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Fig. 4. Algorithm I flowchart.
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Fig. 6. A array and B array for processor 1, 2, and 4 faulty.

disjoint paths were shown to exist between any two nodes in the cube.
In doing so the proof illustrates how the message algorithm described
in [ I ] can be made reconfigurable.

If the test table (B array) is constructed and interpreted by a special
processor, this constitutes a system hardcore. In [12] we describe an
easily testable logic structure which can perform this construction
and interpretation function.
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Speed-Efficiency-Complexity Tradeoffs in Universal Diagnosis
Algorithms

JON T. BUTLER

Abstract-Expressions are derived for the average number of steps.required
(speed) and the average number of fault-free units replaced (efficiency) when
universal diagnosis algorithms are applied to systems of various degrees of
interconnection (complexity). Specifically, two algorithms proposed by Smith
[4] are considered. It is shown, for example, that there is a clear tradeoff between
the two algorithms; one is much faster, while the other is more efficient.

Index Ternm-Diagnosis algorithms, fault diagnosis, graph model of system
diagnosis, multiple faults, system reliability, test interconnections.

I. INTRODUCTION

Considerable study has been devoted to the diagnosis of faults in
the multiprocessor model proposed by Preparata, Metze, and Chien
[1] . Variations on this model include a different form of test inval-
idation [2], replacement of fault-free units [3]-[6], probabilistic
considerations [7], [8], and application to other types of digital sys-
tems [9].

This correspondence focuses on the tradeoffs between speed and
efficiency of two diagnosis algorithms proposed by Smith [4]. Spe-
cifically, the average number bf fault-free processors replaced (effi-
ciency) and the average number of steps required (time) are used to
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compare the two algorithms. It is shown that a clear tradeoff exists.
One algorithm is significantly faster but less efficient, while the op-
posite is true of the other algorithm. Further, the speed of diagnosis
is shown to be significantly less dependent on system complexity than
is efficiency.

II. NOTATION AND INTRODUCTORY CONCEPTS

A system consists of a directed graph in which a binary weight is
associated with each arc. The nodes, u0, u 1, * , and U-1, are viewed
as units or processors and arcs between nodes as tests between units.
Thus, ui tests uj if there exists a directed arc from ui to uj. The weight
associated with this arc is viewed as a test outcome and is 0(1) if ui
finds uj to be fault-free (faulty). The set of all test outcomes is called
a syndrome. Test outcomes are generated as follows. If ui is fault-free,
the test outcome is a correct assessment of uj; that is, the test outcome
is 0(1) if uj is fault-free (faulty). However, if ui is faulty, the test
outcome is invalidated and this can occur in two ways. If symmetric
invalidation [1 ] is assumed, the test outcome of a test by a faulty unit
is (arbitrarily) 0 or 1. If asymmetric invalidation [2] is assumed, then
the test outcome is either 0 or 1 if the tested unit is fault-free, but is
I if it is faulty. Thus, for the case of asymmetric invalidation, a faulty
unit fails all its tests.
The object of a diagnosis algorithm is to identify faulty units from

a given syndrome. A step in the algorithm consists of identifying units
to be replaced, replacing them by fault-free units, and generating the
new syndrome. The diagnosis is complete when the syndrome con-
sisting of all 0's obtained. It is assumed that:

1) the state of a unit remains unchanged during a diagnosis unless
it is faulty and is replaced by a fault-free unit, and

2) unreliable test outcomes remain unchanged as long as the both
testing and tested units are unchanged.
The two replacement strategies [4] to be considered are as fol-

lows.
Algorithm 1: Replace all units which fail at least one test and have

not been replaced in a previous step.
Algorithm 2: Replace all units which fail the maximum number

of tests and have not been replaced in a previous step.
Fig. 1 shows the sequence of syndromes which occurs, given the

initial syndrome of Fig. 1(a), when Algorithm 1 is applied and sym-
metric invalidation is assumed. Note that only one step (one appli-
cation of the diagnosis strategy) is required and all units are replaced
(replaced units are indicated by an asterisk). Fig. 2 shows the use of
Algorithm 2 for the same initial syndrome. It is interesting to note
that Algorithm 2 requires one more step, but replaces one less fault-
free unit. In the next section, we will consider the average number of
units replaced and the average number of steps required.
A system of n units is a design Dat(n) if unit ui tests uj iffj-i =

bm mod n, where 1 < m < t. For example, Fig. 1 shows design
D12(5). It has been shown [1] that designs where 3 and n are relatively
prime are equivalent to DIt(n). It will be convenient to assume 3 =
1.

