
SCIMITAR: Scalable Stream-Processing for Sensor
Information Brokering

Kurt Rohloff, Jeffrey Cleveland, Joseph Loyall

Raytheon BBN Technologies
Cambridge, MA, USA

{krohloff,jcleveland,jloyall}@bbn.com

Timothy Blocher
US Air Force Research Laboratory

Rome, NY, USA
Timothy.Blocher@us.af.mil

Abstract—Current sensor collection capabilities produce an in-
credible amount of data that needs to be processed, analyzed, and
distributed in a timely and efficient manner. Information Man-
agement (IM) services supporting a publish-subscribe and query
paradigm can be a powerful general purpose approach to ena-
bling this information exchange between decoupled and dynamic
information producers and consumers. These IM services will
only be of value, however, if they can support operations in a
manner that is responsive to the sheer quantity and frequency of
data produced by surveillance platforms. Cloud computing is the
technology of choice for providing the resources and services
needed to enable and mange large-scale distributed computation.
To date, there has been little work to develop highly scalable,
dynamic IM processing and dissemination services in a cloud
computing environment. In this paper we discuss our design,
implementation and evaluation of a prototype cloud-based in-
formation broker which is a critical component of a highly scala-
ble, distributed IM System. The brokering prototype is designed
using a distributed stream processing framework and is shown to
scale nearly linearly with the number of computing nodes as in-
formation load and subscription quantity increases.

Keywords—sensor, cloud computing, stream computing,
publish-subscribe, information brokering.

I. INTRODUCTION
Real-time and near-real-time information sharing continues

to increase in importance for many military, security and intel-
ligence domains. This has led to challenges in information
management that has been exacerbated by the proliferation of
increasingly capable sensors. The volume of available sensed
information and the consumers of this information have led to
the following two challenges:

� How to distribute large amounts and high rates of sensor
information to the proper consumers without burying the
consumers in extraneous information.

� How to process and filter content-rich information des-
tined for consumers at scale and high speeds.

Publish-subscribe brokering has emerged to solve the for-
mer of these challenges. Brokering is the task of matching in-
coming published data against a set of subscriptions, which is
the core functionality of publish-subscribe systems. Within
such systems, consumers register subscriptions and publishers,
such as sensors, publish data. The information broker matches
published information with subscriptions, and forwards the
published information to subscribed consumers.

In recent years a canonical problem in information broker-
ing for has been to develop approaches that can scale to handle
large volumes of information generated by sensor networks.
Unfortunately, up until now, there have been few capabilities to
sufficiently scale key information brokering capabilities to
support the increasingly large volumes of information generat-
ed by sensor networks. Information brokering can be computa-
tionally expensive and its cost can increase non-linearly with
the number of subscribers and the complexity of their subscrip-
tions. Additionally, information brokering needs to be able to
handle large amounts of aperiodic and periodic input data of
heterogeneous sizes and data formats in real time or near-real
time.

Cloud computing has emerged as a powerful medium for
affordable large-scale computing which could be used to ad-
dress the brokering problem. Cloud computing provides infra-
structure access, software licensing, training and maintenance
bundled into large commodity computing data centers that sup-
port elastic resource allocation. Cloud computing could help
enable broader distributed information interactions built upon
the publish-subscribe model with real-time and network-centric
operational requirements. To date, however, little has been
done to support publish-subscribe in cloud environments, de-
spite the advantage of enabling scalable brokering at high
speed larger numbers of clients, and more complex filtering
and brokering. In this paper we describe our design, develop-
ment, experimentation and analysis of SCIMITAR, a cloud-
based information brokering capability implemented using the
Storm Stream Processing Framework [16].

The remainder of this document is organized as follows. In
Section II we discuss the needs for high-performance broker-
ing. In Section III we discuss stream processing technologies
which we use as the basis for our SCIMITAR prototype. In
Section IV we present our overall design and implementation
details for our information brokering concept. In Section V we
discuss our experimental evaluation of our cloud-based broker-
ing prototype. In Section VI discuss conclusions and possible
future work.

