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1. Introduction 

 Molecular crystals constitute a class of materials commonly found and used in the 

aerospace, defense, agricultural, and pharmaceutical industries.  Like simpler crystalline 

materials, they possess a repeating lattice structure.  However, the complexity of the 

structure – due to having several entire molecules instead of atoms at each lattice site –

significantly complicates deformation mechanisms relative to those found in, for 

instance, materials with a close-packed crystal structure like copper (1).  Molecular 

crystals subjected to large deformations can be mechanically activated to undergo phase 

transitions, slip deformation, cleavage fracture, or transition to disordered states.  

Molecular crystals used as active pharmaceutical ingredients (API) are milled to decrease 

crystal size and increase surface area.  Milling reduces the crystal size through fracture 

but also induces the other common modes of deformation into the smaller crystal.  The 

disordered states are prone to recrystallization and affect the long term stability of the 

API (2).  In energetic and high explosive molecular crystals, the available modes of 

crystalline deformation affect the initiation sensitivity of the entire munition to accidental 

shock loading.  Deformation mechanisms travel energetic pathways that may intersect 

and overcome chemical reaction barriers, leading to initiation and detonation. Thus 

understanding the relationship between the molecular crystal structure and deformation 

mechanisms is fundamentally important to this exceptionally large and commonplace 

class of material.   

 The focus of this dissertation is on atomistic simulations of the nonreactive 

deformation mechanisms of RDX, C3H6N6O6, the nitramine molecule shown in Figure 

1.1a used in its crystalline α-polymorph (Figure 1.1b) as a high explosive (HE).  The 
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molecules in crystalline αRDX form a corrugated layered structure shown by the black 

lines in Figure 1.1c.  This layered structure is common in molecular crystals where layers 

are produced from strong in-plane bonding between molecules and are held together by 

weaker interlayer attraction (3) (4) (5).  The weakly bonded layers, indicated by the black 

lines in Figure 1.1c, easily slip under shear loading or cleave in tension (4).  Cleavage 

and slip are both observed modes of deformation in indentation testing of αRDX.  These 

deformation processes produce physically observable features that are used to deduce the 

slip and cleavage planes of αRDX (6) (7).   

 

Figure 1.1:  (a) Single RDX molecule, (b) αRDX unit cell
 
projected onto the (100) plane 

and (c) αRDX supercell with (010) slip or cleavage plane shown by the black line 

between corrugated layers of RDX molecules. 

 

 Activation of slip systems is generally the preferred deformation mechanism in 

molecular crystals because the long range order of the crystal and its associated 

properties are maintained.  The availability of several slip systems allows the molecular 

crystal to accommodate a general state of strain without fracturing.  Slip, as opposed to 

cleavage or the formation of an amorphous phase, increases the tabletability of 

pharmaceutical molecular crystals (4) (8).  Crystal engineering methods such as 

b, [010]

c, [001]

a) b) c)
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cocrystallization have been developed to exploit this mechanism by increasing the 

amount of slip in pharmaceutical crystals such as caffeine and paracetamol (8) (9).   

 In energetic crystals such as αRDX (10) and PETN (11), initiation mechanisms 

are believed to be sensitive to shock loads that lead to shear deformations that cannot be 

easily accommodated by slip.  A possible mechanism is blockage of certain slip systems 

by the large molecules on slip planes causing plane-on-plane slip motion to be hindered 

by steric interactions (11).  The steric hindrance initiation model, in particular, presumes 

that when a large shear stress is directed along a sterically hindered plane, the crystal is 

unable to accommodate the strain through slip and therefore results in severe 

intramolecular deformations and bond rupture leading to initiation (11) (12).  Other 

proposed initiation-related events involving slip mechanisms include blocked dislocation 

motion leading to the pile-up and avalanche of dislocations accompanying a localized 

increase in temperature (13).  The induction time to decomposition in αRDX has also 

been correlated to the alignment of known slip planes to the direction of shock load (10).   

 Investigations through nanoindentation have indicated slip traces that suggest 

inelastic deformation mechanisms that are more complicated but build upon the ideas of 

dislocation motion on a single slip system (14).  Thus, a more thorough understanding of 

slip systems and deformation mechanisms in molecular crystals is needed and molecular 

simulations may provide an enabling capability.  To this end, molecular dynamics will be 

used to model these nonreactive mechanisms that lead to localized deformation features. 

 The atomic interactions of the RDX molecule are described by a flexible molecule 

potential energy function developed by Smith and Bharadwaj (15) that fits classical 

molecular potential forms involving bond stretching, angle bending, dihedral torsion, and 
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nonbonded electrostatic and van der Waals interactions to quantum level data.  This 

―flexible‖ molecule potential allows the molecules to change conformation as the crystal 

lattice is deformed.  The simulations will be used to determine parameters for mesoscale 

models of material deformation including thermoelasticity, dislocations dynamics and 

fracture mechanics.  This work will extend several well developed methodologies for 

atomic crystals to the more complex structure of molecular crystals.   

 For instance, the current methodology for determining active planes in a 

molecular crystal that undergo slip or cleavage involves a ranking of crystallographic 

planes based on the attachment energy.  The attachment energy technique does not 

provide a method of differentiating slip from cleavage planes or the slip direction.  In this 

work, Rice’s dislocation nucleation criterion (16) is used to determine if a plane of 

interest in the molecular crystal will deform by slip and the emission of a dislocation or 

by cleavage and the creation of free surfaces.  Brittle versus ductile response of several 

BCC and FCC metallic crystals have been accurately determined through the application 

of Rice’s model (16).  The simulations and methodology in this work provides a useful 

extension of Rice’s model as well as other available atomstic to continuum models to 

study the operable deformation mechanisms in molecular crystals. 
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1.1  Motivation and Challenges 

 The application of molecular crystals requires a thorough understanding of their 

mechanical properties and modes of deformation.  Molecular crystals are not used as 

structural elements but the mechanical properties still play an important role in 

determining suitable manufacturing methods, packaging, storage and handling.  The aim 

of this work is to provide a relationship between the molecular crystal structure and 

resulting mechanical properties.  The structure of molecular crystals and their quasistatic 

thermodynamic properties can be determined experimentally.  In simpler atomic crystals 

like copper it is possible to experimentally observe deformation through the emission of 

dislocations.  Then using an atomistic model, the atomic level details of the 

experimentally observed dislocations are determined (1).  In molecular crystals, these 

deformation processes cannot be directly observed experimentally but must be inferred 

from the resulting deformation features.  These features can then be correlated with 

known modes of deformation in simpler materials.  For this reason, atomistic models of 

molecular crystals have the potential to make a great impact on interpreting the 

experimentally observed features.  However, there are several challenges in modeling 

molecular crystals and the direct application of simpler atomistic models is not directly 

applicable.  In particular, the following challenges are summarized as: 

(1) Some atomic crystals have an FCC structure with 4 atoms per unit cell.  

Molecular crystals are often in low symmetry space groups where each symmetry 

point contains an entire molecule with both orientation and conformational 

degrees of freedom.  αRDX contains 8 molecules per unit cell and 168 atoms.  

This complicates any correlation that can be made between an FCC material like 

copper and a molecular crystal.   
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(2) The low symmetry unit cell’s common to molecular crystals causes their structure 

to respond anisotropically to stress and temperature.  There is also coupling 

between deformation of the lattice and the molecule conformation and orientation.  

The molecule conformation is able to store elastic energy and can influence the 

resulting phases and stacking fault structures.   

 

(3) The actual mode of plastic deformation in molecular crystal is not well 

understood but is believed to be based on slip through dislocation motion.  The 

actual dislocation may move as an extended defect as observed in complex 

metallic alloys containing 100’s to 1000’s of atoms per unit cell (15).  

 

(4) Atomistic models of copper are developed from a large amount of quantum level 

modeling and experimental data.  The complexity of molecular crystals makes 

this same level of parameterization of the atomistic potential impossible.  The 

molecular potentials are developed to reproduce important features such as crystal 

structure, molecule conformation and mechanical properties over a limited range 

of thermodynamic states.  Outside this range they become unreliable.     
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(5) The molecules making up molecular crystals often interact electrostatically 

through hydrogen bonding.  This requires the molecular potential to include long 

range electrostatic interactions, which are solved in atomistic simulations using 

the Ewald sum.  The Ewald sum requires the simulation cells to be 3D periodic 

limiting the geometries that can be modeled.  The Ewald sum is also 

computationally expensive, taking up nearly 70% of computational time.  This 

coupled with the large unit cell size of αRDX (168 atoms) greatly limits the size 

of the atomistic model and in turn the processes that can be simulated.   

 

(6) The attachment energy is the most commonly used technique for determining slip 

or cleavage in a molecular crystal but is shown to be only 50% accurate (5).  It 

also does not differentiate between slip or cleavage planes.  It cannot determine 

the direction of slip or the energetic barriers to slip and their associated molecular 

features.   

 

(7) Slip systems include a slip plane and slip direction and can be determined from 

the generalized stacking fault (GSF) procedure (16).  The GSF procedure also 

elucidates the atomic interactions involved during slip.  It can also be used to 

determine the dislocation core structure and existence of partial dislocations.  

However, the GSF procedure is only well suited to materials with smooth slip 

planes and atoms with only a few degrees of freedom.  The slip planes in 

molecular crystals are rough due to the molecules on the slip plane.  There are 

also multiple slip planes per crystallographic plane.  The molecular potentials are 

also complex containing multiple degrees of freedom associated with the 

molecule’s conformation and orientation.  
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 The primary motivation of this work is to extend the techniques developed for 

studying atomic level deformation in metallic crystals to the more complex molecular 

crystals by addressing each of the above challenges.  Of particular interest is the 

determination of the generalized stacking faults of molecular crystals.  These provide a 

great amount of detail on the slip processes in metallic materials and will be shown to 

provide valuable insight into the experimentally observed deformation features of αRDX.  

This will provide important details for analyzing other molecular crystals and greatly 

extend our current knowledge of molecular crystal deformation. 

1.2  Dissertation Objectives 

 The objective of this dissertation is to develop a procedure for studying 

deformation of molecular crystals using molecular dynamics.  This work will be 

accomplished by performing the molecular dynamics simulations and analyzing and 

comparing the results with experimental data available in Literature.  The above 

challenges address the complexities of applying atomistic modeling techniques that have 

been proven successful in atomic crystals like copper to molecular crystals.  The specific 

objectives of this work can be summarized as: 

(1) Evaluate the application of the Smith and Bharadwaj (17) (SB) flexible molecule 

potential energy function for the RDX crystal polymorphs by reproducing the 

experimental crystal structure of RDX in the low and high pressure α and γRDX 

phases.  Also determine the thermal and elastic properties and compare them to 

experiment.   
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(2) Determine cleavage properties of αRDX and the free surface energy for 

experimental cleavage and slip planes. 

 

(3) Develop a technique for determining the generalized stacking fault energy 

surfaces for αRDX cleavage and slip planes. 

 

(4) Use Rice’s (18) dislocation nucleation model with parameters from the molecular 

dynamics simulations to determine the interplay between cleavage fracture and 

dislocation emission to provide a physical understanding of the brittle nature of 

RDX and molecular crystals. 
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2. Literature Review 

 Energetic materials contain a metastable mixture of compounds in their gas, liquid 

or solid state that are triggered to decompose into a more stable material, releasing energy 

in the form of heat and expanding gases.  An explosive is a type of energetic material that 

rapidly releases its energy through decomposition.  A detonation occurs when the 

decomposition reaction moves through the material faster than the speed of sound in the 

unreacted material.  A high explosive decomposes by detonation.  Energetic materials can 

also decompose through deflagradation or rapid burning at a much slower rate.  Low 

explosives like black powder only decompose through deflagradation producing a 

subsonic pressure wave.  High explosives are rated by the speed a detonation wave 

travels through the material.  This determines the rate that energy is released.  Several 

external factors affect detonation velocity such as confinement pressure, energetic 

particle size, and energetic material diameter.  The detonation speed for RDX, a common 

military high explosive, is 8.6 km/s (19), compared to its acoustic velocity of 3.8 km/s. 

 The energetic material of interest to this work is the solid state crystal made of the 

nitramine molecule cyclotrimethylene trinitramine (C3H6N6O6), or RDX.  The nonbonded 

dispersion and electrostatic forces between RDX molecules cause them to arrange into 

periodic crystal lattices.  This energetic molecular crystal contains a high energy density 

due to the crystal structure giving it a high detonation velocity.  

 Explosives are classified according to their susceptibility to initiation.  Easily 

triggered explosives are primary explosives and are used to trigger detonation in less 

sensitive secondary explosives that make up the main explosive fill in military munitions.  

Decomposition in secondary explosives is more difficult to initiate and they make up a 
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majority of the explosives stored at military sites.  Most nitramines including RDX are 

secondary explosives.  Plastic bonded explosives (PBX) are composed of energetic 

crystals encased in a polymeric binder material and make up the main fill in munitions.  

A bimodal distribution of energetic crystals allow the smaller crystals to fill in the space 

between the larger crystals.  The binder material is chosen to provide the munitions with 

desirable detonation and storage properties.  The sensitivity of the energetic material to 

accidental detonation is important to the use, handling and storage of munitions. 

 The process of converting mechanical energy into chemical decomposition in 

energetic crystals is not well understood but is essential to the design of insensitive 

munitions.  Under operational conditions, a detonation in a secondary explosive is 

triggered by a strong shock wave produced by the primary explosive.  This shock wave is 

of such energy that the detonation and explosion are accurately described by 

phenomenological continuum level descriptions of the shock wave.  At much lower 

energies, insensitive munitions can be accidently triggered to decompose.  

Decomposition under these scenarios is less understood and difficult to reproduce 

experimentally.  Low strain rate loads lead to localized features in the crystal that alter 

the sensitivity. 

 It is generally agreed upon that detonation or deflagration is the result of the 

culmination of localized decomposition regions on the order of micrometers called ―hot 

spots‖.  The cause of hot spots in a heterogeneous explosive fill of energetic material and 

binder is described by shock wave multiplication caused by variations in density, 

adiabatic heating of collapsing voids, and shock induced impinging jets of material 

caused by a shock wave’s interactions with a void.  Detonation under these conditions is 
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accurately modeled and predicted using hydrodynamic models of shock waves with 

phenomenological thermodynamic equations of state fit to large amounts of experimental 

data.   

 Under low shock pressures and frictional loads that occur during accidental 

mishandling, the loading rates are much smaller and individual hot spots develop.  Full 

scale decomposition of the material only occurs if the density of hot spots is great enough 

for them to culminate into large scale features where full scale decomposition can occur.  

Under these conditions, a microstructural understanding of the energetic material is 

required to understand the cause of individual ―hot spots‖ and how they culminate.  

Individual crystals of energetic material like RDX range in diameter from 10-500 μm.  

An accurate description of the hot spot formation process and the initial stages of 

decomposition must accurately account for the discrete microstructural features of the 

energetic crystal.  These discrete features may aid in the initial stages of decomposition 

through the up-pumping mechanism proposed by Dlott and Fayer (20) where 

intermolecular vibration energy is transferred to the intramolecular bonds causing them to 

break. 

 The cause of these discrete deformation features in molecular energetic crystals 

could be due to their low symmetry structure, anisotropic material properties and the 

complex molecule shape.  Deformation of these crystals leads to localized high energy 

deformation features.  The localized inelastic deformation results as the material 

plastically deforms on slip planes and fractures from cleavage.  Armstrong (13) theorized 

that the available energy from deformation could be sufficient to cause dislocations pile-

ups caused by grain boundaries to avalanche, releasing enough stored energy to cause 
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localized adiabatic heating sufficient to trigger decomposition.  Dick and Ritchie (11) 

account for hot spot formation through slip systems becoming sterically hindered from 

large nitramine molecules, which become excessively deformed.  The highly deformed 

molecules may then be easily excited to high vibrational states breaking their bonds and 

triggering decomposition.  Ramos et al. (14) propose that the low symmetry crystal 

cannot accommodate a general state of strain leading to low fracture strength.  

2.1 RDX Experimental Properties 

2.1.1 RDX Molecule Structure 

 RDX (hexahydro-1,3,5-trinitro-1,3,5 triazine or cyclotrimethylene trinitramine) is 

a common  energetic used by the military as a high explosive because of its stability 

properties and high energy density.  RDX, shown in Figure 2.1b is an organic molecule 

containing the nitroamino functional group, R2N-NO2 shown in Figure 2.1a.  The 

nitroamino functional group is also found in HMX, another military secondary explosive, 

shown in Figure 2.1c.  Functional groups are groups of atoms within a molecule that 

characterize a particular chemical reactivity of that molecule regardless of the overall 

molecule size.  Having the same nitroamino functional group makes RDX and HMX 

behave in a similar manner to thermomechanical loads like heat, impact, friction and 

shock.  Similar functional groups should also make potential energy functions describing 

their atomic interactions transferrable. 
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Figure 2.1:  a) Nitroamino functional group, R2N-NO2 where R’s are continuations of the 

ring.  b) RDX molecule containing three R2N-NO2 groups where each R=CH2 and c) 

HMX molecule containing four R2N-NO2 groups with R=CH2. 

 

 The RDX molecule and atomic numbering is shown in Figure 2.2(a).  The 

conformation of RDX in its crystal form are described by the wag angle, δ, of the N-N 

bonds with respect to the plane of the C-N-C atoms they are bonded to, shown in Figure 

2.2b.  In Figure 2.2b, the wag angles of the ambient condition αRDX crystal’s molecule 

are oriented Axial, Axial, Equatorial (AAE) with respect to their C-N-C plane.  The amine 

ring of C-N atoms can also take on different conformations and in the αRDX crystal 

structure takes on a ―chair conformation‖.  At higher temperatures, the ring structure can 

also take on ―ship‖ and ―twist‖ conformations.   

 RDX contains an oxidizing and a fuel component within a single molecule.  The 

final products of RDX decomposition are HCN, N2O, H2CO, H2O, NO2, NO, CO2, and 

CO.  Unimolecular decomposition of RDX is likely to occur through three decomposition 

pathways (21):  (1) Concerted symmetric triple fission of the ring forming three 

CH2NNO2 fragments (22).  (2) Cleavage of the NN bond forming an NO2 group and ring 

structure, which goes through further decompositions.  (3) Successive HONO elimination 

to form 3HONO fragments and a 1,3,5-triazine (TAZ) molecule which go through 

a) b) c)

RDX

CH2

CH2CH2

HMX

R’s continue 
ring

CH2 CH2

CH2CH2

R2N-NO2
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secondary decompositions into the final products.  Pathway (1) was determined to be the 

main reaction pathway based on mass fragments from laser photolysis of RDX (22).  

Pathway (2) is believed to occur because the NN bond attaching the nitro groups to the 

ring are the weakest bond in the RDX molecule.  NO2 bond rupture was observed 

experimentally (22) but was considered minor compared to pathway (1).  Pathway (3) 

was determined through quantum level simulations to have the lowest energy barrier to 

reaction (21).  The final combustion products of RDX and the heat of explosion are  

C3H6N6O6 → 3CO + 3H2O + 3N2 + 5042kJ/kg 

where the heat of explosion is given by the difference of the heats of formation of the 

RDX molecule and the reaction products (23).   

 

Figure 2.2:  a) RDX molecule and atom numbering.  b) RDX conformations for αRDX 

(AAE) with schematic defining wag angle, δ. 
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2.1.2 RDX Crystal Structures 

 At room temperature and pressure, intermolecular dispersion and electrostatic 

forces between RDX molecules cause them to pack together into a repeating crystal 

lattice.  The dispersion forces are isotropic as all atoms are mutually attracted to one 

another and create a close packed crystal structure.  On the other hand, electrostatic 

interactions are both attractive and repulsive.  The external atoms on the RDX molecule 

are the oxygen atoms of the nitro groups and the hydrogen atoms connected to the ring.  

These two atom types produce strong hydrogen bonds between neighboring molecules.  

Hydrogen bonding is common in molecular crystals.  Strong in-plane hydrogen bonds 

produce strongly bonded layers of molecules that are only weakly bonded to adjacent 

layers through dispersion interactions (4).  The strength of the in-plane bonds is used to 

predict slip and cleavage planes (24) (5).   

 The nonbonded interactions in RDX cause it to be found in two polymorphic 

forms at ambient conditions, the stable αRDX phase given by Choi and Prince (25) and 

the unstable βRDX phase given by Millar et al. (26).  Choi and Prince used x-ray 

diffraction to determine the crystal structure of αRDX.  They found it to contain eight 

molecules and belong to the orthorhombic Pbca space group with lattice constants 

(a,b,c)=(13.182,11.574, 10.709) Å.   

 The Pbca space group symmetry operators and the resulting αRDX unit cell are 

shown in Figure 2.3a.   The repeating asymmetric unit is a single AAE RDX molecule 

shown in Figure 2.2b.  The asymmetric unit is repeated at each symmetry equivalent 

point and rotated or inverted according the symmetry operators or the Pbca space group, 

represented by the symbols in Figure 2.3a.  The blue molecules in Figure 2.3 maintain the 
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AAE conformation in the high pressure γRDX structure.  The red molecules change 

conformation to AAI in the γRDX structure. 

   

Figure 2.3:  (a) Experimental αRDX unit cell (25)
 
at P=0GPa, T=300K overlaid on the 

Pbca space group diagram
6
.  (b) Two αRDX asymmetric units (single molecule) in the 

AAE conformation.  (c) Experimental γRDX unit cell (27)
 
at P=5.2GPa, T=293K overlaid 

on the Pb2la space group diagram (28).  (d) γRDX asymmetric unit (2 molecules) in the 

AAE (blue) and AAI (red) conformations. 

 

½+

a) b)

+

,

c) d)

+

α: P=0.0 GPa
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 At high pressures, αRDX goes through a second order phase transition from α to 

γRDX.  Davidson et al. (27) determined the structure of the high pressure γRDX phase 

using neutron powder diffraction.  They determined the phase transition to occur at 

P=3.9GPa.  They reported the atomic coordinates for γRDX from single crystal X-ray 

diffraction data under hydrostatic pressure at P=5.2GPa, shown in Figure 2.3c.  They 

indexed the x-ray reflections to the orthorhombic Pca2l space group.  In this work we use 

the Pb2la space group, which switches the b- and c- lattice vectors given by Davidson et 

al. (28) to coincide with those used by Choi and Prince for αRDX.   The γRDX lattice 

vectors are (a,b,c)=(12.5650, 10.9297, 9.4769)Å implying eight molecules in the unit cell 

and two independent molecules in the asymmetric unit shown in Figure 2.3d.  The type 1 

red molecule shown in Figure 2.3d has N-N bond wag angles oriented in the AAI 

positions where I is an intermediate orientation between axial and equatorial.  The type 2 

blue molecule shown in Figure 2.3d is in the AAE conformation.  The AAI molecules are 

also shown to change their orientation in the crystal by rotating about their amine ring. 

 A pressure and temperature phase diagram for RDX is given by Ciezak and 

Jenkins (29).  They found a high temperature phase (T>400K) that was found not to be 

related to the unstable ambient βRDX phase (26).  RDX also goes through a second high 

pressure phase transition from γ to εRDX at P=17.8GPa (30).  The β and εRDX phases 

both belong to the Pca21 space group and contain molecules in the AAA conformation. 

2.1.3  RDX Thermoelastic Properties 

 Elastic constants describing the stress-strain relationship for a single αRDX 

crystal were determined by Schwarz et al. (31) using ultrasound spectroscopy.  The nine 

elastic coefficients for this orthotropic material were calculated from the mechanical 
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resonances of the crystal measured at ambient conditions using resonant ultrasound 

spectroscopy.  The crystal was held by piezoelectric transducers where one transducer 

applied a constant amplitude signal of varying frequency to the crystal and the other 

transducer detected the resonant frequencies.  A weighted error function that compared 

calculated frequencies from approximated elastic constants to actual measured 

frequencies was minimized to find the true elastic constants.  Elastic constants for RDX 

given by Haussühl (32) using sound propagation velocities were used as initial guesses 

for the linear regression.  Haycraft et al. (33) report elastic constants using Brillouin 

scatter of acoustic phonons.  Differences between Haycraft’s data and that given by 

Schwarz or Haussühl are believed to be a result of the low symmetry of αRDX and the 

differences in crystal quality and age.  Elastic constants from these experiments are given 

in Table 3.1 along with the Voigt bulk modulus for uniform strain, Bv, given by    

 

 
        and the Voigt shear modulus for uniform strain, Gv, given by    

 

  
     

         
 

  
              

 

 
             . 

Table 2.1: Experimental Elastic Constants 

Elastic Constants 

(GPa) 

Haycraft et al. (33) Schwarz et al. (31) Haussühl (32) 

C11 36.67 25.60 25.02 

C22 25.67 21.30 19.60 

C33 21.64 19.00 17.93 

C12 1.38 8.67 8.21 

C13 1.67 5.72 5.81 

C23 9.17 6.40 5.90 

C44 11.99 5.38 5.17 

C55 2.72 4.27 4.07 

C66 7.68 7.27 6.91 

Bv 12.05 11.94 11.38 

Gv 9.26 6.39 6.07 
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 Isothermal compression experiments (34) (27) (35) provide lattice constants and 

volume as a function of pressure.  Volume versus pressure data was used to determine the 

bulk modulus and its derivative.  These experiments also provided lattice and volume 

measurements of the γRDX phase versus pressure and their discontinuity through the α to 

γRDX phase transition.  

 The coefficients of thermal expansion for αRDX describing the volumetric 

response to temperature were reported by Cady (36) using a differential transformer to 

measure the change in vertical height of the αRDX crystal over the temperature range -

160<T<150 Cº at atmospheric pressure.  The coefficients of thermal expansion data as 

function of temperature is fit to a sixth degree polynomial for each lattice direction.  The 

average linear coefficients of thermal expansion determined from Cady’s CTE versus 

temperature plot for 0<T<50Cº are (a,b,c) = (2.7, 8.7, 7.9)x10
-5 

K
-1

.  The linear 

coefficients of thermal expansion show linear temperature dependence over the 

temperature range 0<T<50 Cº.  The LASL explosive property data volume (19) provides 

a temperature dependent curve fit for the volumetric coefficient of thermal expansion, 

which computes to 19x10
-5 

K
-1

 for T=50Cº. 

2.1.4  RDX deformation features 

 Gallagher et al. (6) used a Knoop indenter on principal habit planes of αRDX to 

determine the active slip systems.  The indentations on the crystal face were made at 5° 

intervals as the crystal was rotated.  The orientation dependence of the Knoop indentation 

was used to determine the effective resolved shear stress on different assumed slip 

systems.  Acid etching was also made on the indentation samples to determine the slip 

planes. They determined the slip planes to be (010), (021) and       and the slip systems 
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were believed to be (010)[001], (021)[100], and      [100].  They determined the brittle 

nature of the material to be due to its anisotropic properties and limited high energy slip 

systems. 

 Ramos et al. (14) used nanoindentation with a conical tip and atomic force 

microscopy (AFM) operating in contact mode to characterize the post-indentation 

plasticity of αRDX prior to cracking.  The small size and load control for nanoindentation 

made it possible for them to separate the brittle failure and plastic deformation 

mechanisms.  The AFM images of the indentation were overlaid with projections of polar 

plots of the deformation zone axes of the known/suspected deformation mechanisms.  

They identify {021}(100), {011}(010) and (010)[100] slip systems and (010)[001] for 

cross-slip.  The small loads allowed them to observe the plastic deformation on the slip 

systems prior to cracking and to identify possible cross slip mechanisms.  They offer a 

mechanistic explanation to the low cracking threshold based on compatibility conditions 

where a general state of strain cannot be accommodated by the limited number of slip 

systems in the low symmetry αRDX crystal. 

 Hooks et al. (37) impacted the (111), (210), and (100) planes of oriented αRDX 

crystals to access 3, 2 and 0 slip systems, respectively.  Impacts on (210) show distinct 

elastic and plastic waves, (111) impacts resulted in an overdriven elastic wave and (001) 

impacts resulted in stepped features that are thought to be the result of brittle fracture.    
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 Cawkwell et al. (38) observed an abrupt change in the elastic-plastic response of 

shocked (111) αRDX crystals with increasing shock velocity.  They used molecular 

dynamics simulations to show that the change in plastic response is a result of plastic 

hardening caused by homogenously nucleated dislocation loops.  The dislocation loops 

contained the partial Burgers vector, 0.16[010], and were only stable under applied 

pressure.  The simulations also showed the dislocation loops to contain a molecule 

conformation change that resulted in a structure similar to γRDX. 

2.2  Models 

 This section will present theoretical and numerical models used to describe the 

observable features and experimental data for energetic materials.  The continuum level 

models are phenomenological and use continuum theories of shock waves and reaction 

kinetics to extrapolate the known experimental results to a larger range of conditions.  At 

smaller scales, the discrete nature of the material must be explicitly dealt with using 

mesoscale methods.  At the scales of interest to this work, the discrete atomic structure of 

the material becomes important and is modeled using molecular dynamics where atomic 

interactions are dealt with explicitly and the atomic motion is assumed to obey Newton’s 

equations of motion.  These simulations are able to provide parameters to the continuum 

models and help develop theories.   
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2.2.1  Continuum models 

 Energetic materials are created to undergo rapid decomposition of their 

constituents to release energy.  This usually occurs or results in extremely high pressures, 

temperatures, and strain rates.    These conditions are best dealt with using hydrodynamic 

models to describe the continuum features of an energetic material because under these 

conditions the material behaves almost as a fluid.  Hydrodynamic codes solve the 

continuum equations to conserve mass, momentum, and energy.  An equation of state is 

required to couple the conservation equations.  Equations of state models are normally 

phenomenological, meaning they model physical and chemical processes explicitly based 

on experimental data.  The equation of state must accurately model the energetic material 

before, during, and after detonation to accurately predict the munitions effects.   

 Numerical implementation of these codes is often done using spatial and temporal 

finite difference methods.  The availability of high performance computing has driven the 

resolution of these models to levels where the reaction processes and material 

heterogeneity must be modeled discretely.  At these levels the microstructure becomes 

important and methods of coupling the discrete features of the microstructure to the 

overall continuum level events become important.  Even at the microscale, these features 

occur over a range of scales.  The localization features believed to be important to the 

initial stages of decomposition and hot spot formation occur at the molecular level.  

Chemistry occurring at the molecular level results from dissociation of the individual 

molecules.  Localized features aiding in this initial stage of reaction are caused by crystal 

defects, which alter the energy barriers of individual molecules to react.  Models from 

literature capable of describing the atomic interactions for energetic materials will be 
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given in the next sections and features from these models will provide new information 

for the continued development of more physically realistic equations of state for the 

continuum models. 

2.2.2  Nonreactive Rigid RDX Molecule Models 

 The nonbonded interactions between RDX molecules causes it to exist in 

crystalline form over a wide range of conditions.  Sorescu, Rice, and Thompson (39) 

developed a rigid molecule model where the each RDX molecule is treated as a single 

rigid body.  In the Sorescu, Rice and Thompson (SRT) model, only nonbonded 

interactions between atoms calculated are used to parameterize electrostatic interactions 

and a Buckingham potential for van der Waals type interactions including exponential 

repulsion and r
-6

.  The intermolecular potential parameters are fit by minimizing a 

function of weighted molecular forces, torques and lattice energy for atoms arranged in 

the αRDX crystal structure.  The partial charges for each molecule are fit to quantum 

mechanics calculations and are fixed during the minimization.  Published Buckingham 

parameters for H…H and C…C are used with combination rules for repulsion/dispersion 

terms to further reduce the number of variables to minimize.  The O...O and N…N 

parameters are then optimized to minimize the fit criterion using symmetry constrained 

molecular packing calculations.   

 These parameters were then used in rigid body molecular dynamics to test their 

ability to reproduce the crystal structure and obtain coefficients of thermal expansion.  

The lattice dimensions are reported to be within 4% of experimental values.  Good 

agreement is found for fractional coordinates, which are used to compare the molecules’ 

expected centers of mass from the Pbca symmetry operations to those found from 
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averaged atomic trajectories during the simulation.  Euler angles are also in good 

agreement, meaning the molecules do not show substantial rotation when compared to 

the experimental configuration.  Sewell and Bennett (40) used the SRT potential to find 

the temperature and pressure dependent elastic tensor.  They conducted isothermal-

isobaric simulations and used the strain fluctuation formula given by Parinello and 

Rahman (41) to solve for the elastic constants and bulk modulus that were in close 

agreement to experiment (31).  Sorescu et al. (42) have also shown that the SRT 

parameters are transferable to other nitramines and molecules containing similar 

functional groups. 

 A different rigid molecule potential energy function was developed by Podeszwa, 

Rice and Szalewicz (43) from density functional theory (DFT) calculations of two 

interacting RDX molecules.  These were done to better understand the RDX molecule 

interaction found in the condensed phase.  The DFT method used here is also shown to be 

specially suited for accurately modeling materials that contain strong dispersive forces 

like molecular crystals.  For the DFT calculations, the experimental form for the αRDX 

molecule is used with a slight variation made in atomic positions to obtain mirror 

symmetry in the molecule point group.  The DFT data was used to find parameters for the 

Buckingham potential with damping terms for each interaction to deal with short range 

intermolecular interactions.  The new potential was then used in rigid molecule molecular 

dynamics simulations to evaluate several probable crystal structures of RDX using the 

αRDX molecule conformation (44).  The αRDX crystal structure is found to have the 

lowest energy and the potential predicts the lattice constants to within 0.5%.  The 
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coefficients of thermal expansion and bulk modulus are comparable to the SRT model 

(39) and experimental data (25).   

 Molecular potentials have several tunable parameters that require fitting.  It is a 

difficult task to determine the parameters that can be used from literature and those that 

need to be determined directly for the system of interest.  The number of parameters 

fitted using rigid molecule models is one way of reducing the number of tunable 

parameters and if only intermolecular motions are of interest this approximation yields 

accurate results.  Rigid molecule models are not appropriate when the molecule 

conformation is expected to change as is the case with melting and solid-solid phase 

transitions.  The molecule conformation is also important in cases where a molecule is 

subjected to a crystal environment different to that from the perfect crystals such as those 

found at defects caused by free surfaces, dislocations, voids and grain boundaries.  Other 

properties that depend on the high-frequency vibrations of the molecule are also not 

described.  Simulations involving rigid molecules also provide very little computational 

savings over those that model bonds explicitly since nearly 70% of the computational 

time in atomistic simulations comes from the Ewald summation of the electrostatic 

potential.  Simulations of rigid molecules also require special rigid body integrators that 

do not fit well into large scale parallelization schemes and are unavailable in some large 

scale molecular dynamics packages like DL-POLY 3.10 (45).  
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2.2.3  Smith and Bharadwaj Nonreactive Flexible RDX Molecule Model 

 Nitramine molecules are large floppy molecules, which has significant influence 

on the properties of the crystal.  Properties that require knowledge of intramolecular 

flexibility include any process involving molecule conformational changes and high 

frequency vibrational modes.  Phase transitions including the low to high pressure solid-

solid phase transition of α to γRDX and first order transitions like melting require 

molecule conformational changes.  Vibrational energy between molecules is also believed 

to be ―up-pumped‖ into the intra-molecular vibrations leading to dissociation of the 

molecular bonds and hot-spot formation (20).  Molecule conformations also change in the 

vicinity of crystal defects, stacking faults, and free surfaces; all of which are believed to 

be important in hot spot formation. 

 Smith et al. (46) used quantum mechanics calculations to parameterize nitramide 

and dimethylnitramine (DMNA) shown in Figure 2.4a and b to develop classical 

intramolecular bond potentials commonly used in molecular dynamics.  Nitramide and 

DMNA are similar in structure to the nitroamino functional group shown in Figure 2.1a 

that makes up both HMX and RDX.  Due to these similarities, a flexible potential 

developed for DMNA provides a building block to a flexible molecular potential for the 

more complex RDX and HMX molecules.   
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Figure 2.4:  Chemical structure representation of (a) Nitramide (b) Dimethylnitramine 

(c) HMX. 

 

 The quantum mechanics data for DMNA was used to fit a bonded potential 

energy function containing harmonic bond forces, harmonic bending forces, cosine series 

torsion/dihedral forces, and out-of-plane bending forces of the O-N-O group with the N-

N bond modeled as a harmonic improper dihedral.  The improper dihedral relates the 

motion of the two nitrogen’s by harmonic torsion about an axis between the two oxygen 

atoms and works to keep the N-N bond in-plane with the O-N-O group.  The nonbonded 

van der Waals atomic interactions were modeled with an Buckingham exponential-6 

repulsion/dispersion model with parameters given in other work (47).  The partial charges 

for Coulombic interactions were found by fitting an electrostatic potential at a grid of 

point values from the quantum mechanics simulations.  Simulations using the DMNA 

potential are shown to reproduce experimental gas phase peaks on the radial distribution 

function for atomic pairs and liquid phase vapor pressure, volume, and temperature 

properties.  The liquid phase simulations required the partial charges to be increased by 

25% to reproduce experimental results. 