III. AVERAGE NUMBER OF FAULT-FREE UNITS REPLACED

Let Fa,i(f, I) denote the average number of fault-free units replaced
in an interconnection I containingf faulty units. It is assumed that
Algorithm a, for a = 1 or 2 is applied at all steps and either symmetric
(i = S) or asymmetric (i = A) invalidation is in effect. It is assumed

further that each of the () fault patterns is equally likely for fixed

f and that for an arbitrary fault pattern each syndrome in the set of
all possible syndromes is equally likely. We have, therefore,

Fai(f, I) =
I
E

I
E FF(s p)) (1)

where E is a sum over all fault patterns, N(fp) is the number of
fp

u
0

U
Iiu

(a) vU)
Fig. 1. Example of the use of Algorithm I in design D12(5) assuming

symmetric invalidation.

u1

\=3/ 1 \=2 P 1 -- -- 0U (1 a U3(bU2
(a) 2(b) U?(c)

Fig. 2. Example of the use of Algorithm 2 in design D12(5) assuming
symmetric invalidation.

syndromes associated with fault pattern fp, E is the sum over all
S(fp)

syndromes of fp, and FF(S(fp)) is the number of fault-free units
replaced when S(fp) is the original syndrome.
A. Algorithm I with Symmetric Invalidation

Consider the diagnosis of a design when symmetric invalidation
is assumed and Algorithm 1 is applied. A fault-free unit u will be
replaced in the first step if in the initial syndrome there is a test out-
come of a test of u by a faulty unit which incorrectly fails u. Similarly,
in subsequent steps the only way a fault-free unit can be replaced is
if it fails a test by a faulty unit. This, however, implies that the test
outcome of a test by a faulty unit has changed from a 0 to a 1 during
the course of the diagnosis contradicting an earlier assumption.
Fault-free units are, therefore, replaced in the first step only. Thus,
F,,i(f, I) for a = 1 and i = S, can be calculated by considering just
initial syndromes. When I = DIt(n), the number of syndromes N(fp)
for any fault patternfp is 2f', since there aref faults each producing
t unreliable tests whose outcomes occur in two ways. Thus, for I =
DI (n), (1) becomes

F.jf,DIE, (n)) =
I

FF(S(fp)).

n).fp S(fp)

(2)

The double sum of (2) for a = 1 and i = S can be solved by observing
that each unit u in the design contributes a single replaced fault-free
unit when

1) u is fault-free,
2) at least one faulty unit tests u, and
3) at least one of the unreliable tests of u produces a "fail" out-

come.

There are (t) (n tk ) distributions of faulty units such that k

of them test u, since there are (4ways in which k of the t units testing

u are faulty and (n t1l) ways in which then- t -1 remaining

units are faulty. For each of these fault patterns, there are 2k -
different assignments of test outcomes to unreliable tests of u which
indicate u is faulty and 2ft-k different assignment of test outcomes
for the remaining unreliable tests. Thus,
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FIs(f, D11(n))
1 minfti (t (n- t- Ii
- , n

f- )(2k - l)(2ft-k). (3)
(tf k=1

Since ( Itk 1) = 0 when k >f, (3) remains unchanged if the upper

limit of the sum is replaced by t. Doing this and rearranging
yields

Fls(f, D11(n)) =-£ t n

k ) 2k (4)

For a specific design, (4) reduces to a closed-form expression. For
example, in the case of DI I (n), a single loop of n units

it will be convenient to assume that the number of faulty units is small
enough so that when a fault-free unit is replaced, there will be a faulty
unit tested exclusively by fault-free units. Thus, the maximum number
of tests some unit u I fails is t initially and throughout the diagnosis.
Since the number of tests a fault-free unit can fail will remain the
same or decrease during the diagnosis, a fault-free unit is replaced
only when it fails t tests and only in the first step. A firm upper bound
B on f, the number of faulty units in which every replacement of a
fault-free unit is accompanied by at least one faulty unit which is
tested by fault-free units exclusively, is shown in [5] to be

n
B =-+ t-3, fort > 2andn > t + 1,

B =
n

for t = 2,
2

(9)

