
P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

Security Policy EnforcementSecurity Policy Enforcement
Cynthia E. Irvine, Naval Postgraduate School

Introduction 1022
Security as a Negative Requirement 1022
Security as a Constructive Effort 1023

Key Definitions for Describing Technical Policies 1023
Active Entities: Subjects 1023
Passive Entities: Objects 1023

Types of Policies 1023
Confidentiality Policies 1023
Integrity Policies 1024
Availability Policies 1024
Separation Policies 1024
Least Privilege 1024
Control Policies 1025
Supporting Policies 1027
Object Reuse 1028
Policy Languages 1028

Policy Enforcement Mechanisms 1028

Mechanisms for Discretionary Policy
Enforcement 1028

Mechanisms for Enforcement of
Nondiscretionary Policies 1029

Criticality of Correct Policy Enforcement 1030
Assurance 1030

Considerations for the Construction of
Secure Systems 1031
Essential Elements for System Protection 1032
Constructive Security 1032
Secure System Development 1033
Future Challenges 1034

Conclusion 1034
Glossary 1034
Cross References 1034
References 1035

INTRODUCTION
Many chapters of this Handbook describe mechanisms
that contribute to various facets of security. The arbitrary
use of security mechanisms provides no prescription for
the achievement of security goals. It is only in their ap-
plication in the context of organizational objectives for
the protection of information and computational assets
that security can be assessed. This chapter is intended
to discuss the policies that provide a rationale for those
mechanisms and to broadly examine their enforcement
mechanisms in computer systems. It is intended to focus
primarily on fundamental concepts, which remain valid
despite their longevity.

In a utopian world where nothing bad ever happened,
information security would be unnecessary. There would
be no accidents; all actions performed by users would be
correct; no attackers would attempt to violate systems.
Unfortunately, reality is dramatically different. Informa-
tion owners are confronted with risks to their assets and,
to address these risks, make statements regarding what
needs to be protected and how well. These statements con-
stitute the basis for information security policies.

Security policies for information and assets have been
with us for centuries, but their application within com-
puter systems requires examination. Sterne (1991) pro-
vides a useful guide to understanding how policy is ex-
pressed at several levels within an organization and how
it is described in a technical context.

First, security policy applies to the protection of assets.
Sterne points out that only tangible assets can be pro-
tected. Intangible assets may also be protected through
the protection of tangible assets, but it is impossible to
state and implement a policy to address intangible assets.
For example, how can a bank protect its reputation? Not
by putting guards around that “reputation.” Instead it pro-
tects tangible assets such that its reputation is unsullied

and enhanced. In contrast, the bank that inadequately
protects funds transfers and financial records may be at-
tacked with consequent damage to its reputation. Thus
at the highest level, the company board of directors may
state policy very abstractly: “important information and
other assets must be protected.” It will be up to manage-
ment to translate that policy into more concrete terms and
to establish the practices for its enforcement.

Policy is enforced through procedures and mecha-
nisms. Prior to the information age, these procedures
and mechanisms were manual: now they are automated.
When computers are used to store and process informa-
tion assets, technical policies are required to translate
management strategies into engineering specifications.
Even for a nontechnical asset, for example, a painting
in a museum, a computer system may be used in con-
junction with other protection, and a technical policy de-
scribing the policy to be enforced by that system will be
required. Mechanisms within the system contribute to
policy enforcement, but just as important, external tech-
nical and nontechnical procedures involving human in-
teraction must be followed to ensure compliance with the
enterprise policy. User account management provides an
example where automated and procedural measures must
be combined to achieve the desired result. At some non-
technical level, it must be determined whether a partic-
ular individual should have an account. Technical activi-
ties will ensure that the account, if granted, is created and
maintained.

Security as a Negative Requirement
In security, confidence in an information technology (IT)
system comes from knowing that a broad range of bad
things, many heretofore unknown, will not occur. For
many enterprises, a lack of security can result in lost op-
portunity. This is due to the fact that fear of unknown

1022

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 SEP 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Security Policy Enforcement

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Center for Information Systems Security
Studies and Research (CISR),Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

TYPES OF POLICIES 1023

security failures will prevent organizations from explor-
ing new IT-based business models, where security is pred-
icated on the fact that unauthorized access to critical in-
formation requires a level of effort that adversaries can-
not mount. When security is good, a large number of bad
things do not happen. Because it is impossible to enumer-
ate all of the possible bad things (and few would choose to
turn off security measures to discover even a partial list of
these undesirable events), the notion of “measuring” se-
curity is not helpful. Because of this measurement prob-
lem, management is often reluctant to invest in security.
It is more appropriate for management to ask, “In what
activities are we unwilling to engage because we do not
trust computer systems to adequately protect our assets?”
Thus, security is enabling technology but is expressed as a
negative requirement: do not let security breaches occur.
Through a process of risk analysis, it is possible to create
simple models and determine where within the enterprise
various security measures will result in the highest return
on investment.

Security as a Constructive Effort
There are two approaches to achieving security policy en-
forcement, whether in individual systems or in networks
of systems. The first is to apply various security measures
to a system that is discovered to be insufficient after it has
been deployed. Often such measures may be ad hoc. In the
case of many commodity products, patches are used to
remedy some flaw that has been revealed. Unfortunately,
the cure may be worse than the original malady and can
lead to additional flaws (Karger & Schell, 1974).

An alternative is to articulate the security policy and
then construct a system sufficient to enforce it to some
level of confidence. This approach allows system owners
to better understand how various risks have been miti-
gated and those threats for which the system does not have
sufficient protection. For example, if a system is intended
for a student’s database of favorite music, the assets are
not of high value and lightweight mechanisms may be
adequate to protect the information. A system intended
to automate the processing of critical national security
information will require considerably stronger security,
because the threat posed by adversaries is much higher.

Security policies and the constructive techniques used
to enforce them are the focus of what follows.

KEY DEFINITIONS FOR DESCRIBING
TECHNICAL POLICIES
Having provided a motivation for technical security, some
terminology is required.

Active Entities: Subjects
The heart of every computer is its central processing unit
(CPU): a collection of registers and hardware mechanisms
to execute code. Instructions are fetched and acted on
with consequent changes to the system state. Although
this is a rather simplistic description of modern proces-
sors, which in reality can be quite complex (Hennessy
& Patterson, 1996), it is sufficient for this discussion. At

any particular moment, the processor executes on behalf
of a particular active entity. In a multiprocessing sys-
tem, active entities are scheduled. These entities consist
of the set of instructions being executed and some do-
main within the system address space that will be read,
written, or both as the instructions are executed. These
active entities are called subjects (Lampson, 1971). The
people external to the computer, viz. users, are not sub-
jects; subjects act within the computer on behalf of users.
The notion of a subject is a term of art in computer se-
curity and should not be confused with threads. (See, for
example, Tannenbaum, 2001, for a discussion of threads.)
In many simple operating systems, subjects correspond
to entire processes; however, some systems implement
highly granular privilege policies such that a single pro-
cess may support multiple subjects. Using hierarchical
rings, Multics provided a highly granular privilege mech-
anism (Schroeder & Saltzer, 1972).

Passive Entities: Objects
The passive entities of a system are called objects
(Lampson, 1971). A set of objects comprise the domain
of each subject. These objects possess security attributes
such that the subject has some form of access to each ob-
ject within its domain. It is possible for many subjects to
share access to the same object. If an object can be written
to by multiple subjects, as might occur in a database, some
form of synchronization among subjects may be required.
Because subjects execute within processes, a wide range
of interprocess synchronization mechanisms (Maekawa,
Oldehoft, & Oldehoft, 1987) may be useful. These can
ensure that specific actions on resources are viewed as
atomic.

The objective of security policy definition and enforce-
ment is to control the ways subjects can share and affect
the objects.

In a system lacking any sort of security policy, all sub-
jects would have the same access rights to all objects. They
would be expected to behave properly. Early operating
system designers quickly recognized this as a recipe for
chaos and instituted controls (a form of system-internal
security policy) to protect processes from each other and
from the operating system itself. Saltzer and Schroeder
(1975) provide a review of many of these mechanisms.
With the exception of certain specialized single-process
systems (Weissman, 2003), today there is an expectation
of controlled sharing of resources, for example, proces-
sor time, memory, and devices, among processes. Secu-
rity policy is a major factor in determining the resource-
sharing mechanisms.

TYPES OF POLICIES
At a high level, an organization security policy may be
expressed in terms of three objectives: confidentiality, in-
tegrity, and availability. These primary policies may be
complemented by those for separation, least privilege,
policy control, and other supporting policies.

