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New Results on Modal Participation Factors:
Revealing a Previously Unknown Dichotomy

Wael A. Hashlamoun, Munther A. Hassouneh and Eyad H. Abed

Abstract—This paper presents a new fundamental approach
to modal participation analysis of linear time-invariant systems,
leading to new insights and new formulas for modal participdion
factors. Modal participation factors were introduced over a quar-
ter century ago as a way of measuring the relative participabn of
modes in states, and of states in modes, for linear time-inviant
systems. Participation factors have proved their usefulngs in the
field of electric power systems and in other applications. Haever,
in the current understanding, it is routinely taken for granted
that the measure of participation of modes in statess identical
to that for participation of states in modesHere, a new analysis
using averaging over an uncertain set of system initial contlons
yields the conclusion that these quantities (participatia of modes
in states and participation of states in modes) should not be
viewed as interchangeable. In fact, it is proposed that anew
definition and calculatiomeplace the existing ones fostate in mode
participation factors while the previously existing participation
factors definition and formula should be retained but viewed
only in the sense ofmode in state participation factarsSeveral

examples are used to illustrate the issues addressed and the

results obtained.

Index Terms—Participation factors, modal participation fac-
tors, modal analysis, linear systems, stability, control wstems.

I. INTRODUCTION

reduction, sensor and actuator placement, and coherernkcy an
clustering studies (e.g., [7], [12], [8], [2], [5], [3], [R]Several
researchers have also considered alternate ways of viewing
modal participation factors (e.g., [11], [4], [10]).

We study linear time-invariant continuous-time systems

AX(t) (1)

wherex € R" and A is a realn x n matrix. We make the
blanket assumption tha has a set oh distinct eigenvalues
(A1,A2,...,An). The solution of (1) then takes the form of a
sum of modal components:

x(t) = ii@”ci

where thec' are constant vectors determined by the initial
conditionx? and by the right and left eigenvectors Af

In their study of modal participation for the system (1), the
authors of [7], [12] selected particular initial conditemand
introduced definitions motivated by the calculation of tigka
state and mode contributions using those initial condgion
In this paper, we take a different approach, building on our
previous work [1], in which definitions of modal participati
factors are formulated by averaging relative contribigiaf

X =

)

This paper presents new concepts, results, and formulggdes in states and states in modes over an uncertain set of
in the subject of modal participation analysis of lineareim jnitial conditions. In this approach, we consider initi@neli-
invariant systems. This topic is an important component gbns to be unknown, and we take the view that performing
the Selective Modal Analysis (SMA) framework introducedome sort of average over all possible initial conditionsusth
by Perez-Arriaga, Verghese and Schweppe [7], [12] in thgye a more reliable result than focusing attention on one
early 1980s. A main construct in SMA is the concept Qharticular possible initial condition. The uncertaintyiitial
modal participation factors (or simply participation fa). condition can be taken as set-theoretic (unknown but baijnde
Participation factors are scalars intended to measureehe gy probabilistic. We took the same basic approach in our
ative contribution of system modes to system states, and fper [1], but later found a subtle error in the calculation i
system states to system modes, for linear systems. The Workyt paper for the case of state-in-mode participatiorofact
these authors has had a major impact especially in appiieti ypon realizing this subtle error, we embarked on the present
to electric power systems, where participation factorshay t research, in which we find a previously unnoticed dichotomy
were originally introduced have become a routine tool f@& thp the two basic types of modal participation factors.
practitioner and researcher alike. The main contribution of this paper is to reveal this pre-

Since their introduction, participation factors have beefoysly unknown dichotomy in modal participation analysis
employed widely in electric power systems and other afp wit, although the definitions obtained in [7], [12], and
plications. They have been used for stability analysiseordyhich have been in wide use since their introduction, give
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identical values for measures of participation of modes in
states and for participation of states in modes, these are
in fact better viewed as fundamentally different, and stoul
be calculated using two distinct formulas. Summarizing, th
main contribution of this paper is as followsve propose
replacing the existing definition of participation factongth

two separate definitions that yield distinct numerical \esu
for participation of modes in states and for participatioh o



states in modes. In this paper, the currently used particip&eft (row) eigenvectors of the matrid associated with the
tion factors measuring participation cftates in modes are eigenvalues(A1,Az,...,An), respectively. The right and left
replaced with a new first-principles definition, a particula eigenvectors are taken to satisfy the normalization [6]
instance of which is an explicit formula given in Section i — 5 @)
V. In addition, we show that our formula for participation -

factors measuring participation ofmodes in states agrees whereg;; is the Kronecker delta:

with the commonly used participation factors formula under

reasonable assumptions on the allowed uncertainty in the Oij :{ é =
system initial conditions. Thus, a dichotomy is proposed in 17 ]
the calculation of participation factors. The solution to (3) starting from an initial conditioi0) = x°

