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Rank Deficient Decoding of Linear Network Coding
Zhiyuan Yan, Hongmei Xie, and Bruce W. Suter

Abstract—Network coding is a new paradigm of communica-
tion networks that promises advantages in throughput, robust-
ness, and complexity. Since the fundamental premise of linear
network coding is that transmitted data packets are subject to
linear combinations, for all network coding schemes so far, a
full rank of received packets is required to invert the linear
mapping so as to recover the transmitted data packets. This
requirement unfortunately results in a key drawback of network
coding: either all the packets (or bits) in a session are recovered
simultaneously or none can be recovered. Aiming to overcome
this all-or-nothing property, which leads to long delays and
low throughputs, in this work we propose a variety of rank
deficient decoders of linear network coding. To this end, we
first reformulate the decoding problem of linear network coding
as a collection of underdetermined systems. This reformulation
reveals the connection among the decoding problems of network
coding and error control coding, and enables rank deficient
decoding. We then propose two classes of rank deficient decoders.
The first class of decoders take advantage of the sparsity inherent
in data and produce the data vectors with the smallest Hamming
weight, and hence they are called Hamming norm decoders.
Since these decoders have high complexities, we propose a
class of decoders based on linear programming, referred to as
linear programming decoders. Considering linear programming
relaxation of the Hamming norm decoders and solving them
by using standard linear programming procedures, the linear
programming decoders have polynomial complexities and are
much more affordable. Both classes of decoders recover data from
fewer received packets and hence achieve higher throughputs and
shorter delays than the full rank decoder.

I. INTRODUCTION

Communication networks (CNs) are ubiquitous in our ev-
eryday life as well as our national infrastructure. Network
coding [1] has the potential to fundamentally transform current
and future CNs due to its promise of significant throughput
gains. Furthermore, network coding has other advantages such
as robustness and can be implemented in a distributed manner
with random linear network coding (RLNC) [2]. Hence, net-
work coding is already used or considered for a wide variety
of wired and wireless networks.

Although network coding does not suffer from the coupon-
collector problem, one significant drawback of network coding
is its all-or-nothing property in more than one sense. First,
a full rank of received packets at the receiver nodes of a
multicast (or a unicast) is needed before decoding can start,
leading to long delays and low throughputs, especially when
the number of packets of a session is large. This is particularly
undesirable for military or civil applications with stringent
delay requirements. Second, all the bits in any packet are equal
in the sense that they are recovered simultaneously.

Aiming to solve this problem, we propose rank deficient
decoding for linear network coding, which can start even
when the rank of the received packets is smaller than the

threshold. By reformulating the decoding problem of network
coding in a different fashion, the decoding problem reduces
to a collection of syndrome decoding problems, where the
code is defined by the global kernel matrix and its minimum
distance is upper-bounded by the rank of the received packets.
Solving these syndrome decoding problems, rank deficient
decoding leads to smaller delays and higher throughput, at
the expense of possible decoding errors. Specifically, we
propose two classes of rank deficient decoders. The first class
of decoders take advantage of the sparsity inherent in data
and produce the data vectors with the smallest Hamming
weight, and hence they are called Hamming norm decoders.
Since these decoders have high complexities for large size
systems, we propose a class of decoders based on linear
programming, referred to as linear programming decoders.
Considering linear programming relaxation of the Hamming
norm decoders and solving them by using standard linear
programming procedures, the linear programming decoders
have polynomial complexities and are much more affordable.
Both classes of decoders recover data from fewer received
packets and hence achieve higher throughputs and shorter
delays than the full rank decoder. Since these decoders could
produce erroneous outputs, within each class several different
decoding strategy have been proposed for different tradeoffs
between delays/throughput and data accuracy, and they include
the traditional decoder of network coding as a special case.

