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Abstract 
 

As health systems continue to grow with increasing demand for health services, the 

necessity to efficiently balance resources among hospitals is paramount. This paper explicates 

the structural similarities between multiple objective programming and data envelopment 

analysis in order to proffer an original, hybrid resource allocation-based optimization model that 

adjusts resources (system inputs) either with or without decision-maker input. The motivation for 

this study is to develop a decision-support model to be used by health care managers and policy-

makers in support of resource allocations for large systems that are centrally controlled and 

funded, such as the Military Health System. In these systems, inputs are fixed at certain levels 

and may only be adjusted within Decision-Making Units (eg. medical treatment facilities). We 

provide a mathematical formulation and example solutions based on both textbook and real-

world data. We also find utility in the use of multi-start evolutionary algorithms to store multiple 

optimal solutions for consideration by decision-makers.  This multi-objective, auto-optimization 

model is currently being used for the performance-based analysis of U.S. Army hospitals.  

 

Key Words: resource allocation, decision analysis, multiple objective programming, data 

envelopment analysis, health systems, military medicine 
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Chapter 1. Introduction 

 

As our nation’s inexorable growth in health care costs continues, the Department of 

Defense (DoD) health system, a large, centrally funded and operated health care system in the 

United States, is not immune to cost increases and growth. Due to the sheer size of this health 

system, it is imperative that we investigate efficiencies and determine new methods of analysis to 

maximize system performance by efficiently balancing costs, quality, satisfaction, and access 

across military hospitals. To do so requires careful management of major system components. 

The driving postulate of this paper is that key leaders of this health system wish to optimize 

inputs (specifically budgeted dollars and full-time equivalent healthcare providers) while 

maintaining outpatient weighted workload (relative value units or RVUs), inpatient weighted 

workload (relative weighted product or RWPs), prevention metrics, access metrics, and patient 

satisfaction. These components are intrinsically linked in a complex, multi-objective fashion. 

The motivation for this paper is then the necessity to efficiently balance resources among 

hospitals in large systems that are centrally controlled and funded while sustaining system output 

objectives. 

 

1.1 The Military Health System 

The DoD Military Health System (MHS) is a complex organization with a $52 billion 

budget that provides health services to over 4.5 million beneficiaries (uniformed service 

members, their family members, survivors and retirees) via the TRICARE program (MHS 

Stakeholders' Report, 2012). Within the MHS, there are more than 130,000 medical 

professionals (combining military and civilian) working in concert with the TRICARE network 

of providers. TRICARE combines the health care resources of the uniformed services with 
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networks of civilian health care entities to provide immediate access to high-quality health care 

services while maintaining the capability to support constant military operations (TRICARE, 

2013).  

 TRICARE is available worldwide but operates out of four distinct geographic regions: 

North, South, West, and Overseas. In each geographic region, TRICARE partners with a regional 

contractor to provide health care services, administrative support and medical resources beyond 

what’s available at Medical Treatment Facilities (MTF) and clinics. Currently, the TRICARE 

contractors include Health Net Federal Services, LLC (North Region), Humana Military 

Healthcare Services, Inc. (South Region), TriWest Healthcare Alliance (West Region), and 

International SOS (Overseas Region). The TRICARE regions based in the United States are 

depicted in Figure 1 below (current as of Fiscal Year 2013): 

 

Figure 1: TRICARE Stateside Regions 

  

TRICARE offers several different health plan options to meet the needs of authorized 

beneficiaries, but the two primary options include TRICARE Prime and TRICARE Standard and 

Extra (TRICARE, 2013). 
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TRICARE Prime is a military health plan in which the authorized beneficiary enrolls to 

receive health either within a MTF or in a participating civilian network component. This plan in 

similar to a Health Maintenance Organization (HMO) plan in that the enrollee agrees to receive 

their medical care from an assigned primary care manager (PCM). The enrollee must first seek 

care from the PCM for all non-urgent needs, and the PCM facilitates referrals to specialists 

within the civilian health care network. All active-duty military personnel are required to enroll 

in TRICARE Prime, and all other authorized beneficiaries other than the Medicare eligible may 

enroll. There are no restrictions regarding pre-existing conditions. TRICARE Prime provides 

comprehensive health coverage including: emergency care, outpatient visits, preventive care, 

hospitalization, maternity care, mental/behavioral health, and prescriptions. TRICARE Prime 

enrollees are guaranteed access within time limits. Drive time to the primary care site should not 

exceed 30 minutes. Waiting times for acute care may not exceed one day, while waiting time for 

routine care should not exceed one week. Specialty care is to be available within a one-hour 

drive with a maximum wait of four weeks for an appointment. Emergency care is to be available 

at all times. Active-duty military personnel and their families have no out-of-pocket costs for any 

type of care as long as care is received from the PCM or with a referral. All other enrollees are 

subject to annual enrollment fees of $269.28 per individual or $538.56 per family (for Fiscal 

Year 2013), varying copayments, and point-of-service charges (non-referred care) (TRICARE, 

2013). 

TRICARE Standard and Extra is a fee-for-service military health plan available to all 

non-active duty beneficiaries requiring no enrollment, which is equivalent to a traditional 

Preferred Provider Organization (PPO) health plan. TRICARE Standard and Extra provides the 

same comprehensive health coverage as TRICARE Prime, but the patient receives care from any 
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TRICARE-authorized provider, network or non-network rather than a PCM. Unlike the zero out-

of-pocket costs associated with TRICARE Care, the TRICARE Standard and Extra costs vary 

depending on the sponsor’s military status (active-duty vs. retired). For active-duty sponsors, the 

annual outpatient deductible is $50 per individual or $100 per family (Rank E-4 and below) or 

$150 per individual or $300 per family (Rank E-5 and above). For retired sponsors, the annual 

outpatient deductible is $150 per individual or $300 per family. In addition to the required annual 

outpatient deductible, patients are responsible for paying a cost share (percentage) based on the 

type of care and type of provider seen (network vs. non-network). Unlike network providers 

(Extra Option), non-network providers (Standard Option) may charge up to 15% above the 

TRICARE allowable charge and do not necessarily file health care claims on behalf of the 

patient. For example, the cost share of an emergency room visit for an active-duty family 

member is 15% of the negotiated rate under the Extra Option but 20% of the allowable charge 

under the Standard Option. For all other beneficiaries (eg. retirees), the cost share of an 

emergency room visit is 20% of the negotiated rate under the Extra Option but 25% of the 

allowable charge under the Standard Option. These inpatient cost shares differ by the type of 

care and are subject to change each fiscal year (TRICARE, 2013). 

With a better understanding of the MHS, we can now focus on one of the major 

components of the MHS, the Army Health System. 

 

1.2 The Army Health System 

The Army Health System (AHS) is the United States Army component of the MHS, 

which is responsible for the operational management of the Army Medical Department 

(AMEDD) health service support and force health protection missions. The AMEDD is a multi-

billion dollar component of the United States Army responsible for providing efficient, effective 
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health care delivery to authorized beneficiaries across a continuum of both peacetime and 

wartime environments. All fixed hospitals (both inside and outside the United States) are 

commanded by the Army Medical Command (MEDCOM), which currently manages more than 

a $13 billion budget and cares for more than 3.95 million beneficiaries (Army Medicine, 2012). 