Confidentiality Policies
Confidentiality is focused on protecting information from
unauthorized disclosure and may apply to requirements

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1024

for secrecy and privacy. Confidentiality policies are im-
plemented in most organizations. Businesses may wish
to protect trade secrets, marketing plans, accounting
information, proposals, and so forth from disclosure to
the general public. In addition, they may be required
to protect information regarding their personnel. In the
health care industry, protection of personal information
is of particular interest. Here, the disclosure of medical
records to unauthorized individuals could have serious
consequences. A number of laws and regulations artic-
ulate confidentiality policy requirements within various
sectors of society.

Integrity Policies
Integrity addresses the modification of information: it re-
lates to the reliability or criticality of information. Infor-
mation of high integrity might be considered to be either
highly reliable, for example, from a highly trusted source,
or intended for use in critical operations. For example,
when a high integrity application is distributed, typical
users might be permitted to inspect the source code or the
binaries but would be prohibited from modifying either:
those authorizations might be limited to certain engineers
or programmers. A level of criticality might be associated
with meteorological information prior to a space flight
launch. As a consideration in a launch decision, such in-
formation must not be tampered with.

Availability Policies
Both confidentiality and integrity policies can be imple-
mented by mechanisms that determine whether a partic-
ular subject, which is ultimately executing on behalf of
some user, may either observe or modify the information
being protected. The decision is simple: either access is
permitted or it is denied. Confidentiality and integrity can
be reduced to a set of yes or no decisions. In contrast, poli-
cies regarding the availability of resources are notoriously
difficult to characterize and even more challenging to en-
force. This is due to the subjective nature of availability.

Availability policies, by their very nature, are subjective
and must be addressed on a per-organization basis. Con-
sider the following example. If an availability policy were
to state that all users must have sufficient resources for
arbitrary tasks, then when several users decided that they
wanted to model colliding galaxies and molecular inter-
actions on a small, general purpose computer (assuming
these codes would execute on such a machine), the avail-
ability policy would not be met. This is a rather extreme
scenario; however, it is easy to see how the tension for
resources can result in service inadequacies.

As another example, suppose a user has a processor
adequate for supporting a defined set of applications and
also suppose that this system is not connected to any
network. As long as the application suite is unmodified
and there are no stresses imposed on the system by the
network, the user is likely to find the system to be ade-
quate. Now, introduce a new suite of applications that con-
sume much larger amounts of system memory and require
considerably more processing. Suddenly, the system that
was once satisfactory is now inadequate. Connection to a
network can further complicate the user’s perception of

system availability by taxing system resources to support
network communications and data transfer, in addition to
exposing the system to denial of service attacks in which
adversaries deliberately consume system networking re-
sources. Techniques to address the threat of denial of ser-
vice attacks may entail the application of specially crafted
confidentiality and integrity policies. Although availabil-
ity can be addressed on a case-by-case basis, researchers
have yet to develop a generally applicable model for sys-
tem availability.

Separation Policies
Separation systems enforce an internal policy that isolates
processes from one another (Rushby & Randell, 1983).
In general, absolute isolation is not particularly useful;
therefore relaxation of absolute separation is usually re-
quired. This then leads to consideration of some combi-
nation of confidentiality and integrity policy enforcement.
In the early years of this decade, hardware advances have
allowed consideration of the practical construction of sys-
tems that employ a low-level separation kernel to create
isolated blocks, where the term block is used in the mathe-
matical sense. Through careful static configuration of the
separation kernel, blocks represent equivalence classes.
Within blocks, more granular mandatory policies may be
enforced (Levin, Irvine, & Nguyen, 2004). If a set of com-
mon underlying processors supports the separation sys-
tem, then issues such as availability and covert channels
may emerge.

When absolute separation is required, but isolated Pro-
cess A can perceive the presence of another presumably
isolated process, B, then two problems arise. Process A
may not have as many machine cycles with which to per-
form its task and thus may experience an availability prob-
lem. Second, through the manipulation of system-level re-
sources, Process B may be able to signal to Process A in
a manner not permitted by the overall separation policy.
This creates a covert channel (Lampson, 1973; Levin &
Clark, 2004).

Least Privilege
The principle of least privilege (Saltzer & Schroeder, 1975)
states that no entity within a system should be accorded
privileges greater than those required to carry out its
tasks. For example, the task of audit administrator does
not require authorizations to manage user accounts or to
configure new system devices, nor does a user who merely
wishes to write a letter require the power to configure
the operating system. To effectively apply the principle of
least privilege within the context of an implementation,
a policy must be articulated. Within a monolithic entity,
the principle of least privilege can be used as a metric
by which to structure the system based on information-
hiding paradigms (Parnas, 1972). Among processes, the
principle of least privilege can be realized by the appli-
cation of integrity, and sometimes confidentiality, mech-
anisms. Among processes, the principle of least privilege
can be implemented to protect the integrity of the operat-
ing system, libraries, and other reliable components from
software of unknown provenance (Saltzer & Schroeder,
1975; Schroeder & Saltzer, 1972). This permits processes

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

TYPES OF POLICIES 1025

to be organized into a set of hierarchically ordered sub-
jects, with the process integrity policy enforced by the un-
derlying operating system. The domains having the least
privilege depend on those of increasing privilege. Subjects
in the former can be prevented from corrupting the data
and software of the latter.

Control Policies
The policies in the previous paragraphs describe the types
of protection that may be required but do not address how
those policies will be controlled. Control policies deter-
mine the ways in which policies can be modified, and fall
into two categories: discretionary and mandatory. A discre-
tionary control policy provides an interface whereby the
access control policy can be modified at runtime by pro-
grams executing on behalf of users. A mandatory control
policy may not be modified at runtime and instead is both
global and persistent; a secret is secret no matter where
the information is being accessed or what time of day it is.
The difference between these control policies is of great
importance. The fact that two kinds of control policies
exist reflects fundamental differences in the way organi-
zations want the policies themselves to be managed.

In organizations without computers, individuals are
cognizant of all actions taken with respect to informa-
tion being processed. These organizations may subdivide
and compartmentalize their information. Certain individ-
uals are vetted and authorized to handle specific, lim-
ited subsets of the information. Through the vetting and
training process, each individual knows how to handle
information of different sensitivities and is expected to
exercise judgment so that sensitive information is not
compromised.

When computers are used to augment and enhance
productivity, a problem arises. Now, a program is executed
on behalf of the individual. In general, software is written
by third parties, be it commodity, open source, or cus-
tom. Although the software may properly perform its ad-
vertised functions, there is no guarantee that it does not
contain additional, clandestine artifacts that attempt to
modify, disregard, or circumvent the system security pol-
icy. Such malicious artifacts may take the form of Trojan
horses or trapdoors, both of which are discussed further
in the fifth section.

Figure 1 depicts a Trojan horse being executed by its
victim, Alice. The access controls on her software do not
permit Mallory to read her file; however, the access con-
trols on Mallory’s file permit Alice to write to his file. The
Trojan horse, acting with Alice’s permissions, is able to
read her files and write their contents to Mallory’s files in
violation of Alice’s intent to protect her information from
access by Mallory. In a system with discretionary controls,
the Trojan horse might also have used its control privileges
to modify the access control list on Alice’s information so
that Mallory could read it.

If the intent of the policy is not correctly encoded into
the underlying enforcement mechanisms, a Trojan horse
can violate the policy. Another problem arises because in
many systems, the policy can simply be modified, thus per-
mitting the Trojan horse to carry out its malicious intent.
When a system provides a general application interface

Alice
information

Access
control

list

Mallory
information

Alice’s
code with

Trojan
horse

read & write read & write

MalloryAlice

Access
control

list

Figure 1: A Trojan horse executing in Alice’s code is
able to write to Mallory’s information, thus circumvent-
ing Alice’s intent to block Mallory’s read access to her
information.

that permits policy modification, the policy control mech-
anism is discretionary: users and programs can change
the policy. This is useful when a requirement for dynamic
policy modification exists and when the consequences of
policy modification are insignificant. Thus, discretionary
policies are appropriate in situations when a possible
Trojan horse executing within an application will cause
only minor, localized damage.

There are several ways that control over discretionary
policies may be exercised (DoD, 1987). The most common
form is owner control. Here, each object has an owner, a
named user of the system, and that owner can change
the access rights to the object, thus granting more or
less access to various other users or collections of users
called groups. Centralized control places an administrator
in charge of granting and revoking access rights. Few sys-
tems take this approach, because the burden on the ad-
ministrator may be too high. Hierarchical control systems
organize the information objects in a tree-like structure,
as in a typical file system, and provide diminishing con-
trol over access to objects as one moves from the root to
the leaves. It could be useful in military or other highly
structured, top-down organizations. Finally, laissez-faire
control permits anyone to modify the policy on anything.
Of the various approaches to discretionary control, owner
control is the most common and is found in most variants
of UNIX and Linux. Given sufficiently elaborate underly-
ing control structures, an operating system can be config-
ured to support any of these control policies.