The paper proceeds as follows. In Section II, the origing
definitions of modal participation factors are recalledrfy], 0
[12]. In Section Ill, basic examples are used to illustrate xt) = ()

the need for an approach that yields distinct formulas f@fince the eigenvalues ok are distinct, A is similar to a

measuring the two main types of modal participation: pagiagonal matrix. Using this, (5) can be rewritten in the form
ticipation of modes in states and participation of states in

modes. In Section 1V, the approach we introduced to this X(t) = i(lixo)e“ri. (6)
topic in [1] is recalled and discussed in light of the objeesi i

of the present paper. The discussion makes clear that thjg (6), %
approach, based on defining modal participation measures by
averaging over an uncertain set of initial conditions, igad X(t) = - (|ixo)emtr{(_ @)
yields the original definition for participation of modes in i;

states, but does not easily yield a simple closed-form expre

sion for measuring participation of states in modes. Next, A, Relative participation of the i-th mode in the k-th state
Section V, a candidate closed-form formula is obtained for-l-O determine the relative participation of thgh mode
modal participation factors that measure the participatd
states in modes; this is achieved by careful evaluation ef t

general averaging formula from Section IV under a simptifyi axis. As seen next, this choice is convenient in that it tesul

assumptlr(])n on thbe |_n|t|art1l_cor_1d|t||onfuncerlta|nw. It |s_f!nn'ﬁcm1t in a simple formula for mode-in-state participation fastoiVe
to note that to obtain this simple formula, a specific 1orm Igq that the derived formula for mode-in-state partiégrat

assumed for the uncertainty in the system initial CondjtiOlf]actors agrees with that obtained using an uncertain Initia

other assumptions on the initial conditic_m uncertainty wou_condition under general assumptions, as demonstrated| in [1
not lead to the same formula or any readily useable EXPMESSIONG in Section IV below. With this choice &f, the evolution
The derived formula is proposed since it reflects the efféct 8f the k-th state becomes

initial condition uncertainty and can be derived analytjcan n
Section VI, a mechanical system example is used to illustrat X(t) = Z('LVL)GM

(t) is given by

in the k-th state, the authors of [7], [12] select an initial
ondition X° = &, the unit vector along thé-th coordinate

the usefulness of the explicit formula for state in mode par- =

ticipation factors. In Section VII, an additional resultgiven 2 ,t

that relates only to mode in state participation factorsisTh = Zi prie™". (8)
result expands the initial condition uncertainty assuomni - =

under which the traditional participation factors formelan 1N€ quantities

be shown to accurately measure mode in state participation Pyi 1= ILr{( 9)
using the averaging formulation. Concluding remarks and o .
suggestions for future work are collected in Section VIII. are found to be unit-independent, and are taken in [7], [$2] a

measures of the relative participation of thth mode in the
k-th state;pyi is defined in [7], [12] as the participation factor

II. ORIGINAL DEFINITIONS OFMODAL PARTICIPATION for the i-th mode in thek-th state.

FACTORS

In this section, the original definitions of modal partic—ipaB_ Relative participation of the k-th state in the i-th mode
tion factors are recalled from [7], [12]. Consider the linea

system (1), repeated here for convenience: The relative participation of thk-th state in tha-th mode

is studied in [7], [12] by first applying the similarity trafios-
x = AXx{t) (3) mation

wherex € R", and A is a realnx n matrix. The authors z:=V 'x (10)
of [7], [12] also make the blanket assumption thathas
n distinct eigenvaluegAi,)z,...,An). Let (ri,r2,....r") be
right eigenvectors of the matri& associated with the eigen-" -

values(A1,Az, ..., \n), respectively. Let(1%,12,...,1") denote V=[rtrZ ... (11)

to system (3), wher® is the matrix of right eigenvectors of



andV 1 is the matrix of left eigenvectors @k Il. M OTIVATING EXAMPLES SHOWING INADEQUACY OF
PARTICIPATION FACTORSFORMULA AS A MEASURE OF

1
| STATE IN MODE PARTICIPATION

|2
-1 ) ) ) )
Vo= N (12) In this section, by way of motivation for the subsequent
analysis, two examples are given that show the need for a new
definition and a new formula for state in mode participation

Thenz obeys the dynamics factors.

| n

2t) = V7AvAL)

= Azt), (13) Example 1Consider the two-dimensional system

where A := diag(A1,Az,...,An), with initial condition D=

V10, This implies that the evolution of the new state vector x| [a b X1

componentg;, i =1,...,nis given by x| | 0d X2

——
z(t) = e A
I'x0ehit wherea, b andd are constants witla # d. The eigenvalues
n oo N of A areA; =a andAy =d. The right eigenvectors associated
= kZ:L(Ika) e, (14)  with A; andA, are
For a real eigenvalug;, clearlyz(t) represents the evolution rl— [ é ] andr? = { d%a ] )
of the associated mode. A is not real, then the associated D

mode is sometimes taken to ¢t), but can also be taken as
the combination of;(t) and its complex conjugat(t), which
reflects the influence of the eigenvaldg. In the latter ap-
proach, we viewA; andA;" as representing the same “complex 11— [ 1 b } and|? — [ 0 b ]
frequency.” In the past, the former convention was used iatmo a—d a—d 1’
publications. In this paper, we allow both interpretatiomst respectively.