The MEDCOM is composed of several subordinate organizations as depicted in Figure 2: 

Army Medical 

Command

Regional Medical Commands Other Major Subordinate Commands

Europe Regional 

Medical Command

Southern Regional 

Medical Command

Northern Regional 

Medical Command

Pacific Regional 

Medical Command

Western Regional 

Medical Command

Army Medical Department 

Center & School

U.S. Army Dental Command

U.S. Army Medical Research & 

Material Command

U.S. Army Public Health 

Command

Warrior Transition Command

 

Figure 2: MEDCOM Structure 

 

Each of the Regional Medical Commands (RMC) contain subordinate MTFs such as 

Army Medical Centers (MEDCEN), Army Community Hospitals (ACHs), Army Health Centers 

(AHCs), and other entities. In total, there are eight AMCs, 27 Medical Department Activities 

(MEDDAC) and numerous clinics in the United States, Europe, Korea and Japan. The map 
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depicted in Figure 3 shows the regional breakdown of RMCs, where the AMEDD has major 

MTFs (Army Medicine, 2012): 

 

Figure 3: Geographic Breakdown of RMCs 
 

When comparing Figure 1 and Figure 3, a complexity associated with the AMEDD 

structure is that the RMCs overlap multiple TRICARE coverage regions, serving as a potential 

source of inefficiency within the MHS. 

In addition to the RMCs, the Other Major Subordinate Commands support the remaining 

functions of AMEDD’s daily health care delivery mission. Medical research is unified under the 

U.S. Army Medical Research and Materiel Command (USAMRMC), which includes six 

research laboratories and five other commands that focus on medical materiel advanced 

development, strategic and operational medical logistics, and medical research and development 

contracting. Dental activities (DENTAC) are grouped under the U.S. Army Dental Command 

(DENCOM), which is organized into five regions called Regional Dental Commands (RDCs). 

The AMEDD Center & School (AMEDDC&S) is where the Army trains medical personnel, and 
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also serves as a think tank of military medicine, with a mission to envision, design and train a 

premier military medical force for full-spectrum operations. The Warrior Transition Command 

(WTC) serves as the central comprehensive source for warrior care support policy across the 

Army. Preventive medicine, health promotion, and veterinary services at the central, regional, 

and district level are grouped under the U.S. Army Public Health Command (USPHC). 

With a better understanding of the complexity of the AHS, we can now review the 

literature on efficiency measurement techniques for resource allocation decision-making. 

 

1.3 Literature Review 

In this paper, efficiency is defined as the ratio between health services delivered (outputs) 

and resources provided (inputs) at each MTF. Specifically, we consider technical (or frontier) 

efficiency that measures deviations in performance from that of best practice entities on the 

efficient frontier. Data Envelopment Analysis (DEA) is a deterministic, non-parametric linear 

programming (LP) technique developed by Charnes, Cooper, and Rhodes (1978) from the work 

of Farrell (1957). In DEA, a group of similar entities (e.g. military hospitals) are referred to as 

Decision Making Units (DMUs) which convert inputs into outputs. Using a LP model, DEA 

determines the optimal weights for each input and output that is most beneficial to an individual 

DMU. Upon determination of these optimal weights, the DMUs’ ratio measures (weighted 

outputs to inputs) are compared to decide which DMUs are most efficient, where efficiency is 

based on the distance of their ratio measure from the piecewise-linear convex frontier created by 

the most efficient DMUs. Unlike regression analyses, DEA requires no explicit identification of 

underlying relations between inputs and outputs, and weights are not assigned a priori.  

Another method of efficiency measurement is known as Stochastic Frontier Analysis 

(SFA), which was first introduced by Meeusen & Van den Broek (1977) and Aigner et al. 
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(1977). SFA is a stochastic, parametric econometric approach for production frontier modeling 

that accounts for random noise (error) affecting the production process. SFA specifies a 

production function and an error term composed of two parts with different statistical 

distributions (randomness and inefficiency). The usual assumption with the two-part error term is 

that the randomness (statistical noise) follows a normal distribution and the inefficiencies follow 

a half-normal, exponential, or truncated distribution. The random error term encompasses all 

events outside the control of the entity, such as the econometric errors and uncontrollable factors. 

Many studies have applied efficiency measurement techniques in the civilian healthcare 

system (Hollingsworth, 2003; Worthington, 2004; Hollingsworth, 2008; Moshiri et al., 2010; 

Wilson et al., 2012), but here we will only examine those studies where they are applied in the 

military healthcare system. Charnes et al. (1985) were the first to use data envelopment analysis 

(DEA) in their evaluation of the performance of 24 Army health care facilities. They selected 

traditional workload criteria for analysis of outputs including personnel trained, relative weighted 

product (RWP), and clinic visits, which are considered traditional elements of production in 

health care. For inputs in their DEA model, they evaluated full time equivalent (FTE) employees 

by specific category, inpatient expenditures, outpatient expenditures, weighted procedures, 

occupied bed days, and operation room hours.  

Following this first study, Mihara (1990) used both DEA and ordinary least squares 

(OLS) regression methods to conduct an efficiency analysis of the utilization of personnel at 

Navy MTFs for resource allocation decisions. The results of the study were used to baseline both 

physician requirements (workload and beneficiary dependent) and professional staff 

requirements (physician dependent). His study was limited in that the analyses were driven by 

only raw workload metrics, as other measures such as personnel readiness, prevention and 
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training were not included. Ozcan & Bannick (1994) conducted a longitudinal study of 124 DoD 

hospitals to evaluate trends in hospital efficiency based on data from the American Hospital 

Association Survey. This study was conducted at the strategic-level with little actionable 

information. Coppola (2003) used DEA to evaluate 78 MTFs using data from 1998 to 2002. For 

model input variables, he used costs, number of beds in the MTF, FTEs, and number of services 

offered. For model output variables, he used surgical visits, ambulatory patient visits (APV), 

emergency room visits, case mix adjusted discharges (CMAD), RWP and live births. As a 

limitation of his analyses, Coppola focused on workload as the primary measure for efficiency 

rather than the standardized outpatient workload metric called relative value units (RVUs), 

which captures the complexity of workload by accounting for resource consumption. 

Fulton (2005) conducted an efficiency analysis of 24 Army community hospitals and 

medical centers from 2001-2003 using DEA, SFA and corrected ordinary least squares (COLS) 

models. He also analyzed hospital cost, which was modeled as a function of workload, 

population, a quality and prevention proxy, an access proxy, efficiency scores (and interactions), 

medical center status, and the interaction between medical center status and workload. Using 

both cross-sectional and panel series studies, Fulton applied various regression methods and 

estimation techniques to the models for comparison. From these analyses, he found that linear 

models with DEA efficiency provided better estimates than SFA models. Piner (2006) used DEA 

to evaluate clinical efficiency of 49 obstetric clinics at various MTFs and found that there was 

significant variability in the level of staffing and expenses among the clinics; this variability 

suggested inconsistencies in management across the clinics. The Army performed the highest in 

terms of average efficiency score, followed by the Air Force and then the Navy. Piner also 
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compared the size of the MTFs, which revealed that larger hospitals were more efficient than 

smaller hospitals.  

