly affect 
scalability, but there is likely to be an upper limit on the capa-
bility of our experimental framework to handle very large mul-
ti-gigabyte IOs at very high throughputs. 

Because the suspected over-flow effect occurs only when 
the input rate approaches the maximum brokering rate, and 
because the maximum brokering rate is highly linear with re-
spect to the number of computing nodes, we believe it is feasi-

ble to predict when the buffer-overflow will occur. As such, the 
experimental observations in Figure 4 imply that it should be 
straightforward to select the number of brokering compute 
nodes that should be allocated in a cloud for our brokering pro-
totype to successfully process desired brokering throughputs. 

C. Experiment Execution to Investigate Scalability from 
adding Subscriptions 
As with the experiment set that analyzes the impact of add-

ing more worker nodes for brokering, we collected data on the 
maximum brokering throughput as a function of the number of 
subscriptions for various brokering worker node configura-
tions. Table 2 presents the maximum brokering throughput in 
numbers of IOs per second as a function of the number of bro-
kering compute nodes and subscriptions. This data is also 
shown as a graph in Figure 5. 

Our experimental data indicates that the brokering through-
out is inversely proportional to the number of subscriptions. 
This behavior is expected as it intuitively takes longer to broker 
over more subscriptions. To investigate the relationship be-
tween IO throughput and the number of subscriptions in our 
brokering prototype, we plotted this relationship in a log-log 
plot shown in Figure 6. 

We used the standard linear regression approach to find 
best-fit lines for the experimental data as shown in Figure 6. 
We can map lines in the log-log graph back to the linear-linear 
graph to identify the relationship between the throughput and 
the number of subscriptions. We start from the following equa-
tion which represents how our experimentally identified linear 
relationship relates throughput and the number of subscriptions 
in the log-log domain: 

log � = � log � + � 
where 

� y represents throughput 

� x represent the number of subscriptions 

� m and b are parameters that determine relationship 
between throughput and subscriptions 

We convert this equation to a relationship between how our 
experimentally identified linear relationship relates throughput 
and the number of subscriptions in the linear-linear domain: 

� =
10�

���
 

 
Figure 5. IO Throughput as a Function of Number of 

Subscriptions. 

Table 2. IO throughput as a function of the number of 
registered subscriptions for two different numbers of 

brokering compute nodes. 

Number of   
Subscriptions 

Throughput 
(IOs/second) 32 

Nodes 

Throughput 
(IOs/second)64 

Nodes 
64 793 3500 

128 515 1900 
256 393 1450 
512 204 1050 

1024 104 550 

Table 1. IO Throughput as a function of the number 
of brokering compute nodes for two different num-

bers of registered subscriptions. 
Number of   

Brokering Nodes 64 Subscriptions 128 Subscriptions 

4 200 100 
8 430 250 

16 890 490 
32 1600 1000 
64 3600 2000 
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As can be seen in Figure 6, the slopes of the linear regres-
sion lines for the experimental data are very close for the 32 
node and 64 node cases. For the 32 brokering compute node 
case the exponent -m is 0.89 and the 64 brokering compute 
node case the exponent -m is 0.91. 

Our experimental results show that increases in the number 
of brokering compute nodes offsets increases in the number of 
subscriptions to maintain throughput. Throughput grows linear-
ly with the number of brokering compute nodes, but sub-
linearly with the reciprocal of the number of subscriptions. As 
such, if our prototype needs to maintain a level of throughput 
despite an increase in the number of subscriptions, we would 
need to add a relatively smaller number of extra brokering 
compute nodes to maintain throughput. This shows our proto-
type design can scale effectively with increases in subscriptions 
by adding more compute nodes.  

All of the data collected, presented and discussed until now 
on brokering performance was derived from experiments con-
ducted on an Amazon cluster. We partially recreated our exper-
iments on an internal Eucalyptus cluster which we could not 
scale as large as the Amazon environment due to a lack of 
computation resources. We recreated our subscription scalabil-
ity experiments on the relationship between throughput and the 
number of subscriptions for 8 and 16 brokering compute node 
setups in our private cloud. The results on our internal cluster 
indicate a best-fit linear regression in the log-log domain with –
m=0.97.  

VI. CONCLUSIONS AND FUTURE WORK 
Our research, prototype development, and evaluation have es-
tablished a firm basis for cloud-based IM systems. It has shown 
that brokering of IOs for client requests can be architected and 
implemented to work with emerging cloud-based streaming 
platforms and that, in doing so, publish-subscribe operations 
can be performed in the cloud at high speeds and at scale, both 
in terms of number of published objects (throughput) and in 
terms of number of registered subscriptions. We have shown 

that there are several existing and emerging cloud-based tech-
nologies that show the promise of being applied to IM service 
concepts and that provide varying levels of benefit for IM op-
erations in the cloud. 

A next step is to design and develop cloud-based versions 
of additional IM services to round out and complement our 
brokering capability. Messaging services such as HornetQ [8] 
and Kestrel [14] are promising candidates for supporting sub-
mission and dissemination. A wide range of distributed data-
bases, e.g., Accumulo [3], Cassandra [4], and MongoDB [12], 
could be leveraged to back archive and query services. 
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