The implementation of discretionary policies offers
choices regarding access rights when objects are created.
For example, an object might be created where all accesses
were permitted until access by certain individuals is de-
nied. Alternatively, objects could be initialized with all ac-
cess denied and subsequent access to the object would be
granted on a need-to-know basis. Lunt (1989) provides a
detailed discussion of various approaches to discretionary
access control.

Because of their fluidity, discretionary policies offer the
opportunity to revoke the rights of subjects to objects. A
problem associated with revocation is that although the
right to an object may be revoked, the information it-
self may already have been accessed and copied. Another

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1026

problem with revocation is that of its timing. If the per-
missions on an object are changed, should the system
immediately locate and terminate access by subjects no
longer authorized to access the object? One must find
all, viz. the transitive closure, subjects with the revoked
right that have active access. This would require exam-
ining all of the current accesses of all of the subjects,
which, although feasible, could have a significant effect
on system performance while the access control system
conducts the search. Observers have noted that because
the subject once had access to the object, it could have
copied the information; hence access to the information
that the object contained will not be prohibited. In addi-
tion, it might be considered somewhat impolite to cause
an application to suddenly crash because access permis-
sions were modified while the application was using the
subsequently revoked object (especially because the ap-
plication could have copied all of the information in the
first place). As pointed out by Grossman (1995), immedi-
ate revocation may be particularly difficult to define and
achieve in highly distributed systems.

Other dynamic changes in access rights can occur, for
example, when the user represented by the process is
dynamically changed as in the UNIX setuid permission
mechanism. Code is stored in files and owned by individ-
ual system users. To execute new code, a system mecha-
nism replaces the current executable of the process with
a new one. Usually, the user identifier associated with the
process remains the same; however, when the setuid per-
mission is set, the process takes on the persona associated
with the new executable. It would be possible to construct
systems with this functionality that could grant access
rights inappropriately. Checking for such behavior is not
always possible. It has been proved that it is impossible to
construct a mechanism that will determine whether an ar-
bitrary system will leak information (Harrison, Ruzzo, &
Ullman, 1976). Fortunately, there are systems constructed
with nondiscretionary controls on the policy mechanism
for which leakage of access rights does not occur.

Some systems support the notion of access permissions
associated with various collections of job functions called
roles. In a hospital, these might correspond to the func-
tions of doctor, nurse, technician, administrator, and so
forth. The benefits of access controls based on roles are
realized in large organizations where administrators can
assign users to roles and then change those roles as user
responsibilities evolve. Many systems may be organized
to support role-based access controls, a notion first intro-
duced by Ferraiolo and Kuhn (1992). A survey of a large
number of role-based access control models was con-
ducted by Sandhu, Coyne, Feinstein, and Youman (1996).

Systems enforcing nondiscretionary, or mandatory,
control policies do not provide a general interface for pol-
icy modification and are applied in cases when the policy
is intended to be constant in both time and space. For
example, if the secret formula to a popular cola drink is
secret worldwide and at all times, it will be treated as such
by both the company personnel and through the design
and implementation of its IT systems.

A qualitative metric for determining when mandatory
control policies are required can be found in the conse-
quences of policy violation (Brinkley & Schell, 1995). If

{air, fire, water}

{fire, water}{air, water}{air, fire}

{air} {water}{fire}

{∅}

Medium

High

Low

(a) (b)

Figure 2: Lattice of access classes. A hierarchical or-
dering of classes is shown in (a). In (b), a set of non-
comparable classes is shown. Arrows show the allowed
direction of information flow.

grave harm would result and individuals would be fired or
imprisoned for willfully violating the policy, then manda-
tory controls are probably appropriate.

In the context of mandatory policies, subjects and ob-
jects are allocated to equivalence classes that are partially
ordered. Denning (1976) showed that a lattice provides
a useful representation of the equivalence classes and
their relationships with respect to the flow of information
within a system enforcing a mandatory policy. Figure 2
shows both a hierarchical ordering of access classes and a
set of classes created from noncomparable attributes: air,
fire, and water. In the latter, any set of classes may receive
information from a set of classes that is a subset of itself.
The information flow policies depicted in the figure may
be combined by taking their Cartesian product. The work
of Denning also demonstrates that elaborate mandatory
policies can be represented in a lattice through the intro-
duction of additional equivalence classes so that a least
upper bound and a greatest lower bound can be found for
any pair of equivalence classes.

The Bell and LaPadula model provided a formal de-
scription of a mandatory confidentiality (secrecy) policy
(Bell & LaPadula, 1973). Figure 3 illustrates the read and
write accesses permitted to subjects when a mandatory
confidentiality policy is enforced. Each subject may read

Low Secrecy
Information

Low Secrecy
Subject

read &
write

read &
write

readwrite

High Secrecy
Subject

High Secrecy
Information

Figure 3: High confidentiality subjects
have read access to low confidentiality
information; at the same time confine-
ment prevents the flow of high informa-
tion to low.

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

TYPES OF POLICIES 1027

High Integrity
Information

High Integrity
Subject

read &
write

read &
write

readwrite

Low Integrity
Subject

Low Integrity
Information

Figure 4: Confinement prevents the
corruption of high integrity subjects with
low integrity information; at the same
time low integrity subjects benefit from
high integrity information.

and write information at its own level. High secrecy sub-
jects may read low secrecy information and low secrecy
subjects may write high secrecy information, but low se-
crecy subjects may not read high secrecy information nor
may high secrecy subjects write to low secrecy informa-
tion. It is worth noting that although mandatory confi-
dentiality policies generally permit low secrecy subjects to
perform a blind write to high secrecy information, in prac-
tical implementations blind writes could result in chaos
and are not generally permitted.

Figure 4 illustrates the read and write accesses permit-
ted when a mandatory integrity policy is enforced, such as
in the Biba model (Biba, 1977). Here, high integrity sub-
jects may not be corrupted by low integrity information;
at the same time low integrity information and subjects
can be supplemented with high integrity information.

In the case of both confidentiality and integrity, the fact
that the mandatory security levels are partially ordered
makes comparison of access classes easy to implement.

It is worth noting that the Seaview model was the first
to illustrate that a single set of equivalence classes could
be used to enforce combined secrecy, integrity, and least
privilege policies in a system with mandatory controls
(Lunt et al., 1989). (Note that Seaview was a model for
a database management system that allowed the enforce-
ment of mandatory and discretionary policies. The formal
name for the project was Secure Distributed Data Views.)
The confidentiality policy model was similar to that for-
mulated by Bell and LaPadula (1973). The integrity pol-
icy applied to access between processes, similar to that
modeled by Biba (1977), whereas the least privilege pol-
icy, which was to be implemented using protection rings
(DoD, 1994), applied to process-internal integrity (Shirley
& Schell, 1981). The security levels were created by tak-
ing the Cartesian product of the partial orderings for the
confidentiality and integrity policies.

The problem of characterizing security policies for the
commercial sector where the integrity of information is
often of equal or greater importance than its confiden-
tiality was recognized in the early work of Lipner (1982),
who described how the Biba model could be applied in
commercial settings. Clark and Wilson (1987) described a
more extensive commercial integrity model based on the

notion of transactions, which was shown to be feasible
using existing technology by Shockley (1988). To describe
conflict of interest regulations that arise in the business
context, Brewer and Nash (1989) developed the Chinese
Wall security model. Drawing on both confidentiality and
integrity, active entities are not permitted to access infor-
mation once a possible conflict of interest between two
data sets has been established. For example, by accessing
the protected information of a particular pharmaceutical
company, access to the information of similar companies
would be disallowed. A sanitization policy allows certain
nonsensitive information to be released to the public.

Supporting Policies
The policies discussed thus far relate to the access of sub-
ject to objects. In an operational system, supporting poli-
cies for user identification and authentication, as well as
for audit, are required. The former allows a binding be-
tween the physical user external to the system and the sub-
jects acting on the user’s behalf within the system. First
a user must identify himself to the system, then the user
must demonstrate to the system that he is who he claims
to be by presenting something that only comes from him.
This might involve, for example, a password, a token, a
biometric factor, or some combination of these.

Enforcement of discretionary policies generally takes
the form of establishing rights to a particular object based
on a name that is internally bound to each subject. For ex-
ample, in many systems a user identifier is bound to the
process, which also has a unique process identifier. Thus
several processes may be acting on behalf of a particular
user ID. The binding between the user’s name and the user
identifier is often found in the password file, which con-
tains for each user a unique user name and user identifier.

For systems enforcing mandatory controls, the at-
tribute associated with the subject will be its sensitivity
level (equivalence class). This usually takes the form of a
label. In a system enforcing mandatory policies, the pass-
word file might contain some maximum sensitivity level
at which the user can log in. For example, a user cleared
to TOP SECRET could select any one of the following
levels for her current session: TOP SECRET, SECRET,
or UNCLASSIFIED. Suppose a user logs on at SECRET,
then, when a subject is instantiated on behalf of the user,
one of its attributes will be the user’s current session level,
for example, SECRET.