In the literature, there are two different approaches to deal
with the synergy of network coding and compressive sensing,
and they also aim for different applications. One approach
was proposed in [3], statistical property of data blocks are
taken advantage of to alleviate the “all-or-nothing” drawback
of network coding in distributed storage systems. In this
approach, random linear network coding is carried out over
some finite fields, and the data are represented by bits. The
other approach [4], [5] aims to take advantage of the statistical
correlation of data generated by distributed sensor networks.
A salient feature of this approach is that in theory data are
real values and linear combinations are now performed over
the real (or complex) field. The rationale for this is that the
real representation of data is a more natural one for sensor
networks [4], [5]. In practice, data are represented in a finite
precision system. It has been shown that information loss due
to finite precision grows with the network size [6].

Our work is quite different from both existing approaches.
Above all, our reformulation of the decoding problem in
network coding is novel, and this reformulation was not
considered in the open literature to the best of our knowledge.
Furthermore, the approach in [3] focuses on the application of
random linear network coding in distributed storage systems.
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In contrast, we consider linear network coding in general,
and our work applies to a wide variety of applications. Also,
network coding is carried out over the real (or complex) field
in the approach in [4], [5], whereas in our work network
coding remains over some finite fields. Thus, our scheme does
not suffer the information loss due to finite precision as the
approach in [4], [5].

II. RANK DEFICIENT DECODING

A. System Model

In this work, we make several assumptions about the
underlying network coding. First, we treat all packets as N -
dimensional row vectors over some finite field GF(q), where
q is a prime power. For simplicity, as most network coding
schemes in practice, we assume that GF(q) is a finite field
of characteristic two, because information (in bits) can be
easily mapped to finite field symbols. Second, we focus on
linear network coding (LNC) [7] only, which was shown to
be optimal in most cases. Thirdly, we assume that the network
is error-free, and error control (see, for example, [8]–[11]) is
not embedded in network coding.

Suppose a source node of a unicast or multicast injects
a collection of n data packets (or vectors over GF(q)),
X0, X1, · · · , Xn−1, into the network. At any sink node, m
packets (or vectors over GF(q)), Y0, Y1, · · · , Ym−1, are re-
ceived, where Yi =

∑n−1
j=0 ai,jXj for i = 0, 1, · · · ,m − 1

and ai,j ∈ GF(q). In other words, each received packet
is a linear combination of the injected packets. Since the
sink node can locally generate more linear combinations of
Y0, Y1, · · · , Ym−1, it is assumed that Y0, Y1, · · · , Ym−1 are
linearly independent, which implies that m ≤ n. That is, the
m×n matrix A = [ai,j ], often called the global coding kernel
matrix, has a rank of m.

B. Full Rank Decoding

Let us further denote the matrices
[
XT

0 XT
1 · · · XT

n−1

]T

and
[
Y T

0 Y T
1 · · · Y T

m−1

]T as X and Y , respectively, and they
are related by Y = AX . The sink node can recover the
transmitted data packets by reversing the encoding of the data
packets by the network. This is easily achievable when m = n,
as the sink node can recover the data packets by computing
X = A−1Y . Thus, the decoding in network coding starts only
after the sink node has received an enough number of linearly
independent combinations of the transmitted data packets. That
is, either all data packets are recovered simultaneously, or
none is recovered. This is often referred to as the “all-or-
nothing” property by network coding. Note that this is different
from the coupon collector problem suffered by communication
networks without network coding. Nevertheless, the required
number of linearly independent packets received by the sink
node leads to longer delays and lower throughputs, which
may be undesirable for some applications. Furthermore, in
this setting, the “all-or-nothing” property also holds on the
bit level. That is, all bits of all packets are equal in the sense
that, either all of them are recovered simultaneous or none of
them can be recovered.

C. Rank Deficient Decoding

We can formulate the data recovery problem at the sink
node in a different way. Let us consider coordinate l of Yi,
and we have Yi,l =

∑n−1
j=0 ai,jXj,l for i = 0, 1, · · · ,m − 1

and l = 0, 1, · · · , N − 1. Let us denote the column vec-
tors (Y0,l Y1,l · · · Ym−1,l)

T and (X0,l X1,l · · · Xn−1,l)
T as

Zl and Wl, respectively. Clearly, we have Zl = AWl for
l = 0, 1, · · · , N−1. The sink node can recover the data packets
if it can obtain Wl from

Zl = AWl for l = 0, 1, · · · , N − 1. (1)

Eq. (1) shows that the data recovery problem at the sink node
can be viewed as N parallel decoding problems in Eq. (1),
and each corresponds to one coordinate in the packet (or
vector). When these N parallel decoding problems are solved
at the same time, it is essentially equivalent to the traditional
decoding problem of network coding.