Fulton et al. (2007) developed decision-support tools for performance-based resource 

allocation. Specifically, they used DEA and SFA to illustrate the feasibility of incorporating 

technical efficiency considerations in the funding of Army hospitals and identified the primary 

cost drivers for Army hospital operations. Using a three-variable, logarithmic-linear model, they 

found that $120 million could be re-allocated to improve Army hospital performance. Schmacker 

& McKay (2008) used SFA to examine factors affecting the productive efficiency of primary 

care clinics in the MHS from 1999 through 2003. The following factors were specified as part of 

the inefficiency error component of the SFA model and were estimated simultaneously in the 

production function: staffing mix, use of physician-extenders, beneficiary mix, provider mix, 

military service branch, facility type, region, and year.   From their analyses, they found that the 

primary care clinics associated with medical centers had significantly higher levels of productive 

efficiency. They also found that having proportionately more civilian healthcare staff had a 

positive impact on productive efficiency. Fulton et al. (2008) investigated military hospital cost 

models that incorporated quality, access and efficiency to provide decision-support for resource 

forecasting in the MHS. In their analyses, they used OLS regression estimation, ridge regression 

and robust regression methods to evaluate logarithmic-linear cost models that included DEA 

efficiency scores. They demonstrated that military hospital resource allocation models should 

include quality and efficiency as components along with the traditional elements of complexity-

weighted inpatient and outpatient workload. 
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1.4 Overview and Structure 

In this chapter, we provided the necessary background information on the Military Health 

System, TRICARE, Army Health System, and Army Medical Department. We also reviewed the 

literature on efficiency measurement techniques (DEA and SFA) applied to problems in the 

military health system.  

In Chapter 2, we first discuss multi-objective programming (MOOP) given the nature of 

the specified health care problem, as well as further describe DEA. After detailing these two 

methods, we follow Romero (1995), Joro, Korhonen & Wallenius (1998), and Korhonen & 

Syrjanen (2004) to show that they are nearly structurally identical and are related to distance 

models. After describing MOOP and DEA, we then discuss how these formulations evaluate 

rather than recommend for cases where inputs must remain at fixed levels.  In other words, we 

show that evaluation of slack and reduced costs do not provide sufficient re-allocation decision 

support.  In the case of the MHS, decision-makers seek to re-balance funding (cost) and 

personnel across the system. Doing so requires decision support regarding “winners” and 

“losers.”   

In Chapter 3, we propose a mathematical programming model that seeks to optimize a 

system rather than evaluate a single DMU. Such a program is useful (vital) for health systems 

with fixed budgets and personnel authorizations (such as the MHS). While non-linearity in the 

model is inescapable, we demonstrate in Chapter 4 the formulation's effectiveness in solving a 

constant returns to scale (CRS, also known as CCR for Charnes, Cooper, and Rhodes) textbook 

healthcare problem as well as a variable returns to scale (VRS, also known as BCC for Banker, 

Charnes, and Cooper) real-world allocation problem associated with the Military Health System. 

Finally, we provide concluding remarks in Chapter 5. 
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Chapter 2. Material and Methods 

 

In this section, we thoroughly discuss multi-objective programming, data envelopment 

analysis, and the relationship between them in the context of the health care resource allocation 

problem. We also demonstrate how both methods are limited with regards to fixed input systems. 

 

2.1 Multi-Objective Programming 

The motivating example in the MHS consists of multiple competing objectives. While 

one might explore methods for modifying cost and/or production functions (e.g., Cobb-Douglas), 

the search here is restricted to the field of optimization and begins with a discussion of the basic 

linear program (LP).   

The typical linear program may be expressed in matrix notation as follows.   

 

Max xc


 

(1) 

Subject to 
0








x

bxA
 

 

Here, the objective function is composed of the 1 x n coefficient vector c


 and the n x 1 

decision variables x


.  The constraint set is composed of the m x n constraint coefficient matrix A 

along with our decision variables and the m x 1 right hand side constraints b


. Two objections to 

LP formulation are that linearity is often an over simplification of reality and that decision-

makers are rarely concerned with just one objective function, as in our motivating example 

(French, 1984). To address non-linearity, one might modify the formulation as follows. 

 

Max )(xg


 

            (2) 

Subject to }0,|{


 xbxAxXx  
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This formulation provides a non-linear function g(*), which accounts for real-world 

complexity (and adds the same complexity to the solution algorithm).  Still, the model does not 

consider multiple objective functions.  The multi-objective optimization follows. 

 

V-Max )(xg


 

            (3) 

Subject to }0,|{


 xbxAxXx  

 

Here, (*)g


 is a set of functions that define all objectives to be maximized (or 

minimized).  The problem with this formulation is that conflicting goals may prevent the 

simultaneous optimization of all the objectives.  Generally, a Pareto optimal (efficient) solution 

set is sought such that for Xy


there exists no Xxxgyg ii 


 )()( with strict inequality 

holding for at least one value of i. Here, y


is considered dominated or inefficient. (We will 

further discuss the notion of dominance later). Unfortunately, finding the Pareto optimal set still 

does not resolve the fundamental problem:  which member of the efficient set does the decision-

maker choose? To answer this question, one might consider a value function as in the following 

formulation (Cohen, 1978). 

V-Max ))(( xgf


 

           (4) 

Subject to }0,|{


 xbxAxXx . 

 

The value function f (*) is intended to monotonically increase with the decision-maker’s 

preference.  Alternatively, the decision-maker may just explore efficient sets. 

Returning to the motivating example, it is assumed that the senior military medical 

decision-makers seek to minimize inputs while maintaining outputs constant.  With an 

appropriately sufficient set of decision variables, one could attempt to devise a value function (as 
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in f(*) above) based upon leaders’ estimations of the importance of each item.  In the case of this 

example, one might formulate the following set for optimization.   

 

V-Max  )(xgf i


 

            (5) 

Subject to }0,|{


 xbxAxXx  

 

The objective function here (assuming linearity) is an i x i matrix coupled with an i x 1 set 

of decision variables for x.  The constraint matrix A is of size m x i. 

Next, assume that the f functions are ordered in a monotonic increasing fashion by 

preference.  That is, f(g1*) is less important to the decision-maker than f(g2*) and so on.  If this 

importance function is discrete, the referent-derived weighting system is similar to that of utility 

matrix weights.  The inherent assumption is that the weighting system is developed consistently, 

i.e., that the decision-maker makes choices consistently in accordance with the value function f. 

If one makes an assumption that f and g are linear, then the formulation is called the 

Multiple Objective Linear Program (MOLP) and looks familiar. 

 

V-Max xCv


  

            (6) 

Subject to  0,|


 xbxAxXx , 

 

where ,, mn RbRx 


the constraints matrix 
mxnRA is of full rank m, and the objective 

function matrix .mxnRC  In (6), Xx *


is an efficient solution (or Pareto optimal) if and only if 

there does not exist another Xx


 such that *xCxC


 and .*xCxC


  Also, Xx *


is weakly 

efficient if and only if there does not exist another Xx


 such that *xCxC


 . An inefficient 

solution is one that is neither efficient nor weakly efficient. Let V = { }| XxxCv 


 be the set of 

feasible objective function vectors. The vectors Vv 


 that correspond to efficient solutions are 
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known as non-dominated criterion vectors, the vectors Vv 


 that correspond to weakly efficient 

solutions are known as weakly non-dominated criterion vectors, and the vectors Vv 


 that 

correspond to inefficient solutions are known as dominated criterion vectors (Joro et al., 1998). 

