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Extensive testing and validation of the resulting strategy is done on a numerous set

of problems. For transitional and turbulent flow regimes the large-eddy simulation

(LES) approach is used. The grid discontinuities introduced in AMR methods lead

to numerical errors in LES, especially if non-dissipative, centered schemes are used.

A simple strategy is developed to vary the filter size for filtered variables around grid

discontinuities. A strategy based on explicit filtering of the advective term is chosen

to effectively reduce the numerical errors across refinement jumps. For all the FSI

problems reported, the complete set of equations governing the dynamics of the flow

and the structure are simultaneously advanced in time by using a predictor-corrector

strategy. Dynamic fluid grid adaptation is implemented to reduce the number of

grid points and computation costs. Applications to flapping flight comprise the

study of flexibility effects on the aerodynamic performance of a hovering airfoil, and

simulation of the flow around an insect model under prescribed kinematics and free

longitudinal flight. In the airfoil simulations, it is found that peak performance

is located in structural flexibility-inertia regions where non-linear resonances are

present.
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Chapter 1

Introduction

1.1 Motivation and objectives

The recent fusion of decades of advancements in mathematical models, numer-

ical algorithms and computer architecture marked the beginning of a new era in the

science of simulation. A simulation that would have taken centuries on a 1947 Mark

I computer using Gaussian elimination now takes only a few seconds with parallel

multigrid on the IBM Blue Gene/P supercomputer. Computational fluid dynamics

(CFD), which is at the forefront of computational mechanics, in utilizing large-scale

computational resources to tackle problems of increasing size and complexity, has

also greatly benefited from the above developments. Nowadays, even commercially

available, general purpose, CFD solvers offer some form of parallel computing capa-

bility. The gains, however, in our ability to resolve the energy transfer in convection

dominated flows are not as impressive. During the past 30 years direct numeri-

cal simulations (DNS), which are three-dimensional, time-dependent computations

where all scales of motion down to the Kolmogorov scale are resolved, have only

seen moderate increases in the simulated Reynolds numbers. In addition, all these

state-of-the-art computations are usually performed on idealized settings (i.e., ho-

mogeneous turbulence [115], fully developed channel flows [26]). Applications to

more realistic configurations are limited (see for example [30]).
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Many problems of interest in physics and engineering include complex geome-

tries with moving and/or deforming boundaries. The latter is amongst the most

challenging problems in computational mechanics: the main difficulty arises from

the fact that the spatial domain occupied by the fluid changes with time and the

location of the boundary is usually an unknown itself that depends on the fluid flow

and the motion and/or deformation of the body. There is only a limited number of

special cases where established CFD codes can be directly applied to fluid-structure

interaction (FSI) problems with a relatively small overhead. The use of moving ref-

erence frames [55], or coordinate transformations [72] are characteristic examples.

In more complex configurations there are two classes of methods that can be used:

i) formulations utilizing moving and/or deforming grids that continuously adapt to

the changing location of the body (see, for example [98, 46]); and ii) non-boundary

conforming methods, where the requirement for the grid to conform to the body is

relaxed and boundary conditions are imposed by using external forcing functions, or

local reconstructions (see [68] for a recent review of the different strategies). The lat-

ter family of methods has significant advantages in configurations involving multiple

bodies undergoing large motions and/or deformations, compared with the former,

where the need for constant deformation/regeneration of the grid has an adverse

impact on the accuracy and efficiency of the fluid solvers. Applications of either of

the above strategies in massively parallel environments are yet to be reported.

The last few years have seen a paradigm shift in high performance computing

hardware from machines with few powerful processors that achieved performance by

increasing the clock rate, to systems with many relatively simpler processors running
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at moderate clock speeds. In the new paradigm, the computing power of a processor

node is increased by including multiple processing units with shared memory on the

same chip, leading to fine-grained parallelism. This presents a unique opportunity

to advance high-fidelity, eddy-resolving CFD solvers, to the next level and develop

scalable algorithms for challenging multiphysics, multiscale problems such as fluid-

structure interactions.

The main objective of the proposed work is the development of scalable tools

and algorithms applicable to fluid-structure interactions in viscous incompressible

flows. To achieve this objective, the focus of the dissertation will be on the following

specific aims:

1. Development of a robust immersed-boundary formulation with adaptive mesh

refinement (AMR): immersed boundary methods are well suited for multibody

FSI problems. Existing methods however, lack robustness, and are confined

to low Reynolds numbers because the global grid refinement, which is usu-

ally required to resolve the sharper velocity gradients associated with higher

Reynolds numbers, making the computations prohibitively expensive. To over-

come these constraints, the following is to be carried out: i) development of

a robust immersed boundary method based on a moving least squares (MLS)

formulation. This approach is applicable to multibody problems without spe-

cial treatments. ii) development of an AMR refinement strategy to locally

refine the computational mesh in areas of sharp velocity gradients.

2. Development of strategies to perform large-eddy simulations (LES) of turbu-
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lent and transitional flows within the AMR solver: In DNS with AMR, the

solution is smooth on the grid scale and the interpolation errors due to the

reconstruction of the fluxes at the non-matching interfaces between coarse and

fine grids are small. In LES, on the other hand, the flow field is generally not

smooth at the smallest scale (the filter width is not much larger than the grid

size), and the numerical errors in the interpolation between grids can be signif-

icant. In addition, when a non-uniform filter-width is used, differentiation and

filtering do not commute, and additional terms (“commutator errors”) appear

in the equations of motion. In the present work, the author will investigate the

significance of the different errors on the accuracy of the results and develop

strategies to eliminate them.

3. Utilization of the tool in applications to flapping flight: The developed tools

will be applied to a set of two-dimensional and three-dimensional flapping

flight problems. A very important question nowadays is how does wing flex-

ibility affect the aerodynamic characteristics of a wing for a given prescribed

kinematics. The effects of wing flexibility are evaluated on the performance

of a flapping, flexible airfoil. In three-dimensional studies most of the work

on flapping flight today involves tethered insects with prescribed kinematics.

To demonstrate the capabilities of the proposed method, the author conducts

computations of insects in free flight (the wing motion is prescribed and the

overall system ’flies’ in response to the aerodynamic forces that are produced).
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1.2 Prior work

The combination of fluid and structural solvers on FSI simulations requires a

strategy to impose boundary conditions on the fluid, and also define the fluid forces

acting on the solids. Usually, the fluid is described on an Eulerian reference frame,

while it is simpler to use a Lagrangian description for the immersed bodies. A way of

overcomming this complication is to use the Arbitrary Lagrangian-Eulerian (ALE)

formulation [29] for the fluid description. Here, the grid is required to conform to

the immersed bodies, in the sense that, the boundaries of these are also boundaries

of the discrete fluid domain. Then, the vertices (or nodes) of the fluid mesh are

displaced by using a conveniently defined velocity field, to account for the motion of

internal surface boundaries of the fluid domain. Boundary-conforming methods have

the disadvantage that, in large motion or deformation regimes, the grid distortion

incurred has a negative impact on the accuracy of calculations [8]. It is possible

to combine ALE schemes with remeshing, for cases where the mesh has reached an

unacceptable level of distortion, but at the overhead of modifying the grid topology

and implementing complicated interpolation operations for grid variables.

On the other hand, immersed boundary methods can be used to compute

the flow around immersed bodies by solving the Navier-stokes equations of motion

on a fixed structured grid, generally not aligned with the body. Depending on

the specifics of the formulation, boundary conditions are imposed by appropriately

modifying the stencil in the neighborhood of the body [100], or by using a forc-

ing function on the Navier-Stokes equations which can be derived either by using
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physical arguments [76], or directly from the discrete problem [37].

In the case of Peskins [76] formulation, the presence of the body in the flow

is taken into account through an elastic deformation force, which is transferred to

the fluid momentum equation as a pseudo body force. This transfer requires special

treatment and it is done by using kernel functions. A weakness of this method is

that limiting inelastic body cases result in numerically stiff problems, requiring very

small integration time steps. Several modifications to the above method have been

suggested. Goldstein et. al [41] applied a forcing term governed by a feedback loop,

on the momentum equations discretized by a spectral method. They were able to

effectively reduce the timestep constraint inherent to Peskins scheme. Saiki and

Biringen [86] extended the method of Goldstein et. al [41] to higher-order finite

difference schemes and successfully applied it to simulations of low Re flow around

rigid cylinders. Peskins immersed boundary method has been applied to different

types of low Reynolds number biological flows [76], [77], [78].

A different approach was taken by Glowinski et al. ([39], [40]) , who imple-

mented a fictitious domain method, enforcing the fluid velocity to the given value

inside the rigid particle by a distributed Lagrange multiplier. Baaijens [8] devel-

oped a distributed Lagrange multiplier (DLM), mortar element fictitious domain

method where the no slip condition in the boundary of the obstacle is imposed as

an equation for the Lagrange multiplier on this boundary. He applied the method

to two-dimensional fluid-structure interactions of flexible membranes subjected to

a fluctuating channel flow. The DLM fictitious domain method was extended by

Yu [116] for the case of fluid flexible body interactions where the constitutive equa-
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tion used is the one of an incompressible neo-Hookean solid. In this formulation the

DLM is used to enforce the motion of the fluid as the solid not only on the boundary

but also inside the deformable solid domain.

Mohd-Yusof [69] and Fadlun et al. [37] introduced a non-boundary conform-

ing formulation based on a direct forcing approach. In this case, the forcing is

done in the discrete equations defined on the Eulerian reference frame, and it is de-

fined such that the boundary conditions are enforced on the boundary itself. These

methods -also called direct-forcing methods- are particularly attractive, especially

when combined with finite-difference or finite-volume formulations, since they can

be easily implemented in a manner that does not affect the efficiency and stability of

the solver. Boundary motion, however, introduces additional complications, and a

straightforward extension of the direct-forcing formulations designed for stationary

boundaries (see for example [37], [50], [9]) to fluid-structure interaction problems,

leads to hydrodynamic forces that lack smoothness and are a potential source of

instabilities [101, 113].

Yang and Balaras [113] suggested that the large fluctuations of the hydrody-

namic forces on moving immersed bodies were due to the fact that, at any given

timestep, some of the Eulerian grid points in the vicinity of the body will not have

the correct velocity, pressure or their derivatives, due to their association with the

solid in a previous timestep. The problematic cells as well as the appropriate treat-

ment depends on the details of the implementation. Yang and Balaras [113], for

example, proposed a field-extension procedure, where the solution is ’extended’ into

the body in a way that the cells that emerge into the fluid have the proper velocity

7



and pressure at later timesteps. Mittal et al. [67] in their generalized ghost-cell for-

mulation, assigned the proper values at the problematic cells by interpolating from

their surroundings. Yang et. al [114] combined the above method with a predictor-

corrector time integrator for structural equations, and applied it to two-dimensional

rigid body motion problems. A similar scheme was applied by De Tullio and col-

laborators [99] to DNS and FSI simulation of bileaflet prostatic heart valves under

pulsatile flows and physiological conditions.

Uhlmann [101] suggested an alternative direct-forcing scheme, where the force

is computed on the Lagrangian markers rather than Eulerian points as it was done

in all previous implementations, which resulted in much smoother hydrodynamic

forces. He applied the Lagrangian forcing scheme to low Re FSI particle sedimenta-

tion problems. A major drawback of immersed boundary schemes coupled to a single

logically cartesian grid, specially in moving bondaries, is that the local resolution

required in areas where the bodies are present is unavoidably extended to distant

regions of the domain. In order to overcome this issue adaptive mesh refinement of

the fluid grid can be employed.

Over the past decades a significant amount of work on adaptive meshing has

been done in the framework of unstructured grid solution methods. The lack of

inherent structure of such grids usually allows for a straightforward implementation

of a variety of AMR strategies. A widely used approach is the so called h-refinement,

where local refinement is achieved by splitting existing cells into several smaller ones,

or by locally introducing additional nodes (see [65] for a review). For problems

that involve moving boundaries, however, local mesh motion (r-refinement) is also
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necessary to maintain grid quality [98]. A drawback of the above methods, especially

in problems with large boundary motions and deformations, is the difficulty to

control grid quality, which has an adverse impact on accuracy and stability of the

computations.

Two general categories of AMR for structured grids, which can be ideally cou-

pled to the class of non-boundary conforming methods mentioned above, can be

identified: i) isotropic splitting of individual cells that can be managed using hi-

erarchical tree [15], or fully unstructured data-structures [45]; ii) grid embedding,

where block-structured grids composed of nested rectangular patches are used. The

latter approach maintains most of the advantages of structured grid methods and

is an attractive platform for introducing AMR capabilities in eddy resolving tech-

niques such as the LES and DNS. Structured adaptive mesh refinement (S-AMR)

was initially introduced by Berger and Oliger [20] for the solution of one- and two-

dimensional hyperbolic problems, where the sharp discontinuities in the solution

were better captured with increasingly refined rectangular grid patches. Since then,

the method has been extended to three-dimensions, and it has been demonstrated

to be a robust, cost effective approach for a range of hyperbolic problems (see for ex-

ample [16], [19]). Applications to incompressible flows, however, have been limited,

primarily due to complications associated to the enforcement of the divergence-free

constraint.

Most algorithms for incompressible flows are based on the extension of the

second-order projection method by Bell and collaborators [17] on the grid topology

proposed in [20]. In this particular splitting scheme the viscous and advective terms
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in the momentum equation are advanced via a Crank-Nicolson scheme, and an un-

split, second-order upwind Godunov method is used to evaluate the nonlinear term

at the time-centered location. In most cases time refinement (i.e. different time-

steps are used in different AMR levels) is also employed and synchronization of the

solution between AMR levels is required to ensure the divergence free constraint.

Recent applications to multiphase flows and to prototypical laminar flows can be

found [2] and [64] respectively. Applications of S-AMR strategies such as the above

to fluid-structure interaction problems have been limited (see for example [42]). Of

particular interest is the work of Roma et. al [84], who applied the a fully implicit

version of the immersed boundary method [76] on the two-dimensional viscous in-

compressible flow equations. These, in turn, were solved using an implicit projection

method inspired by the method given in [17] on the composite grid structure of [20].

Their results obtained by using self adaptation on the contraction of a 2D elastic

spherical balloon showed no significant difference between AMR calculations and

uniform grid calculations with same resolution as the finest AMR level.

Most of the AMR applications to date for the solution of turbulent and tran-

sitional flows have been in DNS and Reynolds Averaged Navier-Stokes (RANS) so-

lutions, but their understanding and use in LES of turbulent flows is reduced. This

is due to the fact that in LES the flow field is generally not smooth at the smallest

scale (the filter width is not much larger than the grid size), so that numerical errors

in the interpolation between grids can be significant. In addition, the subgrid-scale

(SGS) eddy viscosity used to represent the effect of the unresolved scales is usu-

ally proportional to the filter width (and, in most cases, to the grid size) squared.
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Then, a sudden mesh refinement or coarsening may result in a discontinuity in eddy

viscosity, which can generate significant errors. Kravchenko et al. [51], for exam-

ple, computed plane channel flows using a method based on B-splines that allowed

them to vary the grid size (and hence the filter width) in planes parallel to the wall.

They observed errors on the velocity field when the coarse-to-fine grid ratio was 2,

and noted that better agreement with a single-grid calculation could be achieved

either by using a different coarse-to-fine grid-size ratio, or by providing a smoother

transition between meshes. Of particular interest is the work by Pantano et al. [75]

on a hybrid AMR finite-difference LES of compressible flows using weighted non-

oscillatory schemes. They found that the conservation properties of their fine-coarse

upwinding scheme behave well in cases where the flow structures passing through

the interface are well resolved (i.e., the flow is smooth on the coarse-grid level).

Recently, two studies have focused on evaluating the errors due to variable

or discontinuous filters, examining the combined effect of commutator errors and

discontinuous eddy viscosity. Cubero and Piomelli [25] performed LES of plane

channel flow in which the grid was uniform in the streamwise (x) and spanwise (z)

directions, and smoothly stretched in the wall-normal direction y; however, a non-

uniform filter was imposed. They found that, as the filter width is increased, the

wall stress and the magnitude of the SGS stress decreases, and the smaller scales

contain less energy, but the size of the large scales is essentially unaffected. Inverse

trends were observed for the decreasing filter-width ratio. They also noted that, in

the near-wall region, the transition from one filter-width to the other often included

overshoots or undershoots. This effect may be related to the additional closure terms
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on the standard LES equations introduced by the variable filter width; according to

van der Bos and Geurts [102], this undesirable phenomenon may be decreased by

reducing the gradient of the filter width.

Piomelli et al. [80] applied the CDP finite-volume unstructured code to plane

channel flow in which grid discontinuities were artificially introduced, the fine-coarse

grid interface being placed either parallel or normal to the main advection direction.

Their findings suggest that, for interfaces parallel to the flow direction, the resolved

stresses decrease as the grid is coarsened, while the subgrid-scale (SGS) ones increase

proportionately. If the grid interface is placed close to the buffer layer, however, a

thicker sublayer results. When the interface is normal to the main advection, they

observed a more complex behavior: a sudden grid coarsening by a factor of two in

each direction resulted in aliasing error, loss of phase information between eddies,

and decrease of the resolved Reynolds stresses. None of the SGS models tested was

capable of balancing this decrease. A coarse-to-fine interface was found to have a

more benign character.

It is quite clear that the grid discontinuities that are introduced in AMR meth-

ods may lead to numerical errors, in some cases significant ones. This is especially

true if non-dissipative, centered schemes are used. In Chapter 4, we will study the

development of turbulence in the vicinity and downstream of a refinement interface

evaluating the errors introduced by the grid discontinuity, and the distance required

for a return to equilibrium. The effect of different LES strategies on interpolation

and aliasing errors around refinement interfaces will be evaluated.

From the above literature survey it is clear that efficient, high fidelity numerical
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tools for the solution of complex large-scale fluid-structure interaction problems on

massively parallel machines are yet to be developed. Such tools are critical for

conducting the next generation engineering simulations.

1.3 Outline

The remainder of this document is organized as follows: In Chapter 2, the

mathematical model for fluid and structural equations is laid out and the developed

immersed boundary scheme is explained. Its accuracy and efficiency is evaluated

using a set of prototypical problems of increasing complexity. In Chapter 3, the

FSI S-AMR strategy is developed. The level of accuracy of the required variable

interpolation operators is studied, and a novel divergence-preserving prolongation

scheme for velocities is presented. Extensive tests are performed on a variety of

problems. In Chapter 4, the effects of grid discontinuities in the case of LES is

investigated. A strategy based on explicit filtering of the advective term, which is

effective in reducing numerical errors across the jump, is presented. To demonstrate

the applicability of the method in complex turbulent flows the case of the flow

around a sphere at Re = 10000 is presented. In Chapter 5, applications of the

scheme developed to two and three dimensional problems relevant to flapping flight

are discussed. Finally, in Chapter 6, conclusions and directions for future work are

given.
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Chapter 2

Immersed boundary reconstruction

In this Chapter, the author defines fluid and structure models by formulating

the filtered Navier-Stokes and structural dynamics equations. Then, the differences

between Eulerian and Lagrangian forcing as means of imposing fluid boundary con-

ditions in immersed boundary methods are illustrated. A thorough description of

the developed Moving Least Squares reconstruction technique for Lagrangian forc-

ing is provided, along with an assessment of its efficiency and accuracy on selected

examples.

2.1 Problem Formulation

We consider dynamical systems consisting of fluid flow interacting with moving

and possibly deforming immersed bodies. The flow is always incompressible, and

transitional or turbulent flow patters may be present. An example is shown in

Fig. 2.1, where a set of solid bodies, Φ1, Φ2 and Φ3, interacts with the flow within the

domain Ω bounded by ΓΩ. In this setting, the dynamics of the fluid and structures

are described by different sets of equations, which need to be solved as a coupled

system. On the side of the fluid, the LES modeling framework is adopted, and the
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Figure 2.1: An example of a dynamical system, where three solid bodies Φ1, Φ2 and

Φ3 interact with the flow in domain Ω, with boundary ΓΩ.

spatially-filtered Navier-Stokes equations for incompressible flow are solved:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
− ∂τij
∂xj

+
1

Re

∂2ui
∂xj∂xj

+ fi, (2.1)

∂ui
∂xi

= 0, (2.2)

where xi (i = 1, 2, 3) are the Cartesian coordinates, ui are the resolved velocity com-

ponents in the corresponding directions, p is the resolved pressure, and fi represents

an external body force field. The equations are non-dimensional and Re = UL/ν is

the Reynolds number (U is a reference velocity, L a reference length scale and ν is

the kinematic viscosity of the fluid). In LES the large scales are resolved directly as

in a DNS, and all scales smaller than the filter size, which is usually proportional

to the local grid size, are modeled. In Eq. (2.1) the effect of the unresolved scales

appears in the subgrid scale (SGS) stress term, τij = uiuj − uiuj, which needs to

be parameterized. We revisit LES in Chapter 4. Unless stated otherwise, for the
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remainder of this dissertation we drop the overbars on variables, and assume that

they are filtered variables in cases were LES is used.

On the other hand, the motion of a set of rigid bodies within the fluid domain,

Ω, is governed by a set of ordinary differential equations (ODEs) of the form [14]: [I] [0]

[0] [M(q1)]




q̇1

q̇2

 =


q2

F(q1,q2, t)

 , (2.3)

where q1 = [ q1 q2 . . . qn ]T is a vector containing the set of n generalized coor-

dinates of the structural system and q2 = q̇1 is the set of generalized velocities. [I]

is the n x n identity matrix, [M(q1)] is the nonlinear mass matrix and F(q1,q2, t) is

a vector containing damping, rotation derived, elastic and externally applied forces.

This last set of forces in our case, is composed by the projection of the gravity force

and fluid tractions in the direction of the coordinates qi (i = 1, . . . , n). We note that

for deformable elastic bodies, discretization of their governing equations would also

lead to first order systems of the form given by Eq. (2.3). Therefore, the solution

procedure presented here can be extended to treat deformable bodies.

2.2 Eulerian and Lagrangian forcing on immersed boundary methods

Immersed boundary methods provide the means to impose no-slip boundary

conditions on immersed surfaces that do not conform to the Eulerian fluid grid. The

velocity field including the boundary effect is reconstructed around these surfaces

by applying a force field on the right hand side of the discrete momentum equations.

This force field, as noted in Capter 1 can be defined on the Eulerian fluid grid points
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([37], [9], [67]), or on the Lagrangian marker points that define the immersed surfaces

[101]. For the purpose of illustrating the differences between the two strategies let

us assume that ui (i = 1, 2, 3) is a discrete approximation of the velocity field and

write the time-discretized form of momentum equation as:

un+1
i − uni

∆t
= rhsn+1/2 + f

n+1/2
i , (2.4)

where rhs contains all advective, diffusive and, if performing LES, the SGS terms.

Also, fi is the direct-forcing function which is different from zero only at the grid

points in the vicinity of the immersed body, and n, n + 1 refer to the current

and next timestep respectively. In the direct forcing scheme proposed in [37] or

[9], for example, for every point where fi 6= 0, one can replace un+1
i in Eq. (2.4)

with the desired velocity udi (usually determined by means of interpolation from the

surrounding nodes), and find:

f
n+1/2
i =

udi − uni
∆t

− rhsn+1/2. (2.5)

Substituting fi back into Eq. (2.4) the proper boundary condition, un+1
i = udi , is

recovered. In the formulation proposed by Uhlmann [101] on the other hand, the

direct forcing function is computed on each Lagrangian marker, rather than on the

Eulerian grid nodes, as follows:

F
n+1/2
i =

Ud
i − Un

i

∆t
− RHSn+1/2. (2.6)

The upper case symbols in Eq. (2.6) denote the same variables as in Eq. (2.5), but

at the Lagrangian points on the immersed body. Setting Ũ = Un
i + ∆t RHSn+1/2,

which is practically the Lagrangian counterpart of the predicted velocity, ũi, (see
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Eq. 2.8), we can rewrite Eq. (2.6) as:

F
n+1/2
i =

Ud
i − Ũi
∆t

(2.7)

Uhlmann [101] computed the volume force from Eq. (2.7) and used the regularized

delta functions introduced in [76] as kernels in the transfer of variables between the

Eulerian and Lagrangian grids. The overall implementation was tailored to model

suspended rigid spherical particles in a laminar and turbulent flows, where it was

demonstrated to be very efficient and robust. Direct extension to more complex

fluid-structure interaction problems however, hinges upon the requirement to have

uniform elements on the surface of the body, as well as on the fact that only in-

tegral hydrodynamic forces could be computed. In the following sections, based

on the ideas presented in [101], we propose a direct-forcing scheme that utilizes a

versatile Moving Least Square (MLS) approximation to build the transfer functions

between the Eulerian and Lagrangian grids, and can be applied to arbitrary mov-

ing/deforming bodies. We will also propose a method to compute the local traction

forces. The overall formulation utilizes very compact stencils and, without com-

promising accuracy and robustness, gives results that are identical to ‘sharp’ direct

forcing methods.

2.3 Methodologies

The proposed formulation will be discussed in the framework of a finite-

difference, fractional-step, Navier-Stokes solver for incompressible flow. The ad-

vective, diffusive and SGS terms are advanced explicitly using an Adams-Bashforth
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scheme, and all spatial derivatives are discretized using central, second-order, finite-

differences on a staggered grid. Details on the basic solver together with applications

in a variety of wall-bounded and free-shear flows can be found in [79, 10, 9]. In the

following sections we will focus on the proposed direct-forcing scheme and compu-

tation of the hydrodynamic forces.