Since the attributes bound to subjects acting on be-
half of users are the basis for access control decisions,
it should be clear that having a well-defined identifica-
tion and authentication policy is required. For example,
a system might require that each user have an individual
password and be associated with a user group, that is, a
set of common users such as students or faculty. Changes
to groups might require additional passwords. Alterna-
tively, a set of users might be associated with a particular
activity or role for which they might authenticate. In a
public library, it might be possible for anyone to access
the system as a “library subscriber” and the purpose of
the identification and authentication mechanism would
be for accounting purposes rather than to track the indi-
vidual reading habits of the population.

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1028

Audit provides a record of security-relevant events and
can be used as a deterrent to such user malfeasance as
white-collar crime. If bound to a rule-checking mecha-
nism, audit may provide alerts of impending security vio-
lations and may evolve into elaborate intrusion detection
systems. Policies must be established to determine what
should be audited. For example, one might choose to au-
dit all accesses to a particular file, but to no others; all
activity on the system could be audited; the activities of
a particular suspicious user might be recorded; the use
of a particular set of system calls could be audited; and
so forth. The choices regarding audit policy are extremely
broad. Two important points should be noted, however.
First, it is generally a good idea to audit the activities of
the security administrator so that a record of security crit-
ical activities can be maintained. Second, policy makers
should be aware that a voluminous audit record that is
not accompanied by audit reduction tools is not likely to
be particularly useful

In systems enforcing nondiscretionary policies, the
management of labels and the labeling of information be-
ing transferred into and out of the system will be reflected
in supporting policies. For example, there may be a re-
quirement that all printed documents contain markings
in their headers and footers indicating whether the docu-
ment is “company proprietary” or “public.”

System support is also required for the enforcement of
administrative policies. These include user account man-
agement and security configuration, including the config-
uration of mandatory equivalence classes.

Object Reuse
As noted previously, objects are the information contain-
ers in systems. They are constructed using system re-
sources, usually primary and secondary memory, but de-
vices must also be considered. When objects are deleted,
the memory from which they were constructed is returned
to a pool. To prevent inadvertent access to information
previously stored in now defunct objects, an object reuse
policy is applied to memory resources. Such policies usu-
ally stipulate that all information must be removed from
resources prior to their reuse. The system implementation
determines whether the information is purged immedi-
ately after object deletion or prior to its allocation to a
new object.

With this overview of policies, it is now possible to de-
scribe the various techniques and mechanisms that may
be used to provide for their enforcement.

Policy Languages
Considerable work has been conducted in the area of
defining languages for the expression of security policies.
Only a few are presented here. An early example was
KeyNote (Blaze, Feigenbaum, Ioannidis, & Keromytis,
1999). In highly networked organizations, databases ac-
cessible via Web interfaces provide a useful way to or-
ganize large quantities of information. Policies may be
captured in the use of extensible markup language (XML)
frameworks. Two emerging standards are SAML (Oasis,
2004) and XACML (Oasis, 2003). The former supports
the exchange of security-relevant information between

organizations, whereas the latter allows organizational
security policies and access decisions to be expressed.
A challenge for each of these standards is to create sys-
tem architectures that provide a high assurance bind-
ing between security attributes and the information to be
protected.

POLICY ENFORCEMENT MECHANISMS
The mechanisms used to enforce primary confidential-
ity and integrity policies depend on the control policies.
Mechanisms for the enforcement of discretionary and
nondiscretionary policies are discussed.

Mechanisms for Discretionary Policy
Enforcement
Discretionary policies may be enforced in two ways: ac-
cess control lists and capabilities.

Access Control Lists
Access control lists (ACLs) are lists of permissions asso-
ciated with each object such as a file, directory, or device.
Each ACL entry consists of the name representing an en-
tity, such as an individual user or group, and the rights
accorded to that entity. Because access control lists for a
large number of similar users (for example, all of the stu-
dents enrolled in a particular class) may be burdensome,
it is often convenient to organize users into groups so that
access rights can be granted to a number of users simul-
taneously. The largest group is, naturally, everyone, also
known as “public” on many systems.

The types of permissions contained in an ACL may in-
clude more than merely read, write, and execute. It is pos-
sible to list the users or groups that have control access
to the object, that is, who can grant or deny permission
for other access rights. Furthermore, an additional level
of permission can be provided through control-of-control-
access, an access right that permits administration of con-
trol accesses. Access modes may be combined to create
specialized access modes. For example, append access can
be created with a combination of read and write access
and restricts all writing to the end of the target object.
Sometimes, it may be necessary to explicitly deny access
to a particular user or group. Thus, ACLs can be enlarged
to support negative access rights. Using negative access
rights, it is possible to deny an individual access to an ob-
ject even though he is a member of a group that possesses
that access right. These several levels of access rights along
with their various combinations can be used to create a
highly sophisticated system.

Two implementation considerations are of particular
interest for ACL-based systems. First, the initial value of
each object’s ACL must be determined. It is possible to
provide template for an initial default ACL. This may be
based on a template associated with the user or that is part
of the parent directory. As noted earlier, Lunt (1989) pro-
vided an analysis of the defaults possible in systems with
discretionary controls: no access (i.e., minimized access)
or complete access. Where the principle of least privilege
is to be observed, a limited or no access default would be
appropriate.

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

POLICY ENFORCEMENT MECHANISMS 1029

The second implementation consideration is associ-
ated with the precedence of ACL entry interpretation. For
example, suppose that there are conflicts between explicit
user negative and positive permissions and those associ-
ated with one or more groups of which the user is a mem-
ber. An organization may decide that negative ACLs take
precedence, followed by positive user, group, and public
permissions. This means that if an access right is explicitly
denied, then the user will not be granted access despite the
existence of positive access rights in other ACL entries.

The primary benefit of ACLs is that all permissions as-
sociated with a particular object are localized and can be
easily managed. Revocation of access is achieved simply
by changing the ACL. To “solve” the revocation problem
described previously, implementations choose to have the
revocation take effect on the next attempt to gain access
to the object.

Capabilities
An alternative implementation approach is capabilities.
In a capability-based system, the access rights to objects
are bound to the subjects executing on behalf of users,
rather than the objects. At the time of login, an initial set of
capabilities is bound to a subject. As execution progresses,
additional capabilities may be gained by subjects. Once a
subject possesses a capability for a particular object, that
object may be accessed with the rights associated with
the capability; all the subject needs to do is present the
capability.

For capability-based systems, revocation presents chal-
lenges. This is because a capability-based system dis-
tributes the access rights to each object among many sub-
jects. If subjects are able to copy and store capabilities,
the revocation problem is further exacerbated. There is
no central location that can be inspected to determine
which subjects have potential access to a particular ob-
ject. Instead, the capability list for each subject must be
inspected. If one decided to revoke access to an object, po-
tentially every capability list in the system would require
inspection to ensure that the revocation was complete.

The implementation of highly granular capability
mechanisms in operating systems has been attempted in
several systems; one of the most notable was the CAP sys-
tem (Wilkes & Needham, 1980). Although they can be im-
plemented, the systems are notoriously complex and their
lack of a conceptually simple policy enforcement mecha-
nism caused this approach to be abandoned.

Mechanisms for Enforcement of
Nondiscretionary (Mandatory) Policies
As discussed previously, nondiscretionary policies provide
no run-time interface for policy modification. Typical ac-
cess control lists are unsuitable for the enforcement of
mandatory policies. This is largely due to the enormous
complexity of the management that would be required to
ensure that all information and active entities have the
proper security attributes and that those attributes can-
not be modified via a run-time interface.

Two techniques are in common use for the enforcement
of nondiscretionary policies. The first is physical and the
second is logical. To discuss these policies, we introduce

the notion of sensitivity levels. These are identifiers for
equivalence classes of objects defined by the secrecy and
integrity attributes associated with that set of objects. The
choice of equivalence classes is up to the organization.
For a private enterprise, the sensitivity levels might be
PROPRIETARY, COMPANY CONFIDENTIAL, and PUB-
LIC, while a military organization might choose SECRET,
CONFIDENTIAL, and UNCLASSIFIED.

To enforce policy using physical mechanisms, one
must construct a separate network for each sensitivity
level. All users must be authorized for the sensitivity level
of the network and all information created and managed
in that network must be considered to be at the net-
work’s sensitivity level. Such networks are described as
being single level. The advantages of single-level systems
or networks include the ability to identify and manage the
access to information in a manner that is easy to under-
stand. An isolated network may be maintained in a spe-
cial facility and only users authorized to use that network
may be granted access to the premises. The construction
and maintenance of isolated networks and the facilities
to house them can be costly, but when information is ex-
tremely critical the protection afforded by an isolated net-
work may outweigh the cost.

