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On the Number of Functions Realized by Cascades

and Disjunctive Networks
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Abstract-In this paper, the number of functions realized by cer-
tain networks of two-input one-output gates are presented. Two
networks are considered; one is the disjunctive network, which is
characterized by the restriction that each gate output and each net-
work input connect to exactly one gate input. The other network, the
cascade, is the special case of the disjunctive networks in which each
gate has at least one input which connects to a network input. For
both networks, a recursion relation is derived for the number of
realized switching functions dependent on exactly k variables. Both
expressions have been solved by computer for k up to 15. Also, ex-
pressions are derived for the number of functions realized by cas-
cades and disjunctive networks of two-input one-output cells, where
each cell realizes any of the 16 functions on two variables.

Index Terms-Cascades, disjunctive networks, polyfunctional
nets, switching function decomposition, switching function enumera-
tion, universal cells.

I. INTRODUCTION

IN this paper several previously unsolved enumeration
problems are considered. The first concerns the cascade,

a network of two-input one-output gates, in which the
following restrictions on interconnection apply.

1) The fan-out of each gate is one.
2) Each network input connects to the input of exactlv

one gate.
3) Each gate connects to at least one network input.

Fig. L(b) shows an example of a five-input cascade. Cas-
cades have a number of interesting properties and have
been the subject of many papers; Maitra [1], Sklansky
[2], Minnick [3], Stone [4], Papkonstantinou [51, Weiss
[6], and Sklansky et al. [18]. In Section II, it is shown
that cascade realizable functions are precisely the set of
functions which can be decomposed into a specific form.
Counting the -number of functions with this property
leads to a recursion relation for Neas(k), the number of
cascade realizable functions dependent on k variables.
This relation has been solved by computer for values of
k up to 15, and the results indicate that Ncas (k) varies
approximately as k!cckbc, where c, and b, are constants.

Also considered here is the disjunctive network, a more
general interconnection in which-Day restrictions 1) and
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2) above apply. The two networks of Fig. 1 are examples
of disjunctive networks. Disjunctive networks share some
of the properties of cascades and have been studied by
Levy et al. [7], Maruoka and Honda [8], and Butler and
Breeding 9]. Because of the simplicity of gate inter-
connections, disjunctive networks lend themselves well to
fault detection experiments. For example, the somewhat
more genreral fan-out free network has been studied by
Kohavi and Kohavi [10] and Berger and Kohavi [11].
Since disjunctive networks have nice fault detection prop-
erties, a prospective designer of networks would like to
know how probable it is that a given function is realizable
by such a network. Assuming all k variable functions are
equally likely to require implementation, the probability
that the function is disjunctively realizable is just the
fraction of the total number of functions which are dis-
junctively realizable. It is shown in Section III that this
fraction is quite small even for moderately sized networks.
Also in Section III, it is shown that disjunctively realizable
functions are precisely the set of functions with certain
decompositions. As with cascade realizable functions, this
leads to an expression for the number of functions realized.
In particular, a recursion relation is derived for Ndi8(k),
the number of disjunctively realizable functions dependent
on exactly k variables.

In Section IV, the case of cascades and disjunctive net-
works of two-input one-output cells, where each cell
realizes any of the 16 functions on two inputs, is con-
sidered. For both cascades and disjunctive networks of
cells, a relation is developed for the number of functions
realized when permutation of inputs is allowed.

II. THE NUMBER OF CASCADE REALIZABLE
FUNCTIONS

It has been shown in Sklansky et al. [18] that Bk, the
number of k variable symmetry types realized by cascades,
is related by Bk- 3Bk-1 + Bk-2 = 0, B2 = 3, and B1 = 1.
Solving this equation yields

Bk (2.62)k
2.24

for large k. (1)

This result is now: extended and a relation is developed
for the exact number of casca'de realizable functions.

Consider a cas'cade of two-input and one-output gates
where each gate realizes one of the ten functions on two
variables. Alternatively, in place of these gates one can

681



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 1974 2. REPORT TYPE 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
On the Number of Functions Realized by Cascades and Disjunctive 
Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Department of Electrical and Computer 
Engineering,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In this paper, the number of functions realized by certain networks of two-input one-output gates are
presented. Two networks are considered; one is the disjunctive network, which is characterized by the
restriction that each gate output and each network input connect to exactly one gate input. The other
network, the cascade, is the special case of the disjunctive networks in which each gate has at least one
input which connects to a network input. For both networks, a recursion relation is derived for the number
of realized switching functions dependent on exactly k variables. Both expressions have been solved by
computer for k up to 15. Also, expressions are derived for the number of functions realized by cascades
and disjunctive networks of two-input one-output cells, where each cell realizes any of the 16 functions on
two variables. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



IEEE TRANSACTIONS ON COMPUTERS, JULY 1975

x1

x2
x23

x4

x5

(a)

1

2 2

X3

x4 .4

25

(b)

Fig. 1. Two examples of disjunctive network. (a) Noncascade.
(b) Cascade.