(10)

and

Fis(f, DII(n)) = f(n f
2(n -1)' (5)

It is interesting to note that Fis(f, D11(n)) is symmetric with respect
tof, increasing from 0 atf = 0 to a maximum atf = n/2 and then
decreasing to 0 again atf = n. The increase in the average number
of replaced fault-free units with increasingf is due to the additional
unreliable data on which fault-free units are incorrectly replaced. For
f> n/2, this phenomena still exists; however, asfincreases there are
fewer fault-free units available for replacement. Thus, Fis(f, DI l(n))
decreases with increasingf for this case.

For designs DI2(n), (4) reduces to

FIs(f, D12(n)) = Fis(f, DI l(n)) [2n 2 2 (6)

which is not symmetric with respect tof. Fig. 3 shows how the average
number of fault-free units replaced by Algorithm 1 (shown in solid
lines) in design DI (n) varies with the number of faultsf, for 1 < t
< 3 and t + 1 S n < 7. The bell-shaped curve associated with the plot
of Fis(f, D1I(n)) versusf is also a characteristic of other designs as
well.

Note that designs with a higher value of t have a higher average
number of replaced fault-free units. It is straightforward to show
that

(7)Fls(f, D t(n)) - FIs(f, DI I (n)) when f

and

FIS(f Djt()) -2t-l Fis(f,DII(n)) whenf n (8)

where g(n) h(n) means lim g(n) = 1. Thus, with respect to the
,,.f(n)

tradeoff between the number of test links (complexity) and the
number of fault-free units replaced (efficiency) in designs, there is
considerable advantage in the case ofAlgorithm I to using as few links
as possible. This is true of general systems as well. Bender [10] has
shown that the addition of one test link to an arbitrary system in-
creases the average number of fault-free units replaced.

B. Algorithm 2 with Symmetric Invalidation
The calculation of the average number of fault-free units replaced

when Algorithm 2 is applied and symmetric invalidation is assumed
is complicated by the fact that fault-free units can be replaced in steps
after the first. For example, in the diagnosis shown in Fig. 4, fault-free
unit uI is replaced in step 2. Thus, a calculation of F2s(f, DIt(n))
must, in general, enumerate fault-free units replaced in fault patterns
subsequent to the initial fault pattern. Therefore, (2) is not applicable
in the general case.

However, (2) can be used when the number of faulty units is small
enough to guarantee replacement at the first step only. In addition,

B =nn- for t = 1. (11)

The calculation of F2s(f, DI t(n)) forf - B can be accomplished
by observing that, if t faulty units test some fault-free unit, there are

(n ) ways to distribute of the remainingf - I faults to the

remaining n - t -1 units. For each of these fault patterns, there are
ft-t = t(f- I) unreliable tests of units other than u1. Since these

test outcomes can occur in two ways, there are (n t 1) 2t(f-i)

syndromes in fault patterns in DI t (n) which result in the replacement
of ui when it is fault-free. The double sum of (2) for a = 2 and i =

S is just n (n i_ ) 2 (f- l). Thus, the average number of fault-free

units replaced is

F2S(f,DII(n))= \ f-
2t¢

forf < - + t -3 if t > 2
I

f<n-1
2

if t = 2,

and
f'n-I if t= l.

(12)

For the special cases of t = 1 and 2, (12) reduces to the following
expressions

F2s(f, D I (n)) = (n -f)f
2(n - I)'

and

F2s(f, D12(n)) = F2s(f, D I (n)) f- I
2(n - 2)'

forf< n - 1 (13)

forf < n -1.
2

(14)

Note that F2S(f, DI I (n)) = F1s(f, DI I(n)), as it should, since Al-
gorithms 1 and 2 are identical in D I I (n). It is interesting to observe
that contrary to the case for Algorithm 1, there is a reduction in the
average number of fault-free units replaced as t increases. Because
of the 21 term in the denominator, this reduction is large for a mod-
erate increase in t.

