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Gender and Ethnicity Classification from Small Subsets of 
Human Body Measurements 

 
Huaining Cheng1, Zhiqing Cheng2, Dustin Bruening1, Darrell Lochtefeld1 

 
1 Air Force Research Laboratory, Wright-Patterson AFB, Ohio 

2 Infoscitex Corporation, Dayton, Ohio 
 

 
1.0 INTRODUCTION 
 

The wide use of computer vision technology often requires recognizing human characteristics (e.g., gender and 
ethnicity) in a natural environment. For gender recognition, human face has been widely used [1-8].  However, the 
accurate front-view face images used in these studies are difficult to obtain in a dynamic setting or from a distance.  Face 
images can be easily altered or obscured by head movements, facial hair, and glasses.  Therefore, they are useful for 
controlled environments but less effective for unstructured environments.  Other researchers have investigated using gaits 
for the prediction of gender [9, 10] based on either silhouettes or motion capture data.  However, capturing accurate 
human locomotion in an unstructured environment is a difficult task.  Furthermore, these studies are limited by the small 
size of the datasets; hence variances in human gaits have not been quantified.  Recently, human shape has been used for 
gender recognition also [11, 12].  However, how to accurately acquire human shape data and how to effectively handle 
high-dimensional shape data still remain as two technical challenges.       

With the development of various 2D and 3D imaging and computer vision technologies, it is possible to directly 
extract basic human body measurements from the data acquired at a distance by 2D/3D cameras, LIDARs, and radars.  
This potentially allows for the inference of gender and ethnicity from human anthropometric measurements. In fact, for 
gender recognition, body measurements are good discriminative factors, as shown in a Linear Discriminant Analysis 
(LDA) study for gender classification [13].  Since body measurements are relatively larger compared to the facial features 
and more stable compared to the gait features, they are more suitable for unstructured and dynamic environments.  
Compared to 3D shape data, body measurements are easier and more efficient to implement.   They can be extracted or 
estimated from 2D or 3D imagery via 2D or 3D image analysis such as edge detection, body segmentation, and 3D model 
reconstruction.  These measurements are intuitive to human analysts and can be considered as pose-invariant.   

Compared to gender recognition, current ethnicity classification also relies heavily on facial images but is less 
studied [5-8, 14].  Therefore, this paper investigates the anthropometry-based gender and ethnicity recognition by 
identifying the optimal anthropometric feature subsets as wells as evaluating the various classification models.  The 
generation of the optimal feature sets is designed as an induction of three different types of feature selection schemes.  
The classification models explored are logistic regression, Support Vector Machine (SVM) [15], and AdaBoost [16] 
classification methods. A large publicly available anthropometric survey, CAESAR [17], is used to produce separate 
training and test datasets.  Furthermore, the effects of random measurements noise on the classification performance are 
studied to provide guidance on classifiers’ performance boundaries.    

To the best of our knowledge, this is the first paper that studies feature selection, model performance, and noise effect 
together for anthropometry-based classification of gender and ethnicity.  The open source machine learning toolkit 
WEKA [18] is used in this study to facilitate the analytical process.  Since features are also called attributes in WEKA, 
anthropometric measurements, features, and attributes have the same meaning in this paper and thus are used 
interchangeably in different context.       
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2.0 RESEARCH DATASET 
 

In this study, the CAESAR anthropometric survey is selected as the source for both training and test data.  An 
anthropometric survey measures and collects data on individual demographic and physical dimension information from a 
human subject pool that statistically represents the target population.  Therefore, it is ideal for training and testing gender 
and ethnicity classifiers.  CAESAR is a large scale NATO country survey sponsored by the US Air Force and carried out 
by a group of organizations in North America (US and Canada), the Netherlands – the tallest population in NATO, and 
Italy – the shortest population in NATO.  The dataset used by this paper is restricted to the North American set only, 
which was collected at multiple regions of North America. After removing any records with missing field values, a 
dataset is extracted which consists of 2263 subjects in three roughly equal age groups (18-29, 30-44, and 45-65).  Among 
the subjects, there are 1208 females and 1055 males.  The ethnicity composition is 243 African Americans and 2020 
White Americans.  Hispanic and other multi-racial subjects are not included in the dataset because of their small sample 
numbers in the original CAESAR survey, and also because of our desire for investigating two-label ethnicity 
classification first, i.e., White vs. African American.   