2.3.1 MLS reconstruction

In the framework of the above mentioned splitting scheme we first take a

provisional step to compute the intermediate velocities, ũi, which do not satisfy the

incompressibility constraint and the boundary conditions on the immersed body:

ũi = uni +
∆t

2

(
3H(uni )−H(un−1

i )
)
−∆t

∂pn

∂xi
, (2.8)

where H is a discrete operator representing the spatially discretized convective,

viscous and SGS terms. Next, we will build a direct-forcing function that will

enforce the proper boundary conditions on all the Eulerian grid nodes influenced

by the immersed body. As in [101] we will compute the forcing function on the

Lagrangian markers and then transfer it to the Eulerian grid nodes. Our transfer

operators, however, will be constructed using MLS shape functions with compact

support [52, 57]. To facilitate this process, for each Lagrangian marker we: i) Identify

the closest Eulerian grid node. Referring to Fig. 2.2a, for example, the marker la

is associated to the grid node xa, which is in the center of a cell with dimensions

hx and hy in the x and y directions respectively. Marker lb is associated to the grid

node xb and so on. Note that more than one Lagrangian markers from the same,

19



or different immersed bodies, can be associated with the same Eulerian grid node.

ii) Define a support-domain around each Lagrangian marker, in which the shape

functions will be constructed. In our case the support domain is a rectangular box

of size 2Hx × 2Hy × 2Hz centered at the location of the marker. Hx, Hy and Hz

are different for each marker and are proportional to the local Eulerian grid. We

found Hx = 1.2hx, Hy = 1.2hy and Hz = 1.2hz (see Fig. 2.2a) to be sufficient for all

cases considered in this study; iii) Associate a volume, ∆V l = Alhl (Al is the area

of the body surface associated to marker l, and hl is a local thickness that depends

on local grid size and will be defined in the following paragraphs) to each marker

point. In Fig. 2.2a the volumes ∆V la and ∆V lb for markers la and lb respectively

are shown. There is no overlapping between successive volumes, ∆V l, and the sum

of all local Al is equal to the total area of the immersed object surface.

We can now define the transfer operator that will enable the computation of Ũi

from the corresponding velocities, ũi, given by Eq. (2.8). Using the MLS method,

Ũi for each Lagrangian marker, l, can be approximated in its support domain as

follows:

Ũi(x) =
m∑
j=1

pj(x)aj(x) = pT (x)a(x), (2.9)

where pT (x) is the basis functions vector of length m, a(x) is a vector of coeffi-

cients, and x is the position of the Lagrangian marker. We found that a linear

basis, pT (x) = [ 1 x y z ], is a cost-efficient choice and would represent the field

variation for all variables up to the accuracy of our spatial discretization scheme.
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XB
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BlV

AlV

hn

e

(a) (b)

Figure 2.2: (a) Definition of the support-domain for two neighboring Lagrangian

markers, lA and lB, which are color coded for clarity. XA and XB denote the closest

Eulerian nodes to lA and lB respectively. The corresponding volumes ∆V are also

shown (dashed line). (b) The normal probe defined by the Lagrangian marker l and

point, e is shown together with the support domain used in the MLS approximation.

To obtain the coefficient vector, a(x), the following weighted L2-norm is defined:

J =
ne∑
k=1

W
(
x− xk

) [
pT (xk)a(x)− ũki

]2
, (2.10)

where xk is the position vector of the Eulerian point k in the interpolation stencil,

ũki is the variable defined in Eq. (2.8) for grid point k, and W
(
x− xk

)
is a given

weight function that will be defined below. ne is the total number of grid points

in the interpolation stencil, which for the linear basis function above, involves five

and seven points in two- and three-dimensions respectively. For simplicity we set

the closest point to the Lagrangian marker to be the center point in the stencil.
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Minimizing J with respect to a(x) leads to the following set of equations:

A(x) a(x) = B(x) ũki with,

A(x) =
ne∑
k=1

W (x− xk)p(xk)pT (xk),

B(x) = [W (x− x1)p(x1) · · · W (x− xne)p(xne)], and

ũki = [ũ1
i · · · ũnei ]T . (2.11)

The size of matrix A(x) depends on the size of the basis vector, p(x), and it is 3×3

in two-dimensions and 4 × 4 in three-dimensions, while B(x) is of size 3 × ne in

two-dimensions or 4× ne in three-dimensions. Combining Eqs. (2.9) and (2.11) one

can write Ũi as follows:

Ũi(x) =
ne∑
k=1

φlk(x)ũki = ΦT (x)ũki (2.12)

where Φ(x) = p(x) A(x)−1 B(x) is a column vector with length ne, containing

the shape function values for marker point l. Cubic splines are used for the weight

functions, W (x− xk), above, which can be written as:

W (x− xk) =


2/3− 4rk

2 + 4rk
3 for rk ≤ 0.5

4/3− 4rk + 4rk
2 − 4/3rk

3 for 0.5 ≤ rk ≤ 1.0

0 for rk > 1.0

(2.13)

where rk = |x − xk|/Hi. These functions are monotonically decreasing and are

sufficiently smooth in the support domain. The resulting shape functions reproduce

exactly the linear polynomial contained in their basis and possess the partition of

unity property
∑ne

i=1 φi(x) = 1 [57]. Also, the field approximation is continuous on

the global domain as the MLS shape functions are compatible.
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Eq. (2.12) will give Ũi, which can then be substituted into Eq. (2.7) to obtain

the volume force Fi on all Lagrangian markers. To transfer Fi to the Eulerian

points associated with each marker, l, the same shape functions used in interpolation

procedure can be used if properly scaled by a factor cl, which will be determined

later. In such case, the final forces on the Eulerian grid nodes would be:

fki =
nl∑
l=1

clφ
l
kF

l
i , (2.14)

where fki is the volume force in the Eulerian point k in the direction i, φlk is the shape

function previously obtained relating variables between grid point k and marker l,

and F l
i is the force in marker l. Also, nl is the number of Lagrangian markers which

are related to the grid point k. To properly rescale the shape functions we require

that the total force acting on the fluid is not changed by the transfer:

nte∑
k=1

fki ∆V k =
ntl∑
l=1

F l
i∆V

l (2.15)

where, ∆V k = (hx × hy × hz) is the volume associated with the Eulerian grid

point k, and ∆V l = Alhl is the volume associated with the marker l, with hl =

1/3
∑ne

k=1 φ
l
k(hx+hy+hz). nte and ntl is the total number of forced grid points, and

total number of Lagrangian markers respectively. As our surface is discretized using

triangular elements, the area for marker l is obtained by a simple angle averaging

process. Using (2.14) in (2.15) and rearranging the sums in the left hand side in

terms of the total number of markers we get

ntl∑
l=1

ne∑
k=1

φlk∆V
kclF

l
i =

ntl∑
l=1

∆V ElclF
l
i =

ntl∑
l=1

F l
i∆V

l (2.16)
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where ∆V El is the averaged Eulerian grid volume associated to the Lagrangian

marker l. For Eq. (2.16) to hold the scaling factor cl needs to be set to:

cl =
∆V l

∆V El
=

Alhl

∆V El
, (2.17)

One can also show that the above scheme guarantees the equivalence of total

torque between the Eulerian and Lagrangian meshes:

nte∑
k=1

xk × fk∆V
k =

ntl∑
l=1

Xl × Fk∆V
l (2.18)

For simplicity we will provide a proof in two-dimensions, but the extension to three-

dimensions is straightforward. In particular, the two-dimensional form of Eq. (2.18)

can be written as:

nte∑
k=1

(
xkfky − ykfkx

)
∆V k =

ntl∑
l=1

(
X lF l

y − Y lF l
x

)
∆V l, (2.19)

or as:

nte∑
k=1

xkfky ∆V k =
ntl∑
l=1

X lF l
y∆V

l, (2.20)

nte∑
k=1

ykfkx∆V k =
ntl∑
l=1

Y lF l
x∆V

l, (2.21)

Equation (2.19) will hold if both (2.20) and (2.21) hold. In the following we will

consider proof of Eq. (2.21), and similar arguments can be used for Eq. (2.20). For

each Lagrangian marker, Y l can be expressed in terms of the shape functions as

follows:

Y l =
ne∑
k=1

φlky
k. (2.22)

Substituting (2.22) and (2.14) into (2.21) and reordering the sums in the LHS:

ntl∑
l=1

F l
xcl

ne∑
k=1

φlky
k∆V k =

ntl∑
l=1

F l
x

ne∑
k=1

φlky
k∆V l. (2.23)
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Inspection of Eq. (2.23) confirms that the equivalence of total torque will be satisfied,

if for each Lagrangian marker, l, the following is true:

cl

ne∑
k=1

φlky
k∆V k =

ne∑
k=1

φlky
k∆V l (2.24)

Given that cl = ∆V l/
∑ne

k=1 φ
l
k∆v

k, and assuming ∆V k is constant on the Eulerian

stencil, (2.24) is trivially satisfied. In summary, the proposed transfer operators,

conserve momentum on both uniform and stretched grids. For torque to be con-

served the cell volume across the stencil should be kept constant for each marker.

This is satisfied in case of uniform grids. In other situations, the departure from

equivalence for torque will depend on the amount of stretching of the grid. Numeri-

cal experiments on two dimensional meshes showed that this difference is small (less

than 0.5%) for 10% grid stretching in each direction.

Using the forcing function from Eq. (2.14), we can now correct the intermediate

velocity ũi to respect the boundary conditions on the immersed body: u∗i = ũi+∆tfi.

The resulting approximate velocity field, u∗i , which is not divergence free, can be

projected into a divergence-free space by applying a correction of the form:

un+1
i = u∗i −∆t

∂

∂xi
(δp) , (2.25)

where δp = pn+1−pn is the pressure correction, which satisfies the following Poisson

equation:

∂2 (δp)

∂xi∂xi
=

1

∆t

∂u∗i
∂xi

. (2.26)

The velocity field, un+1
i , given by Eq. (2.25) is divergence-free and satisfies the

boundary conditions to the order of O(∆t2) [50].
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2.3.2 Calculus of surface forces

In non-boundary conforming formulations the fact that the computational grid

and the surface of the body are almost never aligned, introduces complications to

the computation of hydrodynamic forces generated by the surrounding fluid. In the

present formulation for the case of rigid bodies the distributed forcing function given

by Eq. (2.14) can be utilized to compute the total hydrodynamic force on a solid

object, provided that all interior points are properly treated (see for example [101]).

Extension of this approach, however, to the general case of moving and/or deforming

bodies is not trivial. In the present study we have developed a methodology where

the local hydrodynamic force per unit area on a surface element,

fHi = τjinj =

[
−pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
nj, (2.27)

is computed directly from the flow field around the body. In Eq. (2.27), fHi is the

hydrodynamic surface force in xi direction, τji is stress tensor, and nj is the direction

cosine of the normal unit vector in xj direction. The use of Eq. (2.27) requires

knowledge of p and ∂ui/∂xj on the body surface. In the formulation outlined above

the boundary is defined in a sharp manner, but the pressure and velocity fields are

forced to vary smoothly through the surface of the body. Consequently, the use of

the same transfer functions to estimate p and ∂ui/∂xj at the Lagrangian markers

would probably underestimate the actual traction forces. This was also verified by

a series of numerical experiments we conducted for the case of the flow around an

oscillating cylinder below.

To avoid such problems, for each Lagrangian marker, l, on the body we create
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a normal probe by locating an external point, e, at a distance, hn, from the surface

(see Fig. 2.2b). The distance hn is proportional to the local grid spacing and is

set to: hn = (hx + hy + hz) /3. To compute the surface pressure at marker, l, we

first compute the pressure, pe, at point e, using the MLS formulation described in

the previous section. The support domain in this case is centered around point e

as shown in Fig. 2.2b. Next, the value of ∂p/∂n is obtained from the momentum

equation normal to the boundary [113]:

∂p

∂n
= −Du

Dt
· n, (2.28)

where n is the normal unit vector passing through the marker l, and Du
Dt

is the

acceleration of the marker. The value of the pressure at the surface is then obtained

from:

pl = pe − ∂p

∂n
hn (2.29)

The velocity derivatives, ∂Ui/∂xj, at the location e for each Lagrangian marker,

l, are computed by differentiating equation (2.12):

∂Ui
∂xj

=
ne∑
k=1

∂φk
∂xj

ui, (2.30)

where ∂φk/∂xj comes from the solution of an additional system of equations similar

to (2.11) [57]. Given the fact that hn is of the order of the local grid size, and

assuming a linear variation of the velocity near the body, the derivatives, ∂Ui/∂xj,

coming from equation (2.30) are good approximation for the derivatives ∂ui/∂xj, at

the surface. Higher-order reconstruction procedures could also be adopted, albeit

at a higher cost. It is shown next that the above procedure reproduces, the forces
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on the surface of an immersed body very accurately when compared to boundary-

conforming methods at the same grid resolution.

2.4 Results

In this section, the author presents two test problems to demonstrate the ac-

curacy and robustness of the proposed formulation. First, the formal accuracy is

examined for the case of the flow around a cylinder submerged in a driven cavity.

Then, the flow around a cylinder oscillating in a cross flow is considered. Here, the

focus is on the accuracy of the local force distribution on the surface of the cylin-

der. Three dimensional examples including this immersed boundary formulation are

shown in the next Chapter.

2.4.1 Accuracy study

To evaluate the spatial accuracy of proposed algorithm we performed simula-

tions of the flow around a cylinder immersed in a lid-driven cavity. In Figure 2.3(a)

the geometry and a typical vorticity distribution are shown. For all cases con-

sidered the cylinder diameter was set to D = 0.4LR, and the Reynolds number,

Re = UlidLR/ν = 1000, where LR is the cavity size and Ulid the velocity of the top

boundary. The no-slip conditions on the surface of the cylinder were enforced using

the proposed MLS reconstruction.

Although an analytical solution for this problem is not available, the overall

accuracy of the scheme can be evaluated by comparing the solution among grids at
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LR

Ulid

0.4LR

(a) (b) (c)

Figure 2.3: The flow around a cylinder immersed in a lid-driven cavity. (a) Compu-

tational set-up; (b) L2 norm of the error and (c) Linf norm of the error as a function

of the cell size ∆x. (N) u velocity, (�) v velocity

different resolution. To facilitate this comparison on a staggered grid arrangement

we considered meshes with 362, 602, 1082, 1802 and 5402 nodes. With this choice

the finest one (5402) is the reference solution, and the average and maximum er-

rors on each of the coarser grids is computed without the need to interpolate. In

Figure 2.3(b), (c), the L2 and Linf norms of the error are shown as a function the

spatial resolution. Both errors decrease with a second-order slope, indicating that

the second-order spatial accuracy of the Cartesian solver maintained.
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2.4.2 Oscillating cylinder in a cross-flow

The ability of non-boundary conforming methods to properly capture the sur-

face pressure and viscous stress distribution is of paramount importance, especially

in fluid-structure interaction problems. To assess the performance of the proposed

formulation the author considered the case of a transversely oscillating cylinder in a

cross-flow. The dominant parameters are the Reynolds number Re = U∞D/ν (U∞

is the inflow velocity), the forcing frequency, fe, and amplitude, a0, of the oscillation.

When fe varies around the natural shedding frequency, f0, interesting phenomena

occur due to the complex energy transfer between the fluid and the body [43, 44].

Capturing the detailed flow physics for this problem requires an accurate re-

production of the vorticity dynamics on the surface of the body and is a stringent

test for non-boundary-conforming schemes. The parametric space we considered is

the one used in the experiments by Gu et al. [43], the boundary-conforming sim-

ulations of Guilmineau and Queutey [44], and computations by Yang and Balaras

[113], where an embedded-boundary method with a direct forcing scheme is used.

The motion of the cylinder is given by y(t) = a0sin(2πfet). We considered three

cases with Re = 185, a0 = 0.2D and fe/f0 = 1.0, 1.1, 1.2 respectively. For all cases

the computational domain was set to 50D×30D in the streamwise and cross-stream

directions respectively, with the cylinder located at 10D from the inflow boundary.

Free-slip conditions are used at the freestream boundaries and a convective condition

at the outflow boundary [74]. We considered two grids with 500×450 and 850×750

nodes, where the resulting cell size around the cylinder was ∆x = ∆y = 0.008D
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and ∆x = ∆y = 0.004D respectively. A series of tests for flow over a stationary

cylinder was first conducted to examine the sensitivity of the results to the grid

resolution. The predicted mean and root-mean-square (rms) values of the drag and

lift coefficients on the fine grid were CD = 1.377, Crms
D = 0.0296 and Crms

L = 0.461,

and the corresponding values on the coarser grid are within 1.5% of the above,

demonstrating the grid independency of the results.

(a) (b)

(c) (d)

Figure 2.4: Drag and lift coefficients as a function of time for the case of a cylinder

oscillating in a cross-flow: (a) fe/f0 = 1.0, and (b) fe/f0 = 1.2 (—CD and - - CL).

(c) Comparison of force coefficients. ◦ CD, 4 Crms
D , Crms

L are the present results

for the fine grid; —CD, - - Crms
D , -·- Crms

L from reference [44], and + CD, × Crms
D ,

� Crms
L from [113]. (d) Phase angle between lift force and vertical displacement. 4

are the present results on the fine grid; - - [44] and × [113].

31



The temporal evolution of the the lift and drag coefficients for the case of

the oscillating cylinder are shown in Figure 2.4a, b. It is evident that the pro-

posed scheme results in a smooth variation of the force coefficients without special

treatments. In Figure 2.4c a comparison of CD, Crms
D and Crms

L for the different

excitation frequencies is shown with the corresponding results in the boundary con-

forming computations in [44] and the computations by using a direct-forcing scheme

in [113]. A similar comparison for the phase angle between the lift coefficient and

transverse displacement of the cylinder is shown in Figure 2.4d. In general the

agreement is excellent. The largest discrepancy appears in CD and is of the order

of 3.5%. We should also note that the numerical resolution around the cylinder in

our computations is comparable to the one in the reference computations, where

∆x ∼ 0.005D.

An important point in the computation of the hydrodynamics forces, especially

in fluid-structure interaction problems, is the consistency of the total force and mo-

ment exchanged between the fluid and solid systems (action-reaction). Uhlmann [101],

for example, who utilizes a similar forcing scheme, proposes a force computation ap-

proach that results in equivalence of integral forces. For the case of the oscillating

cylinder we compared the force coefficients obtained by direct integration of the

local stresses resulting from the normal probe approach, to ones obtained using the

approach in [101]. The agreement is very good and the maximum difference is 2.3%

for the coarse grid (∆x = 0.008) and 1.4% for the fine one (∆x = 0.004) indicating

the consistency of our approach.

While mean force predictions is a good indicator of the overall performance
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(a) (b)

Figure 2.5: Distribution of the pressure and skin friction coefficients Cp and Cf

for the case of a cylinder oscillating in a cross-flow. The cylinder is located at the

extreme upper position. -.- present results for ∆x = 0.008D, —present results for

∆x = 0.004D, ◦ body-fitted computations in [44], - - non boundary-conforming

computations in [113]. (a) fe/f0 = 1.0, and (b) fe/f0 = 1.2.

of the method, they do not necessarily translate into an accurate representation

of the local forces. In figure 2.5 the distributions of pressure coefficient, Cp, and

the skin friction coefficient, Cf , on the cylinder’s surface are shown for the time

instance corresponding to the extreme upper position. Results for both grids are

included from our computations, and are compared with the corresponding results

by Guilmineau and Queutey [44] and Yang and Balaras [113]. The higher sensitivity

of Cf to the grid resolution results in slightly lower peak values on our coarse grid

computations. The results on finer grid agree very well with the reference data. Cp

is less sensitive to the grid resolution the results on the different grids are almost

indistinguishable.
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Chapter 3

Adaptive mesh refinement for fluid-structure interaction problems

In this Chapter, a S-AMR strategy is described for finding solutions of the

Navier-Stokes equations in laminar and turbulent incompressible flows. Based on

the ideas introduced in [20], the single-block solver presented in the previous chapter

is employed on a hierarchy of sub-grids with varying spatial resolution. Each of these

sub-grid blocks has a structured Cartesian topology, and it is part of a tree data

structure that covers the entire computational domain. One of the main features

of the present implementation is the utilization of the Paramesh toolkit [62] to

keep track of the grid hierarchy, and perform the required restriction/prolongation

and guard-cell filling operations. To compute the flow in complex geometries, the

proposed ’direct-forcing’ embedded boundary method is used.

In Section 3.1, a description of the AMR grid topology is given and the treat-

ment of the solution at block boundaries is discussed. A strategy to address issues

related to mass conservation at interfaces and grid adaptation is also proposed.

In Section 3.1.5 an overview of the fluid-structure interaction scheme employed is

provided. In Section 3.2, the following examples are discussed to demonstrate the

accuracy and robustness of the proposed formulation: i) the Taylor-Green vortex, ii)

three-dimensional vortex ring impinging on a wall at Re 570, iii) FSI of two dimen-

sional falling plates, and iv) FSI of a sphere bouncing against a wall at Re = 830.
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Figure 3.1: (a) Example grid hierarchy and nested sub-blocks. Three refinement

levels, Ω0, Ω1, and Ω2 have been used. (b) Staggered grid arrangement in cells

adjacent to a coarse-fine interface: pressure is located at the center and velocities

at the face. The velocity component u3 in the x3 direction is not shown for clarity.

3.1 Adaptive mesh refinement

3.1.1 Grid topology

The computational grid consists of a number of nested grid blocks with nx×

ny × nz computational cells at different refinement levels, Ωl, l = 0, 1, ..., lmax. The

coarsest grid blocks at level Ω0 always cover the entire computational domain, and

local refinement is achieved by the bisection of selected blocks in every coordinate

direction. In this process an arbitrary block, b, at level l, for example, will be the

origin of eight children blocks at level l + 1 that occupy the same volume as their
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parent block. We call leaf blocks the blocks at the highest level of refinement present

on a particular region of the domain (blocks that have not been refined, and therefore

have no children). Any leaf block at level l shares a common boundary with leaf

blocks whose refinement level may differ from l by at most one level. An example

is shown in Fig. 3.1a, where an S-shaped domain is discretized with an AMR grid.

Level Ω0 covers the entire domain and consists of 6 blocks (gray). The grid is locally

refined near the center of the domain by adding two levels of refinement, Ω1 (orange)

and Ω2 (yellow). As a result the cell size in the ith direction for a block at the finest

level, l = 2, is only a quarter of the one at l = 0: ∆x2
i = ∆x0

i /4, where i = 1, 2, 3.

Note that given the above constraints, ∆xli for computational cells on adjacent leaf

blocks at different refinement levels will differ by a factor of two. The resulting grid

structure is managed using the octree data-structure in the Paramesh toolkit [62],

which enables a robust implementation and straightforward parallelization of the

proposed algorithm.

A staggered variable arrangement is used in each grid block as shown in

Fig. 3.1b, where the velocity component in the x3 direction has been omitted for

clarity. As we did in the previous Chapter we drop the overbar indicating filtered

variables, and denote the pressure and velocities for block b at level l as pbljkm and

ubli,jkm, i = 1, 2, 3 respectively. jkm are indices that identify a grid cell within block

b, and i refers to the orientation of the velocity component. Other variables such

as the turbulent viscosity, νt, can be similarly defined. We will also denote P (b)

as the parent block of block b, and C(b, i) as the ith child block of block b, where

i = 1, ..., 2d and d is the number of dimensions of the problem.
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3.1.2 Prolongation and restriction operators

Let us now define the prolongation and restriction operators that are needed

to transfer variables between parent and children blocks. The general form of a

restriction operation of a variable φ from block C(b, i) at level l + 1 to the parent,

P (b), at level l is given by:

(Rφ)
P (b),l
ijk =

el∑
p,q,r=il

α′pqrφ
b,l+1
i′+p,j′+q,k′+r, (3.1)

where, ijk are the indexes of a cell on P (b) containing the restricted variable and

i′j′k′ are the indexes of a cell in b. The limits il and el define the interpolation

stencil, where the stencil size and interpolation coefficients, α′pqr, depend on the

interpolation scheme used. The prolongation of a variable from block P (b) to b, on

the other hand, is given by:

(Iφ)b,l+1
i′j′k′ =

el∑
p,q,r=il

αpqrφ
P (b),l
i+p,j+q,k+r, (3.2)

On a staggered grid, prolongation and restriction operators are defined separately for

the flow variables collocated at the cell centers (pbljkm, νt
bl
jkm, etc.) and the cell faces

(ubli,jkm). For the former we use a dimension-by-dimension interpolation strategy that

utilizes second-order Lagrange polynomials to perform one-dimensional sweeps over

a three-dimensional stencil. In these cases the weight factors, αpqr and α′pqr, in Eqs.

(3.1) and (3.2) are products of the corresponding coefficients in the one-dimensional

Lagrange polynomials. For the face-centered components we exploit the fact that

they are co-planar, and the above strategy is employed in two-dimensions. Example

restriction operations in a two-dimensional staggered grid are shown in Fig. 3.2a.
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Figure 3.2: (a) Interpolation stencil utilized by two-dimensional prolongation op-

erators. It contains nine points for cell-centered variables such as, plij, and three

points for variables located at the cell faces, such as ulij and vlij.; (b) Variable ar-

rangement for the construction of divergence-preserving prolongation operators in

two-dimensions.