 Smith and Bharadwaj (17) assumed all valence and dispersion/repulsion terms 

found for the much simpler DMNA molecule are directly transferable to the potential 

used for HMX.  Additional valence parameters were then determined for HMX bonds 

H3C

H3C

a) b) c)
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that do not occur in DMNA, namely the N-C-N bend and C-N-C-N dihedral angles of the 

ring.  The potential includes nonbonded coulombic and dispersion/repulsion interactions 

between all atoms separated by three or more bonds, including those connected by 1-4 

dihedrals.  Partial charges for the HMX model were refit to reproduce a grid of quantum 

mechanics data points for HMX with the constraint that ―like‖ atoms have equal charges.  

The Smith and Bharadwaj (SB) flexible molecule potential was used to find the 

experimentally unavailable thermal conductivity, shear viscosity and self-diffusion 

coefficients for the liquid HMX temperature domain 550 < T <800 K, which are all 

important material properties for large length and time scale constitutive models used in 

continuum hydrodynamic codes (48).  The SB potential was then used to model 

crystalline HMX in the β-, α-, and δ-phases stable at ambient conditions and differ by 

molecular packing and molecule conformation (49).  Bedrov et al. give the full potential, 

U, used for crystalline HMX as  

   
 

 
   

         
  

 

     

  
 

 
    

           
  

 

      

  
 

 
     

                

                

  
 

 
     

      
 

                  

                     
   

   
    

    

   
 

 

   

   

   

 

(2.1) 

with parameters listed below in Table 2.2.  This form of the SB potential and the 

parameter set from Table 2.2 are used to model crystalline RDX in this work and the 

input files that implement this potential in DLPOLY (50) and LAMMPS (51) are given in 
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Appendices A and B, respectively.  Bedrov et al. (49) accurately predicted lattice 

constants within 4% and coefficients of thermal expansion within 11% for three 

polymorphs of HMX (α, β, δ), and lattice angles for the non-orthogonal β and δHMX 

phases were also accurately determined.  Sewell et al. (52) then used the SB potential to 

find the full elastic tensors at atmospheric pressure and isothermal bulk modulus for the 

three ambient HMX phases.  The bulk modulus was found to be within 11% of 

experimental acoustic measurements and the volumetric terms of the elastic tensor were 

within ~20% (31).  Jaramillo et al. (53) use the SB potential to determine molecular level 

deformation features of the HMX crystal under shock loads and interplay between 

dislocations and amorphous shear bands as the shock strength is increased. 

 The transferring of the SB potential to RDX was first done by Zheng and 

Thompson (54) who used the bonded and dispersion/repulsion terms of the SB potential 

with atomic partial charges from the SRT rigid RDX potential (39) to simulate isothermal 

compression and melting of a perfect αRDX crystal.  They accurately predict the ambient 

condition density to within 1% of the experimental result and the bulk modulus to within 

2% of Olinger et al.’s (34) experimental isotherm data.   

 Cawkwell et al. (55) showed the SB potential without modification was able to 

reproduce αRDX elastic parameters, coefficients of thermal expansion, and lattice 

parameters.  Unfortunately, they only published the lattice parameters given by the SB 

potential.  The SB potential has been used to simulate the observed dependence of shock 

strength and orientation on the nonreactive dynamic processes involved in the elastic 

plastic response of αRDX (38) (56) (37).  Based on their simulations, Ramos et al. (56) 

and Cawkwell et al. (38) proposed that partial dislocation loops homogenously nucleated 
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throughout the material as stacking faults cause an anomalous hardening, changing the 

elastic-plastic response as observed in (111) and (021)-oriented shock experiments.  They 

also determined these stacking faults to be stabilized by stress applied normal to the (001) 

plane and nucleated by shear stress in the [010] direction (38).  However, it was also 

noted that similar behavior may be observed if the stress was sufficient to induce the 

transition into the γ-polymorph.  Owing to the higher experimentally-known transition 

pressure and the fairly isotropic dependence on shock orientation (57), the authors 

concluded this explanation was deemed unlikely (56). 

 Bedrov et al. (58) performed uniaxial constant stress Hugoniotstat simulations 

using the SB potential for [100] compression of αRDX that resulted in amorphous shear 

banding for pressures above 9 GPa.  Similar calculations of [001] compression of αRDX 

produced the α to γRDX transition for pressures above 2.0 GPa (58).  Furthermore, 

Bedrov et al. found differing behavior according to the crystal orientation.  Whereas 

[100] compression yielded amorphization and sudden changes in volume following the 

initial compression, similar behavior did not occur for [001] compression.  Clearly, 

determining the dependence of this solid-solid phase transition on compression, stress 

and shear of the material requires further exploration.   
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Table 2.2:  Smith and Bharadwaj potential for HMX/RDX (49) 

Bond stretches,         
         

  
 
 

Bond    
  (kcal/mol/Å2

)    
  (Å)  

O-N 1990.1 1.23  
N-N 991.7 1.36  
N-C 672.1 1.44  
C-H 641.6 1.09  

Valence Bends,           
           

  
 
 

Angle     
  (kcal/mol/rad

2
)     

  (rad)  

O-N-O 125.0 2.1104  
O-N-N 125.0 1.8754  
N-N-C 130.0 1.6723  
C-N-C 70.0 1.843  
N-C-H 86.4 1.8676  
H-C-H 77.0 1.8938  
N-C-N 70.0 1.9289  

Torsions,           
                  

Dihedral      
  (kcal/mol) n  

O-N-N-C 8.45 2  
O-N-N-C 0.79 4  
O-N-N-C 0.004 8  
H-C-N-C -0.16 3  
C-N-C-N 3.30 1  
C-N-C-N -1.61 2  
C-N-C-N 0.11 3  

Out of plane bends          
      

  

Improper Dihedral     
  (kcal/mol/rad

2
)   

C-N-C…*N 8.0 
Where …*N is the atom kept in-plane 

O-N-O…*N 89.3 

van-der-Waals interactions,                          
  

Atoms pair type Aij (kcal/mol) Bij (Å
-1

) Cij (kcal/mol Å6
) 

C∙∙∙C 14976.0 3.090 640.8 

C∙∙∙H 4320.0 3.415 138.2 

C∙∙∙N 30183.57 3.435 566.03 

C∙∙∙O 33702.4 3.576 505.6 

H∙∙∙H 2649.7 3.740 27.4 

H∙∙∙N 12695.88 3.760 116.96 

H∙∙∙O 14175.97 3.901 104.46 

N∙∙∙N 60833.9 3.780 500.0 

N∙∙∙O 67925.95 3.921 446.6 

O∙∙∙O 75844.8 4.063 398.9 

Atomic partial charges 

Atom type Q 
C -0.540000 

N(amine)   0.056375 

N(nitro)   0.860625 

O -0.458500 

H   0.270000 
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2.2.4  Other Nonreactive Flexible RDX Molecule Models 

 Boyd, Gravelle and Politzer (59) developed a separate flexible molecule potential 

function for αRDX that reproduces the crystal lattice constants and the molecule 

conformations as well as the molecule vibrational modes.  This potential is similar in 

form to the SB potential with bonded intramolecular interactions and nonbonded van der 

Waals and electrostatic interactions.  Valence parameter for the harmonic angle bends 

were chosen to reproduce certain vibrational frequencies of the NO2 and ring modes.  

This model was created with special attention paid to inter and intramolecular vibrational 

modes to study the up-pumping mechanism of hot-spot formation proposed by Dlott and 

Fayer (20).  They are able to leave out the improper dihedral term controlling the wag 

angle of the N-N bond by including cross coupling terms treating intramolecular 

nonbonded interactions with an exponential-6 potential.  The intermolecular potential 

uses a separate set of exponential-6 potential terms with an electrostatic potential that 

includes a cut-off function to increase computational efficiency.  Simulations using this 

potential reproduce the lattice constants and coefficients of thermal expansion to the same 

order as the SRT rigid molecule potential and SB potential.  This model was used by 

Boyd et al. (60) to perform detailed analyses of void formation energy and molecule 

conformation changes in the vicinity of small voids created by removing 2-30 molecules.  

The complexity of including separate intramolecular and intermolecular nonbonded 

interactions as well as a specialized electrostatic cut-off function makes this potential 

energy function difficult to apply in most molecular dynamics codes. 

 Attempts have also been made at modeling αRDX and other nitramines using 

other commonly available potential energy functions developed for other materials.  

Agrawal et al. (61) used the generalized AMBER potential to model intramolecular 
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interactions and the SRT potential was used for intermolecular nonbonded interactions.  

The generalized AMBER force field (62) is a widely used parameterized force field for 

organic systems.  An additional term was included into the AMBER potential to model 

the out-of-plane bend of the N-N bond.  The model accurately predicted the 

conformations of the ring structure but the wag angle was not accurately captured.  This 

model was shown to predict the melting point within 5% and the density predicted was 

10% lower than the experimental result.  

 Lu et al. (63) used the COMPASS (64) force field to modelβHMX.  The 

COMPASS potential contains a complex set of intramolecular potential energy functions 

to account for the normal bond, bend, torsion, and out-of-plane terms along with a set of 

cross coupling terms for each of these intramolecular motions.  Valence parameters in 

COMPASS come from ab initio calculations and empirical data for molecules in 

isolation.  The COMPASS potential predicts the lattice constants and bulk modulus to the 

same accuracy as the SB potential.  The higher order polynomials used to model the 

intramolecular interactions also seem to aid in accurately predicting a high pressure phase 

transition at the experimentally reported pressure of 27 GPa.  

 Ye et al. (65) used published flexible potentials and refit them using the 

Generalized Utility Lattice Program (GULP) (66) for several nitramine crystals including 

RDX and HMX.  They used published dispersion/repulsion parameters and forms with 

modification made to the O…H terms to reproduce crystal lattice properties.  The 

experimental crystallographic molecule structure was used in quantum mechanics 

simulations to fit the partial charges.  The intramolecular functions controlling the 

molecule conformation were then fit to the published functional forms using GULP and 

the published parameters as starting points for the fitting.  The fit was based on matching 

lattice properties and minimizing potential energy and because this is a lattice dynamics 
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program, the fit is done at zero Kelvin.  The potentials reproduce the crystal lattice of 

RDX and HMX to within 2% and the bulk modulus and elastic tensor are said to compare 

well with experimental data and the SB potential. 

2.2.5  Reactive Force Field RDX Models 

 A reactive force field model used in molecular dynamics simulations called 

ReaxFF developed by Van Duin et al. (67) (68) uses bond order potentials to describe 

atomic interactions.  Describing the atomic interactions using bond orders allows bonds 

to break and reform resulting in a model suitable to predicting chemical reactions.  This is 

different than the SB potential, which requires explicitly defined atomic bonds and does 

not allow for chemistry to occur. 

 Strachan et al. (69) developed a set of ReaxFF parameters for RDX and modeled 

the initial stages of shock initiation and decomposition.  They determined the lattice 

constants at room temperature to be (a,b,c)=(13.7781, 12.0300, 10.9609)Å and the bulk 

modulus to be 13.9 GPa, all in good agreement with experimental data and within the 

accuracy of other molecular dynamics methods.  The accuracy of these values was 

recently increased by Liu et al (70) by modifying the ReaxFF potential to include r
-6

 

London dispersion.  They also accurately reproduce the α to γRDX phase transition.  The 

transition pressure was only slightly overpredicted to occur at ~4.8GPa. 

 ReaxFF provides one of the best available methods for predicting the conversion 

of mechanical to chemical energy and the decomposition pathway for detonation.  The 

force field is computationally expensive, on the order 1000 times that of the flexible SB 

potential.  This work focuses on the mechanical processes that lead up to the initiation of 

chemistry and the computational speed and ease of using the SB potential is determined 

to be more practical.  
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3. Smith and Bharadwaj Atomistic Potential Validation 

 In this section, we study the basic equilibrium properties of and transitions to and 

from the α and γ polymorphs in crystalline RDX based on the SB potential (17).   

Atomic-level effects in pre-initiation processes are difficult to discern from measurement 

but they likely play significant roles in the mechanisms that lead to initiation.  Thus, 

verified atomistic models may offer useful insights to complement experiments.  To wit, 

while it has been shown that the γ-phase is observable using atomistic simulation 

approaches, to the best of our knowledge, the validation of the computed transition 

pressure in quasi-statically deformed crystals and properties of the stable γ-structure 

using the SB potential have not been reported.  It would therefore be useful to determine 

the transition behavior in simple models of RDX (such as that described by the SB 

potential) and the circumstances that a transition occurs.  To this end, we employ 

molecular dynamics (MD) with the SB potential to model the quasi-static response of the 

RDX crystal to isotropic and uniaxial compression.  We also compute phase transitions 

under homogenous deformations at room temperature to study the steric mechanisms.  In 

addition, we consider the roles of crystal anisotropy and load orientation on these steric 

effects through the transition point.  Section 3.1 will present the simulations protocol and 

the equilibrated structures of the α and γRDX crystals. The effect of pressure, strain, and 

temperature on these structures will be presented in Section 3.2.   

3.1  Equilibrated α and γRDX Crystal Structure 

 The molecular dynamics package DL-Poly 2.19 (71) was used to test the 

application of the Smith-Bharadwaj Flexible Molecular potential (17) given in equation 
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(2.1) for the ambient crystalline phase of αRDX and high pressure γRDX phase.  

Simulations were done to check that the potential recreated the proper crystal structure of 

the two phases by comparing time averaged atomic position data from the simulations to 

experimental structural data given in Section 2.1.2.  The unit cell was replicated to create 

a 2×3×3 crystal lattice in the (a, b, c) directions, respectively.  The α and γRDX unit cells 

contain 8 molecules and the 2×3×3 RDX crystal contains 18 unit cells, 144 molecules, 

and 3024 atoms.  Parallelepiped periodic boundary conditions are used in the simulations 

and allow for non-orthogonal lattice vectors of different lengths.  Periodic boundary 

conditions are used to simulate an infinite crystal in all directions in order to get bulk 

thermodynamic properties free from the effects of surfaces.   

 The real space cut-off for the non-bonded van der Waals and electrostatic 

interactions was set to 10Å, which is large enough to allow for interactions between 

nearest neighbor molecules.  The smallest simulation cell dimension must be at least 

twice as large as the 10Å real space cut off requiring a 2×3×3 unit cell.  A long range tail 

correction to the potential energy is applied to the dispersion portion of the van der Waals 

interactions to account for the attractive forces between atoms at distances greater than 

the real space cut-off.  The long ranged electrostatic interactions are calculated using the 

Ewald sum method, which splits the potential up into two parts:  atoms separated by a 

distance less than the cut-off are treated using a direct Coulomb sum and atoms separated 

at distances larger than the cut-off are treated using a Fourier series sum in reciprocal 

space.  In this work DL POLY (50) is used to automatically set the Ewald parameters by 

specifying the precision of the relative error in the convergence of the real space sum to 
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0.3e-6.  DL POLY uses the relative error to automatically optimize the reciprocal space k 

vectors and the Ewald convergence parameter. 

 The simulations were run using the Verlet leapfrog time integrator (50).  The 

highest vibrational frequency in the crystal is the C-H bond stretch with a period of 

approximately 12fs.  In order to conserve the total system energy, approximately 10 

integration steps should be taken per period limiting the maximum timestep to 

approximate 1.0fs. 

 An isothermal, iso-stress (NST) ensemble was used to control the temperature and 

full stress tensor of the simulation.  The temperature is controlled with the Nose-Hoover 

thermostat.  The Nose-Hoover thermostat functions by scaling the velocity using a scalar 

friction like term that is coupled to an outside heat bath.  For these simulations the 

temperature is set to T=300K.  The coupling time constant for the thermostat in these 

simulations is 1.0ps, which is related to the thermostat’s ―effective‖ mass.   

 The pressure of the simulation is controlled with a barostat that is coupled to the 

thermostat through a modification in the equations of motion.  The barostat controls the 

size and shape of the simulation cell to maintain the prescribed pressure of P=0.  If the 

simulation is thought of as occurring in a cylinder with a piston on top, the piston and its 

mass play a similar role to the barostat.  The barostat is applied as a friction like term that 

scales the velocity and also scales the simulation cell size and shape.  In an isobaric 

simulation, the pressure is controlled by only scaling the cell shape by a scalar friction 

term.  The simulation in this study uses an iso-stress barostat requiring a second order 

tensor for the barostat friction term allowing the shape and size of the simulation cell to 

change independently.  The iso-stress barostat with the parallelepiped periodic boundary 

conditions allows for the simulation to proceed under the least geometrically constrained 
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boundary conditions and to reach an equilibrated structure predicted by the molecular 

potential at the applied temperature and pressure.  The barostat coupling time in these 

simulations is set to 1.0ps, which is related to the barostat’s ―effective‖ mass. 

 All simulations are started with an initial warm up period where the random 

velocities used to seed the simulation are scaled every 5 integration steps to maintain the 

correct temperature.  The simulation cell is also scaled to the prescribed pressure.  Total 

system energy is not conserved during this part of the simulation as shown by the initial 

scatter of the total system energy time histories in Figure 3.1(a) where each history is for 

a different integration step size.  In Figure 3.1(a) the green line corresponds to an 

integration step of 0.1fs and the warm up period for this occurs over the initial 5ps of the 

simulation, after which point the temperature scaling is turned off.  At this point the 

system is near its thermalized equilibrium.   Data from the warm up period is not used to 

obtain average values of thermodynamic variables from the simulations.  The warm up 

periods for 0.1, 0.5, 1.0, 2.0, 3.0fs timesteps was 5, 10, 20ps respectively.  To save on 

computational time, smaller warm up periods were used for smaller timesteps.  

3.1.1  Integration Timestep and Conserved Energy for αRDX 

 After the initial warm up, the prescribed temperature and volume scaling are 

turned off and the equilibration portion of the simulation proceeds by integrating the 

equations of motion modified by the NST ensemble to include the thermostat and 

barostat, allowing energy to flow between an external heat and pressure source in a 

thermodynamically consistent manner.  The equilibration simulation conserves the total 

system energy and statistically relevant data is collected from this portion of the run.  The 

conserved energy in an NST ensemble is the Gibbs free energy whose time history is 

plotted in Figure 3.1a for five different integration timesteps, 0.1, 0.5, 1.0, 2.0, and 3.0fs.  
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For timesteps larger than 3.0fs the energy fluctuations become too large and the 

integration fails to converge.  Conservation of energy ensures that the time integrator is 

properly stepping the system forward in time according to the equations of motion.  

Smaller timesteps reduce the integration error but add time to the simulation so it is 

preferred to use large timesteps that keep the fluctuations in the conserved quantity small.  

Fluctuations in the total energy become apparent in Figure 3.1a for the larger timesteps of 

2.0 and 3.0fs.  A measure of these fluctuations is given by the average root mean square 

of total energy plotted as a function of integration step size in Figure 3.1b.   Only the 

equilibration data is used to determine the averages.  The fluctuations increase 

logarithmically with timestep size.  Fluctuations in the Gibbs energy for an NST ensemble 

should be less than 1.0e-5 electron Volts per atom (eV/atom) limiting the integration 

timestep to less than 1.0fs for this simulation.   

 

Figure 3.1:  (a) Gibbs Energy time history for different integration timesteps.  (b) 

Average total system RMS energy fluctuation per atom versus timestep size. 

 

 The total Gibbs energy consists of the kinetic and potential energy resulting from 

the molecular interactions, as well as some extensive energy components from the 

thermostat and barostat.  Time histories of the kinetic and potential energy are shown in 

Figure 3.2a and b for different integration step sizes.  Regardless of timestep size, the 
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kinetic energy fluctuates around the thermostat set point of approximately 300K or 

0.03877 eV/atom in Figure 3.2b.  The fluctuations in the potential energy time history in 

Figure 3.2a are not centered on an average value but instead have a common minimum 

value of 0.649 eV/atom.  The oscillations observed in the kinetic and potential energies in 

Figure 3.2b and c are the result of the thermostat and barostat time constants which use 

the same value. The energy fluctuations in kinetic and potential energy are dependent on 

one another, the error caused by improperly integrating the atomic trajectory leads to 

abnormally high reaction forces causing large fluctuations in the velocity reflected by 

their mutually increasing RMS curves in Figure 3.2c.  The lowest energy fluctuation in 

total energy from Figure 3.1b is for the smallest integration step, 0.1fs, but in Figure 3.2c 

the minimum in potential and kinetic energy occurs at 0.5 and 1.0fs timesteps.  This is a 

result of the system conserving the Gibbs energy and not the kinetic and potential energy 

independently. 

 

Figure 3.2:  (a)  Potential and (b) Kinetic energy time history for different integration 

timesteps drawn with the same x and y scales.  (c)  Average Kinetic and Potential RMS 

energy fluctuation per atom versus timestep size. 
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 The SB potential given by equation (2.1) using the parameters in Table 2.2 

contains terms parameterized to capture bond stretch, angle bend, proper and improper 

dihedral torsion, electrostatics, and nonbonded van der Waals interactions.  Time 

histories of each of these terms for the 3.0fs timestep are shown in Figure 3.3.  Small 

fluctuations are observed for the bonded and angle energy time histories in Figure 3.3a.  

The bond and angle have the stiffest potential parameters in Table 2.2 leading to higher 

vibrational frequencies needing smaller integration timesteps.  Figure 3.3b shows the 

largest RMS fluctuations for the high frequency bonded and angle terms.  Figure 3.3b 

also shows the change in energy fluctuations is small for the softer potentials such as 

those for dihedrals and nonbonded interactions.  The SRT rigid molecule potential (39) 

does not include high frequency bonded interactions and larger timesteps can be used 

while maintaining acceptable energy fluctuations.   

 Figure 3.3:  (a) Energy history of SB Potential functional terms for 3.0fs timestep.  (b) 

RMS energy fluctuations of SB Potential functional terms as a function of timestep size. 

3.1.2  Thermalized α and γRDX Lattice Constants 

 Figure 3.1 through Figure 3.3 show the effect of the integration step on the energy 

fluctuations and from these figures and knowledge about the bond frequencies it is 
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conditions being simulated.  Higher temperatures and pressures may require longer warm 

up period to reach the equilibrated structrue and shorter timesteps.  These can be 

determined by reevaluating the time history and average RMS of the conserved energy.  

Figure 3.4 shows the time history of the (a) lattice vectors and (b) volume for an 

integration step of 1.0fs.  The initial 20ps of the simulation is the warm-up period where 

the lattice constants are scaled to attain the proper pressure.  After 20ps the equilibration 

portion of the simulation starts where lattice constants and particle velocities are 

controlled by the barostat and thermostat.  Large fluctuations occur at the beginning of 

the equilibration run as the control of the particle velocity and lattice dimensions is 

handed over to the thermostat and barostat.  This portion of the equilibration simulation 

will skew the averages and is not used.   

 

Figure 3.4:  Time history of (a) (a,b,c) lattice constants and (b) volume for integration 

timestep of 1.0fs. 

 

 The lattice constants in Figure 3.4a flatten out during equilibration (t > 20ps) and 
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2.2.2 are also shown.  Percent difference between each potential and experimental data is 

shown in parentheses. The simulations from this work accurately predict the lattice 

constants within 2% error.  The SAPT simulations were done at T = 298K and they most 

closely matched the experimental lattice constants.  Simulations in the current work most 

closely match the experimental volume.   

Table 3.1:  Average lattice constants (a,b,c) and volume for αRDX at P=0GPa and 

T=300K. 

  a (Å) b (Å) c (Å) V (Å 3) 

Exptla  13.182 
 

11.574 
 

10.709 
 

1633.8 
 0.1fs 13.446   (2.00%) 11.531   (-0.37%) 10.534   (-1.63%) 1633.3   (-0.03%) 

0.5fs 13.461   (2.12%) 11.531   (-0.37%) 10.533   (-1.64%) 1634.8   (0.06%) 

1.0fs 13.463   (2.13%) 11.530    (-0.38%) 10.531   (-1.66%) 1634.7   (0.06%) 

2.0fs 13.467   (2.16%) 11.530    (-0.38%) 10.531   (-1.66%) 1635.1   (0.08%) 

3.0fs 13.468   (2.17%) 11.524   (-0.43%) 10.532   (-1.65%) 1634.5   (0.04%) 

SAPTb(298)  13.259   (0.58%) 11.634   (0.52%) 10.754   (0.42%) 1658.9   (1.54%) 

SRTc  13.396   (1.62%) 11.798   (1.94%) 10.732   (0.21%) 1696.2   (3.82%) 
a
Choi, Prince Ref. (25)   

c
Podesczwa, Rice, Szalewicz Ref. (44)  

 b
Sorescu, Rice, Thompson Ref. (39)   

 

 The simulation procedure applied to αRDX P=0GPa and T=300K is then applied 

to the high pressure RDX phase described in Section 2.1.2.  The RDX simulations use 

the crystal structure given by Davidson et al. (27) and are simulated at the same 

temperature and pressure the experimental data was provided at, T=300K, P=5.2GPa.  

The simulation is thermalized for 75 ps and ensemble averages are collected from this 

period. 

 Davidson et al (27) give the RDX in the Pca2l space group.  In this work we 

present all material properties in the alternative axes setting Pb2la, which effectively 

switches the b- and c-lattice vectors given by Davidson et al. (27) to match those used by 

Choi and Prince (25).  The RDX crystal structure maintained an orthorhombic cell 

during thermalization and the lattice constants and volume are given in Table 3.2.  The 
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lattice constants from these simulations are within 2% error of the experiment.  All the 

simulations for RDX over predict the lattice constants leading to a 4% over prediction in 

the volume.   

Table 3.2:  Average lattice constants and volume for γRDX. 

  <a> (A) <b> (A) <c> (A) <V> (A3) 

Exptla  12.565 
 

10.93 
 

     9.477 
 

1301.5 
 SAPTb(298) 12.70     (1.1%) 10.92   (0.1%) 9.50   (0.3%) 1317.7   (1.2%) 

This Work 12.69   (1.0%) 11.06   (1.2%) 9.64   (1.8%) 1353.3   (4.0%) 
 a

Davidson et al Ref. (27)   
b
Podesczwa, Rice, Szalewicz Ref. (44)   

3.1.3  Thermalized α and γRDX Radial Distribution Function 

 It is also important to accurately predict the complex internal structure of the α 

and γRDX unit cell.  The internal structure includes the space group and its symmetry 

operations leading to the position and orientation of molecules relative to one another.  

The internal structure of the crystal undergoes changes during first and second order 

phase transitions.  The radial distribution function is useful in capturing structural 

changes that occur during second order or solid-solid phase transitions.  The radial 

distribution function compares the molecules’ relative position to one another and 

provides information on the short range order.    The radial distribution function does not 

provide information on the orientation or conformation of the molecules. 

 The position of molecules relative to one another provides information on their 

packing.  Figure 3.5a shows the total average number of molecule neighbors for an 

average molecule in the αRDX crystal, meaning that the total nearest neighbors for every 

molecule in the simulation are counted and then normalized by the number of molecules 

in the simulation.  Choi and Prince’s (25) experimental data is represented by the blue 

line and increases in steps because the experimental molecule position data is static.  The 
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red line represents the equilibrated simulation data where the average is taken over 

several timesteps causing thermal vibrations about the molecule equilibrium position to 

be included in the average.  The experimental and simulation results show similar trends.  

The green line is the number of molecules predicted from the αRDX bulk density, equal 

to 0.0049 molecules per Å3
.  The simulation and experimental data converge to the bulk 

density for large distances.  

 

Figure 3.5:  (a) Molecule neighbors versus distance and (b) Number of molecules at 

specified distances of αRDX (25). 

 

 Figure 3.5b shows the distribution of molecules about one another found by 

counting the number of molecules falling into discrete shells of thickness 0.05Å and 

increasing radius given by the x-axis.  Again, these distributions are found for all 

molecules in the simulation and then normalized by the total number of molecules.  The 

data given in Figure 3.5a is the integral of the data in Figure 3.5b.  Plateau regions in 

Figure 3.5a are regions within the crystal not containing molecules, shown by shells 

containing zero neighbors in Figure 3.5b.  The first set of nearest neighbor molecules are 

the 14 molecules located within 8Å of the molecule of interest (38).  The distance to the 

nearest neighbor molecules was used to set the nonbonded dispersion/repulsion 

interaction cut-off to 10Å in the simulations where the non-bonded interactions outside 
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the cut-off are modeled by the tail correction.  The tail correction assumes an isotropic 

uniform atomic density outside the cut-off.  This is well suited to distances where the 

molecule distribution reaches the average density.  Near 10Å the experimental (blue line) 

and simulation (red line) go to zero meaning this is a region not containing any 

molecules.  The experimental data in Figure 3.5b is used to find the number of molecules 

at discrete distances, with the closest molecule neighbor located at 4.2Å.  Another 

grouping of 10 molecules occurs between 6.4 to 7.2Å and a separate grouping of three 

more molecules occurs at 8Å.  These 14 molecules located within 0 to 8Å and make up 

the group of first nearest neighbor molecules (38).  In Figure 3.5b, the peaks in the 

simulation data (red line) are the equilibrium positions of the molecules and thermal 

oscillations cause them to vibrate about these positions, broadening the peak.  The 

experimental and simulation data in Figure 3.5b show similar peaks or equilibrium 

positions for the group of 11 molecules at a radius of 7.2Å.  The next five molecules with 

a separation of 7.2 to 10Å from one another begin to show differences in peak location 

but the total number of molecules are equal in Figure 3.5a at 10Å and this is also a 

location in Figure 3.5b where neither experiments nor simulations find molecules in the 

crystal.  The green line in Figure 3.5b is the number of molecules per shell with thickness 

0.05Å at the specified radius predicted by the bulk molecule density 0.0049 moleculesÅ-3
.  

The nearest neighbors predicted by the density increases at the same rate as the shell 

volume that is proportional to the distance squared.   

 The experimental (blue line) and simulation (red line) molecule distribution data 

for αRDX from Figure 3.5b are normalized by the bulk density (green line) to give the 

radial distribution function, RDF, shown in Figure 3.6a for αRDX.  The radial 
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distribution function, RDF, is a pair correlation function that describes the time averaged 

packing of particles in the system.  The RDF in Figure 3.6 is normalized by the density so 

that the simulated and experimental RDF converges to unity for large distances.  The 

largest error between the simulation and experimental RDF occurs between 8-10 Å where 

the experimental data shows two distinct peaks and the simulation data shows only a 

single peak.  Overall, thermal vibrations cause the simulated distributions to become 

smoothed out when compared to the experimental data.  This combined with the errors 

encountered when predicting the lattice constants presented Table 3.1 results in several 

peaks experimentally observed peaks being smeared out into a single peak.  The single 

peak in the simulation data will be shown later to be a result of the simulation results over 

predicting the a-lattice length.   

 The RDF for the high pressure γRDX phase is shown in Figure 3.6b at P=5.2GPa 

and T=300K.  The difference in the location of RDF peaks provides information on the 

difference in molecular packing of the α and γRDX phases.  The larger compression 

isotropically shifts all of the RDF peaks in γRDX toward the origin and is not indicative 

of the phase transition.  It will be shown later through incremental pressure changes of 

the α and γRDX crystal structures that the abrupt shift in the location of the first RDF 

peak is caused by the phase transition.  Overall, simulations of the γRDX crystal are more 

accurate in the location of RDF peaks and lattice constants.  However, this could be a 

result of the higher pressure γRDX simulations locking the molecules into their initial 

experimental structure where their thermal motion is more constrained.   
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Figure 3.6:  Normalized molecule center of mass radial distribution function for 

experiment (25) (27) (dashed lines) and simulation (solid lines) for (a) αRDX at P=0GPa, 

T=300K and (b) γRDX at P=5.2GPa, T=300K. Gray line is bulk molecular density. 

3.1.4  Thermalized α and γRDX Conformation 

 The conformation of the RDX molecule is mainly controlled by the 

intramolecular bonds.  For a nonreactive potential like the SB potential in equation (2.1), 

the intramolecular bonds connecting the atoms within a molecule do not change.  The 

atom-atom bonds are harmonic and stiff when compared to the angle and dihedral 

potentials and do not significantly deviate from their equilibrium position.  The angle 

bonds are also harmonic but have multiple equilibrium positions due to their 180° 
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rotational invariance.  The dihedral bonds are made up of a cosine series and contain 

multiple equilibrium positions with relatively small energy barriers.  The SB potential 

contains dihedral bonds controlling several important molecule conformations for 

nitramines including the wag angle, , of the nitro groups, shown in Figure 3.7a, and the 

conformations of the amine ring.  The two RDX phases, α and γ, to be studied in this 

work contain noticeably different wag angles.  It is common to characterize RDX based 

on the position of the nitro groups.  Nitro groups in the plane of their respective C-N-C 

bonds are called Equatorial (E) and those at ~30° angle are called Axial (A).  The 

molecules in the αRDX phase, shown in Figure 3.7b contain their three nitro groups in 

the Axial (N5-N8), Axial (N6-N9), Equatorial (N4-N7) or AAE positions, based on the 

wag angle, , from Figure 3.7b.  

 

Figure 3.7:  a) Wag angle, , used to describe nitro group orientation.  b) N4-N7 wag 

angle shown on αRDX AAE right handed molecule. 

 

In the SB potential given by equation (2.1), the wag angle is controlled by the N-

N-C angle bond, the O-N-N-C dihedral bond and the C-N-C…*N improper dihedral bond.  

During thermalization, the wag angles will vibrate about their equilibrium position.  After 

the system is equilibrated for 52.5ps, instantaneous atomic position data for the entire 
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2×3×3 system is recorded and used to compute the three instantaneous wag angles for 

each of the 144 molecules in the system.  The wag angles are computed at 7.5ps intervals 

up to 75ps for a total of 30 trajectories.  The three wag angles at each instant are 

accumulated separately for each of the eight molecules of the unit cell and then 

accumulated over all timesteps.  This process provides an average of thermalized αRDX 

configurations used to find the wag angle probability distribution.   

 The wag angle data is plotted as a probability distribution in Figure 3.8 where the 

y-axis is the probability in arbitrary units.  Each colored line in Figure 3.8a-c represents 

one of the eight unit cell molecules shown without their hydrogen or oxygen atoms in (d).  

The color and number for each molecule do not change from plot to plot and the colors 

and molecule numbering in Figure 3.8d corresponds to the legend in (a).    The peak wag 

angle value is the equilibrium position and the variance is caused by the thermal 

vibration.  The eight molecules show the same distribution for the three wag angles in 

Figure 3.8 and the SB potential is able to hold the molecules in the AAE conformation. 
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Figure 3.8:  Thermalized αRDX wag angle probabilities (y-axis arbitrary units) for each 

molecule in the unit cell: (a) Axial N5-N8, (b) Equatorial N4-N7 and (c) Axial N6-N9.  

The molecule numbering legend in (a) applies to (b) and (c) as well.  (d) αRDX unit cell 

with molecules numbered and colored according to legend in (a). 

 

The wag angle distributions for each molecule in Figure 3.8 are accumulated into 

right (molecules 1 to 4) and left handed (molecules 5 to 8) distributions and plotted in 

Figure 3.9a for all three wag angles.  Figure 3.9b shows molecule 2 (right handed – red 

amine ring) and molecule 6 (left handed – blue amine ring) from Figure 3.8d with the N-

N bond colored to match the wag angle probability plot in Figure 3.9a. The right and left 

handed molecules have the same wag angle distributions.  The peak values from the 
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simulation data shown in Figure 3.9a are given in Table 3.3 along with the experimental 

data from Choi and Prince (25).  The black circle in the center is the inversion symbol 

from the Pbca symmetry operators shown in Figure 2.3.  An inversion operation causes 

(x,y,z) = (-x,-y,-z) resulting in the pink and green N-N bonds being equal and is verified 

by their probability distribution in the plot.   

 

Figure 3.9:  (a) Thermalized αRDX wag angle probabilities (y-axis arbitrary units) for 

right and left handed molecules.  (b) Right handed molecule 2 (red) and left handed 

molecule 6 (blue) from unit cell showing Pbca inversion symmetry operators and colored 

N-N bonds corresponding to legend in (a).   
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Table 3.3:  Locations of the peaks of the wag angle distributions from this work (shown 

in Figure 3.9 and Figure 3.11 and from the experimental structure for αRDX AAE 

molecule (25) and γRDX AAE and AAI molecules (27). 

 
a
Choi and Prince Ref. (25), 

b
Davidson et al. Ref. (27) 

 

The RDF and wag angle distributions show the overall structure of αRDX 

obtained from experiment being maintained using the SB potential under ambient 

conditions.  Other measures should also be accounted for to conduct a full structural 

analysis.  For the molecular degrees of freedom, the torsional orientation of the O-N-O 

groups about the N-N bond and the conformation of the amine ring should be considered.  

The Euler angles of each molecule should also be used to determine the changes in their 

orientation.  All of these measures could be combined into an order parameter (54).  In 

this work, the dominant features that result at high pressures and in the vicinity of defects 

are characterized by the RDF and wag angle distributions. 