Assume that there is interest in searching the non-dominated set of solutions.  To do so 

with a linear f and g involves the projection of any point onto the set of non-dominated solutions.  

Wierzbicki (1980) provides an achievement scalarizing function (ASF), which is capable of this 

projection given a feasible or infeasible starting point.  The ASF will be discussed later, after an 

investigation of the structurally-related mathematical programming technique of DEA. 

 

2.2 Data Envelopment Analysis 

DEA is a set of flexible, mathematical programming approaches for the assessment of 

efficiency, where efficiency is often defined as a linear combination of the weighted outputs 

divided by a linear combination of the weighted inputs as in the Charnes, Cooper, and Rhodes 

(CCR) model (Charnes et al., 1978), which is a constant returns to scale (CRS) formulation. 

Assume that an organization wishes to assess the relative efficiencies of some set of comparable 

subunits.  (The subunits are called Decision Making Units or DMUs.)  For each DMU, there is a 

vector of associated inputs and outputs of managerial interest (Cooper et al., 2007).  In this case, 

the manager is interested in either maximizing the outputs while not exceeding current levels of 

inputs (output oriented) or minimizing the inputs without reducing any of the outputs (input 

oriented).  Using our military hospital example, the inputs are budget, health care provider FTEs, 

and enrollment population, while the outputs are inpatient and outpatient weighted workload, a 

prevention metric, an access-to-care metric, and a patient satisfaction metric.  In the case of 

DEA, the manager assumes that the traditional definition of engineering efficiency (ratio of 

weighted outputs to weighted inputs) will result in an acceptable solution for technical 
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efficiency.  With these assumptions in place, one may formulate the following fractional 

programming problem that may be solved to determine technical efficiency, defined (for now) as 

the ratio of weighted outputs to weighted inputs, for each separate DMU (Wierzbicki, 1980). The 

following is known as the input-oriented CCR model: 

         Max 
o

T

o

T

xv

yu




                              

                  (7) 

Subject to:   

 

            z
xv

yu

z

T

z

T

  ,1



                       

0

0








v

u
 

 

In this formulation, there is a vector of outputs ( y


), a vector of inputs ( x


), and z DMUs.  

Efficiency is designated as.  The index o identifies the selected DMU for which an efficiency 

score will be generated. This mathematical program is run z times (the total number of DMUs), 

once to determine the efficiency of each DMU.  (While MOLP simultaneously solves multiple 

objective functions given a value function, DEA optimizes efficiency for an individual DMU.)  

The components of the vectors vu


 and are the weights to be determined for the outputs and 

inputs, respectively.  This model defines efficiency for the selected DMU as the weighted linear 

combination of its outputs divided by the weighted linear combination of its inputs, subject to the 

constraint that, for each DMU (including the one whose index z is o), the efficiency cannot 

exceed one.  All weights are restricted to be non-negative.  This formulation is non-linear; 

however, if one seeks to maximize the outputs while maintaining inputs constant, it is trivial to 

normalize the weighted inputs such that they equal one. 

                                                        1o

T xv


                                                                     (8)      



17 

 

Multiplying the numerator and denominator of the objective function as well as constraint 

(7) and finishing by adding (8) to the constraint set yields the following formulation. 

 

Max   = o

T yu


 

                  (9) 

Subject to:   

 

zxvyu z

T

z

T   ,0


 

1o

T xv


 

0

0








v

u
 

  

For consistency with much (but not all) of the literature, this formulation in (9) is 

considered the dual, so taking the “dual of the dual” provides the primal.  (The primal allows for 

better comparison with multiple objective programming.)  In standard form, the primal follows.  

 

Min )11(   ss TT 
  

            (10) 

Subject to: 

 

0,,0,,

0

0 

























ss

syY

sxX

o

o

 

 

Here, the ε in the objective function is called the non-Archimedean element. This allows 

a minimization over efficiency score θ to preempt the optimization of slacks ),(  ss


, which 

reflect output shortages and input excesses.  A DMU that has an efficiency score of one and a 

zero-slack solution (for all slacks) is considered technically efficient or Pareto-Koopmans 

efficient.   As defined in Cooper et al. (2007), Pareto-Koopmans efficiency is attained only if it is 

impossible to improve any input or output without worsening some other input or output.  In all 
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other cases, it is possible to improve one or more of the inputs or outputs without worsening any 

other input or output. 

Returning to our motivating example, one notes that the formulation of the DEA model 

will provide efficiency scores and slack information.  The importance of any objective function 

is allowed to be a function of automatically generated weights.  If a decision-maker deems 

quality is more important than access, then the above formulation does not provide a weighting 

system (e.g., the f function). Note that the weight of an objective should depend on the level of 

achievement, or otherwise a model may make solution tradeoffs that are inconsistent with the 

desires of the decision-maker. 

Fortunately, there exist a variety of DEA based linear programs that assign weights to 

inputs and outputs based on importance of items.  For example, Cooper et al. (2007) provide a 

weighted slacks-based model (W-SBM) with decision-maker weights applied.  This model is 

similar to goal programming and is provided below (in fractional form) for reference. 

 

 
1

1

1
1

 

1

1
















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Min   

                (11) 





s

r

r

m

i

i twmw
11

,  

 

Here, the w are weights and the s are slacks (input excesses or output shortages).  The 

inputs belong to X and the outputs belong to Y.  Returning to our example, one can readily see 

the capability of a decision maker to provide weights for budget and personnel inputs (index i) as 

well as cost, quality, and access outputs (index r).  See Cooper et al. (2007, p. 105) for a 

complete discussion.  
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2.3 The Relationship Between DEA and MOLP 

With this basic foundation in place, it becomes necessary to demonstrate how DEA and 

MOLP are structural twins.  Doing so proves useful in formulating and solving the multi-

objective, auto-optimization problem.  The specific investigatory question of this next short 

section is how DEA relates to MOLP, and how one might leverage it to help the decision-maker 

balance competing objective functions automatically.   

Joro et al. (1998) illustrated that DEA and MOLP are structurally related, as each might 

be formulated similar to the output-oriented CCR primal model. One first notes the need to 

restrict MOLP to solutions existing within the set of non-dominated criterion vectors through the 

use of an achievement scalarizing function (ASF), a function that projects any feasible or 

infeasible point onto the dominated set.  Unlike Joro et al. (1998), we will show how DEA and 

MOLP are structurally related in terms of formulation of the input-oriented CCR primal model. 

Consider the following formulation of an ASF provided by Wierzbicki (1980) which 

follows from (6), where r is the ASF: 


















 
 
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
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rMin
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maxmin)( 


 

           (12) 

Subject to:  0,,|  xbxAXxxCvVv


, 

 

where, 

tscoefficienfunction  objective ofmatrix ,

solutionsfunction  objective feasiblecurrent  ofvector 

 functions objective for the levels aspiration ofvector 

functions objective ofset  the ,

elementscalar n Archimedea-non a0

function objectiveeach for   weightsofvector ,0
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


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
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


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


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Quite simply, one seeks to find x


 that minimizes the largest deviation between the 

aspiration location (in objective function space) and our current location (in objective function 

space), while ensuring that the “slacks” for all vectors are as small as possible.  This simplistic 

explanation provides the basis for the formulation of the ASF. 