The pressure, plij, located at cell-center, ij, of the parent block, is interpolated from

pressures on a 3 × 3 stencil from the corresponding children blocks. The velocities

ulij and vlij, however, are found using the one-dimensional stencils (two-dimensional

in three dimensions) shown in the figure. Note that in Fig. 3.2 the superscript

indicating the block has been dropped for simplicity and the parent and children

blocks are identified by their level superscripts, l and l + 1 respectively.

The operators given by Eqs. (3.1) and (3.2) satisfy the accuracy requirements
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but do not guarantee the divergence-free evolution of the velocity field through

the AMR grid. In the present implementation this property is particularly desirable

whenever prolongations and restrictions are performed as part of the local grid adap-

tivity (local refinement and de-refinement) from timestep to timestep. Divergence-

free restriction operators can be constructed in a fairly straightforward manner. In

our staggered grid arrangement, for example, using face-averaging for all the velocity

components preserves the divergence of the velocity vector. Divergence-preserving

prolongation of a vector field, on the other hand is not straightforward. Martin et

al. [64], in their AMR implementation for the Navier-Stokes equations for incom-

pressible flow, use a divergence cleaning methodology employing an extra Poisson

solution. Balsara [12] in the framework of his MHD solver, proposed a divergence-

free prolongation reconstruction applicable to AMR meshes with any refinement

ratio, utilizing linear and quadratic polynomials. In the present work we have de-

veloped divergence-preserving prolongation operators tailored to the specific AMR

topology, where the grid size between consecutive refinement levels can only differ

by a factor of two. We will describe the proposed scheme in two-dimensions for the

configuration shown in Fig. 3.2b. Let us define the discrete divergence, D, at an

arbitrary cell ij of the parent block as:

Du =
uli,j − uli−1,j

∆l
x

+
vli,j − vli,j−1

∆l
y

, (3.3)

where ∆l
x and ∆l

y is the grid spacing on the parent block in the x and y directions

respectively. The above is also the target divergence for the reconstructed velocity

field on the corresponding children blocks. We will first determine the eight velocity
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components, ul+1
i′−2,j′ , u

l+1
i′−2,j′+1, ul+1

i′,j′ , u
l+1
i′,j′+1, vl+1

i′−1,j′−1, vl+1
i′,j′−1, vl+1

i′−1,j′+1, vl+1
i′,j′+1, which

are located at the faces of the parent block as shown in Fig. 3.2b. This is done using

one-dimensional, quadratic, mass-flux preserving interpolations on each face. For

example, on the right face of the coarse cell one can assume that the velocity can

be approximated as, u(y) = a0 + a1y + a2y
2. Then, utilizing the the known values,

uli,j−1, uli,j and uli,j+1 on that face, together with the discrete mass-flux conservation

constraint, uli,j = 0.5(ul+1
i′,j′+u

l+1
i′,j′+1), the following algebraic system can be assembled:

uli,j−1 = a0 + a1

∆l
y

2
+ a2

(
∆l
y

2

)2

uli,j =
1

2
(ul+1

i′,j′ + ul+1
i′,j′+1) = a0 + a1

3∆l
y

2
+ a2
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(
∆l
y

)2
(3.4)

uli,j+1 = a0 + a1

5∆l
y

2
+ a2

(
5∆l

y

2

)2

The solution of (3.4) yields the coefficients α0, α1, α2, and the unknown velocities

at the midpoints of the face can the be found in a straightforward manner. For

example, ul+1
i′,j′ = a0 + 5a1∆y/4 + a2(5∆y/4)2. Note that the system (3.4) can be

written in matrix form, and the inverse of the resulting 3 × 3 Vandermode matrix

can be found analytically. The same approach is used on all faces of the parent cell.

Next, the remaining four interior velocities, ul+1
i′−1,j′ , u

l+1
i′−1,j′+1, vl+1

i′−1,j′ and vl+1
i′,j′ ,

shown in Fig. 3.2b are determined. For each of the children blocks one can write the

discrete divergence equations and set it equal to to that from (3.3). For example,

for the block (i′ − 1, j′ + 1) in Fig. 3.2b:

ul+1
i′−1,j′ − u

l+1
i′−2,j′

∆l+1
x

+
vl+1
i′−1,j′ − v

l+1
i′−1,j′−1

∆l+1
y

= Du, (3.5)

where ∆l+1
x and ∆l+1

y is the grid spacing on the children block in the x and y
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directions respectively. Using similar expressions for all four blocks we can assemble

a system of four equations with four unknowns. It is of the form, Aum = b, where

A the 4 × 4 matrix and um, b the unknowns and source vectors respectively. A,

however, is a matrix of rank three and cannot be inverted. To address this issue we

will consider an additional independent equation, i.e. express ul+1
i′−1,j′ (or any of the

internal velocities) using quadratic interpolation:

ul+1
i′−1,j′ = −1

8
ul+1
i′−4,j′ +

3

4
ul+1
i′−2,j′ +

3

8
ul+1
i′,j′ (3.6)

The resulting system of equations can be written as:

1 0 δ 0

−1 0 0 δ

0 −1 0 −δ

0 1 −δ 0

1 0 0 0





ul+1
i′−1,j′

ul+1
i′−1,j′+1

vl+1
i′−1,j′

vl+1
i′,j′


=



β + ul+1
i′−2,j′ + δvl+1

i′−1,j′−1

β + δvl+1
i′,j′−1 − u

l+1
i′,j′

β − ul+1
i′,j′+1 + δvl+1

i′,j′+1

β + ul+1
i′−2,j′+1 − δv

l+1
i′−1,j′+1

(−ul+1
i′−4,j′ + 6ul+1

i′−2,j′ + 3ul+1
i′,j′)/8


(3.7)

where δ = ∆l+1
x /∆l+1

y , β = ∆l+1
x Du. This is now an extended system of five equa-

tions and four unknowns which can be written as: um = (Ae
TAe)−1Ae

Tbe. The

product (Ae
TAe)−1Ae

T is the 4× 5 left-pseudo-inverse of the system, which can be

found analytically. The addition of Eq. (3.6) changes the rank of the system and

the above best fit solution is actually the only solution to the system. There are

significant differences between the method above presented and Balsaras scheme [12]

when a factor of 2 is used in his reconstruction. Balsaras method starts by defining

a piecewise-linear profile for the divergenceless vector field across each face of the

rectangular region (the coarse cell in our case). The slopes on this profile are defined
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via the minmod slope-limiter. In our case we define a parabolic velocity profile that

maintains the mass flux across the face and is defined using neighboring coarse grid

velocities. The Balsara method makes use of complete multidimensional quadratic

polynomials inside the region, with constraints such that, the continuous divergence

at each location in the region is zero. With these, the values of the vector field are

interpolated at the internal fine-grid locations. In our case once the coarse faces

fine-grid velocities are interpolated, they are used to define one (or more in three

dimensions) internal fine grid velocity, by linear or quadratic one dimensional inter-

polation. The remaining internal fine grid velocities are obtained using the discrete

divergence equations for each fine-grid cell. In our scheme the 2nd order accuracy

is maintained mainly be the mass-flux conserving quadratic interpolation done on

the coarse cell faces. The extension of the above procedure to three-dimensions is

straightforward, and the detailed equations are given in Appendix A.

3.1.3 Treatment of the block boundaries

To facilitate the discretization of the equations of motion at block boundaries,

overlapping between neighboring blocks is created by means of two layers of ghost

cells. A two-dimensional configuration for neighboring blocks at refinement levels l

and l + 1 is shown in Fig. 3.3. To assign values to the ghost cells on the grid-block

at level l: i) the solution at level l+ 1 is restricted to its parent grid, which has the

same level of refinement as the adjacent coarse block, using Eq. (3.1); ii) filling of

the ghost cells is done by simple ‘injection’ of the corresponding variable from the
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Figure 3.3: Ghost cell configuration at the interface between blocks at levels l and

l+1. Filled symbols denote the centers of interior cells and open symbols the centers

of the ghost cells. The grid nodes surrounded by the green dotted lines are the ones

on the interpolation stencil for the ghost cells identified by a green circle.

parent grid. To assign values at ghost cells on the grid-block at level l+ 1 a similar

procedure is used, which utilizes the prolongation operator given by Eq. (3.2). In

Fig. 3.3 the grid nodes in the interpolation stencil are shown for both cases.

3.1.4 Temporal integration scheme

A standard, second-order, fractional-step method is utilized for the temporal

integration of the governing equations [49]. On each leaf block at level l = 0, ..., lmax
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the predicted velocity, ũli, can be written as:

ũli = ul,ni +
∆t

2

(
3H(ul,ni )−H(ul,n−1

i )
)
−∆t

∂pl,n

∂xi
+ ∆tf

n+1/2
i , (3.8)

where H is a discrete operator containing the convective, viscous and SGS terms,

the superscript, n, refers to the time level, and ∆t is the timestep, which is the same

on all refinement levels, l. All spatial derivatives are approximated using second-

order central differences on a staggered grid. The predicted velocity field, ũli, which

is not divergence free, can be projected into a divergence-free space by applying a

correction of the form:

ul,n+1
i = ũli −∆t

∂

∂xi

(
δpl
)
, (3.9)

where δpl = pl,n+1 − pl,n is the pressure correction, which satisfies the following

Poisson equation:

∂2
(
δpl
)

∂xi∂xi
=

1

∆t

∂ũli
∂xi

. (3.10)
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The solution of the Poisson equation, (3.10), is done using the multigrid al-

gorithm developed by Martin and Cartwright [63]. This method has been designed

for block-structured adaptive grids and maintains second order spatial accuracy,

imposing continuity of δpl and its derivatives across interface jumps. It uses a

residual-correction formulation and employs red-black Gauss Seidel (RBGS) point

relaxation at each level. In our implementation, in order to increase the performance

of the solver, we exploit the uniformity of the mesh at the coarsest level of the V-

cycle, lsolve, which covers the entire computational domain. In particular, the author

utilizes a direct solver, rather than RBGS iterations, to solve the residual-correction

equation at that level. The only drawback of this strategy is that the computational

domain has to be rectangular since the direct solver utilizes FFT or Cosine trans-

forms, depending on the boundary conditions. This strategy was found to reduce

the number of levels on a V-Cycle and relaxation-communication operations, while

maintaining the convergence rate of the multigrid scheme.

An important issue with the application of projection schemes to S-AMR grids

is related to conservation of mass at coarse-fine block interfaces. In Fig. 3.4 a two-

dimensional example of the interface between cells at levels l and l + 1 is shown.

The velocity component, ulij, normal to the interface at the coarse level l, as well

as the corresponding velocity components, ul+1
i′j′ and ul+1

i′j′+1, at fine level l + 1, are

unknowns to be determined during the solution process. They need, however, to

satisfy an additional constraint coming form the conservation of the mass flux across

the interface:

ulij∆y
l = ul+1

i′j′ ∆y
l+1 + ul+1

i′j′+1∆yl+1, (3.11)
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where ∆yl is the grid spacing at level l and ∆yl+1=∆yl/2, is the grid spacing at

level l + 1. In general, Eq. (3.11) will not hold after the computation of the veloc-

ities normal to the refinement jump, resulting to a flux mismatch localized in grid

refinement interfaces. To alleviate this problem one can assume that the velocity

components on the fine grid at level, l+1, are more accurate than the corresponding

coarse grid component, ulij, which can then be corrected to satisfy Eq. (3.11) (see for

example [19], [2]). In the present formulation the flux correction is realized in the

following manner: i) the intermediate velocities at the fine level, ũl+1
i′j′ are computed

from Eq. (3.8); ii) the intermediate velocity on the coarse level, ũlij, is then corrected

using Eq. (3.11); and iii) during the iterative solution of the Poisson equation (3.10)

the gradient of δp normal to the refinement interface at the ulij location is forced to

satisfy the following equation:

∆(δpl)

∆x

∣∣∣∣
ij

∆yl =
∆(δpl+1)

∆x

∣∣∣∣
i′j′

∆yl+1 +
∆(δpl+1)

∆x

∣∣∣∣
i′j′+1

∆yl+1 (3.12)

iv) it is now trivial to show that the corrected velocity from Eq. (3.9) will also

conserve the mass flux across the interface.

3.1.5 Fluid-structure interaction algorithm

A fundamental complication with two-way, fluid-structure interaction (FSI)

problems, is that the prediction of the flow and the corresponding hydrodynamic

loads requires knowledge of the motion of the structure and vice-versa. In the present

study a strong-coupling scheme is adopted, where the fluid and the structure are

treated as elements of a single dynamical system, and all of the governing equations
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are integrated simultaneously and iteratively in the time domain. The method is

based on Hamming’s 4th-order, predictor-corrector formulation, which avoids the

evaluation of the hydrodynamic loads at fractional time steps. The details of the

overall approach and a demonstration of the accuracy and efficiency for a variety

of fluid-structure interaction problems in viscous incompressible flows can be found

in [114]. In Fig. 3.5, a flowchart of the overall algorithm as adapted to our AMR

implementation is shown:

i) At the beginning of each timestep, and only for the case of LES, the SGS

eddy viscosity by means of a LES model. LES will be discussed in next Chapter.

ii) Compute the provisional velocity, ûli, which does not satisfy boundary con-

ditions on the immersed boundary, and is not divergence free. Assign values for ûli

to the ghost cells as described in Section 3.1.3.

iii) Perform AMR if necessary (every n steps). In particular, all leaf-blocks are

examined and flagged for refinement or derefinement, according to specified criteria.

For example, in all FSI cases reported below, a leaf-block is selected for refinement

when it contains an immersed body, or when the vorticity magnitude is larger than

a predetermined threshold. A leaf-block is marked for derefinement, on the other

hand, when an immersed body is not present within the block, and the vorticity is

below a threshold. Other criteria, such as velocity error norms, SGS dissipation etc.,

could also be used for this purpose. In the case of refinement, the newly created

children blocks are added to the octree. All variables other than ûli and the discrete

operator H(ul,n−1
i ) in (3.8), are interpolated using Eq. (3.2). For ûli and H(ul,n−1

i ),

the divergence preserving prolongation procedure discussed in Section 3.1.2 is used.
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Figure 3.5: Summary of fluid-structure interaction strategy.

In this manner, the intermediate velocities for the time-step following the

remeshing step maintain the required divergence level. For each leaf-block flagged for
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derefinement, we first check if its parent block contains children that are all flagged

for derefinement. In such case a restriction step is performed and the corresponding

leaf-blocks are removed from the octree. Quadratic restriction using Eq. (3.1) is

utilized for all variables except ûli and H(ul,n−1
i ), where linear restriction is used.

The latter is a divergence preserving operation.

iv) In the case of FSI a set of predictor-corrector sub-iterations is appied,

as shown in the figure. Convergence is assumed when the L2 error on structures

generalized coordinates and velocities is less than a certain tolerance. In all FSI

computations of the present study, the tolerance is set to 10−8.

3.2 Numerical studies

In this section, a series of test problems with increasing complexity are studied

to evaluate the accuracy and robustness of the proposed AMR formulation. Initially

the spatial and temporal accuracy of the method is demonstrated for the Taylor-

Green vortex problem. Then, the case of a three-dimensional vortex ring impinging

on a wall is considered. Finally two cases, where the accuracy and efficiency of the

method in the presence of immersed bodies is examined, are presented: the FSI

problem of two falling plates, and sphere bouncing against a wall at Re = 830.

3.2.1 Taylor-Green vortex

To investigate the numerical accuracy of the method the Taylor-Green vortex

problem is considered. The flow-field is represented by an array of periodic counter-
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Figure 3.6: AMR grid configuration with two refinement levels for the case of the

Taylor-Green vortex. Pressure isolines ranging from p = −0.4 to 0.4 at t = 0.03 are

also shown.

rotating vortices that decay in time, and has an analytical solution of the form:

ua = −e−2νt cosx sin y, (3.13)

va = e−2νt sinx cos y, (3.14)

pa = −e
−4νt

4
(cos 2x+ cos 2y) , (3.15)

where ua and va are the velocity components in the x and y directions respectively,

pa is the pressure, ν is the kinematic viscosity, and t is the time. The size of our

computational domain was 2π × 2π, requiring the use of a mix of homogeneous

Dirichlet and Neumann boundary conditions for the velocity components. Grids

with two levels of refinement, as well as uniform ones are considered. In the latter

case 322, 642, 1282 and 2562 grid points are used and the ghost-cell filling is per-
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formed by simple injection of the data between blocks sharing a common boundary.

In the former case the base grids utilize 162, 322, 642 and 1282 computational points

on their coarse levels, and the refinement is performed in the second and fourth

quadrants of the domain (see Fig. 3.6). To investigate the impact of the ghost-cell

filling scheme on the overall accuracy of the method both linear and quadratic inter-

polation schemes are considered. In all cases the equations of motion are integrated

for a total of T = 0.03 time units using a timestep of ∆t = 5.0×10−5. The L2 norm

of the residual for the Poisson solution was kept in the order of 10−14.

In Fig. 3.6, pressure isolines at t = 0.03 are shown for the AMR grid with

two levels of refinement (level 0 being 322). It is evident that the main features of

the flow are captured. In Figs. 3.7(a) and (c) the Linf error norm for both velocity

components at t = 0.03, is shown for all cases as a function of the grid size, ∆. Note

that in all the two-level calculations, ∆, is computed from the highest refinement

level. As expected, in all uniform grid cases second-order accuracy is observed. In

the case of AMR the use of linear interpolation for the ghost-cell filling reduces the

spatial accuracy, which is now closer to first order. The higher order interpolation

scheme described in section 3.1.3, on the other hand, maintains the second order for

both velocity components. It is seen that the maximum error incurred by applying

quadratic interpolation in the fine grid region of the two-level calculations is of

the order of what is obtained for the coarse grid uniform calculation. This is due

to contamination of fine grid with coarse-grid error levels and also the inaccuracy

derived from the quadratic guard-cell filling itself.
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Figure 3.7: Accuracy study on Taylor-Green vortex problem: 1st and 2nd order slopes

are added for clarity. (a) & (c) ||u−ua||∞ and ||v−va||∞ respectively as a function of

grid spacing at t = 0.03. + uniform grid; 4 AMR grid, linear interpolation; AMR

grid, quadratic interpolation. (b) & (d) ||u − ua||∞ and ||p − pa||∞ as a function

of the grid spacing at t = 0.3 for the case with dynamic refinement/derefinement

performed every 10 timesteps; + linear prolongation; 4 quadratic prolongation;

divergence-preserving prolongation.
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In all the above computations, the grid is locally refined, but does not evolve

with time, as required in most moving boundary problems. To examine the effects

of the dynamic adaptation of the grid on the accuracy of the solver, the author also

utilizes the Taylor-Green vortex problem with the same setup as above. In this case,

however, starting from a single level grid we refine every 10 iterations by adding one

refinement level (Fig. 3.6), and then derefine every 10 iterations. Refinement, for

example, is performed at iteration count n = 10, 30, 50, .., 90, and derefinement at

n = 20, 40, .., 80. At iteration number 100 the solution is compared to the analytical

one, and error norms for the velocity and pressure fields are computed.

An important part of the dynamic grid adaptation is the prolongation of the

solution at the newly generated children blocks in refinement areas, and/or the re-

striction of the solution from eliminated leaf-blocks to its parent, in derefinement

areas. As we discussed in section 3.1.5, AMR is performed after the computation of

the provisional velocity, ûli. One can show that ûli is within O(∆t2) of a divergence-

free field (see for example [49]) and, therefore, its prolongation/restriction after a

grid adaptation step should maintain this property, so the overall temporal accu-

racy is not affected. As we already discussed in Section 3.1.2, not all prolonga-

tion/restriction operators are divergence preserving.

To illuminate their effects on the accuracy of the solution we conducted compu-

tations with three different prolongation operators for the velocity field: linear and

quadratic, which do not preserve the divergence of ûli, and the quadratic divergence-

preserving operator discussed in section 3.1.2. In Figs. 3.7(b) and (d) the Linf error

norms for the velocities and pressure are shown as a function of the grid size for all
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cases. It is evident that the spatial accuracy is not affected by the choice of prolon-

gation operator, and in all cases second order accuracy maintained. As expected,

the error using linear prolongation is about an order of magnitude higher than using

the quadratic interpolation variants.
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Figure 3.8: Accuracy study on the Taylor-Green vortex problem: (a) & (b) Variation

of ||u − ua||∞, and ||p − pa||∞ respectively as a function of time for the case with

dynamic refinement/derefinement performed every 10 timesteps;. (black) linear

prolongation; (red) quadratic prolongation; (blue) divergence-preserving

prolongation.

The evolution of the error norms with respect to time, on the other hand, re-

veals some very interesting patterns, as seen in Figs. 3.8(a) and (b). The prolonga-

tion operators, which do not preserve the divergence of ûli, result in a monotonically

increasing error for both velocity components, while for the divergence-preserving

prolongation operator the error is always O(10−4). These effects are more profound
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in the behavior of the pressure, where the linear and quadratic prolongations result

in an error jump of at least three orders of magnitude just after each refinement

step, compared to the divergence preserving scheme. The pressure recovers in a

few timesteps, but overall the error grows over time. In the case of fluid-structure

interaction problems these pressure oscillations can introduce spurious loading on

the structure leading to large errors on the solution. For the divergence-preserving

scheme the error jump is very small, indicating that the spurious oscillations are

practically eliminated. It is important to note that, the choice of other projection

scheme variants, where the pressure is not treated incrementally, or making use of

high-resolution approximate projections [3] might have a beneficial effect in damp-

ing the observed pressure oscillations and numerical errors due to non-divergence

preserving interpolations.

3.2.2 Vortex ring impinging on a wall

To demonstrate the ability of the proposed AMR formulation to accurately

represent vorticity dynamics, the simple yet very challenging problem of a vortex ring

impinging on a wall, is considered. Due to the importance of wall-vortex interactions

in many technological applications there is variety of reference data in the literature

[104, 28, 73, 96]. In the present work, the author will consider a setup analogous to

the one reported in [96], where a vortex ring is generated in the center of the x− y

plane, and at a distance zo = 1.5Do from the wall as shown in Fig. 3.9. The vortex
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Figure 3.9: Computational setup for the vortex ring impinging on a wall

ring was generated by introducing an impulsive body force of the form:

fz(r, z, t) = −AoT (t)F (z)H(r), where

T (t) = 0.5[1 + tanhα(τ − t′)] ,

F (z) = 0.5[1 + tanh β(Bz − z′)] , (3.16)

H(r) = 0.5[1 + tanh γ(Cr − r)]

Note that t′ = |t − to| and z′ = |z − zo|. Setting Ao = 350, α = 500, to = 0.05,

τ = 0.04, β = 100, Bz = 0.1, γ = 100 and Cr = 0.5, the resulting vortex ring

had Re = UoDo/ν = 570, where Uo and Do are its initial diameter and self-induced

translation velocity and ν is the kinematic viscosity of the fluid. This is lower than

the value of Reo = 645, reported in [96]. A closer match of the initial conditions was

not possible due to the fact that some of their forcing parameters were not listed.

The AMR grid was adaptively refined in areas of high velocity gradients. Five

levels of refinement were used and the total number of points was of the order of

2 × 106. The grid adaptation was done every 10 timesteps using the modulus of
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the vorticity field, |ω|, as a test variable. The grid was refined in leaf blocks where

|ω| > 5.5Uo/Lo anywhere within the block, and derefined if |ω| < 4.0Uo/Lo. Periodic

boundary conditions are applied in the x and y directions, and non slip at the top

and bottom walls in the z direction (see Fig. 3.9). The AMR solution is compared

to a computation of exactly the same problem using a single-block, finite-difference

solver [9]. The single-block grid in the latter case utilizes 256× 256× 128 grid cells,

and is uniform in the x and y directions, while it is stretched in the wall-normal

direction, z. The resulting cell size in the near wall area was comparable to the one

at the highest refinement level in the AMR computation.

In Fig. 3.10, vorticity contours are shown for both the single-block and AMR

calculations. The vorticity normal to the y−z plane is shown at four different times

during the calculation. In the AMR case the block boundaries are also shown in

the figure. The similarity between the two computations is striking. As the primary

vortex approaches the wall there is an increase of its radius, which is accompanied

by a noticeable decrease in the core size (i.e. Figs. 3.10a-c). The boundary layer

generated underneath the primary vortex thickens due to the adverse pressure gra-

dient in the radial direction (Fig. 3.10b-f), and eventually the accumulated vorticity

pinches off forming a secondary vortex (Fig. 3.10c-g).
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Figure 3.10: Vorticity isolines at an y − z plane for the case of the vortex ring

impinging to a wall. Forty five ωxRo/Uo contours from −50 to 50 are used. Left

side is from the single-block calculation,and the right side from the AMR. (a),(e)

t = 1.3; (b),(f) t = 1.5; (c),(g) t = 2.1; (d), (h) t = 2.5.
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(i)
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(iii)

(a) (b) (c)

Figure 3.11: Isosurfaces of Q for the case of a vortex impinging to a wall at three

different times. The AMR block distribution is shown at an y − z plane. (a)

t = 2.0; (b) t = 2.7; (c) t = 4.4. (i), (ii), and (iii) indicate the primary, secondary

and tertiary vortices.