The RDF’s for γ and αRDX are similar because both crystals belong to an 

orthorhombic space group of similar dimensions containing eight molecules.  As 

mentioned in Section 2.1.2 the main structural difference between the γ and αRDX 

phases is in the conformation of the molecules with the γRDX asymmetric unit 

containing two distinct molecule conformations and the αRDX asymmetric unit 

This Work Experimental

α-RDX: AAE

N5-N8 (A) 38° 33°,a

N6-N9 (A) 25° 34°,a

N4-N7 (E) -24° -20°,a

γ-RDX: Type 1 AAI

N5-N8 (A) 34° 35°,b

N6-N9 (A) 38° 36°,b

N4-N7 (I) 16° 10°,b

γ-RDX: Type 2 AAE

N5-N8 (A) 40° 40°,b

N6-N9 (A) 22° 17°,b

N4-N7 (E) -12° -2°,b
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containing a single molecule conformation.  This conformation difference is highlighted 

by the wag angle distributions shown for each of the eight molecules in the γRDX unit 

cell in Figure 3.10a-c with the unit cell shown in (d).  Two distinct wag angle 

distributions are evident in Figure 3.10b and c, with each distribution pertaining to one of 

the two molecule types in the asymmetric unit of the Pca2l space group.  Type 1 

molecules belong to what Davidson et al. (27) refer to as Axial, Axial, Intermediate (AAI) 

because the N4-N7 wag angle takes on a value between axial and equatorial.  Type 2 

molecules maintain a similar conformation to the AAE conformation of αRDX.  Type 1 

molecules include molecules 1 thru 4 from Figure 3.10d and are shown by red hued 

colors.  Type 2 molecules include molecules 5 thru 8 from Figure 3.10d and are shown by 

blue and green hued colors.    
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Figure 3.10:  Thermalized RDX wag angle probabilities (y-axis arbitrary units) for each 

molecule in the unit cell: (a) Axial N5-N8, (b) Equatorial N4-N7 and (c) Axial N6-N9.  

(d) γRDX unit cell with molecules numbered and colored according to legend in (a). 

 

Each molecule type in Figure 3.10 is accumulated into a single distribution and 

shown in Figure 3.11a with pictures of the two molecule types shown in (b).   The N-N 

bonds are colored according to the legend in the distribution plots and the amine ring is 

colored orange for AAI molecules and green for AAE molecules.  The peak values from 

the distributions in Figure 3.11a for the AAI and AAE molecules are listed in Table 3.3 

along with experimental data given by Davidson et al. [REF: Davidson].  The overall 

trends in wag angles between simulation and experimental results for the two molecule 
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conformations are consistent with AAI molecules containing two axial N-N groups at 

~40° and a slightly positive N-N at ~10°.  The AAE molecule was also accurately 

predicted with the largest difference being in the equatorial N4-N7 angle. 

 

Figure 3.11:  a) Thermalized γRDX wag angle probabilities (y-axis arbitrary units) for 

AAI and AAE molecules.  b) AAI molecule and AAE molecule with bonds colored 

according to the distributions in (a). 

 

 The peaks on the wag angle distributions are low energy conformations and the 

wag angles oscillate about these configurations.  As the wag angles deviate from the low 

energy configuration, they increase in energy.  The change in energy as a function of the 

wag angle is determined for a single αRDX AAE molecule removed from the crystal, 

shown in Figure 3.12.   

 Each nitro group in the isolated RDX molecule is rotated by ±60
o
 from δ=0

o
 as 

shown in the Figure 3.12a.  The energy is evaluated at each of these new molecule 

conformations and plotted as a function of the wag angle in Figure 3.12b.  The energy 

plot shown is for rotation of the axial nitro group N5-N8.  The total energy from the SB 

potential in equation (2.1) shown by the solid black line is the sum of the bonded energy 
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components, Uintra, shown by the gray line and nonbonded components, Uinter, shown by 

the dashed line.  The nonbonded component, Uinter, includes the VDW and electrostatic 

nonbonded interactions between atoms in the single molecule.  The nonbonded energy is 

symmetric about its minimum value at δ=0
o
.  The wag angle is rotated in a way that does 

not change the bond distance and Uintra only includes angle, dihedral, and improper 

energy.  The dihedral bond controlling the wag angle is a cosine series that reaches a 

local maximum at δ=0
o
 and has two global minimums at δ≈±45

o
.  The total energy being 

a composite of the two energy terms also reaches a local maximum at δ=0
o
.  The total 

energy also reaches two local minimum values at δ≈±30
o
 due to the local minima of 

Uintra.   At large wag angles the total energy is dominated by Uinter.   

 

Figure 3.12:  Definition of wag angles used to calculate wag angle energy.  (b) Change in 

SB energy for a single molecule as function of the N5-N8 nitro wag angle. 

 

 The multiple minima and local maximum at δ=0
o
 in the total energy profile in 

Figure 3.12 explains the appearance of the two main wag angles in the distributions, 

either axial or equatorial.  All three of the αRDX nitro group energy profiles are shown 

by the gray lines in Figure 3.13.  The two γRDX conformers are also shown in Figure 
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3.13 where the black line is AAE and the dashed line is AAI.  The two axial αRDX nitro 

groups in gray, N5-N8 in (b) and N6-N9 in (c), are nearly identical with two local 

minima.  The equatorial nitro group in Figure 3.13a for all three RDX conformations 

shows a single minimum near -30
o
.  The γRDX N6-N9 profiles shown by the black and 

dashed lines also show a global minimum at -30
o
.  This indicates the γRDX molecule 

conformation is stabilized by the nonbonded molecule-molecule interactions of the 

crystal.  It is also evident that the AAE conformation of αRDX is one of several stable 

molecule conformations outside the crystal.  Elastic band calculations by Mathew et al 

(72) show the energy of these different conformations to be very close.  They also show 

the AEE conformation to be the lowest energy single molecule conformation closely 

followed by the EEE.    

 

Figure 3.13:  Wag angles for all single molecules in αRDX and AAE γRDX and AAI 

γRDX 

 

 In Figure 3.14, the same procedure was used to find the energy as a function of 

the wag angle for a single RDX molecule inside the αRDX crystal.  In this case, each of 

the three wag angles of a single molecule were individually rotated inside the crystal and 
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the energy calculated.  In all three sets of energy versus wag angle data, the total energy 

is almost identical to the nonbonded energy component of the energy.  However, the 

bonded energy plays an important role in determining the overall conformation by 

controlling to which side of δ=0
o
 the minimum energy configuration takes.  The axial 

conformation occurs for δ>0
o
 and equatorial for δ<0

o
.  The nonbonded energy terms 

control the distribution of wag angles and their asymmetry.  

 

Figure 3.14:  SB energy components (U, Uinter, and Uintra) from equation (2.1) as a 

function of nitro group wag angle for αRDX crystal.  

 

 The αRDX wag angle distributions are plotted versus the wag angle energy in 

Figure 3.15.  The shape of the wag angle distribution is controlled by the shape of the 

wag angle energy profile.  The energy profiles show the same asymmetry as the 

distributions.  N4-N7 energy profile in (a) shows a flat minimum with the energy 

increasing more rapidly for decreasing δ.  This leads to a wag distribution with a sharp 

drop off for high energy wag angles with δ<-30
o
.  For δ>-30

o
 the wag distribution trails 

off more gradually.  The shallow minimum results in a wide wag angle distribution.  This 

is opposed to the N6-N9 wag energy with a narrow minimum leading to a more tightly 

grouped wag distribution.  The similarity between the wag distributions and the wag 
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energy also occurs in the two γRDX conformations in Figure 3.16.  The wag energy for 

the γRDX N4-N7 ―intermediate‖ wag angle shown in Figure 3.16d is shown to move to 

the δ>0
o
 side of the bonded energy profile.   

 

Figure 3.15:  αRDX crystal total energy as a function of nitro group wag angle overlaid 

on the wag angle distributions.  

 

Figure 3.16:  γRDX crystal total energy as a function of nitro group wag angle overlaid 

on the wag angle distributions.  The AAE molecules are shown in the top row and the AAI 

molecules are shown on the bottom row. 
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 The overall crystal structure is dependent on the conformation of each RDX 

molecule.  The various RDX conformations observed in the α and γRDX crystals differ in 

the orientation of their wag angles.  In this section we showed the wag angles to be 

accurately predicted by the SB potential.  We also showed the effect of the bonded and 

nonbonded interactions on the resulting wag angle distributions.  The bonded energy 

terms were found to control the conformation while the nonbonded terms controlled the 

distribution.  The molecule neighbors in the crystal structures were also shown to be 

necessary for stabilizing the γRDX conformations. 

3.2 Pressure, Temperature, and Volume Properties 

 The validity of applying the SB potential (17) to RDX is tested by its ability to 

predict experimentally measureable thermodynamic properties.  Thermodynamic 

properties relate the thermodynamic states of the system such as the coefficient of 

thermal expansion relating the temperature and volume.  The thermodynamic material 

properties are related to the second derivative of the thermodynamic potential of the 

system’s state.  The thermodynamic material properties are used to develop an equation 

of state for a constitutive equation that gives mathematical relationships between state 

variables of a system like pressure, temperature, volume and energy.   

 The SB potential was shown in Section 3.1 to reproduce the crystal structure and 

molecule conformations of the α and γRDX crystals.  In this section the effect of 

pressure, volume and temperature on the α and γRDX structure will be presented.  The 

thermodynamic relationships between the various volume, pressure, temperature states 

will also be given.  In Section 3.2.1 the effect of pressure on the α and γRDX crystals and 

the change between phases is presented.  These simulations are used to determine the PV 
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relationship and bulk modulus.  Section 3.2.2 presents the effect of volumetric 

deformation on the αRDX crystals through uniaxial deformation and the resulting phase 

changes.  These simulations are also used to determine the orthotropic stress/strain 

relationships. In Section 3.3.3 the effect of temperature on the αRDX crystal at constant 

pressure is used to determine the orthotropic coefficients of thermal expansion.  In 

Section 3.3.4, the temperature and pressure are varied to determine the PVT state of a 

static shock wave by using the Hugoniot equations.   

3.2.1  Pressure Dependent Properties 

 In this section the effect of pressure on the crystal lattice and structure will be 

studied through a series of simulations at incrementally increasing and decreasing 

pressures.  Two separate sets of simulations are presented.  The first set starts in the 

αRDX crystal structure at T=300K and P=0GPa and the pressure is increased between 

equilibrations.  The second set starts in the γRDX crystal structure at T=300K and 

P=5.2GPa and the pressure is decreased between equilibrations.  The simulation cells 

contain 2×3×3 unit cells and are equilibrated for 75ps at each pressure increment.  The 

equations of motion are integrated using a Nosé thermostat coupled to a Hoover barostat 

as implemented in DLPOLY 2.20 (71) and conserve the Gibbs free energy.  The 

thermostat maintains a constant average temperature throughout the simulation and is 

kept constant between pressure increments.  The Hoover barostat keeps the average 

pressure constant for each simulation and is incremented between simulations.  The 

barostat used in these simulations is a constant stress barostat where the trace of the stress 

tensor is controlled by the pressure.  This allows each lattice vector to be individually 

varied in response to the stress state and is important for orthorhombic crystals having 
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orthotropic properties.  The change in volume is described by the volumetric Lagrange 

strain (73) as 

   
 

 
  

 

  
 

 
  

    (3.1) 

where Vo is the reference volume of the αRDX crystal at the reference pressure Po=0 and 

V is volume at the current pressure, P.  Figure 3.17 presentes Ev as a function of pressure 

for the simulations (circle data points) and from experiment (square data points) (34) 

(27).  αRDX data is shown in green and γRDX in red.  

 

Figure 3.17:  Change in volumetric Lagrange strain, Ev, as a function of pressure for the 

α and γRDX crystal.  Data points represent simulation and experimental (34) (27) results.  

Solid and dashed lines are Birch Murnaghan fits to the αRDX data.  

 

 The thermodynamic relationship between pressure and volume at constant 

temperature, T, is the bulk modulus, B, given by 
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where V is volume and P is the pressure.  The PV data given in Figure 3.17 is nonlinear at 

large pressures and the bulk modulus is not constant.  The bulk modulus can be 

determined by numerically differentiating the PV data given in Figure 3.17.  Another 

method is to assume a semi-empirical relationship between PV based on thermodynamics 

and experimental data.  The thermodynamic relationship between pressure, volume and 

the Helmholtz free energy or strain energy, F, is given by 

P=dF/dV (3.3) 

In the Birch Murnaghan equations of state (BMEOS) (74) the strain energy is expanded 

by a Taylor series in terms of a strain measure.  The BMEOS is normally determined by 

geologists using the Eulerian volumetric strain to model the large compressions in the 

earth crust.  In that work the reference state at Po=0 is not known.  In this work the 

Lagrangian volumetric strain is used because the strain is measured from the known 

reference state at Po=0 to the compressed state at P.  The third order BMEOS is given by 

expanding the strain energy, F, out to the third order giving  

F=a+b(-Ev)+c(-Ev)
2
+d(-Ev)

3
+higher order terms (3.4) 

where the constants a, b, and c are determined from boundary conditions F=0 at P=0, 

Ev=0 at P=0, and B=Bo and V=Vo at Ev=0.  Then using the chain rule, the strain energy 

can be differentiated in terms of Ev by  

  
  

      

      

  
 (3.5) 

Solving equation (3.5) with the boundary conditions for the constants gives the 3
rd

 order 

BMEOS as 

     
   

 
  

 

  
 

  
  

  
 

  
 

 
  

    
 

 
       

 

  
 

 
  

   (3.6) 
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where Vo is the volume at zero pressure, Bo and   
  are the bulk modulus and its 

derivative at zero pressure (73).  The variables Bo and   
  are found by fitting the data 

points in Figure 3.17 to equation (3.6).  This was done using MATLAB’s fminsearch 

function to minimize the square of the error between the known pressure and volume 

(data points) and the pressure computed for that volume using equation (3.6).  Data for 

Vo, Bo, and   
  are given in Table 3.5 for the experimental (34) (27) and simulation data.  

For γRDX, Vo is also an unknown and must be solved for.  For the simulation data the 

reference volume for γRDX was set to Vo=1600 Å3
 because fminsearch did not provide a 

physically realistic value for it.   

 The 3
rd

 order BMEOS is normally determined from the Eulerian volumetric strain 

and gives a different PV function than that given by equation (3.6).  This may cause the 

BMEOS data in Table 3.5 to be slightly different than other reported values.  The 

Lagrange BMEOS was used here because the Lagrangian strain is the main measure of 

deformation used throughout this work. 
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Table 3.4:  3
rd

 order BMEOS parameters for α and γRDX for experimental (34) (27) and 

simulation data fit to equation (3.6). 

-RDX 3rd order BMEOS parameters 
   P range (Gpa) Bo(GPa) Bo'  Vo(Å3) 

This work 0-5.2 10.4  19.8  1634  

Olingera  0-3.95 10.0 17.3 1641 

Davidsonb  -- 9.8 11.4 1614 

-RDX 3rd order BMEOS parameters 
   P range (Gpa) Bo(GPa) Bo' Vo(Å3)  

This work 2.5-9 10.3  26.8  1600*  

Olingera  4.76-9.19  8.8 29.9  1570  

Davidsonb  -- 17.6 6.8 1557  
a
Computed from Olinger et al. data Ref. (34), 

b
Davidson et al. Ref. (27), *Reference volume preset to 

Vo=1600 Å
3
 

 The experimental data in Figure 3.17 shows a large volume change for the α to 

γRDX phase transition at P≈3.9GPa.  The difference between the two phases in the 

simulation data is much smaller, shown by the circles.  The dark red circles started in the 

γRDX structure and the pressure was incrementally lowered from 5.2GPa.  At ~2.1GPa 

the γRDX crystal converted to αRDX, shown by the green circles.  On the other hand, 

increasing the pressure of the αRDX crystal from P=0 did not result in the γRDX crystal 

structure, even up to P=10GPa.  Increasing the temperature to T=350K also did not aid in 

the α to γRDX transition.   

 The lattice constants as a function of pressure are shown in Figure 3.18 for 

experimental and simulation data.  The simulation data is shown by the circles and black 

lines and the experimental data by the triangles and purple lines.  The data points near the 

experimental phase transition at P≈3.9GPa, marked by the vertical gray line, are shown in 

red.  These data points are presented in Table 3.6.  Also given in Table 3.6 is the percent 

change between the α and γRDX lattice lengths at ~4GPa.  The simulations result in 

smaller changes in lattice lengths, with the largest difference for the c-lattice.   
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Figure 3.18:  Lattice constants versus pressure.  Triangles represent experimental values 

where filled triangles are αRDX (34) and hollow for γRDX (27).  Small filled circles and 

solid lines show αRDX simulations upon pressurization.  Large hollow circles and dashed 

lines show γRDX simulations upon depressurization.  The large red data points at the 

experimental αγRDX transition pressure are given in Table 3.5. 
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Table 3.5:  Change in lattice constants between α and γRDX phase from this work and 

experiment near the experimental phase transition pressure (~3.9GPa) shown by gray line 

in Figure 3.18. 

 

α-RDX γ-RDX α-γ Change 

This Work: P=4GPa 

a1 (Å) 12.80 12.80  0.00   (0.00%) 

b2 (Å) 10.99 11.12 -0.13   (-1.17%) 

c3 (Å) 9.94 9.77  0.17   (1.74%) 

V (Å
3
) 1398 1391  7   (0.50%) 

Experiment: P=3.9-3.95GPa 

a1 (Å) 12.67
a 
 12.77

b 
 -0.10   (-0.78%) 

b2 (Å) 10.93
a 
 11.02

b 
 -0.09   (-0.82%) 

c3 (Å) 10.03
a 
 9.62

b 
  0.41   (4.26%) 

V (Å
3
) 1388

a 
 1355

b 
  33   (2.44%) 

a
Choi and Prince Ref. (25), 

b
Davidson et al. Ref. (27) 

 The crystal structure and molecule conformation also provide details on the 

evolution of the crystal structure with pressure.  The RDF and wag angle distributions 

presented in Section 3.1 are shown in Figure 3.19 for the αRDX pressurization.  The RDF 

calculated from the molecule COMs are shown in Figure 3.19a.  The blue (αRDX) and 

red (γRDX) RDFs are the simulation (solid line) and experimental data (dashed line) 

from Figure 3.6.  The black RDFs are from the incrementally increasing pressure 

simulations.  The peak locations slightly shift toward zero as the lattice is compressed 

and molecules become more tightly packed.  This also causes some of the peaks to 

become more distinguishable as the thermal motion of the molecules becomes more 

tightly constrained.  However, these changes in peak locations do not result in the peak 

locations shown in red for γRDX.  

 The αRDX unit cell is shown in Figure 3.19 with the O and H atoms removed for 

clarity.  The red molecules are those that convert to AAI in γRDX and the blue molecules 

remain AAE in γRDX.  Each wag angle distribution is also shown as a function of 

pressure in Figure 3.19c-d.  The wag angles are grouped and colored by the molecule 
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colors in the unit cell.  Both groups of molecules have an almost identical distribution and 

only the blue distributions are visible.  Increasing pressure has almost no effect on the 

molecule conformation and the wag angles remain nearly constant.  Even the thermal 

motion of the wag angles described by the width of the distribution is not affected by 

increasing pressure.   

 

Figure 3.19:  (a) Molecular center of mass RDF for compression of αRDX shown by 

black lines over a range of pressures compared to γRDX (red) and αRDX (blue).  (b) 

Wireframe depiction of the symmetry equivalent molecules in the unit cell of αRDX from 

simulation at P=0GPa; hydrogen and oxygen atoms are not shown for clarity.  (c)-(e) 

Distribution of nitro wag angles as a function of pressure with line color corresponding to 

red and blue molecules in (b). 

 

a

b

a) b)

c)  N4-N7 d)  N5-N8 e)  N6-N9

0 2 4 6 8 10 12

P=5.2

P=5.0
P=4.5
P=4.0
P=3.5
P=3.0
P=2.5
P=2.0
P=1.5
P=1.0

P=0.5
P=0.0

 : P=5.2GPa

: P=0.0 GPa

-60-45-30-15 0 15 30 45 -60 -45 -30 -15 0 15 30 45-60-45-30-15 0 15 30 45

Wag Angle (Degrees)

Radius (Å)

P=5.2

P=5.0
P=4.5
P=4.0
P=3.5
P=3.0
P=2.5
P=2.0
P=1.5
P=1.0

P=0.5
P=0.0



 

 71 

 

  The same structural data is shown in Figure 3.20 for the γRDX depressurzation.  

The simulation data starts at the top where P=5.2GPa and moves down in pressure.  In 

the RDF data in Figure 3.20a there is a shift in the peak locations between P=2.5GPa and 

2GPa indicating the phase transition.  The first peak represents the molecule pairs closest 

to one another.  In the γRDX structure, Davidson et al. (27) showed the AAI and AAE 

molecules form interlocking pairs.  In the αRDX structure these pairs no longer have the 

proper conformation to be interlocked and slightly separate, indicated by the shift in the 

first peak.  The final depressurized RDF matches the RDF of equilibrated αRDX shown 

in blue.   

 The unit cell for γRDX is shown in Figure 3.20b where the red molecules are in 

the AAI conformation and the blue in the AAE.  The blue unit cell is shown overlaid on 

the αRDX unit cell shown in gray.  The red AAI molecules are shown to undergo a slight 

rotation while the blue AAE molecules do not move.   The wag angle distributions are 

shown in Figure 3.20c-e and the two distinct conformations of γRDX are apparent at 

P=5.2GPa.  The wag angles distributions remain constant down to P=2GPa where they 

collapse to a single peak distribution.  The single peak distribution is also that of αRDX.  

The RDF and wag angle data confirm that γRDX transitions into the αRDX crystal 

structure at decreasing the pressure.   
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Figure 3.20:  (a) Molecular center of mass RDF for decompression of γRDX shown by 

black lines over a range of pressures compared to γRDX (red) and αRDX (blue).  (b) 

Wireframe depiction of the symmetry equivalent molecules in the unit cell of γRDX from 

simulation at P=5.2GPa; hydrogen and oxygen atoms are not shown for clarity.  This 

depiction is superimposed on a transparent image of the αRDX unit cell at P=0 [see 

Figure 3.19(b)].  (c)-(e) Distribution of nitro wag angles as a function of pressure with 

line color corresponding to red and blue molecules in (b). 
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preferred phase at high pressures then the pressure induced α to γRDX phase transition 

may be impeded by some other mechanism.   

 The change in Gibbs energy relative to the ambient state, ΔUGibbs=UGibbs(P)-

UGibbs(P=0), is shown versus the volumetric Lagrange strain in Figure 3.21 for the αRDX 

pressurization (filled circles) and γRDX depressurization (open diamonds).  The energy 

of the αRDX crystal is higher in energy at increasing compression and the γRDX is the 

lower energy configuration.  The inset plot in Figure 3.21 shows the data points near the 

phase transition labeled by their pressure values.  The difference in energy as a function 

of strain between α and γRDX is ~5kcal/mol.  This small difference does not provide a 

sufficient driving force for αRDX to convert to γRDX at high pressures.  At P≤2.1GPa, 

the γRDX depressurization data (diamonds) move to the solid line of the αRDX data 

indicating the phase change.  

 

Figure 3.21:  Change in Gibbs energy, ΔUGibbs=UGibbs(P)-UGibbs(P=0) versus mean strain 

relative to the αRDX configuration at P=0.  Inset shows the region near the transition 

with pressure values labeled in GPa units. 
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 The α to γRDX transition involves changes in the molecular conformation as well 

as abrupt lattice changes.  To clarify the impact of these conformational changes, it is 

helpful to detail the variation in each component of the potential energy described by the 

SB potential given in equation (2.1) through the transition as shown in Figure 3.22.  The 

data shown in Figure 3.22 is from the decompression of the γRDX crystal, which was 

shown to transition to αRDX at P=2.1GPa.  Compression of αRDX leads to increases in 

the repulsive component of the van der Waals energy as the molecules are pushed closer 

together.  There is a slight drop in VDW energy at the transition and it continues to 

increase for compression of γRDX.  The coulomb energy contains both attractive and 

repulsive electrostatic interactions between nearest neighbor atoms and compression does 

not necessarily result in an increase in this nonbonded energy component.  The coulomb 

energy of αRDX slightly decreases with compression and then near the α to γ transition 

its slope goes to zero.  The transition results in an increase in coulomb energy as it 

continues to increase with compression of the γRDX crystal.   

 The conformation of the RDX molecule is mainly controlled by the bonded 

dihedral and angle energies.  These were shown in Section 3.1 to control the wag angle 

distributions of the α and γRDX crystals.  The angle and dihedral energy counteract one 

another in αRDX where they are almost equal in magnitude but opposite in sign.   This 

indicates the angle and dihedral components are working against one another in the 

molecule and as the dihedral energy is raised the angle energy is relaxed.  At the 

transition, both energies drop to nearly zero and remain near zero for increasing 

compression of the γRDX crystal.  This indicates that the molecule conformation of 
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γRDX is not significantly affected by increasing compression.  In this case, the RDX 

molecules respond almost as rigid bodies to increasing pressure.   

 

Figure 3.22:   Change in energy components of the SB potential energy given in equation 

(2.1), relative to their respective values of αRDX at P=0 verses volumetric strain, EV.  

The van der Waals term is shown on a different scale. 

 

 These results indicate the following.  Firstly, no γRDX structure can be found 

under equilibration at pressures below a critical value (P=2.1 GPa), which indicates that 

the αRDX phase is indeed the ambient state polymorph using the SB potential.  Secondly, 

the transition is not observable with increasing hydrostatic pressure of pristine αRDX.  

Such idealized simulations may preclude the transition to the γRDX phase at higher 

hydrostatic pressures using the SB potential.  This is particularly evident in the fact that 

uniform depressurization of the γ-phase indeed yields the αRDX phase.  Finally, the 

γRDX phase is the energetically favorable phase above P=2.1GPa.   

 Basic equilibrium properties were computed using the NST ensemble.  The 

pressure-dependent lattice constants and volume for the α and γRDX crystals were found 
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to be in agreement with available experimental data (34) (27) as shown in Figure 3.17 

and Figure 3.18.  The α and γRDX PV data for simulation (circles) and experiment 

(triangles) shown in Figure 3.17 were fit to the 3rd Order Birch-Murnaghan equation of 

state (BMEOS) (74) (73) by least squares fitting of the bulk modulus and its derivative at 

zero pressure and were given in Table 3.4.  

3.2.2  Uniaxial Strain Properteis  

 The elastic response of the αRDX crystal is shown to be sensitive to the direction 

of loading, resulting in orthotropic elastic constants (31).  The orthotropic elastic 

response is related to the orthorhombic αRDX crystal structure.  The material response to 

large deformation leads to molecular and lattice distortions that are also dependent on the 

crystal axis being loaded (56).  These elastic and large deformation responses will be 

studied in this section through simulations of uniaxially deformed αRDX crystals.  By 

applying varying levels of uniaxial deformation – a non-hydrostatic deformation and state 

of stress – measurements of the anisotropy and its connection to underlying crystal 

structure can be determined.   

 The deformation gradient, F, is a second order tensor that provides a mapping of 

vectors between a reference and deformed configuration as shown in Figure 3.23 (75).  

All of the vectors in the reference configuration, ao, bo, co, can be mapped to the final 

configuration by F using the dot product giving 

a=F·ao 

b=F·bo 

c=F·co 

(3.7) 

If the vectors given by a, b, c are not parallel to one another (their cross products are 

nonzero) they can be used to determine F by rearranging equation (3.7) to give 
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where the vectors a, b, and c form the columns of the 3×3 matrix [h].   Once F is 

determined the Lagrange strain, E, is given as 

  
 

 
        

 

 
     

             
      (3.9) 

where I is the identity.  In this work the vectors a, b, and c correspond to the lattice 

vectors with Cartesian coordinates, ei, shown in Figure 3.23.  The lattice vectors will 

never be parallel and can always be used to determine F and the Lagrange strain, E, 

between two configurations.   

 

Figure 3.23:  Mapping between initial (ao, bo, co) and final (a, b, c) state using the 

deformation gradient F.  

 

 In this work, strain is imposed on the reference state by defining F and using it to 

map the atomic coordinates at [ho] to [h] using equation (3.7).  The atoms are mapped by 

the center of mass location of their RDX molecule.  This strains the crystal without 

distorting the molecule.  The Lagrange strain is symmetric and there are only 6 unique 

strain components.  Each of the six unique strains, Eij, are individually incremented up to 
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1% strain to determine the elastic constants.  Each strain increment was equilibrated for 

75ps.  For these small strains the stress/strain response of the material is linear and the 

elastic constants for an orthotropic material in Voigt form is given by 

      

 
 
 

 
 
   

   

   
   

   

    
 
 

 
 

 

 
 
 
 
 
 
   

   

   

 
 
 

   

   

   

 
 
 

   

   

   

 
 
 

 
 
 

   

 
 

 
 
 
 

   

 

 
 
 
 
 

    
 
 
 
 
 

 
 
 

 
 

   

   

   

    

    

     
 
 

 
 

 
(3.10) 

Voigt form uses major and minor symmetry of the stress and strain tensors to write the 

fourth order tensor, C, as a 6×6 matrix.  Each volumetric strain component, Eii, results in 

a triaxial state of stress, ζjj, due to Poisson’s effect and is used to determine the 

volumetric components of C.  Each shear strain results in a single linearly proportional 

shear stress, giving the shear components of C.  The elastic constants are given in terms 

of common orthotropic engineering constants by inverting C to give the compliance 

tensor as 

      

 
 
 
 
 
 

    

       

       
 
 
 

       

    

       
 
 
 

       

       

    
 
 
 

 
 
 

     
 
 

 
 
 
 

     
 

 
 
 
 
 

      
 
 
 
 
 

 (3.11) 

where Ei is the orthotropic Young’s modulus, ij is the orthotropic Poisson’s ratio and Gij 

is the orthotropic shear modulus.  Values for Cij, Ei, ij, and Gij are given in Table 3.6 and 

Table 3.7.  The uniform strain expression for the bulk modulus, Bv, given by  

   
 

 
    

 

   

 (3.12) 
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and shear modulus, Gv, given by 

   
 

  
              

 

  
              

 

 
              (3.13) 

are also given in Table 3.7. 

Table 3.6:  Orthotropic elastic constants (GPa) 

 

NVT Sewella Haycraftb Schwarzc NVT γRDX (P=5.2GPa) 

C11 25.0 26.9 36.7 25.6 80.3 

C22 23.8 24.1 25.7 21.3 67.0 

C33 23.4 17.7 21.6 19.0 57.9 

C44 3.1 8.4 12.0 5.4 11.9 

C55 5.2 5.3 2.7 4.3 16.3 

C66 7.7 7.6 7.7 7.3 13.4 

C23 8.8 6.3 9.2 6.4 43.9 

C31 7.6 5.7 1.7 5.7 37.0 

C12 10.6 6.3 1.4 8.7 37.8 
a
Sewell et al. Ref. (40), 

b
Haycraft et al. Ref. (33), 

c
Schwarz et al. Ref. (31) 

Table 3.7:  Orthotropic engineering elastic constants (GPa) 

  NVT Sewella Haycraftb Schwarzc 

E1 19.6 24.20 36.52 25.60 

E2 17.8 21.10 21.77 21.30 

E3 19.5 15.40 18.33 19.00 

G23 3.1 8.40 11.99 5.38 

G31 5.2 5.30 2.72 4.27 

G12 7.7 7.60 7.68 7.27 

21 0.34 0.17 0.02 0.34 

12 0.38 0.20 0.03 0.41 

31 0.18 0.16 0.03 0.12 

13 0.18 0.25 0.06 0.16 

32 0.29 0.22 0.36 0.30 

23 0.26 0.30 0.41 0.34 

BV 14.0 11.7 12.1 11.9 

GV 6.2 7.6 9.3 6.4 

  a
Sewell et al. Ref. (40), 

b
Haycraft et al. Ref. (33), 

c
Schwarz et al. Ref. (31) 

 

 The uniaxial strain simulations are continued beyond the linear elastic limit by 

increasing Fii=0.1 to 0.9 in increments of 0.1.  For an orthorhombic material like αRDX, 

the [ho] matrix is diagonal and Faa=a/ao, Fbb=b/bo and Fcc=c/co.   The stress components 
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that develop along each crystal axis (ζa,b,c along a,b,c-axis, respectively) are the principal 

stresses and are shown in Figure 3.24 for each Fii.  The maximum shear stress, shown by 

the dashed line, is equal to the minimum (ζmin) minus the maximum (ζmax) principal 

stresses.  The maximum shear stress is an indicator of plastic material response when its 

magnitude exceeds the known yield strength of the material and acts on a plane oriented 

by 45 degrees to the directions of ζmax and ζmin. 

 The stress/strain curves are nonlinear at these strain levels and the slope becomes 

steeper with increasing uniaxial compression.  There are kinks in the stress/strain curves 

for compression of the b- and c- axes indicating a phase change.  Isotropic compression 

of αRDX in Section 3.2.1 was unable to trigger the transition to γRDX.  However, the 

uniaxial strain simulations produce a triaxial state of stress that is able to trigger the phase 

change.  As will be shown later, compression of the c-axis results in the γRDX phase and 

compression of the b-axis results in a phase similar to that observed by Cawkwell et al. 

(38).  Compression of the a-axis does not result in a phase transition.   
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Figure 3.24:  Stress versus Lagrange strain for uniaxial compression along the (a) a-axis, 

(b) b-axis and (c) c-axis.   Principal stress components are labeled by crystal axis (e.g. ζa 

is the principal stress oriented along the a-axis of α-RDX).  Maximum shear stress (ζmin - 

ζmax) is shown by the dashed line.   

 

 For b-compression the principal stresses change abruptly across the transition 

with ζc (blue line) decreasing and both ζa (green line) and ζb (red line) increasing.  This 

abrupt change leads to the maximum principal stress in αRDX to be oriented along the c-

axis (ζmax = ζc) and after the transition it is oriented along the a-axis (ζmax = ζa).  The 

change in crystal phase leads to a reorientation of ζmax and in effect a reorientation of the 
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plane of maximum shear stress.  Thus new slip systems may become active resulting in 

plastic slip on new planes that block the αRDX slip planes.  Similar effects were 

observed in the simulated plastic response of αRDX under oriented shock loading (38) 

(56). 

 The RDF and wag angle distributions presented for the pressurization of αRDX in 

Figure 3.19 are shown in Figure 3.25 thru Figure 3.27 for the uniaxial deformation 

simulations.  The RDFs are calculated from the molecule COM.  The blue (αRDX) and 

red (γRDX) RDFs from simulation (solid line) and experimental data (dashed line) from 

Figure 3.6 are also shown.  The black RDFs are labeled by the deformation gradient 

increment.  

 Figure 3.25 presents uniaxial compression of the a-lattice by Faa.  The peak 

locations of the RDF will shift as the molecules are uniaxially compressed.  The single 

RDF peak between 8-10Å separates into two peaks with increasing a-compression and 

better matches the two peaks observed in the experimental αRDX data shown by the blue 

dashed lines.  In the simulations of αRDX at P=0GPa presented in Section 3.1, the a-

lattice was over predicted by 2%, the largest of all the lattice directions.  When Faa=0.98 

the a-lattice length is within 0.1% of experiment and two distinct peaks develop in the 

RDF.  A similar shift is seen in the other Fii but at higher compressions.  Overall, the 

shifts in RDF peaks are gradual and there is not a phase transition.  The wag angle 

distributions in Figure 3.25c-e also do not show a large change that would indicate a 

conformation change.  The compressed unit cell is shown in Figure 3.25b and is over laid 

on the αRDX unit cell shown in gray.  The only difference between two structures is a 
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slight compression of the molecules along the a-axis as was observed in simulations by 

Cawkwell et al. (55) and Bedrov et al. (58). 

 

Figure 3.25:  (a) Molecular center of mass RDF for uniaxial compression of the a-axis 

shown by black lines over a range of Faa compared to γRDX at P=5.2GPa (red) and 

αRDX at P=0GPa (blue) shown in Figure 3.6.  (b) Unit cell after compression overlaid on 

gray αRDX unit cell at P=0.  (c)-(e) Nitro wag angle distributions as a function of mean 

strain with line color corresponding to red and blue molecules in (b). 

 

 Figure 3.26 presents uniaxial compression of the b-lattice by Fbb.  The first peak 

in RDF curve shows a large shift at Fbb=0.92 indicating a phase change.  This phase 

change resulted in the kink in the stress/strain data in Figure 3.24b.  The RDF peak shift 

is a result of the two central red and blue molecules in the unit cell shown in Figure 3.26b 

moving closer together.  The N5-N8 wag angle in Figure 3.26d shows a large shift from 
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axial to equatorial.  This phase change results in a conformation change of all molecules 

from AAE to AEE.  This same molecule conformation change has been noted in several 

other simulations of αRDX using the SB potential for tension (72) and compression (38) 

simulations.   

