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functions represented in positive polarity
Reed-Muller (RM) form. We develop a
formal representation of partial symmetries
in this RM form and present algorithms
for their detection. In addition, we
show necessary and sufficient conditions
to recognize in RM expression partial
and total symmetries in variables of
the function. Our program RECSym
successtully recognizes symmetries in RM
expansion in standard benchmark circuits.
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recognition

1 Introduction

The problem of recognition of symmetries
in switching functions has been studied
since the early history of switching
theory. Interest in this important area has
continued to the present. In technology
independent circuit minimization and
technology mapping, one of the actual
current problems is to determine if
two functions are equivalent under
input permutation and input/output
complementation  (Boolean  matching
problem) [19], [26], [27]. In the case
of totally symmetric functions, Boolean
matching focuses on complementation only.

There has been significant interest in
exploiting symmetry among variables to
determine efficient variable orders in binary
decision diagrams [17], [18].  Although
the best orders tend to place symmetric
variables together, in rare instances the
best ordering requires symmetric variables
to be dispersed. For such functions, fast
recognition of groups of symmetric variables
is very important for decision diagram
design.

There are well known methods of
circuits design, decomposition, verification
and minimization based on symmetric
properties [9], [10], [16], [19], [21].

Generally speaking, algorithms for
detection of the symmetry conditions
in any given function is a prerequisite
to many recently developed methods of
modern Computer Aided Design (CAD)
of integrated circuits.  Our interest in
the problem of recognizing symmetries in

switching functions is motivated by these
practical applications in CAD. This paper
addresses the recognition of partial and
total symmetry of variables in switching
functions.

There are several main techniques to
investigate symmetries based on different
principles, namely,

(i) manipulation of a truth table,

(ii) transformation of the given function
into the spectral domain, and

(iii) formal representation of symmetric
functions developed in this paper.

The best known algorithms explore
properties of symmetries via manipulation
of the truth table of given function. For
example, in [6] an effective method to detect
totally, partially and so called multiform
symmetric switching functions based on
numerical methods has been proposed.
Also, information theory methods have
been applied to detect symmetries; the
basic idea is to convert truth table into
decision tree and detect symmetries via
information theoretic measures [5], [28].

The second direction exploits features
of spectra to determine the symmetries in
variables of a given function. There are
many results on detecting symmetries in
Hadamard, Haar and other transform bases
[12], [13], [15], [20].

Recently, there is a growing interest in
AND/EXOR, based design styles in CAD
(see e.g., [10], [21]). Implementation of
AND/EXOR circuits often results in a more
economical realization of the circuit (in
terms of gates and gate interconnections)
and is often more easily tested. This is
particularly true for applications like error
control, arithmetic circuits, and encrypting
schemes.



focus on

in RM

In our investigation we
the recognition of symmetries
expressions.

RM spectrum (coefficients) are used to
recognize certain properties of the switching
function. It should be pointed out that from
the position of spectral technique, the RM
expansion is a result of RM transform, i.e.
particular case of spectral representation.
To the best of our knowledge, Davio and
Bioul were the first to suggest a method to
detect total symmetry in RM spectrum of
switching functions [7].

The main advantage of this approach is
that one doesn’t need a formal (algebraic)
representation and the detection of
symmetries is a process of manipulation
spectral coefficients.

A feature of our classification is an
algebraic representation of symmetric
switching function that has not been
received much attention. The crucial point
is to obtain formal descriptions of different
types of symmetries and to study unique
features of given symmetric function in
formal way. Contrary to well known
classical methods which operate with Sum
of Products (SOP) expressions [14], formal
RM representation of symmetric switching
functions is more difficult.

As an example of important and
successful result of formal approach and
an illustration of its power, we refer the
reader to [2], [8], [14], [25]. For instance,
the following statement is widely used in
AND/EXOR representation of switching
function: a function is totally symmetric
if and only if in positive polarity RM
form of the function, the coefficients of all
products with the same number of literals
are the same. However, several attempts

to find an algorithm to recognize partially
symmetric functions in AND/EXOR forms
have so far failed. In our opinion, the
main reason why an efficient algorithm
has not been developed yet, 1is the
absence of strong mathematical results on
AND/EXOR forms for partially symmetric
switching functions.

It should be pointed out that there are
many related unsolved practical problems.
For example, optimal characteristics of
decision diagrams for partially symmetric
function has not been studied yet. In
has been shown in [3] that reduced order
decision diagram require O(n?) nodes for
totally symmetric functions; the optimal
characteristics of FPRM expressions for
different types of symmetries have not been
investigated yet either.

The second motivation of our
investigation resulted in an examination
of algebraic representations of symmetric
functions in the RM domain and their
formal study. We try to overcome the
difficulties in synthesis of formal equations
for some types of symmetries widely used
in CAD .

A review of previously obtained results
shows that there are some approaches to
describe symmetric functions in RM form.
The mostly known approach by Davio et
al.  [8] is based on matrix calculation
(spectral transform). Suprun in [24] uses
a rectangular binary table to synthesize
FPRM expression for totally symmetric
function. We report more general approach
applied to partially symmetric functions.

The aim of this paper is twofold: first,
to obtain formal (algebraic) representations
of partially symmetric functions in positive
polarity RM notation; second, to show



advantages of formal study of symmetries
and ”translate” them into practical benefits
for CAD. In this connection, we prove
necessary and sufficient conditions for the
recognition of symmetries in RM expansion
and we develop recognition algorithms.
Our intermediate result has an important
independent significance, namely, method
for calculation characteristics of partially
symmetric functions. Suggested algorithm
can be more preferable in some cases
compared, for example, with [6] because
of their simplicity. These are the main
contributions of our paper.

Moreover, we solve some related
problems. In particular, we show that due
to the formal representation, we determine
different technical properties which are
useful for realization of algorithms.
However, to simplify the problem, we
have to limit our investigations to positive
polarity RM expansion because of the
complexity associated with other polarities.

This paper is organized as follows.
In Section 2 we give terminology and
briefly describe properties and summarize
necessary definitions. Section 3 describes a
method of representing partially symmetric
functions and the detection of symmetries
in positive polarity RM expansions. Also,
the method is suitable for totally symmetric
functions. In Section 4, we discuss
experimental results from our program
RECSym for standard benchmarks.