\(;Iveeri\\llvilrlwl ﬁTﬂgﬁ%?:;ﬁ”;fg dlése;rr:iiila:t?(:np?;go?;\;fw Wi ?en Before calculating the participation factors measuring th
9 P P influence of statex; andx, in mode 18 we write the evolution

the case of complex e_ngenvalues. . L of mode 1 explicitly. Using (14), we have
In order to determine the relative participation of tke

th state in thei-th mode, the authors of [7], [12] select an a(t) = [1,0ght
initial conditionx® =r', the right eigenvector associated with b 0
Ai. As seen next, this choice is convenient in that it results in {1 ﬂ] { x‘% } ght
- 2
b
0 9) et 17
<X1+ a dxz) (17)

respectively. The left eigenvectors associated withand A»
and satisfying the normalization (4) are

will revisit this later using an uncertain initial conditipand
obtain a different result. With this choice of initial cotidn,
the evolution of tha-th mode becomes

a simple formula for state-in-mode participation factdfte

Note that the evolution of mode 1 is influenced by bath

z(t) = [ipighit andxg, with the relative degree of influence depending on the
no values of the system parameterd andd.
= [z I{(r{(] et Calculating the participation factors using the originaf-d
k=1 inition as recalled in the foregoing section, we find the

n . participation factor for state; in mode 1 isp11 = I%r% =1,
= z Pi C (15)  while the participation factor for state; in mode 1 is
=t P21 = 13r} = 0. Thus, the original definition of participation
Based on (15), the authors of [7], [12] propose the formulafactors for state in mode participation indicates thatestat
o has much smaller (even zero) influence on mode 1 compared
Pi = il (16) to the influence coming from staig, regardless of the values
of system parametees b andd. This is in stark contradiction
as a measure of the relative participation of ¥ith state in to what we observed using the explicit formula (17), and begs
the i-th mode. for a re-examination of the basic formula for state-in-mode
Note that (9), (16) provide identical formulas for part@ip participation factors. [
tion of modes in states and participation of states in modes,
respectively. For this reason, the same notapignwas used SFor simplicity, we use the terminology ‘modéin place of ‘the mode
for both types of participation factors until now. associated with eigenvalue.’



Example 2Consider the two-dimensional system IV. INITIAL CONDITION UNCERTAINTY APPROACH
APPLICATION TODERIVATION OF MODE-IN-STATE

Xl i 1 1 X1

X2 - —d —d X2

PARTICIPATION FACTORS
For systems operating near equilibrium, it is often reason-
able to view the system initial condition as being an underta

whered 7 1 is a constant. The eigenvaluesAfare A1 =0 yector in the vicinity of the system equilibrium point. Inigh
andA; = 1—d. The right eigenvectors associated withand paper, and in the authors’ previous work [1], we approach

Az are the problem of measuring modal participation by averaging
1 1 relative contributions over an uncertain set of initial ditions.
=1y |andri= 741, In this section, we summarize this approach as it applies to

) . ) ) the definition and calculation of mode-in-state partidipat
respectively. The left eigenvectors associated WithandA2  factors. We carry the approach through to its conclusion

and satisfying the normalization (4) are for this problem, obtaining an explicit formula for mode-
L] —d -1 dI2 — 1 1 in-state participation factors. As mentioned above, thalfin
=[ 4 raadl®=[ 5 ]

formula we obtain using this approach agrees in this case
respectively. Denote by the matrix of right eigenvectors of with the previously existing expressiqn. However, in the

A next section, such a happy coincidence will not occur for the
1 1 more delicate situation of defining and calculating state-i
v=[rt r?= { 14 } mode participation factors.

Next, we recall from our previous work [1] a basic definition
From the normalization condition (4), we can immediatelyf relative participation of a mode in a state. This defimitio

write involves taking an average over system initial conditioha o
1 |1 1%dd 1%1 measure of the relative influence of a particular system mode
V= 2| = 1_1d id on a system state. The initial condition uncertainty can be

taken as set-theoretic or probabilistic. In the set-th#ofer-

The evolution of the modes can be obtained using thgulation, the participation factor measuring relativeliefice
diagonalizing transformation:=V~!x as was done in (10)- of the mode associated with on statex, can be defined as
(13). The system modes are found to be

zt) ] [ 1IN0t ] IO\ i
{ 2(t) ] B [ 12X0¢h2t Pi = avg ( ))(:;)rk (20)
=00 _ _1 0 it X €8 k
- [ EmaT ] e

Based on the original definition of participation factotse t Whenever this quantity exists (however, see Remark 1 below
participation factor for statg; in mode 2 isp1» = rl|2_ 11d, for an)(()gher aossil)lzcl)e id?flnltlon for the case of complgx
and the participation factor for state in mode 2 isppy— €& X = L1 (I"7)ry is the value ofx(t) att =0, and
" is an operator that computes the average of a

rals = Clearly, in generap, # However, from (18) a8oes
rsls 1 d ) 12 7 P22. X n . .
we have the equation function over a se C R" (representing the set of possible

values of the initial conditio?). We assume that the initial

»(t) = 1 (X1+X2) gt (19) condition uncertainty se$ is symmetric with respect to each
1-d of the hyperplane§x, =0}, k=1,...,n

for the second mode(t), from which we observe that state In the definition in [1] that starts with a probabilistic

x; and statex, participate equallyin mode 2 sincez(t) description of the uncertainty in the initial conditiofl, the

depends on the initial conditioxP through the sum<8+xg. average in (20) is replaced by a mathematical expectation.