 

Figure 3.26:  (a) RDF for uniaxial compression of the b-axis shown by black lines over a 

range of Fbb compared to γRDX at P=5.2GPa (red) and αRDX at P=0GPa (blue) shown 

in Figure 3.6.  (b) Wireframe depiction of the symmetry equivalent molecules in the 

strained unit cell; hydrogen and oxygen atoms are not shown for clarity.  This depiction is 

superimposed on a gray image of the αRDX unit cell at P=0.  (c)-(e) Nitro wag angle 

distributions as a function of mean strain with line color corresponding to red and blue 

molecules in (b). 

 

 Figure 3.27 shows data for compression along the c-axis.  The wag angle 

distributions in Figure 3.27c-e indicate the α to γRDX phase transition based on the 

development of a bimodal distribution of AAE and AAI molecules at Fcc=0.93.  It is 
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difficult to discern the peaks in the RDF that are associated with the phase transition from 

those associated with the uniaxial strain.  Figure 3.27b shows unit cell where the red AAI 

molecules have rotated, which is consistent with the γRDX structure.  Overall, the visual 

inspection of the unit cell and the wag angle distributions indicate that this is equivalent 

to the experimental γRDX crystal.  Bedrov et al. (58) were also able to trigger a similar 

γRDX transition of αRDX using uniaxial stress. 

 

Figure 3.27:  (a) RDF for uniaxial compression of the c-axis shown by black lines over a 

range of Fcc compared to γRDX at P=5.2GPa (red) and αRDX at P=0GPa (blue) shown 

in Figure 3.6.  (b) Wireframe depiction of the symmetry equivalent molecules in the 

strained unit cell; hydrogen and oxygen atoms are not shown for clarity.  This depiction is 

superimposed on a gray image of the  αRDX unit cell at P=0.  (c)-(e) Nitro Wag angle 

distributions as a function of mean strain with line color corresponding to red and blue 

molecules in (b). 
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Figure 3.28:  Wire frame molecule projections of each unit cell.  a) αRDX at P=0GPa.  

b) γRDX at P=5.2GPa  c) αRDX for Fcc=0.9 resulting in γRDX.  d) αRDX for Fbb=0.9 

resulting phase change.  E) αRDX for Faa=0.9.  Molecules that are red are AAI in γRDX.  

Molecules that remain AAE are indicated in blue.   
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 Figure 3.28 shows the entire collection of strained and pressurized unit cells 

projected onto each crystal axis.  The αRDX unit cell is shown in Figure 3.28a and 

matches the structure shown for Faa=0.9 in Figure 3.28.  The γRDX unit cell is shown in 

Figure 3.28b and matches the structure for Fcc=0.9 in Figure 3.28c.  The transition caused 

by Fbb=0.9 resulted in a phase transition that does not match the other structures 

presented.  The AEE molecule conformation of the Fbb=0.9 structure also does not match 

any other known phase of RDX such as βRDX (26) or εRDX (30), which have molecules 

in the AAA conformation.   

 The change in enthalpy, ΔH, as a function of volumetric Lagrange Strain, EV from 

equation (3.1) is presented in Figure 3.29.  The enthalpy gives a measure of the system 

potenial energy plus the work put into the system due to the deformation.  For a 

crystalline material at room temperature, the Gibb’s energy is approximately equal to the 

enthalpy.  It is difficult to determine the energetically favored crystal structure from ΔH 

since the state of deformation between simulations is very different.  However, the 

simulations resulting in γRDX are the lowest energy structures as function of EV.  The 

potential energy change presented in Figure 3.29a is an order of magnitude smaller than 

the enthalpy rise meaning the largest contribution to increasing enthalpy is PV work.  The 

abrupt change in ΔH for the NST simulation is due to the abrupt volume change shown in 

Figure 3.17 and the abrupt change in ΔH for NVT b-compression is due to an abrupt 

change in stresses, shown in Figure 3.24b.   
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Figure 3.29:  Change in enthalpy for each compression direction and γRDX NST 

depressurization.  Zero mean strain signifies the αRDX reference configuration at 

ambient conditions. 

 

 The effect of uniaxial compression on the molecule conformation and packing are 

reflected by changes in the individual components of the SB potential given by equation 

(2.1).  These energy changes are presented in Figure 3.30.  The largest differences in 

loading direction are shown in the angle and dihedral energies in Figure 3.30c and d.  

Compression of the b-axis deforms the molecules in a way that causes the dihedral and 

angle energy to move in the opposite direction of the other simulations.   Loading the 

molecules this way resulted in a phase change with an AEE molecule conformation 

shown in Figure 3.26.  Compression of the c-axis increases the loading rate of the 

dihedral and angle bonds, which may have helped trigger the γRDX phase change.   
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Figure 3.30:  Change in (a) total potential energy, (b) van der Waals energy, (c) angle 

energy, (d) dihedral energy, and (e) electrostatic energy for each compression direction 

and γRDX NST depressurization.  Zero mean strain signifies the αRDX reference 

configuration at ambient conditions. 

 

 Simulations of solid-solid phase transitions of the energetic molecular crystal 

hexahydro-1,3,5-trinitro-s-triazine (RDX) using the SB potential through a series of 

uniaxial strain thermalizations were shown to depend on crystal orientation.  We showed 

that while uniaxial deformation leads to the α to γRDX transition, hydrostatic 

compression alone does not.  However, hydrostatic depressurization from the γRDX 

phase reveals that the SB potential is capable of supporting the γRDX structure at high 

pressure and yields the γ to αRDX transition near 2.1 GPa.   
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 Imposed uniaxial deformation of αRDX showed that the ability of the crystal to 

undergo phase transitions depends on the crystal axis being loaded.  Compressive 

deformation along the c-axis reproduced the γRDX configuration for ζc=-1.5GPa.  

Compression along the b-axis did not result in the γRDX structure but instead led to a 

structure similar to that identified in simulations by Cawkwell et al. (38) and Ramos et al. 

(56) as a stacking fault.  Deforming along the different crystal axes had markedly 

different effects on the bonded SB potential terms where loading on the b-axis decreased 

the dihedral energy but it was increased for loading along the c-axis.  The transitions 

were also shown to be more sensitive to the crystal orientation as opposed to the 

magnitude of the largest principal or shear stress.   

3.2.3  Temperature Dependent αRDX Properties 

 Materials deform when subject to changes in temperature.  For nitramine crystals 

and other materials held together mainly by van der Waals forces, this deformation is 

caused by the anharmonic shape of the interaction energy between the molecules.  The 

equilibrium spacing of molecules relative to one another for a harmonic material will not 

change as the temperature is raised and the thermal expansion will be zero, as is the case 

for temperatures near absolute zero where the potential energy surface is approximately 

harmonic.  As the temperature or kinetic energy is raised, the molecular spacing reaches 

points on the potential energy curve that are anharmonic and the equilibrium spacing 

between molecules changes.  Van der Waals forces between molecules are anisotropic 

and dependent on the orientation of molecules, resulting in anisotropic thermal 

expansion.  The relation between temperature change and thermal expansion is given in 
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general by the Coefficients of Thermal Expansion (CTE).  Accurately predicting the CTE 

validates the functional forms of the van der Waals potential energy.   

 In this work, the CTE is found by calculating the thermal strains between 

molecular dynamics simulations at different temperatures at the same pressure.  The 

strains, E, are calculated from equation (3.9) where the lattice vectors at the reference 

temperature are [ho] and the deformed lattice vectors at the new temperature are [h].   The 

αRDX lattice is orthorhombic and remains orthorhombic during thermal expansion.  This 

results in E being diagonal and given by 

 
  

  

  

  
 

 

 
 
 

 
       

 
  

    
  

 

  

      
 
   

 
 

 
 

 (3.14) 

 Like the bulk modulus presented in Section 3.2.1, the CTE, , is also a 

thermodynamic material property that relates two thermodynamic states, volume or 

strain, E, and temperature, and is given by (76) 

       
      

  
 
 

 (3.15) 

The relationship between strain and temperature is assumed to be linear for the range 

temperatures in this study and equation (3.15) can be solved by  

                 (3.16) 

The CTE, , are found by dividing the thermal strain by T=T-To.   

 Molecular dynamics simulations are used to obtain the thermalized αRDX 

configurations at each temperature.  The molecular dynamic simulations were done using 

the DL-POLY program (50).  As before, the simulation cell is made up of 2×3×3 αRDX 

unit cells (144 molecules, 3024 atoms) with atomic positions given by Choi and Prince 
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(25).  Parallelepiped periodic boundary conditions are used allowing for nonorthogonal 

lattice vectors of different lengths.  An NST ensemble is used with temperature and 

pressure coupling time constants equal to 1.0 ps, along with the SB flexible molecule 

potential given in equation (2.1) (17).  The real space cut-off for nonbonded potential 

parameters is 10Å and the Ewald sum relative error precision is set to 0.3e-6.  The 

integration timestep is 1.0 fs.   

 After each temperature increment the system is warmed up for 20 ps using 

temperature scaling every 5 steps.  After warm up the simulation is equilibrated for 80 ps 

where the temperature and pressure are controlled by the NST ensembles and all data 

presented below is collected from this portion of the simulation.  All simulations are run 

at P=0GPa with the temperature held constant during the equilibration portion of the 

simulation.  The temperature is incremented from 250 to 350 K. 

 Average lattice vector lengths as a function of simulation temperature are shown 

in Figure 3.31.  This figure shows the lattice length to behave almost linearly with 

temperature for the temperature range of 250K to 350K.  The largest crystal dimension 

along the a-direction increases by 0.04Å while the b- and c-dimensions increase by 

almost 0.08Å.   
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Figure 3.31:  Lattice vector lengths as a function of temperature from MD simulations in 

this work. 

 

 The thermalized average lattice vectors are used in equations (3.14) to find the 

thermal strains.  All thermal strain calculations are made relative to the same reference 

configuration, [ho], at temperature To = 250K.  Orthotropic thermal strains from equation 

(3.14) are shown by the data points in Figure 3.32. 

 

Figure 3.32:  Orthotropic thermal strain data points (circles) and linear fit (line) as a 

function of temperature from To = 250K.   

 

 The thermal strain versus temperature data in Figure 3.32 is linear and the solid 

lines are linear curve fits to the data.  Zero strain occurs at the reference state, To = 250K.  
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The equations for the linear curve fits are given in the boxes in the upper left of Figure 

3.32 where the constant of proportionality provides the CTE.   

 Table 3.8 compares the CTE’s calculated in this work to the CTE’s from 

experiments
 
and simulations conducted by others.  Cady (36) experimentally measured 

temperature dependent CTE’s along the three crystal axes and the values obtained are 

also listed in Table 3.8 for T = 300K.  Podeszwa, Rice and Szalewicz (SAPT) (44) and 

Sorescu, Rice and Thompson (SRT) (39) published lattice lengths for several 

temperatures using their rigid molecule potentials.  The SAPT and SRT lattice lengths for 

the temperature range T = 250 – 325K were used in equation (3.14) to find the thermal 

strains with the reference configuration at To = 250K.  These were then fit to a linear 

equation whose slope is the CTE reported in Table 3.8.   

Table 3.8:  Orthotropic CTE for αRDX.  

Coefficient of Thermal Expansion (1/K)x10-6 

  Exptla This Work SAPTb SRTc 

a 26.8 30.3 (13%) 31.6 (18%) 23.9 (-11%) 

b 87.1 61.6 (-29%) 36.2 (-58%) 49.5 (-43%) 

c 79.7 71.9 (-10%) 41.6 (-48%) 47.8 (-40%) 

V 193.4 163.8 (-15%) 109.4 (-40%) 121.2 (-37%) 
a
Cady Ref. (36), Podesczwa, Rice, Szalewicz Ref. (44), 

c
Sorescu, Rice, Thompson Ref (39) 

3.2.5  Temperature and Pressure Dependent Properties 

 Conservation of mass, momentum and energy across a shock front is described by 

the Hugoniot equation, given by 

       
 

 
             (3.17) 

where e is the Hamiltonian energy (kinetic + potential) per unit mass, P is the pressure, v 

is the volume per unit mass, and subscript o denotes the state of the material downstream 
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of the shock wave.  In this work, the unshocked state is taken from the results of the NST 

simulations for α-RDX at P=0 and T=300K.  Equation (3.17) is used to interpolate 

isobaric NST simulations at three temperatures and a single pressure to find the Hugoniot 

Temperature and Volume, THG and VHG
 
respectively.  This is similar to approach used by 

Erpenbeck (77).  These simulations provide the PVT points given in Table 3.9 that make 

up the Hugoniot curve over the pressure range 0.25GPa-6GPa shown in Figure 3.33 by 

triangles.  Each simulation was started from the P=0, T=300K αRDX structure given by 

Choi and Prince (25). 

 The circle data points correspond to uniaxial Hugoniot simulations of αRDX 

using the SB potential by Bedrov et al. (58).   Instead of linearly interpolating to find the 

Hugoniot points from three separate simulations, Bedrov et al. changed the equations of 

motion to always enforce the Hugoniot condition given by equation (3.17).   Their data 

points show a phase transition for (001) compression (c-axis) corresponding to the α to 

γRDX phase transition.  They also show a high pressure transition for (100) compression 

(a-axis) that corresponds to amorphization of the crystal.  The close up in Figure 3.33b 

shows the experimental data given by Hooks et al. for oriented shock simulations.  The 

simulation data from this work provides a softer PV response resulting from an isotropic 

instead of uniaxial state of stress. 
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Table 3.9:  Hugoniot curve data for αRDX.  

 

 

Figure 3.33:  Hugoniot data from this work shown by triangles compared to result given 

in literature by Bedrov et al. (58) and Hooks et al. (37).   
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4. Interface and Surface Properties 

 αRDX crystals, like most other molecular crystals, show a brittle response to 

tensile loads.  The fracture process in brittle materials was described by Griffith (89) as 

the energy required to extend a crack tip through the creation of two free surfaces.  The 

competing mechanism is deformation through dislocation emission.  The deformation 

mode with the lowest energy barrier will be energetically preferred.  In this section the 

surface energy will be determined as the energy barrier to fracture and in Section 5 this 

will be compared to the energy barrier to dislocation nucleation.   

 Three methods for determining the surface energy and interfacial properties are 

presented in this section.  The simplest is the attachment energy method, which is the 

energy released by attaching a single layer of molecules to the face of a crystal.  The 

calculation procedure for the attachment energy provides a very simple method for 

determining the active interface of a crystal plane containing multiple interfaces.  

Multiple interfaces is a reference to a unit cell containing multiple unique interfaces with 

the same Miller indices (hkl).  The second method calculates the free surface energy from 

a thick slab.  The slab in these simulations is thick enough that the interfaces are isolated 

from one another providing a better estimate of the free surface energy.  The final method 

simulates the decohesion of an interface as it is separated.  This gives the same surface 

energy as the thick slab simulations but also provides information on the processes 

leading up to the creation of a free surface.  All three of these methods are shown to 

predict the same interface for each plane.  All of the simulations in this section use the 

LAMMPS molecular dynamics package (51) with the LAMMPS Smith and Bharadwaj 

(17) potential given in Appendix B.   
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4.1.  Attachment Energy 

 The attachment energy provides a method of estimating the intermolecular 

bonding strength between layers of molecules (24).  The attachment energy was first used 

in the Periodic Bond Chain (PBC) theory as the habit controlling factor in predictions of 

organic crystal growth (78) (79).  In PBC theory the strong intermolecular forces connect 

the molecules together into chains.  Several chains act together as a network to grow the 

crystal face in layers.  The growth rate of the PBC network on a face is proportional to 

the strength of the intermolecular forces per molecule.  The intermolecular bond energies 

can be calculated by comparing the energy per molecule of a perfect crystal (Figure 4.1a) 

to the energy per molecule of a single layer (Figure 4.1b).  The difference in these two 

energies is the energy a system is reduced by when the layer is added to the bulk material.  

This energy difference is equal to twice the attachment energy given by  

2Eatt=Ubulk-Ulayer (4.1) 

where Ubulk is the energy of the minimized bulk crystal per molecule in Figure 4.1a and 

Ulayer is the energy per molecule of the layer in Figure 4.1b (80).  The energy of the layer 

is found using a simulation cell with 3D periodic boundary conditions and a large 

vacuum region (100Å) separating the layers.  The layer uses the atomic configuration of 

the minimized bulk crystal and is not further relaxed in the layer configuration.  The 

growth layer thickness is given by dhkl, the interplanar distance between adjacent planes 

with Miller indices (hkl) that have been corrected by the extinction conditions of the 

space group (81).  For an orthorhombic crystal, the interplanar distance is given by (82) 
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 (4.2) 

where (a,b,c) are the lattice vectors.  In the case of the Pbca space group, the extinction 

conditions of the glide planes reduce the interplanar distance of the (100), (010), and 

(001) planes to half a unit cell (82).  Table 4.1 gives the interplanar spacings for the 

layers studied in this work.  The fastest growing crystal faces will have the highest 

attachment energies.  The weakest bonded layers where cleavage and slip will most likely 

occur have the lowest attachment energies, which will also make these the slowest 

growing habits. 

 

Figure 4.1:  Addition of a layer to the (100) crystal face.  a) Initial system containing 

bulk material with energy Ubulk and layer with energy Ulayer.  b) Attached layer to bulk 

lowers system energy by 2Eatt.    

 

 Figure 4.2a shows the αRDX lattice with spheres representing each molecule’s 

center of mass (COM).  The layers shown in Figure 4.1b and c are given by all of the 

COM’s that fall within one interplanar spacing, d100, of two (100) planes.  As the planes 

are shifted in the [100] direction, two different layers are found, labeled b1 and b2 in 

Figure 4.2b and c.  The b1 layer shown in Figure 4.2b contains the molecules along the 

face of the unit cell shown by the black box in Figure 4.2a (25).  The b2 layer contains 

Ubulk Ulayer

d100

[100]

[010]

a) b)
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molecules in the interior of the unit cell.  The b1 and b2 layers for all of the planes are 

shown in Figure 4.3 thru Figure 4.7.  The b1 layer is shown in blue and the b2 layer is 

shown in red.  The attachment energy per molecule for each of the b1 and b2 layers and 

the interplanar spacing dhkl, are given in Table 4.1.    

 

Figure 4.2:  a) 3×3 αRDX molecules projected onto the (001) plane.  The RDX 

molecule’s centers of mass are represented by spheres.  Planes separated by the 

interplanar spacing, d100, shown by the black lines are used to determine the b) b1 layer 

and c) b2 layer. 

d100 d100 d100 d100a=2d100

b=2d010

b) b1 Layer c) b2 Layera)      b1 Layer                b2 Layer

[100]

[010]
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Figure 4.3:  (100) attachment energy layers projected onto the a) (001) plane and b) 

(010) plane of a 2×2×2 αRDX supercell.  Type b1 in blue is along the unit cell and b2 in 

red is by shifted ¼[100].  Interface between the blue and grey layers is the type b1 slip 

plane and the interface between red and grey layers is type b2 slip plane.  Type b2 layer is 

lower in Eatt given in Table 4.1. 

 

Figure 4.4:  (010) attachment energy layers projected onto the a) (001) plane and b) 

(100) plane of a 2×2×2 αRDX supercell.  Type b1 in blue is along the unit cell and b2 in 

red is by shifted ¼[010].  Interface between the blue and grey layers is the type b1 slip 

plane and the interface between red and grey layers is type b2 slip plane.  Type b2 layer is 

lower in Eatt given in Table 4.1. 

 

Figure 4.5:  (001) attachment energy layers projected onto the a) (010) plane and b) 

(100) plane of a 2×2×2 αRDX unit cell.  Type b1 in blue is along the unit cell and b2 in 

red is by shifted ¼[100].  Interface between the blue and grey layers is the type b1 slip 

plane and the interface between red and grey layers is type b2 slip plane.  Type b1 layer is 

lower in Eatt given in Table 4.1. 
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Figure 4.6:  (011) attachment energy layers projected onto the a) (100) plane and b) (01̄ 

1) plane of a 4×3×3 αRDX unit cell.  Type b1 in blue is along the unit cell and b2 in red 

is by shifted ¼[100].  Interface between the blue and grey layers is the type b1 slip plane 

and the interface between red and grey layers is type b2 slip plane.  Type b1 layer is 

lower in Eatt given in Table 4.1. 

 

Figure 4.7:  (021) attachment energy layers projected onto the a) (100) plane and b) (01̄ 

2) plane of a 6×2×3 αRDX unit cell.  Type b1 in blue is along the unit cell and b2 in red 

is by shifted ¼[100].  Interface between the blue and grey layers is the type b1 slip plane 

and the interface between red and grey layers is type b2 slip plane.  Type b1 layer is 

lower in Eatt given in Table 4.1. 

 

 The surface energy, γatt, can be calculated from Eatt by converting it to energy per 

unit area of the layer surface given by  
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where V is the volume of a unit cell layer and Z is the nuumber of molecules per unit cell 

layer (78).  If Eatt is approximately equal for all planes, then the surface energy is 

proportional to dhkl and a smaller interplanar spacing results in a smaller surface energy 

(78).  Values for 2γatt, V, and Z are also given in Table 4.1.  Equation 4.3 only provides an 

approximate surface energy.   

Table 4.1:  Attachment energy for each layer.  Lowest energy layer shown in bold letters. 

Plane dhkl (Å) Z(#) V (Å
3
) Eatt (kcal/mol/molc) 2γatt (mJ/m

2
) 

(100) 6.689 4 783.7 
b1:  28.7 

b2:  24.7 

b1:  682 

b2:  585 

(010) 5.670 4 783.9 
b1:  29.5 

b2:  19.2 

b1:  593 

b2:  385 

(001) 5.179 4 783.5 
b1:  24.4 

b2:  25.4 
b1:  448 

b2:  466 

(011) 7.639 8 1566.2 
b1:  19.2 

b2:  20.4 
b1:  520 

b2:  554 

(021) 4.971 8 1567.5 
b1:  24.1 

b2:  30.4 
b1:  425 

b2:  537 

 

 The layer with the lowest attachment energy, either b1 or b2, is shown in bold in 

Table 4.1.  The lowest energy layer is the more stable layer and the layer more likely to 

control crystal growth (79).  The lowest energy layer can also be picked out visually in 

Figure 4.3 thru Figure 4.7 as the layer with the higher in-plane molecular density.  The 

attachment energy is related to the strength of bonding between layers and low 

attachment energy indicates a weakly bonded interface (24).  These weakly bonded 

interfaces coincide with the experimental cleavage and slip planes in some molecular 

crystals (24) (5).  This has been observed experimentally (24).  However, the attachment 

energy was found to be only ~50% accurate in determining slip and cleavage planes in 

layered molecular crystals where the slip/cleavage planes could be determined by visual 

inspection (5).   
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 From Table 4.1, Eatt predicts the (010) and (011) to be active planes.  Both planes 

contain experimental slip systems (6) (14) and (010) is also a cleavage plane (7).  The 

surface energy, 2γatt, does not follow the same trends as Eatt because the interplanar 

spacing and surfaces area are different for each plane.  The surface energy predicts (010), 

(001), and (021) to be the active planes.  The (021) plane is a slip plane (6) (14) and (001) 

is a cleavage plane (7).  The surface energy given by the attachment energy is an 

approximation due to the simulation set-up.  However, in Table 4.4 it is shown to 

compare well with other more computationally intensive methods of determining the 

surface energy.   

 The attachment energy provides a simple method to determine weakly bonded 

layers in a crystal.  These layers provide planes where inelastic deformation is likely. The 

attachment energy cannot differentiate slip and cleavage planes and because of this it also 

cannot provide any details about the slip system.  It has also been shown to be inaccurate, 

especially in crystals with corrugated layers like αRDX.  Other computational procedures 

such as those that provide the generalized stacking fault energy can differentiate slip from 

cleavage planes, determine slip directions, and determine the slip limiting interactions.  

However, the generalized stacking fault calculations are computationally expensive and 

require more time to setup.   

 For the above reasons, the attachment energy is only used to determine which of 

the layers, either b1 or b2, to determine the generalized stacking fault energy for.  The 

attachment energy is ideally suited for this purpose for several reasons.  First, built into 

the calculation is the interplanar spacing corrected by the extinction conditions.  This 

reduces the number of unique layers on the (100), (010), and (001) planes from four to 
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two.  Of the two remaining unique layers, the layer with the lower energy is the more 

stable of the two layers and the active layer.  As will be shown later, this method 

accurately determines the planes with the lowest surface energy, decohesion separation 

energy, and unstable stacking fault energies.    

4.2  Surface Energy 

 The attachment energy presented in Section 4.1 was the difference in energy 

between the bulk crystal and a single layer of molecules.  The layer had two free surfaces 

and was thin enough that the molecules on each surface are affected by both free 

surfaces.  The surface energy was then calculated in equation (4.3) by assuming all of the 

molecules in the layer contributed equally to the surface energy.  A better approximation 

of the surface energy is calculated here by isolating the surfaces from one another by 

increasing the layer thickness.  The surface energy is then calculated by comparing the 

energy of the system containing a thick slab with two free surfaces to the energy of the 

bulk crystal.  The energy difference is then divided by the area of the free surface, 

removing of assumption that all molecules contribute equally to the surface energy.   

 The thick slab simulation cell is created from a minimized supercell of αRDX 

with a vacuum layer added between the two layers within the supercell.  The layers are 

the b1 or b2 layers presented in Section 4.1.  The simulations cell is 3D periodic and 

adding the vacuum layer separates the bulk supercell into periodic slabs.  A vacuum layer 

equal to 100Å is used to isolate the periodic images.  This creates the simulation cell 

shown in Figure 4.8 where the vacuum layer has been placed between b2(100) layers in 

the αRDX supercell creating two b2(100) surfaces.  This system has two free surfaces 
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and the energy difference per surface area, A, between this slab, Uslab, and the bulk 

crystal, Ubulk, gives the free surface energy as 

2γslab=(Ubulk-Uslab)/A   (4.4) 

 

Figure 4.8:  3D periodic thick slab simulation cell used to determine the surface energy 

of the b2(100) surface. 

 

 We define two slab energies (Uslab) – one corresponding to an unrelaxed rigid slab 

and the second corresponding to a rigid slab with a finite layer of flexible molecules on 

the surface allowed to relax.  The rigid slab energy is determined from molecular statics.  

The flexible slab energy is calculated by replacing a layer of molecules dhkl in thickness 

on the free surfaces of the slab with flexible molecules and quenching them.  The rigid 

slab separating the flexible layers maintains the crystal order of the bulk and seperates the 

elastic effects of the free surfaces from one another.  The flexible molecules are quenched 

by using molecular dynamics with a damping coefficient of 20 kcal/mole-fs.  The 

molecule motion is relaxed to T=~0K over 10ps.  The interplanar spacing, dhkl, used in 

the attachment energy calculations in Section 4.1 are used here and values for dhkl are 

given in Table 4.2.  

[100]

[010]

Vacuum:
100Å

Vacuum

Two b2 Surfaces

b2 Layer
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 Rigid and flexible surface energies are presented in Table 4.2 along with the slab 

thickness.  The rigid free surface energy compares well with the other methods of 

determining the attachment surface energy given in Table 4.4.  The flexible layer is 

shown to lower the energy considerably by allowing surface reconstruction of the free 

surfaces.  The limited thickness of the flexible layers makes the flexible free surface 

energy an over prediction of the actual value.   

Table 4.2:  Slab thickness (Å), flexible layer thickness dhkl (Å) and Rigid and Flexible free 

surface energies (mJ/m
2
).  Lowest energy layer for each plane is shown in bold letters. 

Plane Slab Thickness:  

Unit Cells : (Å) 

dhkl (Å) Rigid 

2γslab 

Flexible 

2γslab 

(100) b1 
3 : (40.14) 6.689 

684 597 

(100) b2 591 555 

(010) b1 
3 : (33.99) 5.670 

598 532 

(010) b2 384 367 

(001) b1 
3 : (31.10) 5.179 

450 408 

(001) b2 494 479 

(011) b1 
6 : (45.84) 7.639 

509 465 

(011) b2 557 521 

(021) b1 
9 : (44.68) 4.971 

429 404 

(021) b2 609 559 

4.3  Decohesion Separation Energy 

 The surface energy can also be determined by separating a large slab of material 

across an interface.  A free surface is created when separation between the two interfaces 

is large enough that they no longer interact.  The process of pulling material apart across 

the interface or decohesion provides details about the material response during failure.  

On a large scale, the process of separating the interface to create a free surface results in 

three material responses for a brittle material.  For small displacements the material 

responds elastically as the lattice stretches to accommodate the separation.  As the 

interfaces are further separated, microcracks or voids begin to form in the material 

reducing the load baring capacity of the interface.   Continued separation of the interface 
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causes the microcracks or voids to coalesce into macrocracks with traction free interfaces 

at which point the material can no longer carry a tensile load.  The localized effect of 

material softening and failure is captured by a decohesion constitutive model where the 

reduction in surface traction is given as a function of the interfacial displacement 

discontinuity (83).  The initiation of decohesion occurs at a specific stress state.  The 

stress state can be determined by a stress based decohesion criterion based on a measure 

of the surface traction on the failing surface.  These measures take on familiar forms such 

as Von Mises (maximum shear stress), Rankine (maximum principal stress), Tresca or 

other forms fit to experimental data (83).   

 The decohesion plane being cleaved is described by an orthornormal coordinate 

system (n,t,q), where n is normal to the cleavage plane and q and t lie on the cleavage 

plane.  For these simulations the qt displacement of the lattice is held fixed and the lattice 

is separated by Δrn.  The applied lattice separation results in an interfacial displacement 

discontinuity, δn.  Miller indices provide the directions of (n,t,q) when possible.  The 

vector given by the Miller indices [hkl] is normal to the plane (hkl) in reciprocal lattice 

space and is generally not normal to the (hkl) plane in real space except for cubic lattices.  

For an orthorhombic lattice like αRDX, the vector given by Miller indices [hkl] is only 

normal to the (hkl) plane in real space for the (100), (010) and (001) planes.  The [01̄ 1] 

and [01̄ 2] vectors are skewed relative to the (011) and (021) planes, respectively.   
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Figure 4.9:  Decohesion simulation cell for the b2(100) interface shown between the red 

and blue b2 layers.  The decohesion supercells are twice as thick as the free surface 

supercells used in Section 4.2. 

 

 The simulation technique used to model decohesion will be described for the 

b2(100) interface shown in Figure 4.9.  The b2 interface is shown between the red and 

blue b2 layers.  The decohesion simulation involves separating the single slab into two 

separate slabs.  This requires the αRDX supercell shown in Figure 4.9 to be twice as large 

as the slab shown in Figure 4.8 used to determine the surface energy in Section 4.2.  The 

simulation cell is 3D periodic and a 100Å vacuum is used to separate periodic images in 

the [100] or n-direction.  The system initially contains two rigid free surfaces due to the 

vacuum layer and after decohesion it will contain four free surfaces.   

 The decohesion process for the b2(100) interface is shown in Figure 4.10.  Figure 

4.10 only shows the four layers surrounding the b2 interface.  Decohesion is modeled by 

separating the supercell across the b2 interface in a series of 0.2Å increments up to 10Å.  

This creates a series of rigid lattice configurations separated by Δr.  Each Δr configuration 

is restarted with a layer of flexible molecules at the b2 interface, shown by the red and 

blue b2 layers in Figure 4.9 and Figure 4.10.  The thickness of the flexible layer, hf, is 

equal to the interplanar spacing, dhkl, presented in Section 4.1 in Figure 4.9 and Figure 

Vacuum:
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b2 Surface b2 Layer b2 Surface

n, [100]

t, [010]

b2 Interface
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4.10.  The supercell now contains a sandwich structure of rigid layers surrounding layers 

of flexible molecules on the interface.  The rigid layers are held fixed while the flexible 

molecules are quenched using molecular dynamics with a damping coefficient of 20 

kcal/mole-fs.  The flexible molecule motion is relaxed to T=~0K over 10ps.  This 

provides two different system energies – the first being the rigid Udeco at the start of the 

simulation and the other being the flexible Udeco of the final quenched structure.  The 

energy of the separated system, Udeco, is compared to the initial energy of the intact slab, 

Uslab, to give the decohesion energy as 

γd(Δr)=(Udeco(Δr)-Uslab)/A (4.5) 

where A is the area of the decohesion surface and γd and Udeco are given as a function of 

the rigid lattice separation distance, Δr (84).  In Figure 4.10b, small Δr results in an elastic 

response where the flexible layer of molecules across the interface recombine and the 

interface closes, δ=0.  In Figure 4.10d, Δr=10Å and the interface is completely separated 

and two free surfaces are created.  The energy of the two free surfaces given by γd(10Å) is 

given in Table 4.3 for the rigid and flexible simulations.  The decohesion surface energies 

are in good agreement with the other methods presented in Table 4.4.  They all identify 

the same b1 or b2 layer for each plane. 
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Figure 4.10:  Decohesion of the b2(100) interface.  A) Reference configuration where the 

red and blue b2 layers shown in blue and red are flexible molecules.  b) Separation of the 

rigid lattices by Δr=2.4Å, the point where the maximum stress is reached and decohesion 

begins.  C) Material failure where Δr=3.4Å and the interfacial opening δ=2.3Å.  d) 

Creation of two free surfaces for Δr=δ=10Å.   

Table 4.3:  Decohesion simulation parameters and results.  Decohesion slab thickness 

(Å), flexible layer thickness hf=dhkl (Å) and Rigid and Flexible free surface energies 

(mJ/m
2
).  Lowest energy layer for each plane shown in bold letters. 

Slip Plane 
Slab Thickness:  

Unit Cells : (Å) 

hf=dhkl 

(Å) 

Rigid 

2γd 

Flexible 

2γd 

(100) b1 
6 : (80.28) 6.689 

690 602 

(100) b2 589 536 

(010) b1 
6 : (67.98) 5.670 

605 512 

(010) b2 391 364 

(001) b1 
6 : (62.20) 5.179 

458 402 

(001) b2 526 501 

(011) b1 
12 : (91.68) 7.639 

505 463 

(011) b2 541 506 

(021) b1 
18 : (89.36) 4.971 

428 404 

(021) b2 607 559 

 

Table 4.4:  Free surface energy in mJ/m
2
 calculated from the attachment energy, slab free 

surface energy, and decohesion free surface energy.  Lowest energy layer for each plane 

shown in bold letters. 

Slip Plane 
Rigid Lattice Flexible layer 

2γatt 2γslab γd 2γslab γd 

(100) b1 682 684 690 597 602 

(100) b2 585 591 589 555 536 

(010) b1 593 598 605 532 512 

(010) b2 385 384 391 367 364 

(001) b1 448 450 458 408 402 

(001) b2 466 494 526 479 501 

(011) b1 520 509 505 465 463 

(011) b2 554 557 541 521 506 

(021) b1 425 429 428 404 404 

(021) b2 537 609 607 559 559 

Δr=2.4Å

a) b) c) d)

Δr=3.4Å

Δr=10Å

δ=10Åδ=2.3Å

n, [100]

t, [010]
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 Two flexible layer thicknesses were used in the decohesion simulations, hf=dhkl 

and hf=2dhkl.  The flexible decohesion energies given by Equation (4.5) for both hf’s are 

plotted in Figure 4.11a as a function of Δr.  The free surface energy labeled to the right of 

Figure 4.11a is nearly the same for both hf.  The hf=2dhkl model allows a thicker layer of 

flexible molecules to relax through surface reconstruction and elastic relaxation.  

However, the increased mobility for hf=2dhkl only slightly lowers the free surface energy.   

 The largest difference between hf’s in Figure 4.11a occurs for Δr=0 to 4Å where 

the interfaces are still interacting.  In this region, the flexible molecule layers are being 

deformed in response to the separation, Δr.  In this region, the flexible layers are strained 

and Δr≠δ.  This is shown in Figure 4.9b where interface has not separated, δ=0 and Figure 

4.9c where surfaces have separated but are still interacting.  The interatomic forces 

resulting from the deformation can be averaged over the volume of the flexible layers to 

give the virial stress tensor given by (85), 

     
 

     
   

   
 

 

 
 (4.6) 

where N is the number of atoms in the flexible layers, k
ir  is the i position of atom k, k

jf is 

the total force in the j direction on atom k due to its interactions with all of the atoms in 

the entire system and Vflex is the volume of the region containing flexible molecules.  The 

volume, Vflex, does not include the interfacial separation, δ, but does include the change in 

the flexible layer thickness due to elastic strain.  The shear components of the stress 

tensor are nearly zero, ζi≠j≈0.  This makes the surface traction, τ=ζiin, equal to the normal 

stress, ηn=ζnn.  The surface traction calculated from the virial stress is shown in Figure 

4.11b for both hf.   
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Figure 4.11:  Surface energy and surface traction for the b2(100) layer for hf=dhkl (red 

line) and hf=2dhkl (black line).  a) Change in decohesion energy, γd, versus Δr. where 

legend gives surface energy, γd(10Å), for each surface.  b) Surface traction versus Δr.  c) 

Surface traction plotted versus Lagrange strain, Enn, up to the maximum stress.  The 

shaded region is the linear elastic strain energy for the stress/strain state of the yellow 

triangle.  Legend gives the surface energy and maximum normal traction.   