A three-dimensional view of primary and secondary vortex structures can be

seen in Figure 3.11, where isosurfaces of the second invariant of the velocity gradient

tensor, Q = −1/2(∂ui/∂xj∂uj/∂xi), are plotted. The secondary vortex orbits the

primary vortex (Fig. 3.11a), and later undergoes a ’buckling’ instability as it is

compressed by the primary vortex (Fig. 3.11b). The secondary vortex breaks into

smaller structures that are advected under the primary vortex and affect the vorticity

generation near the wall. This results in small slender structures dominated by radial

vorticity (see Fig. 3.11c). At the same time a third vortex pinches-off and also starts

orbiting the primary one. This structure at this Reo is fairly stable, and stays in

the proximity of the primary vortex for the rest of the calculation (Fig. 3.11c).

In Figure 3.12 the trajectories of the primary and secondary vortex centers

are shown for both computations. The numerical results from Swearingen et al. [96]
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Figure 3.12: Trajectories of the centers of the primary and secondary vortices at

Reo = 570. Symbols are from the uniform grid and lines from the AMR grid

computation. • primary vortex; ◦ secondary vortex; green line is the trajectory of

the primary vortex from [96] at Reo = 645.

for a similar setup at Reo = 645 are also included for comparison. The agreement

between the single-block and AMR calculations is excellent and the trajectories

of both vortices are identical indicating that the proposed AMR strategy properly

captures the vorticity dynamics. The agreement with the results reported in [96] is

also good. Small discrepancies near the wall are primarily due to the ambiguity in

the definition of the vortex center as well as the differences in the initial conditions.
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3.2.3 Fluid-Structure interaction of two falling plates

To test the accuracy of the approach in fluid-structure interaction problems

the case of two falling plates is considered (see Fig. 3.13). In this case, Eq. (2.3)

governing the dynamics of each plate can be reduced to the following form:

[I](3×3) [0](3×3)

m 0 0

[0](3×3) 0 m 0

0 0 Io





q̇1 (3×1)

q̇2 (3×1)


=



q2 (3×1)

fx(q1,q2)

fy(q1,q2)−mg

Mo(q1,q2)


, (3.17)

with q1 = [x(t) y(t) θ(t)]
T and q2 = q̇1. x(t), y(t) are the coordinates of the center of

mass of the plate in the x and y directions respectively, and θ(t) its orientation angle

(see Fig. 3.13a). fx, fy, are the corresponding hydrodynamics forces acting on the

plate, and Mo, is their moment with respect to the center of mass. Eq. (3.17) has

been made dimensionless using the chord length, c, the mean descent velocity of plate

2, UR, and the fluid density, ρf , as reference variables. The thickness of each plate

is 10% of the chord length, and their density is, ρB = 5.1ρf . Also g = 3.0, m = 0.5,

and Io = 4.2 × 10−2. The resulting Reynolds number is Re = URc/ν = 200. The

computational domain together with the initial conditions are shown in Fig. 3.13b.

Both plates are initially at rest. To evaluate the accuracy of the proposed AMR

scheme two separate simulations are considered. First, a single level calculation

using a uniform grid of 1024 × 1280 nodes with spacing ∆x = ∆y = 0.0078LR is

conducted. Then, an AMR computation with four levels of refinement is carried out.

Mesh adaptivity in this case was guided by two criteria: i) the presence or not of a
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Figure 3.13: (a) Variables describing two-dimensional rigid body motion for the

falling plates. (b) Domain, boundary and initial conditions for the two falling plates

problem.

rigid body in a grid block. ii) the vorticity modulus, |ω|, as in the example given in

the previous section. As a result the highest refinement level always surrounds the

plates, as well as the areas of high velocity gradients in their wake. Note that grid

cell size at the highest refinement level is the same as the one used in the uniform

grid calculation. Both computations were advanced in time for 22× 103 steps, with

∆t = 2.0× 10−3.

The trajectories of the centers of mass for both bodies as a function of time,

and phase diagrams of positions and velocities for the horizontal and vertical degrees-

of-freedom are shown in Figs. 3.14a,b respectively. The agreement with the single

block computation is excellent demonstrating the fidelity of the proposed AMR

62



−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

x(t)

y (t
) −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1

−0.5

0

0.5

1

1.5

2

2.5

x(t)

x (t
)

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(t)

x (t
)

.

.

(a) (b)

Figure 3.14: (a) Position of center of mass for each plate as a function of time. (b)

Phase diagrams for x(t). Symbols are from the AMR computation and lines from

the uniform grid computation. • plate 1; + plate 2. Also, resulting trajectories and

phase diagrams for plate 2 with coarser resolution uniform grids are plotted: (- -)

512× 640 grid, (-.-) 256× 320 grid.

formulation. The trajectories and phase diagram obtained for plate 2 with two

uniform grids of coarser resolution than the one obtained with 4 refinement levels

are also plotted for comparison. Grid convergence of the solution is observed as

the uniform-grid resolution is increased. We see here the effectiveness of the AMR

formulation in representing the uniform, fine grid solution, which is not achievable
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using coarser uniform meshes.

A frame-by-frame comparison of the vorticity field in the two computations is

also shown in Fig. 3.15 with very good agreement as well. It should be mentioned

that the proposed FSI treatment has been tested on a single grid-block setting by

Yang et al. [114], on different incompressible flow problems, and found second order

accurate in space and time. It is interesting to note the transition from steady

fluttering fall to tumbling for plate 2 (see Fig. 3.15d,f). Tumbling motion has been

observed by Andersen et al. [4] for a single falling plate under similar flow conditions,

and usually occurs for Re > 100 and Io > 3× 10−2 [18]. For plate 1 transition from

a fluttering fall to tumbling is limited by the wake of plate 2.

3.2.4 Three dimensional example: Sphere-wall collision

To investigate the robustness and accuracy of the proposed method in three

dimensional configurations we performed computations of a rigid sphere bouncing

off a wall. Problems involving collisions between immersed bodies are particularly

challenging for direct-forcing schemes, since the presence of two or more Lagrangian

markers from different bodies in the proximity of the same Eulerian grid cell is

usually the source of ambiguity. The proposed forcing scheme treats such situations

in a robust manner without the need for special treatments.

The particular configuration we selected has applications to particulate flows,

and a number of experimental (i.e. [31], [48]) and numerical (i.e. [6]) results are

available in the literature for comparison. The dominant parameter in the collision
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Figure 3.15: Comparison between uniform (left side) and AMR (right side) grid

computations for the case of the falling plates. Vorticity isolines are shown at (a) &

(d) t = 4.6; (b) & (e) t = 5.2; (c) & (f) t = 5.8.
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process is the Stokes number, St = 1/9(ρb/ρf )Re, where ρb and ρf are the particle

and fluid densities respectively, and Re is the Reynolds number based on the particle

diameter, D, and the translational velocity, Uf , an instant before impact. For low

values of the Stokes number (St < 10) no rebound will occur, even if the dry

restitution coefficient, edry, is different from zero. For St > 10 rebound occurs, and

the total restitution coefficient, eT , is lower than edry. For large values of the Stokes

number (St > 500) the total restitution coefficient, eT , approaches edry. If edry = 0,

then the Reynolds number is the only dominant parameter.

Below we will present results from two different configurations: i) a case where

no rebound occurs, which resembles the conditions in the experiments by Eames and

Dalziel [31]; ii) a case where rebound is allowed, which resembles the conditions in

the axisymmetric Navier-Stokes computations by Ardekani et. al [6]. In figure 3.16a

a sketch of the computational domain is shown. Both the sphere and the wall are

immersed into a locally refined Cartesian mesh [11], and are represented by an

unstructured Lagrangian grid with 2.7× 105 and 2.9× 105 markers respectively (see

figure 3.16b). The Eulerian grid is arranged in a way that the resolution around the

sphere is ∆x = 0.01D. In both cases the horizontal displacements and rotations are

constrained and the vertical displacement, zs(t), is governed by:

msz̈s(t) = −msg + fz(zs, żs, t), (3.18)

wherems is the mass of the sphere, g is the acceleration of gravity and fz is the hydro-

dynamic force on the sphere in the vertical direction. The Navier-Stokes equations

governing the dynamics of the fluid, and equation (3.18) governing the dynamics
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Figure 3.16: Sphere-wall interaction problem. (a) computational setup; (b) La-

grangian and Eulerian grids.

of the sphere are solved as a coupled system using the predictor-corrector strategy

proposed in [114].

Initially the sphere is located at a distance of 4.3D from the horizontal wall,

and is impulsively started to reach a velocity corresponding to an initial Reynolds

number of Rei = 510. The density ratio is fixed to ρs/ρf = 3.2. The resulting

Reynolds number just before impact is Re = 830 and the corresponding Stokes

number is St = 295. Contact is assumed to take place when sphere and floor are

within a distance of one cell size. In the experiments by Eames and Dalziel [31] the

Reynolds number before impact was Re = 850, but the motion of the sphere was

prescribed and no bounce was allowed to occur. To simulate these conditions in

our computations the dry restitution coefficient, edry, was set to zero (see equation

(3.19) below).
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In Figure 3.17 dye flow visualizations form the experiments in [31] are directly

compared to our computations, where the flow patterns are visualized using az-

imuthal vorticity isolines. The computed flow patterns are in very good qualitative

agreement with the experiment. Direct quantitative comparisons are not possible

due to the fact that vorticity and scalars, such as dye, do not have the same dynam-

ics as a result of their different diffusivities and the absence of vortex stretching in

the case of scalars. As the sphere approaches the wall the detached shear layers and

the small recirculating areas behind the sphere are evident in both experiments and

computations (figure 3.17a, b). Just after impact the vorticity in the shear layers

moves towards the wall generating a layer of vorticity with opposite sign on the

sphere’s surface (see figure 3.17c). As soon as this layer separates (figure 3.17d),

a vortex dipole is formed and moves away from the sphere (figures 3.17e, f). By

locating the center of these vortices in the computations and the experiments we

found that in their trajectories through time are always within 5%.

Next, we considered the bouncing sphere problem. The dry restitution coef-

ficient was the one used in the axisymmetric calculations of Ardekani et. al [6],

edry = 0.97, which is typical for steel-sphere and glass-wall collisions. The collision

process starts when the distance between the particle and the wall is equal to the

roughness height, hr. We assume that rough surface has a negligible effect on the

viscous force until the gap between the smooth portions of surfaces becomes equal

to the size of largest roughness element, hr. This is also the moment the impact is

assumed to occur. Details can be found in [6]. Just after the collision we define a
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Figure 3.17: Sphere-wall interaction with edry = 0.0. The left half in all figures are

azimuthal vorticity isolines from the present computations, and the right half are

snapshots from the dye visualizations in [31] at Re = 850. (a) −τf , (b) 0,(c) τf ,(d)

2τf , (e) 3τf , and (f) 4τf , where τf = D/Uf .

new set of initial conditions for equation (3.18) as follows:

zs2 = zs1; żs2 = −edryżs1 (3.19)

where zs1, żs1 and zs2, żs2 are the sphere’s vertical position and velocity before and

after the impact respectively.

In numerical simulations of contact problems it is important that the lubri-

cation layer between the bodies is resolved. In all our computations the surface

roughness, which practically determines how close the bodies can come, and numer-

ical resolution were selected in a way that a minimum of 5− 6 Eulerian grid points

were present between the bodies during impact. We first considered the same case
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as in the above example (Re = 830 and St = 295) with a non-zero restitution co-

efficient, edry = 0.97, in order to compare the vortex dynamics with the no-bounce

case. In figure 3.18 azimuthal vorticity isolines of the no-bounce (left) and bouncing

sphere (right) are shown. Just before impact (figure 3.18a) the flow for both cases

is identical since we start from the same initial conditions. At a later time and after

the first impact (3.18b, c), the layers of vorticity with alternating sign that were ob-

served in the case with edry = 0.0 can also be seen in the bouncing sphere problem.

In the latter case, however, the primary vortex originating in the wake is weaker

and the upward motion of the sphere causes the shear layer at the surface to roll-up

into a strong secondary vortex. As the downward motion of the sphere starts the

secondary vortex pinches-off (see figure 3.18d) and by the time the second bounce

occurs it is dissipated. As a result the wake and secondary vortices do not form the

dipole structure seen in the no bounce case.

Ardekani and Rangel [6] defined a total restitution coefficient, eT = Ua/Uf ,

where Ua is the velocity of the sphere at tUf/D = 0.07 after the impact time, tc,

which measures the dissipative effect of the fluid, as it is drained and subsequently

reenters the layer between sphere and wall. For the present case we found eT = 0.63.

A direct comparison with the computations reported in [6], where they reported

eT = 0.92, is not possible because of the differences in the Reynolds numbers. Our

eT value, however, is consistent with the trend reported in [6] where a decrease in

eT was observed with increasing Reynolds number and constant Stokes number. In

particular they found a decrease of 5.0% for eT at St = 301 when Re increases

from 35 to 162. To further verify the accuracy of our formulation we also conducted
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a computation that closely matches the low Reynolds number conditions in the

simulation by Ardekani and Rangel [6]. The Reynolds Number before impact was

Re = 76.8 and the Stokes number St = 299. In this case we computed an eT = 0.91,

which is in very good agreement with the reference results of eT = 0.92.
Time = -0.05, figure 57 Time = 1, figure 70 Time = 2, figure 83

(a) (b) (c)Time = 3., figure 101 Time = 3.5, figure 111 Time = 4.05, figure 122

(d) (e) (f)

Figure 3.18: A comparison of edry = 0.00 (left) and edry = 0.97 (right) computations

for the sphere-wall interaction at Re = 830. (a) −0.1τf , (b)τf , (c)2τf , (d) 3τf , (e)

3.5τf , and (f) 4.1τf , where τf = D/Uf .
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Chapter 4

Large eddy simulation for discontinuous grids

In the introductory Chapter we described a set of features of LES which make

its combination with S-AMR methods non trivial. The grid discontinuities intro-

duced in AMR methods may lead to numerical errors, in some cases significant ones.

This is especially true if non-dissipative, centered spatial discretization schemes like

the one previously proposed are used. In the following section we give a formal

introduction to eddy viscosity models in large eddy simulations. We then develop a

simple strategy to vary the filter size for filtered variables around grid discontinu-

ities. In order to evaluate the sources of error and develop a strategy to minimize

these, we will study in Section 4.2 the flow of spatially decaying isotropic turbulence

advected across a refinement interface. In this study we see that using LES together

with explicit filtering of the advective terms [60] leads to an effective control of alias-

ing and interpolation errors when turbulence travels across a derefinement interface.

This, strategy is used in Section 4.3 in the simulation of transitional flow around a

sphere at Re = 10000.

4.1 Mathematical formulation

We employ overbars to denote the resolved quantities on LES computations.

We consider the case where the SGS stresses, τij in the momentum equations (2.1),
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are parameterized using standard eddy-viscosity models:

τij −
2

3
δijτkk = −2νTSij, (4.1)

where νT is the eddy viscosity defined as:

νT = C∆2
f

∣∣S∣∣ ; (4.2)

C is a model coefficient, ∆f the filter width, and Sij the resolved strain-rate tensor:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.3)

In this work we use two different models to compute νT : the standard Smagorinsky

model [92, 56], and the Lagrangian dynamic eddy-viscosity (LDEV) model proposed

by Meneveau et al. [66]. In the former the model coefficient is a constant set to

C = 0.652, while in the latter it is dynamically computed during the calculation:

C = −1

2

〈LijMij〉
〈MqrMqr〉

, (4.4)

where

Mij = ∆2
f

(
α2
∣∣∣Ŝ∣∣∣ Ŝij − ∣̂∣S∣∣Sij) , (4.5)

Lij = ûiuj − ûiûj, (4.6)

Note that .̂ is the test-filter operator, representing a filter with width ∆t larger

than the grid filter ∆f , and α = ∆t/∆f is the ratio between the test and grid

filter-widths. The numerator and denominator in equation (4.4), are averaged over

particle pathlines. Details on the present implementation of the Lagrangian model

can be found in [90].
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Any filtered quantity, f and f̂ , is obtained by recursive application of a one-

dimensional filter in the three coordinate directions; the one-dimensional filter is

defined as:

f
1D

=

j+M∑
m=j−M

Wmfm (4.7)

(and similarly for f̂). The filter-width corresponding to above operation is given by

[59]:

∆f = ∆

(
12

M∑
j=−M

j2Wj

)1/2

, (4.8)

where ∆ is the grid size. In our computations we set ∆f/∆ =
√

4/3 and α =

∆t/∆f =
√

6.

4.1.1 Explicit filtering of the non-linear term

When explicit filtering of the non-linear term is used in LES, the filtered

velocity product in the advective terms of the momentum equations is decomposed

as [54]:

uiuj = uiuj +
(
uiuj − uiuj

)
(4.9)

where τ ′ij = uiuj−uiuj is the new subgrid stress tensor to be modeled. The modeling

strategy used here is the same as discussed in the previous Section, and the same

filters are applied. The secondary filtering operation has the effect of inhibiting the

generation of frequencies higher than the grids characteristic wavenumber [103], thus

reducing the numerical error at the higher wave-numbers included by the mesh (this

is particularly important in the framework of the LDEV model, as the parameter

C and the SGS stresses, depend intrinsically on the accuracy at which the smallest
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resolved scales are computed). However, explicit filtering as defined by equation

(4.9) is not in general Galilean invariant with respect to translation. Lund [60]

showed that the invariance error is reduced if the filter used becomes closer to the

sharp Fourier cutoff; adding a scale-similarity type term to the model also leads to

a Galilean-invariant formulation [81]. The present study is limited to eddy-viscosity

models with trapezoidal filters and Galilean invariance is, therefore, not enforced.

The error, however, is proportional to the to velocity of the moving reference frame

[60], which in our case is zero.

4.2 Spatially decaying isotropic turbulence past a refinement inter-

face

To quantify the numerical errors arising on LES in the vicinity of grid refine-

ment interfaces, and explore ways of reducing them, we study a simple flow con-

figuration, without some of the complexities present in wall-bounded flows (mean

shear, turbulence anisotropy, etc.). We examine homogeneous isotropic turbulence

advected by a uniform velocity, Uc, across a fine-coarse grid interface, concentrating

on the case in which the interface is normal to the main advection direction. The

development of the turbulence in the vicinity and downstream of the interface are

examined to evaluate the errors introduced by the grid discontinuity, and the dis-

tance required for a return to equilibrium. We also investigate the effect of explicit

filtering the advective term in the momentum equations as a means of separating the

filter size from the finite-difference grid size, and to control the frequency content
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Case Grid Filter Variation

C 483 + 483 N/A

F 963 + 963 N/A

FC-S 963 + 483 Sharp

CF-S 483 + 963 Sharp

FC-V 963 + 483 Linear variation over 1.6Lr

Table 4.1: Summary of Lagrangian Dynamic inflow-outflow computations.

and numerical errors of the solution close to the interface.

4.2.1 Computational setup

We conducted simulations of spatially decaying homogeneous isotropic tur-

bulence. A typical configuration is shown in Figure 4.1 (left). The computational

domain consists of two adjoining blocks, each with dimensions 2π×2π×2π in the x,

y and z directions respectively. Each block is resolved by 243, 483 or 963 grid points;

the mesh is uniform and the grid size is the same in all directions. The two blocks

have the same resolution for the single-grid calculations, while in the two-level cases

the grid size is discontinuous, with a factor of two ratio in each direction (i.e., we

go from a 483 grid to a 963 one in the coarse-to-fine cases, from a 963 grid to a 483

one in the fine-to-coarse ones). The refinement jump (the coarse-fine grid interface)

is located at the center of the domain (x = 0), normal to the x direction. This

interface defines two sets of calculations, coarse-to-fine (CF) as in Figure 4.1, or

fine-to-coarse (FC). Tables 4.1-4.2 show the sets of simulations carried out for the
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Case Grid Filter Variation

C 483 + 483 N/A

F 963 + 963 N/A

FC-S 963 + 483 Sharp

CF-S 483 + 963 Sharp

FC-V 963 + 483 Linear variation over 1.6Lr

CF-V 483 + 963 Linear variation over 1.6Lr

Table 4.2: Summary of Smagorinsky inflow-outflow computations.

Figure 4.1: Setup of the numerical experiments.

LDEV and Smagorinsky models respectively.

To generate the inflow conditions, computations of forced isotropic turbulence

at the same resolution as the block adjacent to the inflow plane were first conducted.

The linear turbulence forcing scheme proposed by Lundgren [61] and further studied

by Rosales and Meneveau [85] was applied, using a value of mean dissipation per

unit mass, ε = 0.4U3
r /Lr, and a Reynolds number Rer = 10, 000. Planes from this

simulation were stored on disk and used as inflow conditions in the inflow-outflow
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Case Grid Filter Variation

C 243 + 2× 243 N/A

F 483 + 483 N/A

FC-S 483 + 2× 243 Sharp

CF-S 243 + 2× 483 Sharp

FC-V 483 + 2× 243 Linear variation over 1.6Lr

CF-V 243 + 2× 483 Linear variation over 1.6Lr

Table 4.3: Summary of Lagrangian Dynamic inflow-outflow computations on lower-

resolution grids.

computations (see Figure 4.1). In order to maintain consistency, the same SGS

model was applied for the periodic and inflow-outflow simulations. Note, however,

that the results of the forced simulations were found to be quite sensitive to the

model and grid resolution; thus, at the inflow we had slightly different values of

turbulent kinetic energy, depending on the model and resolution used. A specified

convective velocity, Uc = 0.41Ur, is used to advect turbulence in x direction. This

value was chosen based on two considerations: first, we wanted a ratio Uc/urms

representative of the conditions encountered in a wall-bounded flow, especially near

the wall where the turbulent eddies are smaller; this would result in Uc/urms ' 4.

On the other hand, we wanted to use as short a domain as possible, to reduce the

computational cost of the simulation. As a result, we chose Uc/urms ' 2.5. A

convective condition [74] is used at the outflow and periodic conditions in all other

directions.
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Figure 4.2: Filter width variation.

For each model we performed single-grid calculations on coarse and fine grids,

as well as cases in which the grid and filter are changed abruptly by a factor of two

in each direction (FC-S and CF-S), and cases in which the filter width was linearly

increased or decreased (on the fine-grid side) from the value corresponding to the

fine mesh to that corresponding to the coarse one (CF-V and FC-V cases). The

variation took place over a distance 1.6Lr (comparable to the integral scale of the

flow); variations over shorter distances did not prove to be effective. Figure 4.2

illustrates the variation of ∆f (normalized by the grid size on the fine-resolution

side) for the various simulations.

Note that the use of a filter-width different from the grid size is ambiguous,

unless the non-linear term is filtered explicitly. When the Smagorinsky model is

used, for instance, it is not possible to distinguish a change in ∆f from a change
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in C. With dynamic models, moreover, ∆f does not enter the equations directly:

what matters are the ratio α = ∆t/∆f , and the weights used to define f̂ . We take

the view here that the filter-width ∆f can be assigned a priori, independently from

the grid size. The coefficient C is determined from the flow physics, either through

integration of the spectrum for the Smagorinsky model (see the derivation by Lilly

[56]) or dynamically. For the dynamic model, this results in the use of weighting

coefficients in (4.7) such that α =
√

6 independent of the value of ∆f used.

For each calculation, data at several locations along the longitudinal direction

was collected in the course of more than 120 computational time units. Then the

statistics were computed using an ensemble of no less than 100 time snapshots, and

quantities were also plane-averaged for each x location.

4.2.2 Single-grid calculations

First, we performed single-grid calculations with a coarse and a fine grid, using

the Smagorinsky and LDEV models. The coarse grid uses 48 points in each direction

for each block (for a total of 2× 483 = 2.2× 105 points) while the fine one uses 963

points per block, for a total of 1.8 million points.

In these calculations the mesh is cubic, and the filter-width is uniform; commu-

tation errors are, therefore, identically zero. As expected, slight differences between

the two models and of course differences between the calculations with the coarse

and fine grids were found. The explicit filtering of the advective term results in a

larger value of the Taylor microscale λ, reflecting the fact that the filtering reduces
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the small-scale energy transfer to small scales. At x = 0, where the coarse-fine

grid interface is located in the calculations with grid refinement or coarsening, the

Reynolds number is Reλ ' 800. Also, the integral length scale L11 (obtained by

integrating the longitudinal two-point correlation) is approximately 0.85LR, remain-

ing approximately constant along the streamwise direction and between the different

eddy-viscosity models.

4.2.3 Two-level computations with the LDEV model

First, we examine the results obtained with the LDEV model. Notice that

this model includes memory effects through the integration of the numerator and

denominator of (4.4) along Lagrangian particle-paths. Furthermore, the variable

filter-width does not affect the eddy viscosity directly (νT depends only on α), but

only through the explicit filtering performed at the test-filter scale.

Figure 4.3 shows isosurfaces of the second invariant of the filtered velocities

gradient tensor:

Q = −1

2

(
∂ui
∂xj

∂uj
∂xi

)
= −1

2

(
SijSij − ΩijΩij

)
(4.10)

colored by the value of the eddy viscosity for three cases. The flow behavior in

the Coarse-to-Fine (CF) case, Figure 4.3(a), is relatively benign: shortly after the

interface (denoted by the dark plane at x = 0) we observe a rapid generation of

small scales. When the grid is suddenly coarsened, Figure 4.3(b), on the other

hand, we see a sudden depletion of eddies following the interface, and an abrupt

increase in their length scale. When the filter is smoothly coarsened on the fine-grid
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side, Figure 4.3(c), we notice an increase in the characteristic eddy length-scale and

an increase of the eddy viscosity even upstream of the interface, and a smoother

transition to the coarse-grid side.

Figure 4.3 shows that, as turbulence is advected through a grid discontinuity,

the flow behavior is quite different depending on whether the grid is coarsened or

refined. The changes in the turbulence structure are quite dramatic, and one should

expect them being reflected in the flow statistics.