2 Preliminaries
The goal of this section is to introduce

formally the main properties of partially
and totally symmetric functions. We

give a formal representation of an
arbitrary function in positive polarity
RM form whose algebraic structure is
most convenient for description of these
symmetries.

2.1 Partially and totally
symmetric functions

Let f be a switching function on a set
of variables X = {xy,29,...,2,}. f is
partially symmetric with respect to X; C X
if any permutation of variables in X; leaves
f unchanged.

Let p = {X1,X,,...,X,} denotes a
partition of X. Function f is p-symmetric
if f(Xq,Xo,...,X5) = f(X],X5,..., X)),
where X! is an arbitrary permutation on X;
[14]. A p-symmetric function f for which
p is the partition consisting of one block
p = {X}, is a totally symmetric function.
That is, this function is unchanged by any
permutation of its variables and depends
only on the number of variables that are
1.

A switching function may be symmetric
in a subset of k£ variables, 2 < k < n,
in many different forms, for instance, in
variables {z;,z;} and also in {7;,7;}. A
function exhibiting symmetry in a subset
of k variables in all 2! possible forms as
above is said to be multiform symmetric in
those k variables [6].

Example 2.1. (i) Function f = Tjx3x4 V
T1T2T4 V T1T2T3 V ToX324 1S p- symmetric in
variables p = {x1, 22}, {x3, 24}

(ii) f = @129V x3 is a partially symmetric
function in variables {z, z5}.

(ili) f = 1T3Ty V 212304 V T122T5 V
T1Zox5 is symmetric with respect to sets of



variables {x3, 24} and {5, z5}.

(iv) f =21 ® 29, and z125 V xo3 V 2123
are totally symmetric functions.

(v) f = Ty V Tyzy is multiform
symmetric in {1, 22} ({71,72}) and

{21, T2} ({71,772 }). 0

A useful concept is the carrier vector
(extended carrier vector) of Davio notation

[7].

Definition 2.1. The carrier vector Y
of a symmetric switching function f 1is
the truth column vector of f with entries
removed that are identical because of
symmetry.

The carrier vector is a reduced ordering
truth column vector of a symmetric
switching function. It contains all of
the information necessary to completely
specify a symmetric function. For a totally
symmetric function on n variables, the
carrier vector has length n + 1. We can
specify a partially symmetric function as
a vector of values Y = [y@y() . 4@-1],
where 0 = (k + 1)2" % that is agree with
[14].1

In other words, the number of distinct
assignments is the number of logic values
that need to be specified to completely
specify partially symmetric function f.
That is, this is a specification of values
to variables outside the set of partially
symmetric variables, together with a
specification of how many of the partially
symmetric variables are 1 completely
specifies f.

LIt was proved in [14] that there are 2°, 6 =
(k+1)2"F different partially symmetric functions
of n variables with respect to k variables

The concept of distinct assignments of
values to variables is recalled in the example
below.

Example 2.2. (i) A totally symmetric
function of 3 variables is represented by the
column truth vector X = [abbcbeed] where
a,b,c,d € {0,1}, i.e.  f(000) = a, f(001) =
b, £(010) = b, f(011) = ¢, f(100) = b, f(101) =
¢, f(110) = ¢, f(111) = d. The distinct
assignments among them are f(000) =
a, f(001) = b, f(011) = ¢, f(111) = d, i.e.
the elements 0,1,2,4 of vector X. These
assignments, enumerated by 0,1,2,3, form
the carrier vector Y = [abed]. The distinct
sets of assignments are {000}, {001,010,100},
{011,101, 110}, {111},

(ii) A partially symmetric function of 3
variables with respect to {1, z3} is given
by the truth column vector X = [abcdbedf].
The distinct elements are 0,1,2,3,5,7, i.e.
£(000) = a, £(001) = b, £(010) = ¢, f(011) =
d, £(100) = b, f(101) = e, f(110) =d, f(111) =
f.  So, it can be represented by the
carrier vector Y = [abcdef] whose elements
are 0,1,2,3,4,5. The distinct assignments
are grouped to the following sets: {000},
{001,100}, {010}, {011,110}, {101}, {111}. W

2.2 Taylor expansion of a
switching function

In this paper, to represent the positive
polarity RM form, we use the Taylor
expansion, as an analogue originally
proposed by Akers [1] and later developed
by Davio [7], Thayse [25], Bochmann and
Posthoff [2].

The main characteristics of the Taylor
expansion are: (i) the calculation of RM
coefficients through Boolean differences 2



and (ii) a mechanism of manipulation with
assignments of values to variables. We
explore in our study the last feature,
assuming that RM coefficients can be
calculated via any known methods, e.g. [8],
[10], [11], [12], [21], [28].

Remark 2.1. An FPRM expansion can be
viewed as the result of a succession of
expansions, each time using either the
positive Davio f = fy & xfs or negative
Davio f = Zfs @ fi1 decomposition, where,
for each variable of function f, fo(f1) is
f with variable x replaced by 0(1), and

fo=fo® fi1.

In the FPRM expression each variable
appears always complemented or always un-
complemented. For more details, the reader
is directed to [21].

Example 2.3. The result of positive Davio
decomposition for function f =77y is f =
(1'1 D 1)(1‘2 D ].) =1 Dxr1Dre D TiTs. [ |

We use positive polarity RM expansion
(0-polarity) of a given switching function in
this paper

2n—1
f= Z r(j)x]fx%? ool (2.1)
=0
L =0
=4 7 7 2.2
! { Ty, Jr=1 ( )
Expression (2.1) can be interpreted

as the result of applying the positive
Davio decomposition to the given function.
Note, that there is one positive polarity

2Such expansions have been studied in [29] and
developed for multiple-valued functions and some
related applied problems in [23], [28]

RM expansion for an arbitrary switching
function, i.e. it is canonical form that
contains positive literals only and requires
up to 2" product terms.