This reformulated problem is related to two well known
decoding problems. First, if we treat the m × n matrix A as
a parity check matrix for a linear block code of length n and
dimension n−m, the decoding problem in Eq. (1) is closely
related to a syndrome decoding problem. That is, the sink node
needs to recover Wl based on the syndrome Zl. Second, if we
treat Wl as a data vector and A a measurement matrix, this is
analogous to the decoding problem in compressive sensing.

D. Decoding Strategy

Once a full rank of received packets are available, the full-
rank decoder recovers all data packets correctly. In contrast,
the proposed rank deficient decoders may produce wrong
decisions. Analogous to classical error control coding, the
preference between decoding failures and decoding errors
varies from one application to another. For instance, for
military applications with stringent delay constraints, partially
correct data packets may be more desirable than decoding
failures. For other applications such as cloud storage, data
integrity may be a top priority than delays, especially packet
retransmission is possible. Hence, it is necessary to consider
a wide range of decoding strategy so as to offer different
tradeoffs between delays/throughputs and accuracy.

Two extreme strategy are natural and straightforward. One
extreme, called the error-free decoder, is similar to the full-
rank decoder in the sense that it decodes only if decoding
success is guaranteed. This can be implemented based on
Lemma 1: decode only if Wl in Eq. (1) satisfies wH(Wl) <
dH(A)

2 for all l’s. The other extreme, referred to as the best-
effort decoder, always tries to decode with available received
packets. The error-free and best-effort decoders represent the
most conservative and the most aggressive strategy.

We also devise a family of decoding strategy that fill the
gap between these two extremes. These decoding strategy are
based on one observation about error control codes. For an
(n, k) perfect code over GF(2), we have

∑t
i=0

(
n
i

)
= 2n−k,

where t =
⌊

dH(A)−1
2

⌋
. In other words, all the coset leaders

are unique and have Hamming weight up to t. However, since
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most codes are not perfect and some allowance needs to be
made. Hence, we devise a greedy-l decoding strategy: decodes
only if

∑cw−l
i=0

(
n
i

)
= 2n−k. The parameter l represents how

aggressive the decoder is: for the same code defined by A, the
greater l is, the more aggressive the decoder is. In fact, one
can use different l values to approach the two extremes, the
best-effort and error-free decoders.

E. Hamming Norm Decoders

Let us further consider the problem in Eq. (1). Since the data
recovery problem at any sink node is equivalent to a collection
of parallel problems in Eq. (1), we focus on one such problem.
In other words, we try to solve Z = AW for W , where Z
and W are m- and n-dimensional column vectors, respectively,
and A remains an m× n matrix with full rank. Without loss
of generality, we assume that m < n.

For a linear block code of length n and dimension n −
m with a parity check matrix A, Z = AW can be viewed
as a syndrome of the received vector W . It is well known
that for a linear block code, the syndromes have a one-to-
one correspondence with its cosets, each of which is of size
qn−m. In other words, all vectors in a coset lead to the same
syndrome. Thus, solving Z = AW for W is equivalent to
finding a vector within a coset.

If no side information is available, we can make a decision
within the coset by taking advantage of some inherent proper-
ties of the data vector. In this work, we proceed by relying on
the sparsity of the data vector, which is well justified in many
applications. That is, the proposed rank deficient decoders
produce the vector with the smallest Hamming weight in the
coset. Hence, we refer to them as Hamming norm decoders.

As is common in compressive sensing literature, we con-
sider two possible scenarios for sparsity. First, when W is
sparse, we use a vector with the smallest Hamming weight in
the coset corresponding to Z as the estimate of W . Second,
suppose that ΦW is sparse for a known nonsingular n × n
matrix Φ. Since Z = AW = AΦ−1ΦW , we can treat Z
as a syndrome for the linear block code defined by AΦ−1.
Thus, in this scenario, we first select a vector with the smallest
Hamming weight in the coset corresponding to Z, and then
produces an estimate of W by multiplying the selected vector
with Φ−1. In both scenarios, the key step is to select a vector
with the smallest Hamming weight in the coset corresponding
to the given syndrome. Thus, we assume W is sparse without
loss of generality.