II. THE INFORMATION BROKERING CHALLENGE
Eugster et al [7] provides an overview of the pub-sub in-

teraction pattern, highlighting the decoupled nature of publish-
ers and subscribers in time, space, and synchronization. There
have been multiple prior approaches to publish-subscribe sys-
tems including the OMG Data-Distribution Service (DDS)
Specification [19] and JMS [20]. For the common pub-sub
brokering capabilities we are attempting to improve upon,

2013 IEEE Military Communications Conference

978-0-7695-5124-1/13 $31.00 © 2013 IEEE

DOI 10.1109/MILCOM.2013.313

1856

2013 IEEE Military Communications Conference

978-0-7695-5124-1/13 $31.00 © 2013 IEEE

DOI 10.1109/MILCOM.2013.313

1856

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
SCIMITAR: Scalable Stream-Processing for Sensor Information
Brokering

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,10 Moulton Street,Cambridge,MA,02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Military Communications Conference (MILCOM), November 18-20, 2013, San Diego, CA, pp. 1856-1861.

14. ABSTRACT
Current sensor collection capabilities produce an incredible amount of data that needs to be processed,
analyzed, and distributed in a timely and efficient manner. Information Management (IM) services
supporting a publish-subscribe and query paradigm can be a powerful general purpose approach to
enabling this information exchange between decoupled and dynamic information producers and
consumers. These IM services will only be of value, however, if they can support operations in a manner
that is responsive to the sheer quantity and frequency of data produced by surveillance platforms. Cloud
computing is the technology of choice for providing the resources and services needed to enable and mange
large-scale distributed computation. To date, there has been little work to develop highly scalable dynamic
IM processing and dissemination services in a cloud computing environment. In this paper we discuss our
design implementation and evaluation of a prototype cloud-based information broker which is a critical
component of a highly scalable distributed IM System. The brokering prototype is designed using a
distributed stream processing framework and is shown to scale nearly linearly with the number of
computing nodes as information load and subscription quantity increases.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

consumers register subscriptions based on attributes (i.e.,
metadata) about the information and its contents. Published
information objects are matched by the broker against the reg-
istered subscription predicates. The broker tags each IO with
the endpoints to which it is to be delivered. The brokered ob-
ject is then passed to a dissemination service which transmits
the object to its subscribers. Information is then disseminated
to each consumer only those information objects that match
the consumer’s interests. We utilize explicit submission and
dissemination services for receiving published information and
transmitting brokered information to subscribers.

We focus on supporting published information represent-
ed as an Information Object (IO) consisting of XML metadata
and a payload. This representation is fairly standard for infor-
mation management systems. The metadata contains details
such as publisher ID, timestamps, source location, payload
format, and attributes over which interest can be registered.
The form of the payload will be dictated by the publisher, for
instance cameras would likely push out binary imagery data in
a payload.

The subscriptions can be complex, and the brokering ser-
vices we focus on support brokering that can match over rich
sets of metadata using the XPath language to represent sub-
subscription expressions [21] which are to be matched against
the metadata of published IOs. XPath is a rich expression lan-
guage and can be computationally expensive. Computational
cost can grow non-linearly with the number of predicates in an
XPath expression, and metadata on published data may be
very large.

A key difference between our information brokering capa-
bility and many others is support for richer “matching” of bro-
kered information with subscriptions. DDS, for example, uti-
lizes a topic based subscription model in which published data
contains a topic field and subscribers who have registered for
that specific topic will receive the data. This topic-based sub-
scription model is a coarse division of all information into
logical groups based on a shared topic name.

Challenges in supporting a scalable brokering service in a
cloud computing environment at large scales include that the
service must be able to (1) scale to the throughput of published
data objects (2) scale with the quantity and complexity of reg-
istered subscription predicates and published metadata, and (3)
maintain up-to-date and consistent views of registered sub-
scriptions. These challenges are related to the number of pub-
lisher and subscriber clients. An individual publisher may cre-
ate much more data than other publishers and similarly any
individual subscriber may register more or more complex sub-
scriptions than another subscriber.