have circuits consisting of a single AND, OR, or EXCLUSIVE
OR gate plus possibly one or two inverters. Let f(X) de-
note the function realized by a cascade, where X = {xi,
x2, ,Xk} is the set of inputs. The procedure for calculat-
ing Neas (k) is based on the observation that each cascade
realizable function, f(X), dependent on k inputs can be
expressed as'

f(X) =g (h (X - xi} ),xj) for 1 < j < k (2)

where g (h,xj) is the function realized by the gate whose
output is the network output and h (X - { xj) is the
(cascade realizable) function realized by the other gates
in the network. Thus, each cascade realizable function is
a member of at least one set, Sj, where Sj includes all
functions with the decomposition2 of (2). Since the union,
SI U S2 U U..u Sk, is exactly the set of cascade realizable
functions, the inclusion/exclusion principle3 can be used
to derive Ncas(k) as follows

Noas(k) S1U S2 U .. U Sk

Si,S I Si, nS2I
-$1 t~~~~~~~~~~~1,12

+ Si,ilnSi2nSi31+.-
il,w2,ie;rl ei2
i2 O'i3;i3 i£il

+ Si*UnS2 n ..n S* (3)
where

il

is summed over all ii E {1,2, ,k},

E I Si, nSi2j
21,12

nt2
il Oi2

is summed over all pairs ii,i2 E {1,2,... ,k} such that
il $ i2, etc.

Si, n Si2 n *- n Sip ,

of course, is the number of functions with p decomposi-
tions of the form shown in (2), where j = il,i2, ,ip.
From Theorem 4.9 of Curtis [13], a function with these
decompositions also has the following form:

f(X) = H(X -{Ixi,,xi2,..ip)
O xil* Oxi2* 0 ... O Xip* (4)

where 0 E { ,+, }, xij* E {xi,, i,ij and ia $tis for
a 7 b.

For some assignment of O's and l's to the variables xi1,
x2, * * *, and xi,, f(X) is exactly H(X - Xil,xi2, .. y,Xip} ).
Consider a cascade which realizes f(X), in which the
inputs xii, xi2, , and xip are replaced by O's and l's
according to this assignment. Such a network, realizes H
and contains redundant gates, those gates which connect
to O's and l's. If p < k - 2, there is at least one non-
redundant gate, and so the functions realized by all redun-
dant gates can be incorporated into adjacent nonredundant
gates without changing the function realized, thus elimi-
nating nonredundant gates. Since the resulting network
is a cascade which realizes H(X - {x1,x2, ..,x,}), we
have the following result.
Lemma 1: A cascade realizable function, f(X), which

can be decomposed in all of the following p ways

f(X) = 1(h1(X - {xi}),xi,)

f(X) = g2(h2(X - {XI2}),Xj2)

(5)

f(X) = gp (h, (X x- p }) xip)
also has the decomposition

f(X) = H(X - xii,X,i2, * *.Xip}
O XiI* 0 Xi2* 0... Oxi,i

where H is cascade realizable for 1 < p < k - 2.
Trivially, the converse of Lemma 1 is true, and so

ISi, nS2n n Sipl

(6)

1 Except where noted, the switching functions in this paper are
nonvacuous in the variables of the argument (depend on all
variables). Set notation is used to express the variables of the argu-
ment when more than one variable is involved. Thus, h(X -
Ixj,xi }), for example, denotes a function h dependent on all variables
in X except xi and xi.
2A discussion of switching function decomposition appears in

Kohavi [12, pp. 103-114] and Curtis [13].
a A discussion of the inclusion/exclusion principle appears in Liu

[14, pp. 96-1061.

is exactly the number of functions of the form given in
(6). For each of the Noas (k- p) choices for H in (6),
if 0 = * or +, the 2P ways to complement or leave un-
complemented the variables xil, xi2, *.* X, and xi, result in
a distinct f(X). Therefore, for 0 = * and +, there are
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2+1Ncas(Ak- p) distinct functions. Lemma 1, of Butler
and Breeding [9] shows that if H(X -{ Xii,xi2,* ,xyp})
is a cascade realizable function on k variables, then so also
is the complement function H (X -{ xi,Xt,x ,xi,x).
From this and the fact that a D b = a ff b, it follows
that there are Ncas((k- p) cascade realizable functions
when 0 = (. Thus,

Si,- n Si2 n ... n Si. (2P+1 + 1)No..(k -p)
for 1 < p < k-2. (7)

For a function f(X) with the decomposition of (5),
where p = k - 1 and p = k, it can be seen, again from
Lemma 4.9 of Curtis [13], that f(X) also has the de-
composition

f(X) = xl*0 x2*0...* Xk*. (8)
Since the converse is true trivially, the number of cascade
realizable functions for these cases is given as

fISi, n Si2 n ... n Sik-,
SISlnS2fn... nlSk= (2k+1)2. (9)

Comparing (9) and (7), it is appropriate to let

Ncas(1) = 2. (10)
Since there are (k) ways to choose the p subscripts in

{Si, n Si2n .. nSi

and for each choice (7) or (9) apply

* Si, nS2n ... nSitp
il, i2. e ip

(2 + 1) Nas (k- p) for 1 < p < k - 1.