Figures 4.4 and 4.5 show the development of statistical results. It should be

remarked here that at the interface between fine and coarse grids the interpolation

is used to exchange information between fine an coarse grids. Furthermore, because

of the staggering, the control points where the velocity components are defined on

the coarse grid do not coincide with those on the fine grid. As a consequence, while

first-order averaged statistics are continuous across the interface, quantities that

are quadratic in the velocity present a discontinuity. Reducing the magnitude of

this discontinuity is an important feature of a successful transition methodology.

For the CF run the flow statistics switch between the coarse- and fine-grid values

reasonably rapidly. In Figure 4.4, the longitudinal spectra at various x locations are

shown. These are the transforms of the two-point correlation of the in-plane velocity

components with displacement in the direction of the velocity itself. The spectra

immediately after the coarse-fine grid interface decay too steeply, as the high wave-

numbers initially contain no energy. They are filled rapidly and by x/LR = 0.7, less

than one integral scale downstream of the interface, the spectrum returns to the

single-grid value.
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(a)

(b)

(c)

Figure 4.3: Isosurfaces of Q, colored by the value of the eddy viscosity. LDEV

model. (a) CF-S; (b) FC-S; (c) FC-V. The flow is from top right to bottom left.
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Figure 4.4: Longitudinal spectra, LDEV model. Each spectrum is shifted upward

by 100 units for clarity.

The length of the transition downstream of the grid interface depends on the

quantity examined, but is generally less than two integral scales L11 (recall that

L11/Lr ' 0.85). This distance, of course, is strongly dependent on Uc: As mentioned

in before, the value used here, Uc = 0.41Ur, corresponds, at the interface, to a mean

velocity that is about 2.5 times the rms intensity urms; in boundary layers Uc/urms

is of the order of 4 near the wall, 20 or more in the outer layer; these values would

result in longer transitions.

Coarsening the grid (FC simulations) introduces a much stronger perturbation.

When the filter width is discontinuous (FC-S simulation) we observe an accumu-

lation of energy at the small scales, apparent in the spectra at x = −0.25 and 0
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Figure 4.5: Streamwise distribution of (a) turbulent kinetic energy K; (b) integral

length scale L11; and (c) normalized eddy viscosity, νT/ν. LDEV model.
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(see Figure 4.4). The energy pileup results in an overshoot of the turbulent kinetic

energy K = 〈u′iu′i〉/2 immediately before the interface Figure 4.5(a). We also ob-

serve discontinuities in the integral scale and the eddy viscosity (normalized by the

molecular one).

The smoothly increasing filter-width (FC-V simulation) is superior to the dis-

continuous one: since the LDEV model is not very dissipative (compared, for in-

stance, to the Smagorinsky model discussed below), the increase of the eddy viscosity

upstream of the interface is needed to reduce (but not completely remove) the en-

ergy pileup at the grid interface resulting in a much smoother transition. Even in

the FC-S case, however, despite the fact that the energy pileup at small scale is

very significant, the flow adjusts very quickly to the grid coarsening, and returns to

the single-grid, uniform filter-width, data within less than an integral scale of the

interface.

The calculations discussed until now were characterized by good resolution of

the integral scales, even in the coarse-grid size. In fact, the ratio of integral scale

L = K3/2/ε (where is the turbulent kinetic energy and ε the dissipation) to the grid

size is approximately 15 on the 483 grid, 30 for the 963 one. In typical wall-bounded

flow calculations, much lower resolution is generally used: in the buffer layer and

the beginning of the logarithmic layer, typically 5-10 grid points per L are used,

and only in the outer layer we reach resolutions of 10-20 grid points per integral

scale. To represent more closely the resolution levels used in actual calculations

of wall-bounded flows, we performed another set of simulations that used coarser

meshes: 24 grid points were used in all directions on the coarse side to resolve a
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2π3 cube, and 48 grid points on the fine side (see Table 4.3). Except for the fine-

level calculation, the domain after the interface in these cases was extended to 4π

in the x direction to reduce the effect of the convective outflow boundary on the

results. In the 243 linearly forced simulations used to obtain inflow data, the value

of dissipation was set to ε = 0.36U3
r /Lr. As before, in all two-level calculations

the interface was located at x = 0, and the convective velocity Uc = 0.41Ur. The

Reynolds number, based on λf , at the interface location was Reλf ' 1500 for the

coarse inflow-outflow run.

In Figure 4.6 the author shows the average non dimensional values of turbulent

kinetic energy, longitudinal integral length scale and normalized turbulent viscosity

for the lower-resolution simulations. In a similar trend as seen in the past section,

the Coarse-to-Fine grid and filter-width discontinuity does not affect the statistics

as much as the Fine-to-Coarse one. For the FC cases, again, the energy pileup

upstream of the interface is corrected by smoothly increasing the filter width more

gradually. The sharp FC case exhibits a larger energy pileup zone compared to the

higher-resolution simulation of Figure 4.5(a). As expected, the integral length scale

is L11/Lr = 1 a value higher than that predicted on the finer meshes, L11/Lr = 0.85.

For the CF case the varying filter in the fine-mesh region delays the return to the fine

grid value of all statistics: the increased dissipation associated with the larger filter-

width on the fine grid delays the generation of small scale. The sharp discontinuity

CF-S results in a recovery of the fine-grid results over 1.6Lr, a larger distance than

observed in the better resolution cases discussed above. Similar observation may

be made for the FC cases: the smooth filter-width change gives improved results,
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and the length required for recovery from the grid discontinuity is larger than in the

previous case. The varying filter CF computation exhibits a bump in the νT curve,

possibly due to the increase of |S| as smaller scales are generated, while the filter

width is still interpolated from the coarse side.

4.2.4 Two-level simulations with the Smagorinsky model

Next we discuss simulations in which the SGS stresses were parameterized us-

ing the Smagorinsky model. The Lagrangian model includes memory effects; thus,

the eddy viscosity immediately after an interface is, to some extent, affected by

its previous history and recalls the fact that it is coming from a region of coarser

(or finer) filter-width; its changes are, therefore, less dramatic than would be ex-

pected when the filter-width is changed by a factor of two. No such memory effects

are present in the Smagorinsky model, were the eddy viscosity νT is more tightly

connected to the filter width ∆f .

This is clearly observed in Figure 4.7, which shows the streamwise development

of turbulent kinetic energy, L11, and the normalized eddy viscosity. We observe

sharp discontinuities in the CF-S and FC-S cases for νT , which are directly related

to the grid size. The variable filter-width is in this case not as beneficial, somewhat

smoothing the discontinuities but also resulting in delayed recovery (especially for

the CF-V computation).

The difference with the single grid case of the longitudinal spectra (Figure 4.8)

is more significant than for the LDEV case as well. We observe a significant delay
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Figure 4.6: Streamwise distribution of (a) turbulent kinetic energy K; (b) integral

length scale L11; and (c) normalized eddy viscosity, νT/ν. LDEV model with lower

resolution, 483 points per block on the fine side and 243 on the coarse side.
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Figure 4.7: Streamwise distribution of (a) turbulent kinetic energy K; (b) integral

length scale L11; and (c) normalized eddy viscosity, νT/ν. Smagorinsky model.
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Figure 4.8: Longitudinal spectra. Smagorinsky model. Each spectrum is shifted

upward by 100 units for clarity.

in the regeneration of the small-scale energy content for the CF-V case, the energy

pileup at small scales for the FC-S simulation and the improved behavior of the flow

immediately after the discontinuity in the FC-V calculation.

4.2.5 Two-level calculations with explicit filtering of the advective

term

The possible benefit of filtering explicitly the advective term in the momentum

equations derives from the fact that, by removing a band of the highest frequencies

allowed by the mesh, the truncation and aliasing errors can be reduced [59]. For

these reasons we applied explicit filtering together with the LDEV model on the
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same cases discussed before. That includes two-level calculations where the grid

transitions from 962 points to 482 points in the Fine-to-Coarse case (FC) or vice-

versa in the Coarse-to-Fine (CF) situation. In order to obtain similar levels of

inflow turbulent kinetic energy as in Subsection 4.2.3, the dissipation constant for

the linearly forced isotropic turbulence runs was set to ε = 0.2U3
r /Lr. The resulting

Reynolds number at the interface location was Reλ ' 800. The same variable-

filter strategy on the fine side discussed before was employed for the filtering of the

advective term.

The flow visualizations in Figure 4.9 show the expected trends of eddy de-

pletion on the transition to coarser mesh for the sharp FC, and scales generation

as the structures are advected to a better resolution environment, in the CF cases.

However, we also notice a more gradual generation of small scales for the CF-S

simulation, Figure 4.9(a). More importantly, for the FC-V simulation we observe a

more pronounced increase of the eddy size on the fine-grid side, compared with the

case with no explicit filtering, Figure 4.3(c). The scale of the eddies crossing the

interface is, thus, increased; the better resolution of these eddies results in better

accuracy as the flow transitions from the fine to the coarse grid.

Consequently, the spectra evolve much more gradually across the interface

(Figure 4.10). In the CF-S case the high wave-number part of the spectrum is

filled within a distance of 0.7Lr (less than one integral scale of the flow). When

the filter-width is decreased gradually (CF-V simulation) a longer transition results,

as observed in all previous cases. In the Fine-to-Coarse calculations we observe

no energy pileup at small scale, and a very rapid transition for the discontinuous

92



(a)

(b)

(c)

Figure 4.9: Isosurfaces of Q, colored by the value of the eddy viscosity. LDEV model

with explicit filtering. (a) CF-S; (b) FC-S; (c) FC-V. The flow is from top right to

bottom left.
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Figure 4.10: Longitudinal spectra for LDEV model with explicit filtering. Each

spectrum is shifted upward by 1000 units for clarity.

filter-width variation, a more gradual one for the variable filter-width case, FC-V.

Note that the explicit filtering dampens the high-wavenumber content of the non-

linear term, which results in more rapid energy decay in all calculations of this type

(including the single-grid ones).

In Figure 4.11 the mean turbulent kinetic energy, integral length, and eddy vis-

cosity are shown. The sharp FC transition, as in previous results, exhibits a jump as

the grid transitions from fine to coarse; interestingly, however, there is insignificant

energy accumulation on the fine side (Figure 4.10). This result can be explained by

noting that explicit filtering produces a depletion of energy on the structures at the
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Figure 4.11: Streamwise distribution of (a) turbulent kinetic energy K; (b) integral

length scale L11; (c) normalized eddy viscosity, νT/ν. LDEV model with Explicit

Filtering of advective term.
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grid scale, where numerical error is significant (also evident in Figure 4.10 at the

first two stations). Since the smallest scales are better resolved by both grid levels,

the eddies advected across the interface cause less of a perturbation to the flow.

The longitudinal spectra in Figure 4.10 show that, for the varying filter FC-V case,

a gradual reduction of energy content on the higher wave-numbers of the fine grid

is achieved. This enables a natural transition to the natural energy distribution for

the coarse grid, which has a smaller range of resolved wave-numbers. The FC-S case

(consistent with the previous sections results) displays a discontinuous transition on

the spectra as the resolved wave-number range is reduced. The coarse-to-fine tran-

sition behaves in fashion similar to that seen for the previous LDEV calculations,

the sharp variation being superior to the variable filter-width case, yielding a faster

recovery of fine grid statistical data. The variable filter FC-V calculation, on the

other hand exhibits a faster recovery of the coarse grid statistics than the sharp

case, for both integral length-scale and turbulent viscosity, Figures 4.11(b) and (c).

4.3 Flow around a Sphere at Re=10000

In this section we apply the spatially varying LDEV model with explicit filter-

ing of the advective term to LES of the flow around a sphere at Re = U∞D/ν = 104

(U∞ is the freestream velocity and D is the diameter of the sphere) is considered.

This Reynolds number falls in the subcritical regime, where laminar boundary layer

separation occurs on the surface of the sphere, and transition happens in the de-

tached shear layers in the wake. We have seen in the previous Section that the
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varying filter LDEV model with explicit filtering of convective terms is suitable for

situations where turbulence is advected across derefinement jumps. That is the case

in this problem, as we move away from the sphere along the wake region. A rectan-

gular domain is employed, spanning 38D in the streamwise direction and 24D in the

cross stream directions. The sphere is centered at a distance of 10D downstream

of the inflow boundary. The inflow velocity, U∞, is prescribed at this boundary,

and a convective condition used at the outflow boundary [74]. Slip wall boundary

conditions are used in the other two directions.

A preliminary computation for laminar flow around a sphere at Re = 300 was

done on a similar setting, using 5 levels of refinement and about 6.5 × 106 points.

The resulting grid spacing close to the sphere was 0.0195D. The predicted mean

drag coefficient is CD = 0.634, and its oscillation amplitude C ′D = 0.0039. These

values are in good agreement with the corresponding results from computations by

Johnson & Patel [47] of CD = 0.656 and C ′D = 0.0035 respectively. The resulting

Strouhal number is St = 0.132, which is also in good agreement with the value 0.137

reported in [47].

For the case at Re = 104 a finer grid with 6 levels of refinement is used with

11 × 7 × 7 blocks at level 0. Each block consists of 163 cells. The grid is finest

near the surface of the sphere and it is gradually derefined in the wake. The leaf-

block arrangement at an x − z plane passing through the center of the sphere is

shown in Fig. 4.12. The cell sizes near the surface of the sphere are approximately,

∆xi = 0.003D, and the resulting distance of the first grid point off the wall is

between r+ = 1.3 − 2.3 (following [24], we define r+ = ruτ/ν, where the friction
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x
z

Figure 4.12: AMR grid-blocks for flow around a sphere at Re = 104. An x − z

plane at y = 0 is shown. Note that a window spanning from −5 < x < 28 in the

x-direction and from −5 < z < 5 in the z-direction is shown. Six levels of refinement

are used with 163 points per block.

velocity is assumed to be uτ = 0.04). The number of points between the wall and

r+ ∼ 10 is between 5− 8. The total number of blocks is 18400, and the number of

leaf blocks 16184 corresponding to 66.3 million points.

The equations were integrated in time until the effect of initial conditions was

eliminated. Statistics were accumulated over two shedding cycles, which is about

10U∞/D eddy turnover times or 20000 timesteps. Although the sample is fairly

small it is sufficient to provide reasonable estimates of the average force coefficients.

LES of the flow around a sphere at the same Reynolds number performed by Con-

stantinescu et al. [24], gave a mean drag coefficient CD = 0.393. The same value

was reported in the LES by Yun et al. [117]. Our computation gave CD = 0.405,

which is in very good agreement with the adobe results. In Fig. 4.13 the distribution

of average pressure coefficient, Cp, and skin friction coefficient, Cf , are shown as

a function of the azimuthal angle, Θ. The corresponding results from the LES by

98



0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Θ [°]

C
p

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

1

1.5

2

2.5

Θ [°]

C
f R

e1/
2

Figure 4.13: Variation of Cp and Cf on the surface of the sphere as a function of

angle Θ from front stagnation point. Both are averaged in the azimuthal direction

and time. current AMR-LES calculation at Re = 104, reference LES at

Re = 104 [24], and • experiment at Re = 1.6× 105 [1].

Constantinescu et al.[24] at the same Reynolds number, and the experiments by

Achenbach [1] at a higher subcritical Reynolds number, Re = 1.6 × 105, are also

shown for comparison. In general the agreement is good, and Cp is practically the

same in all three data sets for 0o < Θ < 90o. Both simulations also agree very

well for 90o < Θ < 130o, and slightly over-predict Cp reported in the experiment.

Further behind the sphere at, 130o < Θ < 180o, our Cp is lower by is approximately

6% of the peak value, probably due to our limited statistical sample.

The friction coefficient, Cf , is also in good agreement with the reference data.

In this case discrepancies among the different datasets are larger, due to larger

errors in measuring this quantity as well as its sensitivity to numerical resolution.

Our mean separation occurs at Θ = 91o which is in very good agreement with the

value of Θ = 90o reported in [117]. Constantinescu et al. [24] is reported mean
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Figure 4.14: A snapshot of the instantaneous flow field around the sphere at Re =

104. (Top): Vorticity, ωy, contours at an x − z plane through the center of the

sphere. Forty contours between ωyD/U∞ = −20 (blue) and 20 (red) are shown.

(Bottom): Q isosurfaces in the wake. The grid distribution is also shown for 3 slices

at positions x = 0, 3D, 7D.
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separation at Θ = 85o. They used spherical coordinates and a grid which is much

finer near the surface of the sphere, while our resolution is comparable to the one

utilized by Yun et al. [117].

In Fig. 4.14 an instantaneous snapshot of the spanwise vorticity, ωy, is shown

at an x − z plane passing through the center of the sphere. The shear layer insta-

bility, roll-up and subsequent breakdown can be observed. The smooth variation

of the vorticity between blocks at different refinement levels should also be noted,

indicating that turbulent eddies are unaffected by the presence of block boundaries.

A three-dimensional view of such eddies is also shown in Fig. 4.14, and is visual-

ized using the second invariant of the velocity gradient tensor, Q. The AMR block

structure at three different planes in the wake region (x = 0, x = 3D and x = 7D)

is also shown. As the refinement level is decreased for increasing x, the reduction

in the range of scales resolved by the grid is evident.
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Chapter 5

Applications to flapping flight

Historically, flapping flight has received great attention from the biology, engi-

neering and science disciplines. For biologists, the interest relies on the mechanisms

by which biological motor, sensor and control has evolved and is employed by flying

insects in everyday survival [87]. Engineering research on flying has been focused

fixed wing aerodynamics, where their detailed understanding and control has driven

research over the past century, mainly as a quest to serve the developing aeronautical

and aerospace industries. However, advances in material technologies and actuator

miniaturization in the past decade has sparked new interest in small scale flapping

wing devices [91]. As the size of the vehicle and characteristic Reynolds number

(Re) of the flow decrease, friction forces are enhanced, and fixed wing aerodynamics

fails to account for the forces required to sustain flapping flight and maneuvering in

an efficient manner [7].

Several experimental and computational investigations have been carried out

over the past years, to understand the unsteady mechanisms that allow the genera-

tion of enough aerodynamic force to hover and maneuver. Experimental studies have

given insights on the kinematic and kinetic aspects of flapping flight on thetered and

free flying animals ([108], [38]), as well as dynamically scaled robotic devices ([35],

[27], [88]). Viscous incompressible flow simulations of flapping wing models has also

102



been reported ([58], [93], [82], [105], [106], [107], [83]). These studies have been pri-

marily used as an extension of experiments to obtain a more detailed view of the flow

fields and the large vortices that dominate the production of aerodynamics forces.

Liu and Kawachi [58], for example, conducted one of the first computations of flow

around a flapping Manduca Sexta moth wing at Re = 4000. Due to the lack of nu-

merical resolution only some of the large scale structures had some similarity to the

experimental data in [109]. Ramamurti and Sandberg performed similar study for

the smaller Drosophila melanogaster fly at Re = 136. Most other computations in

the literature utilize two-dimensional (2D) models ([105], [106]). In addition, insect

wings are complex flexible structures that add significant complexities to numerical

modeling.

Today most of the computational studies on flapping flight focus on the fluid

dynamics of rigid flapping wings with prescribed kinematics, or examine the wing as

a structure, modeling the fluid loads with added-mass and damping parameters. The

coupling between the fluid and the structure is either neglected or taken into account

by extremely coarse models. In general, a flexible wing structure deforms under the

influence of aerodynamic forces, elastic deformation forces, and also inertia forces

due to the accelerations of its own mass ([33], [36], [53], [23]). The deformation

is given, to a large extent, by the internal distribution of compliant components

and mechanisms ([110]). The relative contributions of aerodynamic and inertial-

elastic forces on wing deformation of the Manduca sexta hawkmoth, for example,

were assessed by Combes and Daniel (2003) [23]. They concluded that, for Manduca

sexta the equilibrium of forces during the wing’s motion is mainly due to inertia and

103



elastic forces, and the aerodynamic loads had a minor role in the form of damping.

For this insect the typical ratio of wing inertial to aerodynamic forces in hovering

flight is around 7. In other species this parameter is closer to one [36], and more

complex aeroelastic interactions occur. Strongly coupled interactions between fluid

and wing dynamics require, accurate and robust accurate FSI solvers [114] such as

the one outlined in Chapter 3.

In this chapter we will utilize the AMR/FSI solver to study two important

aspects of flapping flight: i) the effects of flexibility on the dynamics of hovering

flexible profile, and in particular the nonlinearities of the structure and viscous

flow play a part in the evolution of the system. ii) the dynamics of free longitudinal

flight in a realistic three-dimensional configuration. Details are given in the following

sections.

5.1 Influence of Flexibility on the performance of two-dimensional

flapping flexible airfoils

In this section we will study the the effects of structural flexibility on the

aerodynamic performance of a flapping wing for a range of Reynolds numbers. We

will perform two-dimensional computations in order to explore a wide range of

parameters in a cost-efficient manner. In particular, a representative section of a

three-dimensional wing (two-dimensional foil) is considered, and spanwise bending

and torsion flexibility are neglected. Such a structure can be represented by two

plates connected with a torsion spring to account for deformation in the chordwise
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direction (see Figure 5.1a). This system has four degrees of freedom, which are

effectively reduced to one by prescribing harmonic hovering motions of one of the

plates. The plates are rigid and the large angular deformations give rise to cubic and

higher order odd non-linearities in the governing equations, similar to those seen in

a pendulum and in flexible beams [5]. In a sense, one could consider the two plates

as a double pendulum with a torsion spring.

5.1.1 The structural model

A schematic of the structural system is shown in Figure 5.1a. It consists of

two rigid links A and B, which are joined at the center, b, by a pin that contains

a linear torsion spring. In this model, flexibility is concentrated at one discrete

location of the system, and inclusion of elastic links will allow chordwise variations

of stiffness and mass to be accounted for. The two links are covered by a set of

aerodynamic surfaces that define the boundary between the airfoil and the fluid, and

deform as the angle between them changes. The aerodynamic surfaces consist of two

rigid segments, RSa and RSb (see Figure 5.1b), and two segments that dynamically

deform according to the angle between the two links. The deformation is prescribed

by fitting the Hermite interpolation polynomials c1-c2 and c3-c4. We have found

that this modeling is robust and helps maintain the smoothness of the surface even

for large values of the angle between the plates.

The dimensionless form of the equations governing the motion of the structural
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(a) (b)

Figure 5.1: (a) Two-link profile. The rigid links A and B are connected at hinge

b by a torsional spring of stiffness k. The variables x(t), y(t), θ(t) and α(t) are

the generalized coordinates used to describe the wings motion. In the hovering

simulations, x(t), y(t) and θ(t) are prescribed and α(t) is left as only degree of

freedom required to define the system. (b) Decomposition of the profiles surfaces

into rigid and deformable sections. The two rigid surfaces RSa and RSb are connected

at points c1, c2, c3 and c4 by Hermite interpolating polynomials HS1 and HS2. Also,

mA, mB are the total masses of links A and B, and ηA, ηB are the respective

distances from their centers of mass to junction b.

system shown in Fig. 5.1a can be written as:

mA +mB 0

0BB@ −mAηA sin(α+ θ)

+mBηB sin(θ)

1CCA −mAηA sin(α+ θ)

mA +mB

0BB@ −mAηA cos(α+ θ)

+mBηB cos(θ)

1CCA mAηA cos(α+ θ)

IA + IB IA

symm. IA




ẍ

ÿ

θ̈

α̈

 =


Qx + gx

Qy + gy

Qθ + gθ

Qα + gα


(5.1)
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where x(t), y(t), θ(t) are, respectively, the joint horizontal displacement, joint verti-

cal displacement, and orientation angle of link B measured from the inertial reference

frame N as shown in Figure 5.1a, and α(t) is the deflection angle between links A

and B. Here, mi is the total mass of plate i (i = A,B); ηi is the distance from the

pin joint to the center of mass of bar i; Ii is the moment of inertia of link i respect

to hinge point b. Also, Qx, Qy are the fluid forces in the x and y directions re-

spectively, and Qθ, Qα are the fluid moments acting on the generalized coordinates

θ(t) and α(t). The quantities gx, gy, gθ, gα are the corresponding contributions of

centrifugal, elastic and gravity forces. The equations are made dimensionless by

using the chord length of the undeformed airfoil, Lc, as the reference length scale,

and the maximum translational velocity of the junction b between the two links, Uc

as the reference velocity. The Reynolds number is defined as Re = LcUc/ν, where ν

is the fluid kinematic viscosity. The fluid forces and moments are determined from

equations (2.1).

In the present numerical experiments, the translational motions of the junction

as well as the orientation of link B are prescribed. With these prescribed motions,

the four degrees of freedom of the system can be effectively reduced to the deflection

angle α(t) between plates A and B. Thus, the overall deformation of the wing section

is determined by the deflection angle α(t), which is governed by the following reduced

form of equations (5.1):

IAα̈ + kα = −IAθ̈ +mAηAsin (θ + α) ẍ+Qα (5.2)

Equation (5.2) resembles the equation governing a harmonic oscillator with forcing
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due to the prescribed kinematics and the fluid forces (e.g. reference [71]). The

non-linearities arise from the sin(θ + α) term due to the kinematics and the fluid

forcing. For this study, we only take into account the fluid damping which arises

through the fluid moment Qα. It should be noted that selecting a proper structural

damping model is far from trivial, and this is an active research topic in structural

biomechanics. Damping models for insect wings are relatively few [e.g. classical

viscous damping model used by Herbert [22] and the viscoelastic model used by

Bao and colleagues [13]] and the existing models require a fair amount of empirical

information.