Again, we find that the state-in-mode participation factass The general formula for the participation faciag measuring

commonly calculated yield conclusions that are very mugdarticipation of mode in statex, becomes

at odds with what one might consider reasonable based on

explicit calculation of the evolution of system modes asg/the

depend on initial conditions of the state variables. | i = E {(I'))((';)r{(} (21)
k

The inadequacy of the original state-in-mode participatiovhere the expectation is evaluated using some assumed joint
factors formula has been demonstrated in the two examppesbability density functionf(x%) for the initial condition
above. This motivates the need for a new formula that betiemcertainty (of course, this definition applies only whee th
assesses the influence of system states on system modesexpectation exists).



Expanding the inner product term in (21), we find significant departure from current practice. We will als@ us
0 (1) the new formula to revisit the examples of Section Ill.
i = E {z I k} Consider the general linear time-invariant continuouseti
= X

system given in (3), repeated here for convenience:

e {(I'kxg>r'k}+E { s <I5xﬁ;>r'k} X = AX1) (25)
% 1;01 ik The evolution ofz(t), i =1,...,n, was obtained in Section I
. noo :
= lr+ Y liiE {F{} (22) 2
j=17j#k K z(t) =
The second term in (22) vanishes when the components of it 2o
the initial condition vectox?, xJ,...,x% are independent with - > (15x)). (26)

zero mean [1]. Therefore, under the assumption that thialinit =

condition components?, X3, ..., x are independent with zero This equation shows the contribution of each compon@nt
mean, the participation of theth mode in thek-th state is j=1,... nofthe initial stateC to z (t). Recall also that for the
given by the same expression originally introduced by Perazase of a real eigenvalle, z(t) is identically thei-th mode,
Arriaga, Verghese and Schweppe [7], [12]: while, for a complex eigenvalug, the associated mode can be
od = lirl 23) taken as;(t) or as the combination @f(t) and its conjugate:
i KTk z(t)+Z (t) = 2Re{z(t)}. The following general definition of
This result can also be obtained using the set-theoretic avetate-in-mode participation factors is obtained by avieathe
aging formula (20) [1]. relative contribution o8¢ in thei-th mode and evaluating the
Remark 1:(Alternate Definition of Mode-in-State Partici-result att = 0. In this definition, we take the mode associated
pation Factor for a Complex ModeFor a complex eigen- with a complex eigenvalue as 2Ra(t)}, i.e., the combination
value A;, the associated “mode” is taken above as the terof modal components due to the eigenvalue and its conjugate.
containingeM! in the system response (2). However, we cadad we decided to view the mode associated with a complex
alternately view this mode as consisting of the combinegigenvalue\; asz(t) alone, we would use the first expression
contributions from\; and its complex conjugate eigenvaije in the definition below for both the case of a real and a
This viewpoint is easily seen to lead, under the same symymetomplex eigenvalue. However, the derivation following the
hypotheses as above, to the following alternate expregsion basic definition below of a simple final formula would become
the participation factor of the mode associated wittandA;" unwieldy for the complex eigenvalue case.

in statexy: Definition 1: For a linear time-invariant continuous-time
— i system (25), the participation factor for tlketh state in the
P = 2Re{lind. (24 i’th mode is
V. NEW DEFINITION OF PARTICIPATION FACTORS E M} if Aj is real
MEASURING PARTICIPATION OF STATES IN MODES Wi = ;O (27)
. . . . : (I R : .
In this section, a new definition and calculation are given E g if Aj is complex

for participation factors measuring contribution of staia

modes. The probabilistic approach presented in the previomhenever the expectation exists.

section is used, where the initial condition is assumedtisfga  Note that in (27), the notatio®? meansg (t = 0) = I'x? and

a joint probability density function. In order to obtain arthe asterisk denotes complex conjugation. Also, analogmus
explicit formula from the new general definition of state-inthe approach in Section IV and the original work [7], [12]e th
mode participation factors, we find that it is necessary t@@naquantities being evaluated represent the contributiohedé s,

an assumption on the probability distribution of the ididan- to a mode divided by the total mode evaluated at tirae0
dition which is more constraining than what was needed in tifleowever, see the Conclusions section about the posgibilit
analysis above for mode-in-state participation factotsus] of measuring modal participation effects over time). Note
the explicit formula derived in this section should be vievie  also that Definition 1 always yields real-valued participat
the pragmatic sense that it provides an easy to use expnes$itors.

that reflects initial condition uncertainty. Other assurfaths Unfortunately, even under an assumption such as symmetry
of uncertainty may not lead to explicit formulas, although af the initial condition uncertainty, there is no single s#al-
formula requiring numerical evaluation of integrals canajs form expression for the state in mode participation factors
be obtained from the definition. The explicit formula obtdn 1y;. To obtain a simple closed-form expression for the state
here differs from the single formula (16) that is currentyn mode participation factorgy; using (27), we need to
used to measure both state-in-mode participation and moéled an assumption on the probability density functibix?)
in-state participation, while the currently used formul®) governing the uncertainty in the initial conditiaf that allows

is retained here as a measure of mode-in-state participatics to explicitly evaluate the integrals inherent in the dadin.
(noting that the alternate formula (24) can also be used forln the remainder of this section, we assume that the units
the case of a complex mode). This dichotomy representofathe state variables have been scaled to ensure that the



probability density functiorf (x) is such that the componentswith y; € R andy/ € R"1, the integral in (32) can be expressed
x9,%9,...,x% are jointly uniformly distributed over the unitas