Fig. 3 shows how the average number of fault-free units replaced
in various designs when Algorithm 2 is applied compares to the
number replaced when Algorithm 1 is applied. Even for small t, the
difference between the two algorithms is substantial. The values of
F2S(f, DI,(n)) not covered by (12) were solved from a computer
enumeration of all fault patterns and syndromes.

It is interesting to note that the value of F2s(f, DII(n)) as expressed
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responding curve.
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Fig. 3. F.s(f, DI (n)), the average number of fault-free units replaced in design D11(n) versusf, the number of faulty units,
for Algorithms I and 2 and symmetric invalidation.
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(a) (b) (c)
Fig. 4. Diagnosis in design D12(5) where a fault-free unit is replaced in

step 2 using Algorithm 2 and assuming symmetric invalidation.

in (12) gives correct values when B <f < t. That is, whenf< t, (12)
yields F2S(f, D I t (n)) = 0, which is correct since no fault-free unit is
ever replaced when there are fewer faults than tests on a unit.
Note that B < t iff n < 3t. Thus, (12) is correct wheneverf < max

{n+t- 3,t.

C. Algorithm 1 with Asymmetric Invalidation
Recall that when asymmetric invalidation is assumed, a faulty unit

will fail all of its tests regardless of the number of faulty units which
test it. No faulty units can be "masked" by other faulty units, as in

the case of symmetric invalidation. Thus, one step only is required
to completely diagnose a system.

Under Algorithm 1 a unit is replaced if it fails at least one test.
Thus, when asymmetric invalidation is assumed, it is possible that
a unit will be replaced which is certainly not faulty, specifically units
which pass at least one test. Therefore, Algorithm 1 is not appropriate
when asymmetric invalidation is assumed. However, for completeness,
the average number of fault-free units replaced in a design DI,(n)
withf faults is

FIA(f, D1t(n)) = FIS(f, Dlt(n)) (15)

since symmetric and asymmetric invalidation are identical with re-
spect to fault-free units. The values of FIA(f, DI I (n)) for various t,
f, and n are plotted in Fig. 5 in solid lines.

D. Algorithm 2 with Asymmetric Invalidation
On the other hand, Algorithm 2 is appropriate when asymmetric

invalidation is assumed. F2A(f, DIt(n)) can be calculated from (2)
by observing that a fault-free unit u, will be replaced only when it is

tested exclusively by faulty units. Thus, of the total (A) fault patterns

only (n t ) involve replacement of u,. Letfp be a fault pattern
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Fig. 5. F.s(f, Di,(n)), the average number of fault-free units replaced in design Dl,(n) versusf, the number of faulty units,
for Algorithms I and 2 and symmetric invalidation.

in which ui is replaced and K(ftp) the number of test links infp in
which a faulty unit tests a fault-free unit. Because asymmetric in-
validation is assumed, these are the only links whose test outcomes
are uncertain. Thus, the number of syndromes N(fp) associated with
fp is given as

N(fp) = 2K(fp).

The number of syndromes in which ui is replaced is 2K(fp)-t since t
of the K(fp) test outcomes, those associated with tests of ui, must be
1. Therefore, the contribution of ui to

E FF(S(fp))
N(fp) s(fp)

of (2) is just 1/2t and it follows that

F2A(f, Dit(n)) =-2t1 -t) (16)

Note that F2A(f, Dit(n)) is identical to F2s(f, DIt(n)) whenf< max

- + t - 3, t}. Fig. 5 shows how F2A(f, Di,(n)) varies withf for

various values of n and t (shown as dotted lines). It is interesting to

note that whenf is small, there is no advantage of asymmetric over
symmetric invalidation, with respect to the average number of
fault-free units replaced. This is a somewhat surprising result.

IV. AVERAGE NUMBER OF STEPS REQUIRED

Of interest in this section is -Tai(f, I), the average number of steps
required to replace allf faulty units in a system I, where I is design
D1,(n). It is assumed that Algorithm a for a = 1 or 2 is applied and
either symmetric (i = S) or asymmetric (i = A) invalidation is in
effect. Again, it is assumed that each fault pattern is equally likely
and that for any arbitrary fault pattern, each syndrome of the set of
all possible syndromes is equally likely.