 

 In Figure 4.11a, the γd(Δr) curve changes from concave up to concave down at the 

point marked by the triangles corresponding to the maximum surface traction in Figure 

4.11b.  The concave up portion of the curve is the elastic portion where the interface 

closes and increasing deformation leads to an increase in surface traction.  At the critical 

point, the maximum traction is reached and the surface traction begins decreasing with 

increased separation, Δr.  The critical point is where decohesion initiates and the interface 

starts to separate, δ>0.  The critical point atomic configuration for the b2(100) interface is 

shown in Figure 4.10b.  For large interfacial separations, the surface energy converges to 

a constant value equal to the energy for two free surfaces and the surface traction goes to 

zero.   
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 In Figure 4.11a and b, hf=2dhkl is able to respond elastically for larger Δr.  Both 

hf’s result in almost the same maximum interfacial traction, max(ζnn) ≈1.6GPa.  Figure 

4.11c shows the surface traction versus the Lagrange strain, Enn, up to the point of 

decohesion.  All of the strain in Figure 4.11c is elastic and decohesion has not initiated, 

δ=0.  The elastic strain at the point of decohesion is greater than 30% and for this reason 

the Lagrange finite strain measure is used instead of the infinitesimal strain.   

 

Figure 4.12:  a) Initial decohesion supercell containing several rigid layers.  The central 

rigid layers each of thickness hf will be converted to flexible molecules.  The layers 

sandwiching these of thickness hR will remain rigid.  The center of mass (COM) for each 

layer is shown by a black dot.  b) Rigid decohesion configuration where halves have been 

separated by Δr.  The total strain across the central layers is calculated from L.  c)  The 

central layers of thickness hf are replaced with flexible molecules that relax and allow the 

interface to close to δ.  The total strain remains unchanged but the strain in the flexible 

layers is calculated from the COMs of the rigid and flexible layer, r.  The flexible layer 

strain is then used to calculate δ.   

 

 The process for calculating the Lagrange strains and interfacial displacement, δ, 

from the center of mass location for each layer of thickness, dhkl, is outlined in Figure 

4.12.  The reference configuration is shown in Figure 4.12a.  The layers that will be 
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converted to flexible molecules have thickness hf and the thickness of the central region 

containing two layers sandwiching the interface is Lo=2hf.  Their COM is located by ro 

from the interface between the rigid and flexible layers.  The rigid layer has thickness hR 

and because it remains rigid through all of the simulations it does not change.  In Figure 

4.12b, the interface has been separated by Δr and the total thickness of the central region 

containing the two layers sandwiching the interface and the opening is given by L=Lo+Δr.  

All of the other values remain the same.  The total Lagrange strain plotted in Figure 4.11c 

for this configuration is given by  

    
     

 

   
 

 (4.7) 

 The flexible decohesion configuration is shown in Figure 4.12c where the layers 

thickness hf are replaced with flexible molecules and relax.  The rigid lattices continue to 

be separated by Δr and the central region thickness is still L.  The location of the flexible 

layer COM moves to r and is known.  The interface moves from so=hfn  to s and is 

unknown.  The deformation gradient of the elastic layer is calculated from the rigid COM 

at ro and the flexible COM at r and is given by  

   
   
   
      

  (4.8) 

The deformation gradient is used to map the n-components of the vector so to s giving 

s=hf r/ro (4.9) 

The interfacial opening is then given by  

δ=L-2s=L-2hf r/ro (4.10) 
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The normal tractions are plotted versus interfacial opening, δ, in Figure 4.13.  The 

surface traction increases nearly vertically up to the maximum stress marked by the 

triangles where decohesion occurs and δ>0.  During decohesion the surface tractions are 

decreased to zero as δ becomes large.  The elastic response for hf=dhkl shows δ<0, which 

means s in equation (4.9) is being over predicted.  The elastic deformation is over 

predicted because it is not constant through the thickness of the flexible layers. The side 

of the flexible layer interfacing with the rigid lattice responds differently than the side 

interfacing with the decohesion interface.  This difference in deformation of the flexible 

molecules is apparent in Figure 4.10b-c.   The deformation gradient in equation (4.8) uses 

the COM location relative to the rigid interface, which builds in the assumption that all of 

the material responds in the same way as flexible/rigid interface material.  A similar 

problem is encountered for hf=2dhkl only now the elastic response predicts δ>0 prior to 

decohesion.   

 

Figure 4.13:  The b2(100) surface traction plotted versus interfacial opening, δ, for the 

two layer thicknesses, hf=dhkl in red and hf=2dhkl in black.   

 

 The Lagrange strain of the elastic layer using the deformatation gradient from 

equation (4.8) is given by  
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(4.11) 

where only the normal component of the strain, E
E

nn, is nonzero.  The elastic energy 

stored in the flexible layers due E
E

nn is equal to the area under stress/strain curve in 

Figure 4.11c.  This can be approximated by assuming a linear stress/strain relationship 

giving the elastic strain energy as  

       
 

 
   

     
 

 
   

     (4.12) 

where ζnn is given by the virial stress from equation (4.6).  The filled in triangle in Figure 

4.11c represents the linear elastic energy for the maximum stress/strain point indicated by 

the yellow triangle.  It is clear that for large deformations the stress/strain relationship is 

nonlinear and that a linear elastic energy is going to under predict the actual elastic 

energy in the material.  A more appropriate relationship would be a hypoelastic 

stress/strain relationship (75).  A hypoelastic model could be developed by assuming a 

functional form for the strain energy density that matches the decohesion energy shown 

in Figure 4.11a up to the inflection point (marked by a triangle).  Then the stress/strain 

relationship would be given by the derivative of the strain energy density with respect to 

the strain component.  However, most hypoelastic models describe a nonlinear 

relationship resulting from large shear components of the strain tensor.   

 The deformation in this work is driven by uniaxial strain that is forced to take 

place between a few layers of molecules.  This provides insight on the deformation 

processes taking place on the interface but does not physically describe the actual 

deformation process.  Therefore, the nonlinear hypoelastic stress/strain relationship 
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developed from this data would probably not be applicable to any physical type of 

loading.  For these reasons a simple linear elastic model is used here with the 

understanding that it may under predict the full elastic stress/strain behavior but still 

provide an estimate on the partition of energy between elastic and decohesion.   

 The linear elastic strain energy is shown in blue in Figure 4.14 for both layer 

thicknesses and the total energy, γd, is plotted in red.  The elastic energy per unit area of 

decohesion area is found by multiplying Uelast by the thickness of the deformed flexible 

layers, 2s, given in equation (4.9).  The data shown in blue is the difference between γd 

and 2sUelast and is the energy associated with the separating interface given by  

Usep=γd-2sUelast (4.13) 

Initially the energy increases elastically with Usep≈0 up to the maximum stress where 

decohesion occurs.  During decohesion Usep>0 and Uelast decreases to zero.  The 

separation energy starts increasing prior to decohesion, δ≈0, due to the elastic energy 

being under predicted.  Using hf=dhkl in Figure 4.14a provides more data points for the 

decohesion portion of the simulation.  The decrease in surface traction with respect to 

interfacial displacement is given by the slope of Usep or fitting a functional form directly 

to the data in Figure 4.13. 
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Figure 4.14:  Decohesion energy (γd), elastic energy (2sUelast), and separation energy, 

(Esep) versus δ for a) hf=dhkl and b) hf=2dhkl.  

 

 The decohesion energy curves for each plane and each interface, b1 and b2, are 

given in Figure 4.15 and Figure 4.16.   The flexible layer thickness, hf, was shown to not 

significantly affect the elastic stress/strain response, decohesion energy or final free 

surface energy for the b2(100) interface.  Using hf=dhkl provided more data points for the 

decohesion process and will be used for the remaining decohesion simulations.  The 

interface with the lower surface energy when Δr=10Å is shown in red and the high energy 

surface in gray.  The low energy in red is the likely active plane for cleavage.  The virial 

stresses given by equation (4.6) for the low energy interface are shown in the bottom 

plots in Figure 4.15 and Figure 4.16.  The normal traction is given by the green line and 

labeled by ζnn.  The other volumetric components of the stress tensor shown in purple and 

blue are due to Poisson’s effect that results from uniaxial strain.  
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Figure 4.15:  Decohesion simulation results for the (100) and and (010) planes. (a) & (c) 

Change in decohesion energy, γd, versus Δr for the b1 and b2 planes. (b) & (d)  Virial 

stresses of the b2-interfaces.  The yellow triangle indicates the maximum stress near the 

inflection point on the energy curve. 

 

Figure 4.16:  Decohesion simulation results for the (001) and (021) planes. (a) & (c) 

Change in decohesion energy, γd, versus Δr for the b1 and b2 planes. (b) & (d)  Virial 

stresses of the b1-interfaces.  The yellow triangle indicates the maximum stress near the 

inflection point on the energy curve. 
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 The b1 and b2 interfaces in the energy plots in Figure 4.15 and Figure 4.16 all 

show a similar elastic response up to the inflection point, Δcrit.  Values for Δcrit, the 

surface traction at Δcrit, and strain at Δcrit are tabulated for all of the planes in Table 4.5.  

During decohesion, Δr>Δcrit, the interfaces respond differently.  In Section 4.1, the 

interfaces, either b1 or b2, with the lower attachment and surface energies were those 

with the least amount of molecule overlap across the interface between layers, shown in 

Figure 4.3 thru Figure 4.7.  During decohesion the interfaces are separated and large 

amounts of molecule overlap across the interface will lead to a large interactions.  These 

interactions usually increase the energy of the decohesion process.  Highly overlapping 

interfaces also create free surfaces where a large portion of the molecules are exposed.  

This is far from the preferred bonding structure of the bulk crystal resulting in a higher 

surface energy.   

Table 4.5:  Decohesion initiation conditions.  Critical separation (Δcrit), critical strain 

from equation (4.7), and maximum surface traction (ζnn).   

Decohesion Plane Δcrit (Å) Enn (Δcrit) max ζnn (GPa) 

b2 (100) 2.4 0.20 1.66 

b2 (010) 1.8 0.17 1.69 

b1 (001) 1.2 0.12 1.49 

b1 (011) 2.4 0.17 1.59 

b1 (021) 1.8 0.20 1.66 

 

 Decohesion of the (011) plane shown in Figure 4.17 occurs differently than those 

shown in Figure 4.15 and Figure 4.16.  In Figure 4.17a, elastic loading (Δr<Δcrit) of the b2 

interface (gray) leads to a slower increase in decohesion energy, γd, than the b1 interface 

(red).  The normal surface traction, ζnn, is approximately equal to the slope of the 

decohesion energy in Figure 4.17a.  The slope of the b2 interface energy is smaller than 

the b1 interface.  This makes the normal traction at the point of decohesion, Δcrit, lower 
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on the b2 interface.  The surface tractions of the b1 (red) and b2 (gray) interfaces are 

shown in Figure 4.17c and at Δr=Δcrit the b2 surface traction is lower.  However, the final 

decohesion energy in Figure 4.17a for the b1 interface is lower and the energetically 

favorable free surface. 

 In Figure 4.6b, the b1(011) interface is shown by the blue/grey molecule 

interface.  The blue and grey molecules are locked together by their nitro groups and the 

initial elastic stretching is opposed by dihedral and angle bonds of the interlocked nitro 

groups.  For complete cleavage of the b1 interface, the conformation of the nitro groups 

must change to allow the molecules to move past one another resulting in a conformation 

change of the molecule.  The b2 interface shown between the red and grey molecules in 

Figure 4.6b is only held together by nonbonded interactions.  Once the interfaces begin 

decohesion (Δr>Δcrit) the b1 interface becomes lower in energy than the b2 interface and 

results in a lower free surface energy.   

 The decohesion simulations are constrained to force the interfaces to separate 

normal to the cleavage plane.  This forced the molecule conformation change of the b1 

interface.  However, a lower energy separation path exists if the interface is allowed to 

shift in-plane as it is separated, shown by the green line in Figure 4.17c.  For this new 

deformation path, the surface traction of the b1 interface increases at the same rate as the 

b2 interface and undergoes decohesion at a much lower surface traction.   

 The reduction in surface traction versus interfacial separation is shown in Figure 

4.18 for each of the low energy interfaces.  All of the surfaces show a similar reduction in 

surface traction with interfacial opening, δ.  Decohesion is also initiated at similar levels 

of maximum surface traction, ζnn≈1.5-1.7GPa, given in Table 4.5.   
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Figure 4.17:  Decohesion simulation results for the (011) plane. a) Change in decohesion 

energy, γd, versus Δr for the b1 and b2 planes. b) Virial stress of the b1-interface.  The 

yellow triangle indicates the maximum stress near the inflection point on the energy 

curve.  c) Comparison of the normal stresses for the b1 interface (red), b2 interface (gray) 

and the b1 interface with in-plane shifting of the interfaces as they are separated (green). 

 

Figure 4.18:  Normal surface traction, ηn=ζnn, versus δ for the low energy interface for 

the a) (100), (010), (001) planes and b) (011) and (021) planes. 

 

 The first extension data point in the stress/strain curves in Figure 4.15 thru Figure 

4.17 is used to determine the volumetric linear elastic constants presented in Table 4.6.  

The calculation procedure follows that used in Section 3 for the uniaxial strain 

simulations.  A single stress/strain point fit through the origin has not statistical 
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significance but after the first extension increment the strain has already reached ~2%, 

which is right at the linear elastic limit.  Using 3 or 4 extension increments will under 

predict the linear elastic constant.  The stress tensor given here does not have minor 

symmetry because the off diagonal terms, Ciijj and Cjjii, are determined from separate 

simulation and are not equal e.g. Caabb is from decohesion in the a-direction and Cbbaa is 

from decohesion in the b-direction.  The elastic constants are presented for both the b1 

and b2 slip planes.  The actual elastic constants would be some combination of extension 

of both the b1 and b2 interfaces.  The elastic constants use the orthonormal unit basis 

e1=a/|a|, e2=b/|b|, and e3=c/|c| where a, b, and c are the unit cell lattice vectors.  In Voigt 

index notation, 11=1=a, 22=2=b, 33=3=c, 23=4=bc, 31=5=ca, and 12=6=ab.  This 

notation is only applicable here because αRDX lattice vectors are orthogonal.   

 The elastic constants from the decohesion simulations compare well with those 

presented in Section 3 for the uniaxial compression simulations done at T=300K (86) and 

experimental data (87).  The elastic constants for the lower energy interface, either b1 or 

b2, are shown in bold and are all slightly larger than the high energy interface.  This is 

surprising since a stiffer material would result in a larger surface traction for the same 

amount of extension, Δr.  However, the stress/strain relationship is very nonlinear near 

Δcrit and not related to the initial linear elastic coefficient. 
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Table 4.6:  Volumetric elastic constants, Ciijj, in GPa for the b1 and b2 interfaces from 

this work compared to other simulations and experiment.  Bold data indicates the elastic 

constants from the preferred b1 or b2 cleavage interface. 

 C11= 

Caaaa 

C22= 

Cbbbb 

C33= 

Ccccc 

C23= 

Cbbcc  

C32= 

Cccbb 

C31= 

Cccaa  

C13= 

Caacc 

C12= 

Caabb  

C21= 

Cbbaa 

b1 layer 25.2 19.8 24.1 6.6 8.3 7.4 10.5 6.7 9.9 

b2 layer 26.1 23.0 23.8 8.8 7.0 6.4 10.7 8.0 9.9 

300K Sim
a
 25.0 23.8 23.4 8.8 7.6 10.6 

Experiment
b
 25.6 21.3 19.0 6.4 5.7 8.7 

a
Munday (86)  

b
Sun (87) 

 The SB potential energy from equation (2.1) is partitioned into the separate 

energy components and shown in Figure 4.19 for the b2(100), b2(010) and b1(001) 

interfaces.  For all of the planes, the initial elastic separation results in a reduction of the 

nonbonded VDW energy shown by the green lines.  The van der Waals energy reaches a 

minimum value near Δr=0.5Å.  These initial deformation steps result in an increase in the 

electrostatic energy shown in purple.  This response of the nonbonded energies indicates 

that the αRDX crystal is strongly bound together by electrostatic attraction and in the 

minimized bulk crystal the atoms are packed so closely together that they become 

exponentially repelled from one another according to the SB potential. 

 The vertical line labeled Δcrit is the inflection point of the total energy in Figure 

4.15 thru Figure 4.17.  The material responds elastically for Δr<Δcrit and by decohesion 

when Δr>Δcrit.  Initially the molecules are intertwined to some extent across the 

decohesion interface as shown in Figure 4.10a.  At the onset of decohesion, the interface 

becomes cleared of intertwined molecules as shown in Figure 4.10b.  The b2(010) 

interface between the red and grey molecules in Figure 4.4 separates elastically with the 

change in dihedral and angle energies remaining near zero.  Separation of the b1(001) 

interface shown in Figure 4.5 (blue/grey interface) results in the Axial nitro group across 

the interface to be pulled toward its equatorial position during elastic stretching.  This 
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results in a large change in the dihedral and angle energy.  Straining of bulk αRDX 

crystals in the [001] direction was shown by Mathew and Picu (72) to result in a 

conformation change from AAE to AEE of 15% of the molecules.  They found the defects 

to be spatially correlated over 4 nearest neighbor molecule sites in MD simulations using 

the SB potential at room temperature.   

 At the onset of decohesion the interface is cleared of intertwined molecules and 

any change in conformational energies is due to the relaxation of the molecules as they 

become exposed to a free surface.  The large amount of energy imparted to changing the 

molecule conformation for [001] elastic loading is undone during decohesion as the 

molecules relax.  The changes in conformational energies for the other interfaces during 

decohesion is much smaller.  Most of the interactions holding the interfaces together 

during decohesion come from the nonbonded energy components.  If the electrostatic 

energy continues increasing, this indicates the surfaces are strongly held together by the 

oriented electrostatic interactions, as is the case for the (100) interface.  A flat 

electrostatic energy during decohesion indicates an interface held together by van der 

Waals energy, as is the case for the (010) and (001) plane.  The jumps in electrostatic 

energy for the (001) plane are caused by the conformation change of the molecule. 
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Figure 4.19:  Change in energy components of the SB potential (see legend) versus Δr for 

the labeled interface and plane shown on the plot.  Vertical black line corresponds to Δcrit. 

 

 The simulations and analysis presented in this section provide an initial attempt at 

studying the decohesion process of several crystal planes in αRDX.  The simulations 

were shown to reproduce the free surface energy and elastic constants.  The maximum 

surface tractions at the onset of decohesion were given in Table 4.5.  The reduction in 

surface traction during decohesion was presented in Figure 4.18.  These simulations 

provide the decohesion response due to a tensile uniaxial strain load and would be 

suitable for use in a Rankine or maximum principal stress decohesion criterion.  Other 

simulations involving shear and biaxial compression would be needed to develop a 

decohesion criterion suitable to modeling the failure process under a general state of 

deformation. 
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5. Generalized Stacking Faults 

 A ―generalized‖ stacking fault (GSF) is created by slicing a perfect crystal lattice 

across a plane, displacing the two halves relative to one another by the stacking fault 

vector f and reconnecting the halves (16).  The reconnected lattice has a surplus energy 

per unit area, Ψ(f), due to the lattice disregistry, where f spans the area of a unit cell on 

the slip plane interface.  The stacking fault is ―generalized‖ because f points to a 

―general‖ location anywhere on the face of the unit cell.  The GSF energy surface is a 

collection of all Ψ(f) for f spanning the unit cell surface.   A stacking fault created this 

way is independent of its deformation history.  It is important to note that the process of 

offsetting the lattice by f to create a stacking fault is not a dynamical process where the 

molecules are sequentially sheared over one another.  The stacking fault structures and 

their energy do not describe an actual deformation event; instead they provide parameters 

for a model of the actual deformation event.   

 Plasticity in metals occurs through the emission of dislocations.  Several 

dislocation properties are determined from the GSF energy surface for metallic and 

atomic crystals.  The unstable stacking fault energy, γusf, which are saddle points on the 

GSF energy surface, provide the energy barriers to dislocation motion.  Local minima on 

the GSF energy surface provide the location and energy, γsf, of stable stacking faults.  

Full dislocations can dissociate into a partial dislocation at a stable stacking fault.  A low 

ratio of γsf /γusf indicates a large energy barrier to the mobility of partial dislocations (88).  

The unstable stacking fault energy, γusf, and free surface energies, γs, calculated in 

Section 4 can be used to evaluate the brittle versus ductile response of slip planes.  A 
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plane is expected to be brittle when the barrier to emit a dislocation, γusf, is larger than the 

energy required to create two free surface through Griffith cleavage, 2γs (18) (89).  

Otherwise it is energetically favorable to emit a dislocation.  The gradient of the GSF 

energy surface gives the restoring stress in the Peirls Nabarro dislocation model, the 

dislocation core width and dislocation density (90). 

 Large deformations in molecular crystals may result in solid-solid phase 

transitions (Section 3), fracture and decohesion (Section 4) and slip deformation, the 

topic of the current section.  Activation of slip systems is generally the preferred 

deformation mechanism in molecular crystals because the long range order of the crystal 

and its associated properties are maintained.  The availability of several slip systems 

allows the molecular crystal to accommodate a general state of strain without fracturing.  

Slip, as opposed to cleavage or the formation of an amorphous phase, increases the 

tabletability of pharmaceutical molecular crystals (4) (8).  Crystal engineering methods 

such as cocrystallization have been developed to exploit this mechanism by increasing 

the amount of slip in pharmaceutical crystals such as caffeine and paracetamol (8) (9).   

 In energetic molecular crystals such as αRDX (10) and PETN (11), initiation 

mechanisms are believed to be sensitive to shock loads that lead to shear deformations 

that cannot be easily accommodated by slip.  A possible mechanism is blockage of 

certain slip systems by the large molecules on slip planes causing plane-on-plane slip 

motion to be hindered by steric interactions (11).  The steric hindrance initiation model, 

in particular, presumes that when a large shear stress is directed along a sterically 

hindered plane, the crystal is unable to accommodate the strain through slip and therefore 

results in severe intramolecular deformations and bond rupture leading to initiation (11) 
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(12).  Other proposed initiation-related events involving slip mechanisms include blocked 

dislocation motion leading to the pile-up and avalanche of dislocations accompanying a 

localized increase in temperature (13).  The induction time to decomposition in αRDX 

has also been correlated to the alignment of known slip planes to the direction of shock 

load (10).   

 The actual mode of slip deformation is unknown in molecular crystals.   

Investigations through nanoindentation have indicated slip traces and pile-up features that 

suggest inelastic deformation mechanisms that are more complicated but build upon the 

ideas of dislocation motion on a single slip system (14) (91).  Thus, a more thorough 

understanding of slip systems is needed and molecular simulations may provide an 

enabling capability.  To this end, the generalized stacking fault concept, which has been 

successful in determining slip properties in atomic crystals, will be used to study slip 

motion in the molecular crystal αRDX.   

 The complexity of the molecular crystal structure – due to having several entire 

molecules instead of atoms at each lattice site – will require a significant modification to 

the normal procedures used to evaluate the GSF energy.  In metallic crystals like copper, 

the slip plane is smooth and the atomic potential is does not include long ranged 

electrostatic interactions.  The energy of a stacking fault in copper can be minimized by 

allowing the atoms to relax normal to the slip plane which does not affect the lattice 

disregistry.  This procedure will not work for a molecular crystal.  First, the slip plane is 

not smooth because the molecules overlap across the slip plane.  The rough surface 

requires the slip plane to separate in order to produce a stacking fault.  Secondly, the SB 

potential (17) given in equation (2.1) involves long range electrostatic interactions 
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requiring a 3D periodic simulation.  Finally, relaxation of the stacking fault will involve 

molecule conformation and orientation changes requiring in-plane atomic motion.   

 In this work the GSF energy surfaces are determined for αRDX.  Among the 

planes considered are experimentally observed slip and cleavage planes.  Rigid stacking 

faults are produced by first specifying a stacking fault vector, f, and then allowing the 

two rigid halves to separate by Δr normal to the slip plane to relax the stacking fault under 

zero pressure.  A flexible stacking fault is created from the rigid stacking fault by 

replacing the region surrounding the slip plane with flexible molecules.  The flexible 

molecules and the separation of the rigid lattices are then relaxed.  The atomic 

displacements of the flexible molecules are used to determine the shear strain and the 

interfacial displacement discontinuity at the stacking fault interface.  This approach 

enables the GSF energy to be partitioned into two contributions.  The first is the elastic 

energy due to shearing of the lattice containing flexible molecules.  The second is due to 

lattice disregistry and molecule conformation changes providing an interfacial GSF 

energy.   

 Details of the simulation procedures for determining the GSF energy using the 

rigid and flexible forms of the stacking faults are presented in Section 5.1.  The 

preprocessing steps and simulation cells for each slip system in αRDX are presented in 

Section 5.2.  Simulation results are presented in Section 5.3 and are used to differentiate 

slip systems from cleavage planes using Rice’s dislocation nucleation criterion (18).  

Validation of the GSF energy calculations are given in Section 5.4.  
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5.1  Generalized Stacking Fault Calculation 

 In the stacking fault descriptions that follow, the stacking fault is described by 

two measures of deformation.  The first measure describes the rigid lattice deformation 

described by the stacking fault vector, f, and any increase in the lattice length normal to 

the slip plane, Δ.  The second measure describes the interfacial displacement 

discontinuity on the slip plane described by interfacial discontinuity vector, u, and the 

interfacial opening, δ.  The deformation measures are described by an orthonormal 

coordinate system (n,q,t), where n is normal to the slip plane and q and t lie in the slip 

plane.  The rigid lattice deformation vector is then given by Δn+fqq+ftt and the interfacial 

displacement is δn+uqq+utt.   

 The steps used to create the rigid and flexible stacking faults in αRDX are shown 

in Figure 5.1.  Figure 5.1 shows a two unit cell thick slice of the actual 12 unit cell thick 

simulation cell (See Table 5.1).  The first step shown in Figure 5.1a is the selection of the 

slip plane, either b1 or b2, based on the attachment or free surface energies given in 

Section 4.  For the (010) plane shown in Figure 5.1a, the b2 surface has a lower surface 

energy in Table 4.4 and is used to create the corrugated slip plane interface separating the 

top (red) and bottom (blue) halves of the lattice. 
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Figure 5.1: Process of creating an αRDX stacking fault.  a) Initial perfect lattice of the 

(010) b2 stacking fault structure with the αRDX atomic lattice shown on the bottom and 

an outline shown on top.  The red material is above the slip plane and the blue material is 

below the slip plane.  This picture represents only a two unit cell thick slice of the actual 

12 unit cell thick supercell.  b) The red material is shifted by ft relative to the blue 

material.  c) The rigid stacking fault structure is created by shifting the red material by Δr 

to reduce the energy caused by the overlapping material across the interface.  d) The 

flexible stacking fault structure is created by replacing a layer of molecules hf thick above 

and below the slip plane with flexible molecules, shown in orange and purple.  The 

flexible layers shear out of plane by θnt, the interfacial discontinuity changes to u=utt+uqq 

and the interface closes to δn.    

 

 Figure 5.1b shows the creation of the stacking fault by shifting the two halves by 

the stacking fault vector, f=fqq+ftt.  This shift causes some of the molecules across the 

corrugated interface to overlap and experience unnaturally large repulsive forces between 

the two halves.  To reduce the repulsive forces, the top and bottom halves of the lattice 

are treated as two separate rigid bodies and the top half is allowed to move in the n-

direction with the bottom-half held fixed.  This creates the fault structure shown in Figure 

5.1c where the interface has opened by Δr and the lattice has increased in length by Δr.  

The surplus energy due to the lattice disregistry created by f is given by the stacking fault 

energy as  

Ψ(f)=(U(f)-U(0))/A (5.1) 

b) In-plane shift c) Rigid Stacking Faulta)  Initial Perfect Crystal d) Flexible Stacking Fault
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where U is the potential energy determined from the SB potential and A is the cross 

sectional area of the slip plane (16).  There is no limit on Δr and the slip planes may in 

fact come apart creating two free surfaces.  In that limit, Ψ(f) = 2γs. 

 The energy of a rigid stacking fault can be greatly reduced by allowing molecule 

conformation and orientation changes.  These molecule degrees of freedom can be 

manually adjusted to known conformers and configurations as was done by Ramdas et al. 

(92) to lower the stacking fault energy of anthracene.  For more complex systems, 

molecular dynamics can be used to equilibrate and relax the molecules on the stacking 

fault using thermal energy as was done by Cawkwell et al. (38) for αRDX.  This 

approach sandwiched a layer of flexible molecules between two fixed lattices.  The fixed 

rigid lattices maintain the stacking fault vector, f, between the rigid lattices, while the 

flexible layers shear, reducing the lattice disregistry across the interface.  The fixed rigid 

layers also do not open to allow the large molecules to move over one another.  This 

leads to large confinement tractions on the interface.     

 Like Cawkwell et al. (38) we create flexible stacking faults by sandwiching a 

flexible molecule layer between two rigid lattices as shown in Figure 5.1d.  However, we 

allow the stacking fault interface to open in two ways.  First, we create the flexible 

stacking fault from the rigid stacking fault structure that already contained interfacial 

separation.  Second, the rigid lattice sandwiching the flexible molecules is allowed to 

move normal to the slip plane during quenching of the flexible layers.  This reduces the 

normal tractions on the slip plane interface and removes their effect on the flexible 

stacking fault structure. 
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 The flexible stacking fault is created from the rigid stacking fault by replacing a 

layer of rigid molecules of thickness hf above and below the slip plane with flexible 

molecules, shown by the layers of orange and purple molecules.  In Figure 5.1d, hf is 

equal to half a unit cell, |b|/2.  The flexible stacking fault is relaxed using damped 

molecular dynamics of the flexible molecule layers in conjunction with damped rigid 

body dynamics of the top rigid lattice.  The relaxed flexible molecules cause the lattice to 

shear changing the interfacial displacement discontinuity from f to u=uqq+utt and the 

interfacial opening from Δr to δ.  The stacking fault vector, f, of the rigid lattices remains 

unchanged for the rigid and flexible stacking faults.  

 Using this approach, the surplus energy of the rigid stacking fault is used to drive 

the relaxation of the flexible molecules instead of thermal energy as was used by 

Cawkwell et al (38).  Equation (5.1) is used to give the energy of the rigid lattice stacking 

fault, ΨR(f), and the GSF energy of the system containing flexible molecules, ΨF(f).  The 

flexible stacking fault energy, ΨF(f), includes atomic relaxation in the plane of the 

stacking fault resulting in energy due to elastic shear and lattice mismatch.  The shear 

also causes the interface to shift resulting in f≠u.  To account for this we use the 

interfacial stacking fault energy defined by  

Φ(u)=ΨF(f)-2hfE(f) (5.2) 

where E(f) is the elastic strain energy density due to the elastic shearing of the flexible 

layers.  The interfacial stacking fault energy, Φ(u), is the energy associated with the 

displacement discontinuity across the slip plane, u, and the molecule conformation and 

orientation changes.  This energy is related to the interfacial traction by τ(u)=Φ(u) 

(18).   
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 For a linear stress/strain relationship, the strain energy density, E(f), is   

E(f)=½ζijeij (5.3) 

where ζij is the virial stress tensor and eij is the strain tensor.  The virial stress tensor is 

given by the virial theorem at zero temperature (85) 

     
 

     
   

   
 

 

 
 (5.4) 

where N is the number of atoms in the flexible layers, k
ir  is the i coordinate of atom k, 

k
jf is the total force in the j direction on atom k due to its interactions with all of the 

atoms in the entire system and Vflex is volume of the region containing flexible molecules.  

The volume, Vflex, is assumed to remain constant during the flexible molecule relaxation.  

This assumption is valid if only shear strains occur in the flexible layers and the shear 

strain does not cause a change in volume.   

 The strain is calculated from the change in atomic displacements between the 

rigid and flexible models.  The strain is calculated for the top and bottom flexible layers 

separately and does not include the interfacial displacement discontinuity, u and δ.  The 

strain components ett=eqq=eqt=0 due to the simulation cell being fixed in the qt-plane.  

With the qt-displacement components held fixed, the deformation gradient, F, can be 

found from the change in the location of the flexible layer COMs relative to the rigid 

lattice.  The deformation gradient can then be used to map any vector from the rigid 

stacking fault where all of the atomic positions are known to the flexible stacking fault 

structure where only the layer COMs are known.  

 The layer COM positions are shown in Figure 5.2.  The COMs of the rigid layers 

are indicated by the black filled circles at the positions r
Rtop

 and r
Rbot

 and are always 
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located by hR/2 from the rigid/flexible layer interface.  The COMs of the flexible layers 

are shown by the hollow circles at r
Ftop

 and r
Fbot

 and only in the rigid stacking fault 

structure in Figure 5.2a are they located by hf/2 from the rigid/flexible layer interface.  In 

the flexible stacking fault, the flexible layer thickness changes and is no longer equal to 

hf.  The rigid stacking fault vector, f, given by the qt-components of the rigid layer COMs 

is 

f(q,t)=r
Rbot

(q,t)-r
Rtop

(q,t) (5.5) 

The stacking fault vector f is prescribed and always known.  f describes the relative shift 

in the qt-plane of the rigid lattice and does not change when the flexible layer is relaxed 

making it the same in Figure 5.2a and b.  In the rigid stacking fault, the interfacial 

displacement discontinuity is equal to the stacking fault vector, f=u.  The change in 

length of the rigid stacking fault supercell in Figure 5.2a is given by the n-component of 

the rigid layer COMs by 

Δrn=ro
Rbot

n-ro
Rtop

n-(hR-2hf)n (5.6) 

where hf and hR are the flexible and rigid layer thicknesses and are known.  The change in 

length of the rigid stacking fault supercell, Δr, in Figure 5.2a is also equal to the 

interfacial opening.  Δr is a variable and must be determined from the rigid COMs.  It is 

also allowed to change between the rigid and flexible stacking faults. 

   Figure 5.2b shows the flexible stacking fault where the flexible layers are sheared, 

u≠f.  The flexible layer COMs have now shifted relative to the rigid/flexible interface by   

r
top

=r
Ftop

-(r
Rtop

+½hRn) 

 

r
bot

=r
Fbot

-(r
Rbot

-½hRn) 

(5.7) 
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These COMs are used to find a deformation gradient that can be used to map vectors 

from the rigid to flexible stacking fault structure.  Similar to what was previously done 

for the lattice vectors; the deformation gradient is defined using three linearly 

independent vectors eq, et, and r.  The components, ei, are components of the 

orthornormal basis of unit vectors used to describe the slip plane and do not change 

because the qt components of the simulation cell are held fixed for the rigid and flexible 

stacking faults. The vector r=rqeq+rtet+rnen is given by r
top

 and r
bot

 and is known.  In the 

rigid stacking fault |ro|=hf/2 and is normal to the slip plane.  These three vectors are 

placed into the columns of the 3×3 matrices, [ho] and [h], where [ho] are rigid stacking 

fault vectors and [h] are the flexible stacking fault vectors with components 

               

   
   
      

  (5.8) 

             

    
    
    

  (5.9) 

The deformation gradient is then given by 

         
    

        

        

        

  (5.10) 

where a separate Ftop
 and Fbot

 are found for the top and bottom flexible layers, 

respectively.  Ftop
 and Fbot

 provide a mapping for vectors in the flexible layer from the 

rigid (so) to flexible (s) stacking fault structure using 

       (5.11) 

In Figure 5.2, s and so give the position of the slip plane interface relative to the 

rigid/flexible interface.  The difference between s
bot

 and s
top

 gives the interfacial 
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displacement discontinuity u(q,t) and δn.  For this case, so=hfn and equation (5.11) is 

used to map this into the flexible stacking fault configuration as s.  The interfacial 

displacement discontinuity is then given by 

              -    = 
   

   
           

   
 (5.12) 

           
      

          
      

      (5.12a) 

       
      

      (5.12b) 

The overall length of the lattice of the flexible stacking fault becomes  

Δfn=r
Rbot

n-r
Rtop

n-(hR-2hf)n (5.13) 

and is different from the interfacial opening (Δf≠δ) if the thickness of the flexible layer, 

hf, changes between the rigid and flexible stacking faults.   

 The Lagrange strain in each flexible layer is given by 

            

       

       

              
    

    
     

 

  (5.14) 

and the infinitesimal strain tensor given by geometrical considerations such as the 

skewing of the lattice by θ and the change in the lattice length is given as 

   

       

       

                     

   

       

       

                     

  (5.15) 

where the small angle approximation is used, tanθnq,t≈rq,t/hf.  The Lagrange and 

infinitesimal strain only differ in the normal strain component (nn), which is usually 

small in these simulations.  The average of the strain for the top and bottom flexible 

layers is used to calculate the strain energy in equation (5.3).  The interfacial 

displacement vector found from the averaged strains and stacking fault vector is 



 

 140 

 

                
   

          
   

   (5.16) 

where Lagrangian and infinitesimal strains give the same result.    