sphere inR" centered at the origin: aTx B a’ Qy
5Ty InX 5TovnY
o K IOl <1 Ixj<1 BT X Ivl<1 P Qy
— = . Tipl
FO) { 0 otherwise (28) _ / a’[b Ql]ydny
yl<1 bT[b Qu]y
(This is the same as assuming a uniform distribution in aTbly1+aTQ1y
an ellipsoid that is centered at the origin and symmetric = / <1de (35)
with respect to the coordinate hyperplanes in the original IVl yi+b Quy
state variable units, a physically palatable assumptioth an =0
independent of units by construction.) The conskastchosen The expression (35) can be further simplified as follows:
to ensure the normalization T Tl
/ 3 XX = ab/ dny (36)
T, Un - T 11 n
/ OO = 1. (29) i<1bTx bTb? Jjy<1
1X0]|<1 1 a’ Qiy )
bT bl / dnfly dyl
The value of the constaht can be determined by evaluating Ivl<1 Y1
the integral in (29) using (x°) given in (28): The first integral on the right of (37) evaluates Vg, the

_ _ volume of a unit sphere iR", whereas the second integral
/ FOVDP = / kd>€dx(2’...dx2 =kV,=1 (30) Vanishes (it is improper but the Cauchy principal value is 0)
IpCl]<1 JIxlI<1

Therefore,
whereV, is the volume of the unit sphere R'. The constant / ﬂ X — @V 37)
k is then given by Ixl<1bTx " b ™"
1 whereV, is given by (33). This completes the proof. MR
k=_—. (31) Next, the relative participation of thieth state in the-th

Vi mode is evaluated using Definition 1 under the assumption

above on the distribution of the initial conditio®f. Before
proceeding, we recall the relationship betwe€rand 2°:

0 _
/ Xy x = Aby (32) cow
B = B A (39)
j=

The following Lemma will be used below.
Lemma 1:For vectorsae C", b € R" with b# 0 we have

where dnx denotes the differential volume element I _ _ _
dxdx---dX, and V, is the volume of a unit sphere inA. Participation in a mode associated with a real eigenvalue

R" which is given by To determine the participation of theth state in a real
mode associated with a real eigenvalyewe substltutexk =

2, r‘zO in (27):
Wz{m a3 T |

2n I

n Vn727 T[kl — E {k_xg}
Proof: The proof below is for the casgb e R", b# 0. The E { LZT—lrIJ(z(j)}

casea € C" and b € R" follows by linearity. Consider the
transformatiorx = Qy where the matrixQ is chosen to be an

> 55
AV
w NP

1 T |'I"Z|0 n - ZO
orthogonal matrix (i.e.Q~1 = Q") with first columnb! : \bH = E {&} + ; |1'<r|J<E s
(i.e.,Q=[b' Q1]). The remaining columns d; are chosen z j=1"j# z
to be orthogonal td?, i.e., o noo yl
= hne+ 5> LKE ?{ : (39)
(b)TQr=0. (34) =0 '

Note that the first term in (39) coincides wigl;, the origi-
With this transformation, sinc&)~! = Q', we have that nal participation factors formula. We will find that, in geak
[X]]> = x"x= (Qy)TQy=y"Q"Qy=y"y=|y||%. Also, since the second term in (39) does not vanish. This is true even
Q is orthogonal, d¢Q) = 1 anddyx = dyy. in case the componentd, x3,...,x2 representing the initial
Writing the vectory as conditions of the state are assumed to be independent. Shis i
due to the fact that the second term involves the components
( yi > of 2 (i.e., 2,3,...,2) which need not be independent even

y= under the assumption that tlx% are independent, due to the



transformatior® =V ~1x0. This was overlooked in [1], leading This expression is easily obtained from Definition 1 and
to the incorrect conclusion there that the second term in (3%mma 1 as follows. Recall Definition 1, the general
vanishes. averaging-based definition for state-in-mode particgrafac-

tors for the case of a real eigenvalue:
We now use Lemma 1 to simplify the expression (39) for igenvalu

the participation factor for thk-th state in theé-th (real) mode: o |1'<Xf<)
i = E {5500 47)
i\ o [ 2 i
i = Lo+ Z# lirE 2 (40)  substituting® = I'X° in (47) yields
j=1 j#
i i
Substituting’ = I'x° into (40) yields T = E {II'I‘:S} E {lﬁleioxo} (48)
o no [ix0
Wi = hro+ Y LnE {W} Denote
e a = Ie=10..01 0. 0
= i+ 5 LiE {900} (41) b = (V.
j=1"j#
Using Lemma 1 and the normalizatiéiv,, = 1, (48) reduces
whereg(x°) takes the form to
j j alb 1ehT ()2
0 _ 1X1|X0+ + 1] o= 27 _k=V/ ok 49
9(x’) = 0 150+ 10 (42) T bTb ()T (T’ (49)
o . which is exactly (46).
Denotea:= (1},13,...,I11)T andb:= (I},15,...,1)T. The ex-
pected value og(x’) is B. Participation in a mode associated with a complex conju-
E{g00)} = / ) () d gate pair of _elgenvalueé_ _ _
IhOl|<1 To determine the participation factor for a state complex
- : a0 3 mode i.e., a mode associated with a complex conjugate pair
- -/HXOHS1 bT x0 (43) of nonreal eigenvaluels, A, we use the second case of (27):
Using Lemma 1, which applies since is real, and the ok (I +1E%
normalizationkVj, = 1 from (31), this integral reduces to i = Z,-°+Z‘°*
a'b Re{l} }x°
E{g0®)} = =kV = E : 50
a'b _
= 5 (44)  SubstitutingZ’ = I'x in (50) yields
Substituting (44) into (41) yields a key result of this pagper o Re{l; }Xk Re(l} }XO
A . i = E | : . (51)
new formula for the participation factor for statg in a real Re(11x0} Re(11}x0
mode: Equation (51) can be rewritten as
o n ) ,|j(|i)T
Mg = Iirl + lhr)l (45) o Refli} (€97
le,zj?éi KT M= B T Re(ho