TABLE I
NUMBER OF k-VARIABLE CASCADE REALIZABLE FUNCTIONS

k

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N (k)cas
10

114

1,842
37,226
902,570

25,530,658

825,345,250
30,016,622,298

1,212,957,186,330

53,916,514,446,482
2,614,488,320,210,258

137,345,270, 749,953,610
7,770,078,330,925,987,210

470,977,659,902,530,345,986

a= 4.04095...

b= 0.28790-s.

Indeed, if (13) is substituted into (12) we have
k-1 k1

M!c,kbc = E (-1)P+l (kp) !p!

(2P+1 + 1) (k-p) !c0>-b -(-1)k(2k + 1) cAb.
Rearranging,

1 = ~2k1 (2/CC) _ E(1c_p ( 1)k(2k + 1)
P=1 p! ,~p!=

When k approaches oo, the right term approaches 0 and
the other two terms become the series equivalents of
exponential functions. Thus, in the limit,

(11)

The substitution of (11) and (9) into (3) yields the
following.

Theorem 1: The number of cascade realizable functions,
Noa.s(k) dependent on k variables is

k-ik
Noaa (k) = E (-1) + (2P+1 + I)Noas(k- p)

-(-I)k(2k + 1)Ncas(1) (12)
where Noa,, (1) 2.
A computer program has been written which computes

the value of Ne,,8(k) as given by (12) for values of k up
to 15. The result of this computation is shown in Table I.
Altho gh an exact explicit expression for N,,a, (k) has not
fbeen discovered, the data of Table I indicate the following.

Conjecture:

Noasq(k) -. k c,kb, for large k (13)

where

2 = 2 exp (2/cc) + exp (1/cc). (14)
Solving for cc yields

4
= (ln

=L (17)12 1

Choosing the negative sign, yields infinitely many complex
values of cc. Choosing the + sign gives cc- 4.04095...
the value consistent with the data of Table I. By way of
comparison, the values of N8 (A;(k) as obtained from (13)
approximate the exact values as obtained by (12) to
within 6.0 percent, 0.01 percent, 0.03 percent, and 0.0002
percent for k = 2, 3, 4, and 5, respectively.

III. THE NUMBER OF DISJUNCTIVE
REALIZABLE FUNCTIONS

In this section an expression is developed for Ndii(k),
the number of functions realized by k-input disjunctive
networks. For the case of the general combinatorial net-
work of two-input one-output gates, there are three gate
types.

Type 1: Both gate inputs connect to a network input.
Type 2: One gate input only connects to a network input.
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Type 3: Neither gate input connects to a network input.
It is assumed that the networks are nondegenerate in

that gate inputs not connected to network inputs connect
to the outputs of other gates. In Fig. 1 (a), for example,
gates ,1 and 132 are Type 1, 13 is Type 2, and 14 is Type 3.
Lemma 2: A combinatorial network -n of two-input one-

output gates has at least one Type 1 gate.
Proof: Let a path Pt, = (01,22,... 0,n,) in 7 denote a

sequence of n gates, such that the output of 1 connects
to an input of #i+,, for 1 < i < n - 1. Since there are no
closed loops in a combinatorial network, no cell appears
more than once in any path. Thus, it is appropriate to
consider a longest path Pm' = (#1',#2',B* 3m'), where
m > n for all other paths P,n in 7. But this implies 31' is
neither Type 2 nor Type 3, for otherwise there would be a
longer path in q. Thus, ,3' is Type 1. Q.E.D.
From Lemma 2, it follows that a disjunctive network 7t

can be decomposed as shown in Fig. 2, where q' is a dis-
junctive network containing one fewer gate than q. Thus,
a disjunctively realizable function f(X) has the following
decomposition.

f(X) = h (g (xii,,i2) ,xi3,.v ,Xik) for ij E {1,2, * - - ,k}

(15)

where g is realized by gate 13 of Fig. 2 and h is realized by
1'. Thus, each disjunctively realizable function is a mem-
ber of at least one set Siii2, where Si1i2 includes all func-
tions with the decomposition of (15). The application of
the inclusion/exclusion principle yields for the number of
disjunctively realizable functions

Ndis(k) = S512 U SIS U * U Sk-lk

= £ I Sab I - E
a,b a,b,c,d
a Hb a ob,c #d

sab n Scd

{k +1

+ (-1) 2) ISsln3 fn ... nSflIk
(16)