Remark 2.2. Traditionally, the positive
polarity RM expansion is written as follows:
d @ V2 @ - ®ar, ® Pz, @

a(13)x1x3 D --- P a(n n_l)ajnxnil @ - P
a'? Mg xy .. x,. In contrast, the logic
Taylor expansion (2.1) allows easier

manipulate with indexes of RM coefficients
and product terms.H

This fact is important in our study.
We illustrate the difference in a formal
style (algebraic structure) and a calculation
associated with a traditional Taylor form of
positive polarity RM expression (2.1) by a
simple example.

Example 2.4. (i) Consider a traditional
positive polarity RM representation of an
arbitrary function f of two variables, f =
a® @ oMz ®aPry ®aPaz,.

(ii) Now represent function f as a Taylor
expansion (2.1), in which case, we obtain
f=rO029250rMlzl or@ sl er®sis].
Finally, taking in account (2.2), we can
write f =70 @ rMzy @ r@zy @ r®zz,.

Note, the order of RM coefficients is
different. Hence, (2.1) gives a mechanism
for manipulation with indexes of RM
coefficients, related products and literals. B

In next Section, we will show a formal
representation of the synthesis of the
positive polarity RM form of symmetric
functions.



3 Recognition of
partial symmetries
positive polarity

RM expression

in

In this Section, we focus on the following
recognition problem: for a partially
symmetric switching function in a positive
polarity RM form, find

(i) a formal representation

(ii) necessary and sufficient conditions for
symmetry in variables, and

(iii) an efficient strategy to determine for
which variables it is partially symmetric.

The idea of our approach is as follows.
We consider 2" assignments of values
to variables that should be structured
with the goal to obtain the distinct sets
of assignments. It is the first stage
of our study. In order to form the
carrier vector of the function we propose
an ordering operator. This allows a
formal representation of a positive polarity
RM expression for partially symmetric
functions.

3.1 Basic properties of
partially symmetric
functions

The main question of any symmetry

recognition algorithm is to describe the
assignment of values to variables for
which the function is symmetric or non-
symmetric. There are many methods to
solve this problem. For example, one of
the widely used algorithm for detection
symmetries is based on numerical methods

[6]-

Below we introduce the method to
define main characteristics of the partially
symmetric function with respect to k given
variables.

The characteristics
symmetric functions include:

e Distinct sets of the assignments, and

e Carrier vector.

of  partially

3.1.1 Distinct sets of assignments

Let f be a switching function of n
variables that is partially symmetric with
respect to k < n variables {z ...,z }
where ji,...,j;, € {1,2,....,n}. Consider
assignments of values  ji...Jy...0¢, - n
to variables ..z, ... Tpn, Where
Jtrs -t € {1,2,...,n}.

The length of carrier vector for a function
which is partially symmetric in k& variables
and has no symmetries with respect to
remaining n — k variables, is (k + 1)2" %
accordingly. It is not surprise that the
number of distinct positive polarity RM
coefficients for such function takes the same
values, namely, (k + 1)2"F.

We are interested in describing distinct
sets of assignments taking into account the
partial symmetry.

We start with formal definition of distinct
sets of assignments that allows us to
describe (k + 1)2"% these sets within all
of the 2™ possible assignments of values to
variables.

Definition 3.1. Let f be a function
partially symmetric in k variables.  The
distinct set is a set of the assignments

(3.1)

y Ly, o+

T Tty -ty ---In
of values to n variables

X1 Tty oLy - Ty,

ket



such that to satisfy the linear equation

jtl —|— +]tk — J, (32)
for J€0,1,.. k.
Some comments for this formal
description are useful.
The number of distinct sets of

assignments is the number of logic values
that need to be specified to completely
specify partially symmetric function f.
That is, this is a specification of values to
n — k variables outside the set of partially
symmetric variables, together with a
specification of how many of the partially
symmetric variables are 1.

Within a distinct set, corresponding to
a J, there are C; assignments of J 1’s
to k partially symmetric variables, while
the remaining n — k variables are fixed.
Also, these fixed values are assigned in 27~%
ways. Since there are k + 1 different .J
(J = 0,1,....,k), there are (k + 1)2" *-th
distinct set of assignments.

It follows from the above that the number
of distinct sets of assignments is equal to the
number of distinct assignments.

Naturally, let J = 0 in linear equation
(3.2),i.e. jy, +...4+Ji, = 0, that produce one
solution 0...0. There are 2"~* assignments
jlen of values to variables outside

the s:t of partially symmetric variables.
So, the case J = 0 raises 2" * distinct 1-
element sets.

In case J = 1, ie.  j, + .. +
ji. = 1, we have C} = Fk solutions,
namely, jl...w...jn, J1---0...010 ... 95, ...

k k
J1.-.10...0...7,. Each of these £ solutions
k

raises 2" % specifications of values to

remaining n — k variables. So, there are
2"~k distinct k-elements sets. By analogy,
for J = 2 equation ¢; + ... + j;, = 2 has
C? = (k(k—1))/2 different solutions. There
are next 2" % distinct set each includes
(k(k —1))/2 elements.

Finally, the equation j;, + ... + 7, = k
has one solution j;, = = J, = L
It implies next 2" % distinct sets counted
as 2"7% specifications of values to n —
k variables outside the set of partially
symmetric variables.

So, the number of distinct sets is
2" F L+ 2" = (k+1)2n R,

k+1\t'imes

We demonstrate the technique of

calculation based on Definition 3.1 with
example as follows.

Example 3.1. Let f be a 4-variable
function partially symmetric with respect
to variables {x, z3, 24}, i.e. £ = 3. Let us
divide the set of assignments j;727374 into
2"=F(k + 1) distinct subsets.

We start with J = 0. The assignments
to satisfy the equation j; + j3 + j4» = 0
be 05,00 that corresponds to 2" % = 2
distinct sets of assignments each consists
of one assignment: {0000} and {0100}.
These assignments raise the product terms
29292329 = 1 (j, = 0) (remain, that 2,7/ =
1 for j = 0 and 2/ = x; for j = 1;
here 71”7 means that there is no product
term corresponded this assignment) and
pVxladzl =z (jo = 1).

Further, for J = 1 the equation j; +
Jz3 + ja = 1 gives Ci = 3 solutions. It
raises two distinct 3-components sets: when
j2 = 0, we obtain the set {0001,0010, 1000}
that correspond to the product terms



2229232 = my, 2Vabxlzl = a3 and
riz9252) = x; when jo = 1, the set
be {0101,0110,1100} that corresponds to the
product sets 20zizdz) = xoxy, 20xialzd =
ToT3.