5.1.2 Parametric space and computational setup

To prescribe the translational motions of the junction and the orientation of

link B, we define the states x(t), y(t) and θ(t) as:

x(t) =
(

1− e−
t
τ

) A0

2
cos(ωf t); y(t) = 0;

θ(t) = θ0 +
(

1− e−
t
τ

)
γsin(ωf t+ φ), (5.3)

where A0 is the stroke length of the pin point, θ0 is the mean orientation angle for

link B, γ is the rotation amplitude, ωf is the frequency of the prescribing or forcing

oscillation and φ is the phase angle between x(t) and θ(t). The exponential terms

were used in order to reduce transient effects [23]. The time constant was chosen as

τ = 1.6π/ωf because 99.8% of the prescribed amplitude was reached after a time

length of 5 periods. The following parameters corresponding to symmetric hovering
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were selected [107]:

A0 = 2.8; θ0 = −π
2

; γ =
π

4
; φ = 0 (5.4)

Based on the adopted normalization, the problem is completely defined by

the density ratio ρb/ρf , the frequency ratio ωf/ωn and the Reynolds number Re.

Here, ρb is the density of the wings material and ωn =
√

(k/IA) is the linear natural

frequency of the oscillator (equation (5.2)). The frequency ratio ωf/ωn is used to

characterize the flexibility of the wing section.

Three Reynolds numbers were considered (Re = 75, 250 and 1000) to inves-

tigate the effect of the reduction in viscous dissipation on the system dynamics.

The mass ratio was set to ρA/ρf = 25, as this value provided a ratio close to 2

for the maximum translational inertial force over maximum drag force at Re = 75

for the chosen geometry and kinematics. The above ratio was determined through

numerical experiments with the rigid wing. To compute the maximum horizontal

translational inertial force, the total wing mass was multiplied by the maximum

acceleration determined from the second derivative of x(t) in equation (5.3). The

value of peak drag force, on the other hand, was obtained from the rigid wing simu-

lation at Re = 75. The wing has a thickness of 10% of the undeformed chord length

and circularly formed edges.

The frequency ratio in the case of Re = 75 was set to ωf/ωn = 1/2, 1/2.5,

1/3, 1/3.5, 1/4, 1/6, and for Re = 250, 1000 was set to 1/2, 1/3, 1/4, 1/6. The

resulting range of maximum deflection angles varied from 10◦ up to 70◦. Also, the

rigid profile problem (no angular deformation between the links) was run for each of
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the Reynolds numbers mentioned. We note that for frequency ratios below 1/2, the

computations would fail since the two plates collide during rotation. This limitation

arises from the fact that the flexibility in the present model is concentrated at the

hinge point and the distributed chordwise variations of stiffness and mass are not

accounted for. A flexible beam model and/or inclusion of structural damping may

help to address this issue and enable computations with frequency ratios of about

one.

The grids adopted for the Re = 75 simulations were tailored to maintain a

high refinement zone in the areas where boundary and detached shear layers, as well

as the wake vortical structures are present. The rigid wing was set to move in the

center of a box with dimensions 30Lc×30Lc, in order to minimize interference effects

from the domain boundaries. For all this simulations we chose to use a single block

stretched grid, where a fast direct Poisson solver could be used [95]. A near-uniform

grid zone was generated near the center, where the motions of the two-link system

took place, and this zone was stretched towards the boundaries. The stretching

towards the boundaries of the domain was obtained using the hyperbolic tangent

function in each direction.

For the Re = 75 simulations, the uniform grid zone had a local cell size

of ∆x = ∆y = 0.0038Lc, and the total number of points was 1229 × 551 along

the x and y directions, respectively. Through grid refinement studies, we found

that the above resolution was sufficient to capture all flow features. In Figure 5.2,

computationally obtained aerodynamic forces are shown for approximately half the

resolution throughout the computational domain (total number of points was 664×
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400) and the same forcing conditions (i.e. τ = 0 in equations (5.3)) and Reynolds

number as that for the baseline rigid wing computation. The corresponding lift

and drag coefficients determined in the computations of Wang and colleagues [107],

where a hovering ellipse with the same kinematics is considered instead of a plate,

are also included in the figure. The agreement between the results obtained with the

two different grids is good, with a maximum difference of around 3%. Despite the

differences in the wing-section shapes, after the initial transients (t/T > 2), good

agreement is also seen with the results obtained by Wang and colleagues [107].

For the results of Figure 5.2, within the boundary layers on the link surface,

we estimated the number of grid points to be approximately 8 and 16 for the coarse

and fine grids, respectively. As the Reynolds number increases, the boundary layer

thickness is expected to decrease as
√

1/Re, and in order to keep the resolution

within the above range, a grid with 1320 × 1038 points was found to be sufficient

for both Re = 250 and Re = 1000 cases. All the results presented in this article

were obtained with a 1229×551 grid for the Re = 75 simulations and a 1320×1038

grid for the Re = 250 and Re = 1000 simulations. The governing equations were

integrated for a time length of 14 periods, 21 periods and 15 periods, for Re = 75,

250 and 1000, respectively. The time-averaged quantities were computed over the

last 7 periods, 13 periods and 10 periods, for Re = 75, 250 and 1000, respectively.

5.1.3 Results

Aerodynamic quantities
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Figure 5.2: Time histories of lift and drag force coefficients (CL, CD) for a symmetric

harmonic hovering rigid link at Re = 75 and two different grid resolutions. Blue

line, rigid link, embedded boundary grid 1229×551; green line, embedded boundary

grid 666× 402; and red line, data from Wang and colleagues [107]. t, time; T is the

prescribed motion time period.

Given the complexity of the flexible profile configuration as a function of defor-

mation, a simple, yet consistent, normalization strategy is adopted to obtain force

and power nondimensional coefficients. That is, the lift and drag coefficients are

defined by:

CL(t) =
Q∗y(t)/Lc

1
2
ρf · U2

cLc
= 2Qy(t);

CD(t) = −sgn(ẋ(t))Q∗x(t)/Lc
1
2
ρf · U2

cLc
= −2sgn(ẋ(t))Qx(t) (5.5)
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where Q∗x(t) and Q∗y(t) are dimensional quantities and Qx(t) and Qy(t) are non-

dimensional quantities. Once the equation for the deformation α(t) is solved at

each integration step, the driving forces in the prescribed generalized coordinates

x(t), y(t) and θ(t) are computed from 5.1.

The total power input, sum of horizontal translational power and rotational

power, is computed from

Ptr = Rx(t)× ẋ(t)

Prot = Rθ(t)× θ̇(t), (5.6)

where Ptr and Prot are the translational and rotational power inputs at the hinge

b, Rx(t) is the driving force in the x direction, and Rθ(t) is the driving moment in

the θ(t) angular direction. In an ideal case where the driving mechanism on the pin

is perfectly elastic, all the negative power exerted on the mechanism can be stored

as potential deformation energy for later use, adding to the profiles aerodynamic

efficiency. Here, following Berman and Wang [21], a conservative approach is used.

We suppose that negative power is not reusable and will not be taken into account

in the computation of time averages. Then:

Ptr =


Ptr, if Ptr > 0

0, if Ptr < 0

, Prot =


Prot, if Prot > 0

0, if Prot < 0

(5.7)

The power coefficient is defined as:

CPW (t) =
(P ∗tr(t) + P ∗rot(t))/Lc

1
2
· ρf · U3

c · Lc
= 2(Ptr(t) + Prot(t)) (5.8)

In Figure 5.3 the dependence of mean values of CL, CD, the ratio CL/CD and
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CL/CPW with respect to the frequency parameter ωf/ωn are shown. The rigid wing

has zero torsion stiffness equivalent to ωn = 0.

For all Reynolds numbers considered, lift and drag coefficients exhibit a peak

at the value of ωf/ωn = 1/3. The performance parameter CL/CD also exhibits a

prominent peak at this frequency ratio. For Re = 75, 250 and 1000 increases of

28%, 23% and 21% respect to the rigid profile performance were observed.

The variations of the aerodynamic quantities with respect to the frequency

ratio show similar characteristics for all three Reynolds numbers.The decrease in

viscous forces produces a decrease in drag and an increase in lift over the frequency

parameter range, therefore, CL/CD is generally higher for the higher Re cases. It

is interesting to note the striking difference between the graph of CL/CD obtained

for the Re = 75 case and those obtained for the higher Reynolds numbers. For the

lowest Reynolds number and ωf/ωn = 1/4, the above ratio is over 13% higher than

that obtained for the rigid wing, while for Re = 250 it is only increased by 0.5%.

In Figure 5.3c, it can be seen that for ωf/ωn = 1/3, the performance ratio CL/CPW

is 39% and 28% higher than that obtained for the rigid wing for theRe = 75 and

Re = 250 cases, respectively. Interestingly, this measure is only about 13% higher

than that obtained for the rigid case at Re = 1000.
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Figure 5.3: (a) Mean values of CL and CD as a function of the frequency ratio

ωf/ωn: blue circle, CL at Re = 75; red circle, CL at Re = 250; black circle, CL

at Re = 1000; blue diamond, CD at Re = 75; red diamond, CD at Re = 250;

and black diamond, CD at Re = 1000. (b) Ratio of mean CL/CD versus ωf/ωn:

blue circle, Re = 75; red diamond, Re = 250; and black triangle, Re = 1000. (c)

Mean lift coefficient per unit of driving power coefficient (CPW ) versus ωf/ωn: same

definitions as in (b).

In Figure 5.4, the time histories of the lift and drag coefficients are shown for

all Reynolds numbers at three selected frequency ratios. The effects of flexibility

are noticeable on the lift-force peaks at the initiation of the stroke (indicated with

a black arrow in Fig. 5.4a). For Re = 75 and ωf/ωn = 1/2, corresponding to the
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Figure 5.4: Time histories of lift and drag coefficients for Re = 75, Re = 250 and

Re = 1000. (a) lift coefficient and (b) drag coefficient; blue dashed line, rigid wing;

red dashed line, flexible wing with ωf/ωn = 1/2; green line, flexible wing with

ωf/ωn = 1/3; black dash-dot line, flexible wing with ωf/ωn = 1/4.

most flexible airfoil, this peak is negative, while for the rigid case the coefficient

of lift peaks at 0.5. For all cases in between, the enhancement of the mean lift

force seen in Figure 5.3a comes from the gradual increase of this peak, which is

at 0.83 and 1.28 for ωf/ωn = 1/4 and ωf/ωn = 1/3, respectively. For the latter

frequency ratio, where a structural non-linear resonance occurs, the lift peak is also

delayed and nearly coincides with the translational lift peak. This is translated into
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a larger area under the lift curve per period and a larger time-averaged CL value.

The temporal variations of the lift and drag coefficients for Re = 250 and 1000 are

more complex than the variations seen at Re = 75, and the periodicity is practically

lost. Still, in an average sense, negative lift peaks after stroke reversal and larger

translational lift peaks are seen when ωf/ωn = 1/2. Also, a widened two-peak lift

curve is observed when ωf/ωn = 1/3.

Flow structures

In order to relate the temporal variations of the lift and drag forces to spe-

cific flow structures, we examine several realizations of the instantaneous flow fields.

In Figure 5.5, vorticity isolines are shown for the rigid and ωf/ωn = 1/3 cases at

Re = 250. For clarity, the lift coefficient variation has been added (Figure 5.5k),

together with the temporal variation of the phase-averaged circulation of the most

important vortical structures generated during a flapping cycle. These are the lead-

ing edge vortex (LEV) shown in Figure 5.5a, the end of stroke vortex (ESV) shown

in Figure 5.5c and trailing edge vortex (TEV) shown in Figure 5.5e. The circulation

of each of these vortices was computed as a function of time by direct integration of

the vorticity within a given threshold contour around each vortex. The selection of

the threshold contour, although arbitrary, was consistently taken to be the lowest

closed vorticity isoline in the vicinity of the given vortex. The range of contours was

given by 48 isolines within an interval of 10 vorticity units placed around a hand

picked value at each time. This value was obtained on a position of the shear layer

associated with the given vortex and close to it. Then, the circulation of each vortex
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was first computed in time for both forward and reverse strokes over nine periods,

and then, both of these quantities were averaged. The number of frames available

per period for the simulations was 40.

As the flexible wing approaches the end of the stroke in Figure 5.5a, it exhibits

different rotation velocities on the two components A and B. The driven link B

rotates with the prescribed angular velocity θ̇(t), and the lower link A rotates with

an angular speed [θ̇(t)+ α̇(t)]. The added angular speed α̇(t) affects the overall

dynamics at stroke reversal. First, the camber generated by the angular deformation

α(t) at the end of the stroke (see Figure 5.5b) reorients the zero lift direction on the

wing and enhances wake capture effects. This enhancement mechanism is analogous

to the one produced by orientation advancement in rigid wings [107] . It is important

to note that an excessive degree of flexibility (low frequency ratios) produces a large

camber at stroke reversal, which has a negative effect on the lift production (e.g. at

ωf/ωn = 1/3 in Figure 5.4). The evolution and strength of the LEV on the other

hand (see Figure 5.5a) is only a weak function of the wings flexibility. The formation

time as well as the maximum circulation shown in Figure 5.5l are approximately the

same for the rigid and the flexible wings.

Another effect of the higher rotation speeds at the trailing edge for the flexible

wings is the formation of a stronger shear layer, where higher vorticity values are

found. This shear layer rolls up into a stronger ESV as can be seen in Figure 5.5c.
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Figure 5.5: Behavior of rigid and flexible profile with ωf/ωn = 1/3 at Re = 75 during

stroke reversal. (a-e) Vorticity contours for flexible profile at t/T = −0.0491, 0.0009,

0.0759, 0.1760, and 0.2260; 80 contours, ωmin = −10, ωmax = 10. (f-j) Vorticity

contours for rigid profile at same time locations. White dashed lines denote end

of stroke position. (k) lift coefficient history. (l) Circulation histories of leading

edge vortex (LEV), end of stroke vortex (ESV), and trailing edge vortex (TEV). Γ,

circulation.
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On examining the ESV circulation plots (Figure 5.5k), one finds that the

strength and life span are significantly enhanced when compared with those of a

rigid wing. The ESV pinches off later, forming a pair of counter-rotating vortices

together with the LEV. This vortex pair generates flow directed towards the wing,

enhancing the wake-capturing effects. This is more clearly reflected in the lift coef-

ficient evolution shown in Figure 5.5k.

In contrast to the rigid wing, where the lift curve reaches a maximum (point H)

and starts to decrease, for the flexible wing the production of increased lift continues

for longer (point C). Once a flexible wings deflection has reached its maximum,

the elastic energy stored in the torsion spring is released to generate a restoring

motion, whose timing again depends on the degree of flexibility of the structure

(see Figures 5.5d and 5.5e). This restoring motion produces a dynamical change

in the wings camber with a resulting increase in the fluid forces. This also affects

the formation and growth of the TEV. It is well established that this flow structure

generates a low-pressure zone, which translates into increasing forces up to the

pinch-off time (see, for example, reference [106]). It can be seen in Figures 5.5k-l,

that the time at which the TEV pinches off is correlated with the translational force

peak; this peak is advanced in the ωf/ωn = 1/3 case when compared with that for

the rigid wing.

In Figure 5.6, a quantitative comparison of the LEV, ESV and TEV dynamics

is shown for different flexibilities at Re=75 by determining their average circulations

as a function of time.

120



−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t/T

Γ/
(U

c L
c)

 

 

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t/T

Γ/
(U

c L
c)

 

 

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t/T

Γ/
(U

c L
c)

 

 

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t/T

Γ/
(U

c L
c)

 

 

(a)

(c)

(b)

(d)

Figure 5.6: Averaged circulations as a function of time with respect to stroke reversal

at Re = 75; blue line, TEV; green dashed line, LEV; and red dashed-dot line, ESV.

(a) Rigid airfoil, (b) Flexible wing with ωf/ωn = 1/2, (c) Flexible airfoil with

ωf/ωn = 1/3, and (d) Flexible profile with ωf/ωn = 1/4.

The maximum averaged circulation for each vortex and the time at which it

occurs with respect to the stroke reversal are provided in Table 5.1. As expected,

from what was observed in Figure 5.5, the LEV dynamics is similar for all frequency

ratios in terms of both strength and timing. The TEV on the other hand, attains a

higher maximum circulation as the wing becomes more flexible. However, the time it

takes to reach this maximum circulation is shortest for ωf/ωn = 1/3, where the best

aerodynamic performance is seen. For the ESV vortex, the maximum circulation
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ωf/ωn Γ TEV Time TEV Γ LEV Time LEV Γ ESV Time ESV

Rigid 2.44 0.78 1.30 -0.02 0.44 0.001

1/2 3.14 0.75 1.30 0.03 0.31 0.18

1/3 2.78 0.58 1.25 0.001 0.72 0.10

1/4 2.29 0.68 1.36 0.001 0.87 0.03

1/6 2.36 0.80 1.43 0.001 0.59 0.02

Table 5.1: Values of maximum mean circulation Γ obtained for TEV, LEV, and ESV

at Re = 75. The circulations were obtained by integrating the vorticity function for

each vortex for two strokes and taking the average value for each time frame. Time

is defined as in Figure 5.6 and corresponds to the maximum mean circulation.

increases for the frequency ratios ωf/ωn = 1/3 and 1/4. The peak circulation for

f/n=1/3 is 20% lower than that obtained for f/n=1/4, but the deflection at stroke

reversal in terms of the maximum deformation angle is 90% larger when ωf/ωn = 1/3

(56 deg. for ωf/ωn = 1/3 and 29 deg. for ωf/ωn = 1/4). This is translated into a

larger projected area contributing to the lift force. Also, as seen from Figure 5.6,

the time delay of the peak circulation of the ESV vortex is increased as the wing

becomes more flexible.

A more direct illustration of the above-mentioned vortex evolutions is given

in Figure 5.7, where instantaneous vorticity isolines are shown for eight character-

istic instances during a flapping cycle. For ωf/ωn = 1/3 and ωf/ωn = 1/4, it is

clear that the enhanced ESV vortices produce an oblique-shaped TEV vortex. For

ωf/ωn = 1/4, an excessive negative camber is produced at stroke reversal, which
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then generates a high suction zone on the lower side of the wing leading to the neg-

ative peak in the CL curve seen in Figure 5.4. The Reynolds number effects on the

temporal evolution of the lift and drag forces seen in Figure 5.4 can also be observed

in Figure 5.8, where the instantaneous vorticity isolines are shown for Re = 250 for

all frequency ratios. Clearly, as the viscous damping is decreased, the system dy-

namics system ceases to be periodic and the important vortices are stronger and are

not dissipated as quickly as seen in the Re = 75 case (see Figure 5.7). For the case

of a rigid wing, for example, the LEV from a given stroke interacts with the shear

layer being generated in the next stroke, and this induces a premature formation of

the new LEV. This process is not periodic, which is also reflected in the evolution of

lift and drag forces. A similar interaction is observed at ωf/ωn = 1/2 (see last three

frames in Figure 5.8b). Also, in all flexibility the cases, especially for ωf/ωn = 1/3,

strong interaction between the profile and previous ESV is seen during the transla-

tion phase. Regardless, the usual components of the flow field, namely TEV, LEV

and ESV vortices are noticed for the different flexible profiles studied.

5.1.4 Remarks on flexibility effects

Insect wings are flexible structures that undergo large displacements and de-

formations during flapping, as the wing structures interact with the surrounding

flow. There has been speculation that many insects flap their wings at frequencies

close to the natural frequency of the structure. For example, analysis of Manduca

sexta wings (see for example references [23], [111]) has shown that the wings first
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a b  c  d

Figure 5.7: Instantaneous vorticity contours over one period at Re = 75. Contours

range from -10 (blue) to 10 (red) with 80 isolines. Column (a), rigid wing; columns

(b-d), flexible profile with ωf/ωn = 1/2, 1/3, and 1/4, respectively.
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Figure 5.8: Instantaneous vorticity contours over one period at Re = 75. Contours

range from -10 (blue) to 10 (red) with 80 isolines. Column (a), rigid wing; columns

(b-d), flexible profile with ωf/ωn = 1/2, 1/3, and 1/4, respectively.
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natural frequency is close to the driving frequency in normal flapping motion. This

suggests that insects may be taking advantage of a structural resonance to reduce en-

ergy consumption and enhance aerodynamic performance. Despite the significance

of such a hypothesis, only a limited number of studies have addressed the problem

due to the exceedingly complex fluid-structure interactions that are encountered in

experimental or numerical work. Although three-dimensional computations of the

NavierStokes system coupled with a wing structural system are within the reach of

todays computers, one still needs to develop appropriate mathematical models and

tools to capture all important phenomena in this complex system. In this regard,

the present study extends computational work that has been conducted before with

simplified two-dimensional rigid wings to include the effects of flexibility. The wing

is represented by two rigid links, which are joined at the center by a pin that con-

tains a torsion spring. The kinematics of one of the links is prescribed, while the

motion of the other link is determined by the fluidstructure interactions. Although

a fairly wide range of Reynolds numbers and frequency ratios was examined, we

found that the computations would fail at forcing frequencies close to the linear

resonance frequency due to an excessive degree of flexibility. This limitation is due

to the concentration of flexibility at a discrete point, and replacement of rigid links

with elastic links modeled as elastic beams is expected to help in overcoming this

limitation.

As mentioned earlier, the two-link structural system can be perceived as a

double pendulum with a common hinge. In particular, when one of the link motions

is prescribed, the other link behaves as a pendulum subjected to a constraint arising
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from the prescribed motion and complex fluidstructure interactions. Equation (5.2)

does resemble the equation of a pendulum driven in a fluid. A straightforward

perturbation analysis [71] shows that the structural system can exhibit non-linear

resonances at ωf = 1/3ωn and ωf = 3ωn. These resonances are expected in systems

with cubic non-linearities; for example, in the equations governing local oscillations

of a pendulum about an equilibrium position and elastic systems such as beams [5].

Operation of the flexible wing at the non-linear superharmonic resonance ωf =

1/3ωn was found to be beneficial for aerodynamic performance. Inclusion of fluid

effects will give rise to quadratic non-linearities and additional non-linear resonances.

For the specific set of kinematics that we considered, most of the benefits of

having a flexible wing are associated with the stroke reversal phase of the cycle.

Especially for the optimal flexibility cases (ωf = 1/3ωn), the strength and timing

of the ESV, as well as the dynamical changes of the wings camber due to struc-

tural deformations, are responsible for the performance enhancement. The overall

enhancement mechanism is analogous to that produced by orientation advancement

in rigid wings (see, for example, reference [107]). It is noted that the present com-

putations cover a wide range of frequency ratios and, consequently, wing deflections

range from a few degrees to very large values. For example, in the case of highly

stiff wings (e.g. ωf/ωn = 1/6), the maximum deflection angle between the links was

about 11, 13 and 16 deg. for Re=75, 250 and 1000, respectively, while for highly

flexible wings (e.g. ωf/ωn = 1/2) the corresponding numbers were 67, 68 and 91

deg., respectively. In insects, the wing deformation magnitudes increase as the body

size and mass increase, and it is conceivable that deformations seen in this study at
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the aerodynamically preferred frequency ratio of ωf/ωn = 1/3 could be possible in

some species. On the other hand, for small insects such as Drosophila only small

magnitude wing deformations have been observed. The computations of this study

show that as the wing is made stiffer, the performance enhancements are marginal

when compared with a rigid foil. For example, at Re = 75 and the highly stiff case

ωf/ωn = 1/6, CL/CD is approximately 6% higher than that of a rigid foil. For the

higher Reynolds numbers Re = 250 and 1000 there is actually no enhancement,

and the performance is worse than that obtained with a rigid foil. The above re-

sults indicate that low Reynolds number regimes might benefit performance even at

small chordwise distortions. The force histories, in particular for the low Reynolds

numbers, appear to reach a periodic steady state after the initial transients for all

of the frequency ratios that were considered, suggesting that quasi-steady models

might be able to reproduce this behavior. Such models have been reported in the

literature, and have been adapted for flapping flight based on models developed for

high Reynolds number fixed wing aeroelasticity studies by including wing rotation

along with translation ([32];[34]), and forces due to added mass ([89]). In a more re-

cent study by Wang and colleagues [107] the unsteady forces from experiments and

with two-dimensional computations were compared with the quasi-steady model

predictions. They pointed out that the force predictions, which were made by using

models based on potential flow theory [70] for a constant pitching amplitude and

constant translating speed wing, deviated substantially from the experimentally de-

termined unsteady forces. The force predictions from a semi-empirical model based

on numerical results from steady translating wings at a fixed angle of attack were in
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broad qualitative agreement with the unsteady forces. However, detailed compar-

isons revealed that, depending on the kinematics, the unsteady effects can reduce

the total lift by a factor of 2 to 3. In the present case, due to the wings flexibility,

the identification of the quasi-steady contributions is more complex as additional

new states have been included.

5.2 An Insect at free longitudinal flight

While aerodynamics of insects and other flying animals has received consid-

erable attention over the past decade, the same is not true of response stability of

flying animals. Currently there is a lack of quantitative understanding of the sta-

bility of flying insects. In this section we will present preliminary results from our

effort towards the development of a comprehensive framework that will enable us to

conduct sophisticated numerical experiments to understand and assess the response

stability of insect-like systems in different disturbance environments.