Each term Sab n Scd n ... n Scf in (16) represents the
number of functions with decompositions of the form (15),
where (ii,i2) = (a,b), (c,d), - * *, (e, f). Let D, a decomposi-
tion set of f(X), denote this set of decompositions, and let
GD(V,E), a decomposition graph of f(X), be an undirected
4graph with vertex set V = {x1,x2,* ,x} and edge set
E defined as follows; edge eab E E if and only if h (q (xa,xb),
X -{ Xa,Xb }) E D. GD ( V,E) consists of m disjoint con-
nected subgraphs G, (V,,E,), G2 (V2,E2), * * *, and Gm(Vm,
Em); such that V, u V2 u *** UVm = V and El uE2 u

UU Em = E. Let GD(V,E) be undefined if D is null.
Theorem 2: Let f(X) be a function decomposable ac-

cording to the decompositions in a decomposition set D.
For each subgraph Gi(Vi,Ei) in GD (V,E) with the prop-
erty Vi 2 2, f(X) has the decomposition

4Graph theoretical concepts are discussed Liu [14, pp. 167-182]
and in Hr~y [15].

xi

0x.
12

Xi313

Fig.

X.
k

2. Decomposition of a disjunctive network into a gate and
another disjunctive network.

f(X) = H(xi,* 0 xi2* 0 ... Q xip*,xip+, ..,xi) (17)

where xi,xi2t,... xip E Vi.
Proof: If Vi = 2 there is only one decomposition

of the form shown in (15). Since g(xil,xi2) is realized by a
gate, it depends on both xi, and xi2. Thus,

9(Xil,Xi2) = Xil* 0 xi2*. (18)

Substituting (18) into (15) yields (17), proving the as-
sertion.

For Vi . 3 there must be at least vertex xii E Vi
which is incident to at least two edges eii2 and ei,i3; other-
wise Gi(Vi,Ei) would be disconnected. Thus, f(X) has at
least two decompositions,

f(X) = hi(gi(xi,,xi2),X - xi,,xi2} )
f(X) = h2(92(Xil,Xi3),X - fXiljXi3}). (19)

Applying Theorem 4.5 of Curtis [13], shows that f(X)
also has the decomposition

f(X) = H(xi,* 0 xi2* 0 Xi3*,X - {xil,xi2,xis}). (20)

If Vi = 3 the assertion is proved. If Vi > 3 there is
at least one vertex, call it Xi4, which is adjacent5 to xi,, xi2,
or xi3; otherwise Gi( Vi,Ei) would be disconnected. Assume
without loss of generality, that Xi4 is adjacent to xi,. Thus,
f(X) also has the decomposition

f(X) = h3(gS(xil,xi4),X - Xil2Xi4}). (21)

From the application of Theorem 4.5 of Curtis [13] to
(20) and (21) it follows that

f(X) = HI((xi* OL Xi3*) A Xil* A Xi4*,

X - I xi,,xi2,xi3,xi4}) (22)

where F, E {I,+, }. From (22), it follows that

f(X) = H" ( (xi2* LI Xi3*) A xil*",X - {Xilxi2,Xi3}). (23)

From Corollary 3.1A of Curtis [13], a function with a
simple disjunctive decomposition can have only two de-
compositions involving the same variables. Both decom-
positions have the form expressed in (20). Thus, the
argument of H in (20) involving xi,, xi2, and Xis is equal
to the corresponding argument of H" in (23). Thus,

5 Two vertices x, and Xb are adjacent if there exists an edge eab
incident to both.
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L = A = O. (24)

Therefore, (22) can be written as follows:

f(X) = HI(xi,* Q xi2* 0 Xi3* 0 xi4*,X - {Xil1Xi2,Xi3,Xi4}).
(25)

If i = 4, the assertion is proved. Otherwise, the above
procedure can be applied starting with (25) to yield the
assertion for any p. Q.E.D.

If GD(V,E) has more than one disjoint connected sub-
graph with the property Vi > 2, then D can be broken
down into disjoint nonempty subsets, D1, D2, * * , and D.,
where the decompositions in subset Di correspond to
edges in these subgraphs. For a function f(X) with such
a decomposition set, it can be concluded from Theorem 2
that f(X) also has all of the following decompositions:

f(X) = H1 (xi,* 0 xi2* 0 0 xia*,X- {Xi,xi2, ..**xia})

f(X) = H2(Xia+l* A Xia+l* A ... A xia+b*

X - {Xia+l1Xia+22 * yXia+bD

f(X) = Hg(Xia+,+...+Y+l* Xia+I + --+y+2* El ...

LI Xia+b+...+y+z*)X - {Xia+b+-.+y.l)

ia+b+ . . .+y+2v***,Xia+b+ * * *+Y+z})*(26)

Applying Theorem 4.10 of Curtis [13], yields the follow-
ing result.

Theorem 3: Let f(X) be a function decomposable ac-
cording the decompositions in a decomposition set D.
Then, f(X) is also decomposable as follows:

f(X) = H(xi,* Q xj2* 0 . 0 Xia* Xia+l* A Xia+2* A ...