For J = 2 the equation gives three
solutions too. Then, we obtain two
distinct sets: when j5, = 0, these are

{0011,1001,1010}; when j, = 1, these
are {0111,1101,1110}. Finally, when J =
3, we obtain two distinct 1-component
sets {1011} and {1111} and two product
sets: zirdriz) = zix3zy and zizlzlz) =
12020324 W

3.1.2 Carrier vector

Definition 3.1 is true for arbitrary order
of distinct sets and assignments of values
to variables.  On the other hand, the
order of the elements of the carrier
vector Y = [y@yM . y0=D] is fixed (see
Example 2.2). Hence, to form a carrier
vector, we have to reorder the distinct
sets of assignments. The idea is to build
the ordered string of distinct assignments

[Seto, Sety,...,Sety 1], and then the
carrier  vector  [faringsets}  SMin{Set,}---
furingset,_,}] under condition

Min{Set;_1} < Min{Set;}, (3.3)
t=1,..0—1.

We clarify this fact via examples below.
Example 3.2. (Continuation) Let us
build carrier vector Y = [y ... 4@=1].

The number of distinct sets of

assignments is equal to the length of
carrier vector § = (k +1)2" % = 8.

Denote a distinct non-ordered set S
of assignments and corresponding product

terms as
I (g s s s | ad1 02 .03 .04
S; = [31]2]3J4|$1 Ty XT3 Ty ]sza

where p = 0,1,...,k, 2 = 0,1,...,0 — 1 and
form these sets.
For .J = 0 the solution of the equation
j1 + jz + js = 0 is 000. Consider two cases.
For j, = 0, we obtain

Sl = [j10734 |27 0222 224] ;= = [0000]1] =0

and the value of the function be fygoo,
denote it by a € {0,1}.
For jo = 1, we have
St = [hljsjalat 13 23 ] 70 = [0100],,] 7=
and fo100 = d (0 or 1) for these assignments.
Calculations in the following steps
produce the string of the mnon-ordered
distinct  sets of the  assignments
[S45155545)SES.5%), where each
corresponds to a distinct value of the
function:

St = [1103ja|2] 02l ;o1 =

0001 |954 Jooor
0010|1‘3 and f0010 =b
1000[zy J=1 1000

S4 = [ Ljsjalad Lafaft] =1 =
0101 |5U2$4 foro
0110|$2£U3 and f0110 =€
11002122 J—1 f1100

Sy = [j10j3j4|${11$§;3$i4b:2 =
0011 |953354 foor1
1010|1‘1!L‘3 and f1010 =C
1001|3315U4 fro0

J=2



St = [ji1gajalat 1523t yoo =

J=2 =
[ 0111 ||zoz3zy Join1

1110|2013 and ¢ fiio =f
[ 1101 |z w24 JJ:2 fiio1

Sf,i = [j10j3j4|95{1035g3$i4]J:3 =

[ 1011|2324 |,_, and fio =g

St = [jiljajal o) 1afalt] s =

[ 1111z 20234 ]J:3 and fi111 = h.

Now, form the carrier vector from this
string. The first element of the string
is the first assignment Min{S}} that
corresponds to the first element a €
{0,1} of carrier vector Y. Further,
Min{S5}=0001 corresponds to the second
element b of Y. By analogy, Min{S;} =
Min{0011,1010,1001} = 0011 and foor, =
c. Reordering of the numbers under
condition (3.3) gives us the ordered
string of distinct sets [S}55S5555%S55S5%]
= [SetoSet,SetySet3Set,SetsSetgSet;| and
the carrier vector Y = [farin{seto} [Min{Sets}
Iatingsetsy  fatingSety  faringSetsy  faringSets)
fMin{Sets} fMin{Seh}] - [adeefgh] n

Now apply this technique to totally
symmetric functions.

Example 3.3. Consider the construction
of the string of distinct assignments and
carrier vector Y for a 4 variable totally
symmetric function.

The number of distinct sets is equal the
length of carrier vector n + 1 = 5. The
distinct sets are calculated as follows. For
J = 0 the solution of the equation j; + jo +
J3 + j4 = 0 is 0000, i.e. Sety = [0000|1] ;=0

and foooo = a. Calculations for the next
steps are done analogously:

[ (0001 ]z

0010]z3
0100z
1000]z;

S€t1 =

J=1

[ [0011 )zgz,

0101|zaz4
0110|Z’21‘3
1001|$1CE4
1010|$1CE3
1100|$1CE2

Setg =

J=2

1011|$1CE3$4
1101|$1CE2$4
L 1110|$1CE2$3

Set3 =

J=3

Set, = [ 1111 |z z22324 ]J:4
Hence, the string of the distinct sets
can be written as [SetyoSet;SetySetsSet,],
and no ordering is needed. Finally,
we obtain the carrier vector Y =
[Min{Seto} Min{Set;}Min{Sety} Min{Sets}
Min{Set,}] =[abcde] B
3.1.3 Algorithm to define the
distinct sets of assignments

The algorithm, Index Generator to
determine the distinct sets of assignments
is one of the most important modules of
our recognition program RECSym. The
input data be the truth column vector of
the given switching function f and the
output data be distinct sets of assignments
each corresponds to a coefficient of the
positive polarity RM expression of f.

Definition 3.2. Let S = [s¢s;...5,] be a
symmetry vector of a function f, where

10



si = s; = 1 4ff f is unchanged by an
interchange of x; and ;.

Example 3.4. The symmetry vector
S = [1111] specifies a totally symmetric
function. S = [1011] specifies a function
that is partially symmetric in {1, 3,24}

Definition 3.3. Let PS =

{xj, @y, ...;xj } be the set of partzally
symmetric  variables in  wvariable  set
X = {x1,29,...,2,}. For any assignment

of wvalues to X, define NOpgay and
Nlpseay as the number of 0’s and 1’s
assigned to wvariables in PS. Also define
NOpg(4) and Nlpg ) as the number of 0’s

and 1’s assigned to remaining variables in
A.