In coding theory terminology, a vector with the smallest
Hamming weight among a coset is called a leader of the coset.
Note that some coset leaders may not be unique, when more
than one vector in the coset has the smallest Hamming weight.
In this case, either the coset leader is selected among these
vectors at random or a list of all potential leaders.

We remark that this problem is closely related to but
different from the syndrome decoding problem in classic
coding theory. In our decoding, a vector or a list of vectors
with the smallest Hamming weight in the coset corresponding
to the given syndrome is considered as the estimate of the data

vector. In the syndrome decoding problem, a coset leader is
often considered as an estimate of the error vector. However,
the key step in both problems is to select a vector or a list
of vectors with the smallest Hamming weight in the coset
corresponding to the given syndrome. For this reason, we refer
to our decoding problem the modified syndrome decoding
problem.

Thus, we have the following sufficient condition for suc-
cessful decoding:

Lemma 1. The minimum Hamming distance of the linear
block code defined by A, denoted by dH(A), satisfies dH(A) ≤
m+1. When the Hamming weight of W , denoted by wH(W ),
is less than half of the minimum Hamming distance of the
linear block code defined by A, that is wH(W ) < dH(A)

2 , W
can be recovered by syndrome decoding.

Proof: The first part is due to the Singleton bound on
the minimum Hamming distance of linear block codes. The
second part holds because it is well known that a coset leader
with Hamming weight less than dH(A)

2 is unique.
When W is not a unique coset leader, there are two pos-

sibilities. First, when the Hamming weight of W is minimal
in its coset, either W has a probability to be selected when
coset leaders are chosen at random or W is one of the possible
vectors produced by the decoder, depending on whether the
decoder needs to generate only one vector or a list of vectors.
Second, when the Hamming weight of W is not minimal,
a wrong vector will be produced by the modified syndrome
decoder.

F. Linear Programming Decoders

Since both the computational complexity and the memory
requirement of the Hamming norm decoders grow exponen-
tially with the size of A, we also adopt a linear programming
(LP) approach. Since A is not necessarily sparse, we formulate
the problem based on that for binary linear block code with
high-dense polytopes in [12].

An m × n parity-check matrix A can be represented by
a Tanner graph G, a bipartite graph with a set of variable
nodes I = {1, 2, . . . , n} and a set of check nodes J =
{1, 2, . . . , m}. A node i ∈ I is adjacent to a node j ∈ J
if the element Ai,j is nonzero. N(j) is the set of variable
nodes that are adjacent to a check node j, and N(i) is the set
of check nodes adjacent to a variable node i.

Let f1, f2, . . . , fn be the variables representing the code
bits of w, and s = (s1, s2, . . . , sm)T be the syn-
drome received. For each check node j ∈ J , let
TE

j = {0, 2, 4, . . . , 2b|N(j)|/2c} for sj = 0, and TO
j =

{1, 3, 5, . . . , 2b(|N(j)| − 1)/2c + 1} for sj = 1. Then for
each j ∈ J and k ∈ TE

j (TO
j ), define a variable αj,k. For all

j ∈ J , k ∈ TE
j (TO

j ) and i ∈ N(j), define zi,j,k. Then the
linear programming formulation for the syndrome decoding is
to minimize

∑n
i=1 fi, subject to the following constraints:

∀i ∈ I, j ∈ N(i), fi =
∑

k∈Tj

zi,j,k
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Fig. 1. Standard array vs LNC decoding: packets level

∀j ∈ J ,
∑

k∈Tj

αj,k = 1

∀j ∈ J , k ∈ Tj ,
∑

i∈N(j)

zi,j,k = kαj,k

∀i ∈ I, 0 ≤ fi ≤ 1

∀j ∈ J , k ∈ Tj , 0 ≤ αj,k ≤ 1

∀i ∈ I, j ∈ N(i), k ∈ Tj , 0 ≤ zi,j,k ≤ αj,k.