A Xia+b*,*Xia+b+...+y+l L -ia+b+ +y+2 0

(27)Xa+b+ . .+y+zy * *$Xik)

where

Xii,xi,.. ,Xia E Vl;Xia+l,Xia+2, ,Xia+b E V2;...;

and

ia+b+*+y+l Xiab+*. .+y+2, Xia+b+.. ++z E Vs

for V., the jth disjoint connected subgraph vertex set
with the property Vj .2 2, 1 < j < s.
Now consider the case where the function f(X) of

Theorem 3 is realized by a disjunctive network n. For at
least one assignment of 0's and l's to

i2; * * Xia;Xia+22 ..* *Xia+b;* ;Xia+b+- - +y+2; Xi*a+b+- - +y+z

the functions

xil* 0 xi2* 0 ... 0 Xia*,xia+l* A Xia+2* A * A Xia+b*l
* * .1Xia+b+..+1t* 0 Xia+b+*-+y+20* *...* Xia+b+]X ,y+.*+

reduce, respectively, to

1*2 .a+1 x* * * ia++...+8+l

For this same assignment of 0's and l's to the input vari-
ables of q, 7 realizes

H(xil*lxja+1*, * *-xia+.b+...+y+l ... ,Xik). (28)

Those gates in q which connect to inputs fixed by the
assignment to 0 or 1 are redundant, realizing c= y*
where c is the gate output and y is the other input. If H
has at least two arguments, then X has at least one non-
redundant gate. Therefore, the functions realized by re-
dundant gates can be incorporated into the functions
realized by nonredundant gates, eliminating the former.
Call the new network -i'. q' realizes, of course, (28) and is
disjunctive, since the fan-out of each gate is still one. If
xi,, for example, appears complemented in (28), then a
new network can be formed which realizes6

H (xi,, xi.+,*, Xia+b+ *+y+l* ... **Xik)
by changing the function of the gate to which xil connects.
Similarly, all other gates connecting to inputs which are
complemented in (28) can be so modified. This forms 77",
a disjunctive network realizing

H(xi1,xia+l ,* * Xia+b+...+y+1, ...*Xik).

This proves the following.
Corollary 3.1: Let f(X) be a disjunctively realizable

function decomposable according to the decompositions
in a decomposition set D. Then, f(X) is also decompos-
able as:

f(X) = H(xi,* Q xi2* Q -- 0 Xia*l,Xia+l* A Xia+2* A ...

A Xab* * ia+.+Y+l O Xia+b+...+y+2 0

OI Xia+b+±* .+v+z . .*Xik) (29)
where H is a disjunctively realizable function and where

XiI,Xi2, ... ,Xia E Vl;Xia+l,Xia+2...* Xia+b E V2;.**;

Xia+b+.. +y+1,Xia+b+. +y+2..2.**Xia+b+.. +±+z E Vs,

where Vj is the jth disjoint connected subgraph vertex
set such that Vj . 2, 1 < j . s.
From Lemma 4 of Butler and Breeding [9], there exist

disjunctive networks which realize the functions

Xil* 0 Xi2* 0 * 0 Xia*,Xia+l* A Xia+2* A ...

A Xia+b*,),
and

Xia+b+ *-+y+l Xia+b+-. +y+2L0**- * xia+b+. .

Further, since there exists a disjunctive network realizing
H, the interconnection of networks suggested by (29) re-
sults in a disjunctive network realizing f(X). Thus, it
follows that Sab n Scd n - -- n Sef 1, the -number of dis-
junctively realizable functions with decomposition set D,

6 This is a direct consequence of Lemma 2 of Butler and Breeding
[91.
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is precisely the number of functions with the decomposition
of (29). To determine nb nS,d n fln Sef I, observe
that there are Ndis(k -s) ways to choose H. For each
choice of H, when 0 = or + there are 2a+1 ways to
complement or leave uncomplemented the variables xii,
X2 .., and xia, and when 0 = @ there are only two
functions xi, (G xi2 @ ... (D xi. and

Xil E Xi2 ffl ... ED Xia.

Thus, a total of 2a+1 + 2 choices exist. However, from
Lemma 2 of Butler and Breeding [9], it follows that if
H (a,.* ,z) is realized by a disjunctive network, then so
also is H (,, z). Since for every function represented by

Xil* O xi2* 0 ... Oxia.*
the complement function is also represented by

Xil* 0 Xi2 0
Q ... Q xia,

only one-half of the 2a+1 + 2 or 2a + 1 choices for

XIl*Oxi2*0 O Xia*

result in a unique f(X). In the same way, independent
choices can be made for

Xia+l* A Xia+2* A ... A Xia+b*,N
and

Xia-4b+. .+y+l D Xia+b+±..+y+2 D
... Fli Xia..

Thus, for k - s > 2,

SabfnScdnl fSneSl
= (2a + 1) (2b + 1)... (2z +1)Ndia(k 8) (30)

For k - s = 1, Theorem 3 shows that f(X) has the de-
composition

d (k) = EI W(G(V,E))
(G(V,E))

(34)

where W(G(V,E)) is a weight associated with graph
G(V,E) and the sum goes over all graphs on V = k
labeled vertices.