Remark 2:Under the initial condition uncertainty assump- (&)TX0
tion based on which (45) was obtained, the participatiotofac = Re{lk} E { Re{l'}xo} (52)
for thei-th mode in thek-th state equals the participation factor
for the k-th state in thei-th mode (i.e.,7k = pki) if the left
eigenvectors of the system matrxare mutually orthogonal,
ie.,

Next, we obtain formulas analogous to (45) and (46) above,
but now giving participation factors measuring participatof
states in a complex mode.
First, to determine a formula analogous to (45), substitute
HaYT =o, for j,i=1,2,...,n i #]. 2 =1 and x{ = 3717 = 37, ril’x° and apply and
Lemma 1 to obtain
This is a very restrictive case (which applies, for instance

when the system matrix, being real, is symmetric). i = E { Re{ll}xk}
Next, we derive the following expression equivalent to (45) Re{l'}x
- Re(l! }21 1rJIJxO
) = E Re{l1}x0
Wi = W efl'}

_ W _ i STarilix
= 5T :(l) (46) = Re{lk}E{W : (53)



Let a = ZT:N;UJ and b = (Re{p})T_ Since b is real, be mapped by changes of units to a uniform distribution on a

we can invoke Lémma 1 and the normalizatiow, = 1 to Unit sphere inR". _ _

reduce (53) to Next, we revisit Examples 1 and 2 using the newly derived
formula for state in mode participation factors, and corapar
the results to the participation factors obtained using the

(Z?:MJ(' J) (Re{I'H)T original definitions. Note that all eigenvalues in thesenegkes
T = Re{ly} Re{lH(Re(IHT (54)  are real, so the formula (45) applies as a (new) measure of
. i state-in-mode participation factorg; (as does the equivalent
This formula can be rewritten as formula (46)).

(rLIi) (Re{li_})T i © Refliyrd! (Re(l'))T | Example 1 Revisited
Re(I"}(Re{I)T " _£~,; Re{I'}(Re{I})T o
(55)| For Example 1, the participation factors for statgsand x,

in mode 1 based on the new formula (45) are
which is the desired form analogous to (45). We observe that i (a—d)? b2

this formula is applied to a simple real eigenvaljeimplying M, = and T); = —————

that the associated eigenvector can also be taken as real, th (a—d)2+b? (a—d)2+b?

formula indeed reduces to the formula (45) that was deriveg@spectively. The participation factors for stasgsandx in

for the case of a real mod&hus, formula (55) provides a mode 1 based on the original formula grg = 1 andpz1 =0

general expression for state-in-mode participation fastfor respectively.

systems without any restriction on the eigenvalues be#ideés ~ As we observed previously in our discussion of Example

they are distinct. 1, the original formula for participation factors erronsbu
Next, we obtain another equivalent formula for thig for indicates that the participation of state in mode 1 is

a complex mode, but this time in a form analogous to theero. The coupling between staie and statex; in the

expression (46) derived above for the case of real eigeesalusystem dynamics is not reflected in the original formula for

We use Lemma 1 to simplify the expression (52). Taking participation factors (thei), whereas this coupling between

e andb= (Re{l'})T in Lemma 1 and using the normalizatiorstate variables is reflected in the result of applying the new

Tki = Re{lL}

kVh =1, (52) reduces to formula (for thery).
(€97 (Refl'}))T
T = Re{li} Re{IT} (Re('})T Example 2 Revisited
Re{l}} For Example 2, the participation factors for statigsand x,
Re{lk}W' in mode 2 based on the new formula (45) are
. 1

Finally, T2 =3 and T = 3,

o (Re{l}})? 56 respectively. The participation factors for statgsand x, in

Thd = Re{lT}(Re{ll T (56) mode 2 based on the original formula are

This expression is an alternate form of the newly proposed P12 = 1Tld and p22 = 1%dd,

formula (55) for participation factors measuring partieifion

of a state x in a mode. Both expressions apply for a modeespectively.