There has been surprisingly little related work in the appli-
cation of cloud computing technologies to the problem of in-
formation brokering. Apache Kafka [5] is a distributed and
scalable commit log service which provides brokering capabil-
ities using a topic-based subscription model. Prior research in
scalable brokering has focused on challenges of geographical-
ly distributed multicast [6][7]. G-QoSM [2] describes a mech-

anism for QoS management in a grid computing architecture
by reserving some of the system capacity for utilization by
certain classes of operations if there is resource failure or con-
gestion. This elasticity is similar to the benefits we provide in
our SCIMITAR approach, but through a different underlying
brokering mechanism that accounts more explicitly for low-
level resource allocation. A key benefit of our SCIMITAR
approach is that it is easier to use than these prior approaches,
to better fit the elastic resource allocation model encouraged
by cloud providers. Kang et al provides an approach for re-
source provisioning in stream-based services but without pub-
lish-subscribe capabilities [13]. Tudoran et al describes an
approach to streaming data analysis, but without publish-
subscribe capabilities [17]. Zhu et al [22] provides an ap-
proach to cloud-based publish-subscribe that does not provide
the breadth of capabilities provided in SCIMITAR.

III. CLOUD COMPUTING AND STREAM PROCESSING
When designing cloud-based brokering capability, we con-

sidered the design of a distributed computing architecture as
the largest challenge. This architecture needs to support the
desirable features of cloud computing including horizontal
scalability and resilience to individual computing node failures.
Horizontal scalability is the ability of a system to provide in-
creased performance as more computational resources are
available. The distributed computing architecture needs to ena-
ble low latency and “exactly-once” delivery of published in-
formation to subscribers as required for practical Pub-Sub mid-
dleware. By “exactly once” delivery we mean that the broker-
ing capability should not deliver replicated information to a
subscriber.

In order to support these requirements we focus our design
and development on stream processing based frameworks.

Based on a cursory review of the current cloud computing
distributed computing paradigms, one might consider use any
of the highly scalable batched Map-Reduce technologies as, for
example, implemented in Hadoop [10]. Although extremely
scalable for information processing, this approach cannot pro-
vide a scalable, low-latency approach to information. Hadoop
needs to register information in the Hadoop NameNode ser-
vice, and then read from disk for any brokering function that
could be supported by Hadoop. Whereas successful uses of
batched MapReduce support iterative estimation of parameters
for information pulled from disk, our needs for brokering on
IOs already stored in memory do not align well with Hadoop.

We utilize an alternative and increasingly popular paradigm
called stream processing to develop a cloud-based information
brokering prototype. In the stream processing framework,
“flows” of data are ingested and the stream processing frame-
work uses parallel computation to process this data across mul-
tiple compute nodes.

Until recently, most stream computing frameworks have
been proprietary, such as IBM’s Infosphere Streams [18]. Re-
cently emerging open-source stream processing frameworks
include Apache S4 [15] and Storm [16]. These two open-
source streaming frameworks provide near-real-time response
to input data while also enabling horizontal scalability. Storm

18571857

provides fault-tolerance guarantees on data processing despite
occurrences of failures of individual computing nodes. Storm is
designed to restart failed computation in response to partial
failures by maintaining limited state information. We selected
Storm as the basis for our SCIMITAR brokering capability due
to Storm’s general computing model and support for guaran-
teed processing of published information.

In the Storm framework, streams of data are unbounded
lists of tuples. Spouts represent the data sources that emit pos-
sibly multiple streams. Bolts perform the computation to take
streams and convert them to output streams. A Storm topology
is a network of bolts connected by flows of streams and
streams emanating from possibly multiple spouts.

IV. DESIGN AND IMPLEMENTATION
To scale with data throughput, subscriptions must be repli-

cated across multiple broker processes in a manner that allows
more brokers to be spawned for higher throughput situations
and each published IO to be dispatched to one of these bro-
kers. To scale with the number of subscriptions, subscriptions
must be distributed across multiple broker processes, and pub-
lished IOs must be passed to each of these brokers to ensure
that it is compared against every active subscription. These
two situations are illustrated in Figure 1.