Corresponding to (34) is the counting series

00x

D(x) = d(k)
"

k=1
(35)

It is shown in Ford and Uhlenbeck [16] that if
1) W(G(V,E)) is independent of the labeling of

G(V,E) and
2) W(G(V,E)) is the product of weights assigned to

disjoint the connected subgraphs of G(V,E), then

D(x) = exp [C(X)]- 1, (36)

where

XXic(x) = X cj) -

k=l 1!
(37)

for

c(j) = F, W(G(V,E)),
{G(V,E)}

(38)

where the sum of (38) goes over all connected graphs with
j labeled vertices.

For the problem at hand let G1(V1,E1), G2(V2,E2), *.,
and G, (Vt,Et) denote the disjoint connected parts of graph
G(V,E), and let

W(G(V,E) ) = W(G1(V1,E1) ) * W(G2 (V2,E2) ) - . ..

(39)
H(xl*O x2*0... Ox**). (31)

H in (31) must depend on the argument, and, thus it can
have only two values, H(a) = a or H(a) = d. For
k - s = 1 the number of disjunctive realizable functions is

(2k + 1) 2. (32)

Comparing (30) and (32), it is appropriate to choose
Ndi8(1) = 2. Thus,

S12 n S13n ... n Slk n n Sk-lk = (2k +1)Ndis(l).
(33)

Each term in (16), the summation for Ndi8(k), corre-
sponds to a distinct decomposition graph on k vertices
whose contribution to the sum is given by (30) and (33).
Since all graphs except the one containing no edges are
represented by a term in (16), the value of NdiB(k) is
obtained by enumerating graphs on k vertices, calculating
the contribution of each, and summing the result. To
facilitate this computation, we make use of a result from
graph theory.

Consider the sum

where

W(Gi(Vi,Ei)) = N

= (-1)ci(2t* + 1)N
vi = 1

vi > 1 (40)

for N, a dummy variable, and vi = Vi 1, ei = Ei 1.
Comparing (39) and (40) with (30), (31), and (16)

yields

Ndis(k) = [-d(k) + Nk :Ndi( j) -*N
j= 1,2A..k - 1] (41)

where Ndi8( j) -* Ni means substitute each occurrence of
Ni in the expression by Ndi8 ( j). The minus sign preceding
d(k) appears because the contribution of each term in
(41) is the negative of the corresponding contribution to
Ndi5(k) as given by (16). The NI term in (41) appears
because in the expression for Ndi.(k), the contribution of
the graph containing no edges, is 0. Substituting (40)
into (38) yields

c(j) = N

c(j) = E (-1) e(2i+ 1)N
(G(V,E)}

for j = 1 (42)
for j > 1. (43)
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Since the sum in (43) goes over all connected graphs with
vertices, the expression can be written as

TABLE II
NUMBER OF k-VARIABLE DISJUNCTIVELY REALIZABLE FUNCTIONS

(2)
c(j) = (2i + 1)NE (-l)e'y(j,e)

e=O

k

(44)

where -y( j,e) is the number of connected labeled graphs
with e edges and j vertices. This number is7

'y(je) = J(-l)r+l j! e 1) )
r==1 r jil Si ia ! .. j!|

2

3

4

5

6

7

8

9

10

11

12

(45) 13

where f(ji, the round sum, goes over all compositions
(jl +j2+ * * * + j, = j) of j, for ji > 1.
Substituting (44) into (45) and rearranging yields

c(j) = (2j + 1)N (-1)'+' f j!
r .3r!

15

Ndis (k)

10

114

2,154
56,946

1,935,210
80,371,122

3,944,568,042
223,374,129,138

14,335,569,726,570
1,028,242,536,825,906

81,514,988,432,370,666
7,077,578,056,972,377,714

667,946,328,512,863,533,930
68,080,118,128,074,301,929,138

k Nd=
d(k) = k! .J3

j-1- Se (pi)
D(pi)D(P2) ... D(pj) (50)

where

D(pi) = 1 for pi = 1

2ji(<i - 1)
1=

= (-1)Pi+l
p
+1 pi>l.

Substituting (50) into (41) yields the following.
Theorem 4: The number of disjunctively realizable func-

tions Ndi8(k) dependent on k variables is

(2)

+ (-1)f+(j- 1)!W
o-

(46)

The sum over e in the summation over r is 0 for all ji
while the sum over e in the rightmost term is 1. Thus,
(46) reduces to

c(j) = -1)!(2i+ 1)N (47)
for j > 1. Substituting (42) and (47) into (37) yields for
the counting series on connected graphs

C(x) = N{x - x2 +--

+ (-1)+1[(2j + 1)/jlxj + * 1. (48)

Expressing exp [C (x) ] as an infinite series and substitut-
ing into (36) yields

D(x) = C(x) + 1/2C2(x) + + (1/m!)Cm(x) +

(49)
The coefficient of x8 in (49) is d(k)/k! and so d(k) can
be expressed as follows

7For a derivation of 'y(j,e), see Ford and Uhlenbeck [16].