Since the dataset is not balanced in ethnicity, a data balancing process is made against the ethnicity field by randomly 
removing White American subjects down to 250 subjects.  Though the removal of a large number of White American 
samples may have some negative effects on the classification precision for the White American, it is nevertheless needed 
in order to control the false positives in the predicted African Americans and to attain valid classification accuracy results.  

In the CAESAR survey, there are 83 one-dimensional anthropometric measurements (40 from traditional hand 
measurements and 59 calculated from scan landmarks).  The overall measuring accuracy is within 10 mm at the 
confidence level of 95%.   For each subject, the survey has detailed demographic information and 3D laser body scans 
that show the hand-placed anatomical landmarks.  

The initial training and test datasets include 23 measurements selected from the 40 traditional ones and 2 
measurements chosen from scan-derived ones as the input attributes.  Gender and ethnicity are the class labels and taken 
from the demographic records.  These input attributes are selected in order to include length, breadth, and circumference 
of different body segments plus height and weight (Table 1).  These measurements capture size and proportion 
information among different body segments as well as important joint distances.   Furthermore, individual subject’s 
measurements, excluding height and weight, are normalized with the subject’s height to bring them into a similar 
proportional scale.  

Table 1. Input attributes and corresponding measurements 

Attribute Name Measurement Name 

 

Attribute Name Measurement Name 

HEAD-CIR Head Circumference HIP-CIR-MAX-HT Height at Maximum Hip Circumference

HEAD-LTH Head Length HIP-BRTH-SIT* Hip Breadth, Sitting 

HEAD-BRTH*† Head Breadth THI-CIR Thigh Circumference 

IPD-SE† Inter-pupillary Distance Scan Extracted BUTT-KNEE-LTH† Buttock to Knee Length 

NECK-BASE-CIR Neck Base Circumference ANK-CIR-MALL Ankle Circumference at Malleolus 

NECK-HT-SE Neck Height Scan Extracted KNEE-HT-SIT† Knee Height, Sitting 

CHE-CIR-SCY Chest Circumference at Scye FOOT-LTH† Foot Length 

CHE-CIR Bust/Chest Circumference SHDR-WRST-LTH† Shoulder to Wrist Length 

SHDR-BRTH* Shoulder (Bideltoid) Breadth  SHDR-ELB-LTH Shoulder to Elbow Length 

WST-CIR-PREF Waist Circumference at Preferred Waist HAND-LTH† Hand Length 

CRO-LTH-PREF Crotch Length to Preferred Waist HT* Height 

CRO-HT Crotch Height WT Weight 

HIP-CIR-MAX Hip Circumference, Maximum    

* Selected for gender classification, see Section 4.1. 
† Selected for ethnicity classification, see Section 4.1. 

 
The complete set of measurements listed in Table 1 is only used to obtain the best possible performance benchmarks for gender 

and ethnicity classification.  Experimental classifiers are trained and tested using several subsets that contain a much smaller number of 
measurements from Table 1, derived through the feature selection process described in Section 3.1.      
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3.0 APPROACHES 
 
3.1 Input Attribute Selection 

Attribute selection is beneficial to a learning task because it usually reduces the dimensionality of the data and hence 
the hypothesis space.  This leads to not only better algorithm performance but also a lesser burden on the sensor systems.  
The latter is critically important for real-world operability.  In this study, a three-scheme induction process is designed for 
the attribute selection.  The three selection schemes consist of the information gain for coarse-grained individual attribute 
ranking and the subset evaluation using a correlation-based filter and an AdaBoost wrapper.  The inducted attributes are 
the intersection of the returns from the three selection schemes.  Our goal of feature selection is to find an input attribute 
set having the smallest number of measurements but without a significant loss of class discriminative power.    