To provide this functionality, SCIMITAR distributes sub-
scriptions across multiple subscription groups. Each subscrip-
tion group is responsible for matching published information
against an exclusive subset of all subscriptions. Within each
subscription group is a set of replicated brokering processes
that compare published information against the subscriptions
assigned to its group. By passing each published IO to a single
brokering process within every subscription group, each IO is
matched against every active subscription.

All output from the subscription groups is sent to a set of
parallel filters which remove duplicates and forward brokered
IOs to the dissemination service. The specific filtering process
used is based on a hash of each IO’s unique ID ensuring the
same filter sees all of the endpoints for a given IO. Additional-
ly, this processing layer caches which consumer endpoint an IO
is being delivered to and filter out any duplicates.

This design allows us to meet our two scalability goals 1)
increasing the number of brokering processes within each sub-

scription group to scale with increased information throughput
and 2) increasing the number of subscription groups to scale
with a larger quantity of subscriptions or more computationally
complex subscriptions.

To support our third design goal of maintaining up-to-date
and consistent views of registered subscriptions we implement-
ed a persistent globally accessible database store. Subscription
modification processes listen for commands from clients to
add/remove/update subscriptions and then update the subscrip-
tion store and send update commands to the appropriate sub-
scription group. As brokering processes within a subscription
group start, they query the Subscription Store with its Group ID
to receive all current subscriptions.

In the context of the Storm framework, we designed Broker
Bolts which operate as the brokers. Internally, the brokering
bolt iterates over subscriptions for each IO received and imme-
diately outputs matches. The output of the broker bolts is fed to
the Filter/Output Bolts. The filters contain a TimeCacheMap of
IO UID to List of Endpoints. Field Grouping on IO UID en-
sures that the same worker gets each endpoint for a given UID
to reduce the likelihood of a subscriber receiving duplicate IOs,
but there are still cases where duplicates might be delivered. A
Field Grouping uses a specific Field of the tuple to identify
which downstream task that tuple should be assigned to. In
other words, the Field Grouping on IO UID means every tuple
where IO UID is set to “A” will be delivered to the same task.
If a worker dies then a different worker may be assigned that
UID and duplicates may be delivered. Also in our design if the
processing of an IO takes too long then its entries may have
been removed from the cache and duplicates may be delivered.

We developed a Subscription Modification Bolt to manage
subscription updating. The Subscription Modification Bolt
communicates with the Subscription Store, which is imple-
mented using a PostgreSQL DB. This database stores the de-
tails of subscriptions, as well as to which subscription group
each is assigned. A schematic of this occurring is shown in
Figure 3 where specialized subscription modification spouts in
Storm receive subscription update tasks which are routed to the
appropriate subscription groups and subsequently to brokers.

Input into the system is provided via a distributed buffer
implemented using Kestrel [14]. The IO spout polls the buffer
for published IOs, while the Subscription Modification spout
polls a second set of buffers for commands to
add/remove/update subscriptions. The output bolt places the
brokered IO into a similar output buffer, which test clients con-
tinuously poll. A schematic of this architecture is shown in
Figure 2. In a deployed system, a dissemination service would
perform this task and then deliver the IO to the correct end-
points.

V. EXPERIMENTAL EVALUATION
To evaluate the performance of our cloud-based brokering pro-
totype, we conducted experiments that evaluated correctness
and scalability with respect to throughput as a function of the
number of Storm Supervisor nodes and subscriptions. We eval-
uate scalability in terms of the rate of published IOs and the
number of registered subscriptions. We performed two sets of
scalability experiments:

Figure 1 Parallelization of Brokering

18581858

1. IO Input Rate Scalability to measure how IO brokering
throughput changes as a function of IO input rate and the
number of compute nodes used for brokering.