Ndis(k) = -k! di(i)f D(p)D(p2) ... D(pj)

pvi)
(51)

where Ndi8(1) = 2.
In expanded form (51) is

Ndis(k) = k(k- 1)2Ndi8(k -1) - k(k - 1)(k -2)

*[3 + (k-3) (25/8)]Ndi8(k-2) +

+ (-1) 1(k - 1) !(21 + l)Ndi.(1). (52)

Table II shows Ndi8(k) for 2 < k < 15 as computed from
(52) on a digital computer. These data appear to behave
in the same way as Noas (k); that is, for large k an ap-
proximation to (51) may be Ndi8(k) = k!cdkbd. However,
if this is the case, the quality of the approximation for
k < 15 is significantly inferior to the approximation for
Ncaa (k). Thus, with the data at hand, Cd and bd can only
be roughly estimated as 6.8 and O.0171, respectively. For
these values, the approximation is accurate to within
84.2 percent, 71.7 percent, 59.2 percent, and 47.5 percent
of the exact values as given by (51) for k = 2, 3, 4, and
5, respectively.

It is interesting, also, to compare the number of dis-
junctively realizable functions with the total number of

(2)
,E (-1)1
e=O
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switching functions. From Harrison [19] the total num- TABLE III
ber of functions,*akdependentonexactlykvariabls NIJMBER OF FUNCTIONS RREALIZED BY k-INPUT CASCADES OF CELLSber of functions, a(k) dependent on exactly k variables 15 ALLOWING PERMUTATION OF INPUT LABLES

at(k) = Q (_l )-i22i.

a(k) approximates 22' for large k. The percentage of func-
tions which are disjunctively realizable is 100 percent, 52
percent, 3 percent, 10-3 percent, 10-11 percent, 1029 per-
cent, and 10-58 percent for k = 2, 3, 4, 5, 6, 7, and 8, re-
spectively. Thus, even for moderate k, the fraction of
switching functions which are disjunctively realizable is
extremely small.

IV. THE NUMBER OF FUNCTIONS REALIZED
BY CASCADES AND DISJUNCTIVE

NETWORKS OF CELLS

In this section, the number of functions realized by net-
works of two-input one-output cells is considered, where
each cell realizes the input/output relation

c = koab + kldb + k2ab + k3ab (54)

for c, the output and a and b, the cell inputs. Since there
are two ways to assign 0's and l's to each of the coeffi-
cients in (44), there are 24 = 16 different assignments in
all. Each assignment results in a-unique switching func-
tion c = f(a,b) on two or fewer variables. A cell which
can realize any of the 16 switching functions is described
as universal.

Maitra [1] has shown that the number of functions
realized by a k-input cascade of universal cells with a fixed
assignment of input variables is

toas(k) = 2.6 + 8
5 (55)

where t058(k) includes the number of functions which de-
pend on k, k - 1, k - 2, etc., variables. In a cascade of
cells where permutation of the inputs is allowed, all cas-
cade realizable functions dependent on k inputs, Ncag(k),
are realized. This follows from the fact that for each
cascade realizable function f(X) on k variables there is an
assignment of variables to the inputs of the cascade and
an assignment of functions to the cells such that f(X) is
realized. A similar statement is true for cascade realizable
functions dependent on k - i inputs for k-i> 2. There
are (kkl) Naas(k- 1) such functions. Considering func-
tions dependent on one or no variables, there are, in all
2k(x,Xl,x,x2,x2,. .,Xk,Xk) and two (0,1) functions, respec-
tively. From Lemma 4 of Butler and Breeding [9] these
functions are realized by the network. Taking Noas (1) = 2
and N058(0) = 2, these amount to (k)N058(1) and
(0)N¢as(0) functions, respectively. Since no other func-
tions are realized by a cascade of cells, the number of
functions realized when input permutations are allowed is

k

2

3

4
5

6

7

8

9

10

11

12

13

14

15

cas (k)

16

152

2,368
47,688

1, 156,000
32,699,080

1,057,082,752
38,444,581,640

1,553,526,946,144
69,054,999,618,888

3,348,574,955,346,496
175,908,582,307,762,312

9,951,733,002,164,182,048

603,217,074,746,723,736,776

kk
Teas(k) = E NNoas(k -p)

P=O \
(56)

where Ncas(1) = Ncas(0) = 2. Table III shows Teas(k)
for 2 < k < 15 as computed from (56). It is seen by
comparing Tables I and III that most of the functions
realized by cascades of cells in which the inputs can be
permuted are functions dependent on all k inputs. This is
in contrast with cascades with fixed input assignments.
It has been shown by Butler and Breeding [9] that the
number of functions realized by disjunctive networks and
thus cascades of cells with fixed input assignments and
fixed interconnection that depend on all k inputs is

nflas(k) = ndis(k) = 5 (5k). (57)