A. Algorithm 1 with Symmetric Invalidation
Since the derivation of Tls(f, D1t(n)) is long, it is omitted. A

complete derivation is shown in [5]. The plot of TIS(f, DI,(n)) versus
f is shown in Fig. 6 for various values of n and t.I

The graphs show that the average number of steps, for a fixed de-
' Tls(f, Dj,(n)) for n = t is not covered by the expression derived in [5].

The values for this case were obtained by a computer enumeration. Note that
when n = f the syndrome consisting of O's exclusively does not lead to any
replaced faulty units. This syndrome, it is assumed, contributes one step to
TIs(f, Dl,(n)) and T2S(f, Dit(n)).

594



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-30, NO. 8, AUGUST 1981

T (f,D11(n)) 7

5

4

3~~~=

i 2 3 4 5 6 7 f 1 2 3 4 5 6 7

t = 1 Algorithms 1 & 2

3.0

2.0'

1.0

T (f,D
aS 1

3(n)) t= 2

-, -,'--
I/

p
7 I'l

6,-

/i 4

0# t = 3

vs5/ /
,/' 4

& 3 Algorithm 1
Algorithm 2

N Values of n are
shown beside cor-
responding curve.

1 2 3 4 5 6 7 f

Fig. 6. Tas(f, D11(n)), the average number of steps required to diagnose design Dt(n) versusf, the number of faulty units,
for Algorithms 1 and 2 and symmetric invalidation.

sign, increases approximately linearly with an increase in f, the

number of faults. The rate of increase is low. For example, in design
DI2(6), if the number of faults is increased four-fold form I to 4, the
average number of steps required to diagnose the system increases
from 1.0 to 1.275, about a 28 percent increase. The data also shows
that there is a significant decrease in diagnosis time with an increase
in t, the number of tests per unit, for small t. For example, in a system
Djt(6), the average number of steps required to diagnose four faults
decreases by 18 percent from 1.275 to 1.050 when t increases from
2 to 3.

B. Algorithm 2 with Symmetric Invalidation
The complexity in characterizing the number of steps required to

diagnose a set off faults seems to preclude a concise analysis. How-
ever, to serve as a basis of comparison, a computer program was

written to enumerate the syndromes, the steps required for each
syndrome, and the average of the number of steps required.

Fig. 6 shows that the average number of steps required when Al-
gorithm 2 is applied increases with increasing faulty unitsf. Since
Algorithm 2 is identical to Algorithm 1 when t = 1, the plot of the
number of steps is the same for this case. When t > 1, Algorithm 2
exhibits a larger number of steps required, on the average, as well as

a higher rate of increase than Algorithm I. It is interesting to note
that when the number of faults is large, the rate of increase of T2S(f,
DI,(n)) withf is smaller than for small values off. Further, when t
= 3, n = 6, andf = 5, an increase inf to 6 results in a (unexplained)
decrease in T2s(f, D13(6))! A similar situation occurs when t = 3,
n = 7, andf = 6.

Unlike Algorithm 1, where an increase in t results in a decrease

in the average number of steps in a diagnosis, Algorithm 2 displays
varying dependencies on t. For example, in DII(6), iff = 2 or 3, there
is a monotonic increase in T2S(f, DI1(6)) with increasing t. However,
iff = 4 or 5, the average number of steps required increases when t
is changed from 1 to 2 and decreases when t is changed from 2 to 3.
If f = 6 on the other hand, there is a monotonic decrease in T2s(f,
DI t(6)) with t.

C. Algorithms I and 2 with Asymmetric Invalidation
Since a faulty unit will fail all of its tests when asymmetric inval-

idation is assumed, both Algorithms I and 2 always result in one-step
diagnosis for this case. Because the number of steps is 1 regardless
of the number of faultsf their plots are omitted.

V. CONCLUDING REMARKS

Because: 1) Algorithms 1 and 2 both yield one-step diagnosis when
asymmetric invalidation is assumed, and 2) Algorithm 2 results in
significantly fewer replaced fault-free units, Algorithm 2 is the ob-
vious choice for this case. On the other hand, when symmetric inva-
lidation is assumed, the choice of algorithm depends on whether it
is more important to maximize efficiency or to minimize time. The
tradeoffs with respect to these criteria are as follows.

Efficiency:
1) Algorithm 2 replaces significantly fewer fault-free units than

Algorithm 1 for t > 1.
2) when the, number of faultsf and units n are fixed, an increase

in t, the number of tests per unit, results in an increase in the number
of fault-free units replaced when Algorithm 1 is applied. However,
the converse is true of Algorithm 2.