5.2.1 Multi-body insect model kinematics

The insect model is composed of one pair of rigid wings, RW and LW , hinged

to a rigid body, RB1, which respresents the insect’s head and thorax, and another

body, RB2, representing the insect’s abdomen. The latter is also articulated to

RB1 (See Figure 5.9). The coordinate transformations among the different reference

frames and with respect to the inertial frame N are defined in terms of Euler angle

sequences. The kinematic analysis for the given system starts by selecting the
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Figure 5.9: Four rigid body model for the full insect. Rigid Body RB1, head-thorax,

is represented by the tracking frame B attached to its center of mass. Rigid body

RB2, the abdomen, is hinged to RB1 at point D where its respective body frame

is defined. The wing bodies RW and LW are articulated to RB1 at points R and

L respectively, where their tracking frames are defined.

sequences that will define the transformations among the reference systems N , B, D,

R and L. The transformation between the inertial system N and the RB1 tracking

system, B, defined by the unitary vectors b̂1, b̂2, b̂3, is given by a 180◦ rotation

with respect to the axis given by n̂1, followed by a 3-2-1 Euler angle sequence with

angular coordinates ψ (yaw respect to ê3), θ (pitch respect to ê′2) and φ (roll respect

to ê′′1), as shown in Figure 5.10. This is the typical flight mechanics coordinate

transformation and yields a singularity for pitch angles multiple of π/2.
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Figure 5.10: Transformation from inertial reference frame N and RB1 body frame

B. A 180◦ rotation respect to n̂1 is given, followed by a 3-2-1 Euler angle sequence

with angular coordinates ψ (yaw respect to ê3), θ (pitch respect to ê′2) and φ (roll

respect to ê′′1)

The transformation matrix from N to B is

[TBN ] =



cθcψ −cθsψ sθ

sφsθcψ − cφsψ −sφsθsψ − cφcψ −sφcθ

cφsθcψ + sφsψ −cφsθsψ + sφcψ −cφcθ


(5.9)

where s() and c() are the sin() and cos() functions respectively. The transformation

from system B to the system D local to the abdomen is given by two rotation angles:

angle ψ2 with respect to b̂3, and θ2 with respect to the intermediate axis b̂
′
2. The
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corresponding transformation matrix is:

[TDB] =



cθ2cψ2 cθ2sψ2 −sθ2

−sψ2 cψ2 0

sθ2cψ2 sθ2sψ2 cθ2


(5.10)

Next the transformation between the system B and the system R local to the right

wing is done in the following steps:

1. 90◦ rotation with respect to b̂3, followed by a 90◦ rotation with respect to b̂
′
1

2. β′3 degrees rotation with respect to b̂
′′
1

3. An 3-2-1 Euler angle sequence of angles ψ3 with respect to b̂
′′′
3 (beating angle

in the stroke plane, defined here relative to the body coordinate system), θ3

with respect to b̂
IV

2 (out of stroke plane angle), and φ3 with respect to b̂
V

1

(angle that modifies the angle of attack of the wing).

The resulting transformation matrix, [TRB], is defined as follows:
cθ3sψ3sβ′

3 − sθ3cβ′
3 cθ3cψ3 cθ3sψ3cβ′

3 + sθ3sβ′
3

(α4sθ3 + α1)sβ′
3 + sφ3cθ3cβ′

3 α2sθ3 − α3 (α4sθ3 + α1)cβ′
3 − sφ3cθ3sβ′

3

(α3sθ3 − α2)sβ′
3 + cφ3cθ3cβ′

3 α1sθ3 + α4 (α3sθ3 − α2)cβ′
3 − cφ3cθ3sβ′

3

 (5.11)

where the R system is defined by the versor triad r̂1, r̂2, r̂3 (see Figure 5.11 for

reference on the different coordinate systems). Here, α1 = cφ3cψ3, α2 = sφ3cψ3,

α3 = cφ3sψ3 and α4 = sφ3sψ3. The transformation from frame B to frame L is very

similar to the one described above:

1. −90◦ rotation with respect to b̂3, followed by a −90◦ rotation to respect to b̂
′
1
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2. β′4 degrees of rotation with respect to b̂
′′
1. Assuming that the pitch angle of

body B is zero, the angle β′4 is related to the stroke plane angle, β, reported

in many studies ([108], [7]) by the equation β′4 = 90◦ − β.

3. Euler angle sequence 3-2-1 of angles ψ4 with respect to b̂
′′′
3 , θ4 with respect to

b̂
IV

2 , and φ4 with respect to b̂
V

1 .

In the same manner the transformation matrix [TLB(φ4, θ4, ψ4, β
′
4)] can be written

as: 
cθ4sψ4sβ′

4 − sθ4cβ′
4 −cθ4cψ4 −cθ4sψ4cβ′

4 − sθ4sβ′
4

(γ4sθ4 + γ1)sβ′
4 + sφ4cθ4cβ′

4 −γ2sθ4 + γ3 −(γ4sθ4 + γ1)cβ′
4 + sφ4cθ4sβ′

4

(γ3sθ4 − γ2)sβ′
4 + cφ4cθ4cβ′

4 −γ1sθ4 − γ4 −(γ3sθ4 − γ2)cβ′
4 + cφ4cθ4sβ′

4

 (5.12)

The L system is defined by the versor triad l̂1, l̂2, l̂3, and γ1 = cφ4cψ4, γ2 = sφ4cψ4,

γ3 = cφ4sψ4, γ4 = sφ4sψ4. The value that must be given to the angular variable β′3

on the right wing, in order to conserve the same stroke plane as the one present for

the left wing is β′3 = −β′4.

In order to produce symmetric flapping, the relation among the right wing

Euler angle sequence and left wing angular variables must be:

φ3(t) = −φ4(t) ; θ3(t) = θ4(t) ; ψ3(t) = −ψ4(t) (5.13)

Once the transformations among coordinate systems and the positions of the

origins of systems D, R and L are given with respect to the origin of the thorax,

B, the positions of all points in the different component bodies can be computed in

terms of the inertial frame N . Since the rotation matrices form an orthonormal set
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Figure 5.11: Reference frames for rigid body system.

for the points of body B we have:

rNp = RN
B + [TNB] rBp/B (5.14)

where RN
B = [x(t) y(t) z(t)], [TNB] = [TBN ]T , rNp represents the position of a generic

point in body B with respect to the origin of the inertial frame in terms of the n̂1,

n̂2, n̂3 triad, and rBp/B is the position vector from the origin of frame B to point p in

local b̂1, b̂2, b̂3 coordinates. A similar expression can be written for the remaining

bodies:

rNpD = RN
B + [TNB] rBD/B + [TND] rDpD/D (point in the abdomen) (5.15)

rNpR = RN
B + [TNB] rBR/B + [TNR] rRpR/R (point in right wing) (5.16)

rNpL = RN
B + [TNB] rBL/B + [TNL] rLpL/L (point in left wing) (5.17)
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To complete the kinematic analysis of this mechanical system the angular velocities

and accelerations of the different bodies in terms of the time derivatives of the Euler

angles must be obtained. In figure 5.10, the angular velocity of frame B with respect

to the inertial reference frame N can be expressed in terms of the time derivatives

of the Euler angles:

NωB = ψ̇ê3 + θ̇ê′2 + φ̇ê′′1 (5.18)

where the ê3, ê′2, ê′′1 unit vectors in terms of the versors of the B frame are:

ê3 = −sθb̂1 + cθsφb̂2 + cθcφb̂3 ; ê′2 = cφb̂2 − sφb̂3 ; ê′′1 = b̂1
(5.19)

Substituting ((5.19)) into ((5.18)) and rearranging into matrix-vector form we get:

NωBB =


1 0 −sθ

0 cθ cθsφ

0 −sφ cθcφ




φ̇

θ̇

ψ̇


(5.20)

which is the angular velocity of frame B respect to N in terms of the unit vectors

b̂1, b̂2, b̂3. We denote the matrix in the above equation as [NBB
(φ,θ)], and φ̇B =

[φ̇ θ̇ ψ̇]T . Considering the vector identity NωBB × NωBB = 0, the corresponding

angular acceleration is given by:

NαBB =
Nd

dt

(
NωBB

)
=

Bd

dt

(
NωBB

)
= [NBB]φ̈B + [NḂ B]φ̇B (5.21)

The velocity and acceleration of a point p on RB1, in terms of the unit vectors of

frame B are:

vBp =
Nd

dt
(rp)B =

Nd

dt
(RB)B + NωBB × rBp/B (5.22)

aBp =
Nd2

dt2
(rp)B =

Nd2

dt2
(RB)B + NαBB × rBp/B + NωBB ×N ωBB × rBp/B (5.23)
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The angular velocity of frame D with respect to frame B is BωD = ψ̇2b̂3 + θ̇2b̂
′
2,

and in terms of the B frame decomposition:

BωDB =


−sψ2 0

cψ2 0

0 1




θ̇2

ψ̇2

 = [BBD
(ψ2)]φ̇D (5.24)

Then, the angular velocity and angular acceleration of frame D with respect to the

inertial frame N is:

NωDB = NωBB + BωDB (5.25)

NαD =
Nd

dt

(
NωB + BωD

)
=

Bd

dt

(
NωB

)
+

Bd

dt

(
BωD

)
+ NωB × BωD(5.26)

Then, using equation (5.24), BαDB =
Bd
dt

(
BωD

)
= [BḂD]φ̇D+[BBD]φ̈D, the absolute

angular acceleration of frame D in terms of the B frame unit vectors is:

NαDB =N αBB + BαDB + NωBB × BωDB (5.27)

The linear velocity and acceleration of a point pD on RB2 can be found as follows:

vBpD =
Nd

dt
(RB)B + NωBB × rBD/B + NωDB × rBpD/D (5.28)

aBpD = aBD + NαDB × rBpD/D + NωDB ×N ωDB × rBpD/D (5.29)

where aBD is the acceleration of the D frame origin, and is computed from equa-

tion (5.23) for this point in RB1.

For the right wing, the angular velocity definition, and its expression in terms
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of frame B are:

BωR = ψ̇3b̂
′′′
3 + θ̇3b̂

IV

2 + φ̇3b̂
V

1 , and (5.30)

BωRB =


cθ3sψ3sβ3 − sθ3cβ3 cψ3sβ3 cβ3

cθ3cψ3 −sψ3 0

cθ3sψ3cβ3 + sθ3sβ3 cψ3cβ3 −sβ3




φ̇3

θ̇3

ψ̇3


, (5.31)

respectively. Then the corresponding absolute angular velocity NωRB and accelera-

tion NαRB can be readily obtained from expressions analogous to equations (5.25)-

(5.27). Then the linear velocity and acceleration for a point pR laying on the right

wing, RW , are:

vBpR =
Nd

dt
(RB)B + NωBB × rBR/B + NωRB × rBpR/R (5.32)

aBpR = aBR + NαRB × rBpR/R + NωRB ×N ωRB × rBpR/R (5.33)

Equations similar to (5.25)-(5.27) and (5.32)-(5.33) can de derived for the kinematics

of the left wing in terms of frame B. The angular velocity, for example, relative to

B is:

BωL = ψ̇4b̂
′′′
3 + θ̇4b̂

IV

2 + φ̇4b̂
V

1 (5.34)

BωLB =


cθ4sψ4sβ4 − sθ4cβ4 cψ4sβ4 cβ4

−cθ4cψ4 sψ4 0

− (cθ4sψ4cβ4 + sθ4sβ4) −cψ4cβ4 sβ4




φ̇4

θ̇4

ψ̇4


(5.35)

5.2.2 Kinematics of longitudinal flight

In the present study we will limit ourselves to longitudinal flight, where the

insect’s motion is simplified to longitudinal mechanics. Such a flight mode is possible
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when: i) a symmetric wing motion is used and the lateral force and moments are

very small compared to their longitudinal counterparts; ii) the mass distribution is

symmetric and has the same symmetry plane as the model geometry. In such case

the the coordinates for RB1 reduce to the displacements x(t) and z(t) along the

symmetry plane, n̂1 − n̂3, and the θ(t) angle with respect to the body axis, b̂2,

which is aligned at all times with the −n̂2 direction. The transformation matrix

from frame N to B and the angular velocity vector reduce to:

[TBN ] =


cos(θ) 0 sin(θ)

0 −1 0

sin(θ) 0 −cos(θ)

 ,
NωBB = θ̇b̂2 (5.36)

The coordinates that describe the relative orientation of RB2 with respect to RB1

reduce to the variable θ2. The corresponding tansformation matrix from frame B

to D, and angular velocity are:

[TDB] =


cos(θ2) 0 −sin(θ2)

0 1 0

sin(θ2) 0 cos(θ2)

 ,
BωDB = θ̇2b̂2 (5.37)

The rest of the kinematic analysis follows the same path as in the previous section.

5.2.3 Dynamics of longitudinal flight

Here we derive the equations of motion for the longitudinal dynamics using the

classical Lagrange’s equations approach [14]. We define the generalized coordinates

x(t), z(t), θ(t) and θ2(t) to be force driven, and all angular variables that describe

the relative motion of the wing with respect to RB1 to be prescribed in time. We
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first need to define the mass inertia properties associated with each of the four rigid

bodies. For RB1 they are: mB and IByy, the total mass and mass moment of inertia

with respect to the body axis given by b̂2 (see figure 5.12a). We make the additional

assumption that the origin of the B frame is at the same location as the center of

mass, CMRB1, of body RB1. All mass moments of inertia are defined with respect

to the corresponding body center of mass in local coordinates. For RB2: mD and

IDyy, are the total mass and mass moment of inertia with respect to the body axis

passing through CMRB2 and is parallel to d̂2, which is in longitudinal motion the

same as b̂2. The center of mass of RB2 is located on the symmetry plane, d̂1− d̂3,

at positions xCD and zCD from the origin of frame D (see figure 5.12b).

The right wing, RW , is on r̂1−r̂3 plane and in finite thickness cases the wing is

assumed to be symmetric with respect to this plane. The required inertia properties

in this case are: mR, IRxx, IRyy, IRzz, IRxz, the wing mass and moments of inertia

with respect to axes passing through CMRW and parallel to r̂1, r̂2 and r̂3, and the

product of inertia on the r̂1− r̂3 plane respectively (see figure 5.12c). The center of

mass of RW is located at the local coordinates xCR and zCR from the origin of the

R system. The left wing, LW, has similar properties as the right wing: mL, ILxx,

ILyy, ILzz, ILxz. Due to the symmetry assumption the inertia properties of the left

wing are equal to the ones on the right wing. The position of the center of mass of

LW is given by the xCL, zCL local coordinates.

Next we will define the kinetic and potential energies for each rigid body in
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Figure 5.12: Inertia properties and reference frames for bodies: (a) RB1, (b) RB2,

and (c) RW . Properties of the left wing LW are analogous to RW . The degrees of

freedom of the system are the variables x(t), z(t), θ(t) and θ2(t).

the model. In particular the kinetic energy can be defined as:

TBi =
1

2

(
vCMBi

)T
mBivCMBi

+
1

2

(
NωBi

)T
[IBi ]

NωBi (5.38)

where Bi is any of the RB1, RB2, RW or LW bodies; vCMBi
is the absolute

velocity vector of the center of mass of Bi;
NωBi is the absolute angular velocity of

Bi; and mBi , [IBi ] are the mass and mass inertia matrix of Bi. These vectors, as
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we discussed in the previous section, can be expressed in terms of the B frame unit

vectors b̂1b̂2b̂3. The inertia matrix for each body also needs to be expressed in terms

of these versors. The potential energy for each body is given by the gravitational

field:

VBi = mBi g zCMBi
(5.39)

where g is the gravitational acceleration and zCMBi
is the vertical position of the

center of mass coordinate along the Newtonian unit vector n̂3 for body Bi.

In the simplest case of RB1 the resulting kinetic and potential energy functions

are:

TRB1 =
1

2
mB

(
ẋ(t)2 + ż(t)2

)
+

1

2
IByyθ̇(t)

2, VRB1 = mB g z(t) (5.40)

Then applying Lagrange’s equations on the Lagrangian function LRB1 = TRB1 −

VRB1, using x(t), z(t), θ(t) and θ2(t), as generalized coordinates we get the following

system:

mB 0 0 0

0 mB 0 0

0 0 IByy 0

0 0 0 0





ẍ

z̈

θ̈

θ̈2


=



QBx

QBz

QBθ

QBθ2


+



0

−mB g

0

0


(5.41)

where QBx, QBz, QBθ and QBθ2 are the generalized fluid forces acting on the gen-

eralized coordinates. We see that the θ2 equation has no contributions from RB1

(QBθ2 is zero). The contributions to the θ2 equation come from RB2. Note that

for RB2 there is a component of the potential energy arising from a linear torsional

spring KT located at point D, which exerts a restituting moment proportional to θ2
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(figure 5.12b). A torsional damper could also be added. The computation of fluid

forces and moments for each of the immersed bodies in the model is done using the

approach in Chapter 2, which enables us to compute the force FN
B = [FBx, FBy, FBz]

T

and moment with respect to the center of mass, MN
B = [MBx,MBy,MBz]

T , of RB1

in the N frame. In terms of the B frame these forces are simply FB
B = [TBN ] FN

B

and MB
B = [TBN ] MN

B . Then, the generalized fluid forces are computed from [14]

QBxj = FB
B ·

∂vBCMRB1

∂ẋj
+ MB

B ·
∂NωBB
∂ẋj

, , j = 1, 2, .., 4 (5.42)

where xj represents any of x, z, θ, θ2. The resulting generalized fluid forces on

RB1 are: QBx = FBx, QBz = FBz, QBθ = −MBy, QBθ2 = 0. The procedure for

the equations for RB2, RW and LW is similar, where the corresponding velocities

of the centers of mass and absolute angular velocities for each of these bodies is

utilized. The problem becomes intractable to derive analytically, specially for the

wings which undergo three-dimensional motion given by the beating and out of

stroke plane angles ψ3, ψ4 and θ3, θ4 as well as the angles of attack φ3, φ4. For this

reason the derivation of the equations for each body was done using the symbolic

manipulation software Mathematica c©.

Testing the consistency of the model

To verify the above model two test cases were setup, where the effects of the

fluid flow are neglected. In the first problem the system is composed by RB1 and

RB2 only. The degrees of freedom in this case are the four: x, z, θ and θ2. This

system undergoes two-dimensional motion and is equivalent to the two-link model

presented in Section 5.1.1. If the inertial properties and initial conditions are selected

142



to be the same, then both sets of equations should provide the same response. A

comparison between the two models is shown in Figure 5.13 for the following initial

conditions: for the RB1-RB2 computation, θo = −0.5, θ2o = 1, xo = xDBcos(θo)

and zo = 0; for two-link model, θo = −0.5 + π, θ2o = 1, xo = 0 and zo = ηbsin(θo).

As it can be seen the evolution of the resulting energies in time for the both models
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Figure 5.13: Energy plots as a function of integration time for comparison among

RB1-RB2 and two-link model: (a) (blue) kinetic energy of RB1, (red) kinetic energy

of RB2, (•) corresponding kinetic energies for plates B and A of the two-link model;

(b) (red) total energy of the system RB1-RB2, (•) total energy of the two-link

model.

match perfectly. The maximum difference for an integration of 15 computational
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units (letot) was of the order of the tolerance imposed on the numerical integration

(about 10−10). Excellent agreement was also found on the horizontal and vertical

positions of the centers of mass of each body (figure 5.14). These results confirm

that the contributions of RB1 and RB2 to the four rigid body system in longitudinal

dynamics are correctly computed.
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Figure 5.14: Time variation of positions of centers of mass: (a) Horizontal positions,

(blue) RB1, (red) RB2, (•) corresponding positions for plates B and A of the two-

link model; (b) Vertical positions, bodies are identified as in (a).

The second test was performed on the four rigid body model, using harmonic
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kinematics on the wing’s stroke angle and angle of attack. The oscillation amplitude,

forcing frequency, and also the inertia and stiffness properties, were the ones outlined

in the following sections. The equations of motion were integrated using a fourth

order Runge-Kutta method in Matlab c© (function ode45). A zero gravity force was

prescribed. As there are no external forces applied to the system throughout the

calculation the position, xCMT
, yCMT

, zCMT
, of the center of mass of the four rigid

body system:

xCMT
=

mBxCMRB1
+mDxCMRB2

+mRxCMRW
+mLxCMLW

mB +mD +mR +mL

yCMT
=

mRyCMRW
+mLyCMLW

mR +mL

(5.43)

zCMT
=

mBzCMRB1
+mDzCMRB2

+mRzCMRW
+mLzCMLW

mB +mD +mR +mL

is expected to be stationary in the Newtonian frame axes, n̂1, n̂2, n̂3. The time

integration was performed over 20 flapping cycles and the integrator absolute er-

ror tolerance was set to 10−13. The maximum variations of the xCMT
, yCMT

, zCMT

variables in time were found to be less than 2.5e−12, which is of the order of the

tolerance level imposed on the numerical integration. Different values of the integra-

tion tolerance provided corresponding variation values for xCMT
, yCMT

, zCMT
. This

test showed that, although the generalized coordinates x(t), z(t), θ(t), θ2(t) of the

model did undergo important variation, there is no spurious momentum introduced

to the system.
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5.2.4 Hovering of a Musca Domestica model at Re = 500

In this section we will present simulations for a fly model hovering at Reynolds

number of 500. Both prescribed kinematics and FSI of free flight are considered. The

model was created using CAD software from Musca Domestica digital images. The

different bodies can be seen in figure 5.12. The reference length is the wingspan,

b (one wing hinge to tip distance). The head-abdomen length of the model is

LTA = 1.03b. The wings have rounded edges and a thickness of 0.025b. A simple

set of wing kinematics, representative of Diptera wing motion is prescribed in all

simulations. For the right wing, for example, we set:

φ3(t) = Aφsin (ωf t+ α)

θ3(t) = 0 (5.44)

ψ3(t) = ψm + Aψcos (ωf t) ,

where Aφ = π/4 is the amplitude of the angle of attack, and α = π/6 (advanced

rotation) is the phase . The mean stroke angle is ψm = −π/36, and the stroke

amplitude Aψ = 55π/180. The reference velocity UR used is the mean wing tip

velocity given by UR = ψ̇3meanb, where ψ̇3mean = 2Aψωf/π. The Reynolds number

is Re = URb/ν = 500. The RB1 orientation angle on the prescribed kinematics

simulation was set to θ = π/3. Using a stroke angle, β′3 = pi/6, the stroke plane was

aligned with the horizontal plane. The values given to the angles of the left wing

were such that symmetric flapping occurs.

Prescribed kinematics simulation
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First, a calculation of a tethered fly with with prescribed kinematics was con-

ducted. The relative angle, θ2, between RB1 and RB2 was set to zero. The model

was placed in the center of a cubic domain of dimensions 7b × 7b × 7b, with the

origin of frame B at a distance z = 4b from the bottom wall. No-slip boundary

conditions were set on the x and z directions, and no penetration on the y direction,

where the Poisson equation was assumed to have a periodic solution. Level 0 on

the AMR grid consists of 8 × 8 × 8 blocks with 163 cells. Three levels of refine-

ment were used, and together with dynamic adaptivity, the cell size around all solid

boundaries was ∆x = ∆y = ∆z = 0.0068b. With this resolution approximately 150

points were clustered along each wing span. Mesh adaptation was performed every

10 timesteps. The grid was refined/derefined based on two criteria: the presence

of a solid boundary and/or the magnitude of the vorticity vector on a block. A

block was refined when the maximum vorticity magnitude within it was larger than

5.5UR/b, and a set of children where derefined when it was less than 4.8UR/b. The

problem was integrated at constant CFL number, for a time span of four flapping

cycles.

In order to examine the symmetry of the flow and corresponding loads we eval-

uate the maximum total force in the Eulerian reference frame. The corresponding

force coefficients are defined as:

Cmax
xi

=
max (FxiRB1(t) + FxiRB2(t) + FxiRW (t) + FxiLW (t))

1
2
ρfU2

RSw
(5.45)

where xi, i = 1, 2, 3 represents the Eulerian x, y and z coordinates, and Sw = 0.274b2

is the one-wing planform area. The forces Fxi(t) are the hydrodynamic forces for

147



each of the bodies in the model.