Note, that the defined notations satisfy
the equations

NOpgay + Nlpgay =k,

Example 3.5. (Continuation) Given S =
[1011] and the current assignment jjaj374,
we obtain the following values: NOpg 4y =
1, NlﬁA 0, NOPS(A) = 2 and

Hv
|

The assignments 7j;...5, of a distinct
set are equivalent in the numbers

Example 3.6. (Continuation) Given S =
[1011], the assignment 0001 is equivalent to
0010 and 1000; for all three assignments,
NOps(y = 1, Nlpgy = 0, NOpsea) = 2
and NlPS’(A) =1.1

/* (input)
truth column vector of a function f(z1,...
n variables,
the symmetry vector S */
/* (output)
distinct sets of assignments of the 0-polarity RM
eTpression

i =0 /* initiation of a counter/*

status =
[NOﬁ(A), NIW(A)’ NOPS(A)7 NlpS(A), indew]i
/* initiation of a status matriz of rows i, index is
a distinct assignment /*

Set = [index]; /* initiation of i-th distinct set /*
{

for any j € (0,2" — 1) do

compute the values
NOp54)» Mgz, NOpsia), Nlpsia)

if Al € (0,0 — 1) so that
[NOps(4y: Nlpsiay NOpsay, Nlps
[NOps(4y: Nlpsiays NOpscay, Nlps
index V S];

then Set; = Set; add jpin

continue

else

{
status = status add
[NOB5(4), N1554)> NOpPs(a), Nlpsay, jli /*
add the current I-th row to the status matriz */

) mn) Of

(4), 3V Sli=
(A)>

1=1+1
Set; = jpin

}

continue

}

Figure 1: Algorithm for deriving the
distinct assignments and sets

11



The sketch of an algorithm to derive the
distinct assignments and sets include the
following steps:

e for assignment jij...57, of j-th
element of a given truth table vector,
j € (0,2" — 1) compute the values
NOp54), Nlpsay, NOpsa), Nlps(a)

e if values NOﬁ(A), Nlﬁ(/]), NOPS(A),
N1pgeay for this assignment are equal
to values NOITS(A), NlP—S(A), NOps(ay,
N1pg(a) of one of components from the
previously obtained distinct sets, and
also the bits j;,...j;, are covered by 1’s
from the symmetry vector S, then this
assignment is included in the distinct

group.

e clse the assignment forms a new
distinct set.

A pseudo-code of the algorithm is

represented in Fig. 1. Note, that
the status matriz stores values of
NOpgay, Nlpgay, NOps), Nlpga)

and the minimal assignment Min{Set;} of
each distinct set. The array Set; stores the
whole ¢-th distinct set.

Example 3.7. (Comments to the
algorithm) Input: truth column vector
of a 4-variable function that is partially
symmetric with respect to {1, x3, 24}, and
the symmetry vector S = [1011]. Output:
distinct sets of assignments corresponding
to values of the coefficients of the positive
polarity RM expression.

Let ¢ = 0. For j = 0 (the current indexes
J1jejsja = 0000), we compute values
NOpga) = 1, Nlpgay = 0, NOps(a) = 3,
and Nlpga) = 0. The status matrix is

AOZ[NOﬁ(A)a Nlﬁ(;})a NOPS(A)a N]-PS(A)a

index] = [1030, 0000], seto = {0000}.
Next, + = ¢+ 1. Now ¢ = 1 and let
jg =1, j1j2j3j4 = 0001. We get values

N].Ps( 4y = 1. Here, there does not exists

(0,4) such that [NOpg4), Nlpga),
NOPS( 4), Nlpg(ay, index V S|;= [NOP—S(A),
Nlpgay, NOps(ay, N1lps(a) , 7V S];, because
the values NOpg(a), Nlpg(A) of the current
status matrix are not equal to the values

in Ay. So, we extend the status matrix
as follows [1030, 0000; 1021, 0001], set; =
{0001}.

Assign ¢ = i+ 1, i.e. ¢ = 2 now
and let] = 2, j1j2j3j4 = 0010. We
obtain values NOpg 4y = 1, Nlpg, =
O, NOPS(A) = 2, NlpS(A) = 1. Here

there exists [ € (0,1) such that [NOpg,),
Nlﬁ(/]), NOps(A), Nlpg(A), ndex V S]z:
[NOW(A)a Nlpz(ay, NOps(ay, Nlpsay, 7V
S]; : [1021, 0001 Vv 1011];= [1021, 0010 V
1011],. So, we do not extend the status
matrix, set; = set; add jy;, = {0001,0010}.

Following the algorithm in this way,
we obtain the status matrix: [1030, 0000;
1021, 0001; 1012, 0011; 0130, 0100; 0121, 0101;
0112, 0111; 1003, 1011; 0103, 1111]. The rows
from 0 to 7 of the status matrix corresponds
to the distinct sets, each characterized by

NOﬁ(A)? Nlﬁ(A)a NOps(a),  Nlps(a
and the first component Min{Set;}.
These sets are represented by arrays
Set;:  Sety = {0000}, Set; ={0001,
0010, 1000}, Sety  ={0011, 1001,
1010}, Sets = {0100}, Sety ={o101,
0110, 1100}, Sets; ={0111, 1101,
1110}, Sets = {1011}, Set; ={1111}.
|
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3.1.4 Ordering operator

Following the considered algorithm, let us
formulate the ordering process in formal
way.

Given: the total number (k + 1)2" % of
distinct sets of assignments of a partially
symmetric function.

Find: (i) the order of distinct sets and
(i) the components of each distinct set.

Definition 3.4. Ordering operator

Ri{j1---Jt---Jty--Jn}

1s the procedure for forming the i-th set Set;
of distinct assignments corresponding to the

i—th element y® of the carrier vector Y =
[y @y 0= i =0,1,...0 — 1

This operator produces, in order, a string
of the distinct sets. It is clear that the
length of the ordering distinct string is
(k +1)2"*.

3.1.5 Formal representation of
partially symmetric function

Below we describe a procedure to determine
the formal representation of positive
polarity RM expansion for partially
symmetric functions. This is based on the
fact that a function of n variables with
symmetry in k£ variables can be represented
with (k 4 1)2"* distinct RM coefficients.