 

Figure 5.2: Centers Of Mass (COMs) shown by circles used to calculate the interfacial 

displacement discontinuity, u and δ, and the shear strain.  The asterisk is the COM of the 

rigid layer sandwiching the flexible layers with COM shown by the black circle.   The 

flexible/rigid interface is marked by the black dot and is always located by ±hR/2n from 

the rigid COM.  a) Rigid stacking fault where u=f.  b) Flexible stacking fault where the 

rigid central layers (orange and purple) are replaced with flexible molecules that shear, 

u≠f.  The vectors from the nt reference coordinates indicate the known COM positions 

used to calculate u, δ, and the angle θ. 

5.2  Generalized Stacking Fault Simulation Set up   

 The simulation set up for the stacking faults in αRDX and reasoning behind it are 

described in this section.  The αRDX supercell used in the stacking fault simulations is 

created by replicating the minimized αRDX unit cell given in Appendix C.  The Ewald 

sum is used to calculate the long range electrostatic forces present in the Smith and 

Bhardwaj potential (17).  The Ewald sum requires the simulation cell to be 3D periodic 

and results in the simulation cell shown in Figure 5.1 to become an infinite array of slabs 

as shown in Figure 5.3a.  The periodic boundary conditions in the red qt-slip plane allow 

the shifted material used to create the stacking fault to move out one boundary and back 
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in the opposite boundary of the fixed simulation cell.  This is shown in Figure 5.3b where 

the stacking fault causes the blue material to leave the simulation cell and the purple 

material to enter it.  The stacking fault is repeated in all of the periodic images in the qt-

plane creating a stacking fault with an infinite slip plane area.  This removes the 

dependency of the qt-dimension of the simulation cell on the stacking fault energy per 

unit area of slip plane.  The qt-dimensions of the simulation cell must still be at least 

twice as large as the 15Å real space cut-off used to calculate nonbonded forces.  The area 

of the stacking fault in the qt-plane is held constant by fixing the qt-lattice vectors of the 

simulation cell.  The number of unit cells replicated in the qt-plane, zq and zt, and the 

resulting slip plane dimensions are given in Table 5.1. 

 

Figure 5.3:  a) 3×3×3 replication of the simulation cell containing the initial supercell.  

The red plane is the slip plane and the supercells are separated in the n-direction by the 

vacuum layer.  b) 2D projection of a stacking fault where the stacking fault vector f 

causes the blue material to leave the simulation cell (black dashed lines) and the purple 

material to enter the simulation cell.  This creates an infinite plane of stacking faults. 
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 A stacking fault is created within the supercell by shifting the upper and lower 

halves of the lattice relative to one another as shown in Figure 5.1c.  This would cause a 

second stacking fault to be created between the periodic replicas of the supercell in n-

direction and will be described in Section 5.4.1.  The second stacking fault is unwanted 

and the effects of it are removed from the simulation cell by adding a vacuum layer to the 

top of the supercell.  The periodic images in the n-direction are now separated by a 

vacuum layer as shown in Figure 5.3a.  With the introduction of the vacuum layer, a free 

surface is created on the top and bottom of the supercell.  The stacking fault is isolated 

from the free surfaces by increasing the number of unit cells, zn, to give a thickness in the 

n-direction >90Å.  The super cell and vacuum layer dimensions are labeled in Figure 5.4 

with values given in Table 5.1.  Figure 5.4a shows the simulation cell used when [hkl] is 

normal to the (hkl) plane, ϕ=90
o
.  For (011) and (021), periodicity of the slab in the qt-

direction requires the out-of-plane simulation cell vector [001] to be skewed by ϕ≠90
o
 

relative to the qt-plane.   

 

Figure 5.4:  Simulation cell setup for the a) orthogonal simulation cell and b) skewed 

simulation cell used for the (011) and (021) stacking faults. 
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Table 5.1:  Stacking fault simulation cell setup and dimensions showed in Figure 5.4.  φ 

is always the angle between q and the [001] direction and is only relevant for the skewed 

simulation cells.   

Slip 

Plane 

Layer dhkl (Å) Unit Cells 

(zn×zt×zq) 

n (Å) t (Å) q (Å) φ 

(deg.) 

Vac. 

(Å) 

(100) b2 6.689 12×3×3 160.553 

[100] 

31.031 

[001] 

34.722 

[010] 
90 30 

(010) b2 5.670 12×3×3 135.963 

[010] 

40.098 

[100] 

31.024 

[001] 
90 30 

(001) b1 5.179 12×3×3 124.286 

[001] 

40.049 

[100] 

34.002 

[010] 
90 30 

(011) b1 7.639 18×3×3 137.508 40.078 

[100] 

46.040 

[11̄ 0] 
47.6 40 

(021) b1 4.971 18×3×2 89.368 40.101 

[100] 

47.242 

[01̄ 2] 
28.7 40 

5.3  Results and Discussion 

5.3.1  (010)[100] Generalized Stacking Fault Energy 

 The concepts for determining the stacking fault energy were presented in Section 

5.1 for systems containing flexible molecules that undergo shear deformation.  The 

(010)[001] stacking faults shown in Figure 5.1 were used to present this concept because 

the flexible stacking faults undergo an observable amount of shear distortion.  The shear 

was shown to be caused by the corrugated structure of the interface.  In this section the 

results for the much more energetically favorable (010)[100] stacking faults are 

presented.  These stacking fault are on the same b2(010) interface but are shifted along 

the grooves of the corrugated interface as shown in Figure 5.5.  The stacking fault vector 

for these stacking faults is f=f100[100]/|a|.   

 Figure 5.5b shows the (001) plane of the αRDX crystal where the interface 

between the red and blue molecules is the slip plane.  This is a 90
o
 rotation about the 

[010] axis of the corrugated crystal lattice shown in Figure 5.1.  Even though the 

molecules are shifted along the corrugated interface, the rigid stacking faults still separate 
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as shown in Figure 5.5c where f100=0.5.  The flexible stacking fault for f100=0.5 is shown 

in Figure 5.5d where the flexible layers are colored orange and purple.  The thickness of 

the flexible layers is hf=|b|/2.  The interface of the flexible stacking fault closes without 

shearing the lattice.   

 

Figure 5.5:  a) Geometric representation of a (010)[100] stacking fault created along the 

grooves of corrugated b2 slip plane.  b)  (001) view of the initial slip plane of the perfect 

crystal where the red molecules are above the slip plane and blue are below.  c) Rigid and 

d) flexible stacking fault for f100=0.5. 

 

 This set of stacking faults describing the b2(010)[100] slip system were created 

by increasing f100 from 0 to 1 in increments of 0.01.  This created 100 rigid stacking fault 

structures.  The energy of each rigid stacking fault is minimized by allow the interface to 

open.  The rigid stacking fault energy, ΨR(f100), given by equation 5.1 is shown by the 

black circles in Figure 5.6b and the corresponding interfacial opening, Δr, is shown in 

Figure 5.6a.  The rigid ΨR(f100) energy can be due only to electrostatic and 

dispersion/repulsion interactions between the two crystal halves.  The rigid interface will 
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open until the repulsive interactions are balanced out by the attractive interactions.  No 

limit is placed on Δr and the repulsive forces can cause the interface to completely 

separate creating two free surfaces.  The maximum opening of Δr=1.5Å occurs at f100=0.5.  

This is also the location of the rigid unstable stacking fault energy, 

ΨR(f100=0.5)=γusf=247mJ/m
2
.  Table 5.2 gives the rigid free surface energy for the 

b2(010) interface as 2γs=391mJ/m
2
.  Since ΨR(f100) < 2γs the interface does not separate.  

The rigid stacking fault for f100=0.5 is shown in Figure 5.5c.  The alignment of the red 

and blue molecules across the interface in Figure 5.5c appears to be the same as that in 

Figure 5.5b but their orientation are slightly different leading to repulsive interactions 

that push the interface apart. 

 

Figure 5.6:  a) Interfacial displacement, Δr, for the (010)[100] rigid stacking fault. b) 

Rigid GSF energy,ΨR(f100), and nonbonded SB energy components for the (010)[100] 

rigid stacking faults.  c)  Energy components plotted as a function of interfacial 

seperation.  The circles and solid lines are the rigid stacking stacking fault data from a) 

and b).  The triangles and dashed lines are from the rigid decohesion seperation 

simulations from Section 4.3 as a function the interfacial seperation, Δr. Stars in a) and b) 

indicate equivalent energy versus opening data shown by the stars and lines in c). 

 

 The repulsive interactions can be due to the Pauli exclusion principal keeping two 

atoms from occupying the same space as was the case for the (010)[001] stacking fault 

shown in Figure 5.1b.  In the SB potential this leads to an exponential increase in energy.  
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The repulsive interactions can also be caused by electrostatic interactions between like 

charged atoms.  In αRDX these can become strongly repulsive in the rigid stacking faults 

as several H..H and O..O atoms become aligned across the interface.  Electrostatic 

interactions are long ranged where the energy dies off with separation distance as r
-1

.  

These two repulsive interactions are balanced out by electrostatic attraction of oppositely 

charged atoms and London dispersion forces.  London dispersion describes the 

interaction between two atoms that adjust their electron clouds in response to one 

another, inducing a weak attractive dipole like interaction with energy proportional to 

separation distance as r
-6

.  The van der Waals energy is the combination of Pauli 

exclusion and London dispersion energies. 

 The total energy shown by the black data points in Figure 5.6b is the sum of the 

VDW (green) and electrostatic (purple) energies.  The VDW energy will increase when 

atoms get to close (Pauli Exclusion) or when atoms move apart, reducing the attractive 

dispersion energy.  The electrostatic energy will also increase as oppositely charged 

atoms are separated or when like charged atoms get too close.  Ideally, the change in 

VDW or electrostatic energy would follow the decohesion separation energy given in 

Section 4.3.  The electrostatic and VDW energy from the rigid stacking fault simulations 

are plotted as circles in Figure 5.6c versus the interfacial opening, Δr, from Figure 5.6a.  

Also shown in Figure 5.6c by the triangle data points is the decohesion separation energy 

components for the (010)b2 interface from Section 4.3.  Deviations between VDW 

energies in green indicate molecules coming into repulsive contact with one another.  

Deviations in electrostatic energies in purple indicate a change in the types of atom 

interacting across the interface. 
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 Even though the (010)[100] rigid stacking faults do not require molecules to shift 

over one another, the interface still opens significantly to reduce nonbonded interactions.  

At the first red star in Figure 5.6a located at f100=0.2, the interface opens to Δr=1.2Å and 

the nonbonded energies increase by VDW=141mJ/m
2
 and Electrostatic=51mJ/m

2
.  Up to 

this point in Figure 5.6c, the Electrostatic energy for the decohesion and stacking fault 

simulations are similar.  However, the difference in VDW energy (dashed line) of the 

stacking fault is much larger, indicating molecules coming into close contact across the 

slip plane and repelling one another.   

 At f100=0.5 marked by the gray star in Figure 5.6a, the interface has opened to 

Δr=1.5Å and the change in VDW=144mJ/m
2
 and Electrostatic=102mJ/m

2
.  The 

decohesion separation energy for Δr=1.5Å is VDW=144mJ/m
2
 and 

Electrostatic=71mJ/m
2
.  In this case, the VDW energy is the same but the stacking fault 

electrostatic energy is 31mJ/m
2
 larger.  The differences in electrostatic energy in Figure 

5.6c indicate an unfavorable change in the charge of atoms aligned across the stacking 

fault interface.   

 The alignment of like partial charges across the interface of rigid stacking faults 

makes the rigid ΨR-energy surface in Figure 5.6c an over estimate of the GSF energy.  

The rigid stacking faults are computationally efficient to make but the rigid GSF energy 

is of limited use.  In this work, the rigid stacking faults are only used to provide an initial 

atomic configuration for the flexible stacking faults to begin from. 

 Figure 5.5d shows the the flexible stacking fault where a layer of molecules 

hf=|b|/2 have been replaced with flexible molecules and quenched.  The addition of 

flexible molecules lowers the Ψ(f100) energy for every stacking fault structure, shown by 
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comparing the red data points in Figure 5.7a to the black data points in Figure 5.6b.  The 

GSF energy given by Ψ(f100) describes the surplus energy of the system due to the 

displacement of the rigid portion of the lattice by f.  In the rigid stacking fault structures, 

f was equal to the interfacial dispacement vector u.  However, in the flexible stacking 

fault, f and u are usually not equal due to shearing of the flexible lattice and ΨF(f100) 

describes both elastic shear energy and the energy due to the lattice disregistry. 

 The elastic energy shown by the green data points is calcualted from the shear 

stress and strain shown in Figure 5.7b.  The elastic energy in Figure 5.7a coincides with 

ΨF(f100) for f100<0.1 and f100>0.9.  In this region the GSF energy predicted by ΨF(f100) is 

due only to elastic shearing of the flexible layer and is not a result of lattice disregistry.  

For this reason, the interfacial GSF energy, Φ(u), was introduced in equation (5.2) to 

describe only the energy associated with the lattice disregistry caused by the interfacial 

displacement vector, u.  The Φ(u) energy was given as the difference between ΨF(f) and 

2hfE(f).  The intefacial displacement vector, u100, is calculated from the shear strain in 

Figure 5.7a using equation (5.12).  For f100<0.1 and f100>0.9 the interfacial displacement 

vector is equal to zero, u100=0, indicating no lattice disregistry.  For no lattice disregistry, 

Φ(u100)=0, and the increase in system energy due to f is stored as elastic shear strain 

energy, ΨF(f100)= 2hfE(f100) as previously stated.  This all indicates that ΨF(f100) can be 

partioned into E(f100) and Φ(u100) and the method of determining the shear strain and u is 

accurate. 

 For f100<0.2, the strain is negative and u100 moves toward the origin, u100<f100.  For 

f100>0.8 the strain is positive and u100 moves toward the unfaulted structure at one, 

u100>f100.  The strain energy drops off to nearly zero in the unstable stacking fault regions 
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labeled by γusf.  At these points, the lack of strain energy makes ΨF(f100) and Φ(u100) 

equal.  The shear strain is nearly zero at these points as well making f100=u100.  The strain 

energy and strain are also zero at the stable stacking fault at f100=0.5 resulting in f100=u100 

and ΨF(f100=0.5)=Φ(u100=0.5).   

 In Figure 5.7a there are two Φ(u100=0)>0mJ/m
2
 data points that are associated 

with a slight conformation change of the molecules under large amounts of shear.  This 

shows that Φ(u) may sometimes not only be due to lattice disregistry but to any change in 

the crystal not associated with elastic shearing. 

 

Figure 5.7:  a) (010)[100] flexible ΨF(f), Φ(u) and Elastic strain energy with unstable 

and stable stacking fault energies labeled.  b) Out-of-plane shear stress (black line, left 

axis) and strain (gray line, right axis) used to calculate the elastic strain energy. 

 

 Figure 5.8a shows the interfacial separation, δ, and change in supercell length, Δf, 

for the f100 flexible stacking faults.  For f100<0.1, the supercell height increases by Δf while 

the interface remains closed, δ=0.  This suggests a coupling between shear and 

extensional deformation of the flexible molecules.  This coupling is partially due to the 

Lagrange strain, Enn, in equation (5.14) containing second order components of shear 

displacement.  At the largest shear deformations near f100=0.2 this accounts for only 3% 
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of Enn.  The length change could also result from coupling of the shear and volumetric 

components of the elastic tensor.  For small deformations the elastic tensor was shown to 

be orthotropic in Section 3.  However, large deformations may result in molecule 

orientation and conformation changes that could couple shear/extensional deformation.  

This shear/extensional coupling causes δ<Δf at the stable and unstable stacking faults.   

 The flexible stacking fault electrostatic, VDW, and bonded energies are shown in 

Figure 5.8b.  It is assumed that the energy components can also be partitioned into elastic 

shear energy and inelastic stacking fault energy.  The stacking fault portion of the of the 

energy component plotted in Figure 5.8b is found by removing the elastic portion by 

                    
    

    
 (5.17) 

The bonded energy includes the energy from dihedral, angle, improper and bonds that are 

now allowed to change with addition of flexible molecules.  A change in the bonded 

energy indicates a change in the molecules conformation.  At the unstable stacking fault 

near f100=0.2, the addition of flexible molecules reduces the VDW energy while the 

electrostatic and bonded energy remain nearly unchanged when compared to the rigid 

stacking fault energies in Figure 5.6b.  At the flexible stable stacking fault structure, 

f100=0.5, the electrostatic energy drops to zero.   This brings the interface closer together, 

δ=0.24, resulting in a decrease in VDW energy.  The interface reconstruction that reduces 

the electrostatic energy also causes a change in the molecule conformation reflected by 

an increase in bonded energy.  The directionally oriented electrostatic interactions are 

able to push or pull on particular atoms in the molecule to reduce the electrostatic energy.  

These directionally oriented forces heavily influence the surface reconstruction of the 

flexible molecules.  Figure 5.5d shows the atomic configuration of the flexible stable 
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stacking fault.  The energy was reduced through a slight orientation change of the RDX 

molecules and the conformation change is not noticeable.   

 

Figure 5.8:  a) Change in flexible lattice height, Δf, and intefacial opening, δ.  b) Flexible 

stacking fault VDW, Electrostatic and bonded energy components. 

 

 Figure 5.9a shows the relaxation paths that the flexible stacking faults take as they 

are quenched from the rigid stacking fault structure.  The open circles are the black data 

points from Figure 5.6b for the rigid ΨR-surface and the filled in circles are the black data 

points from Figure 5.7a for the flexible Φ-surface.  Each line indicates the path taken as 

the flexible molecules relax from the rigid to flexible configurations.  The path start and 

end points are emphasized by the larger symbols.  Every rigid to flexible stacking fault 

relaxation path is shown in Figure 5b by different colored lines for f100=0 to 0.5.   

-20

0

20

40

60

80

100

120

140

160

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

E
n

e
rg

y 
C

o
m

p
o

n
e

n
ts

 (
m

J/
m

2 )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

ElectrostaticVDW

Bonded

b)f100 and u100a)

δ(u100)Δf(f100)

u100

Δ
f
an

d
 δ

(Å
)



 

 152 

 

 

Figure 5.9:  Rigid ΨR(f) and flexible Φ(u) energy surfaces where lines indicate the 

relaxation path of the rigid to flexible stacking fault.  Open symbols denote the initial 

rigid configurations and the closed symbols indicate the subsequently relaxed flexible 

configurations.  a) Relaxation paths for select rigid to flexible stacking fault structures are 

shown by the lines connecting the larger symbols given at f100 increments of 0.1.  b) 

Colored lines show relaxation paths for every rigid to flexible stacking fault for f100=0 to 

0.5. 

 

  For f100<0.1 and f100>0.9, the flexible model is incapable of accommodating the 

partial slip configuration.  The system unslips completely and the energy is stored purely 

as elastic strain energy, Φ(u100=0)=0.  For f100=0.2 and 0.8, the initial rigid fault 

configurations relax to the flexible unstable stacking fault configurations.  The energy 

relaxes nearly vertically with  f100=u100 and the flexible stacking fault energies are equal, 

ΨF(f100)=Φ(u100)=γusf as previously shown in Figure 5.7a. 

 When f100=0.3 and 0.7, the energies are in the unstable stacking fault region, 

namely the energy profile of Φ(u100) is near a local maximum or a saddle point on the 

Φ(u)-surface.  The relaxation paths of the flexible stacking faults in this region land in a 

local minimum during the quenching process.  Some type of flexible molecule change 

occurs that allows the molecule to escape the local minimum and settle to the final 

flexible stacking fault energy.  Every relaxation path in Figure 5.9b for f100>0.2 is shown 
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to traverse through this same local minimum.  This local minimum highlights a weakness 

in the simulation procedure.  Here we rely on the surplus energy of the rigid stacking 

fault structure to be sufficient to overcome the energy barriers separating the rigid and 

flexible stacking faults.  Without additional energy being input into the system, the 

flexible stacking faults could easily get stuck in local minimums.  We also used viscous 

damping to quench the flexible stacking faults, which could further impede the flexible 

stacking fault from reaching the global minimum energy.  For this reason, Cawkwel et al 

(38) added thermal energy to the system to provide sufficient energy to escape local 

minimums.  However, the additional thermal energy will increase the mobility of the 

interface causing it to shear, similar to what occurs for f100<0.1 and f100>0.9.  In this work, 

the surplus energy in the rigid stacking fault was found to be sufficient in minimizing 

each flexible stacking fault to the correct minimum energy configuration. 

 The same local minimums are encountered for the relaxation paths starting at 

f100=0.4 and 0.6, which end up shearing toward the stable stacking fault configuration at 

u100=0.5.  The highest energy rigid stacking fault for the (010)[100] slip system occurs at 

f100=0.5 indicating that the slip plane interface created from the perfect αRDX lattice does 

not favor the stable stacking fault.  However, the flexible molecules cause a 

reconstruction of the interface that favors a stable stacking fault structure at f100=0.5.  The 

interface reconstruction does not cause the interface to shift and the relaxation path from 

f100=0.5 is vertical resulting in u100=0.5.  Again, this results in the flexible stacking fault 

energies being equal, ΨF(f100=0.5)=Φ(u100=0.5).   

 Figure 5b shows all of the relaxation paths for all of the f100 rigid to flexible 

stacking fault simulations.  Several of the final flexible stacking faults shear to create the 
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unfaulted crystal or the stable stacking fault, u100=0,0.5, or 1.  This reduces the number 

Φ(u100) data points in unstable regions.  These data points can be filled in by using the 

lowest lying data points from the relaxation curves shown by the colored lines in Figure 

5.9b.  The curve traced out by the relaxation paths can be approximated by a composite 

of the rigid and flexible stacking fault energies.  This approach could be used to extract 

the Φ-surface from simulations where thermal energy is used to facilitate the 

equilibration of the stacking fault structure but also results in large amounts of shear. 

5.3.2  (010) Generalized Stacking Fault Surface 

 The entire b2(010) GSF energy will be presented in this section by allowing f to 

span the entire surface of the unit cell, f=f100[100]/|a|+f001[001]/|c|.  In this section 900 f-

vectors are used to create a regularized 30×30 grid of stacking faults that span the surface 

of the b2(010) slip plane.  The rigid ΨR(f)-surface is shown in Figure 5.10a and the 

resulting interfacial opening, Δr, is given in b.  The f=f100[100]/|b| trace along the x-axis 

of Figure 3.3.1 were presented in Figure 5.6.  As expected, the f001 stacking faults shown 

in Figure 5.1 where the corrugated interfaces move over one another results in the highest 

rigid ΨR(f)-energy and the largest amount of interfacial opening.  The rigid free surface 

energy given in Table 5.2 is 2γs=384mJ/m
2
 and is very close to ΨR(f001=0.5)=383mJ/m

2
.  

With ΨR(f001=0.5)≈2γs the Rice criterion (18) would predict brittle behavior for the 

(010)[001].  At f001=0.5, the interface only separates by Δr≈4Å, which is not far enough to 

create two free surfaces as shown in Figure 4.15 for the (010) decohesion separation 

simulation.   
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Figure 5.10:  a)  Rigid ΨR(f) stacking fault energy surfaces for the b2(010) slip plane.   b) 

Interfacial seperation, Δr, for the rigid stackign fautl structures. 

 

 A flexible molecule layer of thickness hf=|b|/2 is added to each rigid stacking and 

quenched.  This produces the flexible stacking faults shown in Figure 5.1d for f=f001[001] 

and Figure 5.5d for f=f100[100].  The flexible ΨF(f) energy presented by the red data 

points in Figure 5.7a are presented for the entire (010) surface in Figure 5.11a.  Again, 

the flexible layers lower the energy of every rigid stacking fault.  The local minimum also 

appears at f100=0.5 and is the only local minimum on the surface.  Vectors are also shown 

representing the direction and relative magnitude of the (010) suraface tractions, τ=σ·n, 

where τ is surface traction, n=[010]/|b|, and σ is the 3×3 virial stress tensor given by 

equation (5.4).   

 The surface shear tractions for f100 were shown in Figure 5.7b and were multiplied 

with the shear strain of the flexible layer to to give the elastic strain energy shown by the 

green data in Figure 5.7a.  The entire elastic strain energy surface is shown in Figure 

5.11b.  Figure 5.7b showed the stress and strain to have the same sign and to be linearly 

proportional to one another.  This is also true in Figure 5.11b where the elastic strain 

energy is highest in regions that correspond to the largest magnitude shear tractions in 

a) b)

R
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Figure 5.11a and is never negative.  The traction vectors in Figure 5.11a indicate the 

approximate direction the interface displaces.  The vectors approximately point in the 

direction of steepest decent on the ΨF(f) surface and toward the corners where the perfect 

lattice is recreated or to the local stable stacking fault.  The largest strain energy occurs 

for f100 and corresponds to the sheared flexible molecules shown in Figure 5.1d.      

 

Figure 5.11:  a) Flexible ΨF(f) where vectors indicate the direction and relative 

magnitude of the shear components of the surface traction.  b) Elastic strain energy of the 

flexible layer given by equation (5.3).   

 

 The GSF energy of interest in this work is the component that only includes the 

effects of the lattice disregistry. This was referred to as the interfacial stacking fault 

energy, Φ(u), given in equation (5.2) to be the difference between the flexible ΨF(f) 

surface in Figure 5.11a and the elastic strain energy in Figure 5.11b.  This was shown by 

the black data points in Figure 5.7a and is shown for the entire Φ(u) surface in Figure 

5.12.  The data points in Figure 5.12a correspond to the final flexible stacking fault 

energies.  Most of the black Φ(u100) data points in Figure 5.7a displace toward the origin, 

which left large regions of the Φ-energy contour unknown.  This is still the case for the 

(010): Flex 2hfE(f), mJ/m2

b)a)

F
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entire Φ(u) in Figure 5.12a where the highest density of data points are near the stable 

stacking fault (u100=0.5) or the sheared lattice configurations, (f100, f001=0, 1).  There are 

also some data points in unsteady regions where the shear traction vectors in Figure 5.11a 

were negligible.   

 The rigid to flexible stacking fault relaxation histories for Φ(u100) were shown in 

Figure 5.9 and the lowest lieing Φ(u100) energy from these paths provides an approximate 

Φ(u100)-curve.  Figure 5.12b shows the lowest Φ(u) energy data for all of the relaxation 

histories for the entire (010) surface.  The relaxation history data fills in the missing data 

points in Figure 5.12a and is used to create the contours.  The white regions in Figure 

5.12b are grid points where the relaxation history does not cross.   

 

Figure 5.12:  a) Quenched flexible Φ(u) energy surface.  B) Flexible Φ(u) contours from 

all rigid to flexible stacking fault relaxation histories.  This data is used to create the 

contours in (a). 

 

 The maximum Φ(u) energy occurs at u001=0.5 and is γusf=351mJ/m
2
 and the 

energy of two free flexible b2(010) surfaces is γs=367mJ/m
2
.  This unstable stacking fault 

energy is only slightly less than the energy needed to create two free surfaces.  In this 

case, slip on the (010)[001] slip system would probably result in fracture according to 

a) b)
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Rice’s dislocation nucleation criterion (18).  However, Figure 5.12 shows the maximum 

energy encountered in the u001 direction can be slightly reduced to 2γusf≈300mJ/m
2
 if the 

slip path shuffles around the global maximum on the saddle point at 

(u100,u001)=(0.25,0.5).  There also appears to be a lower energy slip path for the formation 

of the stable stacking fault shown by following the dark blue streaks in Figure 5.12b 

emanating from the origin.  This streak curves around the u100=0.2 unstable stacking fault 

to reach the stacking fault at u100=0.5.  These lower energy slip paths are possible if the 

molecules shear around the maximum energy barriers with u in a slightly different 

direction than f.  Thermal energy may help activate this shuffle type motion.  However in 

this work, the structures were quenched and the lattice usually shears in the direction of 

the largest gradient of elastic energy in Figure 5.11b.   

 The change in length of the flexible supercell, Δf, is shown in Figure 5.13a and the 

interfacial opening, δ, is shown in b.  These were presented for f100 in Figure 5.8a. The 

change in length of Δf is a function of the stacking fault vector, f.  The interfacial opening 

is given at the interfacial displacement vector, u.  The δ(u) of the corresponding history 

Φ(u) data points shown in Figure 5.12b are used to determine the contour levels in Figure 

5.13b.  It is interesting that the shear/extensional coupling mentioned for f100 where Δf>δ 

does not occur for f001.  This is evident from Δf(f001)≤δ(f001), indicating the flexible layer 

thickness does not expand as the flexible molecules are sheared.    
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Figure 5.13:  a) Change in the flexible supercell height, Δf, as a function of f.  b) 

Intefacial opening, δ, as function of interfacial displacement, u. 

 

 The method for determining the various GSF energies was shown to work well in 

Section 5.3.1 for a series of stacking faults on a low energy (010)[100] slip system.  The 

same methods are shown in this section to work well for all of the (010) stacking faults.  

The methods were able to model the stable stacking fault structure on the (010)[100] slip 

system.  The stable stacking fault was stabilized through molecule orientation and 

conformation changes.  The elastic shear energy was also accurately predicted for the 

(010)[001] stacking faults, which are shown in Figure 5.1d to undergo extensive shear 

and interfacial opening.  The Φ(u) surface is useful because it is able to show all local 

minimums on the surface that indicate stable stacking faults.  It also shows saddle points 

and maximum energies that are barriers to any type of slip motion on the plane.  The 

surfaces can also indicate lower energy slip paths that maybe thermally activated.   

5.3.3  Other αRDX Generalized Stacking Fault Surfaces Surface 

 The interfacial flexible Φ(u) energy for all of the slip plane systems described in 

Table 5.2 are presented in Figure 5.14.  The interface with the lower surface energy in 

b)a)
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Table 4.4, either b1 or b2, was used as the slip plane interface.  The Φ(u) surfaces were 

created from a 30×30 grid of stacking fault vectors as was done for the b2(010) plane 

presented in Section 5.3.2.  Figure 5.15 shows the Φ(u) relaxation history data points 

used to construct the contours in Figure 5.14.  The color limit on the plots for Φ(u) is 

500mJ/m
2
 and data points above this are shown in black. 

 The gray line connects all of the Φ(u) data points along the edges of the 30×30 

grid.  On the Ψ(f) surface, plotted with f on the xy-axis, the grey line traces out a square 

box surrounding the regularized 30×30 grid of f points.  The Φ(u) surface is plotted with 

u on the xy-axis in Figure 5.14 and the grey square is deformed as the interface shifts due 

to shearing of the flexible layers.  The maximum energy barriers along the grey lines are 

given in Table 5.2 for rigid stacking faults and in Table 5.3 for the flexible stacking faults 

shown in Figure 5.14.  The trace of the Φ(u)-surface along the grey lines describe the slip 

systems with the shortest Burgers vectors and are presented in Figure 5.16.   

 The b2(100) plane shown in Figure 5.14a shows the highest Φ(u) energy barriers 

to dislocation motion and no local energy minima.  This plane also has the highest 

surface energy in Table 4.4, 2γs=555mJ/m
2
, making inelastic deformation on it unlikely 

(24).   The b1(001), b1(011), and b1(021) planes all have local minimums Φ(u) for 

stacking faults created with f100=0.5 as was the case for the b2(010) plane.  The b1(001), 

b1(021) planes also show local minimums in the interior of the Φ(u)-surface.   
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Figure 5.14:  Flexible Φ(u)-surfaces for the a) b2(100), b) b1(001), c) b1(011) and d) 

(021) planes as described in Table 5.1. 

a) b)

c) d)



 

 162 

 

 

Figure 5.15:  Flexible history Φ(u)-surfaces for the a) b2(100), b) b1(001), c) b1(011) 

and d) (021) planes used to construct the contours in Figure 5.14.   

 

 In Figure 5.14b, the interior b1(001) local minimum is the lowest energy stable 

stacking fault structure for this plane.  The local minimum energy at u100=0.5 for the 

b1(001)[100] stacking faults is actually a saddle point.  This results in the gray line 

skewing toward the actual local minimum at (u100,u010)=(0.5,0.6).  In Figure 5.15b, the 

Φ(u) history data indicates that partial dislocations would first travel in the [010] 

direction and then in the [100] direction to the interior local stable stacking fault.   

a) b)

c) d)
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 The b1(021) plane also shows an interior local energy minimum in Figure 5.14d 

at (u100, u01̄ 2)=(0.5,0.5).  The initial interface of the (021)[ 01̄ 2] slip system is shown in 

Figure 5.16a where the colored molecules represent the flexible layers and the black 

molecules represent a single (021) unit cell as described in Appendix C.  The stacking 

fault shown in (b) is created by shifting the pair of molecules circled in red to the location 

of the molecules circled in blue.  The two pairs of circled molecules are very similar and 

the stacking fault interface they create by switching position is very similar to the perfect 

crystal.  This results in the entire series of stacking faults with u=u100[100]+0.5[01̄ 2] 

being similar in energy to the u=u100[100] series of stacking faults.  The history data for 

the (021) surface in Figure 5.15 is more sparse than the other surfaces because the [01̄ 2] 

unit cell length is 23.621Å, almost twice as long as the other unit cell dimensions.  A 

dislocation on this slip system would have a very large energy associated with it due to 

the large Burgers vector.  Even the partial dislocation would have a Burgers vector equal 

to the length of the c-lattice length.   

 

Figure 5.16:  a) (021)[01̄ 2] slip plane and b) stacking fault for u01̄ 2=-0.54.  Molecules 

use the same coloring scheme as Figure 5.18.  Only the flexible layer of molecules are 

colored, the white molecules are part of the rigid lattice.  The black molecules show a 

single (021) unit cell on the slip plane with dimensions given in Appendix A3.  The 

stacking fault in (b) is created by displacing the pair of black molecules circled in red to 

the location of the molecules circled in blue.  This creates a stacking fault interface in (b) 

with a similar structure to the perfect crystal in (a).   
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 The Φ(u) energy trace along the u path shown by the grey lines on the Φ(u)-

surfaces in Figure 5.12 and Figure 5.14 are plotted in Figure 5.17.  One hundred stacking 

faults were used to determine the Φ(u) energy traces shown in Figure 5.17.  Figure 5.17a 

contains the slip systems with a u100 slip direction.  These slip systems all have stable 

stacking faults and the lowest unstable stacking fault energies.  Figure 5.17b presents the 

other GSF energy contours mentioned in literature (10) (38) (6) (14).  Figure 5.17c 

completes the series by presenting the other slip system GSF traces not mentioned in 

literature.  Table 5.3 summarizes the flexible stacking fault data presented in the Figure 

5.17. 

 The slip systems with a [100] slip direction are shown in Figure 5.18a where 

[100] slip is in the direction toward the reader.  Rigid/flexible composite Φ(u)-curves for 

the slip systems with u100 are shown together in Figure 5.17a and have the lowest energy 

barriers to slip.  These slip systems all produce a stable stacking fault at u100=0.5.  The 

jaggedness of the Φ(u)-curves is caused by several local minima being encountered 

during the quenching process as was shown for the (010)[100] curve in Figure 5.9.  Since 

no energy is put into the systems, the quenching process may freeze some flexible 

stacking faults into these local minima.  The (010), (001) and (021) Φ(u)-curves are 

nearly symmetric.   
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Figure 5.17:  Composite rigid/flexible Φ(u) energy traces along grey lines from Figure 

5.12 and Figure 5.14.  a) Slip systems in the u100 direction with the lowest γusf and stable 

stacking faults.  b) Slip systems from literature where (021)[01̄ 2] is an experimental slip 

system (14), (010)[001] is also an experimental slip system (14) correlated to reduced 

sensitivity to shock loading (10), and (001)[010] is related to partial dislocations in MD 

simulations (38).  c) Other slip systems completing the set for the presented Φ(u)-

surfaces.   

 

 The (010)[100] slip system has the lowest energy barrier to slip and the lowest 

stacking fault energy for all slip systems in the crystal.  In Figure 5.18, the (010) slip 

plane is between the red and blue molecules.  There is a large spacing between the red 
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and blue molecules along the extent of the (010) plane and the molecules can easily slip 

in the [100] direction.  The (001)[100] slip system has the largest energy barrier to slip in 

Figure 5.17a.  This slip plane is between the grey and purple molecules in Figure 5.18 

and is sterically hindered to [100] slip by the nitro groups circled in red.  Slip on this 

system causes the flexible molecules to change conformation by moving their nitro 

groups away from the slip planes to reduce the O..O electrostatic repulsion of the nitro 

groups.  Two sets of these nitro groups are encountered per unit cell for this slip system 

(indicated by the two circled sets between the green and grey molecules).  Slip on the 

(011)[100] and (021)[100] systems occurs on planes containing a composite of the 

unhindered (010)[100] system and sterically hindered (001)[100] system.  The energy 

barrier to slip for the (001)[100], (011)[100], and (021)[100] systems is in the range 

γusf=250-260mJ/m
2
 indicating that the steric nitro group of the (001)[100] system limits 

slip on the (011)[100] and (021)[100] systems.  The (011)[100] system is sterically 

hindered by two sets of nitro groups per unit cell and is slightly higher in γusf than the 

(021)[100] system, which is only sterically hindered by one set.   
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Figure 5.18:  (100) projection of αRDX lattice with molecules colored to differentiate the 

slip systems with [100] slip direction.  Division between grey and purple molecules is the 

(001) plane, between purple/grey and the green molecules is the (011) plane, between 

green and blue is the (021) plane, and between blue and red is the (010) plane.  The red 

circles indicate the steric nitro group that inhibit slip on the (001), (011), and (021) 

planes. 