There are serious disadvantages to physical isolation.
Users must either move from room to room to access dif-
ferent networks, or they may have multiple systems on
the desktop. The latter can lead to clutter and confusion
when a user must access many networks in the course
of daily activities. The user could use a KVM (keyboard,
video, mouse) switch to minimize consumption of desk-
top space; however, multiple processors are still required
and the possible advantage of seeing information at dif-
ferent sensitivity levels simultaneously is lost.

If nonsensitive information can be moved to networks
of higher sensitivity, but without sensitivity labels associ-
ated with the information, it is impossible for users to dis-
tinguish nonsensitive information from that which is sen-
sitive. To share the nonsensitive information with individ-
uals having lesser authorizations, users must go back to
the nonsensitive system. Alternatively, if a user wishes to
transmit nonsensitive information directly from the more
sensitive enclave, complex procedures are required to ad-
dress the threat of unauthorized information flow result-
ing from the use of steganography (Kurak & McHugh,
1992) and other techniques for clandestine information
hiding.

Logical isolation depends on an underlying mech-
anism that enforces the security policy. Because manda-
tory policies can always be characterized by comparisons
between equivalence classes, it is possible to construct a
relatively simple mechanism to determine whether a par-
ticular subject may have access to a given object. The Bell
and LaPadula and Biba models permit read and write ac-
cess by subjects at the same sensitivity level as the ob-
ject; simultaneously, subjects are not permitted to read
information of greater confidentiality, write to informa-
tion of lesser confidentiality, write to objects of higher in-
tegrity, or read from objects of lesser integrity. Systems
that enforce logical isolation can permit users to have a
coherent view of all information at or below their sensi-
tivity level. They also allow users to log into the system at

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1030

any sensitivity level below their maximum authorization.
Thus, from a single system, an authorized user is able
to both access company proprietary information when
logged in at “proprietary” and the Internet when logged
in at the “public” sensitivity level.

CRITICALITY OF CORRECT POLICY
ENFORCEMENT
Failures in security policy enforcement may result from
technical flaws in information systems or the failure of
people to use the system as intended. Although the latter
is of considerable concern and must be addressed through
appropriate information security training and awareness
programs, the former is of interest here.

A large number of failures in policy enforcement re-
sult from the presence of unspecified functionality in sys-
tems. Broadly defined, unspecified functionality is the set
of system flaws and unintended artifacts that permit an
adversary ultimately to bypass the policy enforcement
mechanism of a system. Thus, failures in design and im-
plementation, ranging from inadequate bounds checking
of interface parameters to pathological interactions be-
tween synchronizing processes, can be exploited by adver-
saries intent on gaining system privileges for the purpose
of avoiding the constraints of the protection mechanism.
Such flaws were identified by Anderson (1972) and are still
found in current systems (Karger & Schell, 2002). The
Common Vulnerabilities and Exposures (MITRE, 2004)
Web site lists more than 3000 unique entries. A complete
enumeration is not possible here; however, a few of the
major categories derived from Linde (1975) and Anderson
(1972) are provided in Table 1.

A more insidious form of unspecified functionality oc-
curs when a system is subverted (Anderson, Irvine, &
Schell, 2004; Myers, 1980). In this case, a member of the
system’s development team intentionally adds clandestine
functionality that permits the adversary to bypass system
security mechanisms. The term subversion is generally
applied to the operating system or kernel, whereas other

forms of malicious software, for example, Trojan horses,
function in the context of applications. This permits sev-
eral distinct characteristics of each to be identified. Trojan
horses execute in the context of applications, thus they are
constrained by the permissions and privileges of the user
who is executing them. They can bypass the intended pol-
icy of the user but cannot bypass the policy enforcement
mechanisms altogether. Trojan horses must be activated
by the user. This gives the adversary less control over their
execution.

In contrast, low-level subversion mechanisms execute
within the operating system with full privileges and are
unconstrained by policy enforcement mechanisms. They
usually contain triggers for activation and deactivation,
thus affording the adversary control over their execution
as shown in Table 2.

It is useful to note that, generally, viruses execute in the
context of applications, whereas other forms of malicious
code can be placed either within applications or in the
underlying system. In many cases, malicious code may
be introduced into systems in the form of downloadable
executables or scripts, updates, and patches. Thus, code
of unknown provenance should be confined in a manner
such that it does not result in pervasive damage.

Assurance
As is the case with security, assurance is a term that is
often misused. For example, some state that “software as-
surance” will improve the “security” of systems. Both of
these terms are rather meaningless without context. For
software assurance, some might say that a system pos-
sesses this quality if it functions as specified and if vari-
ous tests indicate that the software behaves as expected
over a set of inputs, but this definition assumes that there
is no malicious intent involved in the construction of the
system. If, on the other hand, one assumes a malicious ad-
versary, then assurance means correct policy enforcement
in the face of a sophisticated set of attacks specifically in-
tended to misuse system interfaces or insert artifices into
the system itself.

Table 1 Examples of Errors Resulting in Security Flaws

General error category Example

System design errors Absence of least privilege
Inappropriate mechanism for shared objects
Poor choice of data types

Design errors Error recovery results in exploitable side effects
System modifications that deviate original intent of security
mechanisms

Implementation errors Buffers sizes are not checked, resulting in “buffer overflow”
Failure to initialize variables
Absent parameters are erroneously assumed

User interface errors Gratuitous active execution
Passwords too short
Default access control lists are too permissive

Configuration errors Insecure defaults render the system vulnerable
Critical resources remain unprotected because of bad

configuration choices

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

CONSIDERATIONS FOR THE CONSTRUCTION OF SECURE SYSTEMS 1031

Table 2 Comparison of Trojan Horse and System Subversion

Trojan horse System subversion

Requires activation and use by a victim
user; the adversary cannot choose the time
of activation.

No user is required. Activation and deactivation
may be triggered remotely by the adversary.

Constrained by security controls imposed
by the system on the victim.

Bypasses security controls.

Executes as an application. Often executes within the operating system and,
thus, has complete system privileges.

For a system to have assurance of security, the secu-
rity policy must be enforced at all times and the security
mechanisms must be resistant to subversion and tamper.
Given a particular security policy, an organization may
seek more or less assurance that the policy is correctly en-
forced. For example, greater assurance might be required
to show that only authorized individuals have access to
trade secrets, whereas less assurance might be required
for the protection of the agenda for the next staff meet-
ing. As subsequent sections reveal, assurance of correct
policy enforcement in the face of a malicious adversary is
not easily achieved. The pressures of product development
can lead to shortcuts that reduce assurance: a problem
encountered in many security systems is that of vendor
claims of correct policy enforcement, when these systems
are, in fact, quite vulnerable to attack. Sometimes a ven-
dor will claim to have a “secret” technique that makes a
system secure (these claims seem to be most prevalent in
the area of cryptography and key management), but close
inspection by knowledgeable reviewers usually reveals se-
rious flaws (Anderson, 1972; Karger & Schell, 1974). It
is generally accepted that an objective third party must
provide an independent assessment of system assurance.
This is similar to the ratings provided by independent con-
sumer organizations for a wide variety of products. The
current framework for third-party evaluation of system
assurance is that of the Common Criteria (ISO/IEC, 2004).

Established through an international treaty, the Com-
mon Criteria support the creation of high-level require-
ments documents called protection profiles for various
classes of security products (NIST, 2004). Each protec-
tion profile includes both functional and assurance re-
quirements, where the latter achieves one of seven lev-
els of confidence through requirements imposed on the
system lifecycle processes. For specific systems, develop-
ers can create a security target, which in addition to all of
the requirements of the protection profile, includes more
detailed system-specific requirements. Through a process
of analysis and testing, product team evaluators use the
protection profile and security target to establish whether
the product meets both the functional and assurance se-
curity requirements. A second round of testing and analy-
sis by independent evaluators validates the team’s results.
Completion of the process results in an official evaluated
product.

A secure system should exhibit all of the characteristics
of a classic reference monitor (Anderson, 1972): resistant
to tamper, always invoked, and understandable. Threat
analysis reveals that there are two broad classes of threats

to building a system that aspires to the objectives of the
reference monitor concept. There are both developmen-
tal threats and operational threats to the system (Irvine
et al., 2002). Developmental threats include the introduc-
tion of flaws into the system through mistakes in design
and implementation and through deliberate system sub-
version. The former introduces exploitable flaws, whereas
the latter introduces trapdoors. Hence, the system must
be constructed using a methodology that will counter de-
velopmental threats, and it must be designed and imple-
mented so that operational threats are mitigated.

Operational threats occur when the system is in use.
Adversaries can include malicious insiders as well as
external activities. The mechanisms that have been de-
signed into the system are intended to counter operational
threats; however, system security also depends on ade-
quate user and administrator training, as well as good
configuration management and system maintenance. In
short, a well-constructed security system is of limited
value if not used properly.