Suppose that the ordering operator
Ri{j1---Jt--Jtp---Jnts is defined for a
partially symmetric function.

Theorem 3.1. Let f be a switching
function of n wvariables that is partially
symmetric with respect to k < n wvariables
{4,y } and let jy...jy...Jy.--Jn be a

distinct set of the assignments of wvalues
to n wvariables xy...xy,...x4, ... v, to satisfy
the linear equation (3.2). This distinct set
corresponds to the distinct group of product
terms x{lx‘zflxi;’“m#, each is assigned
to the same coefficient in the expression
(5.4).

Then, the exclusive OR of all of the
product terms described above is a positive
polarity RM expansion of f

91 ] )
_ (1) J1 Jty Tty J
f= E r E ARt AR ML T
i=0 R

where 0 = (k4 1)2"7F; r® ¢ {0,1} is i-
th coefficient; R; is the ordering operator
for assignments ji...ju...Jy--Jn and z3° is

defined from (2.2).

(3.4)

Proof. The proof follows immediately from
Definition 3.4 of the ordering operator R;: the
second sum is modulo 2 sum of product terms
within ¢-th distinct group, and the first sum is
related to the distinct sets.

O

We explain the technique of calculation
based on expression (3.4) by the following
example.

Example 3.8. (Continuation) Applying
Theorem 3.1, write the positive polarity
RM form for partially symmetric function
from Example 3.7.

Following equation (3.4) given k =
3, n =4and 0 = (k+1)2"*% = (3 +
1)2*73 = 8, we obtain

7

_ (1) J1 .92 .93 .04
f= E r Ty T T3 Ty
R;

=0

When ¢ = 0 and j; 4+ j» = 0, the result of
the ordering operator is Ro{7j10j3js} =0 =

13



{0000} j—o. It corresponds to product term

r©39292929 = r(01 = ),

By analogy

i =1 : R{j10j3j4}s=1 = {0001, 0010,
1000} = (D (z, ® 23 ® 21);

i = 2 Ro{j1073j4} =2 = {0011, 1010,
1001} = r® (2324 @ 1173 D T174);

i =3 : Ry{jiljsjs}ts=0 = {0101} =
r®wy;

i =4 Ry{j1073j4}s=1 = {0101, 0110,

1100} = r® (2924 @ 1273 O 1177).
Other possible cases yield the results
represented in Table 1.

n  RM expansion

r® @ rWes @ r®(z; @ x2) ® r® (zaza
Dr173) B rDzizs @ rOzizows

T1T2 3

r0 g 7«(1)(1-3 ®r1)® r@gy @ ,«(3)(3321-3
Or122) ® rWeizs © r®rizoxs

T1T3 3

r® g r(l)(l? Dx3) ® r@gozsd rBgy
orW(z123 @ v172) © rr12203

ToT3 3

r®arWzs@rPe; @ r® ez,
OrW(z1 © 22) O r® (z124 O T204)D
r®) (2125 ® T2w3) ® 1V (212324
z2x374) DT z120 @ 1O 3122240
r(w)mlQOg (&) r(ll)m1m2m3$4

T1To 4

r® @ rWgy @ T(2)($1 D2 Px3)d

3 (2174 © T224 © T3T4) © D (T122D
r173 ® T223) @ 1) (T12224 O T17374
®r2xars) ® r®zizors @ r(Drizezazs

r12T2T3 4

r® @ rW(zy ®az @ z1) @ rP (23049
r173 O w124) O P o @ r (22040
T2x3 O T122) O rO) (T12203 © T12224D
z2x374) D r®ziz324 ® r(Dai202324

r1r3T4 4

Table 1: Positive polarity RM expansion of
switching functions with 3 and 4 variables
that are partially symmetric with respect to
2 and 3 variables

Example 3.9. Table 2 illustrates the
number of distinct coefficients in positive

polarity RM form for a functions of n = 5,
10, and 15 variables of which k are partially
symmetric. H

n/k 6/2" | n/k 8/2"

5/2  24/32 10/8  36/1024
5/3  16/32 15/2  24586/48768
5/4 10/32 15/4 10240/48768
10/2  768/1024 | 15/8 896/48768
10/4 320/1024 | 15/12  104/48768
10/6  112/1024

Table 2: The number of distinct coefficients
f in positive polarity RM form of a function
symmetric with respect to k£ < n variables

3.1.6 Formal representation of

totally symmetric functions

In this section, we consider a particular case
of the Theorem 3.1 for totally symmetric
functions. The well known fact that
there are n + 1 distinct coefficients in
positive polarity RM expression of totally
symmetric function, follows immediately
from this theorem given & = n. We
formulate this result in the form as follows.

The ordering operator
Ri{j1---Jt---Ju,---Jn} is of special form
for totally symmetric functions as shown
below.

Corollary 3.1. Positive  polarity RM
expansion for a totally symmetric switching
function f of n variables is

ST S
=0

where v € {0,1} is i-th coefficient,
denotes exclusive OR, j; = 0 or 1 represents

(3.5)

J
N A
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the absence or presence of x; in a product
term accordingly, and xl* is defined from

(2.2).

Proof. The proof follows directly from Theorem
3.1 O

The coefficients ) can be calculated by
the truncated RM transform approach [11]
originally proposed by Davio [8].

Remark 3.2. Theorem 3.1 can be written
for (2" — 1)-polarity RM by complementing
all variables.

Example 3.10. The positive polarity RM
expansion of totally symmetric functions of
3 variables in accordance with Corollary 3.1
is

J1,.J2 .73
T Ty Ty

3
LD

1=0 Ji+i2+jz=i

Here the solutions for indexes ji, 79,
and j3 are: jljgjg = {000} for i« =
0; Jijegs = 1{001,010,100} for = = 1;
jijajs = {011,101,110} for i = 2, and
J1jegs = {111} for © = 3. Hence, f =
020000 @ rD(alelsl @ aluleld o
wiryay) @ r®(ajzsey © aiadry © wivhay)
SY T(3)x%x%x§.

Finally, f = ’I“(O) D ’I“(l)(a?;), D T D ZUl) D
r® (2923 © 1125 ® T129) O 1Oz 2975 W

3.2 Strategy to recognize
partial and total
symmetries

3.2.1 Partially symmetric functions

Below we consider a strategy to detect
partial symmetries in a given switching
function based on the Theorem 3.1.