The information gain evaluates the significance of each attribute according to the expected reduction in the 
information needed for assigning class labels if the attribute value is known.  The average required information is 
quantified by the entropy term  െ∑ ሻሺ	ln  , where pi is the probability that a training sample belongs to class i.  The 
information gain is an individual attribute ranking scheme which does not take the combining effects of multiple 
attributes into consideration.  

Unlike information gain, subset selection identifies a set of significant attributes through either a filter or wrapper, 
both of which are employed in this study.  The filter approach is represented by the Correlation-based Feature Selection 
(CFS)[19] which uses a heuristic merit score to select “subsets containing features highly correlated with the class, yet 
uncorrelated with each other,” i.e., 

 

௦ݐ݅ݎ݁ܯ																																																																																	 ൌ 	
തതതതݎ݇

ඥ݇  ݇ሺ݇ െ 1ሻݎതതതത
	,																																																																												ሺ1ሻ 

 
where  ݎതതതത is the average feature-class correlation and  ݎതതതത is the average feature-feature inter-correlation.  The main 
advantage of the filter approach is that it is independent of any classification algorithm; hence the returned subset is 
applicable to various algorithms.   

The wrapper approach [20] typically measures the worthiness of a subset by running an actual learning algorithm and 
cross validation for accuracy.  Since there are many possible combinations of feature subsets, the wrapper takes a longer 
time to conclude and may get a different optimal subset depending on the chosen learning algorithm.  In this study, the 
standard AdaBoost is chosen as the algorithm for the wrapper.  This boosting algorithm is a weighted additive model of 
component hypothesis ݄௧ሺ࢞ሻ in the form of, 

  

ሻ࢞ሺܪ																																																																																		 ൌ ,ሻሻ࢞௧݄௧ሺߙሺ݊݃݅ݏ

்

௧ୀଵ

																																																																																ሺ2ሻ 

 
where ߙ௧ is the weight and in this study ݄௧ሺ࢞ሻ is a decision stump of the individual attribute.  We set the iteration number 
T to 50 after some experimentation.  Because AdaBoost minimizes l1-norm ∥ ߙ ∥ଵ, which leads to sparsity, those 
component classifiers with higher weights can form the significant subset naturally.      

Denote {mi}I as the set containing the top 25% information gain rankings and {mi}F and {mi}W as the return subset 
from the CFS and the AdaBoost wrapper, respectively.  The final inducted attribute set {mi} is, 

 
																																																																											ሼ݉ሽ ൌ ሼ݉ሽூ ∩ ሼ݉ሽி ∩ ሼ݉ሽௐ.																																																																																	ሺ3ሻ 

 
If necessary, we could pare down further those measurements in {mi} that are deemed to be difficult to acquire accurately 
by a real world sensor system, through an evaluation of their effects on the classification performance. 
 
3.2 Classification Models 

In this study, three classification algorithms, logistic regression, SVM, and AdaBoost are compared.  The overall 
performance of a classification model is assessed in terms of classification accuracy and the tolerance to random noise.   
We will use the inducted significant attribute subsets as the input instead of the entire 25 measurements.  The benefits of 
this reduced dimensionality are simpler classifiers and smaller generalization error, especially when a large number of 
training samples are used.   
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Logistic regression makes a prediction according to the log-odds (logit) of posterior probabilities of class C given the 
input x.  For the two-label case in this study, the logit function is given by,  

 

݈݃																																																																								
Pr	ሺܥ ൌ 1|ܺ ൌ ሻ࢞
Pr	ሺܥ ൌ 2|ܺ ൌ ሻ࢞

ൌ ߚ	   ሺ4ሻ																																																																													.்࢞ࢼ

 
Therefore Prሺܥ ൌ ݇|ܺ ൌ  are computed by maximizing the log ࢼ  andߚ ሻ is a logistic function and the weights࢞
conditional likelihood of C given the set of training sample x.  Logistic regression doesn’t make any particular 
assumption on the marginal density Pr(X) so it is relatively robust, compared to LDA.  Its potential problem is overfitting 
when more variables are used with limited training samples, though it is not a particular concern for this study, as 
explained above. 