 

 Figure 5.19 shows a projection of the flexible molecule layer for each of the [100] 

slip systems shown in Figure 5.18.  The same coloring scheme is used in both figures.  

The initial perfect crystal slip plane is shown in the left column of Figure 5.19 and the 

stacking fault structure for u100=0.5 is shown on the right column.  For u100 there are two 

main types of stacking faults.  The first type occurs for the (021)[100] and (010)[100] in 

Figure 5.19 b and c, where the stacking fault structure recreates an interface close to the 

perfect crystal structure.  This can be observed by the circle regions in Figure 5.19b and 

c, which are nearly the same between the stacking fault and initial structure.  The second 

type causes all of the molecules on the interface to take on a similar interfacial 

configuration.  For the (011)[100] stacking fault in Figure 5.19a the perfect crystal 

contains interlocked molecule groups across the interface circled in red.  In the stacking 

fault structure, all of the molecules take on a similar stacking fault structure circled in 
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blue.  This is also true in Figure 5.19d for the (001)[100] slip system where the 

interlocking nitro groups (red circles) flatten out in the stacking fault structure (blue 

circles).  Figure 5.14 shows the (001)[100] stable stacking fault shown in Figure 5.19d to 

be at a saddle point energy and the interface slips considerably in the u010 direction.  

 

Figure 5.19:  Projections of the flexible molecule layers of the stacking fault simulation 

cells where the left column contains the initial perfect lattice and the right column 

contains the stacking fault structures at u100≈0.5.   Each lattice is 3 unit cells wide in the 

[100] direction.  The coloring scheme from Figure 5.18 is used here.  The circles indicate 

important features between the perfect crystal and stacking fault.  The slip systems are a) 

(011)[100], b) (021)[100], c) (010)[100], and d) (001)[100]. 

 

 The (011)[100] Φ(u) curve in Figure 5.17a is asymmetric with γusf=255 mJ/m
2
 at 

u100=0.25 and γusf=295 mJ/m
2
 at u100=0.75.  This is due to the interlocked green and grey 

molecules in Figure 5.19a.  As the grey molecules are shifted in the [100] direction, in 

Figure 5.19a, they easily slip over the first group of green molecules and create the 

stacking fault.  As they continue moving in the [100] direction they encounter the group 

of green molecules that they are initially interlocked within the perfect crystal.  The grey 
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molecules must shift over this set of green molecules, which is responsible for the 

increase in energy at u100=0.75.  It would be difficult for an actual dislocation to move in 

the opposite direction, [01̄ 1], because the interlocked molecules would move through 

one another instead of sliding over one another.  These interlocked molecules were also 

shown in the decohesion separation simulations in Section 4.3 to hold the interface 

together. 

 Ramos et al. (14) observed deviations in slip traces of the (010), (011), and (021) 

slip planes, which they attributed to cross slip if these planes all share a common slip 

direction.  This work supports this notion of cross slip.  First, the (001), (010), (011), and 

(021) planes all share the [001] slip direction making cross slip possible.  Second, all of 

these slip systems produce stable stacking faults.  Stable stacking faults are associated 

with partial dislocations, which are an essential element of cross slip (93).  Third, the 

barrier to slip (γusf) on several of these systems is nearly equal and caused by the same 

nonbonded nitro group interaction.  Alternatively, the slip trace deviation could be a 

result of alternately activated (010) and (100) slip planes, which would appear as slip on 

the (011), (021) or even higher aspect ratio planes. 
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 The likelihood of forming partial dislocations is determined by the ratio of the 

stable to unstable stacking fault energy in Table 5.3.  For γsf/γusf near unity a full 

dislocations will be nucleated.  For intermediate to low ratios, partial dislocations will be 

produced (1).  The ratios given for αRDX in Table 5.3 for (011)[100] are in the same 

range of nickel, which was shown in MD simulations to nucleate partial dislocations that 

were able to extend across 20nm grains without nucleating a trailing partial (1).   

 The asymmetric (011)[100] and (001)[010] Φ(u) curves in Figure 5.17 also 

increase the likelihood of partial dislocations under monotonic loading.  A dislocation 

moving on these slip systems encounters two energy barriers.  The first energy barrier is 

γusf listed in Table 5.3 and is lower than the second energy barrier.  This asymmetry in 

energy barriers makes it easy to emit a partial dislocation but difficult for the partial 

dislocation to traverse the second barrier to create the full dislocation.  In this case, it is 

energetically favorable to accommodate inelastic deformation on these slip planes by 

emitting a series of partial dislocation on parallel slip planes.  The low γsf/γusf ratio in 

Table 5.3 makes it easy for these systems to unslip back to the perfect crystal upon 

unloading.  This would make these partial dislocations difficult to observe in experiments 

at low pressures.   

 The atomic configurations for the series of stacking faults created for the 

asymmetric (001)[010] Φ(u) curve are presented clockwise in Figure 5.20.  This slip 

system is orthogonal to the (001)[100] slip system shown in Figure 5.19d and the 

molecules in Figure 5.20 use the same coloring scheme.  The first energy barrier 

configuration at u010=0.25 is shown in Figure 5.20b.  In this configuration the molecules 

start changing their conformations by moving their nitro groups that intersect the slip 



 

 171 

 

plane.  This allows them to move over the first molecule pair on the interface to create the 

stable stacking fault in (c) at u010=0.56.  In the stable stacking fault the molecules on the 

slip plane change from the AAE to AEE conformation.  The highest energy stacking fault 

is shown in (d) for u010=0.75 where the AEE interfacial molecules must slip over one 

another.  This slip system and stable stacking fault are likely related to the slip direction 

that produces the stable stacking fault at (u100,u010)=(0.5,0.6) on the Φ(u)-surface in 

Figure 5.14b. 

 A thermalized flexible ΨF(f)-curve was determined for this system by Cawkwell 

et al (38) for f010=0 to 0.2[010] at zero pressure and under an applied normal traction, 

ηn=1GPa.  Normal traction was shown to produce a local energy minimum at f010=0.16 

that they did not observe at zero pressure.  They found this stable stacking fault to be 

related to loops of partial dislocations observed in MD simulations of shock compression 

(38).   The asymmetry of the (001)[001] Φ(u) curve shown in Figure 5.17b would also 

favor the pileups of partial dislocations.  The dislocation pileups in their work were 

characterized by a change in molecule conformation from AAE to AEE.  Our simulations 

also show this same AAE to AEE conformation change at the stable stacking fault in 

Figure 5.20c for f010=0.56.   

 In the oriented shock simulations by Cawkwell et al. (38), the loops of partial 

dislocations resulted in a change in molecular packing from 14 nearest neighbors to 

alternating planes of 13 and 15 nearest neighbors.  In Figure 5.20a, the (001)[010] slip 

system is dependent on the slip direction as was the case for the (011)[100] slip system.  

The molecules on the slip plane interface will easily slip over one another in the [010] 

direction but will become entangled in the [01̄ 0] direction.  However, the (001) slip 
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plane offset by ½[001] has the opposite properties and will easily slip in the [01̄ 0] 

direction.  This feature could explain the alternating planes of stacking faults with 13 or 

15 nearest neighbors by Cawkwell et al. (38).   

 

Figure 5.20:  Series of stacking faults on the (001)[010] slip system using the same 

molecule coloring scheme from Figure 5.19.  Only the flexible molecule layers are 

shown.  The series of stacking faults move clockwise where a) is the initial perfect 

crystal, b) first lower energy unstable stacking fault, c) stable stacking fault configuration, 

and d) high energy unstable stacking fault structure.   

 

 Rice’s criterion [20] is applied to the data in Table 5.2 and Table 5.3 by 

comparing 2γs to γusf to determine if the response of this slip system is likely to be brittle 

or ductile.  For the brittle to ductile ratio, α=γusf/2γs, given in Table 5.3, Rice’s criterion 

predicts ductile for α<1 and brittle for α>1.  In this work the stacking faults were allowed 

to open unconstrained across the slip plane.  This limits γusf ≤ 2γs or α ≤ 1, which severely 

limits the applicability of Rice’s criterion to this work.  However, the ratio α does provide 

a method of qualitatively ranking the different slip systems for the likelihood of slip or 

cleavage. 

a) u010=0 b) u010=0.25

d) u010=0.75 c) u010=0.56

[010]

[001]
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Table 5.2:  Rigid free surface energy (mJ/m
2
) from Table 4.2, unstable stacking fault 

energy (mJ/m
2
) and associated stacking fault vector, and brittle to ductile ratio, α=γusf/2γs. 

Slip System 2γs γus fus α 

b2(100)[010] 
591 

609 0.42 1.0 

b2 (100)[001] 359 0.5 0.6 

b2 (010)[100] 
384 

247 0.5 0.7 

b2 (010)[001] 383 0.5 1.0 

b1(001)[100] 
450 

430 0.12 1.0 

b1 (001)[010] 445 0.9 1.0 

b1 (011)[100] 
509 

397 0.35 0.8 

b1 (011)[01̄ 1] 497 0.5 0.9 

b1 (021)[100] 
429 

365 0.3 0.9 

b1 (021)[01̄ 2] 416 0.17 1.0 

 

Table 5.3:  Flexible lattice free surface energy (mJ/m
2
) from Table 4.2, unstable/stable 

stacking fault energy (mJ/m
2
) and associated stacking fault vector (f), brittle to ductile 

ratio (α=γusf/2γs), ratio of stable to unstable stacking fault energies, and interpretation of 

slip plane from literature.  For asymmetric Φ(u) traces, the lower energy γusf is given. 

Slip System Interface 

(plane)[direction] 
2γs γusf fusf α γsf fsf γsf/γusf Experiment 

 555 

542 0.5 1.0 
-- -- -- Cleavage

a
 

b2(100)[001] 325 0.5 0.6 -- -- -- Cleavage
a
 

b2(010)[100] 

367 

164 0.2 0.4 101 0.5 0.6 Slip
b
 

b2(010)[001] 
351 0.5 1.0 -- -- -- 

Slip
a, c

, Cross Slip
b
, 

Insensitive
d
 

b1(001)[100] 

408 

260 0.25 0.6 206 0.5 0.8 Cleavage
a
 

b1(001)[010] 
260 0.4 0.7 230 0.5 0.9 

Cleavage
a
, Partial 

Dislocation
e
 

b1(011)[100] 

465 

255 0.25 0.6 140 0.5 0.5 Slip
b, c

 

b1(011)[01̄ 1] 
430 0.7 0.9 

-- -- -- -- 

b1(021)[100] 

404 

250 0.25 0.6 187 0.5 0.8 Slip
b, c

 

b1(021)[01̄ 2] 291 0.2 0.7 177 0.45 0.6 
Slip

b, c
 

a
Reference (7), 

b
Reference (14), 

c
Reference (6), 

d
Reference (10), 

e
Reference (38)  
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 In the last column of Table 5.3, experimental observations are noted for each of 

the slip systems.  There is strong agreement between α=2γs/γusf from the present 

calculations and most of the experimental data.  There is disagreement for the 

b2(100)[001] system, which is predicted to be ductile but is an experimental cleavage 

plane.  The high surface energy for the (100) plane causes α<1 but this also makes it the 

most unlikely system to undergo any kind of deformation according to attachment energy 

ranking (24).   

 The stacking fault simulations estimate (010)[001] to be brittle, α=1, which 

disagrees with experiments that showed this to be a slip (6) or cross slip (14) system.  

Dang et al (10) observed a reduced sensitivity to initiation for shock directions with a 

[001] component.  They proposed these shock directions would activate slip on the 

experimentally observed (010)[001] system.  The Φ(u)-curve for the (100)[001] system is 

shown in Figure 3.4.4b.  There are no local energy minimums on this slip system and it 

would emit full dislocations.  However, the (010) surface energy is low resulting in α~1 

in Table 5.3.  The (100)[001] system shown in Figure 5.17c can also resolve slip in the 

[001] direction and the high surface energy makes α=0.6.  This system also does not have 

a local energy minimum and would emit full dislocations.  Both slip systems are 

sterically hindered, the (010)[001] system shown in Figure 5.1b by nonbonded H..H 

interactions and the (100)[001] system by nitro groups.   
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5.4  Validation 

5.4.1  (010)[100] Stable Stacking Fault Bulk Properties 

 In this section we determine the fully relaxed αRDX stacking fault energy for the 

stable stacking fault created on the b2(010)[100] slip system by shifting the lattices by 

½[100] relative to one another.  This stacking fault occurs at the local energy minimum in 

Figure 5.7 and is the stable stacking fault configuration shown in Figure 5.19c in Section 

5.3.1.   

 The experimental unit cell given by Choi and Prince (25) is used to create this 

stable stacking fault structure.  The origin of the unit cell is shifted by ¼[010] to create a 

unit cell with faces given by the low energy b2 interface shown in Figure 4.4.  A 3×3 

layer of b2 unit cells are created on the (010) plane.  Two types of stacking faults are 

created in this work.  The first type shown in Figure 5.21a is called the orthogonal 

stacking fault and is created with orthogonal simulation cell vectors.  The orthogonal SF 

is created by stacking 2n layers of unit cells in the [010] direction and then shifting the 

top n layers by the stacking fault vector, f=½a[100].  The simulation cell now contains 

two stacking faults as shown in Figure 5.21a where one is within the simulation cell and 

another stacking fault is created between the periodic images.  The interface between the 

stacking faults must be opened to accommodate the rigid stacking fault structure, which 

was shown to open by Δr=1.4 Å in Figure 5.6.  This is accomplished by separating the top 

n layers by Δr=1.25Å from the bottom n layers and then increasing the simulation cell 

vector in the b-direction by 2Δr=2.5Å.  

  The second type of stacking fault shown in Figure 5.21b-d is call the skewed 

stacking fault, created from skewed simulation cell vectors.  It is created by replicating 
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the 3×3 layers n times in the [010] where n is the number of layers between stacking 

faults.  The simulation cell lattice vector initially in the [010] direction is skewed along 

the stacking fault vector, f=½a[100] and the length of the simulation vector is increased 

the b-direction by Δr=1.25Å.  This creates a single stacking fault between the periodic 

images in the [010] direction. 

 The stacking faults in Figure 5.21a and b both create stacking faults separated by 

n=1 layer and are energetically equivalent.  The orthogonal SF shown in Figure 5.21a 

required the simulation cell to be twice as large as the skewed SF in Figure 5.21b.  For 

n=3 to 14, the skewed SF is used to create stacking faults.  The orthogonal SF must be 

used for n=1 or 2 because the simulation must be at least twice as large as the real space 

cut-off used to calculate the nonbonded interactions, which was rcut=15Å.   

 

Figure 5.21:  Stacking fault simulation cells where simulated material is shown in gray 

and periodic images are shown by the dashed lines.  The black arrows are the simulation 

cell vector.  a)  Orthogonal stacking fault created with orthogonal simulation cell vectors.  

A stacking fault is created within the simulation cell and on the periodic boundary.  b) 

Skewed stacking fault created by skewing the simulation cell vectors to create a single 

stacking fault between periodic images. 

 

 In these simulations, all of the molecules within the simulation cell are modeled 

as fully flexible molecules.  These stacking fault structures are minimized using an 
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isenthalpic ensemble at P=0GPa and a Langevin thermostat.  No constraints are placed on 

the isenthalpic ensemble and lattice vectors and their angles relative to one another are 

able to change during quenching.  The structure is initially equilibrated at T=300K for 

0.1ps with 0.1fs integration steps to allow the flexible molecules on the stacking fault 

interface to relax and assume the stable stacking fault structure.  The structure is then 

quenched from T=300K to 0K over 10ps with a 1fs integration timestep.  The quenched 

structure is then equilibrated at T=20K for 10ps and then quenched again from T=20K to 

0K over 10 ps.  The final equilibration and quenching step is an attempt to bring the 

structure closer to the minimized configuration.  The quenched stacking fault structure is 

then recursively minimized with atomic and volume relaxations. 

 Results from the stable stacking fault simulations are shown in Figure 5.22 where 

the x-axis is n, the number of unit cells between stacking faults.  The black line is for the 

orthogonal SF’s in Figure 5.21a, which contain multiple stacking faults within the 

simulation cell. The red line is for skewed SF’s shown in Figure 5.21b, which uses a 

skewed simulation cell to create a stacking fault between the periodic images.  Both types 

of stacking faults were created for n=3 and 4 and the energy and geometry data in Figure 

5.22 agree well for both methods.   

 Figure 5.22a shows the change in energy per molecule caused by the stacking 

fault given by  

ΔU=USF-UbulkZSF/Zbulk (5.18) 

where USF is the energy of the system with the stacking fault, Ubulk is the energy of the 

perfect crystal, and ZSF and Zbulk are the number of molecules in the stacking fault and 

perfect crystal simulation cell, respectively.  The amount of perfect crystal within the 
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simulation cell is increased by increasing the distance between stacking faults, which 

lowers the energy per molecule of a single stacking fault. 

 

Figure 5.22:  Stacking fault simulations where the black line is for orthongal SF 

simulation cells shown in Figure 5.21a and the red line is for the skewed SF simulations 

cells shown in Figure 5.21b-d.  The x-axis is the number of layers between stacking 

faults.  a) Change in energy due to the stacking fault per molecule and b) per unit area of 

stacking fault interface.  c)  Change in b-lattice length per stacking fault.   

 

 The stacking fault energy per unit area of stacking fault interface is shown in 

Figure 5.22b and is given by 

Ψ=(USF-UbulkZSF/Zbulk)/nSFA (5.19) 

where A is the area of the (010) plane given by 3|b|×3|c| and nSF is the number of stacking 

faults in the simulation cell.  Equation (5.19) scales up the bulk energy, Ubulk, to the size 

of the stacking fault super cell.  The skewed SF’s have a single stacking fault (nSF=1) and 

the orthogonal SF’s have nSF≥2.   

 Figure 5.22b shows the lowest stacking fault energy to occur for n=1, which was 

γsf(n=1)=79.7mJ/m
2
, and not at the largest stacking fault separation distance of n=20.  In 

This is an unexpected result and could be due to a number of different factors.  Figure 

5.22a, n=1 is by far the highest energy structure and n increasing n decreases the energy 

per molecule in the system.  For n=1, the stacking faults are separated by |b|=11.33Å, 
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which should be far enough to shield atomic interactions between stacking faults.  This 

suggests that the decrease in SF energy for n=1 compared to n=20 is due to the strain 

field the stacking faults induce on one another.  The maximum stacking fault energy 

occurs for n=3 or 4 and for n>4 the stacking fault energy decreases.  At n=20, the 

stacking fault energy is γsf(n=20)=87.5 mJ/m
2
 and may slightly decrease further for larger 

n.   

 The stable stacking fault causes the b-lattice vector to increase in length.  Each 

stacking fault was initially separated by 1.25Å in the [010] direction.  The flexible 

molecules next to the stacking fault change their conformation and orientation during 

quenching allowing them to reduce the interfacial energy and the separation.  Figure 

5.22c gives the increase in the b lattice length per stacking fault given by 

Δf=(LSF-LbulkZSF/Zbulk)/nSF (5.20) 

where LSF and Lbulk are the simulation cell length in the [010] direction for the stacking 

fault and bulk structure, respectively.  The change in lattice length for each stacking fault 

decreases as n increases.  Increasing the number of layers between stacking faults 

increases the amount of bulk crystal to absorb the change in lattice length.  However, this 

difference is small where Δf(n=1)=0.30Å and Δf(n=20)=0.22Å.  The lattice vectors are free 

to expand or contract due to the isenthalpic ensemble with a set point pressure of 

P=0GPa.  The strain resulting from the lattice expansion is not accompanied by a change 

in stress and the stacking fault does not create any elastic energy in the system. 

 A second set of simulations are used to determine the interaction of two stacking 

faults separated by a variable number of layers.  For these simulations a single stacking 

fault is created within the simulation cell and a second stacking fault is created on the 
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periodic boundary, as shown in Figure 5.23a.  The first stacking fault is created a fixed 

distance of na=10 layers from the bottom of the simulation cell.  This stacking fault is 

separated by nb=1 to 10 layers from the top of the simulation cell where the second 

stacking fault is created.  The previous set of stable stacking fault simulations show the 

stacking faults to be weakly interacting for n=10 in Figure 5.22b.  The first stacking fault 

disregisters the lattice and the second stacking fault returns the lattice to the unfaulted 

structure.  This creates a lattice containing a layer of faulted material nb layers thick.  The 

same equilibration, quenching, and minimization procedure used for the other stacking 

fault simulations are used again here.   

 

Figure 5.23:  a) Double stacking fault simulation cell where layers between consecutive 

stacking faults is nb=1-10 and fixed number of layers between stacking faults is 10.  b)   

Stacking fault energy, which converges to the stacking fault energy for n=10 in Figure 

5.22b, shown by the dashed line and labeled on the plot. 

 

 The stacking fault energy given by equation (5.19) with nSF=2 is plotted in Figure 

5.23b.  The lowest energy stacking faults are again found for nb=1. The maximum 

stacking fault energy occurs for nb=3.  For nb>3 the stacking fault energy converges to 

γsf(n=10)=88.9mJ/m
2
 from Figure 5.22b and shown by the dashed line on the chart.  This 

set of simulations shows that two stacking faults next to one another (nb=1) are lower in 
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energy than a single stacking fault in the bulk material where γsf(nb=1)=84.4mJ/m
2
 and 

γsf(n=20)=87.5mJ/m
2
.  This may indicate that a leading partial dislocation would be 

closely followed by a trailing partial. 

5.4.2  αRDX Flexible Layer Thickness 

 Elastic shearing of the flexible molecule layer is an unwanted side effect of 

allowing the flexible molecules to change conformation and orientation to reduce the 

stacking fault energy.  The flexible layer thickness, hf, must be large enough to allow for 

molecule orientation and conformation changes but small enough to limit shear motion.  

To study the effect of hf, three flexible models will be compared for the b2(010)[100] 

stacking faults: hf=|b|/2, hf=|b|, and hf=20|b|.  The results from the model with hf=|b|/2 

were presented in Section 5.3.1.  The model with hf=20|b| is the skewed stacking fault 

from Section 5.4.1 containing only flexible molecules and no vacuum layer or rigid 

molecule layers. 

 All three models stabilize the stable stacking fault configuration at f100=u100=0.5.  

The stable stacking fault energies for the systems were found to be γsf=101, 95, and 88 

mJ/m
2
, respectively.  The interfacial opening at the stable stacking fault was δ=0.24, 0.23 

and 0.22 Å, respectively.  The hf=20/|b| model is the least constrained and the most 

physically realistic model.  The percent error between hf=20/|b| and the other models for 

γsf  is 14% for hf=|b|/2, which drops to 8% for hf=|b|.  Increasing hf also drops the error in 

interfacial displacement from 10% to 5%.  This is the only structure the hf=20/|b| model 

is able to stabilize.  Due to the permitted flexibility of the hf=20/|b| model, the fault will 

slip completely into the stable fault configuration or unslip completely into a sheared 

lattice configuration.    
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 Both hf=|b|/2 and |b| start from the same rigid stacking fault structures but the 

change in the flexible layer thickness allows them to shear differently.  The amount of 

shear stress and strain that develops in the flexible layers is shown in Figure 5.24a and b 

where the black data is for hf=|b|/2 and red data is hf=|b|.  Even though the hf=|b| layer is 

more mobile, it develops a lower amount of the shear stress and strain in the flexible 

layer.  The total elastic strain energy in the flexible layers is shown in Figure 5.24c and is 

nearly equal for both layer thicknesses.  

 

Figure 5.24:  Comparison of a) shear stress, b) shear strain and c) total elastic strain 

energy in the flexible layers for hf=|b|/2 (black) and hf=|b| (red).   

 

 The final flexible Φ(u100) energies are shown in Figure 5.25a.  The curves are 

nearly identical for both layer thicknesses.  The hf=|b| model gives slightly less data 

points in unstable regions.  Both models are in exact aggreement at the the unstable 

stacking faults, f100=0.2 and 0.8, with unstable stacking fault energy, γusf=164mJ/m
2
.  The 

largest variation in Φ(u100) occurs near the stable stacking fault where the increased layer 

thickness of hf=|b| allows the molecules to reach a lower energy closer to the actual value 

as previously discussed.  The interfacial opening in Figure 5.25b shows similar 
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agreement between the two models.  The maximum opening at the unstable stacking fault 

(f100=0.2 or 0.8) for both models is 1Å. 

  

Figure 5.25:  a) Flexible Φ(u) energy for hf=|b|/2 (black) and hf=|b| (red).  Flexible 

intefacial opening, δ.   

 

 Both layer thicknesses are in good agreement for all of the f100 flexible stacking 

faults.  The increased molecule mobility for the hf=|b| model allows it to reach a lower 

stable stacking fault energy that is in better agreement with the actual value given by 

hf=20|b|.  However, both hf=|b| and hf=|b|/2 are in perfect agreement for the unstable 

stacking fault energy and interfacial opening.  The additional degrees of freedom in the 

hf=|b| model makes it more computationally expensive and difficult to quench.  Given the 

fact that the GSF energy is a theoretical construct useful for estimating properties of 

crystals, hf=|b|/2 was used to determine all of the GSF energies in Section 5.3 and is a 

limiting case that accounts for the molecular features while still permitting unstable 

stacking fault configurations.   

 The flexible layer thickness used here as |b|/2 is the interplanar spacing, dhkl, 

specified in the attachment energy calculations.  This interplanar spacing was adjusted by 

the extinction conditions of the space group, reducing it from |b| to |b|/2.  The space 
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group symmetry operators such as a glide plane, screw axis, and inversion center are 

necessary to create a translationally invariant unit cell but do not create a unique layer of 

molecules.  Instead, layers in the unit cell are just a rotation or reflection of one another.  

In this work, using a flexible layer thickness of dhkl includes all of the degrees of freedom 

of a unique layer of molecules.  For the other slip plane, hf=dhkl, as specified in Table 5.1.   

5.4.3  Validation of Interface Selection 

 In RDX and several other crystals, each crystal plane contains two unique 

interfaces, which we identify as b1 and b2.  In Section 4.4, decohesion was shown to 

occur at a lower maximum stress on the interface with the lower attachment energy.  

Likewise, slip will occur on the interface with the lower unstable stacking fault energy 

determined from the GSF energy.  The GSF energy calculation is computationally 

expensive and it is therefore preferred to reduce the number of planes it is determined for.  

The attachment energy is commonly used to identify weakly bonded layers in a crystal 

that are likely to undergo slip or cleavage (24) (5).  In this work, the attachment energy is 

only used to rank the interfaces on each plane for slip or cleavage.  This is opposed to 

using it to rank planes against one another, which was shown to be only ~50% accurate in 

identifying the experimental slip or cleavage planes (5).  

 In this section the GSF energy will be determined for both the b1 and b2 

interfaces for the (010)[100], (010)[001], (011)[100], and (011)[01̄ 1] slip systems.  The 

(010) and (011) planes are experimental slip planes.  The GSF energy for the (010)[100] 

and (011)[100] experimental slip systems were also shown to have stable stacking fault 

structures in Section 5.3.3.   It will be shown that for these slip systems the attachment 

energy identifies the correct slip plane interface.   
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 The two different (010) slip plane interfaces are shown in Figure 4.4.  The b1 

interface between the blue and grey molecules contains the molecules on the face of the 

experimental unit cell (25).  The b2 interface shown between the red and grey molecules 

was created in the interior of the unit cell.  The b2 interface was shown in Table 4.1 to be 

lower in attachment energy by 10.3kcal/mol/molecule or 208 kJ/m
2
.  This is the largest 

difference in b1-b2 attachment energies for all the planes.  It would be expected that such 

a large difference in attachment energies causes the GSF energy on these two interfaces 

to be very different.   

 In Figure 5.26, the Φ(u) energy for the (010) plane is shown for the b1 interface in 

red and the b2 interface in black.  The b1 interface has a much higher GSF energy for 

both slip systems.  In Figure 5.26a, the b1(010)[100] system also shows a stable stacking 

fault that is ~50mJ/m
2
 higher than the b2 stable stacking fault.  Most of the b1(010)[100] 

stacking faults shear back to u100=0 or 1 or to the stable stacking fault.  The b1(010)[001] 

stacking faults in Figure 5.26b are are very unphysical and result in a very high GSF 

energy.  Only a portion of the Φ(u) energy is shown because for 0.1<u001<0.9 the energy 

increases to >1000mJ/m
2
.  For these stacking faults it would be much more energetically 

favorable for the interface to create a free surface.  However, the interaction forces did 

not result in a normal force large enough to separate the flexible stacking fault surfaces.  

This is one instance where the rigid stacking faults provide unreasonable starting 

configurations for the flexible stacking faults.  



 

 186 

 

 

Figure 5.26:  a) Flexible Φ(u) energy for the (010) interface where the b1 interface is 

shown in red and the b2 interface is shown in black.  a) (010)[100] slip system b) 

(010)[001] slip system.   

 

 The (011) layers used to create the b1 and b2 slip plane interfaces are shown in 

Figure 4.6.  The b1 slip plane is between the blue and grey molecules and has a lower 

attachment energy than the b2 layer shown between the red and grey molecules.  The 

difference in the attachment energies (Table 4.1) for these two layers is only 

1kcal/mol/molecule or 34 mJ/m2.  This is the second smallest difference between 

attachment energies for the two b1 and b2 interfaces for a plane.  The b2 interface was 

shown to undergo decohesion at a slightly smaller maximum stress in Figure 4.17 in 

Section 4.3.  With the attachment and free surface energies being so close, the GSF 

energies should also be similar.     

 Figure 5.27 gives the Φ(u) energy for the (011) plane where the b1 interface is 

shown in black and the b2 interface in red. In Figure 5.27a for the (011)[100] slip system, 

the b1 interface is lower in energy.  The b2 interface does not show a stable stacking fault 

and γusf=450mJ/m2; 150mJ/m
2
 higher than the b1 interface.  The free surface energies for 

the b1 and b2 interfaces given in Table 4.4 for 2γslab are 465 mJ/m
2
 and 521mJ/m

2
, 

respectively.  The b2 surface γusf is high enough to create a free surface on the b1 
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interface but not the b2 interface.  In Figure 5.27 for the (011)[01̄ 1] slip system, γusf for 

the b2 interface is 380mJ/m
2
; 50 mJ/m

2
 less than the b1 interface at 430 mJ/m

2
.  This is 

still a high γusf and the ratio γusf/2γslab=0.8 means this interface is still close to being brittle 

according the Rice criterion (18).    

 

Figure 5.27:  a) Flexible Φ(u) energy for the (011) interface where the b1 interface is 

shown in black and the b2 interface is shown in red.  a) (011)[100] slip system b) 

(011)[01̄ 1] slip system.   

 

 Overall, the attachment energy works well in identifying the probable slip 

interface when multiple unique layers exist on a given plane.  The attachment energy is 

easy to calculate and is implemented in several commercial molecular modeling suites 

like Accelrys Material Studio.  Several of the flexible stacking fault simulations the 

b1(010) simulations failed due to high energy starting configurations.  For the (011)[01̄ 1] 

sytem, the attachment energy predicted the wrong slip plane interface.  However, the 

unstable stacking fault energy was still high and would probably result in cleavage. 
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5.4.4  Validation of Simulation Method: Nickel GSF 

 The interfacial GSF energy, Φ(u), given by equation (5.2) will be validated here 

for Nickel.  Several studies in literature have determined the GSF energy of nickel and 

will be used to validate the interfacial GSF energy method against.  Nickel crystallizes 

into an FCC lattice with 4 atoms per unit cell.  The unit cell contains four Ni atoms with 

lattice constant a=3.52Å.  On the {111} close packed planes in FCC crystals, the layer 

packing follows an ABCABCABC order shown in Figure 5.28b.  An intrinsic stacking 

fault results when the blue plane is displaced relative to the red plane to create the 

stacking sequence ABCBCABCABC.  Local stacking faults occur on the {111}<112> 

family of slip systems and result in a local minimum of the GSF energy curve.   

 In this section the GSF energy surface will be determined for the (111) plane.  

The Ni unit cell is cubic and the lattice vector given by [hkl] is normal to the plane given 

by (hkl).  The Ni lattice is oriented in the simulation cell as shown in Figure 5.28 where 

the (n,q,t) orthonormal coordinate system describing the slip plane is n=[111], t=[2̄ 11] 

and q=[011̄ ].  In Figure 5.28, n and t are shown by the axes where n=[111] is up and 

t=[2̄ 11] points left.  Slip in the [2̄ 11] direction creates a stacking fault when f211=a   as 

shown in Figure 5.28c.  The Ni unit cell is replicated to give 15 complete lattices normal 

to the slip plane and a 3×3 unit cell slip plane in the [2̄ 11] and [011̄ ] directions.  The 

simulation cell is 2D periodic in the plane of the slip system, and nonperiodic in the n-

direction.   
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Figure 5.28:  a) Nickel simulation cell used for (111) stacking fault simulations.  Red and 

blue layers are treated as flexible atoms.  The grey region represents the rigid Ni lattice. 

b)  Cubic close packed layer sequence ABCABC.  c) Intrinsic stacking fault with layer 

ABCBCA created by shifting the blue layers of atoms in the [02̄ 1] direction.   

 

 The potential function describing the Ni atoms is given by the embedded atom 

model (EAM).  EAM potentials describe atomic interactions based on the local atomic 

density and separation distance.  The density dependence describes the electronic 

bonding of atoms and is determined by fitting the model to Density Functional Theory 

(DFT) simulations (50).  The Ni potential used here was determined by Mishin and 

Farkas (MF) (94).  The MF potential was used in large scale simulations of dislocation in 

nickel nanocrystals (1).  It was also used to determine GSF energies in Nickel (95) and 

those results will be used to here as validation.  The simple Ni crystal with the EAM 

potential has a much smoother potential energy surface than the SB potential applied to 

RDX and therefore will be much easier to minimize.   

 Five different GSF energies are determined and presented in Figure 5.29 for 

(111)[2̄ 11] slip system.  The GSF curves shown in Figure 5.29 are created from 100 

stacking faults created for f211=0 to 4.31Å.  The GSF energy given by rigidly displacing 

the lattices relative to one another across the slip plane by f results in Ψo(f) given by 

equation (5.1) and is shown in red.  This is the unrelaxed and highest energy structure.  
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The energy of the atomic configuration given by Ψo(f) is then minimized by allowing the 

atoms to move normal to the slip plane with the volume held fixed, giving the GSF 

energy Ψmin(f), shown in green.  This is the lowest energy configuration.  This same 

procedure is repeated with volume relaxation normal to the slip plane giving the GSF 

energy ΨminΔ(f), shown in blue.  For some materials this has the lowest energy.  These are 

the common procedures used to determine the GSF energy in literature (90) (95) (96) 

where in-plane atomic motion is not allowed.  The stable and unstable stacking fault 

energies shown in Figure 5.29b are listed in Table 5.4 along with those given in literature 

(95). 

   The other two GSF energies given in Table 5.4 are those presented in Section 5.1.  

These are alternative methods of reducing the GSF energy given by Ψo(f).  The 

configuration given by Ψo(f) is treated as two separate rigid bodies that separate across 

the interface by Δr, resulting in the rigid GSF energy ΨR(f) shown in black.  For Ni, this 

results in only a slight decrease in energy because the slip plane is unobstructed.  The 

ΨR(f) configuration is then restarted with a flexible layer of nickel atoms, shown by the 

red and blue layers in Figure 5.28, which are allowed to shear, resulting in the interfacial 

GSF energy, Φ(u) given by equation (5.2), and shown by the purple data points.  The 

purple line is from the minimums of the Φ(u) relaxation histories shown in Figure 5.30 

and Figure 5.32.  Each red and blue flexible layer thickness is one unit cell in the [111]-

direction, hf=a(3)
½
=6.09Å.  
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Figure 5.29:  a) GSF energies of the entire (111)[02̄ 1] stacking fault.  b) GSF energies 

up to the stable stacking fault configuration.   

Table 5.4:  Comparison of stable, unstable, and maximum GSF energies. 