CONSIDERATIONS FOR THE
CONSTRUCTION OF SECURE SYSTEMS
Two challenges confront the developer who wishes to
construct a secure system. The first is the problem of
policy dependencies. Suppose that the elements of the
system intended to enforce mandatory policy are built
using constructs exported by mechanisms enforcing dis-
cretionary policy. We must ask: what sort of assurance is
possible if a mandatory policy enforcement mechanism
is constructed as a layer that depends on a discretionary
policy enforcement mechanism? The discretionary mech-
anism will export the storage resources used by the
mandatory layer to create its policy enforcement mecha-
nism. Access to these storage resources is mediated by the
discretionary mechanism, which, by definition, has a run-
time interface that allows its policy to be modified. Thus,
in this architecture the mandatory mechanism is subject
to run-time modification: global and persistent policy en-
forcement cannot be ensured.

The second challenge is associated with system com-
plexity. Assurance depends on the ability for evaluators,
such as those using the Common Criteria (ISO/IEC, 2004)
framework, to understand the system. It must be possi-
ble to state with some level of confidence that no ma-
licious, unspecified functionality has been added to the
system. As systems become more complex, they become

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1032

less understandable. Although size is a factor when con-
sidering complexity, it is not the only consideration. The
interactions between subsystems can be subtle and diffi-
cult to completely describe. An adversary may attempt to
subvert a system by using internal synchronization, inter-
rupt handling, and other mechanisms to compose a trap-
door or other clandestine artifice. Understandability of the
system is essential. A metric for high assurance is that all
components of the protection mechanism are both neces-
sary and sufficient to enforce the security. No additional
functionality, whether malicious or merely gratuitous, is
included in such a system.

The problems of composition and complexity present
even greater challenges for distributed systems. Com-
posed systems may enforce the same policy with differing
levels of assurance. When this is the case, the integrity and
assurance of the overall system are forced to the greatest
lower bound of the composed assurance levels (Irvine &
Levin, 2002). Even when systems have the same level of
assurance, sometimes when they are networked together
the risk of unintended disclosure can be significantly in-
creased. The cascade problem (Horton et al., 1993) repre-
sents a good example of this composition risk.

To create a distributed system, it is necessary to under-
stand the various security policies to be enforced and to
allocate those policies to components in a manner such
that dependencies among the networked components are
reasonable and a coherent distributed enforcement mech-
anism results. Unless an extensible distributed security ar-
chitecture is described, the effect of the addition of new
components usually requires complete reanalysis of the
distributed system.

Essential Elements for System Protection
Several key elements for the creation of an effective
protection mechanism were identified by Saltzer and
Schroeder (1975). These include a memory management
mechanism that allows the memory resources used by ap-
plications to be distinguished from those of the underly-
ing system. Memory management must be able to prevent
applications from arbitrarily accessing system functions
and databases. Unauthorized attempts to access these re-
sources should result in a fault that can be handled by
the underlying resource management mechanism. To per-
mit applications to request services of the operating sys-
tem, controlled entry points must be created. Not only
must these entry points ensure the proper flow of control
to the correct underlying function, but they should also
validate all arguments so that misbehaving applications
are unable to manipulate the called functions in unantic-
ipated ways. The system should have at least two modes
of operation: privileged and unprivileged. Hardware con-
structs are used by the operating system to set the mode.
One or more protection bits can provide this service. The
instructions for the management of the processor mode
are restricted to the privileged mode. Instructions needed
for primitive resource management must be privileged as
well. Finally, it must be possible for the system to create
an unambiguous binding between the user and processes
that will execute on the user’s behalf. A trusted path is
used to both authenticate the system to the user and the

user to the system. It is constructed in such a way that
both entities have confidence that neither interface is be-
ing spoofed.

Constructive Security
Those building secure systems must be paranoid: some-
one intends to subvert the system and it may be a member
of the core design team or someone else who has access
to the system at some point during its lifecycle. Typical
process-related and testing techniques described in soft-
ware engineering are inadequate because they assume a
benign development environment.

Security requirements engineering results in a descrip-
tion of the system to be built. As a start, it is important
to understand that the system will be subject to both de-
velopmental and operational threats (Irvine et al., 2002).
Operationally, the system must be demonstrated to be re-
sistant to tamper and bypass of security mechanisms. De-
velopmentally, one must construct the system through a
process that demonstrates both the absence of malicious
code and that the mechanisms to enforce policy are com-
plete and correct. Construction of a secure system involves
careful attention not only to the security architecture and
its implementation, but also to lifecycle management is-
sues. To avoid construction of what might be deemed a
“secure brick,” system designers must account for the var-
ious services it will provide and performance obligations
the system will meet.

Although the formality of the Common Criteria (ISO/
IEC, 2004) may not be needed for ad hoc systems, its sys-
tematic presentation of issues related to system assurance
can be quite helpful in creating a set of requirements sys-
tem developers must address. Consider, for example, the
principle sections of a typical protection profile. After pro-
viding a set of definitions and conventions, a protection
profile starts with a high-level description of the system
to be constructed. Here, the developer is able to state
whether a full, general-purpose operating system will be
built or some less all-encompassing special purpose com-
ponent. This leads to a presentation of the threats to the
system through out its entire lifetime and the security poli-
cies it is expected to enforce. Based on threats, policies,
and various usage assumptions, it is possible to develop
a set of security objectives that both counter the threats
and address the policies and assumptions. The objectives
drive both the functional and assurance requirements for
the system. Security functional requirements might in-
clude audit, identification and authentication, access con-
trol, enforcement of flow control in support of mandatory
policies, administrative interfaces, and other functions. It
is interesting to note at this point that not all of the func-
tional requirements will map to the formal security policy
model, which is called for in the assurance requirements
of high assurance systems.

Assurance requirements dictate how the system will
be constructed and may influence the way various mech-
anisms support functional requirements. Because system
security must be addressed for the entire system lifecy-
cle, assurance includes many activities beyond design and
coding. It is necessary to ensure that the tools used to
construct the system are protected, so that they do not

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

CONSIDERATIONS FOR THE CONSTRUCTION OF SECURE SYSTEMS 1033

become vectors for the insertion of malicious software by
a highly skilled adversary (Karger & Schell, 1974). Also,
it is necessary to ensure that the system is not modified
en route to its end users and that unscrupulous installers
or maintenance personnel do not corrupt the system. Be-
fore starting to construct the system, the development
team must put into place all of the necessary mechanisms
and procedures to ensure that the system is built in a
manner that both identifies and eliminates flaws and pre-
vents the inclusion of malicious functionality (Irvine et al.,
2004). This high assurance development framework will
include standards for system specification and design, re-
view processes, configuration management, distribution
procedures, user and administrator documentation, and
maintenance and flaw remediation procedures. Separa-
tion of duty and multiperson oversight are an integral part
of the effort.

Secure System Development
As described in previous sections, dependencies are of
great importance in designing a secure system. Consider
the system to be organized as a set of hierarchical layers.
Then, it must be organized so that each layer of the sys-
tem depends only on layers that are of equal or higher
assurance and that enforce equivalent or stronger poli-
cies. The raw resources of the hardware layer can be or-
ganized by low-level system software to export virtualized
resources that are subject to a set of low-level policies.
Primitives provided by the system might include mem-
ory, interrupt handling, and low-level scheduling, as well
as synchronization. In a minimized system enforcing a
separation policy, these may be the abstract data types
exported at the system interface. For more traditional op-
erating system kernels, additional operating system layers
may be constructed that contain mechanisms to enforce
the intended mandatory policies. The number and extent
of these layers depend on whether the mandatory policy is
void or richly populated, but it is important to recall that
the dependencies must be such that the mandatory policy
enforcement mechanisms do not depend on discretionary,
viz. modifiable, policy components. It is important to note
that a minimized kernel does not usually present a typical
user-friendly application programming interface. A set of
code libraries is usually superimposed on the operating
system to hide the primitives described previously from
typical programmers and users.

Once the system architecture has been delineated and
policy has been allocated to its various layers, it is possible
to focus on the construction of each layer. Here, the tech-
niques used to develop a high assurance, low-level layer
are sketched.

Because the objective in constructing the lowest layers
of the system is to develop a coherent mechanism for the
enforcement of the system’s most critical policy, a com-
bination of hardware and software is used to create the
abstract machine that will be exported at this interface.
Once the overall objectives of the system have been de-
scribed, a formal security policy model is developed. The
model provides a proof that if the system starts in a se-
cure state then all operations will maintain that secure
state. The formal model serves two important purposes:

first, it demonstrates that the intended policy is logically
self-consistent and not flawed, and second, it provides a
mathematical description of the system to which the im-
plementation can be mapped. The objective of this map-
ping is to demonstrate that everything in the implementa-
tion is both necessary and sufficient for the enforcement
of the policy and that no unspecified functionality, for ex-
ample, possible subversion, is present.