2. IO Subscription Scalability to measure how IO brokering
throughput changes as a function of the number of registered
subscriptions and compute nodes used for brokering.

Additionally, we have results from experiments indicating that
subscription groups are a feasible way to minimize latency.

A. Experimentation Environment
We developed a custom deployment infrastructure and a test
framework to support experimentation on our cloud-based
brokering services. The basis of our deployment framework is
the capability to create, populate, configure, and run the VMs
necessary for our cloud-based brokering capability. This
framework maps the requirements of our prototype cloud ser-
vices to “roles,” each containing requirements for software
and a VM and each containing instructions on how to config-
ure the software and system to interact with the other nodes in
the prototype services cloud. We wrote this automated de-
ployment infrastructure with the boto API [1]. Boto provides
an interface to several Infrastructure as a Service (IaaS) cloud
frameworks including Amazon Web Services and Eucalyptus.
For load testing, we used The Grinder [9], a Java load testing
framework that facilitates running a distributed test using
many load injector machines.

Our experimental framework consists of virtual machines
providing the following roles: publisher and subscription cli-
ents running Grinder agents, Kestrel queues serving as input
and output buffers, nodes running ZooKeeper and a node run-
ning the Storm Nimbus service to coordinate the Storm topol-

ogy, a node serving as a Grinder console to coordinate the test
clients, a node running PostGreSQL to provide persistent sub-
scription storage, and nodes running Storm Supervisors which
we refer to as worker nodes and which were responsible for
the brokering computation.

B. Experiment Execution to Investigate Scalability from
adding more Worker Nodes for Brokering
After deployment, we ran an initial experiment to collect

data on how IO throughput performance varies with the num-
ber of brokering nodes while supporting either 64 or 128 sub-
scriptions. We ran this initial set of experiments to verify that
the effect of scaling the number of nodes would be consistent
across different numbers of registered subscriptions. Figure 4
shows the graph from one of the 128 subscriptions runs, the
one with 32 nodes. For these experiments the published IOs
contained 1 KB payloads and metadata which contained less
than 20 lines of XML.

Table 1 presents the collected data which relates the maxi-
mum brokering throughput in IOs per second as a function of
the number of brokering worker nodes and subscriptions. Giv-
en the variability in this measurement over time, we collected 2
significant digits of data. This data is also shown as a graph in
Figure 4.

As can be seen from Figure 4, throughput appears to grow
linearly with the number of worker nodes used for brokering.
This is the behavior we expected and is highly desirable as it
provides a simple approach to scale our brokering prototype to
deal with high throughput by adding more brokering compute
nodes. This linear scaling shows that we can deal with increas-
ingly large throughput requirements by adding extra computing
nodes as brokering workers.

We used the standard linear regression technique to esti-
mate the slope of the lines which we also plot in Figure 4. The
slope of the 64 subscription throughput best-fit line (56 IOs per
sec. per node) is almost double the slope of the 128 subscrip-
tion throughput best-fit line (32 IOs per sec. per node.) These
measurements indicate that the brokering throughput may be
close to inversely proportional to the number of subscriptions.

Figure 4. IO Throughput with Best-fit Lines

Figure 3 Storm Topology

Figure 2 SCIMITAR Architecture

18591859

This near-inverse-proportional behavior is expected based on
our design in that it intuitively takes longer to broker over more
subscriptions. We investigate the inverse proportional relation-
ship further in an experiment set below, and we provide a more
detailed analysis of the relationship between throughput and the
number of subscriptions.

We did not explore the far upper limits of the linear scala-
bility of IO throughput with respect to the number of worker
nodes used for brokering. Our hypothesis is that there are limits
to how far our experimental cloud-based brokering framework
can scale based either on the underlying infrastructure, inter-
node communication bottlenecks, or the stream processing
framework. An exploration of the upper limits of the scalability
of our framework is an area of ongoing and future work.

Although we did not analyze how scalability varies based
on IO size, our expectation is that IO size will not greatly affect
scalability, but there is likely to be an upper limit on the capa-
bility of our experimental framework to handle very large mul-
ti-gigabyte IOs at very high throughputs.