Following the procedures of Joro et al. (1998), we can further simplify our objective 

function with a simple replacement. 









 


P

i

ii vzr
1

)(min)min(   

                 (13) 
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We can also see that: 

0,

0,)(

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One should also note the following, which derives directly from the objective function of (13): 

dd

dxczvz

TTTT

P
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P
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
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

 
       (14) 

Since 


T1  is a constant, it may be removed from the minimization, leaving .1 dT


    

Letting  sdxxYAXC o


,,,,,  , the reformulated reference point model 

results in (15), which is structurally similar to that of the input-oriented CCR primal model: 

 



21 

 

 srMin T 
1   

            (15) 
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In fact, placing the models side-by-side reveals few structural differences (modified from 

Joro et al.,1998). 

  

DEA Input-Oriented CCR Primal Model Reformulated Reference Point Model 

Min )11(   ssr TT 
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Given the obvious relationship between MOLP and DEA, we can see that it is largely a 

matter of preference and simplicity regarding selection of the base formulation for a multi-

objective problem.  Note that MOLP often ignores a very common trait of decision-making. That 

is, the attractiveness of any solution depends not only on the objectives but also on the level of 

achievement. As stated earlier, the weight of an objective should depend on the level of 

achievement, or else a model may make solution tradeoffs that are inconsistent with the wishes 

of the decision-maker. Over a narrow range, one can ignore this. In our comparison, we assume 

that over the range of possible outcomes, the marginal rate of substitution between objectives is 

constant.   We now turn to an example of MOLP, DEA, and our hybrid model for discussion. 



22 

 

2.4 Motivating Example Comparison 

Let us return to the example regarding military hospitals in the MHS.  The components of 

the hospitals’ activities are intrinsically linked.  A possible multiple objective formulation related 

to six components might be the following. 
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This model seeks to maximize outputs while minimizing inputs subject to an f function 

determined by decision-makers. Alternatively, the original DEA input-oriented CCR primal 

model might be employed with a Y matrix consisting of output measures and an X matrix 

consisting of input measures. Of course, the DEA formulation generally seeks weights 

independent of a referent function; however, one could program the referent function as a series 

of constraints, as in the W-SBM model. 

 

2.5 Limitations of MOLP and DEA for Fixed Input Systems 

Decision-makers generally seek to investigate how inputs and outputs might be adjusted 

to improve the objectives.  Certainly, system slack informs how one might be able to reduce 

inputs (for output-oriented models), but how should that slack be reallocated?  The dual variables 

show the effects of a unit relaxation in constraint (e.g., inputs) might have on the objective 

function, although inputs in these large systems are largely fixed.  Further, sensitivity analysis 
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associated with adjustments in any portion of the model can help inform decision-makers.  But 

no amount of traditional manipulation of multiple objective optimization programs provides 

decision-makers clear recommendations about how to reallocate system inputs to achieve the 

highest level of satisfaction possible (efficiency).  In fixed input systems such as the MHS, it 

becomes necessary to improve system performance by reallocating inputs among the existing 

DMUs. A multi-objective model that adjusted resources automatically across all MTFs to 

achieve maximum system efficiency would (at a minimum) provide decision-support and insight 

for leaders interested in evaluating multiple objectives simultaneously.   

In the next chapter, we provide an alternative, multi-objective formulation that is based 

on a super-objective applied to traditional DEA analysis.  This model assumes that the decision-

maker would like to change inputs and outputs in order to have the resources necessary to 

achieve at least a minimum level of performance. We specify the formulation of the model, and 

provide a CRS textbook example as well as a VRS real-world example.  We use three different 

solvers to investigate solutions to the formulation.  A discussion of the basic model follows. 

Chapter 3. Multi-Objective Auto-Optimization Model 

 

In the preceding chapter, we demonstrated that DEA and MOLP are related methods for 

evaluating efficiency in multiple objective problems.  In DEA, we noted that the weights are 

often determined via optimization, while in MOLP, these weights are generally assigned.  We 

also demonstrated that use of either approach does not provide sufficient information for 

optimizing system inputs over a system of systems with fixed inputs.  We therefore propose a 

Multi-Objective Auto-Optimization Model (MAOM) for specific cases where one seeks to 

balance system components that might be interpreted as a performance ratio (not necessarily 

efficiency) as in the motivating example.  Such a formulation should be able to identify inputs 
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that might be manipulated to improve system performance over multiple outputs (objectives).  

Essentially, this formulation should be able to provide sensitivity analysis to advise decision-

makers how to optimally reallocate resources in order to attain the most efficient system 

possible.  The next formulation applies to multiple objective problems that involve fixed inputs 

(or possibly outputs) that are fixed but can vary between DMUs.  For example, we use a fixed 

budget large hospital organization (such as the MHS) that may reallocate resources among its 

facilities. A description of the model, its derivation, and an application follow.  The definition of 

variables, sets, and data matrices follows. 
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  The objective function (17) seeks to optimize the sum of the efficiencies for all of the 

DMUs, which are the weighted outputs in this MAOM model. In (18), the weighted outputs are 

restricted to be greater than or equal to a global efficiency variable r, which exists on [0, 1].  This 

constraint is important as one could imagine the objective function seeking to reduce the 

efficiency of one DMU to near zero in order to make the others nearer to one.  

  In (19), we force the sum of the weighted outputs to be less than or equal to the sum of 

the weighted inputs after adjusting  them up or down by  the amount necessary to achieve the 

highest sum of efficiency scores for each selected DMU (o=v).  This constraint applies weights 

generated for each separate DMU analysis to all other DMUs inputs and outputs for relative 

efficiency comparison, just as is done in traditional DEA.  This constraint makes the problem 

non-linear since the input weights are multiplied against the input changes.  

  In (20), we force the sum of the weighted and adjusted inputs to be equal to one for each 

DMU.  Doing so ensures that we will have efficiency scores for each DMU less than or equal to 

one. Again, this constraint is non-linear. 

  In (21), we force each remaining input (after adjustment) for each DMU to be greater 

than or equal to zero.  Negative resources are not feasible.  
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  The constraints in (22) require that any input adjustments sum to zero.  We cannot grow 

resources for reallocation.  Finally, the last set of constraints depicted in (23) is the bounds for 

the decision variables. 

  One might also include management constraints regarding the maximum movement of 

resources to increase flexibility and reflect management input into the system, similar to the f 

function provided by the MOLP.  Doing so would simply require bounds on the appropriate . 

These constraints would represent decision-maker input, similar to the development of the f 

function in multiple objective programming. 

Chapter 4. Results and Discussion 

 

The solution to the MAOM program presented above provides the decision-maker 

recommendations regarding staffing of providers and allocation of funding such that all facilities 

achieve at least the efficiency associated with the r constraint.  With this model formulation, 

there is a method for providing information regarding the adjustment of all inputs and outputs 

independent of or dependent upon decision-maker input. 