Instead of estimating posterior probability of class, SVM finds the optimal separating boundary between the classes 
directly by maximizing the minimum margin M between the training samples and the hyperplane.  The optimization 
problem is stated as, 

 

																																																																																		min
ࣈ,ఉబ,ࢼ

ሼ
1
2
∥ ࢼ ∥ଶ ሽߦ	ܥ	



,																																																																														ሺ5ሻ 

࢞ሺݕ					ݐ	ݐ݆ܾܿ݁ݑݏ																																																																											
ࢼ்  ሻߚ  1 െ ,݅∀			ߦ ߦ  0, 

 
where  ࢞

ࢼ்  ߚ ൌ 0 is the hyperplane with margin ܯ ൌ 1/∥ ࢼ   is a slack variable with a non-zero value if sample iߦ  .∥
is on the wrong side of the hyperplane, i.e., if there are some overlaps between the classes.  C is a parameter controlling 
the tradeoff between maximizing the margin and minimizing the amount of slack.  The problem can be generalized to a 
nonlinear boundary through kernelization. 

The AdaBoost classifier is implemented as (2). For gender and ethnicity classification, the application of SVM 
requires a normalization or standardization of the input attribute space.  This is due to the fact that each measurement is 
scaled against individual subject’s height, except for height itself and weight.  This introduces large differences between 
the height/weight and all other height-normalized measurements.  It is known that large margin classifiers are sensitive to 
the way features are scaled and our preliminary experiments confirm this.  Therefore, for all samples in the training and 
test sets, each attribute’s z (standard) scores are computed using the corresponding measurement’s mean and standard 
deviation.  The z scores are then used as the actual input attribute values.  Though WEKA has an option for SVM feature 
standardization, we have to complete the process outside of WEKA because of the planned addition of random noise to 
the gender and ethnicity test data later.  
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4.0 EXPERIMENTS 
 
4.1 Optimal Input Measurement Subset 

The purpose of identifying an optimal input attribute set is to enhance the classification algorithm’s workability in a 
real world environment.  Due to the sensor’s viewing angle and occlusion, it is very difficult to obtain a good capture or 
estimation of circumferences and obscured lengths, such as waist circumference and crotch length, etc.  In addition, the 
extracted measurement values inevitably include some noise.  Taking these factors into account, it is ideal if one can find 
an optimal input subset with small number of input measurements, and preferably straight-line measurements such as 
breadth and length of the torso and limbs.  At the same time, the subset should maintain sufficient discriminative power 
so that a good classification rate can still be attained by the reduced number of inputs.    

Using the aforementioned attribute selection scheme, the top 25% attributes from the information gain ranking and 
the two subsets from the CFS filter and AdaBoost wrapper are presented in Tables 2 and 3, respectively.  The attributes 
highlighted by the bold font in the two tables are those appearing on the returns from all three selection schemes.   
According to our selection criteria (3), they are inducted as the final input attributes for classification.  There are some 
divergences in the returns for the gender attributes; only three common attributes (HT, HIP-BRTH-SIT/HT, and SHDR-
BRTH/HT) are present in all three returns.  However, the removal of other gender attributes may not be a huge loss 
because they include some hard-to-estimate or occluded measurements such as height at maximum hip circumference and 
crotch length, etc.  