Because the suspected over-flow effect occurs only when
the input rate approaches the maximum brokering rate, and
because the maximum brokering rate is highly linear with re-
spect to the number of computing nodes, we believe it is feasi-

ble to predict when the buffer-overflow will occur. As such, the
experimental observations in Figure 4 imply that it should be
straightforward to select the number of brokering compute
nodes that should be allocated in a cloud for our brokering pro-
totype to successfully process desired brokering throughputs.

C. Experiment Execution to Investigate Scalability from
adding Subscriptions
As with the experiment set that analyzes the impact of add-

ing more worker nodes for brokering, we collected data on the
maximum brokering throughput as a function of the number of
subscriptions for various brokering worker node configura-
tions. Table 2 presents the maximum brokering throughput in
numbers of IOs per second as a function of the number of bro-
kering compute nodes and subscriptions. This data is also
shown as a graph in Figure 5.

Our experimental data indicates that the brokering through-
out is inversely proportional to the number of subscriptions.
This behavior is expected as it intuitively takes longer to broker
over more subscriptions. To investigate the relationship be-
tween IO throughput and the number of subscriptions in our
brokering prototype, we plotted this relationship in a log-log
plot shown in Figure 6.

We used the standard linear regression approach to find
best-fit lines for the experimental data as shown in Figure 6.
We can map lines in the log-log graph back to the linear-linear
graph to identify the relationship between the throughput and
the number of subscriptions. We start from the following equa-
tion which represents how our experimentally identified linear
relationship relates throughput and the number of subscriptions
in the log-log domain:

log � = � log � + �
where

� y represents throughput

� x represent the number of subscriptions

� m and b are parameters that determine relationship
between throughput and subscriptions

We convert this equation to a relationship between how our
experimentally identified linear relationship relates throughput
and the number of subscriptions in the linear-linear domain:

� =
10�

���

Figure 5. IO Throughput as a Function of Number of

Subscriptions.

Table 2. IO throughput as a function of the number of
registered subscriptions for two different numbers of

brokering compute nodes.

Number of
Subscriptions

Throughput
(IOs/second) 32

Nodes

Throughput
(IOs/second)64

Nodes
64 793 3500

128 515 1900
256 393 1450
512 204 1050

1024 104 550

Table 1. IO Throughput as a function of the number
of brokering compute nodes for two different num-

bers of registered subscriptions.
Number of

Brokering Nodes 64 Subscriptions 128 Subscriptions

4 200 100
8 430 250

16 890 490
32 1600 1000
64 3600 2000

18601860

As can be seen in Figure 6, the slopes of the linear regres-
sion lines for the experimental data are very close for the 32
node and 64 node cases. For the 32 brokering compute node
case the exponent -m is 0.89 and the 64 brokering compute
node case the exponent -m is 0.91.

Our experimental results show that increases in the number
of brokering compute nodes offsets increases in the number of
subscriptions to maintain throughput. Throughput grows linear-
ly with the number of brokering compute nodes, but sub-
linearly with the reciprocal of the number of subscriptions. As
such, if our prototype needs to maintain a level of throughput
despite an increase in the number of subscriptions, we would
need to add a relatively smaller number of extra brokering
compute nodes to maintain throughput. This shows our proto-
type design can scale effectively with increases in subscriptions
by adding more compute nodes.

All of the data collected, presented and discussed until now
on brokering performance was derived from experiments con-
ducted on an Amazon cluster. We partially recreated our exper-
iments on an internal Eucalyptus cluster which we could not
scale as large as the Amazon environment due to a lack of
computation resources. We recreated our subscription scalabil-
ity experiments on the relationship between throughput and the
number of subscriptions for 8 and 16 brokering compute node
setups in our private cloud. The results on our internal cluster
indicate a best-fit linear regression in the log-log domain with –
m=0.97.