Using the General Algebraic Modeling System (GAMS, 2013) as the modeling language 

and the CONOPT (Drud, 1992) and MINOS (Murtagh & Saunders, 1983) non-linear 

programming (NLP) solvers, a simple, hospital-based textbook problem (Anderson et al., 2012) 

was initially examined followed by a real-world example involving sixteen U.S. Army hospitals 

in the MHS with data from 2003.  In the textbook example, seven different hospitals (DMUs) 

were initially evaluated using standard CRS DEA. The adjustable inputs for the hospitals 

included Full-Time Equivalents (FTEs), supply expenses in 1,000's, and available beds in 

1,000's.  Outputs include patient-days for those 65 and older in 1000's, patient-days for those 

under 65 in 1,000's, nurses trained, and interns trained.  The data are shown in Table 1 below: 
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Table 1. Data from Textbook Example 

DMU FTEs 
Supply 

Expenses 

Available 

Bed Days 

Patient 

Days >=65 

Patient 

Days <65 

Nurses 

Trained 

Interns 

Trained 

A 310.0 134.6 116.0 55.31 49.52 291 47 

B 278.5 114.3 106.8 37.64 55.63 156 3 

C 165.6 131.3 65.52 32.91 25.77 141 26 

D 250.0 316.0 94.4 33.53 41.99 160 21 

E 206.4 151.2 102.1 32.48 55.3 157 82 

F 384.0 217.0 153.7 48.78 81.92 285 92 

G 530.1 770.8 215 58.41 119.7 111 89 

 

Solving the problem using CCR DEA models results in all hospitals being efficient with 

the exception of Hospital D, which is 90.73% efficient.  Reduced costs suggest that to enter the 

model, FTEs would need to be reduced by 12.16, expenses reduced by $184.63K, and the 

number of interns adjusted by 7.67.  The reference set for DMU D includes hospitals A, B, and E 

(meaning that the dual values are non-zero).     

From typical sensitivity analysis, a conclusion might be to reduce resources for Hospital 

D.  In this system, however, inputs are fixed.  They may be spread across the hospital system but 

not cut (at least in the short-term). This leads us to using the MAOM formulation provided in 

(17) through (23), setting r (the minimum efficiency for any facility) to at least .95.  Using the 

CONOPT non-linear solver in GAMS with two side constraints to prevent reallocation of more 

than 25%, a solution is reached nearly instantaneously.  The resultant analysis provides 

efficiency scores equal to one for all facilities.  No solution could be better, although other 

alternate solutions to the same problem do exist, and these alternatives will be more fully 

discussed in the second, real-world model. The input adjustment matrix provides 

recommendations for each DMU and each input that when re-implemented into the CCR DEA 

confirm all efficiency scores equal to one.  The new values for the inputs follow in Table 2.  
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Table 2. Results from MAOM Using the Textbook Example 

DMU FTEs  Supply Expenses  Available Bed Days 

A 310.10 134.60 117.171 

B 278.50 114.30 108.143 

C 165.60 131.30 64.936 

D 250.00 316.00 86.563 

E 206.40 151.20 103.060 

F 384.00 217.00 153.702 

G 530.10 770.80 219.946 

 

The analysis suggests that by changing only available bed days for facilities (which 

means adding or removing beds), the efficiency scores might be improved the most.  The 

optimality attained for this problem is only one of several optimal solutions available.  For 

example, using the CONOPT NLP solver in GAMS resulted in an alternate (but similar) solution 

set.  Detailing multiple solution sets that result in maximizing the objective function is necessary 

to provide decision support. 

With this simple textbook example in hand, we move to the analysis of 16 Army MTFs 

with inputs and outputs that were deemed important to decision-makers in evaluating efficiency. 

The data are from 2003 (as to be non-sensitive in nature), and the hospitals were chosen from 24 

facilities because they are largely homogenous.  The inputs that could be manipulated included 

the funding stream (COST) – expenditures (in 1000s) less graduate medical education and 

readiness costs, and inflated in two parts to 2003 dollars – and the FTEs (FTE) – number of 

assigned full-time equivalents (in 1000s) in 2003.  A non-discretionary input was the enrollment 

population supported (ENROLL) – enrollment population supported (in 1000s) in 2003. The 

outputs of interest included: inpatient aggregated MTF relative weighted product (in 1000s) in 

2003 (RWP), outpatient aggregated MTF relative value units (in 1000s) in 2003 (RVU), a 

prevention/quality composite score found in MHS survey scaled between [0, 100] in 2003 

(PREV), a satisfaction composite score found in MHS survey scaled between [0, 100] in 2003 
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(SAT), and an ease of access composite score found in MHS survey scaled between [0, 100] in 

2003 (ACCESS). The original data are shown in Table 3. 

Table 3. Data from Real-World Example (U.S. Army Hospitals) 
 

 

ENROLL FTE COST RWP RVU PREV ACCESS SAT 

H1 14.81 7.13 56.66 7.05 112.21 83.28 70.55 73.19 

H2 23.09 9.86 72.67 6.51 182.38 83.40 66.24 71.55 

H3 68.40 17.66 163.99 21.74 372.06 78.89 57.29 63.02 

H4 80.62 17.20 169.14 14.14 476.48 89.14 67.39 73.63 

H5 49.84 15.25 125.44 16.87 314.98 85.65 65.72 72.02 

H6 38.13 13.04 130.23 10.41 229.08 84.82 65.61 69.87 

H7 32.87 8.68 67.25 10.74 187.00 79.70 67.86 70.83 

H8 12.74 6.34 53.16 7.07 85.10 84.60 67.49 73.67 

H9 23.95 11.73 95.60 14.31 253.72 83.15 70.59 74.81 

H10 14.93 6.42 52.37 0.96 76.53 89.44 65.40 69.85 

H11 47.87 16.91 129.16 21.93 339.66 85.73 69.30 74.35 

H12 31.50 8.81 71.98 3.01 153.56 82.32 60.92 69.81 

H13 22.99 11.13 99.60 6.71 252.20 85.63 74.52 80.99 

H14 31.39 12.73 92.53 14.87 298.59 83.97 70.48 75.62 

H15 10.70 6.22 38.08 3.03 60.06 80.83 64.76 72.84 

H16 63.40 14.71 114.29 14.86 327.31 80.24 62.89 68.53 

 

For this more complex analysis, we ran variable returns to scale (VRS) DEA analysis, as 

such an analysis reasonably assumes that the production frontier is not necessarily linear. 

Assuming that enrollment is a non-discretionary input, facilities with inefficiency scores less 

than 1.0 included: H1 (.851), H2 (.928), H5 (.948), H7 (.779), H8 (.951), H9 (.850), H11 (.998), 

H13 (.959), H14 (.842), and H16 (.974).    

Running the data in the MAOM using the CONOPT and MINOS solvers in GAMS 

resulted in all facilities achieving efficiency scores of 1.0 by changing funding (COST) and FTEs 

as shown in Table 4 (CONOPT) and in Table 5 (MINOS).  Both NLP solvers executed this 

analysis (see the Appendix for the GAMS code) nearly instantaneously. What is interesting about 

the CONOPT results is that the changes, while significant, are not so severe as to require side 
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constraints. The MINOS solver, however, required two side constraints to prevent near 

elimination of FTEs for facility H12. This result shows the important of binding the feasible 

region better, especially since multiple optimals are possible if not likely.  The constraints added 

for the MINOS Solver prevented more than 25% reductions or 25% increases in flexible inputs.  

(NOTE:  it is even possible that the auto-optimization might have recommended the elimination 

of FTEs or funding from a facility).  