Thus,

n1-(k) 2 (5k) 0lim =limn-_=0
k--o toas(kc) k--,, (2-6h; + 8)75 (58)

Considering disjunctive networks of cells, it has been
shown by Maruoka and Honda [8], that disjunctive net-
works with fixed input assignments and fixed interconnec-
tion realize a total of

tdi8(Ik) = 2.61 + 8
5 (59)

functions. Thus, in such networks, most of the functions
realized do not depend on all k inputs, also.
By a procedure similar to that applied to cascades, it

is seen that the number of functions realized by a k-input
disjunctive networks of cells in which both input assign-
ments and interconnections are variable is
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TABLE IV
Num-BER OF FUNCTIONS REALIZED BY k-INPUT DISJUNCTIVE
NETWORKS OF CELLS ALLOWING PERMUTATION OF INPUT LABLES

|.~~ ~ ~ ~ ~ ~ ~ ~~ k
dis(k)

16

152

2,680

68,968

2,311,640

95,193jO64
4,645,069,336

261,938,616,104

16,756,882,325,464

1,198,897,678,224,232

94,851,206,834,082,200

8,221,740,727,881,348,520

774,839,374,768,829,174,104

78,880,995,816,162,599,086,568

XI X2XX43H

(a)

1I 2 x3

(b)

Fig. 3. Disjunctive network of cells.

/k\
td i8(k) = - p). (60)

*P=o \p

Table IV shown Tdis(k) for 2 < k < 15 as computed from
this expression. As with cascades, most of the realized
functions for larger values of k are those functions which
depend on all k inputs.

V. CONCLUSIONS AND COMMENTS

In this paper a counting technique has been demon-
strated for the number of functions Neas(k) realized by
k-input cascades of two-input one-output gates. This ex-

tends the result by Sklansky et al. [18] in which the num-
ber of cascade realizable symmetry types was calculated.
A recursion relation is derived expressing Nsas as a func-
tion of Ncas(k - 1), Naas(k - 2), ..., and N0,8(1), This
expression has been solved by computer for values of k
up to 15. From the results, it has been surmised that for
large k, Noas(k) kk!cob, for constant cc and b,. Addition-
ally, a counting technique is demonstrated for Ndis(k),
the number of functions realized by k-input disjunctive
networks. Ndi4 (k) is expressed also as a recursion relation,
which has been solved by computer for values of k up to
15. Using the expressions for N058(k) and Ndis(k), -ex-

pressions are derived for Teas(k) and Tdi8(k), respectively,
the number of functions realized by cascades and disjunc-
tive networks of two-input one-output cells in which
permutation of input assignments and interconnections
are allowed.

It is interesting to compare the number of functions
realized by fixed-interconnection disjunctive networks of
cells with fixed-input assignments to networks with vari-
able input assignments. As mentioned previously, Maruoka

and Honda [8] have shown that all disjunctive networks
of cells with fixed-input assignments realize a total of
(2.68 + 8)/5 functions where k is the number of inputs.
Thus, two k-input disjunctive networks of cells with fixed-
input assignments realize the same number of functions.
However, this is not true, in general, of disjunctive net-
works with variable input assignments. For example, con-

sider the four-input cascade with variable input assign-
ments as shown in Fig. 3 (b). Table III shows that such a

network realizes 2368 functions. On the other hand, from
Butler [17] the network of Fig. 3(a) realizes 1208 func-
tions when permutation of input labels is permitted. Thus,
when variable assignments are allowed, different fixed-
interconnection disjunctive networks with the same num-

ber of variables realize, in general, a different number of
functions.

It is interesting to note that the four-input cascade of
Fig. 3(b) realizes 2368/224 or 3.6 percent of the total
number of four variable switching functions and 21/402
or 5.2 percent of the total number of symmetry types.
Thus, four variable cascade symmetry types contain on

the average fewer functions than general symmetry
types do.

Although the design of cascades and disjunctive net-
works was not considered, this is indeed an important
topic. Since the enumeration of functions depends on the
observation of specific functional decompositions (Lemma
1 for cascades and Corollary 3.1 for disjunctive networks),
it is reasonable to ask whether functional decomposition
can be used to synthesize such networks. The answer is
indeed yes. Curtis [13] shows the use of functional decom-
position for general networks, and Butler [17] describes
its use in the synthesis of disjunctive networks.

Another problem not considered in this paper is the
"box of parts" problem. Given c universal two-input one-

output cells, how many k-variable functions N(c,k) can

k

2

3

4

5
6

7
8

9
10

11

12
13
14
15
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be realized by some interconnection of the c cells? Addi-
tionally, how many functions T (c,k) can be realized
which depend on k, k - 1, etc., variables? In Butler [173,
it is shown that there exists a k-input network realizing
all 22 functions on k or fewer variables which is composed
of c = 1(2 - 2) cells. Thus, T(c,k) = 22 for c >
3 (2k -2). However, for general c and k more advanced
counting procedures are required.
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