The above constraints are similar to those in [12], except that
Tj = TE

j in the previous constraints if sj = 0, and Tj = TO
j

if sj = 1. In addition, the following constraint is added to
narrow down the optimal solutions:

n∑

i=1

fi ≥ cw

.
Linear programming may produce non-integral results, in

which case two approaches are considered. The first type is
simply to round off the real numbers into integers, which are
compared with the original data to count decoding error or
success rate, and we mark this approach LP I. The other one
is to declare declare decoding failure of the entire generation,
as the decoding is performed column wisely, and each packet
in the same generation will be affected. Both LP I and LP II
are applicable to all greedy as well as the EF and BE strategies.

III. SIMULATION RESULTS

In our simulations, n = 8 transmitted packets of length
N = 8 are generated such that the transmission matrix has
a constant column weight of cw = 2. Note that such small
parameters are chose so that the complexities of Hamming
norm decoders are manageable. The matrix A is generated
randomly, with each element being 0 or 1 with equal proba-
bility. The number of received packets m varies from 1 to 15,
while the packets may not be linearly independent. Simulation
results are obtained based on 100,000 generations of packets
injected into the network.
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Fig. 2. Standard array vs LNC decoding: bits level
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Fig. 3. Linear programming vs LNC decoding: packets level

Fig. 1 and Fig. 2 show the packet level and bit level perfor-
mance of different decoding algorithms, where the syndrome
decoding adopts the standard array decoding algorithm. Both
the PSR and BSR approach 1 following increased number
of received packets for the syndrome decoding and the LNC
decoding. But LNC performs no decoding when the number of
received packets m is smaller than the number of transmitted
packets n. Further, when m ≥ n, the syndrome decoding
algorithm achieves much better results than the traditional
LNC for both the packet and bit levels performance.

Simulation results obtained from the linear programming
decoding algorithm for the syndrome decoding are shown
in Fig. 3 and Fig. 4. As expected, the linear programming
approach performs slightly worse compared to the standard
array decoding algorithm. However, the performance differ-
ence vanishes when the number of received packets is larger
enough.

To measure the throughputs of these decoders, the average
numbers of packets required to reach a packet success rate
(PSR) of 1 or a bit success rate (BSR) of 0.95 are compared in
Table I. The BE strategy requires approximately 2 less packets
than the FR strategy to ensure all the packets are decoded
correctly, for both the SA and the LP decoding algorithms.
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TABLE I
AVERAGE NUMBER OF PACKETS FOR 100% PSR AND 95% BSR

Strategy FR EF greedy-(-1) greedy-0 greedy-1 BE
SA LP I LP II SA LP I LP II SA LP I LP II SA LP I LP II

100% PSR 9.60 8.84 8.12 8.12 8.12 7.57 7.78 7.77 7.44 7.73 7.72 7.44 7.73 7.72
95% BSR 9.60 8.84 8.05 8.05 8.05 7.40 7.50 7.63 7.17 7.37 7.54 7.17 7.37 7.54
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Fig. 4. Linear programming vs LNC decoding: bits level

Note that the numbers are the same as the 100% PSR case for
both the FR and the EF strategies. However, for the other four
strategies, the number of packets required for a 95% BSR is
smaller than that for a 100% PSR. For the last three strategies,
the LP I algorithm requires about 0.2 to 0.3 more packets
compared to the SA decoding algorithm in order to decode all
the packets correctly. The corresponding increase for a 95%
BSR is about 0.1 to 0.2. For the LP II algorithm, both the
PSR and the BSR decrease as the failure rates are slightly
higher. As a result, 0.1 to 0.2 more packets are required to
to reach a 95% BSR for the last three strategies, while the
average numbers for a a 100% PSR remain the same for both
algorithms.

IV. CONCLUSIONS

We have proposed a variety of rank deficient decoders of
linear network coding. Compared with the full rank decoder

universally used in linear network coding, our proposed de-
coders require fewer received packets to decoder and hence
achieve higher throughputs and shorter delays.
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