Table 4. Results from MAOM Using Real-World Example and CONOPT 

 

 ORIGINAL COST NEW COST ORIGINAL FTE NEW FTE 

H1 56.66 53.41 7.13 7.94 

H2 72.67 72.63 9.86 9.64 

H3 163.99 163.98 17.66 16.35 

H4 169.14 174.81 17.20 17.47 

H5 125.44 125.43 15.25 13.33 

H6 130.23 130.21 13.04 10.28 

H7 67.25 64.98 8.68 10.42 

H8 53.16 53.16 6.34 6.16 

H9 95.60 95.59 11.73 11.62 

H10 52.37 52.38 6.42 6.30 

H11 129.16 129.15 16.91 17.00 

H12 71.98 71.92 8.81 7.56 

H13 99.60 99.61 11.13 10.55 

H14 92.53 92.57 12.73 19.33 

H15 38.08 38.10 6.22 5.39 

H16 114.29 114.25 14.71 14.48 

 

 

Table 5. Results from MAOM Using Real-World Example and MINOS 

 

 ORIGINAL COST NEW COST ORIGINAL FTE NEW FTE 

H1 56.66 56.66 7.13 8.912 

H2 72.67 72.67 9.86 7.573 

H3 163.99 163.99 17.66 17.66 

H4 169.14 169.14 17.20 17.20 

H5 125.44 125.44 15.25 13.848 

H6 130.23 130.23 13.04 9.78 

H7 67.25 67.25 8.68 10.850 
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H8 53.16 53.16 6.34 7.925 

H9 95.60 95.60 11.73 11.730 

H10 52.37 52.37 6.42 6.420 

H11 129.16 129.16 16.91 18.814 

H12 71.98 71.98 8.81 6.607 

H13 99.60 99.60 11.13 11.13 

H14 92.53 92.53 12.73 15.912 

H15 38.08 38.08 6.22 6.22 

H16 114.29 114.29 14.71 13.238 

 

Again, we note that multiple solutions are likely to be available for many problems.  

Investigating these multiple optimal solutions is something that is important in order to provide 

quality decision-support.  To investigate the optimal solution set, we next ran the MAOM using a 

multi-start genetic algorithm (GA) solver, MSNLP (Smith & Lasdon, 1992), and the side 

constraints specified for the MINOS runs.  We allowed the GA to run for 1000 seconds and 1000 

iterations.  The GA solver found the first optimal in 200 iterations (during pre-processing).  

Afterwards, propagation continued for the full 1000 iterations.  The final offspring with the best 

merit function resulted in the solution provided by Table 6; however, one of the real advantages 

to the multi-start GA approach is that it produces a family of possibilities for decision-makers to 

consider.  We will discuss this later. 

Table 6. Results from MAOM Using Real-World Example and MSNLP 

 

 ORIGINAL COST NEW COST ORIGINAL FTE NEW FTE 

H1 56.66 42.509 7.13 8.912 

H2 72.67 76.519 9.86 9.027 

H3 163.99 140.318 17.66 18.614 

H4 169.14 211.425 17.20 14.424 

H5 125.44 121.896 15.25 15.496 

H6 130.23 97.672 13.04 10.794 

H7 67.25 75.117 8.68 10.792 

H8 53.16 39.87 6.34 7.925 

H9 95.60 119.5 11.73 11.609 

H10 52.37 48.317 6.42 4.815 

H11 129.16 96.87 16.91 21.137 
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H12 71.98 75.358 8.81 6.607 

H13 99.60 117.944 11.13 8.428 

H14 92.53 97.419 12.73 15.912 

H15 38.08 28.56 6.22 6.221 

H16 114.29 142.857 14.71 13.106 

 

We notice that CONOPT recommended minor changes in funding, while MINOS 

recommended no changes (a constant).  MSNLP, however, produced more significant funding 

shifts.  For FTEs, we noticed that the directionality change of 11 of the 16 models was identical.  

Table 7 provides a congruency analysis based on recommended adjustments by the three solvers. 

Table 7. Congruency Analysis of Solvers for FTEs 

 

 MINOS CONOPT MSNLP CONGRUENCE 

H1 0.81 1.782 1.782 Positive 

H2 -0.22 -2.287 -0.833 Negative 

H3 -1.31 0 0.954 Mixed 

H4 0.27 0 -2.776 Mixed 

H5 -1.92 -1.402 0.246 Mixed 

H6 -2.76 -3.26 -2.246 Negative 

H7 1.74 2.17 2.112 Positive 

H8 -0.18 1.585 1.585 Mixed 

H9 -0.11 0 -0.121 Semi-Negative 

H10 -0.12 0 -1.605 Semi-Negative 

H11 0.09 1.904 4.227 Positive 

H12 -1.25 -2.203 -2.203 Negative 

H13 -0.58 0 -2.702 Semi-Negative 

H14 6.6 3.182 3.182 Positive 

H15 -0.83 0 0.001 Mixed 

H16 -0.23 -1.472 -1.604 Negative 

 

The results imply that a set of possible solutions should be presented to decision-makers 

considering reallocation of inputs, and the use of multi-start evolutionary algorithms appears to 

be a reasonable method for doing so.  In fact, quick congruence may be desirable; however, if 

any side constraints are missing, the results may be less than optimal from a decision-makers' 

perspective.  We underscore the value of additional constraints in analyses which are likely to 



33 

 

produce multiple solutions. We also emphasize the value of investigating a family of solutions 

that maximize the efficiency of the overall system, as a single decision set may not provide 

sufficient flexibility for decision makers. 

Chapter 5. Conclusions 

 

By exploring the similarities between optimization methods for handling multiple 

objective problems, a related non-linear, multi-objective, resource allocation-based optimization 

program that allows for the adjustment of resources (system inputs) either with or without 

decision-maker input was generated, programmed and solved on a representative data set.  The 

utility for this type of decision-support model to be employed in support of resource allocations 

for large, centrally funded hospital systems is self-evident. As demand for health services 

increases, the need for efficient allocation models based on competing objectives will become 

increasingly more important, and models similar to those proffered here will aid decision-

makers’ efforts.  

In conducting this analysis, we found utility in the use of multi-start evolutionary 

algorithms that store multiple optimal solutions for consideration by decision-makers.  We also 

found that the addition of appropriate side constraints could ameliorate deviations of significant 

magnitude.  Future work will see the implementation of these methods on the entire MHS with 

expanded inputs and outputs coupled with panel data 
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Appendix – GAMS Code 

 

$ontext 

 

Auto-optimization 

 

$offtext 

$offlisting 

 

sets 

                 o      DMUs or hospitals in this analysis /H1*H16/ 

                 ds(o)  DMU set for reporting 

                 n      index set /ENROLL, FTE, COST, RWP, RVU, PREV, ACCESS, SAT / 

                 j(n)   output index  /RWP, RVU, PREV, ACCESS, SAT/ 

                 k(n)   input index  /ENROLL, FTE, COST/ 

 

Parameter 

                 data(o,n) unit  input  output 

                 OptFile 1 

; 

Variables 

                 d(o,k)   resource change 

                 a(o,j)   output weights 

                 l(o,k)   input weights 

                 r(o)     efficiency score minimum 

                 z        objective 

                 eff(o)   efficiency 

                 var      convexity for BCC 

 

positive variables a(o,j), l(o,k), r, eff(o); 

 

free variables d(o,k),z; 

 