The formal model is highly abstract, so two other doc-
uments are produced. One is a formal description of the
system interface; the other is a high-level system interface
description. Both describe the system interface in terms
of inputs, outputs, effects, and exceptions. For the former,
a formal proof is generated showing that the formal de-
scription maps to the formal security policy model. Thus,
by transitivity, a proof that the formal interface also de-
scribes a system that maintains secure state is achieved.
The latter is used as the starting point for the concrete
implementation of the system.

Rigorous security engineering techniques employing
the concepts of layering, modularity, and data hiding are
used during development to ensure that the system has
a coherent loop-free design and provides abstractions so
that it is understandable. Within the system itself, the
principle of least privilege can be applied as part of the
engineering process. Ultimately, both the formal and in-
formal efforts provide a mapping of the implementation
to the formal security policy model as well as evidence
that the system is correct and complete.

Because information flow is a concern, all of the pro-
cesses described previously contribute to the ability of the
developers to conduct a covert channel analysis of the
system. Covert channels result from the manipulation of
system interfaces in ways that cause unintended infor-
mation flow and result from incomplete resource virtu-
alization by the underlying protection mechanism. This
means that some abstract data type presented at the sys-
tem interface involves operating system constructs that
can be manipulated to allow signaling to take place in vi-
olation of the system security policy. Covert channels fall
into two classes: timing channels and storage channels.
An effective technique for covert channel analysis is the
shared-resource matrix method (Kemmerer, 1982). Using
this technique, the effects of each system call on operat-
ing system–level data structures are analyzed and their
visibility, perhaps through exceptions or timing delays, to
other processes is identified. When the effects could re-
sult in unintended transmission of information, either a
system flaw or a covert channel is present.

Although testing cannot prove that a system is secure,
it is important to include testing in the development pro-
cess. Traditional testing demonstrates that each function
and module performs as specified. At the system level, tra-
ditional testing is supplemented by penetration testing.
Here, the tester behaves as an adversary and attempts
to abuse the system interfaces in an unexpected man-
ner. A useful approach to penetration testing is the Flaw
Hypothesis Methodology (Linde, 1975). This testing tech-
nique organizes testing in a way that allows the testing
team to set goals by working with the customer. The team
studies the target system and conducts extensive nonjudg-
mental brainstorming to hypothesize system flaws. Then,

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1034

the flaws are prioritized according to a preestablished
guideline. Desk checking or live testing allows the team
to determine the feasibility of flaw exploitation. The pro-
cess is iterative and encourages the generalization of flaws
into broad categories from which additional flaws may
be hypothesized. It is important to emphasize that this
form of testing augments the careful development pro-
cess described previously. No testing is exhaustive, so it
cannot demonstrate the absence of flaws or subversion
but merely lessen the likelihood of obvious flaws.

Once the system is built, its administrators and users
must be provided with the documentation and training
necessary to use it securely. When a system that contains
useful security mechanisms is configured and used im-
properly, a false sense of security may result that may have
consequences far worse than when management believed
security was inadequate.

The processes sketched here must be thoroughly doc-
umented so that the system can be assessed with respect
to its security requirements. Third-party evaluation pro-
vides a way for those who acquire the system to under-
stand whether the system does, in fact, meet its security
objectives. To date, no viable alternative to either the ref-
erence monitor concept or the need for third-party eval-
uation has been proposed. Future research may result in
more streamlined approaches to secure system construc-
tion and assessment.

Future Challenges
Many organizations enforce mandatory policies; however,
operationally, they also require mechanisms where excep-
tions to these policies can be implemented. For example,
consider a system that encrypts information before trans-
mitting it on the network. The process of encryption can
transform bits that represent proprietary sensitive infor-
mation into bits that represent no information and, thus,
can be seen by anyone (Shannon, 1949). In essence, en-
cryption is downgrading the information, viz. changing
its sensitivity level from high to low. Modern systems may
require additional downgrading functions that move cer-
tain information from high networks or repositories to
low ones. Sometimes the information is scanned for cer-
tain sensitive words that are then expunged from the data.
This is called sanitization. All of these activities must be
conducted using systems for which there is a very high
confidence that only the correct actions will be taken. A
danger in systems that do not involve human review is that
of steganography (Kurak & McHugh, 1992). Steganogra-
phy, the art of hidden writing, involves a secret encoded
by malicious code in seemingly innocuous data so that it
is not visible to the casual observer.

The components within a system that perform en-
cryption, downgrading, and other operations that span
mandatory sensitivity levels must be trusted to perform
their tasks and nothing more—they must not contain un-
specified functionality, for example, steganography, that
would violate the intent of the system owners. The con-
struction of trusted systems that, for most processes,
enforce mandatory policies using underlying operating
system controls and at the same time permit certain
trusted applications to be subject to relaxed mandatory

constraints represents one of the great challenges in secu-
rity modeling and engineering.

CONCLUSION
Security policies are essential for computer and net-
work security. Without a policy, security mechanisms are
merely vacuous ad hoc functions that are combined to “do
something,” but what they might achieve, if anything, can-
not be determined. At the management level, users must
determine information assets that must be protected and
must understand whether the authorizations for access to
those assets are static or dynamic. This permits manda-
tory, discretionary, and supporting policies to be differen-
tiated.

The nature of the policy will determine the mecha-
nisms to be used for its enforcement. How those mecha-
nisms are constructed addresses both developmental and
operational threats. Assurance is derived from the rig-
orous security engineering process applied to its devel-
opment and to the controls maintained over the system
throughout its entire lifecycle. Independent assessment
provides confidence that claims made regarding the cor-
rectness and completeness of the security policy enforce-
ment mechanisms are valid.

GLOSSARY
Assurance Basis for confidence that a system meets its

security requirements. Increasing levels of assurance
provide increasing confidence of the absence of flaws
and malicious artifices.

Covert Channel A means to pass information in viola-
tion of the mandatory policy of a system through the
manipulation of a system-internal object for which no
explicit system interfaces are presented.

Discretionary Security Policy A security policy that
may be modified through a functional interface pre-
sented at the run-time system interface.

Least Privilege The notion that an active system entity
should operate with the privileges necessary to com-
plete its job but no more.

Object A passive entity in a system that contains infor-
mation.

Nondiscretionary (Mandatory) Policy A policy that is
global and persistent, and that cannot be modified via
run-time interfaces presented to applications.

Security Policy Rules, laws, and similar constraints
used by an organization to define how its information
is managed and disseminated.

Subject An active entity in a system that makes refer-
ences to objects.

Supporting Policy Nonaccess control policies that
must be adhered to in order to protect the information
of an organization, including, but not limited to, au-
dit, identification and authentication, regrading, and
sanitization.

CROSS REFERENCES
See Access Control: Principles and Solutions; Security Pol-
icy Enforcement Information Assurance; Security Policy
Guidelines.

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

REFERENCES 1035

REFERENCES
Anderson, E. A., Irvine, C. E., & Schell, R. R. (2004). Sub-

version as a threat in information warfare. Journal of
Information Warfare, 3(2), 52–65.

Anderson, J. P. (1972). Computer security technology plan-
ning study (Tech. Rep. ESD-TR-73-51, Vols. 1 and
2, NTIS Document No. AD758206). Hanscom, MA:
Hanscom Air Force Base, Air Force Electronic Systems
Division.

Bell, D. E., & LaPadula, L. (1973) Secure computer sys-
tems: Mathematical foundations and model (Tech. Rep.
No. M74-244). Bedford, MA: MITRE Corp.

Biba, K. J. (1977). Integrity considerations for secure
computer systems (Tech. Rep. No. ESD-TR-76-372).
Bedford, MA: MITRE Corp.

Blaze, M., Feigenbaum, J., Ioannidis, J., & Keromytis,
A. D. (1999, September). The KeyNote trust manage-
ment system version 2 (RFC 2704). Internet Engineer-
ing Task Force. Retrieved November, 15 2002, from
http://www.apps.ietf.org/rfc/rfc2704.html

Brewer, D. F. C., & Nash, M. J. (1989). The Chinese wall
security policy. In Proceedings of the 1989 IEEE Sym-
posium on Security and Privacy (pp. 219–230). Los
Alamitos, CA: IEEE Computer Society Press.

Brinkley, D. L., & Schell, R. R. (1995). Concepts and termi-
nology for computer security. In M. Abrams, S. Jajodia,
& H. Podell (Eds.), Information security: An integrated
collection of essays (pp. 40–97). Los Alamitos, CA: IEEE
Computer Society Press.