 
Table 2. Returns for gender attribute selection 

InfoGain Ranking 
(Top 25%) 

Subset by CFS Filter 
Subset by AdaBoost 
Wrapper 

HT 
HIP-BRTH-SIT/HT 
CRO-LTH-PREF/HT 
WT 
SHDR-BRTH/HT 
HIP-CIR-MAX/HT 
NECK-BASE-CIR/HT 

IPD-SE/HT 
SHDR-WRST-LTH/HT 
HAND-LTH/HT 
HIP-BRTH-SIT/HT 
HIP-CIR-MAX-HT/HT 
SHDR-BRTH/HT 
HT 
CRO-LTH-PREF/HT 
WT 

FOOT-LTH/HT 
HIP-BRTH-SIT/HT 
SHDR-BRTH/HT 
HT 
WST-CIR-PREF/HT 

*Bold-highlighted attributes are used for gender classification 

 
Table 3. Returns for ethnicity attribute selection 

InfoGain Ranking (Top 
25%) 

Subset by CFS Filter 
Subset by AdaBoost 
Wrapper 

SHDR-WRST-LTH/HT 
BUTT-KNEE-LTH/HT 
HAND-LTH/HT 
IPD-SE/HT 
FOOT-LTH/HT 
KNEE-HT-SIT/HT 
SHDR-ELB-LTH/HT 

SHDR-WRST-LTH/HT 
BUTT-KNEE-LTH/HT 
HAND-LTH/HT 
IPD-SE/HT 
FOOT-LTH/HT 
KNEE-HT-SIT/HT 
CRO-HT/HT 

SHDR-WRST-LTH/HT 
BUTT-KNEE-LTH/HT 
HAND-LTH/HT 
IPD-SE/HT 
FOOT-LTH/HT 
KNEE-HT-SIT/HT 
SHDR-ELB-LTH/HT 
CRO-HT/HT 
HIP-CIR-MAX-HT/HT 
HEAD-BRTH/HT 
CHE-CIR/HT 

*Bold-highlighted attributes are used for ethnicity classification 

 
The small size of the gender attribute subset may also indicate that these few measurements have significant 

discriminative capabilities.  Intuitively, the ratio of shoulder breadth to the hip breadth is an easy-to-see differentiator 
between male and female, with the former having a higher ratio and the latter having a lower one.  The corresponding 
bivariate chart (Figure 1) of the training dataset seems to support this assertion.  There is a perceived difference in the 
limb length between White and African Americans, but it is not as distinctive as the breadth ratio for gender, as evidenced 
by Figure 2.  These results are consistent with human observations.  
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Figure 1. Clustering of two genders against shoulder and hip breadth 

 

 

Figure 2. Clustering of two ethnicities against limb lengths 

 

Unlike those of the gender case, the top-ranked measurements for the optimal ethnicity feature set are fairly 
consistent across the returns of three attribute selection schemes.  The difference between the two cases can be explained 
as follows.  Since there are quite a few equally-prominent attributes for gender classification, any two or three of them 
may be capable to provide sufficient discriminative power.  This leads to different top rankings by the three attribute 
selection schemes.  On the other hand, for ethnicity classification, since there are only several better-than-average 
attributes, achieving satisfactory classification accuracy requires all of them. 

 

4.2 Classification Results Based on Cross-Validation 

WEKA has built-in 10-fold cross-validation for its learning process.  For gender classification, we first use the 
complete 25-measurement dataset to run Logistic Regression, SVM, and AdaBoost with 10-fold cross-validation.  All 
three algorithms have achieved a similar classification accuracy of 99%.  This value is used as the ideal benchmark to 
gauge how much degradation of performance will occur when the reduced input attribute set is used instead.   A similar 
ideal accuracy benchmark is obtained for ethnicity classification.  It has a value of 88%.   