 γusf (mJ/m
2
) γsf (mJ/m

2
) γmax (mJ/m

2
) 

Gao
a
 Ψo(f) 405 129 NA 

Ψ(f) 405 129 3130 

ΨminΔ(f) 367 125 1805 

Ψmin(f) 368 125 1466 

ΨR(f) 406 141 3135 

Φ(u) 360* 125 1750* 
a
Reference (95), *From Φ(u) relaxation history 

 The flexible layers allow the interface of the flexible stacking fault structures to 

shear all the way to the local minimums on the GSF energy curve.  This is indicated by 

all of the purple dots in Figure 5.29 being bunched up near the origin, local minimum, or 

next equivalent lattice site at u211=4.31Å. Figure 5.30 shows the region up to the stable 

stacking fault.  The relaxation histories for two data points are shown by the colored lines 

in Figure 5.30a.  The relaxation histories show the path the interface takes as the flexible 

atoms are quenched from the rigid stacking fault structure.  The green line is for 

f211=0.73Å, which shears back to the origin where the interface follows the green line as 

the energy is relaxed.  The interface oscillates around the origin as the kinetic energy is 

quenched from the system.  In this configuration the system only contains elastic shear 
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energy and no energy due to a mismatched lattice.  The blue line is for f211=0.91Å and the 

interface shears to the stable stacking fault structure, u211=1.35Å.  The kinetic energy 

allows this stacking fault interface to overshoot the minimum energy curve near the 

stable stacking fault.  As the kinetic energy is quenched from the system the interface 

settles to the stable stacking fault structure.  The interfacial GSF energy given by 

equation (5.2) uses the potential energy and is really only applicable in the absence of 

kinetic energy.  The interfacial GSF energy becomes less accurate as the kinetic energy 

or temperature of the system increases, leading to the GSF energies that are less than the 

minimum energies.  In the stable stacking fault configuration given by the blue line the 

system contains elastic shear energy and energy due to the stacking fault.  All of the 

relaxation histories are shown in Figure 5.30b and the minimum energy from the 

relaxation histories are used to determine the Φ(u) relaxation history shown by the purple 

line in Figure 5.29. 



 

 193 

 

 

Figure 5.30:  a) (111)[02̄ 1] rigid ΨR(f) energy shown by black dots relaxed to the 

flexible interfacial Φ(u) energy along the relaxation history paths.  b) All of the relaxation 

histories.  Error caused by kinetic energy causes some of the relaxation history data to fall 

below the ΨminΔ(f) curve, shown by the black line. 

 

 The amount of shear stress that develops in the flexible layers is shown in black in 

Figure 5.31a.  The stress is calculated from the virial theorem given by equation (5.4).  

The shear strain in the flexible layer calculated from the COM motion using equation 

(5.15) is shown in green.  The shear strain and stress are both linear functions of the 

stacking fault vector f211 indicating the material has a linear stress/strain relationship.  The 

shear strain and stress are used to calculate the linear elastic strain energy using equation 

(5.3) and is shown in red in Figure 5.31.   

 The energy of the flexible stacking fault system containing elastic shear and 

lattice mismatch energy is ΨF(f) and is shown in black in Figure 5.31b.  The elastic strain 

energy and ΨF(f) match almost exactly up to the unstable stacking fault energy and then 

again after the maximum stacking fault energy.  These are the configurations where the 

flexible stacking fault interfaces shear back to the origin or to the next equivalent lattice 

site, shown by the purple data points.  In the central stable stacking fault region, the ΨF(f) 
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energy is offset from the elastic energy by the stable stacking fault energy, γsf.  In this 

region, all of the flexible stacking faults shear to the stable stacking fault structure also 

indicated by the purple data points.  The interfacial Φ(u) energy accuratly represents the 

lattice mismatch energy and does not include any of the effects of lattice shear.  The 

interfacail displacement, u, is accurately determined from the flexible layer COM motion 

and the kinematic relationship given by F in equation (5.12a).   

 

Figure 5.31:  a) Shear stress and strain in for the (111)[02̄ 1] flexible stacking fault 

structures calculated form the flexible layer COM positions.  b) Flexible ΨF(f) energy 

shown in black is equal to the elastic energy, 2hfE(f) shown in red up to the stable 

stacking fault.  Φ(u) energy shown in purple shears to the local minimum energies.   

 

 The entire interfacial GSF energy, Φ(u), must be determined from the relaxation 

history of Φ(u) since all of the quenched configurations are at local minimums.  In Figure 

5.32 all of the Φ(u) relaxation histories are shown in grey and the GSF energy given by 

Ψo(f) is shown by the black dashed line.  Ψo(f) is the initial energy for all of the systems 

and the highest energy stacking faults.  The volume relaxed GSF energy, ΨminΔ(f), is 

shown by the black line.  The red line is the minimum Φ(u) energy from the relaxation 

histories. The blue line is a smoothed Φ(u) relaxation history and was plotted for Φ(u) in 

Figure 5.29.  Gaussian smoothing is used to smear out the jagged data points by their five 
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nearest neighbors.  The relaxation history data is a close approximation to the actual 

minimized GSF energy given by ΨminΔ(f).   Small errors in Φ(u) occur near the stable 

stacking fault where the kinetic energy is not properly accounted for by equation (5.2).  

Increasing the damping coefficient would slow down the rate of atomic relaxation giving 

more accurate relaxation histories.  For more complex potentials, this would cause the 

lattice to possibly get stuck in local energy minimums but for the EAM potential this is 

not an issue.   

 

Figure 5.32:  Flexible Φ(u) energy relaxation paths shown in gray.  Blue and red lines 

trace out the minimum energies from the relaxation paths.  The volume minimized GSF 

energy, ΨminΔ(f), shown in black matches the relaxation history in blue and red.  a) Full 

(011)[02̄ 1] curve. (b) (011)[02̄ 1] curve up to stable stacking fault structures.   

 

 Very little energy is removed from the system by allowing the interface to rigidly 

separate, shown by comparing Ψo(f) and ΨR(f) in Figure 5.29a.  The largest difference 

occurs near γmax.  The γmax stacking fault represents an unphysical stacking fault where 

two atoms come into very close contact across the slip plane.  In reality, dislocations 

move around the γmax energy barrier to create full dislocations and this configuration is 

not included in most studies (95) (1).  However it provides the largest difference between 
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the different GSF energies and is considered here.  The GSF energy given by Ψo(f) does 

not allow any atomic relaxation.  By allowing the lattices to rigidly separate across the 

slip plane, the GSF energy given by ΨR(f) is slightly lower.  The amount of lattice 

separation, Δr, and interfacial separation, δ are shown in Figure 5.33.  The maximum 

rigid lattice separation at γmax is Δr=0.007Å.  The flexible lattice increases in length by Δf 

shown by the red data.  The largest increase in Δf occurs for the stacking faults with the 

largest shear strains.   The increase in lattice length for the volume minimized stacking 

faults given by ΨminΔ(f) are shown in blue and are much larger.  All of the atoms in these 

stacking fault structures are minimized in the n-direction allowing the entire lattice to 

strain normal to the stacking fault. 

 The interfacial opening, δ, is shown in Figure 5.33b.  The interfacial opening of 

the volume minimized lattice, again shown in blue, is larger than its increase in lattice 

height.  This indicates the volume minimized unit cell reduces the GSF energy by 

allowing the lattice to strain normal to the stacking fault.  This mode of deformation is 

not allowed in our simulation method because of the use of rigid layers.  The interfacial 

opening for the flexible lattice is shown by the purple data points and the relaxation 

history is shown by the purple line.  The interfacial opening history is jagged but does not 

open further than the volume minimized stacking faults.   
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Figure 5.33:  a) Change in lattice length of the rigid and flexible (011)[02̄ 1] stacking 

fault structures (black and red) compared to the volume minimized lattice in blue.  b) 

interfacial opening of the flexible lattice in purple where the purple lines are from the 

relaxation histories and the purple data points are the final quenched configurations.  The 

intefacial opening of the volume minimized structure is shown in blue.   

 

 The entire Ni GSF energy surface for the (111) plane was then determined and is 

shown in Figure 5.34.  A 40×40 grid of stacking faults were created in the first quadrant 

of the (111) plane with f011=0 to 2.49Å and f211=0 to 4.31Å.  The first quadrant of the 

(111) plane in Ni can be translated in each direction to create the entire GSF energy 

surface.  This was not the case for αRDX because each of the eight molecules in the 

space group had orientational degrees of freedom, unlike a single atom of Ni.  The rigid 

GSF energy, ΨR(f), is shown in Figure 5.34a.  The energy contours are cut off at 

500mJ/m
2
 and regions of higher energy are shown in black.  The [2̄ 11] ΨR(f) energy 

trace shown in Figure 5.29a is along the y-axis in Figure 5.34a.  The regions labeled as 

―Bulk‖ point to locations where the GSF energy returns to zero.  At these locations the 

stacking fault recreates the bulk perfect crystal structure.  There are five ―Bulk‖ locations 

in the quadrant of the ΨR(f)-surface; one in each corner and one in the interior.  There are 
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also three stable stacking faults labeled by ―γsf‖ and separating each stable stacking fault 

from the ―Bulk‖ perfect crystal is the unstable stacking fault labeled by ―γusf‖.  The 

interior black regions are the maximum energy configurations and are labeled ―γmax‖.  A 

dislocation on the (111) plane would move from a ―Bulk‖ region along the colored 

contours over the unstable stacking fault labeled ―γusf‖ and down to the local stable 

stacking fault, ―γsf‖.  To create a full dislocation and regain the bulk crystal structure 

interface, the partial dislocation at the stable stacking fault, ―γsf‖, would continue moving 

along the colored contours over ―γusf‖ and back to the ―Bulk‖ configuration.  This 

dislocation motion skips the high energy regions shown in black labeled ―γmax‖.  This 

type of dislocation motion is described by the Shockley partial dislocation.   

 

Figure 5.34:  (111) GSF energy surfaces for a) rigid ΨR(f) surface where each point is a 

rigid stackign fault configuration given by f, b) flexible interfacial Φ(u) energy where the 

rigid stacking fault interfaces shear from f to u and c) Φ(u) energy relaxation histories.  

All GSF energies above 600mJ/m
2
 are shown in black.   

 

 The interfacial GSF energy, Φ(u), is shown in Figure 5.34b.  All of the data points 

at position f in Figure 5.34a shear to u in Figure 5.34b.  All of the positions given by u 

a)

γsf
γusf

γmax

Bulk

b) c)
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are local minimums.  This amount of data is insufficient to determine the GSF energy 

surface.  The GSF surface provides the energy barriers separating the stacking faults form 

the ―bulk‖ configurations and the minimum energy path between the configurations.   

 The minimum energies from the interfacial Φ(u) energy histories are shown in 

Figure 5.34c.  This data is used to create the contours in Figure 5.34b.  The energy levels 

shown in color are for the stacking fault and unstable stacking fault regions shown in 

Figure 5.30.  In this region the relaxed Φ(u) history curve should be only slightly lower 

in energy with a similar shape.  The energy contours in Figure 5.34a and b have a similar 

energy range and give the same stable stacking fault energy.  The unstable stacking fault 

energy from the Φ(u) energy history is below 400 mJ/m
2
 (yellow contour level) and is 

slightly lower than that given by ΨR(f).  The energy difference between Φ(u) and ΨR(f) is 

largest in the ―γmax‖ region and contours along ―γmax‖ will be much broader for the Φ(u) 

history data.  The error caused by kinetic energy will also cause the Φ(u) contours to 

broaden near the local minimums.   

 The shape of the of the Φ(u) contours is affected by the initial grid of f vectors.  

The interface will shear to the closest local minimum causing the centrally located local 

minimums to contain more history data than those on the edges of Figure 5.34a.  In 

Figure 5.34b and c, the Φ(u) data was only shown for the first quadrant of the GSF 

energy surface.  However, the interface of the stacking faults shown in Figure 5.35a are 

able to shear in every direction, resulting in the Φ(u) history data shown in Figure 5.35b.  

Several of the final flexible Φ(u) data points shear to low energy configurations outside 

quadrant shown to scale in Figure 5.35a.  Some data points shear to a stable stacking fault 

below ΨR(f).  Stacking faults starting in the ―γmax‖ regions have enough energy to shear 

long distances, shown by the Φ(u) history data to the left and right of the quadrant.  

These reach local energy minimums that are not related to the perfect crystal or stable 
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stacking fault.  In these cases, the high energy stacking faults probably result in an 

interfacial reconstruction of the flexible atoms. 

 

Figure 5.35:  a) (111) rigid GSF energy, ΨR(f), and b) all of the flexible intefacial Φ(u) 

relaxation history data.  The grey line encompassing all f points in a) is shown in b) and 

several of the relaxation paths shear outside its borders.   

 

 The flexible stacking faults are shown to behave as a linear elastic material. The 

shear strain can be accurately predicted from the flexible layer COM motion.  This in turn 

provides an accurate determination of the stacking fault inteface location and the linear 

elastic energy stored as shear strain.  The Φ(u) histories are shown to provide a good 

approximation of the minimized GSF energies, Ψmin(f) and ΨminΔ(f).  The stable and 

unstable stacking fault energies, γsf and γusf, are accurately predicted form the Φ(u) 

histories.  Kinetic energy during the relaxation process causes the Φ(u) histories to 

slightly distort the energy contour levels.  The contour shapes are also affected by the 

initial f-vector grid.  Overall the flexible stacking fault procedure is shown to reproduce 

the important features of the GSF energy curves for Nickel.  

a) b)

R
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6. Conclusions 

 This chapter provides a summary of the intellectual contributions and the 

anticipated benefits to the research community and military from the advances reported 

as part of this dissertation. 

6.1 Intellectual Contributions 

 This work contributes to the methods available for modeling molecular crystals.  

The most important contribution is the procedure used for determining the generalized 

stacking fault energy in molecular crystals.  This involved the implementation of 

simulation procedures suitable to modeling the complex interface of a molecular crystal.  

A new procedure was then used to partition the system energy into an elastic and lattice 

disregistry component equivalent to the generalized stacking fault energy.  The GSF 

energy surfaces determined for αRDX were then shown to reproduce experimentally 

observed slip features and also help explain the process of cross slip through the 

development of partial dislocations (14).  Through the process of developing the new 

GSF method, the Smith and Bhardawaj potential (17) was shown to accurately reproduce 

RDX crystal structures and properties in Section 3 and the RDX cleavage and free 

surface energies in Section 4.   

6.1.1 Validation of Smith and Bharadwaj Potential to RDX 

 The simulations and procedures in section 3 provide validation of the Smith and 

Bharadwaj (17) potential to RDX and the ability of the potential to model the various 

common phases of RDX, namely the ambient condition αRDX and high pressure γRDX 

phase.  These simulations determined the bulk modulus and its derivative for use in the 
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3
rd

 order BMEOS.  The orthotropic elastic constants and coefficients of thermal 

expansion were also determined.  These were all shown to be in good agreement with the 

available experimental data.  This data can also be used as a bench mark for other models 

derived from the SB potential including coarse grained potentials.   

 It was also shown that while uniaxial deformation leads to the α to γRDX 

transition, hydrostatic compression alone does not.  However, hydrostatic 

depressurization from the γRDX phase reveals that the SB potential is capable of 

supporting the γRDX structure at high pressure and yields the γ to αRDX transition near 

2.1 GPa.   

 Imposed uniaxial deformation of αRDX showed that the ability of the crystal to 

undergo phase transitions depends on the crystal orientation.  Compressive deformation 

along the c-axis reproduced the γRDX configuration for ζc=-1.5GPa.  Compression along 

the b-axis did not result in the γRDX structure but instead led to a structure similar to that 

identified in simulations by Cawkwell et al. (38) and Ramos et al. (56) as a stacking fault.  

Deforming along the different crystal axes had markedly different effects on the bonded 

SB potential terms where loading on the b-axis decreased the dihedral energy but it was 

increased for loading along the c-axis.  The transitions were also shown to be more 

sensitive to the crystal orientation as opposed to the magnitude of the largest principal 

and shear stresses.  

6.1.2 Attachment, Free Surface, and Decohesion Energy 

 The theoretical framework used for determining the attachment energy makes it 

well suited to this work.  It uses common symmetry arguments to determine the unique 

planes on a crystal habit.  It then provides a computationally efficient method for 
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determining the energetically favorable slip plane from the remaining unique planes on 

each crystal habit.  This was shown to accurately predict the slip plane with the lower 

unstable stacking fault energy on each crystal face of αRDX.  The attachment energy 

simulation procedure was slightly modified by increasing the layer thickness and was 

used to determine the free surface energy. 

 The molecular level decohesion process of several crystal planes in αRDX was 

also studied.  The simulations were shown to reproduce the free surface energy and 

elastic constants.  The maximum surface tractions and the reduction in surface traction 

during decohesion was presented.  These simulations provide the decohesion response 

due to a tensile uniaxial strain load and would be suitable for use in a Rankine or 

maximum principal stress decohesion criterion (83).  Other simulations involving shear 

and biaxial compression would still be needed to develop a decohesion criterion suitable 

to modeling the failure process under a general state of deformation. 

6.1.3 Generalized Stacking Fault Energy 

 A large set of Generalized Stacking Fault (GSF) energies have been computed for 

a molecular crystal (αRDX) using molecular dynamics.  A computational procedure was 

proposed that extends the approach traditionally applied to metals to account for the 

molecular degrees of freedom.  Such a feature is important for materials whose steric 

interactions across crystal defects and molecular conformations can have significant 

effects on deformation mechanisms.  The GSF energies provide estimates of the stable 

and unstable stacking fault energies which, together with the surface energy calculation, 

are then employed through Rice’s dislocation nucleation criterion (18) to predict whether 

a given slip system is likely to respond to mode II loading in a brittle (2γs<γusf) or ductile 
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(2γs>γusf) manner.  Rice’s criterion applied to the GSF and free surface energies 

calculated in this work agree well with the experimentally known slip systems.   

 For αRDX in particular, features in the GSF energies suggest exhibition of both 

brittle and ductile behavior depending on loading direction.  Unstable stacking fault 

energies in the (010) plane can be as small as half that of any other plane. All slip 

systems with a [100] slip direction produced a stable stacking fault structure.  The stable 

stacking fault of these slip systems could be related to the experimental observation of 

cross slip between these systems.   

 Although the present study has specifically considered an energetic compound, 

similarities can be seen that make the approach transferrable to similar classes of 

materials across broad ranges of applications. 

6.2 Assumptions and Limitations 

 The use of simulations to model real materials will always involve simplifying 

assumptions to make the problem computationally feasible.  All of the simulations 

produced in this work assume that the SB potential accurately describes the RDX 

molecule and crystal.  This assumption limits the processes that can be modeled to 

nonreactive mechanisms that do not involve the breaking of bonds or chemical reactions.  

This also assumes that polarization of the RDX molecule is not affected by the state of 

deformation or molecular neighborhood of molecules.   

 The electrostatic interactions of the SB potential limit all models in this work to 

be 3D periodic for the calculation of the Ewald sum.  This required the addition of 

vaccum layers to create 2D slabs of materials with the assumption that the vacuum layer 

is large enough to separate the slabs from one another.  This also limits the processes that 
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can be modeled to those that can be represented periodically.  For this reason, several 

simulations involved the properties of planes or interfaces of materials.  The Ewald 

summation is also computationally expensive, limiting the size of the simulation cells to 

~4000 atoms for dynamic simulations and ~20000 atoms in quenching simulations.  The 

periodicity requirement and limited simulation cell size causes all of the results presented 

in this work to be for pristine RDX crystals free of defects. 

 Molecular dynamics limits the processes that can be modeled to those that occur 

within a few nanoseconds.  The limited timespan and small simulation cell size are 

possible reasons the α→γRDX transition was not observed in Section 3.2.1.  Other 

atomistic simulation protocols can be used to increase the simulation times. 

 These assumptions and limitations were known before the start of this work and 

drove the direction of the dissertation work.  This included evaluating the application of 

the SB potential to RDX by showing that it stabilizes the α and γRDX polymorphs.  

These NPT simulations were limited to features involving only the stabilized phase and 

not the kinetics of the phase transition.  Second, instead of attempting to directly model 

dislocations or fracture using large scale atomistic simulations, a multiscale modeling 

approach was used where molecular dynamics was only used to parameterize mesoscale 

deformation models. 

6.3 Future Directions 

 The stacking fault procedure in this work will be useful in studying several other 

molecular crystal systems. It can also be extended to include the effects of temperature 

and strain on the slip systems.   
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6.3.1 Stacking faults in other Molecular crystals 

 The procedure for determining the stacking faults in αRDX could easily be used 

to study other molecular crystals.  The unstable stacking energy and free surface energy 

could then be used to predict the active slip systems in those materials.  Nanoindentation 

is now becoming a common method of studying molecular crystals and can be used to 

validate these models (38) (91).  The stacking faults would provide the molecular barriers 

to slip motion and could be used in designing molecular crystals to attain particular slip 

properties.   

6.3.2 Thermalized Stacking Faults 

 The flexible stacking faults in this work used to the energy of the initial rigid 

stacking fault as the driving force for their relaxation.  This may have caused some of the 

stacking faults to relax into local minimum during quenching.  This could be overcome 

by using thermal energy to relax the many degrees of freedom of the molecule as was 

done by Cawkwell et al. (38).  This could also be used to study the change in the GSF 

energy with temperature.  This could cause some inactive slip directions to become active 

as thermal energy helps the molecules to shuffle past one another.  The procedure used to 

determine the interfacial displacement and stacking fault energy Φ(u) is ideally suited to 

this type of thermal analysis. 

6.3.3 Uniaxially Compressed Stacking Faults 

 Cawkwell et al. (38) demonstrated the effect of uniaxial strain on the GSF energy 

of αRDX.  They show the development of a local minimum on the GSF energy curve due 

to the uniaxial compression but they were not able to determine the entire GSF energy 
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surface.  In this work, the entire GSF energy surface was determined and it is shown that 

there was already a local energy minimum on the GSF at zero pressure.  However, it 

appears that uniaxial strain moves the location of the local minimum.  It would therefore 

be interesting to determine the effect of uniaxial stress on the entire GSF energy surface 

to see if new local energy minimums appear or if they only move around on the surface.  

This would be easy to implement by applying a constant force to the floating rigid lattice.   
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Appendices 

Appendix A: DLPOLY αRDX F ELD and CONFIG Files 

A1:  DLPOLY FIELD FILE (71) 

This contains potential parameters from Table 2.2for the SB potential (17) from equation 

(2.1).  The bond numbering and connectivity is for the RDX molecule numbering scheme 

presented above.  This provides the same results as the LAMMPS implementation of the 

SB potential given in Appendix B.   

DL_POLY RDX molecule 

UNITS kcal 

MOLECULES 1 

RDX 

NUMMOLS 144 

ATOMS 21 

C         12.0110000  -0.5400  

C         12.0110000  -0.5400 

C         12.0110000  -0.5400 

N         14.0072      0.056375 

N         14.0072      0.056375 

N         14.0072      0.056375 

N         14.0072      0.860625 

N         14.0072      0.860625 

N         14.0072      0.860625 

O        15.99943    -0.4585 

O        15.99943    -0.4585 

O        15.99943    -0.4585 

O        15.99943    -0.4585 

O        15.99943    -0.4585 

O        15.99943    -0.4585 

H        1.00800000   0.2700 

H        1.00800000   0.2700 

H        1.00800000   0.2700 

H        1.00800000   0.2700 

H        1.00800000   0.2700 

H        1.00800000   0.2700 

BONDS   21 

harm  12  8  1990.1  1.23 

… 1-2 bonds 1-21  
harm  21  3  641.6  1.09 

ANGLES  36 

harm  12  8  13  125.00  120.92 
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… 1-3 bonded angles 1-36 
harm  4  1  5  70.00  110.52     

DIHEDRALS  72 

cos 12  8  5  1  4.225  180.00  2.00  1.00  1.00   

… 1-4 bonded dihedrals 1-66  
cos  2  5  1  4  5.50  180.00  3.00    

harm  4  3  1  7  8.00  0.00    

… 1-4 bonded improper dihedral 67-72  
harm  9  14  15  6  89.30  0.00    

FINISH 

VDW      10 

C       C       buck 14976.0     .3236246    640.8 

H       H       buck  2649.7     .2673797     27.4 

C       H       buck  4320.0     .2928258    138.2 

N       N       buck 60833.9     .2645503    500.0 

O       O       buck 75844.8     .2461236    398.9 

H       N       buck 12695.88    .2659574    116.96 

H       O       buck 14175.97    .2563445    104.46 

C       N       buck 30183.57    .2911208    566.03 

C       O       buck 33702.4     .2796421    505.6 

N       O       buck 67925.95    .2550370    446.6 

CLOSE 

A2:  DLPOLY CONFIG File 

This is the input file used in DLPOLY to define the atom types and their positions in a 

DLPOLY input file.  The field file defining the molecule connectivity uses this atom 

configuration and number scheme. 

Single RDX Molecule                                                                           

        0        3 

 26.36400000000000    0.00000000000000    0.00000000000000 

  0.00000000000000   34.72200000000000    0.00000000000000 

  0.00000000000000    0.00000000000000   32.12700000000000 

   C             1         1 

  2.42416980          4.14117720          4.71196000 

   C             2         1 

  0.66305460          2.82405600          3.63570550 

   C             3         1 

  1.96016340          4.41316620          2.31207310 

   N             4         1 

  2.32135020          5.04626400          3.56609700 

   N             5         1 

  1.15606140          3.46757040          4.85867330 

   N             6         1 

  0.70655520          3.72914280          2.49412610 

   N             7         1 

  2.97913200          6.22565460          3.58323140 

   N             8         1 

  0.20432100          4.07983500          5.66934460 

   N             9         1 

 -0.43896060          4.48492500          2.22533020 
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   O            10         1 

  2.99231400          6.86569680          2.55730920 

   O            11         1 

  3.49191180          6.58213380          4.64556420 

   O            12         1 

 -0.91351260          3.63655080          5.63507580 

   O            13         1 

  0.59846280          4.94325540          6.41469100 

   O            14         1 

 -1.47770220          4.09025160          2.68153360 

   O            15         1 

 -0.31109520          5.42936340          1.48855100 

   H            16         1 

  3.16499820          3.40738560          4.52562340 

   H            17         1 

  2.65353660          4.70830320          5.61579960 

   H            18         1 

 -0.34405020          2.45021580          3.79098600 

   H            19         1 

  1.33797300          1.99998720          3.41831280 

   H            20         1 

  2.70494640          3.66432840          2.05291530 

   H            21         1 

  1.89820800          5.12959680          1.51318170 
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Appendix B: LAMMPS αRDX FIELD and CONFIG File 

B1:  LAMMPS Potential File (51) 

This is the LAMMPS implementation of the SB potential (17) given by equation (2.1) 

with parameters given in Table 2.2.  This field file using the atomic numbering and 

connectivity given below in the LAMMPS atomic configuration file.  This provides the 

same SB potential as that given in Appendix A for DLPOLY. 

bond_style harmonic  # quadratic 

angle_style harmonic  # quadratic 

dihedral_style  harmonic  # cosine series 

improper_style harmonic  # improper dihedral quadratic 

pair_style buck/coul/long 8 

pair_modify  tail yes 

kspace_style    ewald/n 1.0e-4   #only non-ortho ewald sum 

 

#SB Pot 0.5K in Bedrov et al. (2001) J Comp Matl design paper 

pair_coeff  1 1 14976.00  0.323625  640.80 

pair_coeff 1 2 30183.57  0.291121  566.03 

pair_coeff 1 3 30183.57  0.291121  566.03 

pair_coeff 1 4 33702.40  0.279642  505.60 

pair_coeff 1 5 4320.000  0.292826  138.2  

pair_coeff 2 2 60833.90  0.264550  500.00 

pair_coeff 2 3 60833.90  0.264550  500.00 

pair_coeff 2 4 67925.95  0.255037  446.60 

pair_coeff 2 5 12695.88  0.265957  116.96 

pair_coeff 3 3 60833.90  0.264550  500.00 

pair_coeff 3 4 67925.95  0.255037  446.60 

pair_coeff 3 5 12695.88  0.265957  116.96 

pair_coeff  4 4 75844.80  0.246124  398.90 

pair_coeff  4 5 14175.97  0.256345  104.46 

pair_coeff 5 5 2649.700  0.267380  27.400 

 

bond_coeff 1  995.05  1.23 

bond_coeff 2  495.85  1.36 

bond_coeff 3  336.05  1.44 

bond_coeff 4  320.80  1.09 

 

angle_coeff 1  62.5  120.917 

angle_coeff 2  62.5  107.453 

angle_coeff 3  65.0  95.816 

angle_coeff 4  35.0  105.596 

angle_coeff 5  43.2  107.006 

angle_coeff 6  38.5  108.507 

angle_coeff 7  35.0  110.518 

 

dihedral_coeff 1   4.225 -1 2   

dihedral_coeff 2   0.395 -1 4 
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dihedral_coeff    3   0.002 -1 8  

dihedral_coeff    4  -0.080 -1 3   

dihedral_coeff    5   1.650 -1 1 

dihedral_coeff    6  -0.805 -1 2   

dihedral_coeff    7   0.055 -1 3   

 

improper_coeff 1 4.000 0.0 

improper_coeff 2 44.65 0.0  

 

special_bonds  lj/coul 0.0 0.0 1.0  #allowing all topo 1-4 coul/lj 

B2:  LAMMPS Atomic Configuration and Connectivity File  

This is the input file used in LAMMPS to define the atom types and their positions for a 

single RDX molecule.  The bonds and their connectivity are also given and correspond to 

the above LAMMPS field file.   

 

       21 atoms 

       21 bonds 

       36 angles 

       66 dihedrals 

       6  impropers 

 

   5 atom types 

   4 bond types 

   7 angle types 

   7 dihedral types 

   2 improper types 

 

   0.00000  13.18200  xlo xhi 

   0.00000  11.57400  ylo yhi 

   0.00000  10.70900  zlo zhi 

   0.00000   0.00000   0.00000  xy xz yz 

 

Masses 

1 12.011000 

2 14.007200 

3 14.007200 

4 15.999430 

5 1.0080000 

 

Atoms 

1       1       1   -0.540000    2.42420000    4.14120000    4.71200000 

2       1       1   -0.540000    0.66310000    2.82410000    3.63570000 

3       1       1   -0.540000    1.96020000    4.41320000    2.31210000 

4       1       2    0.056375    2.32140000    5.04630000    3.56610000 

5       1       2    0.056375    1.15610000    3.46760000    4.85870000 

6       1       2    0.056375    0.70660000    3.72910000    2.49410000 

7       1       3    0.860625    2.97910000    6.22570000    3.58320000 

8       1       3    0.860625    0.20430000    4.07980000    5.66930000 

9       1       3    0.860625   -0.43900000    4.48490000    2.22530000 
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10      1       4   -0.458500    2.99230000    6.86570000   2.55730000 

11      1       4   -0.458500    3.49190000    6.58210000   4.64560000 

12      1       4   -0.458500   -0.91350000    3.63660000   5.63510000 

13      1       4   -0.458500    0.59850000    4.94330000   6.41470000 

14      1       4   -0.458500   -1.47770000    4.09030000   2.68150000 

15      1       4   -0.458500   -0.31110000    5.42940000   1.48860000 

16      1       5    0.270000    3.16500000    3.40740000   4.52560000 

17      1       5    0.270000    2.65350000    4.70830000   5.61580000 

18      1       5    0.270000   -0.34410000    2.45020000   3.79100000 

19      1       5    0.270000    1.33800000    2.00000000   3.41830000 

20      1       5    0.270000    2.70490000    3.66430000   2.05290000 

21      1       5    0.270000    1.89820000    5.12960000   1.51320000 

 

Bonds 

       1   1      12       8 

… 1-2 bonds 1 to 21 
      21   4      21       3 

 

Angles 

       1   1      12       8      13 

…1-3 bonded angles 1 to 36 
      36   7       4       1       5 

 

Dihedrals 

       1   1      12       8       5       1 

… 1-4 bonded dihedrals 1 to 66 
      66   7       2       5       1       4 

 

Impropers 

       1   1       4       3       1       7 

… 1-4 bonded improper dihedrals 1 to 6 
       6   2       9      14      15       6 
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Appendix C: LAMMPS Quenching Procedure and Skewed Cells 

 This appendix describes the quenching procedure and the unit cells used in the 

simulations.  These include the skewed unit cells used to create the (021) and (011) 

surfaces and stacking faults.   

 The experimental αRDX unit cell is replicated to create a 3×3×3 supercell and is 

minimized in LAMMPS (51).  The experimental atomic coordinates are given at T=300K 

so the structure must first be quenched from T=300K to T≈0K.  The quenching process 

must also allow the lattice vectors to contract with the crystal structure due to thermal 

expansion.  This is accomplished in Lammps by using an isenthalpic ensemble (NPE) in 

conjunction with a Langevin thermostat to reduce the temperature down to ~0K over a 10 

ps simulation.  The isenthalpic ensemble used here allows the lengths of the lattice 

vectors to change while fixing their orientation relative to one another in order to 

maintain the orthorhombic space group.  The Langevin thermostat implemented in 

Lammps applies a viscous like force to the atomic motion proportional to (m/damp) 

where m is the atomic mass and damp is the damping parameter set to 100fs.  The 

Langevin thermostat also applies a random force due to solvent atoms at temperature, T, 

proportional to                   where Kb is Boltzman’s constant, m is the atomic 

mass, dt=1fs and damp=100fs is the damping parameter.  This damp parameter relaxes 

the temperature of the system to T in approximately the amount of time it is set to 

(100fs).  The temperature is ramped down from T=300K to 0K over a 10ps simulation 

time.  This approach should effectively quench the structure to T~0K and the random 

forces should help the structure escape local minima as it is cooled.  The quenched 

structure is then recursively minimized at constant volume and then with lattice 
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relaxations.  This process yields a minimized unit cell with orthogonal lattice vectors 

13.366 × 11.330 × 10.342 Å.  This minimized unit cell is used to create the supercells for 

the simulations of the (100), (010) and (001) planes. 

 Simulations of the (011) and (021) planes are created by minimizing a skewed 

unit cell of the experimental structure.  In Figure A1, a 4×5 supercell of αRDX is shown 

projected onto the (100) plane.  The spheres represent the RDX molecules by their 

centers of mass (COM) location.  The COMs use eight colors representing each of the 

eight molecules in the unit cell.  Figure A1(a) shows the experimental αRDX unit cell 

given by Choi and Prince (25) where the black arrows are the lattice vectors, the gray 

lines are the edges of the unit cell and the eight molecules are those that make up the unit 

cell.  The skewed (011) and (021) unit cells must contain each of the eight molecules of 

the unit cell in order for it to be a complete αRDX unit cell.  The (011) unit cell used in 

this work is shown in Figure A1(b) created from the [01̄ 1], [001], [100], lattice vectors 

and the eight molecules shown.   The blue arrows show the [01̄ 1] and [001] lattice 

vectors and the blue lines represent the edges of the unit cell.  The (021) unit cell used in 

this work is shown in Figure A1(c) created from the [01̄ 2], [001], [100], lattice vectors 

and the same eight molecules used in the (011) unit cell.  The red arrows show the [01̄ 2] 

and [001] lattice vectors and the red lines represent the edges of the unit cell. 

 The skewed (011) and (021) unit cells are quenched and minimized using same 

procedure as that used for the experimental unit cell.  The constraint on the orthogonality 

of the lattice vectors is changed to enforce monoclinic lattice vectors.  The [100] and 

[001] pair of lattice vectors and the [01̄ 1] or [01̄ 2] and [100] pair of lattice vectors are 

constrained to be orthogonal.  The angle that [01̄ 1] or [01̄ 2] make with [001] is allowed 
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to change during the quenching and minimization.  The (011) supercell was created from 

3×3×6 unit cells in the [100], [01̄ 1], and [001] directions, respectively.  The minimized 

(011) unit cell dimensions are 13.36×15.35×10.35 Å in the [100], [01̄ 1], and [001] 

directions, respectively, with an angle between [01̄ 1] and [001] equal to 47.6 degrees.  

The (021) supercell was created from 3×2×9 unit cells in the [100], [01̄ 1], and [001] 

directions, respectively.  The minimized (021) unit cell dimensions are 

13.36×23.60×10.35 Å in the [100], [01̄ 2], and [001] directions, respectively, with an 

angle between [01̄ 2] and [001] equal to 28.7 degrees.  The xyz dimensions of the 

simulation cell must be twice as large as rcut=15Å, the real space cutoff used to calculate 

nonbonded interactions.  This requires more skewed unit cells than orthorhombic unit 

cells in the supercell.   
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Figure A1. 4×5 αRDX unit cells projected onto the (100) plane with RDX molecules 

center’s of mass represented by spheres.  The COM’s are shown in eight colors 

corresponding to the eight molecules making up a unit cell.  (a) Experimental (25) αRDX 

unit cell from Figure 2b where arrows represent the lattice vectors, molecules represent 

the unit cell molecules and the gray lines represent the edges of the unit cell.  (b)  

Monoclinic (011) αRDX unit cell shown in blue with the eight molecules making up the 

unit cell.  (c) Monoclinic (021) αRDX unit cell shown in blue with the eight molecules 

making up the unit cell.   
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