associated with a Comp|ex Conjugate pair of eigenvamies The results using the new formula more falthfully reflect the

and \?, as well as for a simple real eigenvalde relative contributions of the initial conditions of the tvetate
Remark 3: A|th0ugh care was taken with respect to Se\larlables to the evolution of mode 2, which is glven eXﬂM:It

lecting units in deriving the formulas for state-in-moda-paby the formula

ticipation factors, the final formulas are not themselves in

dependent of units. The independence with respect to state n() = 1_ d(

variable units that occurs in the definitions of mode-irtesta

participation factors is a fortunate coincidence for derta

choices of initial conditions or under certain initial catioh

symmetry assumptions. However, no such coincidence occﬁlr

in the quantification of state-in-mode participation. Onayw

of viewing this is as follows. Units are important, in the sen VI. A NUMERICAL EXAMPLE: A TwO-MASS

that they should be chosen so that a unit variation in thainit MECHANICAL SYSTEM

condition of any state variable has a similar likelihood asita  Consider the translational mechanical system depictedgn F

variation in the initial condition of any other state valialof ure 1, wherey;(t) andy»(t) denote the displacements of mass

the system. That is the spirit of the assumption made abdveand mass 2, respectively, from the static equilibrium [13]

that the distribution of initial conditions of the state t@ccan The system parameters are the massgsand ny, viscous

§ +x9) €2, (57)

Here it is clear that(t) is equally influenced b)xo and x2

smce it depends on the initial conditiofl through the sum
X,



damping coefficientx; and c;, and the spring constanig
andko.

respectively. Note that sinck, = A] and A4 = A5, we have
thatr? =r* andr® =3, where an asterisk denotes complex

A state space representation is obtained by defining tbenjugation. The left (row) eigenvectors of the system ixatr

system states as

xt) = w()
X(t) = =X
x3(t) = ya(t)
Xat) = Y2=Xs

The system dynamics is described by the linear time-inmaria

differential equation [13]

X = AX
where
0 1 0 0
_ k1+k2 _G+c ﬁ C
A = m m my my
0 0 0 1
ko [} _k _o
m m m m

With the system parameters selectechas= 39 kg, mp = 17
kg, c1 =19 Ns/m,c; = 33 Ns/m,k; = 374 N/m, andk, = 196
N/m, the system state dynamics matfixbecomes

0 1 0 0
A — —14.6154 —1.3333 50256 08462
o 0 0 0 1
115294 19412 —-11.5294 —-1.9412
yi()>0 »2()>0
k; k>
AN AN
my m;
— —
¢ (OO ©2 [ONINQ)
Fig. 1. Mechanical system.

A associated with\; andAs are

[ —0.3122+j1.2059 "
no_ 0.4806-+ j0.0539
- 0.2760+ j0.7884 | °
0.3730- j0.0171 |
;

0.3134— j2.4251 ]
—0.4824— j0.1776

3 _

= = | _o2771+ 13357 (59)

0.2530+ j0.1903 |

respectively, and? = |1*; 14 = |3,

The magnitudes of the original participation factqpg
evaluated using (23) for this example are given in Table I.
The state in mode participation factamng evaluated using the
new formula (56) are given in Table II.

TABLE |
PARTICIPATION FACTORS, Pkj, BASED ON ORIGINAL FORMULA.

mode 1

mode 2

X1
X2
X3
X4

|p11] = 0.2420
[po1| = 0.2184
|ps1| = 0.2874
|pa1| = 0.2987

|p12| = 0.3050
|P22| = 0.2900
|ps2| = 0.2404

‘p42| =0.2523

TABLE Il
STATE IN MODE PARTICIPATION FACTORS Tkj, BASED ON NEW FORMULA

mode 1

mode 2

X1

X2
X3
X4

Ty = 0.1792
1 = 0.4248
31 = 0.1401
Ty1 = 0.2558

Ty = 0.2082
Tho = 0.4934
a2 = 0.1628
Ty2 = 0.1357

We observe that the participation factors given in Table I,
The eigenvalues ok areh; » = —0.217+ j2.315 andhg 4 = which are calculated using the original definition of partic
—1.4203+ j4.2935. We denote the modes associated witRation factors, differ from the state in mode participatio
the eigenvalues ag (t) andz(t), respectively. The dominantfaCtorS in Table. Il calculated using the new fqrmula. For
mode is the one associated with the complex conjugate p&ptance, according to Table |, the state that participatest
of eigenvalues closest to the imaginary axis, dg,z. Modes N Mode 1 isx, whereas according to Table II, the state
associated with eigenvalues close to the imaginary axisfarethat participates most in mode 1 5. To demonstrate that
considerable interest as they can be used as an indicatiorPgf€X2 participates more than other state variables in mode
closeness to system instability. Therefore, our emphagisg 1 We calculate the evolution of mode# (¢)) due to different
example will be orey(t). settings in the initial conditions. Specifically,(t) is calculated
The right (column) eigenvectors of the system mathix O the following set of initial conditionsx® = [0.1,0,0,0]T,
associated withh; and A3 are x* =1[0,0.1,0,0", X = [0,0,0.1,0]", andx’ =[0,0,0,0.1]".
We select the initial conditions in this way (0 in all but onfe o

0.0124-j0.1938 the state variables) to distinguish the influence of eacthef t
1 0.4461+j0.0708 | (58) State variables on mode 1. The simulation results are dpict
—0.0321- j0.3425 in Figure 2, which shows plots of Rey(t)} for the various
L 0.7999 J initial conditions. Figure 2 shows that the initial condiii
[ 0.0716+ j0.1021 | componentxg gives the largest effect on mode 1 tat= 0
3 —0.5402+ j0.1624 compared to all other state variables. This agrees with vghat
ro= —0.0553-j0.1673 |’ predicted using the new formula for state in mode participat
0.7970 factors (see Table II). In other words, mode 1 can be excited
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by an initial condition on any of the state variables, howeve Consider the general expression (22) for the mode in state
the highest excitation d& = 0 comes fromxg and the least participation factomyi, repeated here for convenience:
excitation comes fromdg. n 0