Since the number of available gender samples is large, the entire dataset can be divided into two equal parts, one with 
1132 samples as the training set and the other with 1131 samples as the test set.  For ethnicity classification, the total 493 
samples are also divided into two equal groups with a balanced number of African Americans and White Americans.  The 
separation of the dataset into training and test sets serves two purposes.  First, by using only the training set for input 
attribute selection and learning with cross-validation, one can better test and validate the classification accuracy 
separately using the test set “uncontaminated” by the attribute selection process.  Second, it allows the introduction of 
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noise to the test set for investigating the effect of random noise on the classifier’s performance.  The performance based 
on the separate test sets and the noise effects are discussed later in Section 4.3.  The classification accuracy results 
presented in this section are associated with the training sets only.   

Table 4 lists the training performance of gender classification for three models using 1132-sample training set with 
three selected input attributes – {HT, HIP-BRTH-SIT/HT, SHDR-BRTH/HT}.  The results demonstrate the effectiveness 
of these three easy-to-acquire input measurements for separating the two genders.  All classifiers have similar 
performance and are very close to the ideal benchmark (within 3%), though logistic regression performs slightly better 
than the other two in overall.  One can conclude from these results that a high-performance and efficient gender classifier 
can be built from any one of the three classification models using these three input measurements.  

The ridge parameter (regulating the weights) in the logistic regression and tradeoff parameter c (regulating the slack 
amount) in SVM do not have significant effect on the performance due to the nature of the dataset.  Both of them are set 
to 1.  It should be pointed out that the SVM results provided in Table 4 are from standardized z scores.  If normalization 
or standardization is not performed, the learning task takes much longer time to complete and the classification accuracy 
degrades to 86.66%.  Therefore, normalization or standardization is very important for SVM.  

 

Table 4. Performance of three-attribute gender classifiers 

 
Logistic 
Regression 

SVM 
AdaBoost 
(50 Iter.) 

Cross-V. Accuracy 96.82% 96.47% 96.11% 

True Positive 497 492 494 

False Positive 17 22 20 

False Negative 19 18 24 

True Negative 599 600 594 

*positive = male, negative = female 

 

A similar learning procedure is applied to the ethnicity training dataset of 247 samples with 6 input measurements – 
{SHDR-WRST-LTH/HT, BUTT-KNEE-LTH/HT, HAND-LTH/HT, FOOT-LTH/HT, IPD-SE/HT, KNEE-HT-SIT/HT}.  
Table 5 lists the classification performance parameters.  All three classifiers perform very close to the ideal benchmark.   
Overall, the ethnicity classifiers cannot attain the same level of accuracy as that achieved by the gender classifiers, even 
with more input measurements.  However they are still very effective for ethnicity recognition purpose with over 87% 
classification accuracy.        

 

Table 5. Performance of six-attribute ethnicity classifiers 

 
Logistic 
Regression 

SVM 
AdaBoost 
(50 Iter.) 

Cross-V. Accuracy 87.45% 87.85% 87.45% 

True Positive 98 99 98 

False Positive 17 16 17 

False Negative 14 14 14 

True Negative 118 118 118 

*positive = African American, negative = White American 

 

Within the ethnicity input attribute set, the hand length, foot length, and distance between eye sockets (IPD) may not 
be easy to obtain accurately through real-world sensors, due to small size of the measurements and occlusion.  If these 
three attributes are removed from the input, the classification accuracy drops to around 80%, as shown in Table 6.  This 
also supports the previous hypothesis that there aren’t dominant body size characteristics for the ethnicity classification, 
in contrast to the case of gender classification. 
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Table 6. Performance of three-attribute ethnicity classifiers 

 
Logistic 
Regression 

SVM 
AdaBoost 
(50 Iter.) 