Clark, D., & Wilson, D. (1987). A comparison of com-
mercial and military security policies. In Proceedings
of the 1987 IEEE Symposium on Security and Privacy
(pp. 184–194). Los Alamitos, CA: IEEE Computer So-
ciety Press.

Denning, D. E. (1976). A lattice model of secure infor-
mation flow. Communications of the ACM, 19(5), 236–
243.

Department of Defense. (1987). A guide to understand-
ing discretionary access control in trusted systems.
Fort George Meade, MD: National Computer Security
Center.

Department of Defense. (1994). Final evaluation report of
Gemini Computers. Incorporated Gemini Trusted Net-
work Processor, version 1.01. Fort George Meade, MD:
National Computer Security Center.

Ferraiolo, D. F., & Kuhn, D. R. (1992). Role-based access
control. In Proceedings of the 15th national computer
security conference (pp. 554–563). Fort George Meade,
MD: National Security Agency.

Grossman, G. (1995). Immediacy in distributed trusted
systems. In Proceedings of the eleventh annual com-
puter security applications conference (pp. 75–79). Los
Alamitos, CA: IEEE Computer Society Press.

Harrison, M., Ruzzo, W., & Ullman, J. (1976). Protec-
tion in operating systems. Communications of the ACM,
19(8), 461–471.

Hennessy, J. L., & Patterson, D. A. (1996). Computer ar-
chitecture: A quantitative approach. San Francisco, CA:
Morgan Kaufmann.

Horton, J. D., Harland, R., Ashby, E., Cooper, R. H.,
Hyslop, W. F., Nickerson, B. G., Stewart, W. M., &
Ward, O. K. (1993). The cascade vulnerability problem.

In Proceedings of the IEEE Symposium on Research in
Security and Privacy (pp. 110–116). Los Alamitos, CA:
IEEE Computer Society Press.

Irvine, C. E., & Levin, T. (2002). A cautionary note regard-
ing the data integrity capacity of certain secure sys-
tems. In M. Gertz, E. Guldentops, & L. Strous (Eds.),
Integrity, internal control and security in information
systems (pp. 3–25). Norwell, MA: Kluwer Academic.

Irvine, C. E., Levin, T., Wilson, J. D., Shifflett, D., & Pereira,
B. (2002). An approach to security requirements en-
gineering for a high assurance system. Requirements
Engineering, 7(4), 192–208.

Irvine, C. E., Levin, T. E., Nguyen, T. D., & Dinolt, G. W.
(2004). The trusted computing exemplar project. In
Proceedings of the 2004 IEEE systems, man and cyber-
netics information assurance workshop (pp. 109–115).
West Point, NY, & Los Alamitos, CA: IEEE Computer
Society Press.

ISO/IEC. (2004, January). 15408—Common criteria for
information technology security evaluation (Rep. No.
CCIMB-2004-01-001, Ver. 2.2, Rev. 256). Geneva,
Switzerland: International Organization for Standard-
isation.

Karger, P. A., & Schell, R. R. (1974). Multics security eval-
uation: Vulnerability analysis. Bedford, MA: Hanscom
Air Force Base, Information Systems Technology Ap-
plication Office Deputy for Command and Manage-
ment Systems Electronic Systems Division (AFSC).

Karger, P. A., & Schell, R. R. (2002). Thirty years later:
The lessons from the Multics security evaluation. In
Proceedings of the annual computer security applica-
tion conference (pp. 119–126). Los Alamitos, CA: IEEE
Computer Society Press.

Kemmerer, R. (1982). A practical approach to identifying
storage and timing channels. In Proceedings of the IEEE
Symposium on Security and Privacy (pp. 66–73). Los
Alamitos, CA: IEEE Computer Society Press.

Kurak, C., & McHugh, J. (1992). A cautionary note on
image downgrading. In Proceedings of the eighth annual
computer security applications conference (pp. 153–59).
Los Alamitos, CA: IEEE Computer Society Press.

Lampson, B. W. (1971). Protection. In Fifth Princeton con-
ference on information sciences and systems (pp. 437–
443). Reprinted in ACM SIGOPS Operating Systems Re-
view, 8(1),18–24.

Lampson, B. W. (1973). A note on the confinement prob-
lem. Communications of the ACM, 16(10), 613–615.

Levin, T., & Clark, P. C. (2004). A note regarding covert
channels. In Proceedings of the sixth workshop on com-
puter security education (pp. 11–15). Monterey, CA:
Naval Postgraduate School.

Levin, T. E., Irvine, C. E., & Nguyen, T. D. (2004). A
least privilege model for static separation kernels (Tech.
Rep. NPS-CS-05-003). Monterey, CA: Naval Postgradu-
ate School.

Linde, R. R. (1975). Operating system penetration. In Pro-
ceedings of the national computer conference (pp. 36–
368). Montvale, NJ: AFIPS Press.

Lipner, S. (1982). Non-discretionary controls for com-
mercial applications. In Proceedings of the 1982 IEEE
Symposium on Security and Privacy (pp. 2–20). Los
Alamitos, CA: IEEE Computer Society Press.

P1: KVU

JWBS001-206.tex WL041/Bidgoli WL041-Bidgoli.cls September 21, 2005 12:27 Char Count= 0

SECURITY POLICY ENFORCEMENT1036

Lunt, T. F. (1989). Access control policies: Some unan-
swered questions. Computers and Security, 8, 43–54.

Lunt, T. F., Neumann, P. G., Denning, D. E., Schell, R. R.,
Heckman, M., & Shockley, W. R. (1989, December).
Secure distributed data views security policy and inter-
pretation for DMBS for a Class A1 DBMS (RADC-TR-
89-313, Vol 1). Griffiss Air Force Base, NY: Rome Air
Development Center.

Maekawa, M., Oldehoft, A. E., & Oldehoft, R. R. (1987).
Operating systems. Menlo Park, CA: Benjamin Cum-
mings.

MITRE Corp. (2004). Common vulnerabilities and expo-
sures. Retrieved December 22, 2004, from http://www.
cve.mitre.org/

Myers, P. (1980). Subversion: The neglected aspect of com-
puter security. Unpublished master’s thesis, Naval Post-
graduate School Monterey, CA.

NIST. (2004). The common criteria evaluation and val-
idation scheme. Retrieved December 22, 2004, from
http://niap.nist.gov/cc-scheme/index.html

Oasis. (2003). Extensible access control markup language
(XACML), version 1.0, Oasis standard. In S. Godik & T.
Moses (Eds.). Retrieved December 22, 2004, from http://
www.oasis-open.org/committees/xacml/repository/

Oasis. (2004). Conformance requirements for the OASIS
security assertion markup language (SAML) v2.0 (Com-
mittee Draft 03). In P. Mishra, R. Philpott, & E. Maler
(Eds.). Retrieved December 22, 2004, from http://www.
oasis-open.org/committees/tc home.php?wg abbrev=
security

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. Communications of the
ACM, 15(12), 1053–1058.

Rushby, J., & Randell, B. (1983). A distributed secure sys-
tem. IEEE Computer, 16(5), 55–67.

Saltzer, J. H., & Schroeder, M. D. (1975). The protection
of information in computer systems. Proceedings of the
IEEE, 63(9), 1278–1308.

Sandhu, R., Coyne, E. J., Feinstein, H. L., & Youman, C. E.
(1996). Role-based access control models. IEEE Com-
puter, 29(2), 38–47.

Schroeder, M. D., & Saltzer, J. H. (1972). A hardware ar-
chitecture for implementing protection rings. Commu-
nications of the ACM, 15(3), 157–170.

Shannon, C. (1949). Communication theory of secrecy
systems. Bell Systems Technical Journal, 28, 656–715.

Shirley, L. J., & Schell, R. R. (1981). Mechanism suffi-
ciency validation by assignment. In Proceedings of the
IEEE Symposium on Security and Privacy (pp. 26–32).
Oakland, CA: IEEE Computer Society Press.

Shockley, W. R. (1988). Implementing the Clark/Wilson
integrity policy using current technology. In Proceed-
ings of the 11th national computer security conference
(pp. 29–37). Fort George Meade, MD: National Security
Agency.

Sterne, D. F. (1991). On the buzzword “security policy.”
In Proceedings of the IEEE Symposium on Research in
Security and Privacy (pp. 219–230). Los Alamitos, CA:
IEEE Computer Society Press.

Tannenbaum, A. (2001). Modern operating systems (2nd
ed., pp. 81–100). Upper Saddle River, NJ: Prentice
Hall.

Weissman, C. (2003). MLS-PCA: A high assurance secu-
rity architecture for future avionics. In Proceedings
of the annual computer security application conference
(pp. 2–12). Los Alamitos, CA: IEEE Computer Society
Press.

Wilkes, M. V., & Needham, R. M. (1980). The Cambridge
model distributed system. ACM SIGOPS Operating Sys-
tems Review, 14(1), 21–29.