The state in mode participation factors calculated based on i = I+ z = {_é} (61)

the new formula derived in this paper can be used to determine j=1"j#k
the rel_at|ve degrees by Wh'Ch system stz_;\tes ex_qte a pml(_:% typical term in the summation on the right side of (61) takes
mode in the system. This can be useful in stability moniwring = «rm
applications. For example, in stressed electric powelesyst 0 0
typically there is one critical mode that needs to be moador E X _ / X ) A
4k Ip0l|<1

0

2 £ 0
If the system is operating exactly at an equilibrium poind an XQ Fix

0
not influenced by disturbances, this mode cannot be observed &
in the outputs of the system. In order to monitor the critical _ k/
mode and detect closeness to instability, a small pertiorat []x0]]<1
signal is applied to the system and the response is measuf§ghote

The state in mode participation factors can help in selgctin

a location for applying the perturbation signal in order to a = (0,...,0,_1,0,...,0)7,
achieve the highest excitation in the critical mode to achie
the clearest possible indication on how close the system is t

dxX (62)

25|26

— T
instability. b = (0,...,0,\1/,0,...,0) .
Kth
01 : : ‘ ‘ ‘ ‘ ‘ The integral in (62) can be expressed as

——change in x;

- changein x;

+=.=:change in x;

0
1
0
2
0
3
0
4

= ==change in x

X0 a'xo
E{—J} = k Z= d (63)
%) /onwwgleXO

Using Lemma 1, this expression reduces to

] 0 T
-0.05 X; a b
j _ _
01 1 7k
Therefore, the second term in (61) vanishes and, under the
ol new assumptions, the mode in state participation factes ar
time [sec] still given by

Fig. 2. The effect on mode 1 of a perturbation of 0.1 away fromilédrium Pii = ”JL (65)
in the initial condition componerx? (solid), x3 (dotted), X3 (dash-dot) and ) )
xQ (dashed). We can therefore conclude that (65) is a valid formula for

mode in state participation factors under any of the foltayvi
assumptions on the initial conditions:
VII. A FURTHER REMARK ON MODE IN STATE 1) The initial conditionx is taken to lie in an uncertainty
PARTICIPATION FACTORS set 8 which is symmetric with respect to each of the
. . . L 0_ _
In this section, an additional result is given that relates  hyperplanesq =0,k=1,2,...,n.

only to mode in state participation factors. The result mtth 2) The initial condition components are independent ran-
in the averaging formulation, an additional possible set of ~ dom variables with marginal density functions which are

. o . L ic Wi 0_0 ke

initial condition uncertainty assumption is found to alead to symmetric with respect tg =0, k=1,2,...,n

the traditional participation factors formula for mode tate ~ 3) The initial condition components;, j=1,2,....n, are
participation factors. jointly uniformly distributed over a sphere centered at

In Section IV, we showed that when the components of the  the origin.

initial condition vectorx?;x3,...,x3, are independent random
variables with zero mean, the participation of made state VIIl. CONCLUSIONS
X is given by We have presented a new fundamental approach to quan-

bi = | [ (60) Fifying the participation of states in modes for linear ti.-m.e_

' KTk invariant systems. We have proposed that a new definition

In this section, we show that this expression remains vélidand formula replace the commonly used participation factor
the components of the initial conditio®, X0, j=1,2,....n, formula for measuring participation of states in modes,levhi
are assumed to be jointly uniformly distributed over thet uniecommending the previously used participation factors fo
sphere inR" (see (28) for the expression of the probabilitynula be retained as a quantification of participation of nsode
density function in this case). Note that under this assianpt in states. The analysis presented in this paper uses angragi
the random variablex,‘jJ are no longer independent. over an uncertain set of system initial conditions. The ysial
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led to the conclusion that participation of modes in stat¢®] G.C. Verghese, |.J. Pérez-Arriaga, and F.C. Schweffmdective modal

and participation of states in modes should not be viewed analysis with applications to electric power systems, RhrtThe

. . . dynamic stability problem JEEE Transactions on Power Apparatus and
as equivalent or interchangeable. Examples were given t0 gysiemsvol. 101, No. 9, pp. 3126-3134, Sept. 1982.

demonstrate that the original formula for participationtéas [13] R.L. Wiliams Il and D.A. Lawrence,Linear State-Space Control
is not convincing as a measure of state in mode participation ~SystemsHoboken, NJ: John Wiley & Sons, 2007.
Moreover, these examples demonstrated the applicabilidy a
usefulness of the new formula for state in mode participatio
factors.
It is interesting that while the problem addressed in this
paper relates to a very simple and well studied class of
systems, considerable effort was required to revisit whay m
seem to be a basic issue, namely modal participation. Indeed
it appears that work is needed on further related mattech, su
as implications of the results for sensor and actuator place
ment, for system monitoring to detect impending instailit
for order reduction, and possibly for coherency studies of
power networks, among other issues. Also, from the results
in Figure 2 for the mechanical example, the relative sizes
of modal participations at the initial time instant mighffeli
from those over a time interval. For some applications, iy ma
be desirable to have analytical measures of modal partioipa
that quantify modal participation over time.
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