VI. CONCLUSIONS AND FUTURE WORK
Our research, prototype development, and evaluation have es-
tablished a firm basis for cloud-based IM systems. It has shown
that brokering of IOs for client requests can be architected and
implemented to work with emerging cloud-based streaming
platforms and that, in doing so, publish-subscribe operations
can be performed in the cloud at high speeds and at scale, both
in terms of number of published objects (throughput) and in
terms of number of registered subscriptions. We have shown

that there are several existing and emerging cloud-based tech-
nologies that show the promise of being applied to IM service
concepts and that provide varying levels of benefit for IM op-
erations in the cloud.

A next step is to design and develop cloud-based versions
of additional IM services to round out and complement our
brokering capability. Messaging services such as HornetQ [8]
and Kestrel [14] are promising candidates for supporting sub-
mission and dissemination. A wide range of distributed data-
bases, e.g., Accumulo [3], Cassandra [4], and MongoDB [12],
could be leveraged to back archive and query services.

ACKNOWLEDGEMENTS
This work was supported by the U.S. Air Force Research

Laboratory under Contract Number FA8750-12-C-0083.

REFERENCES
[1] Amazon Boto. Retrieved from http://boto.s3.amazonaws.com/index.html
[2] Al Ali, Rashid, et al. "An approach for quality of service adaptation in

service oriented Grids." Concurrency and Computation: Practice and
Experience 16.5 (2004): 401-412.

[3] Apache Accumulo. Retrieved from http://accumulo.apache.org/
[4] Apache Cassandra. Retrieved from http://cassandra.apache.org/
[5] Apache Kafka. Retrieved from http://kafka.apache.org/
[6] Banavar, G.; Chandra, T.; Mukherjee, B.; Nagarajarao, J.; Strom, R.E.;

Sturman, D.C.; , "An efficient multicast protocol for content-based
publish-subscribe systems," Distributed Computing Systems, 1999.
Proceedings, 1999

[7] Eugster, Patrick Th, et al. "The many faces of publish/subscribe." ACM
Computing Surveys (CSUR) 35.2 (2003): 114-131.

[8] Giacomelli, Piero. HornetQ Messaging Developer's Guide. Packt, 2012.
[9] Grinder. Retrieved from http://grinder.sourceforge.net/.
[10] Hadoop. Retrieved from http://hadoop.apache.org/
[11] HStreaming. Retrieved from http://www.hstreaming.com
[12] MongoDB. Retrieved from http://www.mongodb.org/
[13] Seungwoo Kang, Youngki Lee, Sunghwan Ihm, Souneil Park, Su-

Myeon Kim, and Junehwa Song. 2010. Design and Implementation of a
Middleware for Development and Provision of Stream-Based Services.
2010 IEEE 34th Annual Computer Software and Applications
Conference (COMPSAC '10). 92-100.

[14] Kestrel. Retrieved from https://github.com/robey/kestrel
[15] S4. Retrieved from http://s4.io/
[16] Storm. Retrieved from https://github.com/nathanmarz/storm/wiki
[17] Radu Tudoran, Gabriel Antoniu, and Luc Bouge. 2013. SAGE: Geo-

Distributed Streaming Data Analysis in Clouds. In Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum (IPDPSW '13). IEEE Computer
Society, Washington, DC, USA, 2278-2281.

[18] InfoSphere Streams. Retrieved from http://www-
01.ibm.com/software/data/infosphere/streams/

[19] DDS Spec. Retrieved from
http://www.omg.org/technology/documents/dds_spec_catalog.htm

[20] Java Messaging Service. Retrieved from
http://www.oracle.com/technetwork/java/index-jsp-142945.html

[21] XPath Syntax. Retrieved from
http://www.w3schools.com/xpath/xpath_syntax.asp

[22] Yuqing Zhu, Jianmin Wang, and Chaokun Wang. 2011. Ripple: A
publish/subscribe service for multidata item updates propagation in the
cloud. J. Netw. Comput. Appl. 34, 4 (July 2011), 1054-10

Figure 6. IO Throughput as a Function of Number of
Subscriptions with Best-fit Linear Regression Lines.

18611861