Equations 

          superobj        superobjective 

          obj(o)  objective function 

          c1(o)           minimum efficiency 

          c2a(o)          outputs less than or equal to inputs with weights from DMU 1 

          c2b(o)          outputs less than or equal to inputs with weights from DMU 2 

          c2c(o)          outputs less than or equal to inputs with weights from DMU 3 

          c2d(o)          outputs less than or equal to inputs      ... 

          c2e(o)          outputs less than or equal to inputs 

          c2f(o)          outputs less than or equal to inputs 

          c2g(o)          outputs less than or equal to inputs 

          c2h(o)          outputs less than or equal to inputs 

          c2i(o)          outputs less than or equal to inputs  
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          c2j(o)          outputs less than or equal to inputs  

          c2k(o)          outputs less than or equal to inputs 

          c2l(o)          outputs less than or equal to inputs       

          c2m(o)          outputs less than or equal to inputs 

          c2n(o)          outputs less than or equal to inputs 

          c2o(o)          outputs less than or equal to inputs 

          c2p(o)          outputs less than or equal to inputs 

 

          c3(o)           adjust input resources 

          c4(o,k)         adjusted inputs must be non-negative 

          c5(k)           all adjustments must sum to zero 

          c6(o)           minimum efficiency must be greater than lower bound 

          c7(o)           maximum efficiency must 

          c8(o,k)         enrollment is non-discretionary 

          c9(o,k)         side constraints preventing rapid decreases or increases of inputs MINOS 

          c10(o,k)        side constraints preventing rapid decreases or increases of inputs MINOS  

; 

 

superobj.. z=e=sum(o,eff(o)); 

 

obj(o)..   eff(o)=e=sum((j),a(o,j)*data(o,j))-1*var; 

 

c1(o)..    sum(j,a(o,j)*data(o,j))=g=r(o); 

 

c2a(o)..   sum(j,a('H1',j)*data(o,j))-sum(k,l('H1',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2b(o)..   sum(j,a('H2',j)*data(o,j))-sum(k,l('H2',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2c(o)..   sum(j,a('H3',j)*data(o,j))-sum(k,l('H3',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2d(o)..   sum(j,a('H4',j)*data(o,j))-sum(k,l('H4',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2e(o)..   sum(j,a('H5',j)*data(o,j))-sum(k,l('H5',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2f(o)..   sum(j,a('H6',j)*data(o,j))-sum(k,l('H6',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2g(o)..   sum(j,a('H7',j)*data(o,j))-sum(k,l('H7',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2h(o)..   sum(j,a('H8',j)*data(o,j))-sum(k,l('H8',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2i(o)..   sum(j,a('H9',j)*data(o,j))-sum(k,l('H9',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2j(o)..   sum(j,a('H10',j)*data(o,j))-sum(k,l('H10',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2k(o)..   sum(j,a('H11',j)*data(o,j))-sum(k,l('H11',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2l(o)..   sum(j,a('H12',j)*data(o,j))-sum(k,l('H12',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2m(o)..   sum(j,a('H13',j)*data(o,j))-sum(k,l('H13',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2n(o)..   sum(j,a('H14',j)*data(o,j))-sum(k,l('H14',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2o(o)..   sum(j,a('H15',j)*data(o,j))-sum(k,l('H15',k)*(data(o,k)+d(o,k)))-var=l=0; 

c2p(o)..   sum(j,a('H16',j)*data(o,j))-sum(k,l('H16',k)*(data(o,k)+d(o,k)))-var=l=0; 

 

c3(o)..    sum(k,l(o,k)*(data(o,k)+d(o,k)))=e=1; 

 

c4(o,k)..  data(o,k)+d(o,k)=g=0; 

 

c5(k)..    sum(o,d(o,k))=e=0; 
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c6(o)..    r(o)=g=.90; 

 

c7(o)..    r(o)=l=1.000000000001; 

 

c8(o,k)..  d(o,'ENROLL')=e=0; 

 

c9(o,k)..  d(o,k)=g=-.25*data(o,k); 

 

c10(o,k).. d(o,k)=l=.25*data(o,k); 

 

*The model includes all constraints 

model    autoopt autoopt /superobj,obj,c1,c2a, 

c2b,c2c,c2d,c2e,c2f,c2g,c2h,c2i,c2j,c2k,c2l,c2m,c2n,c2o,c2p,c3,c4,c5,c6,c7,c8,c9,c10/ 

 ; 

 

*To run military data, name table "data".  Otherwise name "data2." 

*MED=RWPs, NONMED=RVUs, RN=PREV, INTERN=Sat 

Table data(o,n) 

 

                 ENROLL       FTE        COST        RWP        RVU           PREV         ACCESS       

SAT 

H1               14.81        7.13       56.66       7.05       112.21        83.28        70.55        73.19 

H2               23.09        9.86       72.67       6.51       182.38        83.40        66.24        71.55 

H3               68.40        17.66      163.99      21.74      372.06        78.89        57.29        63.02 

H4               80.62        17.20      169.14      14.14      476.48        89.14        67.39        73.63 

H5               49.84        15.25      125.44      16.87      314.98        85.65        65.72        72.02 

H6               38.13        13.04      130.23      10.41      229.08        84.82        65.61        69.87 

H7               32.87        8.68       67.25       10.74      187.00        79.70        67.86        70.83 

H8               12.74        6.34       53.16       7.07       85.10         84.60        67.49        73.67 

H9               23.95        11.73      95.60       14.31      253.72        83.15        70.59        74.81 

H10              14.93        6.42       52.37       0.96       76.53         89.44        65.40        69.85 

H11              47.87        16.91      129.16      21.93      339.66        85.73        69.30        74.35 

H12              31.50        8.81       71.98       3.01       153.56        82.32        60.92        69.81 

H13              22.99        11.13      99.60       6.71       252.20        85.63        74.52        80.99 

H14              31.39        12.73      92.53       14.87      298.59        83.97        70.48        75.62 

H15              10.70        6.22       38.08       3.03       60.06         80.83        64.76        72.84 

H16              63.40        14.71      114.29      14.86      327.31        80.24        62.89        68.53 

 

$eolcom // 

; 

 

*var.fx = 0;       // to run CRS with the primal model 

var.lo = -inf;   // to run VRS with the primal model 

var.up = +inf;   // to run VRS with the primal model 
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*option nlp=conopt; 

*option nlp=minos; 

option nlp=msnlp; 

autoopt.OptFile=1; 

 

*We see to maximize our objective function. 

solve autoopt using nlp max z  ; 

 

*We specify a set for producing reports. 

set ii(o) /H1*H16/ 

 

*We define two reports. 

 

parameter rep Summary Report; 

parameter rep2 Summary Report; 

 

loop (ii, ds(ii)=yes; 

*rep(ii, 'ENROLL =')=data(ii,'ENROLL'); 

*rep(ii,'NEW ENROLL=')=d.l(ii,'ENROLL')+data(ii,'ENROLL'); 

rep(ii,'COST=')=data(ii,'COST'); 

rep(ii,'NEW COST=')=d.l(ii,'COST')+data(ii,'COST'); 

rep(ii,'FTE=')=data(ii,'FTE'); 

rep(ii,'NEW FTE=')=d.l(ii,'FTE')+data(ii,'FTE'); 

ds(ii)=no); 

rep2('The Obj Function=') = autoopt.objval; 

 

display rep; 

display rep2; 
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