Cross-V. Accuracy 80.97% 80.17% 78.54% 

True Positive 90 93 88 

False Positive 25 22 27 

False Negative 22 27 26 

True Negative 110 105 106 

*positive = African American, negative = White American 

 

4.3 Effects of Measurement Noise 

This section presents the test accuracy of the three classifiers.  In addition, the effects of measurement noise are 
evaluated in order to draw some preliminary performance guidelines.  For the case of gender classification, random noise 
is added to the test data set of 1131 samples.  The above three classifiers trained using the original 1132-sample training 
dataset are then tested against the noisy test dataset with different levels of noise.  It is assumed that random noise has a 
Gaussian distribution of mean 0 and standard deviation σ.  Two levels of σ are designed to represent noise level of 30 mm 
and 50 mm, respectively.  Inverse transform sampling is used to generate the random noise which is then incorporated 
into each individual test sample.  The test performance values for different noise levels are listed in Table 7.   

 

Table 7. Test accuracy for three-attribute gender classifiers 

Noise Level 
(mm) 

Logistic 
Regression 

SVM 
AdaBoost 
(50 Iter.) 

0 96.37% 96.73% 96.20% 

30 89.21% 88.77% 88.06% 

50 78.07% 77.54% 79.30% 

 

It is shown that all three classification models perform fairly well and robustly under moderate noisy condition in 
terms of their classification accuracies.  Measurement noise within the threshold of 30 mm (which is approximately 1.8 
percent of the average height) can be tolerated without significant reduction of classification accuracy.  This threshold can 
also be used to define an acceptable range for measurement errors if they can be considered as unbiased and normally 
distributed.  

A similar test is performed on the ethnicity classification.  The results are shown in Table 8 for the three-attribute 
case.  It is apparent that the performance of the ethnicity classifier is further deteriorated to the point that at the 30 mm 
noise level, the body measurement alone may not be sufficient for a high confidence decision.  Other non-anthropometric 
information may be needed to boost the performance.    

   

Table 8. Test accuracy for three attribute ethnicity classifiers 

Noise Level 
(mm) 

Logistic 
Regression 

SVM 
AdaBoost 
(50 Iter.) 

0 78.05% 78.86% 80.08% 

30 74.39% 72.36% 73.98% 

50 59.76% 62.60% 63.42% 
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We have also compared six- and three-attribute ethnicity classifier under noisy conditions.  It is found that the former 
has a worse performance than the latter, even though it has more input features.  For example, at 30 mm noise level, the 
six-attribute logistic, SVM, and AdaBoost models are only able to achieve an accuracy of 59%, 67%, and 63%, 
respectively.  It is possible that the 30 mm measurement noise on the three smaller body dimensions (hand length, foot 
length, and distance between eye sockets) could be large enough to negatively affect the classification results.  By 
removing them, the same noise level has a much smaller effect on the remaining larger input attributes.  This result favors 
the use of large body measurements in the inference of human characteristics, besides the inherit benefit of easier data 
acquisition for large measurements.  It also demonstrates the importance of checking models under noise conditions.    
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5.0 CONCLUSIONS 
 

This paper presents anthropometric measurement-based gender and ethnicity recognition.  A new attribute selection 
method has been designed to identify the optimal input measurement sets for gender and ethnicity classification.  Three 
classification models have been experimented with separate CAESAR training and test sets.  The effects of measurement 
noise on the classification accuracy have been simulated and analyzed.  Based on the results of the investigation, the 
following conclusions are in order.  

1. The three classifiers, logistic regression, SVM, and AdaBoost, perform equally well if accurate measurements 
can be acquired.  They achieve very high accuracy for gender classification (up to 96%) and acceptable accuracy 
for ethnicity classification (up to 80%) with only three input measurements.  

2. Different anthropometric measurements have different discriminative power for gender and ethnicity 
recognition.  It is found that height, hip breadth, and should breadth constitute an effect input attribute set for 
gender recognition, whereas arm and leg length related measurements provide effective classification between 
White and African Americans.     

3. The measurement noise has larger adverse effect on the performance of classifiers having input attributes made 
of smaller measurements.  For the gender classifier, a standard deviation of 30 mm can be reasonably used as the 
preliminary threshold for the measurement noise.  For the ethnicity classifier, additional information other than 
anthropometric measurements may be required in order to maintain high confidence in classification results 
under noisy environment.   
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