Corollary 3.2. The necessary and
sufficient condition for a switching function
[ to be partially symmetric with respect
to wariables {]" xﬁ’“}, in RM form,
is that there are ezactly Cy or none of
products x7" .. xifl . xi;’“ ...zl for every
value i € {1,2,..,k — 1} and condition

jtl —|— +]tk = 7,

Proof. The condition is obviously necessary, it
follows directly from Theorem 3.1. Its sufficiency is
the direct consequence of the unique representation
of a function in positive polarity RM form (3.4). O

Example 3.11. Let wus check if the
function f = 1@ 1123 P 0174 D 2374 D T2 D
r1x314 is partially symmetric with respect
to variables {xy, x3, x4}

It has to include C% of none of products

x{l xézngg l"ffl = x{lxézxégxf for every value
J1+Js+ja =1 where i =1,2.
(a) Let j, 4+ j3 + js = 1.  Then

j1jajsjs ={0001, 0010, 1000} when j, = 0
O jijajsja = {0101, 0110, 1100} when j, =
1. So, f has to include C; = 3 or
none of single products: 1, x3, x4 or double
products x1xs, Tox3, xow4. In fact, the given
function includes none of these products.

(b) Let j1 + js + j+ = 2, then
j1j2j3j4 = {0011,1001,1010} when j2 =0
or j1j2j3j4 :{0111,1101,1110} when jg = 1.
Function f has to contain the following
triples (C2 = 3) of products: z,r3, 124,
x3x4 and ToT3T4, T1ToT4, T1x2x3. The given
function f contains products zix3, x4,
x3wy. So, f is partially symmetric with
respect to variables {1, x3,2,}. A

Recognition of partial symmetry can be
made by comparing the RM coefficients
with the correspondent indexes.

15



Example 3.12. (Continuation)
The column coefficients vector be
R = [r©rM...+0%] = [1001 1000 0111 0000].
Calculate the indexes of coefficients r(®
when 714+ j3+ ju» = 1. Case jo = 0 :
j1j2jsjs = {0001,0010,1000}, i.e. i = 1,2,8.
Case j2 =1 Ij1j2j3j4 = {0101,0110,1100},i.e.
j = 5,6,12. The first group of coefficients
take value 0, as well as the second. Now
calculate the indexes of coefficients r®
when j; + js+js = 2 : i = 3,9,10 (case
j2 = 0) and 7 = 7,13,14 (case j, = 0).
The coefficients with indexes 3,9,10 and
7,13, 14 take the value 1 and 0 accordingly.
So, this function is symmetric with respect
to variables {z1,z3,2,} W

3.2.2 Totally symmetric functions

Following Corollary 3.2, we obtain the
well known result that the necessary and
sufficient condition for total symmetry for
a switching function in the RM form is that
all (C') or none of products z]'z3 ...z
occur for every value i € {1,2,...,n — 1}

and Zlnzl jl =1.

Example 3.13. Recognize if the
functions are totally symmetric:

(a) 1179 @ Tox3 B T 124,

(b) x1 @ xo ® w3 B 17273,

(C) 1® x12903 B 173,

The function (a) is not totally symmetric
because there are 3 product term with 2
literals, we obtain 3 products that is less
than C?. By analogy we can recognize
functions (b) and (c¢) as totally symmetric.
[ |

next

On the other hand, it follows from
the Statement 3.1 that a necessary and
sufficient condition for totally symmetry

in a switching function in the positive
RM form is that the coefficients () take
the same value if their indexes satisfy the
equation » ' jy=ifori=1,2,... ,n—1
(we don’t consider the trivial cases i =
0 and n). This the basis for another
algorithm.

Example 3.14. Recognize total symmetry
in the RM expansions given in Example
3.13.  The column coefficients vector be
R = [r©@r1) ...+(5)]=[0000 0010 0100 1000].

(i) Calculate the indexes of coefficients
r@. Start from ¢ = 1,2,4,8.
When S35 = 1i (updsis =
{0001,0010,0100,1000}).  These coefficients
take the same value 0. Now
calculate the indexes of r® when
Sqi =2 i = 35691012, The
coefficients with indexes ¢ = 6,9,12 and
t = 3,5,10 take different values. So, this
function is not totally symmetric.

(ii) The coefficients r® = 1 when
Z?:I Ji =1 (i = 1,2,4), and the value of
r@ =0 when Y1, ji =2 (i = 3,5,6). So,
this function is totally symmetric.

(iii) The coefficients @ = 0 when
Z?:l j1 = 1 but the values of coefficients 0
for Z?Zl j1 = 2 are different, so the function
is not totally symmetric. l

4 Experimental results

4.1 Partially = symmetric
functions

The  recognition program  RECSym

includes an INDEX GENERATOR to

generate indices of the RM coefficients
that have to be checked for equality,
and a COMPARATOR that analyzes the
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indices and values of coefficients. The
EXOR minimizer is considered as an input
data generator for our program which
transforms the input switching function to
a positive polarity RM expression.

4.1.1 Minimizer

We have used a minimizer based on the
staircase strategy, originally developed by
Zakrevskij [30] for minimizing switching
functions in the FPRM form. This
strategy can  minimize incompletely
specified functions, but it is also well-
suited for completely specified functions
too. Moreover, the minimizer based on
this strategy allows us to find exact and
near optimal FPRM expressions. Further
descriptions of this strategy can be found
in [22] and [28].

4.1.2 Index generator

To recognize the symmetry of a function
in % variables 2i'...2/'...2]
we need to generate the indices of
the coefficients to be compared.  The
INDEX GENERATOR calculates sets of
indexes {ji...Jy .- -Jt ---Jn}i for i =
0,1,2,...,0 — 1 that satisfy the equation
Jtu + ... + ji, = 1, while fixing the values
of the other indexes and forming the sets
of distinct assignments with respect to the
algorithm described in Section 3.1.3.