The maximum fluid force coefficients in the Eulerian frame are Cmax
x = 3.35,

Cmax
y = 5.3e−3, and Cmax

z = 2.13. The fluid force on the y direction normal to the

model symmetry plane is 0.25% the value of the vertical force, which demonstrates

the validity of the longitudinal flight assumption for this particular set of wing

kinematics. In figure 5.15 the time variation of Cx for each of the four rigid bodies

is shown. Both RW and LW results are identical, and bodies RB1 and RB2

contribute a maximum Cx that is 6% of the amount produced by the wings. This
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Figure 5.15: Time variation of Cx coefficient for different bodies on prescribed sim-

ulation: (blue) RB1, (dashed magenta) RB2, (red) RW , and (•) LW .

result is important since it points to the need of modeling the thorax-head and

abdomen bodies in some high resolution simulations of hovering. The lift and drag
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coefficients for this normal hovering simulation is computed for RW by

CLRW =
FzRW (t)
1
2
ρfU2

RSw
(5.46)

CDRW = −sgn
(
ψ̇3(t)

) FxRW (t) cos (ψ3(t)) + FyRW (t) sin (ψ3(t))
1
2
ρfU2

RSw
(5.47)

and similar expressions can be used forRW . Also the lift coefficient can be computed

directly for RB1 and RB2. These results can be seen in figure 5.16. The mean lift

and drag coefficients computed in periods 3 and 4 for the right wing are CLRW =

0.42 and CDRW = 0.77. Same coefficients were found for LW . The maximum
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Figure 5.16: Time variation of CL and CD coefficients for different bodies on pre-

scribed simulation: (blue) RB1, (dashed magenta) RB2, (red) RW , and (•) LW .

contribution to lift provided by RB1 and RB2 is about 4% of the lift given by both

wings.
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Free longitudinal flight simulation

To be able to conduct simulations of free flapping flight we first need to get

estimates for the inertia properties for each of the rigid bodies in our model. Since

there are no readily available data in the literature, we present here an approach

to obtain realistic estimates for the model we use. We start by setting the ratio of

inertia to aerodynamic force we expect to obtain on the course of the simulation. An

estimate of this ratio is given by comparing the mean inertia force due to tangential

acceleration of the wing center of mass F in = 2mwxCRAψω
2/π to the mean drag

force Dw from the prescribed kinematics calculation above. In a manner similar to

the 2D airfoil calculations presented earlier, we assume the regime is one of high

fluid-structure coupling and F in/Dw ' 1.3. The inertia effects are expected to be

higher due to the contribution of the mass moments of inertia in three dimensional

wing motion. From this ratio, the mean drag force coefficient previously obtained,

and the wing geometry we can derive the value ofmw = 0.2. All inertia properties are

made dimensionless using the fluid reference variables ρf and b. On the other hand,

from the wings CAD model the volume contained by the wing can be computed.

Assuming a constant density of the wing ρw/ρf ' 30 the mass estimated before

can be obtained. Then, all mass inertia properties for the wings can be computed

performing numerical integration along their volume

mw = ρw
ρf b3

∫
Ωw
dΩ

Iwxx = ρw
ρf b5

∫
Ωw

(y2 + z2) dΩ Iwyy = ρw
ρf b5

∫
Ωw

(x2 + z2) dΩ

Iwzz = ρw
ρf b5

∫
Ωw

(x2 + y2) dΩ Iwxz = ρw
ρf b5

∫
Ωw
x zdΩ

(5.48)

here w refers to any of RW and LW . All integrations are performed in the local
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Body i mBi IBixx IBiyy IBizz IBixz xCBi zCBi

RB1 2.323 − 6.646e−2 − − 0.0 0.0

RB2 1.547 − 2.448e−2 − − −0.180 −1.984e−2

RW 0.2 1.741e−3 1.326e−2 1.154e−2 3.962e−4 0.500 −9.923e−2

LW 0.2 1.741e−3 1.326e−2 1.154e−2 3.962e−4 0.500 −9.923e−2

Table 5.2: Dimensionless inertia properties for bodies of four rigid body model,

computed in local coordinate systems. xCBi and zCBi are the local coordinates of

the center of mass of body Bi respect to the origin of the local frame of reference.

coordinate system centered on the wings center of mass location. The numerical

integration was performed by meshing the wings volume with linear tetrahedra ele-

ments, and performing a finite element sum of 4 point quadratures on the elements.

This quadrature and the linear interpolation functions used on the spatial variables

ensures that the integrations are exact on the discretized volumes. Grid refinement

was performed to ensure that the inertia properties were converged up to 10−6.

To define the mass of the thorax-head and abdomen we assume that one wing

mass in our model is 5% of the mass of RB1 and RB2 together. Wu et. al [112]

report this percentage to be 1% for Hoverflyes and 6% for the Manduca Sexta

hawkmoth. Then, the density of RB1 and RB2 was found to be ρB/ρf ' 50. The

computation of inertia properties for RB1 and RB2 followed the same procedure as

the wings. Table 5.2 shows the final dimensionless inertia properties for the model

components.

In order to complete the set of parameters required for the FSI simulation of
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longitudinal flight the dimensionless field acceleration (gravity) was set to g = 0.01,

a value that gives a weight force lower than the required to balance the mean lift

force of the prescribed simulation. Thus, it is expected that the model would have

an upward net motion. Also the initial conditions on the state variables were set

to xo = 0, zo = −0.5b, θo = 900, θ2o = 0, and zero velocities. A unit dimensionless

torsion stiffness KT = 1 was employed at the abdomen hinge. This was seen to

maintain the relative angle between RB1 and RB2 within a 5o amplitude. An initial

attempt using the kinematics of the previous prescribed motion simulation, where

the mean stroke angle is 5o behind the b̂2 axis, gave a large pitch down acceleration,

due to the moment imbalance with respect to y. In the simulation we present below,

we changed the mean stroke angle to ψm = 5.5π/180, advanced respect to the b̂2

axis. In this case a slight pitch up motion was found along the simulation. It is

important to note that, in several flapping wing systems, both hovering and forward

flight have been found to be dynamically unstable through linear stability analysis

(i.e. [94], [97]). Given the system of aerodynamic forces produced through flapping,

and regardless how balanced the mean force and moment equations are initially, it

is expected that the solution will eventually diverge as the integration progresses.

In figure 5.17 the values of the state variables x(t), y(t), θ(t) and θ2(t) as a

function of integration time are shown. The vertical position z(t) is seen to increase

throughout the calculation consistent with the fact that the mean resulting vertical

force is directed upwards. The horizontal coordinate of the center of mass of RB1

takes oscillating positive values, which diminish as the calculation progresses. This

is due to the fact that the orientation angle θ(t) of RB1 increases with time and so
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does the stroke plane angle θ(t) + β′i, introducing a component of the force normal

to the stroke plane angle (lift in the prescribed simulation) along the negative x

direction. The oscillatory component of x(t) is about 0.1b, which is consistent to

the data reported in [112] for a Manduca Sexta hawkmoth model with similar wing

to body mass ratio. The orientation angle θ(t) increases steadily, due to moment

imbalance. A lower value of ψm is required to reduce this effect. Also, θ(t) oscillates

with a peak to peak amplitude of 4o similarly to what is reported in reference [112].
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Figure 5.17: Variation of positions x(t), z(t) and angular coordinates θ(t) (blue),

θ2(t) (red) with time for FSI simulation of free longitudinal flight.

In figures 5.18 the positions of the center of mass of RB1 are shown, together

with the location of the thorax, abdomen and the orientation of the stroke plane at
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different time points. The increase of the angle θ(t) as the simulation progresses is

given by a pitch up momentum of the force normal to the stroke plane. Aerodynamic

forces are follower forces in the sense that they are always aligned (i.e. are normal

or tangent) to the aerodynamic surfaces, and their dynamic effect is in general

destabilizing. This fact points to the need of developing control strategies using

some of the wing kinematics parameters described (i.e. ψm, α) in order to minimize

pitch oscillations or divergence.
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Figure 5.18: Variation of position of the center of mass of RB1 with time. The model

section on the plane n̂1− n̂3 is shown along with the orientation of the stroke plane

(in red) for: (a) t/T = 0.73, (b) t/T = 1.38, (c) t/T = 2.13, and (d) t/T = 2.80.
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Figure 5.19: Variation of force coefficients Cx(t), Cz(t), and CN(t) (force normal

to stroke plane) with time for FSI calculation of flapping wing model in free longi-

tudinal flight: (blue) RB1, (dashed magenta) RB2, (red) RW , and (•) LW . The

green curves correspond to Cx(t), Cz(t), and CL(t) from the prescribed kinematics

simulation.

In figures 5.19 the time variation of force coefficients in the horizontal x, and

vertical z directions, and also in a direction normal to the stroke plane (lift direction

for the prescribed kinematics simulation) are shown. We see that the fluid forces

computed for RW and LW are again equal. Also, as in the prescribed kinematics

simulation the force in the y direction was found to be negligible with respect to
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the other components. The maximum force on the x direction provided by RB1

and RB2 is 8% the force on the wings. It is seen that, due to the stroke plane

rotation, Cx and Cz vary significantly as with time. The coefficients resulting from

the prescribed kinematics calculation are plotted on the same figures for comparison.

All force coefficients take lower values than the fixed body calculation. This is due

to the fact that body motion lowers the ability of the wings to transfer momentum

to the fluid (see also [112]).

The instantaneous flow-fields at different simulation times are seen in fig-

ures 5.20. Here, an isocontour of Q colored by the vorticity ωy shows the evolution

of the fundamental flow structures, namely leading edge and tip vortices. In figures

5.20a-b we see the leading edge vortices attached to each wing, which detach in

the vicinity of the wing tips. Here vorticity is reoriented forming the wing tip vor-

tices. Vorticity is also shed from the regions of the wing proximal to the bodies, and

therefore, two vortical structures are being generated on each wing (figures 5.20c-d).

This secondary vortices are dependent on the planform geometry of the wings used.

The vertical displacement of the model due to the imbalance in the lift force and

its own weight can be clearly seen in the sequence of instantaneous snapshots in

figures 5.20.
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Figure 5.20: Q isocontour colored by vorticity on the y direction. 40 contours of ωy

from −20 to 20 are used. (a)-(h): t/T = 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5.
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Chapter 6

Summary, Contributions and Directions for Future Work

In this work, an adaptive mesh refinement, large eddy simulation strategy has

been developed for fluid-structure interaction problems in transitional and turbu-

lent flow regimes. An immersed boundary reconstruction procedure to represent the

moving and/or deforming bodies immersed in the flow has been proposed. The over-

all method is a generalization of the formulation initially proposed by Uhlmann [101],

where the main difference with existing direct-forcing schemes (i.e. [37], [50], [9])

is that the evaluation of the forcing function is done on the Lagrangian markers

instead of the Eulerian points. The main advantages of this strategy compared to

existing direct-forcing schemes can be summarized as follows:

i) It is more versatile since it decouples the local discretization from the compu-

tation of the forcing function and, therefore, can be implemented into struc-

tured or unstructured codes in a straightforward manner. Most of the available

direct-forcing schemes have been developed in the framework of finite-difference

or finite-volume formulations on Cartesian grids. The proposed scheme can be

used with other spatial discretization approaches (i.e., finite elements).

ii) It is very robust in dealing with contact and collisions of multiple bodies. The

forcing function is built and appropriately scaled based on the contributions of

all bodies in the vicinity of an Eulerian point without any special treatment. In
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most direct-forcing methods, the presence of two or more Lagrangian markers

from different bodies in the proximity of the same Eulerian grid point is usually

the source of ambiguity.

The immersed boundaqry method was also found to maintain the second-order spa-

tial accuracy of the underlying finite-difference solver. Most importantly, it has been

demonstrated that when combined with the scheme that has been proposed to com-

pute the surface forces, it has a sharp-like behavior similar to sharp Eulerian direct-

forcing schemes and boundary conforming methods. The overall computational cost

of the proposed formulation is comparable to other direct forcing approaches avail-

able in the literature (i.e. [9], [50]). In the case of stationary bodies, the interface

tracking step, as well as the computations of the shape functions can be carried out

in a pre-processing module and stored in memory. Then, the computational effort

associated with the forcing step is reduced to a small fraction of the overall cost.

In the case of moving bodies the operations described in Section 2.3.1 need to be

performed at each timestep. The overall cost depends on the total number of La-

grangian markers and the size of the Eulerian grid. The tracking step in the current

formulation, is probably less expensive than other direct-forcing schemes since only

the closest point to each marker needs to be identified. The forcing step on the

other hand, is more expensive than typical direct-forcing schemes since the shape

function computation involves the solution of a 4× 4 linear system (equation 2.11).

However, like all other direct-forcing schemes, the cost per Lagrangian marker is

constant. Therefore, the overall cost is proportional to the number of Lagrangian
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markers.

To extend the range of applicability of immersed boundary methods such as

the one proposed above, to high Reynolds number complex flows, the author has

also developed a structured AMR method. In this approach, a single-block solver is

employed on a hierarchy of sub-grids with varying spatial resolutions. Each of these

sub-grid blocks has a structured Cartesian topology, and each block is part of a tree

data structure that covers the entire computational domain. Time advancement is

done by using a fractional step method. All spatial derivatives are approximated

with second order finite-differences on a staggered grid. The Paramesh toolkit [62]

is utilized to keep track of the grid hierarchy, and perform the required restric-

tion/prolongation and guard-cell filling operations. The author has demonstrated

that the accuracy of dynamic AMR is greatly affected by the conservation prop-

erties of the prolongation and restriction operators. The author has developed a

divergence-preserving prolongation operator tailored to the specific AMR topology,

where the grid size between consecutive refinement levels can only differ by a fac-

tor of two. Overall, the second-order spatial and temporal accuracy of the basic

solver are maintained. The computational efficiency of the proposed formulation is

a balancing act between the lower CPU and memory cost incurred bu using AMR,

and the additional work derived from the augmented computational complexity. In

general, the proposed solver has a significant advantage over single block solvers, in

high Reynolds number FSI problems, where the fine grid patches needed to resolve

the boundary layers on the body surfaces have to be constantly rearranged follow-

ing the motion, For the falling plates simulation of Section 3.2.3, for example, the
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number of grid points utilized in the AMR computation is 1/10 of the ones used in

the uniform grid solution. In terms of wall time, the AMR calculation took about

3 seconds per timestep on a single processor, while the equivalent uniform grid run

required roughly twice that amount. It is also noted that the uniform grid solver

utilizes a direct solver for the Poisson equation (i.e. [9]), which is much more effi-

cient compared to the multigrid solver. If a multigrid solver is to be adopted for the

case of the uniform grid too, then, the computational savings by using AMR would

have been an order of magnitude higher.

In general, it is found for projection schemes for the Navier-Stokes equations

that the Poisson equation solution takes a substantial part of the computing cost.

The problem is particularly acute for parallel multigrid solution schemes on octree

meshes, where sequential relaxation across refinement levels requires extensive data

communication among processors. Also, work load balancing among processors

becomes a very difficult task. The use of a hybrid multigrid and a highly parallel

direct solver for the coarse grid solution, together with sizable meshes on the coarsest

level, is found to improve the computation times on some problems, for example, the

computations of flow around a sphere. It is believed that highly scalable Poisson

solvers for AMR grid structures like the one employed in this work, need to be

developed to perform the next generation of numerical simulations.

The author has also shown that the proposed AMR scheme is well suited for

carrying out LES studies. In Chapter 4, we performed numerical simulations of

spatially developing homogeneous isotropic turbulence, convected through an in-

terface where the grid is suddenly coarsened or refined by a factor of two in each
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direction. The author has compared calculations where the filter width is propor-

tional to the grid size and is discontinuous at the coarse-fine grid interface, with

cases in which the filter-width varies gradually between the values corresponding

to the coarse and fine grids. Both the Smagorinsky and the Lagrangian-Dynamic

Eddy viscosity (LDEV) SGS models have been used. In addition, the explicit filter-

ing of the advective term in conjunction with the application of the LDEV model

has been evaluated. A sudden refinement of the grid does not result in a significant

flow perturbation: small scales are gradually generated downstream of the interface,

resulting in a smooth flow across the interface. When the grid is suddenly coars-

ened, on the other hand, a considerable energy pileup at small scales is observed

near the interface. For coarse-fine interfaces a discontinuous filter width gives more

accurate results than a smoothly decreasing one: decreasing the eddy viscosity al-

lows small eddies to be generated more rapidly, while the smoothly varying filter

gives increased eddy viscosity on the fine-grid side, which delays the generation of

small scales. When the grid is suddenly coarsened, on the other hand, an increase

of the eddy viscosity upstream of the interface through a smooth increase of the

filter-width is found to be beneficial. For fine-to-coarse interfaces, the LDEV model

with a smoothly varying interface is found to give more accurate results than the

Smagorinsky model, and the flow transitions to the single-grid results within one

integral scale L11. The interface effect is inherently related to the amount of eddy

viscosity modeling employed in the simulations. As the Reynolds number Reλf is

increased, for the fine-coarse transition, the intensity and extension of the energy

concentration zone on the fine side is magnified. Correspondingly, on the coarse-fine
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situation, the distance required for the restoration of equilibrium is enhanced as the

resolution becomes coarser.

Explicit filtering has the the ability to decrease the high wavenumber energy

content of the flow prior to the interface, and this improves the transition across the

grid discontinuities. This strategy works very well with the present AMR scheme,

and was found to give excellent results for the case of the flow around a sphere at

Re = 104. The fact that the LDEV model, which has some memory effects, gives

better results than the Smagorinsky one indicates that, perhaps models that include

a transport equation (which also would include memory effects) may be beneficial.

Further investigation of other LES modeling strategies for AMR is left as a poten-

tial future work direction. Compared to available structured [64] or unstructured

AMR [45] formulations, the constraint that neighboring blocks can only differ by

one level of refinement may result in larger overall grids to achieve the same local

resolution, especially in internal flows. This is not a major concern in LES studies

of turbulent and transitional flows, where grid discontinuities generated by neigh-

boring blocks that differ by more than a factor of two can contaminate the high

frequency content and unphysically enhance turbulent fluctuations on the fine grid

side; therefore, they are not desirable.

In Chapter 5, the numerical tools were applied to study and simulate prob-

lems relevant to flapping wing systems at low Reynolds numbers regimes. First, the

influence of flexibility on the aerodynamic performance of a two-dimensional hov-

ering wing section was numerically studied. Here, the wing model consists of two

rigid links that are joined at the center with a linear torsion spring. By prescribing
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the kinematics of the top link, the structural system is effectively reduced to a sin-

gle degree-of-freedom non-linear oscillator. The results obtained demonstrate that

flexibility can be beneficial in terms of enhancing the aerodynamic performance.

Furthermore, it has been found that in the frequency range below the first natural

frequency, the best performance is achieved when the wing is driven at a frequency

close to one of the non-linear resonances (a superharmonic resonance of order three)

of the system. This behavior is common to all of the Reynolds numbers studied. In

terms of the flow physics, the wake capture mechanism is enhanced partially due to

a stronger flow around the wing at stroke reversal. However, it needs to be noted

that the cases where the wing is driven at or close to the first natural frequency

of the system were not considered in this study, and it is possible that a better

aerodynamic performance may be achieved at the fundamental resonance and this

remains to be explored. The study also leads to the following open questions:

i) Why is there a performance enhancement when the system is excited at a

flapping wings non-linear resonance and would one achieve a better performance

with a non-linear resonance compared with a linear resonance?

ii) Which kinematics is preferable from an aerodynamic efficiency standpoint?

The interplay between wing flexibility and kinematics together with qualitative

changes in the system dynamics as a function of the Re number requires further

investigation, and this is left as a direction for future research.

A four rigid body, flapping wing model has also been developed. The model is

composed of the thorax-head, abdomen, and a pair of wings. The kinematics for the
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general motion in three dimensions has been studied, and the equations of motion

have been derived for the simple case of free longitudinal flight. A simple strategy to

estimate the inertia properties of each of the components has been developed. Both

all prescribed kinematics and FSI simulations of longitudinal flight were performed,

showing that the proposed numerical methodology is well suited to approach these

complex problems. It is believed that this work will serve as a basis for more in-depth

studies into dynamics, stability and control in free flight regimes.
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Appendix A

Divergence preserving prolongation in three dimensions

The development of divergence preserving operators in three-dimensions is

similar to the one for two-dimensions outlined in section 3.1.2. In particular, the

discrete divergence of the coarse-grid cell shown in Fig. A.1 is:

uli,j,k − uli−1,j,k

∆xl
+
vli,j,k − vli,j−1,k

∆yl
+
wli,j,k − wli,j,k−1

∆zl
= Du (A.1)

To interpolate the velocities on the cell faces, the one-dimensional interpolations

in two-dimensions, are now replaced with two-dimensional quadratic interpolations

assuming a polynomial variation of the form:

u(ξ, η) = a0 + a1ξ + a2η + a3ξη + a4ξ
2 + a5η

2 + a6ξ
2η + a7ξη

2 + a8ξ
2η2 (A.2)

An example stencil is shown in figure A.1a, and a system analogous to (3.4) can

be constructed by applying Eq. (A.2) in the (ξi+α, ηj+β), α, β = −1, 0, 1 positions

at level l, except for (ξi, ηj). Then the known value of the coarse grid variable at

location (ξi, ηj) is used in

uli,j,k =
1

4

(
ul+1
i′,j′,k′ + ul+1

i′,j′+1,k′ + ul+1
i′,j′+1,k′+1 + ul+1

i′,j′,k′+1

)
, (A.3)

and the four fine grid values are computed by interpolations from Eq. (A.2). The ma-

trix associated to the resulting system can be inverted using symbolic manipulation

software, such that the computation of the interpolation coefficients ai, i = 0, 1, . . . , 8
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Figure A.1: (a) Interpolation stencil for 2D face interpolations used in three di-

mensional divergence preserving prolongation. (b) Internal variables to a given

coarse-grid cell indexed by i, j, k.

will require a 9× 9 matrix-vector multiplication. The computation of the four fine

grid variables requires four additional 9× 1 vector-vector multiplications.

Once the velocity field has been found on the cell faces, the velocities in-

ternal to the coarse cell need to be obtained. There are twelve internal fine-grid

variables, ul+1
i′−1,j′,k′ , u

l+1
i′−1,j′+1,k′ , u

l+1
i′−1,j′,k′+1, ul+1

i′−1,j′+1,k′+1, vl+1
i′,j′,k′ , v

l+1
i′−1,j′,k′ , v

l+1
i′,j′,k′+1,

vl+1
i′−1,j′,k′+1, wl+1

i′,j′,k′ , w
l+1
i′−1,j′,k′ , w

l+1
i′−1,j′+1,k′ and wl+1

i′,j′+1,k′ , that need to be determined

(see Fig. A.1b). Four of the twelve (ul+1
i′−1,j′,k′ , u

l+1
i′−1,j′+1,k′+1, vl+1

i′−1,j′,k′ , v
l+1
i′,j′,k′+1),

can be found using one dimensional quadratic interpolation from the corresponding

coarse-face variables, and for the remaining ones, eight discrete divergence equations

are used as in the two-dimensional example. The resulting system can be written
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as:

0 0 0 0 γ 0 0 0

0 0 β 0 0 γ 0 0

0 α 0 0 0 0 γ 0

0 −α −β 0 0 0 0 γ

α 0 0 β −γ 0 0 0

−α 0 0 0 0 −γ 0 0

0 α 0 −β 0 0 −γ 0

0 0 0 0 0 0 0 −γ





ul+1
i′−1,j′,k′+1

ul+1
i′−1,j′+1,k′

vl+1
i′,j′,k′

vl+1
i′−1,j′,k′+1

wl+1
i′−1,j′,k′

wl+1
i′,j′,k′

wl+1
i′−1,j′+1,k′

wl+1
i′,j′+1,k′



=



b1

b2

b3

b4

b5

b6

b7

b8



(A.4)

where α = 1/∆xl+1, β = 1/∆yl+1 and γ = 1/∆zl+1. The coefficients in the right

hand side are given by

b1 = Du−
ul+1
i′−1,j′,k′ − ul+1

i′−2,j′,k′

∆xl+1
−
vl+1
i′−1,j′,k′ − vl+1

i′−1,j′−1,k′

∆yl+1
+
wl+1
i′−1,j′,k′−1

∆zl+1

b2 = Du−
ul+1
i′,j′,k′ − ul+1

i′−1,j′,k′

∆xl+1
+
vl+1
i′,j′−1,k′

∆yl+1
+
wl+1
i′,j′,k′−1

∆zl+1

b3 = Du +
ul+1
i′−2,j′+1,k′

∆xl+1
−
vl+1
i′−1,j′+1,k′ − vl+1

i′−1,j′,k′

∆yl+1
+
wl+1
i′−1,j′+1,k′−1

∆zl+1

b4 = Du−
ul+1
i′,j′+1,k′

∆xl+1
−
vl+1
i′,j′+1,k′

∆yl+1
+
wl+1
i′,j′+1,k′−1

∆zl+1
(A.5)

b5 = Du +
ul+1
i′−2,j′,k′+1

∆xl+1
+
vl+1
i′−1,j′−1,k′+1

∆yl+1
−
wl+1
i′−1,j′,k′+1

∆zl+1

b6 = Du−
ul+1
i′,j′,k′+1

∆xl+1
−
vl+1
i′,j′,k′+1 − v

l+1
i′,j′−1,k′+1

∆yl+1
−
wl+1
i′,j′,k′+1

∆zl+1

b7 = Du +
ul+1
i′−2,j′+1,k′

∆xl+1
−
vl+1
i′−1,j′+1,k′+1

∆yl+1
−
wl+1
i′−1,j′+1,k′+1

∆zl+1

b8 = Du−
ul+1
i′,j′+1,k′+1 − u

l+1
i′−1,j′+1,k′+1

∆xl+1
−
vl+1
i′,j′+1,k′+1 − v

l+1
i′,j′,k′+1

∆yl+1

−
wl+1
i′,j′+1,k′+1

∆zl+1
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As this system is of rank 7, one more equation similar to (3.6) is added. As in

the two-dimensional case, the left-pseudo-inverse of the resulting 9 × 8 coefficient

matrix Ae can be computed symbolically. The implementation requires additional

8 × 9 matrix-vector operations to obtain the unknown variables. It is possible to

reduce the size of system (A.4), by replacing the values for ul+1
i′−1,j′,k′+1 and wl+1

i′,j′+1,k′

given by the first and last equations, on the remainder ones. Then, the condensed

system is of size 6 × 6 and still requires an extra equation to be full rank. In

this case the computer implementation would require a smaller 6× 7 matrix-vector

multiplication to obtain the rest of the fine-grid variables.
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