3.0-

2.0-

1.0-
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Time:
1) Algorithm 1 requires significantly fewer steps to diagnose a

system than Algorithm 2 for t > 1,
2) Algorithm I demonstrates a significantly lower rate of increase

in the number of steps required versusf, than does Algorithm 2.
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Abstract-A method is described for realizing asynchronous sequential
circuits in a manner analogous to the stored state method for synchronous se-
quential circuits. The method simplifies the process of constructing asyn-
chronous sequential circuits, allows utilization of existing MSI parts, and avoids
the necessity for concern with races or hazards.

Index Terms-Asynchronous sequential circuits, Muller circuits, self-
synchronization, self-timed systems, speed independent circuits, stored state
sequential circuits.
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I. INTRODUCTION

Although the classical method [1 ]-[3] for realizing asynchronous
sequential circuits is well developed, it requires the expenditure of
a substantial amount of effort to find state assignments that produce
hazard-free and race-free realizations. It also yields realizations that
use large quantities of random gate logic, resulting in high part count
with SSI circuits and little if any regularity. The circuit complexity
of conventionally realized asynchronous state machines increases very
rapidly as the number of states and inputs to the state machine goes
up, making the direct realization of reliable machines with more then
a relatively small number of states and inputs an intractable problem.
While it is possible to decompose a single machine into a collection
of smaller and more easily realizable machines [3], [4], this approach
will typically increase the part count and may substantially slow the
operation of the machine.
The introduction of field programmable ROM's simplified the

process of realizing synchronous sequential circuits by allowing the
development of stored state techniques [5], [6]. In this correspondence
a method is described for applying stored state techniques and self-
synchronization [7]- [10] to asynchronous sequential circuits in an
environment where all elements are Muller circuits or self-timed
systems [ 11], [ 1 2]. In a self-timed environment all system elements
incorporate initiation and completion signals, and a signaling protocol
is used that insures the validity of associated data buses over specified
intervals which are bounded by transitions of the initiation and
completion signals. This greatly simplifies the self-synchronization
process in that the number of signals relevant to the process is small,
and in that the machine operates in single-input-change mode with
respect to these signals.

In what follows the terminology and conventions used for self-timed
systems are compatible with those used in [12], to which the reader
is referred for background and additional detail.

II. SIGNALING PROTOCOL

Because an asynchronous system lacks a clock that can be used to
delimit data transmissions, the signaling protocol used must somehow
incorporate a means to indicate the limits of a transmission. To assure
that the data transmitted from one element of the system to another
are actually received, some form of closed-loop or "handshaking"
protocol is required.
A pulse, regardless of its duration, can be too fast for some element

in a system; therefore transitions must be used in asynchronous sig-
naling conventions. The minimum number of transitions required is
two: one to mark the initiation of the operation (generally called
REQUEST), and another to mark the termination of the operation
(generally called ACKNOWLEDGE). Protocols that use this minimum
number of transitions per operation are called 2-cycle or nonreturn-
to-zero (NRZ) signaling schemes.
An alternative to 2-cycle signaling is 4-cycle or return-to-zero (RZ)

signaling, which uses two transitions each on the REQUEST and AC-
KNOWLEDGE lines per operation. 4-cycle signaling was first invented
by Muller [11 ] and is used in many of his examples of speed inde-
pendent circuits. Both 2-cycle and 4-cycle signaling can be realized
in single-rail (1 wire per bit) form, which is sensitive to the relative
delays of the data paths and the associated REQUEST or AC-
KNOWLEDGE path; or in a delay-insensitive, double-rail (2 wires per
bit) form where the REQUEST or ACKNOWLEDGE signal is embedded
in each bit of the associated data bus [ 12].
The single rail form of 4-cycle signaling shown in Fig. 1 is used in

the circuits described here. This figure and the following description
of the signaling protocol are intended to show how data may be
transferred between requester and acknowledger. It is not intended
to imply that data may only be transferred between the requester and
acknowledger. While it may seem that the state associated with the
negative going transition of the input request or acknowledge signal
is redundant, it is our experience that this is seldom the case. Where
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