A

4.1.3 Experiments

The proposed algorithm has been
implemented as program RECSym in

C** on a Pentium 200MMX processor. To
verify the efficiency of our approach, we

Test In P/L Symm. ¢

21 4 4/10 T1,T2,T4 0.00
122 4 4/10 T1,T3,T4 0.00
£23 4 4/10 T2 — a4 0.00
bwl3 5 8/26 T2,T4 0.00
bw18 5 18/41 T2,T4 0.00
bw?2 5 4/13 T4,T5 0.00
bw24 5 20/51 T1,T2 0.00
bw26 5 18/47 T2,T4 0.00
bw27 5 16/41 T2,T4 0.00
bw3 5 16/42 T1,T4 0.00
5x01 7 16/68 T3,T4 0.00
5x6 7 5/9 Ts — Ty 0.00
5x7 7 3/4 x1,z5 —x7  0.00
53 8 11/32 T1,T2 0.00
55 8 5/9 Tr1 — T4 0.00
56 8 3/4 1 — T 0.00
sao21 10 376/1832 e, 10 0.03
sa022 10 512/2592 T6,T10 0.04
sao24 10 936/4536 w6, 10 0.05

Table 3: Partially symmetric functions with
respect to one group of variables: results of
recognition of in MCNC benchmarks

tested our recognition program RECSym
on MCNC benchmark functions with 4-15
variables. Table 3 and Table 4 contain a
fragment of our results. The column with
label In shows the numbers of variables.
The column P/L refers the number of
products (P) and literals (L) in the
positive RM expression (input data for
our recognition system), respectively. The
column labeled ¢ refers the CPU time of
the recognition in seconds. Our program
have manipulated about one thousand RM
coefficients as input data, i.e. product
terms.

Consider some results in detail. For
test f2, our recognizer found partial
symmetries in variables for output functions
f21, f22, f23 of this 4-output test.

The second of the output functions
(f22) of this test is partially symmetric
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Test In P/L Symm. t

bwll 5 16/40  z1,z3,T5; 0.00
T2,T4
T1,T7;

T2 — T4;
T5,T6
T1,T4;
T5,T6
T1,T4,T7;
r2,T5;
r3,Te6
T1,T4,T7;
r2,T5;
z3,T6
T1,T4,27;
T2,T5;
z3,Te6
T1,T4,27;
T2,T3,T5,T6
T1,T2,T3;
s — I8
1 — T6;
T7,T8
T1,T3;
T5,T6;
T7,T8

5x10 7 7/34 0.01

5x5 7 7/16 0.00

z41 7 15/56 0.00

z42 7 9/22 0.00

z43 7 5/8 0.00

744 7 3/3 0.00

54 8 7/16 0.00

57 8 2/2 0.00

newtag 8 21/89 0.00

Table 4: The functions symmetric with
respect to sets of variables: results of
recognition of in MCNC benchmarks

with respect to xq,x3,24. Output
f23 is symmetric with respect to the
following variables: x5, x3,74; function
f24 i symmetric with respect to variables
x1,x9,x3 (Table 3). Note that the first
output variable f21 is totally symmetric
(Table 5).

Table 4 represents the results of
recognition the sets of partial symmetries
by our program. Consider, for example,
function f57 (Table 4). This function
is shown to be partially symmetric with
respect to two sets of variables {z; — 4}
and {z7,z3}. Some of the function are
p-symmetric. For instance, bwll is
p-symmetric with respect to variables

p = {x,x3,25} and {9, z4}; 5210 is
p-symmetric with respect to variables
p = {ZUI,QZ'?}, {$2,$3,l‘4} and {xf)axﬁ};
241 — z44 are also p-symmetric, as well as
fo7.

4.2 Totally symmetric
functions
4.2.1 Index generator

The INDEX GENERATOR, of course, is
applicable to totally symmetric functions.
Note, that the symmetry vector includes k
I’s: S =[11...11] in this case.

4.2.2 Experiments

The results of the experimental study are
presented in Table 5.

Test In P/L t

rd531 5 5/20 0.00
rd532 5 5/5 0.00
rd533 5 10/20 0.00
rd731 7 21/42 0.00
w732 7 7T 0.00
rd733 7 35/140 0.00
rd841 8 28/56 0.01
rd842 8 8/8 0.01
rd844 8 70/280 0.01
9sym 9 210/756 0.06
syml0 10 266/1300 0.14

Table 5: Totally symmetric functions:
results of recognition of in MCNC
benchmarks

Consider, for example, function rd531.
The result of minimization is a positive RM
expression with 5 products and 20 literals:
ToX3X4 X5 DX 1 X3T4T5DL1 XX 4 X5 DL T2T3T5D
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r12xax374. Our program recognized it as a
totally symmetric function.

Functions rd532, rd732 and rd842
are recognized as totally symmetric too,
because these function are linear RM
expansion » .x; for i = 5,7 and 8
respectively.

Consider benchmark 9sym that is a
completely specified 9-input single-output
function, the output of which is 1 only
when the weight of an input vector is one
of {3,4,5,6}. 9sym is totally symmetric
function and our program recognizes that
it has 210 terms and 756 literals of positive
RM expansion (¢t = 0.14 sec. of CPU time
is required).

5 Concluding remarks

In this paper, we have extended the
feasible recognition of symmetries in the
RM domain, namely, to partially and
totally symmetric switching functions. We
have shown the advantages of our formal
approach for representation of different
types of symmetries. The main theoretical
results include

1. Positive polarity RM expansion for
partially symmetric function, i.e. we deal
with more general case of symmetry.

2. Necessary and sufficient conditions to
recognize mentioned above symmetries.

We have realized advantages of formal
approach in our program RECSym.
Program RECSym successfully recognizes
partial and total symmetries in positive
polarity RM expansion of about 50 circuits.

We have observed some interesting effects
in our study. For example, most of
the benchmark functions used in our

experiments (with 4-15 variables) was
identified as partially symmetric functions.

However, the main limitation of our
program and theoretical results is to the
positive polarity RM expression. However,
there may be advantages to allowing other
polarities (i.e. FPRM), in which one
or more variables appear complemented.
Recognition of symmetries in the FPRM
expansion with arbitrary polarity is an
area for future research. In addition, it
will be interesting to extend our results
to specific types of symmetric functions,
self-dual and anti-self-dual functions, as
well as symmetric functions that are also
symmetric in logic values (e.g. multivalued
functions as described in [4]).
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